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Abstract

Creating specified structures through the coordinated efforts of teams of simple

autonomous robots is a significant problem in distributed robotics. All previous ef-

fort, both empirical and theoretical, has focused on the problems of designing either

controllers or environments which, in tandem with given environments or controllers,

built the specified structures. In this paper, we give the results of the first computa-

tional and parameterized complexity analyses of the controller-environment co-design

problem in the simple case where teams of finite-state robots are designed by select-

ing controllers from a given library. We show that this problem cannot be solved

efficiently in general or under a number of restrictions, and give the first restrictions

under which this problem is efficiently solvable.

We also consider two elaborations on this problem. First, we analyze the controller-

environment co-design problem under a new architecture in which robots have a

transient memory. Second, we give the first definitions of and derive computational

complexity results for stigmergy-related parameters for the controller-environment

co-design problem.
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Chapter 1

Introduction

This chapter gives a brief introduction and motivation for the research done in this

thesis. We start with the motivation in Section 1.1. In Section 1.2, we highlight the

research questions that are answered in this research. Finally, Section 1.3 describes

the organization of this thesis.

1.1 Motivation

Swarm robotics, which is a subfield of multi-robotics, is inspired by natural swarms of

social insects [25]. Collective behavior and the self-organization of social insects have

attracted the attention of scientists for a long time. The way termites construct their

mounds and the phenomenon of pheromone trails used by ants for finding food are

two examples of such natural swarms [5]. These biological swarms exhibit astounding

features. Even though an individual member of a swarm does not seem very capable,

the results of their collective efforts are impressive. Termites produce one of the most

amazing structures among social insects. Their mounds have features like natural air
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conditioning and a royal chamber for the queen to lay her eggs. One might assume that

a leader, i.e., the termite queen guides such construction. However, research shows

that the construction process of mounds is not guided by any individual termite but

is a result of coordinated effort via stigmergy [5], which is a way of communication

by making changes in the environment.

Following this mechanism, researchers are working on building swarms of relatively

simple robots and making them work in certain environments to achieve various

construction-related tasks [40]. Such environments are often enhanced by features

to guide the robots to complete their tasks, e.g. markers in the environment for

construction material or for the position of the target structure. One of the features

of natural swarms is that if some ant or termite dies, this will not halt the functioning

of other individuals. The swarm will adjust itself, and the process of searching for food

or mound construction will carry on. Swarm robotics tends to mimic this approach

of having a large number of simple agents in a team to gain robustness, flexibility,

and scalability in the system. Compared to a single but powerful robot, teams of

simple robots will prove vital for elevated risk missions [8] e.g., deep space missions or

working in catastrophic conditions where it is impossible for human beings to operate

or too risky to send expensive robots or machinery. A large number of simple robots

thus become an ideal candidate to work under such conditions because such teams

of robots are scalable and robust. So even if some members of a team malfunction,

this will not jeopardize the overall functionality of the team. Such malfunctioning

members can be replaced efficiently, economically and easily in a short span of time.

The problem of creating a team of robots for a given environment and the problem

of designing an environment for a given team of robots to achieve a construction-
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related task are intractable in general and also intractable relative to restrictions on

a number of sets of parameters of the problem [37]. Hence, there is a need to ex-

plore variants of these problems which might be tractable. One such variant is to

select robots for the team from a given library of controllers instead of creating them

from scratch and to design the environment simultaneously with the team (co-design

problem). In this thesis, we have studied this co-design problem using both previ-

ously derived [35, 37] and new [32] results.

1.2 Contributions

In this research, we have done the first classical and parameterized complexity anal-

yses of the controller-environment co-design problem. The controller-environment

architectures that we used to study the co-design problem are similar to the one pre-

sented in [37]; we refer to this model as the Swarm Intelligence (SI) model (defined

in detail in Section 3.1). The basic entities in the model of structure creation by

robot teams are environments, target structures, individual robots, and robot teams

(along with target structure and team positioning). In this research, we have derived

the computational and parameterized complexity analysis results for the above-stated

co-design problem to answer the following questions (see Section 2.4 for further mo-

tivation):

1. Is co-design efficiently solvable in general? By Theorem 1 in Section 3.2.1,

it has been shown that co-design is not efficiently solvable in general.
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2. If co-design is intractable in general, can it be made efficiently solvable

by applying restrictions to parameter sets? Results in Section 3.2 shows

that co-design problem remains intractable even after applying restrictions to

multiple parameters.

3. What results hold if we use a different architecture for robot con-

trollers? We have considered a new architecture (defined in Section 4.1) which

is an extension of the finite state controller architecture of the SI model defined

in [37] (restated in Section 3.1), in which the robots have a transient memory.

We have shown intractability under the new architecture even relative to the

parameter combinations for which we could not get intractability for the SI

model – that is, by just one reduction in Theorem 8 in Section 4.1.2 we have

shown that the co-design problem is intractable under the new architecture rel-

ative to all the controller and team related parameters related to this problem

given in Table 3.1.

4. What results do we get for the co-design problem if we restrict pa-

rameters related to stigmergy? We have done the first computational com-

plexity analysis investigating aspects of stigmergy. We have defined several

stigmergy-related parameters in Section 4.2.2 and derived some basic results

relative to these parameters. Results in Section 4.2.3 shows that restricting

several combinations of these parameters still does not make co-design problem

tractable.

Note that the results cited in points 1 and 2 above were previously given (frequently

without proof due to conference page limits) in [32].
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1.3 Organization of Thesis

This thesis is organized as follows:

• In Chapter 2, we have given an overview of swarm robotics and their use in

construction. An introduction of swarm robotics, motivation, main character-

istics and comparison with classical robotics is given in Section 2.1. Section

2.2 discusses the use of classical robots and the need for swarm robotics in the

construction industry. In Section 2.3, we explain the basics of classical and pa-

rameterized complexity analysis and how they are used to answer the questions

that are of significant interest in our research. Section 2.4 talks about some of

the previous computational complexity work done on the construction-related

problems in swarm robotics.

• In Chapter 3, we investigate controller-environment co-design through library

selection problem. In Section 3.1, the controller-environment model (SI model)

used to study the co-design problem is given. We formalize the co-design prob-

lem in Section 3.1. Results for the co-design problem under the SI model are

given in Section 3.2 and are discussed in Section 3.3. The parameters for the

co-design problem that we considered in our proofs are given in Table 3.1, and

a summary of all results in this chapter is given in Table 3.2.

• In Chapter 4, we have elaborated on the results given in Chapter 3. In Section

4.1, a newly proposed architecture is analyzed for the controller-environment

co-design through library selection problem. Intractability for the co-design

problem under this new architecture is proven in Section 4.1.2 and the relation-
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ship between the two architectures is described in Section 4.1.3. Section 4.2

discusses stigmergy in detail and for the very first time parameters quantify-

ing various aspects of stigmergy in the problem under study are defined and

analyzed.

• In Chapter 5 we summarize our work and give several important directions

for future work.
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Chapter 2

Previous and Related Work

This chapter gives an overview of swarm robotics, its motivation and use in the

construction industry. We also explain some of the important concepts related to

complexity theory and talk about some previous related work in the construction in-

dustry. Section 2.1 talks about swarm robotics in general and Section 2.1.1 highlights

the differences between swarm robotics and classical robotics. In Section 2.2, we

discuss the use of swarm robotics in construction. Section 2.3 gives an introduction

to classical and parameterized complexity analysis and how these are used to an-

swer the questions that are of significant interest in our research. Finally, Section 2.4

talks about the previous computational complexity work done on construction-related

problems in swarm robotics.

2.1 Swarm Robotics

Swarm robotics is an area of robotics inspired by biological swarms [25]. To un-

derstand swarm robotics, we will first have a look into natural swarms of insects.
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Biological swarms are mainly seen in the social insects like ants, termites, bees, etc.

and also seen in communal animals like schools of fish and flocks of birds [10].

To live together in a society, insects have to distribute tasks and have to plan

and decide where to live, where to collect the food from and how to build their nest.

This results in a need for communication among insects in a society. A single insect

does not have enough capability to either accomplish a task on its own or make a

decision and lead other insects of the swarm. For this purpose, insects make collective

decisions [4]. For example, when ants have to find a food source, the explorer ants

spread out and when they find a food source they leave pheromones behind on their

way back to nest. Other ants follow the trail and extract the food source [4]. A

similar phenomenon is found in honey bees. When a honey bee finds a food source,

it comes back to the nest and makes certain types of movements called the honey bee

dance to communicate the location of the food source. Other bees then locate the

food source and collect food [30]. Similarly, these insects with their collective efforts

find and build new dwellings [4].

From above we see the main characteristics of biological swarms [25]:

• Indirect Communication: The agents of a biological swarm communicate

with each other via making changes in their environment, i.e., via stigmergy [5].

An example of this is laying pheromone trail for finding food by ants [4].

• Decentralized Decision Making: There is no central governing authority in

biological swarms that make important decisions; instead the decision making

process is a result of the collective behavior of the members of swarm [4].

• Robustness: The members of a swarm carry equal importance in the colony.
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No particular member has supreme abilities or power to run the swarm such

that the rest of the swarm is dependent on that individual member. This

characteristic makes the swarm robust which means that even if some of the

members of a swarm die then it will not affect the functionality of rest of the

colony rather, some other members will replace the dead ones.

Swarm intelligence tends to mimic these characteristics. Swarm robotics is a field

of multi robotics in which a large number of simple robots work together to achieve

some specified task [25]. The team of robots in swarm robotics have the characteristics

mentioned above [19, 25] which means the following:

• Robots in the team do not communicate directly; instead, they communicate

with each other by making changes in the environment, i.e., via stigmergy.

• Any central system does not control robots in a team; instead, the robots op-

erate autonomously in their local environment with their local information.

• Individual robots do not have information about the whole swarm neither does

an individual robot has enough capability to achieve the final goal on its own.

Instead, the task is achieved by the collective effort of the team as done in

biological swarms. So, if any member of the team somehow malfunctions, then

it will not halt the overall functionality of the team and the rest of the team will

continue working. This requires that the team should consist of a large number

of robots so that malfunctioning robots can be replaced easily.
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2.1.1 Difference of Swarm Robotics from Classical Robotics

In this section, we highlight the differences of swarm robotics from classical robotics.

Classical robots (which we will refer to as Good Old Fashioned Robots (GOFR)) are

different from swarm robots in many ways [19];

• If we look into individual capabilities of GOFR then it is apparent that an

individual GOFR can perform very complex tasks e.g. robots used for surgical

procedures [20] or self-driving cars [21]. On the other hand, individual robots

in a swarm are dumb as compared to GOFR. They are not capable enough to

achieve a task on their own but working as a team allows them to solve complex

problems which are not solvable otherwise by an individual [19].

• GOFR usually do not work in teams. Instead, an individual GOFR is designated

for a specific task of which it has either complete knowledge and it works on

its own, or it is controlled by another system or human being. On the other

hand, an individual robot in a swarm of robots is not capable enough to achieve

complex tasks alone. Robots in swarm robotics accomplish a task while working

in a team consisting of either same type of robots (homogeneous team) or

with different types of robots (heterogeneous team). The number of robots

in a team is usually large, as a large number of simple robots is often able to

complete tasks better than a single complex robot [19].

• GOFR can work either on their own, in which case information is fed into

the system, or GOFRs are either fully or partially controlled by some central

controlling system or by humans in which case they have access to global infor-

mation. On the other hand a swarm of robots is not controlled by any central
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system; instead, the robots operate autonomously with their locally perceived

information.

• GOFR are usually designed to solve specialized tasks, so their internal data

structures and controllers are complex and are related to the task they are

assigned. This makes them expensive and not easily replaceable in certain cases

if they malfunction, e.g. working in deep space or in a mine where human access

is not possible. Individual robots in swarm robotics do not have information

about the whole swarm nor does an individual robot have enough capability

to achieve the final goal on its own, which makes them cheap. The swarm is

not dependent on any individual robot hence making the system robust and

scalable, which is not easily achievable in GOFR based systems.

Swarm robotics has the advantages over GOFRs in terms of robustness, scalability,

decentralization and self-organization [19]. In the next section, we will discuss how

swarm robotics and GOFRs are being used in the construction industry.

2.2 Swarm Robotics in Construction

In recent decades we have seen an increase in the use of robots in many different fields

of science and engineering [7]. The construction industry, in which previously there

was not much research being done, has now been under the spotlight for researchers

for the use of robots [2, 3, 23, 26]. There is very little practical use of GOFRs in

the construction industry, and even when robots are used in construction, they are

fully or partially supervised by human beings. The reason for the reluctance of the
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construction industry for the use of GOFRs is that the construction environments

are not structured, and therefore safe human-robot interaction is of major concern

[1, 26]. GOFRs are designed to work in an organized environment where everything

is in place for a GOFR to operate. Some examples of semi-autonomous robots in the

field of structure creation are road pavers and asphalt compactors. Semi-autonomous

robots are also used for interior finishing in house building [3].

