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Abstract

This thesis is concerned with the solution of systems Volterra integro-diffet'enti~

equations by the application oJf waveform relaxation methods. This is iii. timely topic

since such method, can often be implemented efficiently on pa.ra.lld architectures.

It derives convergence results for both the regula.r kemcl and the \\~ly $iogula.r

kernel cases, and lIlthougb our prima.ry concern is with numerical methods, we

consider both analytic and numerical solutions.

In Chapter I we study the history of waveform relaxation methods and try to

bring the rCadp.f up to date with what is presently known about these methods. We

emphasize their application to the solution of systems of ordinary differential equa-

tions and Volterra integral equations. [n each case, we consider both the continuous-

time and discrete-time method, iUld give convergeoce fe3U!tS for each. Therefore,

this dIapter will set the stage for the application of waveform relaxation techniques

to the solution of Volterra integro-differential equations in Chapter 2.

Chapter 2 is the main chapter of the thesis and contains all of the original results

from my research. It begins by giving the standard resolvent representation of the

iUlalytic solution of Volterra integro-differential equations, with both regular kernels

and weakly singular kernels. It then considers continuous-time iteration waveform

relaxation methods, in which we assume that the resulting equations can be solved

cuctly. We prove that these methods converge uniformly on all bounded intervals.

However, the main body of results in this chapter, Concern the collocation s0­

lution of the iterates that result when waveform relaxation methods a.re applied to

Volterra integro-differential equations. We will consider convergence, both as the



steplength tends to zero and as the number of iterations tend to infinity. We study

the effect various iterative methods used to solve the resulting implicit nonlin~ar al·

gebraic equations have on the convergence and complete the discretization by taking

into account the use of quadrature to solve the integrals in tbe method. Throughout

the chapter we include numerical examples which illustrate the various theorems,

with tables of results and discussion placed in a section at the end of this chapter.

In Chapter 3, we point out that a major source of applications of Volterra integro­

differential equations are the Volterra partiaJ integro-differential equations. We also

mention topics not considered in the main body of the thesis. These include numer·

ical stability of Volterra integra-differential equations, and the use of graded meshes

for the solution of Volterra integro-differentiaJ equations, with weakly singular ker·

nels.
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Chapter 1

Waveform Relaxation Methods:
History and the State of the Art

1.1 Introduction

Waveform Relaxation (WR) algorithms involve the partitioning of a system of equa­

tions. Each of the resulting subsystems are iotegrated independently over a number

of iterative steps with information from ea.cb subsystem being passed on only at the

end of each pass. This is an old idea, embodied in the usc of Pica.rd-LindeiM itera-

tions in the proof of various existence theorems in differential equations. However,

recently these meth.ods have become of practicaJ interest because of their ability to

decouple the large systems of equations that often arise, either naturally from prac­

tical problems, or because of the necessity of using implicit methods. In addition,

the availability of new parallel architectures have propelled these investigations.

This idea was originiiLIly introduced by Lelarasmee (l982) and Lelarasmee d al.

(1982) for the analysis of large scale dynamial systems. In particular, these authors

....'ere modelling metal oxide semi-conductor digital circuits. Since the modelling of

very large scale integrated (VLSI) circuits involves the solution of a very large system



of equations, the motiViltion for these methods is dear. See White d aJ. (1985) for

a survey of these applications and the book by White and SaogioVClnni-Vincentelli

(19'7).

Subsequently, these methods were developed for ordinary differential equations

(ODEs), with Miekbla and NeVClnlinna (1987a, 1987b) aod NeVClnlinna (1989a.

1989b, 1990) putting the convergence theory on a sound mathematical basis. See

also Skeel (1989), Lie and SkaJin (1992), Lubich (1992), Bellen and Zennaro (1993),

Bellen d a/., (1993) and Bellen d a/. (1994). We also refer the reader to the book

Burrage (1995).