In the construction industry, where even GOFRs have not made an enormous im-

pact, swarm robotics is still merely an academic topic of research. Previous research

includes the study of the unsupervised construction of structures by robots, most of

which is inspired by natural swarms, e.g., wasp net construction [31]. By mimicking

biological swarms, algorithms for the construction of specified structures using au-

tonomous teams of robots have been designed [6] e.g robot teams that mimic the way

termites build their mounds [40]. Most of these previously designed algorithms focus

on the design of homogeneous robot swarms, i.e. all the robots in the teams have the

same type of controller, with stochastic behavior rules which are necessary for robot

teams to work in deadlock-free manner [6, 22, 27, 31, 39, 40]. However, this work does

not deal with the controller environment co-design problem – that is, whether there

exist any algorithm that can design a team of robots and also that team’s operating

environment at the same time for efficient completion of a target structure.
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2.3 Classical and Parameterized Complexity

Analysis

Two questions of major concern are raised in Section 1.2:

• Is co-design efficiently solvable in general?

• If co-design is intractable in general, can it be made efficiently solvable by

applying restrictions to the parameter sets?

These are best answered using computational complexity theory, in particular through

classical [15] and parameterized complexity analysis [12]. Theories of computational

complexity are designed essentially to rule out whether certain kinds of algorithms do

or do not exist. Here we give a brief introduction to some of the important concepts

related to computational complexity theory [12, 15];

• Tractable Class: A class of problems that can be solved by algorithms whose

running time is bounded by a certain kind of function of the size of the problem

instance is called a tractable class. For example, a polynomial time tractable

class (class P) has problems that can be solved by polynomial-time algorithms

e.g. sorting a list, searching in an ordered or unordered list etc. The running

time of algorithms that solve these polynomial-tractable problems is of the form

O(nc) where n is the input size and c is some non-negative integer. Polynomial-

time solvable problems are said to be solved efficiently.

• Intractable Class: A class containing problems for which efficient solvability

is not possible i.e. there cannot exist any algorithm to solve such problems
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whose running time is bounded by a certain kind of function of the size of the

problem instance is known as intractable class. For example, some problems

in a polynomial-time intractable class are not solvable in polynomial-time in

terms of the size of the problem input. Note that an intractable class e.g. class

B (from Figure 2.1) is either known to properly include the tractable class T

or it is conjectured to properly include class T . For example, EXPTIME (the

class of problems that are solvable in exponential time) properly includes class

P , whereas the class NP is conjectured to properly include class P i.e P 6= NP

[14].

• Reduction: A many to one reduction from problem A to problem B is essen-

tially a transformation of an instance of A into an instance of B. The idea here

is that if any input of problem A can be efficiently transformed into an input of

problem B then any algorithm that solves B can be used in tandem with the

reduction to solve A. The time that such a transformation algorithm takes is

bounded such that some form of tractability is preserved.

• Class Hardness and Completeness: If for a class of problems A, there

exists a problem C such that every problem in class A is reducible to C by

an algorithm preserving A-time solvability then we call C an A-hard problem.

If an A-hard problem is a member of class A then such a problem is called

A-complete.

In Figure 2.1, every problem in class B is reducible to each problem in class

B-h; hence, B-h is essentially a class of B-hard problems. The class B-c refers

to the class of B-complete problems i.e. B-hard problems that belong to class B

14



Figure 2.1: A class diagram shows a tractable class T , enclosed in class B. Here, B-h

is the class of B-hard problems and B-c is the class of B-complete problems. Note

that B-c is contained in B-h

as well. As an example, every problem in class NP is polynomial-time reducible

to an NP -hard problem. If an NP -hard problem is a member of class NP then

it is called an NP -complete problem.

In the case of polynomial time tractability, in Figure 2.1, T will be the class P , the

intractable class B is NP , and B-h and B-c are the NP -hard and NP -complete

classes respectively.

Now that we have described the basic concepts of tractable class, intractable

class, reduction, and hardness and completeness, we can discuss what classical and

parameterized complexity analysis are.

• Classical Complexity analysis [15]: Such an analysis focuses on polynomial-

time tractable and intractable problems. It essentially rules out the possibility

of the existence of polynomial-time algorithms for certain problems. It does this
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by reducing a known polynomial intractable problem to a problem of interest for

which intractability is to be proved. For example, NP -hard and NP -complete

problems are reduced to a problem A to prove intractability of the problem

A (subject to the conjecture P 6= NP ). Note that in such an analysis, the

reduction preserves polynomial time solvability i.e. the transformation function

is polynomial time bounded.

• Parameterized Complexity Analysis [12]: A problem instance typically has

multiple aspects or parts. We call each such aspect a parameter. For example,

in Table 3.1, we have given several parameters of the controller-environment

co-design through library selection problem. If a problem is polynomial-time

intractable in general then there is still a possibility of solving such a problem

efficiently by restricting the values of some parameters, i.e., efficient solvability is

possible via fixed-parameter tractable (FPT ) algorithm. We call a problem

A fixed-parameter tractable relative to a set of parameters K (i.e 〈K〉-

A is fp-tractable) if there exist an algorithm for A whose running time is

upper bounded by time f(K)nc, where n is the problem size, c is a constant, K

is a parameter set of problem A, and f is some function of K. Hence, A can be

efficiently solvable by such an FPT algorithm even for larger input size if the

parameters in set K have small values.

A problem for which an FPT algorithm relative to a set of parameters K is not

possible is called a fixed-parameter intractable (fp-intractable) problem

relative to parameter set K. The class XP properly encloses class FPT (the

class that contains problems with FPT algorithms) and several classes in W -
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hierarchy are conjectured to properly enclose class FPT e.g. W [1] and W [2]

(see [12]). Problems that are XP -hard and W [1] or W [2] hard (relative to the

conjecture that FPT 6= W [1] and FPT 6= W [2]) are examples of fp-intractable

problems.

Parameterized complexity analysis establishes whether fixed-parameter tractable

(FPT ) algorithms do or do not exist for polynomial-time intractable problems.

It rules out the possibility of existence of FPT algorithms for a certain pa-

rameter set K of polynomial-time intractable problem A by a parameterized

reduction from a known intractable class problem e.g. from a W -hard problem

for some class W in W -hierarchy to an instance of A with constant values of

parameters in K.

A parameterized reduction is a transformation which preserves fixed-

parameter tractability i.e. the transformation function in the reduction runs

in fixed-parameter tractable time and the parameter K in one problem is a

function of the parameters in the other problem in the reduction. Such a re-

duction is used to prove hardness for problems relative to classes W [1],W [2],

and XP in the W -hierarchy [12].

In a parameterized complexity analysis, we often have a group of parameters for

a particular problem, and we are interested not only in whether the problem is

fp-tractable or fp-intractable relative to individual parameters but also relative

to various combinations of the parameters. One way of displaying these com-

binations and their fp-tractability and fp-intractability results is to list the pa-

rameters involved in each result. Another way of displaying such combinations
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is by an Intractability Map [33]. In an intractability map, the combinations

of parameters correspond to the entries in a 2-dimensional table, and for each

combination, we state whether it is fp-tractable, fp-intractable or unknown.

Examples of such maps are given in Tables 3.3 and 4.1.

Going back to the two questions asked at the beginning of this section, from the above

discussion we established that the first question is answered using classical complex-

ity analysis and the second one through parameterized complexity analysis. In this

thesis, we have first established that the controller-environment co-design through

library selection problem is intractable in general i.e. polynomial-time intractable,

in Theorem 1 in Section 3.2.1. In Sections 3.2.2, 3.2.3 and 4.1.2, we establish fp-

intractability for this co-design problem relative to various sets of parameters given

in Table 3.1. At the end of the Section 3.2.3 in Theorem 7, an fp-tractable algorithm

is designed for the co-design problem relative to one particular set of parameters.

2.4 Classical and Parameterized Complexity

Analysis with respect to Swarm Robotics in

Construction

There is some complexity work previously done on the computational complexity

of designing an autonomous multi-agent system that can perform specified tasks.

Environments and control mechanisms are formalized generally and are powerful (e.g.

Turing machines or Boolean propositional formulae) in the work done in [13, 28, 42].

Recent work includes more explicit models for robot controllers and the environments
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in which the robots operate [34, 36, 37, 38]. However, none of these papers talk

about the construction of target structures except Wareham and Vardy’s paper [37]

which has discussed controller design and environment design separately but did not

discuss about designing them simultaneously (which is the co-design problem that

we have studied in our thesis research) and Wareham’s paper [35] which talks about

designing of robot teams through selection of controllers from a library of controllers

for construction, repair and maintenance of structures. Both of these works are done

relative to a simple model of the controller and a 2-d grid-based environment for

structure creation. In [37], the authors considered the problem of verifying if a given

controller-environment pair can create a specified structure. They also considered if

it is possible to design a controller relative to a given environment or to design an

environment in order to make the given controller work to complete a construction-

related task. Given the general intractability of these problems, the authors of [37]

hoped to achieve tractability for these problems if both the controller and environment

are designed simultaneously and the controllers are selected from a given library of

controllers instead of creating from scratch. However, this proved not to be the case

as shown by the work done in [32], which is the basis of the results in Chapter 3 of

this thesis.
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Chapter 3

Controller-Environment Co-Design

Through Library Selection:

Results for the Basic Problem

In this chapter, we have formalized the controller-environment co-design (through

library selection) problem and have derived intractability results and a tractable al-

gorithm for it. First of all, in Section 3.1, we describe the controller-environment

model for our co-design problem in detail and discuss all the entities involved in it.

Then in Section 3.2, we give intractability results and one tractability result for our

co-design problem. In the end, we discuss what all these results presented in Section

3.2 mean in the discussion Section 3.3.

20



3.1 Controller-Environment Model

In this section, we first review the basic entities in the model of structure creation

by robot teams given in [37]. We will refer to this model as the SI (Swarm Intelli-

gence) model because [37] was published in the journal Swarm Intelligence. The

basic entities in the SI model are environments, target structures, individual robots,

and robot teams, which are described below. Later in this section, we formalize the

computational problem of controller-environment design under library selection for

construction that we will analyze in the remainder of this chapter.

• Environments and Target Structures: Our robots operate in a finite 2D

square-based environment E in which each square has a square-type drawn

from a set ET . Examples of such environments can be seen in Figures 3.1,

3.3 and 3.5. Let Ei,j denote the square that is in the ith column and jth row

of E such that E1,1 is the square in the southern-most west-most (lower left)

corner of E. A structure X in an environment E is a two-dimensional pattern

of squares in an m × n grid whose location in E is specified relative to the

position pX of the lower left corner of the grid. Environment types in ET mimic

real world environment features like sand, grass or gravel etc. Figure 3.3 shows

an environment in which a target structure is a combination of square blocks

denoted by square-type X. The target structure in Figure 3.3 is a result of

running a robot with the controller given in Figure 3.2 on the environment in

Figure 3.1.

• Robots: Each robot occupies a square in E and in a basic movement-action

can either move exactly one square to the north, south, east or west of its
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current position or elect to stay at its current position. Each robot has a

sensing-distance bound r such that the robot can sense the type of the square

at any position within Manhattan distance r ≥ 0 of the robot’s current position

(with r = 0 corresponding to the square on which the robot is standing). These

square-types are accessible via predicates of the form enval(e, pos) which returns

True if the square at position pos has type e ∈ ET ∪ {erobot} (with the sensor

returning erobot if a robot is occupying square pos) and False otherwise, where

a position pos is specified in terms of a pair (x, y) specifying an environment-

square Ei+x,j+y if the robot is currently occupying Ei,j. Each robot can change

the type of the square at any position within Manhattan distance r ≤ 1 of

the robot’s current position to type e via predicates of the form enmod(e, pos)

where pos is specified as for enval().

Each robot has a finite-state controller and is hence known as a Finite-State

Robot (FSR). Each such controller consists of a set Q of states linked by tran-

sitions, where each transition between states q and q′ has a propositional logic

trigger-formula f based on the predicates enval() described above (see Figure

3.2). If a transition’s trigger-formula evaluates to True, this causes a symbol x

to be written by the predicate enmod() described above and the robot’s state to

change from q to q′. Transition with f = ∗ executes if no other non-∗ transition

executes; if x = ∗, no symbol is written.

As multiple transitions could be enabled at the same time which gives the

option as to how a robot should operate in such a situation i.e probabilistically,

non-deterministically etc. For simplicity, the authors in [37] restricted robot
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operations so that only one transition could be triggered at any given time

relative to robot’s current state and the environment type that the robot sensed,

which makes the robot operation deterministic. Later in this section, we will

give the definition of determinism used in [37].

• Robot teams: A team T consists of a set of the robots described above, where

there may be more than one robot with the same controller in a team. Each

square in E can hold at most one member of T ; if at any point in the execution

of a task two robots in a team attempt to occupy the same free space or a robot

attempts to occupy the same space as an obstacle, the execution terminates

and is considered unsuccessful. A positioning of T in E is an assignment of

the robots in T to a subset of |T | squares in E. For simplicity, team members

do not communicate with each other directly (though they may communicate

indirectly through changes they make to the environment, i.e., via stigmergy

[5]). Team members can move either synchronously or asynchronously as spec-

ified; however, in both cases, once movement is triggered, it is instantaneous

and atomic in the sense that the specified movement is completed.

The time that a team of robots takes to complete any given construction task is

crucial in the real world. We restrict our robot teams to the construction tasks that

are completed quickly instead of making robot teams operate over unlimited periods

of time which results in intractability [37, Section 3]. Also, for reliable construction

of a structure by a team of robots, we force the team operations to be deterministic.

Following are the definitions of determinism and time-bounded completability as given

in [37].
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• Determinism: Determinism has been defined differently by different authors.

The traditional definition of determinism for finite-state automata is that an

automaton can sense a single symbol at a time and each symbol maps to at most

one action, which can be either change of state or triggering of an associated

action [18, Section 2.2]. The authors in [37] defined determinism a bit differently

for robot operations. In case of synchronous team operations, a robot in a

team is allowed to perform an action at the common clock ticks and it is allowed

to perform an action at arbitrary times if team operations are asynchronous.

The following rules apply when an FSR in the SI model is allowed to perform

an action relative to robot’s current state q:

1. If a transition t = 〈q, f, c,m, q′〉 is enabled i.e f is satisfied, and no other

transition is enabled then t is executed. This means that the robot whose

current state is q, will make changes c to the environment, if c 6= ∗ and per-

form movement action m (which can be either goNorth, goSouth, goEast,

goWest or stay) and will change its state to q′.

2. If no transition is enabled then the default transition with f = ∗ is exe-

cuted, if such a transition with f = ∗ is defined for q.

3. If at any time, more than one transition is enabled i.e. transition-triggering

formula f for multiple transitions is satisfied then the execution of task

being performed by the robot and its team is terminated 1.

Finite-state robots (FSRs) can sense and be enabled by arbitrary patterns of

1Note that for the purposes of this thesis, these team operation rules and notion of determinism

are broadened in Section 3.1.1.
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squares within radius r of their current position. The number of such patterns

that can be encountered is large and also variable as the sensed environment

can change as the robot and other robots in the team can either move or make

changes to the environment. Therefore, determinism is not defined relative to

the actions of an individual robot; instead, the operation of an FSR can only

be deterministic in terms of a particular FSR team working in a particular

environment.

• (c1, c2)-completability: For a pair of positive integers c1 and c2, a task is

(c1, c2)-completable relative to a robot team T and a positioning pI in an en-

vironment E if that task can be completed by T starting at pI in E such that

the number of time-steps required by T to perform the task is upper-bounded

by c1|E|c2 .

Now, as we have defined all the entities in SI model, we can formalize the com-

putational problem of controller-environment co-design under library selection for

construction that we have analyzed in our research as follows:

Controller-Environment Co-design under Library Selection

Input: A 2-d World-grid W , square-type set ET , FSR library L, team-size |T |, struc-

ture X, initial positioning pI of size |T | in W , and position pX of X in W .

Output: A team T of size |T | selected from L and an environment E consisting of

assignments of types from ET to the squares of W such that T started at pI in E

creates X at pX .

We will use CoDesignLS as an acronym for this problem in the remainder of this doc-
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ument. CoDesignLSfast with superscript fast indicates that we will only be studying

the instance of the problem in which robot team complete the construction task ef-

ficiently, which means the team’s construction task is (c1, c2)-completable relative to

some constants c1 and c2 as defined earlier. We will append subscript syn and asy with

CoDesignLSfast to denote the problem instance with synchronous (CoDesignLSfast
syn )

and asynchronous (CoDesignLSfast
asy ) team operations respectively.

3.1.1 Modifications to SI Model

In our research, we have extended the SI model used in [37]. Notions of the determin-

istic and time-bounded robot and team operation were introduced in [37] (given in

the previous section) to ensure that requested structures are created by robot teams

reliably and quickly. In our research, we have broadened these notions as follows:

• Determinism: Contrary to the robot operation rules under the SI model given

in previous section, where enabling of multiple transitions at any time resulted

in termination of the execution of task (3rd rule of robot operation), here we

allow multiple transitions to be enabled at the same time if each transition

writes the same symbol to the same position and changes the robot’s state to

the same state q′ while making the same movement action; otherwise robot and

team operation is terminated.

• (c1, c2)-completability: Instead of requiring that each robot team complete its

task within c1|E|c2 time-steps as in [37], we allow robot teams to complete their

tasks within c1(|E| + |Q| + |f | + d)c2 time-steps, where |E|, |Q|, |f |, and d are

the number of squares in the environment, the maximum number of states, the
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maximum trigger-formula length in any transition, and the maximum number

of transitions per state in any controller in T .

An example of a construction using this modified version of SI model is discussed in

the next section.

3.1.2 Example of Construction of a Target Structure

Before we dive into results for tractability and intractability, let’s just run through

a simple construction example using the SI model. An example construction task

is described in Figures 3.1, 3.2 and 3.3. An initial environment has been shown in

Figure 3.1 with ET = {A,B,C,X}. Team T has a single robot, which has a controller

selected from library L, where L has a single controller whose state-diagram is given

in Figure 3.2. The position of the robot is shown by the symbol R in the environment.

The robot is initially placed at E1,2, i.e. the 1st column and 2nd row in E (E1,2 has

environment type C). Its initial position in the environment is denoted by pI = E1,2.

The robot will move east from its initial position and will sense the environment

type of the square-block underneath it. If the square-block type is A, the robot will

change it to X. It will stop the construction process when it reads square-block type

C, hence completing the construction task.
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Figure 3.1: Example of a 2d grid environment with ET = {A,B,C,X}. Here the

position of robot is denoted by R in the left most column.

Figure 3.2: State Diagram of a controller that reads environment types in the given

environment and keeps moving to east until it reads square-type C. If it reads square-

type A, it replaces that with square-type X, hence creating the target structure.
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Figure 3.3: Environment after the robot with controller given in Figure 3.2 runs over

the environment given in Figure 3.1. Symbols of type X denote the resulting target

structure created by robot. Here the final position of robot is denoted by R in the

right-most column.

3.2 Results

In this section, we first discuss classical complexity results for CoDesignLS. If a

problem is intractable in general then we need to consider what restrictions might

make that problem tractable. Such restrictions are phrased in terms of aspects of

our problem input or output; each such aspect is known as a parameter as defined

in Section 2.3. The parameters analyzed for CoDesignLS in this paper are shown in

Table 3.1 and can be broken into two groups:

1. Restrictions on robot teams and individual robots (|L|, |T |, |Q|, d, |f |, r) and

2. Restrictions on environments and target structures (|E|, |ET |, |X|).

In Section 3.2.1, we discuss the general intractability of the CoDesignLS problem,
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Table 3.1: Parameters for the controller-environment co-design problem.

Parameter Description

|L| # controllers in library

|T | # robots in team

|Q| # states per robot

d # transitions per state

|f | # symbols per transition-formula

r Robot perceptual radius

|E| # squares in environment

|ET | # distinct environment-square types

|X| # squares in structure X

which leads to the need of parameterized complexity analysis. Hence, parameterized

complexity results for parameters presented in Table 3.1 from previous work are

described in Section 3.2.2 and parameterized results from new reductions are discussed

later in Section 3.2.3. We discuss the implications of all of these results in Section

3.3. For the ease of the reader, we have given Table 3.2, which shows a summary of

all the results derived in this chapter.

3.2.1 Classical Results from Previous Work

We consider first if controller-environment co-design under library selection can be

done efficiently in general, i.e., if CoDesignLSfast
syn/asy is solvable in polynomial time

and hence polynomial-time tractable. It turns out that this is not so by Lemma 8
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Table 3.2: Summary of results for CoDesignLS.

Theorem Description Section

Theorem#1 Polynomial-time intractability of CoDesignLS 3.2.1

Theorem#3 〈|L|, |T |, |X|, |Q|, d〉-CoDesignLSfast is fp-intractable

for both syn and asy, when |L| = |T | = |X| = |Q| =

1, d = 3

3.2.2

Theorem#4 〈|L|, |T |, |X|, |Q|, |f |〉-CoDesignLSfast is fp-intractable

for both syn and asy, when |L| = |T | = |X| = 1, |Q| =

5, |f | = 3

3.2.3

Theorem#5 〈|L|, |T |, |X|, |f |, d〉-CoDesignLSfast is fp-intractable

for both syn and asy, when|L| = |T | = |X| = 1, |f | =

d = 3

3.2.3

Theorem#6 〈|X|, |Q|, |f |, d〉-CoDesignLSfast is fp-intractable for

both syn and asy, when |Q| = 4, |f | = 7, d = 3, |X| = 1

3.2.3

Theorem#7 〈|L|, |E|, |ET |〉-CoDesignLSfast
syn is fp-tractable 3.2.3

in [37, Supplementary Material]. This lemma gives a reduction from Clique to the

environment design problem (see below) introduced in [37]. This problem outputs an

environment E for a given team T such that the team T creates the required structure

X while working in environment E. Clique and the environment design problem

are defined as follows:

Clique [15, Problem GT19]

Input: An undirected graph G = (V,E ′) and a positive integer k.
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Question: Does G contain a clique of size k, i.e., is there a subset V ′ ⊆ V , |V ′| = k,

such that for all u, v ∈ V ′, (u, v) ∈ E ′? 2

Environment Design (EnvDes)[37]

Input: A 2-d World-grid W , square-type set ET , an FSR team T , based on controller

c, a structure X, an initial positioning pI of T in W , and position pX of X in W .

Output: Output an environment E derived from W and ET such that T started at

pI in E creates X at pX , if such an environment E exists, otherwise output special

symbol ⊥.

Analogous to CoDesignLSfast, EnvDesfast with superscript fast indicates the in-

stance of the problem in which robot team complete the construction task efficiently,

which means the teams construction task is (c1, c2)-completable relative to some con-

stants c1 and c2. EnvDesfastsyn and EnvDesfastasy refers to the synchronous and asyn-

chronous versions of the problem respectively.

It is useful to give the reduction from Lemma 8 in [37, Supplementary Material]

in detail with figures because this reduction is referred to multiple times later in our

thesis. Essentially, this reduction constructs a team consisting of a single robot which,

in an environment encoding a candidate solution V ′ ⊆ V , |V ′| = k, of Clique, checks

if (1) V ′ consists of k distinct vertices and (2) there is an edge in G between each

pair of vertices in V ′; if so, a structure X is created at pX . Following is the detailed

description of this reduction.

2Note that both here and in all the proofs involving Clique, we have renamed the set of edges

in graph G to E′ to avoid confusion with the robot-team construction environment E.
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Lemma 1 Clique polynomial-time reduces to EnvDesfast such that in the con-

structed instance of EnvDesfast, |T | = |X| = c1 = 1, c2 = 2, |f | = 3, and |Q|, r, and

|E| are functions of k in the given instance of Clique.

Proof: Given an instance 〈G = (V,E ′), k〉 of Clique, construct an instance

〈W,ET , T,X, pI , pX , c1, c2〉 of EnvDesfast as follows: Let W be a 2× k + 1 grid, ET =

{e0, e1, . . . e|V |, eF , eX} consist of |V | + 3 different types of free-space squares, pI =

W1,1, and X be a single square of type eX positioned at pX = W2,1. Team T will con-

sist of a single FSR based on states Q = {q0 = qU,0, qU.1, qU,2. . . . qU,k, qE,1,1, qE,1,2, . . . ,

qE,1,k, qE,2,2, qE,2,3, . . . , qE,2,k, . . . qE,k,k, qF , qErr}, |Q| = k + k(k − 1)/2 + 3, with the

following transitions (state diagram for the controller of this single robot is given in

Figure 3.4):

1. For each i, 1 ≤ i ≤ k, the set of transitions {〈qU,i−1, enval(vj, (0, i)) ∧ enval(vj,

(0, l)), ∗, stay, qErr〉 | 1 ≤ j ≤ |V | and 1 ≤ l < i} and transition 〈qU,i−1, ∗, ∗, stay,

qU,i〉;

2. A transition 〈qU,k, ∗, ∗, stay, qE,1,1〉;

3. For each i, 1 ≤ i < k, the sets of transitions {〈qE,i,j−1, enval(eu, (0, i)) ∧

enval(ev, (0, j)), ∗, stay, qE,i,j〉 | i < j ≤ k and (u, v) ∈ E′} and {〈qE,i,j−1,

enval(ev, (0, i)) ∧ enval(eu, (0, j)), ∗, stay, qE,i,j〉 | i < j ≤ k and (u, v) ∈ E′}

and transition 〈qE,i,k, ∗, ∗, stay, qE,i+1,i+1〉; and

4. Transitions 〈qE,k,k, enval(e0, (0, 0)), ∗, goEast, qF 〉 and 〈qF , enval(eF , (0, 0)),

eX , stay, qF 〉.