The computational problem.!l for ODEs are even worse for Volterra integral equa­

tions, since one has to continually recompute the lag-term arising from the integral

part. Crisci et al. (1993) and D'Altcrio and Vecchio (1995a, 1995b) studied Parallel

Iterated VRK methods, Crisci et af. (1995) and Paone and Vecchio (1993, 1994)

studied Block Volterra Linear methods and Vecchio (1996) studied Parallel Trans­

formed methods. More recently, Crisci d a/. (1996&) considered continuous--time

waveform relaxation methods, where we assume that the VIE an be solved exactly.

Then Crisci d a/. (l996b and 1997a) introduced discrete-time waveform relaxation

Volterra Runge-Kutta. methods to solve the numerK.aJ problem. See also Brunner et

a/. (1998) for waveform relaxation methods for VfEs with weakly singular- kernels.

Finally, Crisci et a/. (1997b) have been looking at time-point relaxation methods

for Volterra integro-differential equations with regular kernels.

Of course, iterative techniques and rdlUation methods for the solution of systems

of algebraic equations have a much longer history. The Jacobi method, sometimes

called the "method of simultaneous displacements" and the Gauss-Seidel method



were well known. An early attempt to increase the rate of convergence led a British

engineer, Richard Southwell to develop a method of rdazation scheme, which became

the precursor to the oUl!rrelazation acceleration technique. See Allen (1954) for the

history of these ideas, and see Axelsson (1994) for a modern introduction.

1.2 Summary of the Thesis

(n Chapter 1 we give a brief history of waveform relaxation and its special case time­

point relaxation (TR) methods for the solution of ordinary differential equations and

Volterra integral and integro-differential equations (VIEs and VIDEs, respectively)

up to the time of writing of this thesis. Chapter 2 forms the main body of the

thesis and contains all of the original results of the thesis research. In fact, Chapter

1 will introduce and lay the ground work for Chapter 2. In Chapter 3, we point

out that a major source of applications of Volterra integro-differential equations is

the partial integro-differential equations. Tbe semi-discretization of such problems

leads to a large system of Volterra integro-differential equations and would benefit

from a time-point relaxation approach. Finally we look back over the thesis, draw

some conclusions and point out areas where the analysis can be taken further. For

example, different windowing and different splitting functions could be utilized, or

higher order inner iteration schemes could be applied to take advantage of high order

outer iteration methods. We also address topics not considered in the main body

of the thesis. These include numerical stability of Volterra integra-differential equa­

tions, and the use of graded meshes for the solution of Volterra integro-differential

equations, with weakly singular kernels.

We begin by listing the original results in the order in which they will be pre-



sented. See also Tables 2.2, 2.3 and 2.4 for a listing of the most important results.

• Theorem 2.7 The continuous-time iteration WR method (2.53) for the s0­

lution of the VIDE with regular kernel (??), is uniformly convergent on all

bounded intervals 10, TJ·

• Theorem 2.10 The continuous-time iteration WR method (2.87) for the :s0­

lution of the VIDE with weakly singular kernel (2.21), is uniformly convergent

on all bounded intervals [0, TI.

• Theorem 2.11 The discrete-time iteration TR method, using Gauss-Jacobi

or Gauss-Seidel iterations, is commutative.

• Theorem 2.12 The discrete-time iteration TR method (2.128), for the solu­

tion of the VIDE with regular kernel (2.106), using q Gauss-Jacobi or Gauss­

Seidel iterations, is convergent for q -+ <Xl, for sufficiently small steplength.

• Corollary 2.2 The discrete-time iteration TR' method (2.128), for the solu­

tion of the VIDE with weakly singular kernel (2.107), using q Gauss-Jacobi

or Gauss-Seidel iterations, is convergent for q -+ 00, for sufficiently small

steplength.

• Theorem 2.15 The discrete-time iteration TR method (2.128), for the solu­

tion of the VIDE with. regular kernel (2.106), using q Gauss-Jacobi or Gauss­

Seidel iterations and r-point collocation at the Gauss-points, has nodal order

min{2r,q + I}.