Note that, such an instance of EnvDesfast can be constructed in time polynomial in
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terms of input size of an instance of clique. The robot starts with ensuring that no

two square-types of the k squares E1,2, E1,3, . . . E1,k+1 are the same by comparing the

environment types of each pair of square blocks and if any pair of square block has

same environment type then the robot will change its state to qErr, thus terminating

the construction process. This is done via transitions in point 1 above. Then via

transitions in point 3, the robot ensures that each pair of squares in these k squares

has types that correspond to an edge e ∈ E ′. Thus via transitions in point 1 and in

point 3, robot ensures that these k squares encode a clique of size k in G.

To prove correctness we need to show that there exists a V ′ ⊆ V such that V ′ is

a clique of size k in G if and only if there exists an environment E derived from W

and ET such that T started at pI in E creates X at pX . We prove the “if” part of

correctness by constructing an environment E (shown in Figure 3.5) as follows:

1. E1,1 has square-type e0;

2. E1,j+1, 1 ≤ j ≤ k, has square-type corresponding to the jth vertex in V ′;

3. E2,1 has square-type eF ; and

4. All remaining environment-squares have square-type e0.

Note that in such an environment E, the single clique checker robot in the team T will

progress from pI to pX while creating the required structure X. It can be seen that

the operation of this FSR in environment E is deterministic as at any point in the

construction process, at most one transition of the robot is triggered. To complete

the construction task, the robot must execute k + k(k − 1)/2 + 2 transitions. As

k + k(k − 1)/2 + 2 < 2k2 + 2 < 4k2 + 4 < (2k + 2)2 < c1(|E|+ |Q|+ |f |+ d)c2 when
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c1 = 1 and c2 = 2, this means that this construction task is (c1, c2)-completable in

both the synchronous and asynchronous senses (as there is only one robot in the team

so synchronous and asynchronous operations are same) with respect to team T and

initial position pI when c1 = 1 and c2 = 2.

Now we prove the “only if” part of correctness. Suppose that there is an en-

vironment E such that when the robot is started at initial position pI , the task of

constructing target structure X at position pX is (c1, c2)-completable with respect to

team T and initial position pI . By the rules of FSR operations given Section 3.1, this

robot operates deterministically. The way we have defined the robot’s controller, it

can only move right from E1,1 to E2,1 if it can change its state from q0 to qF . Keeping

in mind that E1,1 has square-type e0, and E2,1 has square-type eF . However, observe

that this change in robot’s state from q0 to qF can only happen if environment-squares

E1,2 through E1,k+1 in the west-most column of the environment E have square-types

which correspond to a clique of size k in the graph G.

To complete this proof, note that in the constructed instance of EnvDesfast, |T | =

|X| = c1 = 1, c2 = 2, |f | = 3, |Q| = k + k(k − 1)/2 + 3, r = k, and |E| = 2k + 2.

Observe that this is also a reduction from Clique to CoDesignLSfast
syn and

CoDesignLSfast
asy in which team size |T | = 1 and the library of controllers L has

this controller as its only member. This proof is true for both synchronous and asyn-

chronous team operation as there is only one robot in the team so synchronous and

asynchronous operations are essentially the same. This yields the following.
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Figure 3.4: State Diagram of Clique checker robot used in Lemma 1. Note that in

this diagram, 1 ≤ j ≤ |V | and ev and eu refer to the vertices of an edge (u, v) in E
′
.
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Figure 3.5: Environment used in the reduction in the proof of Lemma 1 and Theorems

3, 4 and 5.

Theorem 1 If P 6= NP then both CoDesignLSfast
syn and CoDesignLSfast

asy are not

polynomial-time tractable.

The NP -hardness of CoDesignLSfast
syn and CoDesignLSfast

asy has more impact than

it initially seems. It also rules out the possibility of the existence of efficient proba-

bilistic algorithms which operate correctly with probability ≥ 2/3.

Theorem 2 If P 6= NP and P = BPP then both CoDesignLSfast
syn and

CoDesignLSfast
asy are not polynomial-time tractable by probabilistic algorithms which

operate correctly with probability ≥ 2/3.

Proof: The proof is essentially the same as given in [37, Result D]. If either

CoDesignLSfast
syn or CoDesignLSfast

asy has a polynomial time probabilistic algorithm

that solves them with correctness ≥ 2/3 then the decision versions3 of these will also

3A decision version of problem is essentially the same problem with an answer of ”yes” or ”no”.
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have such probabilistic algorithms because an algorithm for a non-decision problem

can be used to solve the decision version of the same problem [37, Lemma1, Sup-

plementary Material]. This means that the decision version of CoDesignLSfast
syn and

CoDesignLSfast
asy are in BPP as BPP is the most inclusive class of decision problems

that can have probabilistic solutions particularly with a probability of correctness

≥ 2/3. So if P = BPP , which is widely believed to be true [41, Section 5.2], and

the decision versions of CoDesignLSfast
syn and CoDesignLSfast

asy are NP -hard (from

Theorem 14) then P = NP , completing the proof.

Both of the results above in Theorem 1 and 2 are to be believed true if the conjectures

P 6= NP and P = BPP are actually true.

The above rules out the possibility of general tractability for CoDesignLSfast
syn

and CoDesignLSfast
asy . Hence, we have to consider parameter combinations for these

problems which if restricted, give fp-tractability. In Sections 3.2.2 and 3.2.3, we

give multiple parameter sets which do not give fp-tractability after restricting to

small constant values. We also give one combination of parameters that achieve

fp-tractability for CoDesignLSfast
syn .

3.2.2 Parameterized Results From Previous Work

The previous section showed that CoDesignLSfast
syn and CoDesignLSfast

asy are in-

tractable in general. Now we will look into parameterized results for these problems

to see if applying restrictions to different parameter sets of CoDesignLS can yield

tractability. We start with the reduction from Lemma 9 from [37, Supplementary

4A non-decision problem can be converted into decision version of the same problem by converting

it into a question whether the required solution exists or not [37, Supplementary Material].
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Material], which is a modification of the reduction from clique to EnvDes given

in Lemma 1. Here the number of states |Q| and the number of transitions per state

d are restricted at the expense of an increased maximum transition trigger-formula

length |f |.

A brief description of this reduction is as follows. Given an instance 〈G =

(V,E ′), k〉 of Clique, construct an instance 〈W,ET , T,X, pI , pX , c1, c2〉 of EnvDesfast

as follows: Let W be a 2× k + 1 grid, ET = {e0, e1, . . . e|V |, eF , eX} consist of |V |+ 3

different types of free-space squares, pI = W1,1, and X be a single square of type eX

positioned at pX = W2,1. Team T will consist of a single FSR based on state Q = q0,

with |Q| = 1, with the following transitions:

1. 〈q0, f, ∗, goEast, q0〉. This one transition is obtained by merging multiple tran-

sitions from the proof of Lemma 1. The transition formula f is the conjunction

of transition formulas of the following transitions from Lemma 1:

(1) the negations of the non-default transition formulas in the transitions de-

scribed in point 1 and

(2) the non-default transition formulas of the transitions described in point 3

of the transition-list.

2. 〈q0, enval(eF , (0, 0)), eX , stay, q0〉

3. and the default transition 〈q0, ∗, ∗, stay, q0〉.

The proof of correctness of this reduction is essentially the same as that given in

the proof of Lemma 1. The environment is same as used in Lemma 1 (see Figure

3.5) with a single robot with different controller as used in Lemma 1. As the robot
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started at initial position pI must execute 2 transitions to construct the structure X

at pX and 2 < (2k+ 2) < c1(|E|+ |Q|+ |f |+ d)c2 when c1 = c2 = 1, this construction

task is (c1, c2)-completable. Note that this reduction works for both the synchronous

and asynchronous instances of CoDesignLSfasy with respect to team T and initial

position pI when c1 = c2 = 1 as there is only one robot in the team.

Observe that the reduction above is also a reduction from Clique to

CoDesignLSfast
syn and CoDesignLSfast

asy in which team size |T | = 1 and the library

of controllers L has only one controller. This yields the following.

Theorem 3 If FPT 6= W [1] then both {|L|, |T |, |X|, |Q|, d, r}-CoDesignLSfast
syn and

{|L|, |T |, |X|, |Q|, d, r}-CoDesignLSfast
asy are fp-intractable when |L| = |T | = |X| =

|Q| = c1 = c2 = 1 and d = 3.

In the following section we give parameterized intractability results for CoDesignLSfast

using newly proved reductions.

3.2.3 New Parameterized Results

Using the same reduction technique as given in the proof of Lemma 1 in Section

3.2.1, we now derive additional results. These results follow from modifications to

the reduction in the proof of Lemma 1. In the first of these modifications, we expand

the number of transitions per state d while keeping the number of states |Q| and

maximum transition trigger-formula length |f | constant.

Theorem 4 If FPT 6= W [1] then both {|L|, |T |, |X|, |Q|, |f |, r}-CoDesignLSfast
syn and

{|L|, |T |, |X|, |Q|, |f |, r}-CoDesignLSfast
asy are fp-intractable when |L| = |T | = |X| =

1, |Q| = 5, and |f | = 3.
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Proof: Given an instance 〈G = (V,E ′), k〉 of Clique, construct an instance

〈W,ET , L, T,X, pI , pX , c1, c2〉 of CoDesignLSfast as follows: Let W be a 2×k+1 grid,

ET = {e0, e1, . . . e|V |, eF , eX} consist of |V | + 3 different types of free space squares,

pI = W1,1, and X be a single square of type eX positioned at pX = W2,1. Team

T chosen from library L will consist of a single FSR c based on states Q = {q0 =

qU , qE, qI , qF , qErr}, |Q| = 5, with the following transitions (state diagram given in

Figure 3.6):

1. For each i, 1 < i ≤ k, the set of transitions {〈qU , enval(ej, (0, i)) ∧

enval(ej, (0, l)), ∗, stay, qErr〉 | 1 ≤ j ≤ |V | and 1 ≤ l < i} and transition

〈qU , ∗, ∗, stay, qE〉;

2. For each i, 1 < i ≤ k, the set of transitions {〈qE, enval(eu, (0, i)) ∧

enval(ev, (0, j)), ∗, stay, qErr〉 | 1 ≤ j < i and (u, v) /∈ E′} and {〈qE,

enval(ev, (0, i)) ∧ enval(eu, (0, j)), ∗, stay, qErr〉 | 1 ≤ j < i and (u, v) /∈ E′}

and transition 〈qE, ∗, ∗, stay, qI〉; and

3. 〈qI , enval(e0, (0, 0)), ∗, goEast, qF 〉 and 〈qF , enval(eF , (0, 0)), eX , stay, qF 〉.

The robot starts with ensuring that no two square-types of the k squares E1,2,

E1,3, . . . E1,k+1 are the same by comparing the environment types of each pair of

square blocks and if any pair of square block has same environment type then the

robot will change its state to qErr, thus terminating the construction process. This

is done via transitions in point 1 above. Then via transitions in point 2, the robot

ensures that each pair of squares in these k squares has types that correspond to

an edge e ∈ E ′. Thus via transitions in point 1 and point 2, robot ensures that
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these k squares encode a clique of size k in G. The state diagram for this clique

checker controller used in the robot is given in Figure 3.6. Note that this instance

of CoDesignLSfast can be constructed in time that is polynomial in the size of the

given instance of Clique.

To prove correctness we need to show that there exist a V ′ ⊆ V such that V ′ is

a clique of size k in G, if and only if there exist an environment E derived from W

and ET such that T started at pI in E creates X at pX . We prove the “if” part of

correctness by constructing an environment E (shown in Figure 3.5) as follows:

1. E1,1 has square-type e0;

2. E1,j+1, 1 ≤ j ≤ k, has square-type corresponding to the jth vertex in V ′;

3. E2,1 has square-type eF ; and

4. All remaining environment-squares have square-type e0.

Note that in such an environment E, the single clique checker robot in the team

T will progress from pI to pX while creating the required structure X. It can be

seen that the operation of this FSR in environment E is deterministic in the sense

described in Section 3.1. To complete the construction task, the robot c must execute

4 transitions (assuming if all other transitions going to qErr do not activate). As

4 ≤ c1(|E|+ |Q|+ |f |+ d)c2 when c1 = c2 = 1, this means that this construction task

is (c1, c2)-completable in both the synchronous and asynchronous senses with respect

to team T and initial position pI .

Now we prove the “only if” part of correctness. Suppose that there is an en-

vironment E such that when the robot is started at initial position pI , the task of
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constructing target structure X at position pX is (c1, c2)-completable with respect

to team T and initial position pI . By the rules of FSR operations given in Section

3.1, this robot operates deterministically. The way we have defined the robot’s con-

troller, it can only move right from E1,1 to E2,1 if it can change its state from q0

to qF . Keeping in mind that E1,1 has square-type e0, and E2,1 has square-type eF .

However, observe that this change in robot’s state from q0 to qF can only happen if

environment-squares E1,2 through E1,k+1 in the west-most column of the environment

E have square-types which correspond to a clique of size k in the graph G.

Note that in the above constructed instance of CoDesignLSfast, |L| = |T | =

|X| = c1 = c2 = 1,|f | = 3, |Q| = 5, and r = k. The result then follows from the W [1]-

hardness of k-Clique and the conjectured proper inclusion of FPT in W [1]. This

proof is true for both synchronous and asynchronous team operation as there is only

one robot in the team, so synchronous and asynchronous operations are essentially

the same.

In the second of these modifications, we expand the number of states while keeping

the number of transitions per state and maximum transition trigger-formula length

constant.
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Figure 3.6: State Diagram of Clique checker robot used in Theorem 4. 1 ≤ j ≤ |V |.

eu and ev refer to the vertices u, v s.t (u, v) /∈ E ′.
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Theorem 5 If FPT 6= W [1] then both {|L|, |T |, |X|, |f |, d, r}-CoDesignLSfast
syn and

{|L|, |T |, |X|, |f |, d, r}-CoDesignLSfast
asy are fp-intractable when |L| = |T | = |X| = 1

and |f | = d = 3.

Proof: The reduction below is obtained by modification (redistribution of transi-

tions over an increased number of states) of proof given in Lemma 1. Given an instance

〈G = (V,E ′), k〉 of Clique, construct an instance 〈W,ET , L, T,X, pI , pX , c1, c2〉 of

CoDesignLSfast as follows: Let W , ET , X, pI , and pX be as in the proof of Lemma

4, and team T consists of a single FSR c based on states Q = {q0 = qU,1,1,1, qU,1,1,2,

. . . , qU,1,1,|V |+1, qU,1,2,1, . . . , qU,1,2,|V |+1, . . . , qU,1,k,1, qU,2,2,1, . . . , qU,2,2,|V |+1, . . . , qU,2,k,1,

qU,3,3,1, . . . qU,k,k,1, qE,1,1,1, qE,1,1,2, . . . , qE,1,1,|E′|+1, qE,1,2,1, . . . , qE,1,2,|E′|+1, . . . , qE,1,k,1,

qE,2,2,1, . . . , qE,2,2,|E′|+1, . . . , qE,2,k,1, qE,3,3,1, . . . qE,k,k,1, qErr, qF},

|Q| = k(k − 1)(|E ′|+ |V |+ 2)/2 + 2k + 2, with the following transitions (see Figures

3.7 and 3.8):

1. For each i, 1 ≤ i < k, the set of transitions {〈qU,i,j−1,m, enval(em, (0, i)) ∧

enval(em, (0, j)), ∗, stay, qErr〉, 〈qU,i,j−1,m, ∗, ∗, stay, qU,i,j−1,m+1〉,

〈qU,i,j−1,|V |+1, ∗, ∗, stay, qU,i,j,1〉 | i < j ≤ k and 1 ≤ m ≤ |V|} and transition

〈qU,i,k,1, ∗, ∗, stay, qU,i+1,i+1,1〉 and transition 〈qU,k,k,1, ∗, ∗, stay, qE,1,1,1〉;

2. For each i, 1 ≤ i < k, the set of transitions {〈qE,i,j−1,e, enval(eu, (0, i)) ∧

enval(ev, (0, j)), ∗, stay, qE,i,j,1〉, 〈qE,i,j−1,e, enval(ev, (0, i)) ∧ enval(eu, (0, j))

, ∗, stay, qE,i,j,1〉, 〈qE,i,j−1,e, ∗, ∗, stay, qE,i,j−1,e+1〉, 〈qE,i,j−1,|E′|+1, ∗, ∗, stay,

qErr〉 | i < j ≤ k and 1 ≤ e ≤ |E′| and (u, v) ∈ E′} and transition 〈qE,i,k,1, ∗, ∗,

stay, qE,i+1,i+1,1〉; and transitions

3. 〈qE,k,k,1, enval(e0, (0, 0)), ∗, goEast, qF 〉, 〈qF , enval(eF , (0, 0)), eX , stay, qF 〉.
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The robot starts with ensuring that no two square-types of the k squares E1,2,

E1,3, . . . E1,k+1 are the same by comparing the environment types of each pair of

square blocks and if any pair of square block has same environment type then the

robot will change its state to qErr, thus terminating the construction process. This

is done via transitions in point 1 above. Then via transitions in point 2, the robot

ensure that each pair of squares in these k squares has types that correspond to an

edge e ∈ E ′. Thus via transitions in point 1 and point 2, robot ensures that these k

squares encode a clique of size k in G.

The FSR has |V |+1 unique states for the comparison of each pair of square blocks

type. It has |E ′| + 1 separate states to check the existence of an edge between each

pair of square blocks type. Note, this instance of CoDesignLSfast can be constructed

in time that is polynomial in the size of the given instance of Clique.

If there is a V ′ ⊆ V such that V ′ is a clique of size k in G, construct an environment

E (shown in Figure 3.5) as follows:

1. E1,1 has square-type e0;

2. E1,j+1, 1 ≤ j ≤ k, has square-type corresponding to the jth vertex in V ′;

3. E2,1 has square-type eF ; and

4. All remaining environment-squares have square-type e0.

Note that in such an environment E, the single clique checker robot in the team

T will progress from pI to pX while creating the required structure X. It can be

seen that the operation of this FSR in environment E is deterministic in the sense

described in Section 3.1. To complete the construction task, c must execute at most
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k(k−1)(|E ′|+ |V |+1)/2+2k+1 transitions which is < |Q| < c1(|E|+ |Q|+ |f |+d)c2

when c1 = c2 = 1. This means that the construction task is (c1, c2)-completable in

both the synchronous and asynchronous senses with respect to team T and initial

position pI when c1 = c2 = 1.

Conversely, suppose there is an environment E such that when c is started at

pI , the task of constructing X at pX is (c1, c2)-completable with respect to T and

pI . This completability, by the rules of FSR operation given in Section 3.1, implies

that the operation of c in E is deterministic. By the structure of this FSR, it can

only move right from E1,1 to E2,1 if it can change state from q0 to qF , where E1,1 has

square-type e0, and E2,1 has square-type eF . From any state qU,i,j−1,m FSR will go to

qErr if the square blocks at position (0, i) and (0, j) have the same square type em.

Otherwise, by default, FSR will change its state and check the next environment type

for the same square blocks until all environment types have been compared for the

pair of square blocks at position (0, i) and (0, j). If the pair does not have a common

environment type then FSR will compare the next pair and will repeat the process

until all pairs of square blocks have been compared. If no pair has the same square

type then the robot will change its state to qE,1,1,1. From any state qE,i,j−1,e FSR will

go to qE,i,j,1 if the type of square blocks at position (0, i) and (0, j) corresponds to

the vertices of eth edge. Otherwise, after checking the pair against each edge in E ′,

it will change its state to qErr. This thus ensures that the environment-squares E1,2

through E1,k+1 in the west-most column of E have square-types corresponding to a

clique of size k in G.

Note, in the above constructed instance of CoDesignLSfast, |L| = |T | = |X| =

c1 = c2 = 1, d = |f | = 3, and r = k. The result then follows from the W [1]-hardness
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of k-Clique and the conjectured proper inclusion of FPT in W [1]. This proof is true

for both synchronous and asynchronous team operation as there is only one robot in

the team so synchronous and asynchronous operations are essentially the same.

All of the proofs above use controllers with large numbers of states |Q| or transitions

per state d or long transition trigger-formulas |f |. It seems reasonable to conjecture

that tractability will be achieved if we fix all of |Q|, d, and |f | to small constant

values. However, this proved not to be true by the next theorem.

Theorem 6 If P 6= NP then both {|X|, |Q|, |f |, d}-CoDesignLSfast
syn and

{|X|, |Q|, |f |, d}-CoDesignLSfast
asy are fp-intractable when |Q| = 4, |f | = 7, d = 3,

and |X| = 1.

Proof: We obtain this result using a reduction from the following problem:

3-Satisfiability (3SAT ) [15, Problem LO2]

Input: A set U of variables and a set C of disjunctive clauses over U such that each

clause c ∈ C has |c| = 3.

Question: Is there a satisfying truth assignment for C?

Given an instance 〈U,C〉 of 3SAT , construct an instance 〈E,ET , L, T,X, pI ,

pX , c1, c2〉 of CoDesignLSfast as follows: Let E be a max(|C|, |U |) × 3 grid, ET =

{eT , eF , e0, ec1 , ec2 , . . . , ec|c| , eerr, eX} consisting of |C|+ 5 different types of free space

squares, pI will be the first |C| squares in the middle row, and X be a single square

of type eX positioned at W1,1 (see Figure 3.9). Team T chosen from library L will

consist of |C| number of FSRs c1, c2, . . . , c|C| based on states Q = {q0, q1, qF , qErr},

|Q| = 4, d = 3, with the following transitions (Figures 3.10, 3.11 and 3.12):
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Figure 3.7: State diagram for checking uniqueness in Theorem 5. In this diagram,

P (i, j,m) = enval(em, (0, i)) ∧ enval(em, (0, j)), ∗, stay
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Figure 3.8: State diagram for edge check in Theorem 5. In this diagram, Q(i, j, u, v) =

enval(eu, (0, i)) ∧ enval(ev, (0, j)), ∗, stay
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1. Controller encoded with clause ci, 1 ≤ i ≤ |C|, has transition 〈q0, enval(eS1 ,

(x, 1)) ∨ enval(eS2 , (y, 1)) ∨ enval(eS3 , (z, 1)), ∗, stay, q1〉 where x, y and z are

the x-coordinates of the position of the squares and eS1 , eS2 , eS3 represents the

truth-value, either eT (true) or eF (false), corresponding to the three variables

in clause ci. And the transition 〈q0, ∗, enmod(eerr, (0,−1)), stay, qErr〉;

2. Controller representing clause ci, where 2 ≤ i ≤ |C| − 1 has the transitions

〈q1, enval(eci−1
, (−1,−1)) ∧ enval(eci , (0,−1)) ∧ enval(erobot, (1,−1)), ∗,

goSouth, qF 〉 and 〈q1, ¬enval(eci−1
, (−1,−1)) ∨ ¬enval(eci , (0,−1)) ∨ enval(

eerr, (1,−1)), enmod(eerr, (0,−1)), stay, qErr〉. Whereas for the controller repre-

senting clause c1 the transitions are 〈q1, enval(ec1 , (0,−1)) ∧ enval(erobot,

(1,−1)), ∗, goSouth, qF 〉 and 〈q1, ¬enval(ec1 , (0,−1)) ∨ enval(eerr, (1,−1)),

enmod(eerr, (0,−1)), stay, qErr〉. For the controller representing clause c|C| the

transitions are 〈q1, enval(ec|U|−1
, (−1,−1)) ∧ enval(ec|U| , (0,−1)), ∗,

goSouth, qF 〉 and 〈q1,¬enval(ec|U|−1
, (−1,−1)) ∨ ¬enval(ec|U| , (0,−1)),

enmod(eerr, (0,−1)), stay, qErr〉;

3. 〈q1, ∗, ∗, stay, q1〉 is for each controller;

4. This last transition is only for the controller representing clause c1

〈qF , enval(ec1 , (0, 0)), enmod(eX , (0, 0)), stay, qF 〉

In the 1st transition, each robot, say ri will sense the environment types of squares in

the row above it, corresponding to three variables, x, y, z (x, y, z ∈ U) in the clause

ci (ci ∈ C), encoded in it. ri will check whether any of the three squares have an

environment type matching the truth-value of the corresponding variables. Truth-
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value of a variable is encoded in the ith controller as eF if the complement of that

variable is used in the ith clause otherwise eT . If either of the three square types

matches with the controllers’ encoding, the robot will change its state to q1. Here

following actions are performed:

• Via the transitions in point 2 above, robot ri will ensure that it has been placed

in the correct position in the environment. It does this by making sure that the

environment type of the square to its south is ci which is placed in sequence

with ci−1 to the left. This transition will be different for the controllers repre-

senting clauses c1 and c|C|. If the robot is placed in the correct sequence in the

environment and it has ensured that the controller at its right has completed

its job by moving to the south, it will change its state to qF and move down

south.

• ri will change its state to qErr if either the robot is not placed in the correct

sequence or the robot to the right of ri has changed the environment type of

the square at position (1,-1), relative to ri, to eerr.

Each robot will either change the square type of the square block to its south to eerr

via transitions in point 4 or will move to the square block to its south. Note, in order

for a robot to move to its south, it is necessary that all other robots to its right have

moved down south (applying stigmergy [5]). If all the robots are placed in correct

positions and all the clauses are evaluated to be true then each robot will move to the

corresponding square block to the bottom row, and the robot encoding clause c1 will

change the type of square block at E1,1 to eX thus completing the construction task.
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Note, this instance of CoDesignLSfast can be constructed in time that is polynomial

in the size of the given instance of 3SAT .

If there is a truth assignment for the variables in U which makes the set of clauses

C in 3SAT evaluated to be true, construct an environment E as follows:

1. E1,1 has square-type ec1 , E2,1 has square-type ec2 , . . ., E|C|,1 has square-type

ec|C| ;

2. Ei,3 where 1 ≤ i ≤ |U |, has square-type corresponding to the ith variable’s

truth-assignment in set U .

3. All remaining environment-squares have square-type e0.

Observe that E will allow the robots in T to progress from pI to create X at corre-

sponding pX ; moreover, as at any point in this progress at most one transition in each

FSR is enabled, the operation of robots is deterministic. To complete the task, r1

will execute at max 2|C| transitions (as r1 will wait for other robots to change their

state to qF ). As 2|C| < 3(max(|C|, |U |)) < c1(|E|+ |Q|+ |f |+d)c2 when c1 = c2 = 1,

this means that construction task is (c1, c2)-completable in both the synchronous and

asynchronous senses with respect to T and pI .

Conversely, suppose there is an environment E such that when each robot in

the team is started at its corresponding pI , the task of constructing X at pX is

(c1, c2)-completable with respect to T and pI . This completability, by the rules of

FSR operation given in Section 3.1, implies that the operation of robots in E is

deterministic. By the structure of robots in T , each ith robot can move down south

from Ei,2 to Ei,1 if it can change state from q0 to qF . However, this can only happen
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if environment-squares E1,3 through E|U |,3 have square-types which correspond to a

truth-assignment of variables in U that satisfies all clauses in C in the given instance

of 3SAT.

Note, in the above constructed instance of CoDesignLSfast,|Q| = 4, |f | = 7,

d = 3, and |X| = c1 = c2 = 1. The result then follows from the NP -hardness of

3SAT, the conjectured proper inclusion of P in NP , and the observation that no

problem parameterized relative to a parameter-set K can be in FPT if that problem

is NP -hard when the values of all parameters in K are constants [37, Supplementary

Materials, Lemma 2]. Observe that, the way controllers are designed, this proof works

for both synchronous and asynchronous team operation, because in case of successful

target structure creation, each robot will wait for the robot to its right to complete

its execution and move down to south before it itself moves to the bottom row.

These fp-intractability results have way more impact than it initially seems because

if a problem is fp-intractable for a particular parameter-set K then it is fp-intractable

also relative to any subset of K [33, Lemma 2.1.31]. Hence, almost none of the

parameters considered can be restricted either individually to constant values or in

combination to yield fp-tractability (see Table 3.3).

So far all our reductions have proved intractability for different parameter combi-

nations for CoDesignLSfast. However, all is not lost — there are sets of restrictions

that do yield fp-tractability. One such set is as follows.
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Figure 3.9: The environment used in Theorem 6. Each ei, 1 ≤ i ≤ |U |, represents

the truth-value of the ith variable in U , where ei is either eT or eF . Each ri, 1 ≤

i ≤ |C|, represents the initial position of clause robot i. In the lowermost row, the ci,

1 ≤ i ≤ |C|, are placed markers used by the clause robots to establish if they are in

the correct position in the middle row.

Figure 3.10: State diagram of the controller for the first clause robot used in Theorem

6.
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Figure 3.11: State diagram of the controller for the clause robot i, 2 ≤ i ≤ |C| − 1,

used in Theorem 6. Note that the controller for clause robot 1 given in Figure 3.10,

which has the additional responsibility of placing requested structure X at E1,1 if all

clause robots move to the lowermost row, and for clause robot |C| given in Figure

3.12 are modifications of the controller shown here.

Figure 3.12: State diagram of the controller for the last clause robot used in Theorem

6.
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Theorem 7 〈|L|, |E|, |ET |〉-CoDesignLSfast
syn is fp-tractable.

Proof: Consider the algorithm that generates all possible environments of size |E|

relative to ET . For each such environment the algorithm will create all possible teams

T of robots by selection from library L. Note that number of such possible teams is

|L||T |. By placing T at all possible initial positions pI , it determines for each team T ,

whether or not the created T started at pI in that environment can create X at pX

in at most c1(|E| + |Q| + |f | + d)c2 time-steps. The number of such environments is

|ET ||E|.

The total number of combinations (say H) of robot teams, environments and

placement of robots in the environment that the algorithm will verify for task com-

pletion will be H ≤ (|L||T |)(|ET ||E|)(|T ||pI |). We know the following: |T | ≤ |E| (as at

most one FSR from T can be present in each square of E) and |pI | ≤ |E|. Therefore

H ≤ (|L||E|)(|ET ||E|)(|E||E|).

Finally, the assessment of task completion in the required number of times-steps

is done in FPT time. We know from [37, Supplementary Materials, Result L] that

the verification of any team relative to a given environment can be done in FPT

time relative to parameter-set {|E|, |ET |}. As this verification considers all possi-

ble sequences of execution, it can be restricted to ensure that completion occurs

in the required number of time-steps. Therefore the algorithm above shows that

〈|L|, |E|, |ET |〉-CoDesignLSfast
syn is fp-tractable.

Note that this algorithm works only for synchronous team operation because

team-environment verification algorithm in [37, Supplementary Materials, Result L]

considers all non-repeating sequence of environment-configurations starting with the
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members of T at pI and ending with X at pX . This non-repeating sequence of

environment-configurations is only possible when a team of deterministic FSRs oper-

ates synchronously.

3.3 Discussion

Theorem 1 shows that the controller-environment co-design through library selec-

tion (CoDesignLS) is polynomial-time intractable in general. In addition, Theorem

2 shows that there cannot exist any polynomial-time probabilistic algorithm that

operates correctly more than two-thirds of the time. In other words, this means

that at least one-third of the time, any polynomial-time probabilistic algorithm for

controller-environment co-design will produce a robot team and environment which

is not guaranteed to operate quickly, i.e., is (c1, c2)−completable in the sense defined

in Section 3.1, and/or produce the requested structure at the requested position.

This suggests that good evolutionary design algorithms may not be applicable to this

problem.

Given the general intractability noted above, we considered what restrictions

might get tractability. We derived a number of fixed-parameter intractability re-

sults. Theorems 3 - 6 show many parameter combinations relative to the parameters

in Table 3.1 for which CoDesignLS is fp-intractable. One interesting combination is

given in Theorem 6, which restricts |Q|, d, and |f | to constants to get fp-intractability.

This means that even for the simplest form of the controller with a small constant

number of states, number of transitions per state and transition-triggering formula

length, CoDesignLS is not solvable in FPT time. The intractability map in Table
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3.3 shows that there are some combinations of parameters for which we were unable

to show intractability results. Based on our failed attempts to create the reductions

for the missing results, it seems that a small size team of robots with small values

of |Q|, d, and |f | has too little computational power to allow a reduction from an

NP -hard problem. It can be seen that in Theorem 6, with small constant values of

|Q|, d, and |f |, we had to increase the library size |L| and the team size |T | in order

to sense and react properly in an environment encoding solution for 3SAT and to

construct the target structure. It is our intuition that to accomplish a construction

task relative to a reduction from an NP -hard problem with a small sized team, the

robots in a team have to have either of the following: a sufficiently large set of states,

a large number of transitions per state, or a long transition-triggering formula. If

we are to use the simplest controllers with constant values of |Q|, d and |f |, then we

may have to have a sufficiently large number of robots in the team to complete the

construction task efficiently relative to a reduction from an NP -hard problem. If the

size of a team of robots is to be kept small and the library of controllers has the

simplest controllers i.e. with a small value for |Q|, d and |f |, one way to accomplish a

construction task relative to a reduction from an NP -hard problem might be to allow

the robots to have a transient memory. We investigate this option in Section 4.1.

Note that all of the intractability results given in Theorems 3 - 5 works for homo-

geneous team design as there is only one type of controller in the library. Theorem

6 is based on heterogeneous team design as there are different types of controllers

in the library. It would be interesting to explore whether restricting |Q|, d, and |f |

relative to heterogeneous team design would still give intractability or not.

Based on our fp-intractability results in Theorems 3 - 6, it seems that in or-
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der to get fp-tractability, restrictions on robot controllers may not be sufficient. As

suggested in [37], along with small parameter values related to the controllers, re-

strictions on parameters related to the environment are needed to solve this problem

efficiently. One such fp-tractability result is derived in Theorem 7. As the envi-

ronment seems to be playing a key role here, we explore this problem further with

respect to stigmergy-related parameters (which quantifies interaction between a robot

and the environment) in Section 4.2.
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Table 3.3: Summary of fp-intractability results for the controller-environment co-

design problem. Results labelled XRn are the parameter-set results given in Table

3.2 for Theorems n (n ∈ {3, 4, 5, 6}). Results labelled Xn are those derived by the

subset-logic described after Theorem 6 in Section 3.2.3 from those given in Theorems

n (n ∈ {3, 4, 5, 6}). Results labelled ?? denote parameter-sets whose fp-status has not

yet been established.

— |Q| r d |Q|, r |Q|, d r, d |Q|, r, d

— NPh X4 X4 X5 X4 X3 X5 X3

|L| X4 X4 X4 X5 X4 X3 X5 X3

|T | X4 X4 X4 X5 X4 X3 X5 X3

|f | X4 X4 X4 X5 X4 X6 X5 XR6

|L|, |T | X4 X4 X4 X5 X4 X3 X5 XR3

|L|, |f | X4 X4 X4 X5 X4 ?? X5 ??

|T |, |f | X4 X4 X4 X5 X4 ?? X5 ??

|L|, |T |, |f | X4 X4 X4 X5 XR4 ?? XR5 ??
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Chapter 4

Controller-Environment Co-Design

Through Library Selection:

Elaborations

In this chapter, we discuss two elaborations on the basic model of controller-environment

co-design given in Section 3.1. We will start with the introduction of a new controller

architecture relative to which we have studied the CoDesignLS problem. Section 4.1

gives the motivation, description, intractability results and implication of the results

for CoDesignLS relative to this new architecture. In Section 4.2 we talk about stig-

mergy and in Section 4.2.3 we give parameterized complexity results for stigmergic

parameters for CoDesignLS.
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4.1 Other Controller Architectures

In this section, we introduce a new controller architecture relative to which we have

studied the CoDesignLS problem. So far in the previous chapters, CoDesignLS

has been discussed under the SI model given in Section 3.1. For the remainder of

this document, we will use the notation CoDesignLS[SI] to refer to an instance of

Controller-Environment Co-design under Library Selection relative to

SI model and CoDesignLS[New] will be used to refer to an instance of Controller-

Environment Co-design under Library Selection relative to the model pro-

posed in this section. Section 4.1.1 gives the motivation and description of the new

controller architecture. Intractability result for CoDesignLS[New] are given in Sec-

tion 4.1.2 and implications of these results are discussed in Section 4.1.4.

4.1.1 Motivation

Here we perform a parameterized complexity analysis of the CoDesignLS on a dif-

ferent controller architecture which is an extension of previously defined controller

architecture of SI model in Section 3.1. The new controller architecture is designed

by adding a transient memory to FSR while keeping rest of the controller architecture

the same. As described in Section 3.1, each robot in the team can sense the envi-

ronment type of a square-block within the Manhattan distance of their perceptual

radius r ≥ 0. Now with this new modification to robot’s controller architecture, it will

be able to temporarily memorize the environment type of the sensed square-block.

Robots will use this memory to copy the environment type of one square-block to

another square-block in the environment.
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The inspiration of this transient memory came from the biological swarms of social

insects e.g. swarm of ants and bees. Honey bees can memorize the scent of the flowers

they visit [24] and ants use their memory to find food sources [11]. Introduction of

transient memory to our robots is a better modeling of natural swarms and should

lead us to many interesting complexity results.

In order to implement this transient memory we have introduced a new function

and a new predicate. The new function getEnV al(pos) returns the environment type

of square-block at pos where a position pos is specified in terms of a pair (x, y) spec-

ifying an environment-square Ei+x,j+y if the robot is currently occupying Ei,j. For

this new controller architecture, we do not replace predicate enval(e, pos) defined

in Section 3.1. However, unlike enval(e, pos), which returned true if the square-

type of the square-block at position pos relative to robot’s current position is e and

false otherwise, getEnV al(pos) instead of giving true or false as a result, will re-

turn the environment type of square-block at position pos relative to robot’s current

position. A robot will memorize the sensed environment type and store that in tem-

porary memory. Using that memory, the robot will recall what it just sensed and can

copy that environment type to another square-block within the Manhattan distance

r ≤ 1. We can now use this newly defined function along with previously defined

function enmod(e, pos) to copy the environment type of one square-block positioned

at pos1 relative to robot’s current position to another square-block positioned at

pos2 relative to robot’s current position within the Manhattan distance r ≤ 1 via

enmod(getEnV al(pos1), pos2). Note that pos1 and pos2 are defined in the same way

as pos defined earlier.

The new predicate is pairInSet((vi, vj), S), where S is a set of pairs e.g it can be
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set of all pairs of vertices of a graph which have an edge between them. This predicate

returns true if pair (vi, vj) ∈ S and false otherwise.

4.1.2 Main Result

In this section, we prove the fp-intractability result of CoDesignLS[New]fast relative

to almost all of the parameters given in Table 3.1 by using only one reduction from

Clique.

Theorem 8 If FPT 6= W [1] then both {|L|, |T |, |X|, |Q|, |f |, d, r}-

CoDesignLS[New]fastsyn and {|L|, |T |, |X|, |Q|, |f |, d, r}-CoDesignLS[New]fastasy are fp-

intractable when |L| = |T | = |X| = 1, |Q| = 8, |f | = 15 and d = 3.

Proof: Given an instance 〈G = (V,E ′), k〉 of Clique, construct an instance

〈W,ET , L, T,X, pI , pX , c1, c2〉 of CoDesignLS[New]fast as follows: Let W be a 2×k+2

grid, ET = {e0, e1, . . . e|V |, eT , eF , eX} consist of |V | + 4 different types of free space

squares, pI = W1,1, and X be a single square of type eX positioned at pX = W2,1.

Team T chosen from library L, will consist of a single FSR c based on states Q =

{q0, q1, q2, q3, q4, q5, qF , qErr}, |Q| = 8, d = 3, with the following transitions (see Figure

4.1 for the state diagram of the controller):

1. 〈q0, ∗, ∗, goNorth, q1〉;

2. 〈q1, ∗, enmod(getEnV al(0, 0), (1, 0)), goNorth, q2〉;

3. 〈q2, ∗, enmod(getEnV al(1,−1), (1, 0)), goNorth, q2〉;

4. 〈q2, [enval(getEnV al(1,−1), (0, 0)) ∨ [{¬pairInSet((getEnV al(0, 0),
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getEnV al(1,−1)), E ′)}∧{¬pairInSet((getEnV al(1,−1), getEnV al(0, 0)), E ′)}]]∧

¬enval(eT , (0, 0)), ∗, stay, qErr〉;

5. 〈q2, enval(eT , (0, 0)), ∗, goSouth, q3〉;

6. 〈q3, ∗, ∗, goSouth, q3〉;

7. 〈q3, enval(getEnV al(1, 0), (0, 0)), ∗, goNorth, q1〉;

8. 〈q1, enval(eT , (0, 1)), ∗, goSouth, q4〉;

9. 〈q4, ∗, ∗, stay, qErr〉;

10. 〈q4, enval(e0, (0,−k)), ∗, goSouth, q5〉;

11. 〈q5, ∗, ∗, goSouth, q5〉;

12. 〈q5, enval(e0, (0, 0)), ∗, goEast, qF 〉;

13. 〈qF , enval(eF , (0, 0)), enmod(eX , (0, 0)), stay, qF 〉;

Starting from pI , robot will move up north to E1,2. Now robot will sense the square-

block’s environment type underneath it and will compare it to other k − 1 square-

block’s environment type by copying the environment type of sensed square-block to

the east-most column. Example of such an environment is given at the end of the

proof in Figure 4.2 (in this figure environment type of square-block E1,2 is copied

to 2nd column and being compared with environment type of other square-blocks).

After performing the comparison for 1st square-block, the robot will choose next

square-block and compare that with the remaining k−2 square-blocks. It will repeat

this until all pairs of square-blocks have been compared.
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The 2nd transition in the transition-list above copies the environment type of

square-block underneath the robot to the square-block to the east of robot’s current

position. The 3rd transition copies the environment type of square to its south-east

to the square block to its east and will move up north until following two cases:

• Robot reaches the north most square-block with environment type eT ( checked

via transition 5). In this case, the robot will change state to state 3 and move

down south. From state 3, it will keep moving down south until it reaches

the square-block which has environment type same as the environment type

of the square to its east, ensuring that it reaches the square block which the

robot copied initially for the comparison. From here robot will move up north

and choose the next square-block’s environment type for comparison with other

square-blocks environment type and change its state back to state 1.

• Robot finds two square-blocks with same environment type or two square-blocks

do not have an edge between them (this is done via transition 4), in which case

it goes to the error state.

This is done to make sure that no two square-types of the k squares E1,2, E1,3, . . .

E1,k+1 are the same and each pair of squares in these k squares has type that corre-

sponds to vertices with edge e ∈ E; together, these transitions ensure that these k

squares encode a clique of size k in G. Note that this instance of CoDesignLS[New]fast

can be constructed in time polynomial in the size of the given instance of Clique.

To prove correctness we need to show that there exists a V ′ ⊆ V such that V ′ is

a clique of size k in G if and only if there exists an environment E derived from W

and ET such that T started at pI in E creates X at pX . We prove the “if” part of
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correctness by constructing an environment E (shown in Figure 4.2) as follows:

1. E1,1 has square-type e0;

2. E1,k+2 has square-type eT ;

3. E1,j+1, 1 ≤ j ≤ k, has square-type corresponding to the jth vertex in V ′;

4. E2,1 has square-type eF ; and

5. All remaining environment-squares have square-type e0.

Note that in such an environment E, the single clique checker robot in the team T will

progress from pI to pX while creating the required structure X. It can be seen that

the operation of this FSR in environment E is deterministic in the sense described

in Section 3.1. To complete the construction task, the robot c must execute above 8

transitions 3k+k(k+1)+4 number of times. As (k2+4k+4) < (2k+4)2 = c1|E|c2 <

c1(|E|+ |Q|+ |f |+d)c2 when c1 = 1 and c2 = 2, this means that this construction task

is (c1, c2)-completable in both the synchronous and asynchronous senses with respect

to team T and initial position pI when c1 = 1 and c2 = 2. As there is only one robot

in the team so synchronous and asynchronous operations are essentially the same.

Now we prove the “only if” part of correctness. Suppose that there is an en-

vironment E such that when the robot is started at initial position pI , the task of

constructing target structure X at position pX is (c1, c2)-completable with respect to

team T and initial position pI . By the rules of FSR operations given Section 3.1, this

robot operates deterministically. The way we have defined the robot’s controller, it

can only move right from E1,1 to E2,1 if it can change its state from q0 to qF . Keeping
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in mind that E1,1 has square-type e0, and E2,1 has square-type eF . However, this can

only happen if environment-squares E1,2 through E1,k+1 in the west-most column of

E have square-types which correspond to a clique of size k in G. Because transition 4

makes sure that if any pair of vertices is the same or does not have an edge between

them then FSR will change its state to error and will not create a structure. After

making sure that all the pair of vertices are unique and each pair has an edge, tran-

sition 10 plays its role in assuring that the number of vertices it checked is k. When

FSR is on square-block E1,k+1, in order to ensure that it has checked k number of

square block, robot senses the environment type of square-block at distance of k in

the south. The environment type of this square should be e0 ensuring that robot is k

blocks far from pI and if this square is out of the environment then enval predicate

will return false, thus ensuring that structure will be created only when robot has

checked k number of square-blocks corresponding to clique of size k in G.

To complete the proof, note that in the constructed instance of

CoDesignLS[New]fast, |L| = |T | = |X| = 1, r = k, |Q| = 8, |f | = 15, d = 3, c1 =

1, c2 = 2 and |E| = 2k + 4.

It is interesting to note that just by introducing transient memory to the controller

architecture, we are able to prove intractability of CoDesignLS[New]fast for all the

parameter sets given in the intractability map in Table 4.1. This is in contrast with

CoDesignLS[SI]fast, where even with multiple reductions, we still are not able to

complete the intractability map in Table 3.3. This shows the power of a transient

memory in FSR. In the following section, we compare the relative powers of the two

controller architectures.
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Figure 4.1: State diagram for controller used in proof of Theorem 8.
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Figure 4.2: Environment used in proof of Theorem 8.

4.1.3 Reduction from SI to New Architecture

In order to compare the relative power of both architectures, we should see which one

reduces to the other. It turns out that it is not possible to reduce from an instance of

CoDesignLS[New] to an instance of CoDesignLS[SI] but fairly easy to reduce from

an instance of CoDesignLS[SI] to an instance of CoDesignLS[New]. To begin the

reduction, we first consider the following new parameter e, which denotes the number

of times memorization is used by any particular robot. It turns out that the difference

between the two architectures can be quantified in terms of this new parameter. The

following theorem shows the reduction from CoDesignLS[SI] to CoDesignLS[New].

Theorem 9 CoDesignLS[SI] polynomial-time reduces to CoDesignLS[New] such

that in the constructed instance of CoDesignLS[New] all parameters are the same

except e = 0.
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Proof: Given an instance of CoDesignLS[SI], create an instance of

CoDesignLS[New] by assigning the parameters in CoDesignLS[New] the same val-

ues as the values of the corresponding parameters in CoDesignLS[SI] except the

parameter e, which is set to 0. If there exists a solution for CoDesignLS[SI] then

it is easy to see that the solution would be the same for CoDesignLS[New]. There

is no transient memory in FSRs in the SI model and if a team of robots under SI

model produces a target structure then the same team can produce the target struc-

ture under the new model, in which robots are allowed to have a transient memory.

In short, if FSRs in the new model are not allowed to use their transient memory i.e.

by restricting e = 0, then their processing power is essentially the same as the FSRs

in the SI model. Hence, in this case, the solution for an instance of CoDesignLS[SI]

will also be the solution for instance of CoDesignLS[New].

On the other hand, if there exist a solution for CoDesignLS[New], the way we

created the instance of CoDesignLS[New] from the instance of CoDesignLS[SI],

CoDesignLS[SI] will have the same solution by the logic given above (restricting

e = 0 will make CoDesignLS[New] essentially the same as CoDesignLS[SI]). This

completes the proof.

It is interesting to note that the fp-tractability result for the SI model given in

Theorem 7 is also applicable to the new architecture.

Theorem 10 〈|L|, |E|, |ET |〉-CoDesignLS[New]fastsyn is fp-tractable.

Proof: The proof for this is essentially the same as the proof of Theorem 7

because all team operation rules given in Section 3.1 for the SI model are also

applicable for the new architecture. So, the algorithm given in Theorem 7 that
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verifies all possible combinations of robot teams, environments and placement of

robots in the environment also work for the new architecture. Hence, 〈|L|, |E|, |ET |〉-

CoDesignLS[New]fastsyn is fp-tractable.

4.1.4 Discussion

Recall that we had to have three reductions for CoDesignLS[SI] to get even a partial

intractability map in Table 4.1. On the other hand, adding transient memory allowed

one reduction to give all the intractability results in that map when there is only one

robot in the team i.e. a homogeneous team. This suggests that transient memory

can replace the need for a large team with the simplest robots, i.e., with constant

values of |Q|, d, and |f |, in building a reduction from an NP -hard problem. The

new architecture is also clearly more powerful than the previous SI model as we only

have the reduction from the SI to the new architecture, and we have not been able

to derive a reduction in the other direction.

It is interesting to note that the fp-tractable result given in Theorem 7 for the SI

model is also an fp-tractable result for the new architecture (as proved in Theorem

10). Along with a restriction on the controller’s library size |L|, we also had to re-

strict parameters related to the environment (|E|, |ET |) to get fp-tractability. This

suggests that parameters related to the environment are crucial for fp-tractability

results. Stigmergy is related to the interaction of robots with the environment.

Analyzing CoDesignLS relative to stigmergy-related parameters may give addi-

tional fp-tractability results. In the next section, we investigate stigmergy relative to

CoDesignLS using classical and parameterized complexity analyses.
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Table 4.1: Summary of fp-intractability results for the controller-environment co-

design problem relative to the new architecture. The result labelled XR8 is the full

parameter-set result given in Theorem 8. Results labelled X8 are those derived from

the result given in Theorem 8 by the subset-logic described after Theorem 6 in Section

3.2.3.

|Q| r d |Q|, r |Q|, d r, d |Q|, r, d

NPh X8 X8 X8 X8 X8 X8 X8

|L| X8 X8 X8 X8 X8 X8 X8 X8

|T | X8 X8 X8 X8 X8 X8 X8 X8

|f | X8 X8 X8 X8 X8 X8 X8 X8

|L|, |T | X8 X8 X8 X8 X8 X8 X8 X8

|L|, |f | X8 X8 X8 X8 X8 X8 X8 X8

|T |, |f | X8 X8 X8 X8 X8 X8 X8 X8

|L|, |T |, |f | X8 X8 X8 X8 X8 X8 X8 XR8

4.2 Stigmergy

The self-organizing behavior of social insects has attracted the attention of scientists

for a long time [17]. Social insects like ants, bees and termites do not seem capable

of accomplishing a complex task when we look at an individual. However, working

in a team they accomplish complex tasks e.g. mound building by termites. Research

has shown that one of the major phenomenon lying behind the complex behavior of

these biological swarms is stigmergy [5, 17]. Section 4.2.1 discusses the concept of

stigmergy that exists in social insects. In Section 4.2.2 we quantify several stigmergy-
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related parameters for CoDesignLS. In Section 4.2.3 we give fp-intractability results

for CoDesignLS relative to these stigmergy-related parameters and in Section 4.2.4

we discuss the implications of our fp-intractability results.

4.2.1 Motivation

The traces left in an environment by some work done by an agent which later moti-

vates the sequence of actions to be performed in the environment by the same or some

other agent is the principle of stigmergy [17]. The fact that insects perform complex

tasks of finding a food source and building their nests has fascinated scientists for a

very long time. This has lead scientists to search for the missing pieces of the puzzle,

which turned out to be stigmergy. The notion of stigmergy was first introduced by

the French entomologist Pierre-Paul Grassé in 1959 [16, 17] to explain this behavior

of insects, where the insects without any central governing source perform complex

tasks such as nest repairing and food finding.

Mound construction by termites is a beautiful example of this behavior. Mound

construction is a result of the collective behavior of termites. In the beginning, ter-

mites randomly place mud particles. Termites have a tendency to drop mud particles

to parts of environments where there is an abundance of mud i.e. where other ter-

mites have already placed mud. Heaps of mud start appearing which later becomes

columns and eventually growing into tall termite mounds [16, 17]. Thus, termites

communicate with each other simply by making changes to their environment.

Trail laying in the process of finding food by ants is another beautiful example of

stigmergy. Explorer ants move out of the nest in search of food, leaving pheromones
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behind. When a food source is found, the trail of pheromones left by explorer ants is

used by other ants to reach to the food source [29].

For a long time, stigmergy was mainly focused on the study of the collective

behavior of insects. Later scientists realized that stigmergy was underlying other

complex systems as well such as self-organization of the microtubules (see [17] and

references). The general ability to tackle complex problems exhibited by such self-

organizing multi-agent collectives became known as swarm intelligence [5].

In our research, the concept of stigmergy has been applied to teams of simple

robots which tends to perform a complex task by following the same mechanism of

self-organization without any central governing system and direct communication, as

done by swarms of social insects. There is a lot of research that has been done to

simulate the self-organizing behavior of social insects [9] but up until now, there is no

computational complexity work done on stigmergy. For the very first time, stigmergy

will be studied under the light of complexity analysis tools for robot teams used for

the construction of target structures. In the following section, we introduce some

stigmergy-related parameters and motivate the need for those parameters.

4.2.2 Parameters of Interest

In this section, we quantify the stigmergic behavior of social insects in terms of

problem parameters. In Table 4.2 we have defined some stigmergy-related parameters.

We first discuss the motivation for these stigmergy-related parameters, and then in

the next section, we derive fp-intractability results for these parameters relative to

our CoDesignLS problem.
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In biological swarms, for example, a swarm of termite, creating their mound,

an individual termite will work in a certain part of the environment. As millions

of termites are involved in the construction process, individual termites cover only

certain parts of the environment. This leads us to the conclusion that an individual

termite moves to, senses and, hence, modifies only certain regions of the environment

it is working in. In order to mimic this behavior, we introduce the parameter |Em|

which is the number of square-blocks of a particular environment an individual robot

can move to while working in a team during a construction process. As the robot

will move only to a certain number of square blocks, therefore it can sense or read

only a part of the environment which we quantify as |Er|. The movement to a limited

number of blocks restricts an individual robot to change only a certain number of

square-blocks in the environment; hence, parameter |Es| which is the number of

square-blocks an individual robot can change the square-type of is defined.

Finally, to mimic the memorizing capability of an individual insect in biological

swarms, we introduce a parameter e, which is the number of times memorization is

used by any particular robot. This completes our stigmergy-related parameter-list.

This final parameter e has proved to be the difference between CoDesignLS[SI] and

CoDesignLS[New] (see Section 4.1.3). Here we add the above-defined stigmergy-

related parameters to the list of parameter classification given at the beginning of

Section 3.2:

3. Restrictions on stigmergy-related characteristics of a robot e, |Er|, |Es|, |Em|.

In the following section we give fp-intractability results relative to the stigmergy-

related parameters discussed above. It is important to note that all the stigmergy-
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Table 4.2: Stigmergy-related Parameters for the controller-environment co-design

problem.

Parameter Description

|Er| # of square blocks robot reads

|Es| # of square blocks robot writes to

|Em| # of square blocks robot moves to

e # of times robot memorize a square-block type

related parameters given in Table 4.2 belong to both CoDesignLS[SI] and

CoDesignLS[New] (recall from Section 4.1.3 that parameter e, which quantifies the

transient memory, has value 0 for CoDesignLS[SI]).

4.2.3 Results

In our research, we have considered several stigmergy-related parameters which are

given in Table 4.2. It turns out that both CoDesignLS[SI] and CoDesignLS[New]

remain intractable for multiple combinations these parameters when their values have

been restricted to constants. Both of the results here are derived directly from theo-

rems in Chapter 3.

Theorem 11 If P 6= NP then both {|Es|, |Em|, e, |L|, |T |, |X|, |Q|, d}-

CoDesignLS[SI]fast and {|Es|, |Em|, e, |L|, |T |, |X|, |Q|, d}-CoDesignLS[New]fast are

fp-intractable when |Es| = 1, |Em| = 1, e = 0, |L| = |T | = X = |Q| = 1, d = 3.

Proof: Observe that in the reduction in the proof of Theorem 3, the robot while

completing the construction task only moves once in the whole construction process
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to the square-block towards its east, which makes |Em| = 1. Also, only in the final

step of construction, the robot writes to a single square block, which makes |Es| = 1.

As there is no transient memory in FSR used in Theorem 3, therefore e = 0. This

completes the proof.

Theorem 12 If P 6= NP then both {|Es|, |Em|, |Er|, e, |X|, |Q|, f, d}-

CoDesignLS[SI]fast and {|Es|, |Em|, |Er|, e, |X|, |Q|, f, d}-CoDesignLS[New]fast are

fp-intractable when |Es| = 1, |Em| = 1, |Er| = 5, |Q| = 4, |f | = 7, d = 3, X = 1.

Proof: Observe that reduction in Theorem 6 is also a proof of this theorem as

each robot while completing the construction task only moves once in the whole

construction process to the square-block in the bottom row, which makes the |Em| =

1. Also, in case of successful construction, as only in the final step of construction

the left-most robot writes to a single square block, which makes |Es| = 1. Each robot

only reads 5 square-blocks at max (reads 3 square-blocks for 3 clause variables and

reads 2 square blocks from the bottom row to ensure its correct placement in the

environment) in the entire construction process; therefore |Er| = 5 . Also, as there is

no transient memory in FSRs used in Theorem 6, therefore e = 0. This completes

the proof.

It is important to note here that both the theorems above are true for both syn-

chronous and asynchronous team operation because of Theorems 3 and 6 on which

the above theorems are based work for both synchronous and asynchronous team

operation. The results above have shown that even if we restrict individual robots to

move, sense and change the only certain number of square blocks, CoDesignLS still

remains intractable relative to both the SI and new model.
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4.2.4 Discussion

For the first time, we have quantified stigmergy-related attributes of swarm robotics

in terms of parameters of construction-related problems and given the first complex-

ity and parameterized complexity analysis of the controller-environment co-design

problem relative to these parameters. Results here show that CoDesignLS is fp-

intractable relative to all stigmergy-related parameters given in Table 4.2 when re-

stricted individually and in some certain combinations. In particular, Theorem 11

proves intractability relative to restricted values of three of the stigmergy-related

parameters along with the library and team size and Theorem 12 shows that when

all four stigmergy-related parameters are restricted to small values, we still have in-

tractability if team size is increased. It seems that, as we discussed in Section 3.3, team

size is crucial. Thus, it is worth determining the fp-status of CoDesingLS with re-

stricted values for all four stigmergy-related parameters along with a small team size,

i.e. characterizing the fp-status of {|Es|, |Em|, |Er|, e, |Q|, f, d, |T |}-

CoDesignLS[New]fast. It seems that considering the simplest stigmergy-related pa-

rameters was surprisingly ineffective in giving us tractability; therefore, we should in

future research also consider other stigmergy-related parameters.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we have examined the controller -environment co-design through library

selection problem from the point of view of computational complexity. We have given

the first classical and parameterized complexity analyses for this problem. In these

analyses, we have shown that CoDesignLS is polynomial-time intractable in general

both deterministically (Theorem 1) and probabilistically (Theorem 2). Furthermore,

the problem remains fp-intractable under restrictions to a number of parameters given

in Table 3.1, both individually and in various combinations (Theorems 3 - 6). We have

also given the first set of parameters whose restrictions will guarantee fp-tractability

(Theorem 7). A summary of these results is given in Table 3.2.

We then looked into two elaborations of CoDesingLS. We have first shown that

CoDesignLS remains both polynomial-time intractable and fp-intractable under a

new architecture, in which robots have transient memory, relative to small values of
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all of the parameter combinations given in Table 4.1 (Theorem 8). To compare the

relative power of the SI with the new architecture we showed a reduction from the

SI to the new architecture (Theorem 9). Also, as all the parameter combinations are

fp-intractable relative to homogeneous teams under new architecture, which is not the

case under SI model, it is apparent that transient memory, which is the difference

between the two architectures, is much more powerful than it initially seemed to be.

In the second of these elaborations, we have defined the stigmergy-related parameters

given in Table 4.2 for the CoDesingLS problem and derived fp-intractability results

relative to these parameters (Theorems 11 and 12).

From the above, we conclude that controller-environment co-design using library

selection is much more difficult than what the authors in [37] initially thought. In

order to achieve tractability further analyses of the problem are required, either in

form of exploration of new parameters for this problem or analyses of simplified

variants of the problem.

5.2 Future Work

Relative to the future work, it would be interesting to characterize results for param-

eter combinations for which we have not proved fp-tractability or fp-intractability

for CoDesignLS (see Table 3.3). For example, fp-tractability results may be lurk-

ing under the parameter combinations {|L|, |T |, |Q|, |d|, |f |} or {|L|, |T |, |Q|, |d|, |f |,

|Es|, |Em|, |Er|, e} for CoDesignLS. A second direction for future work is to explore

new parameters related to control mechanisms other than the parameters presented

in Table 3.1 or additional stigmergy-related parameters other than those presented
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in Table 4.2.

A final direction for future work would be to define and explore variants of the

problem analyzed in this thesis. It appears that designing team of robots and their

operating environment simultaneously is simply too difficult. An interesting variant

of this problem that should be studied is a controller design with library selection

relative to modification (along the lines proposed in [37]). Another promising variant

is that given an environment, we are only allowed to change a limited number of

squares to design the environment for a given team to work in.
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