• Corollary 2.3 The discrete-time iteration TR method (2.128), ror the solution

of the VIDE with weakly singular kernel (2.107), using q Gauss-Jacobi or



Gauss-Seidel iterations and r-point collocation, has order of globaJ l;Onvergence

l-o,forO<o<1.

• Theorem 2.16 The discrete-time iteration TR method (2.146), for the soh,­

tion of the VIDE with regular kernel (2.106), using q Gauss-Jacobi or Gauss­

Seidel iterations, " Picard fixed-point iterations and r-point collocation at the

Gau"-points, has nodal order min{2r,q+ l,q+.'II}.

• Corollary 2.4 The discrete-time iteration TR method (2.146), for the solution

of the VIDE with wealdy singular kernel (2.107), using q Gauss-Jacobi or

Gauss-Seidel iterations, "' Picard fixed-point iterations and r-point collocation,

has order of global l;Onvergence 1 - 0, for 0 < 0 < 1.

• Theorem 2.18 The discrete-time iter.Ltion TR method (2.128), for the solu­

tion of the VIDE with regular kernel (2.106), using q Gauss-Jacobi or Gauss­

Seidel iterations, oS Newton iterations and r-point collocation at the Gauss­

points, has nodal order min{2r, q + 1, 2~q}.

• Theorem 2.20 The discrete-time iteration TR method (2.128), for the solu­

tion of the VIDE with regular kernel (2.106), using q GauSll-Jacobi or Gauss­

Seidel iter.Ltions, .'II Modified Newton iterations and r-point collocation at the

Gauss-points, has nodal order min{2r,q + I, {,f + l)q}.

• Theorem 2.21 The discrete-time iter.Ltion TR method (2.168), for the soIu­

tKlD of the VIDE with regular kernel (2.106), using q Gauss-Jacobi or Gauss­

Seidel iterations, oS Picard fixed-point iterations, r-point collocation and r­

point interpolatory quadrature at the Gauss-points, has nodal order rnin{2r, q+



l,q+s} .

• Theorem 2.22 The discrete-time iteration TR method (2.168), for the solu­

tion of the VIDE with regular kernel (2.106), using q Gauss-Jacobi or Gauss-

Seidel iterations, s Newton iterations, r.point collocation and r-point interpo­

latory quadrature at the Gauss-points, has nodal order min{2r, q + 1, 2·q} .

• Theorem 2.23 The discrete-time iteration TR method (2.168), for the solu­

tion of the VIDE with regular kernel (2.106), using q Gauss-Ja<::obi or Gauss­

Seidel iterations, s Modified Newton iterations, r-point <::o!lo<::ation and r-point

interpolatory quadrature at the Gauss-points, has nodal order min{2r,q +

1,(s+l)q}.

Continuous·Time Iteration WR Methods

The main results for this section are given hy Theorems 2.7 and 2.10 which show

convergence of the methods; see Illustration 2.5. However, from equations (2.58)

and (2.59) for Theorem 2.7 and equation (2.90) for Theorem 2.10 it is dear that the

error can he quite large on [0, T], for larger values of T. Therefore one may wish

to employ the idea of windows and subdivide the interval [0, T] so as to promote

relatively fast convergence on each of these subintervals; see Section 1.4.3.

Of course, our main concern in this thesis is the discrete-time TR iteration

methods and there we employ windows of length equal to the steplength; see Section

2.3.

Comparing Theorems 2.7, 2.8, 2.9 and 2.10, and Corollary 2.1 we will see that

continuous-time iteration WR methods for ODEs and VIDEs are uniformly conver­

gent on all bounded intervals [0, T], where&.'; VIEs are only conditionally convergent.



Therefore, VIDEs behave more like ODEs than VIEs.

Discrete-Time Iteration TR Methods

The remaining results concern discrete-time iteration TR methods which form

the basis for the computational solution of VIDEs. In Section 2.3.1 we show that

TR methods decouple an m-dimensional VIDE into a system of m one-dimensional

VIDEs which are then easier to solve and (depending on the iteration mode chosen)

easier to implement on parallel architectures.

Theorem 2.12 and Corollary 2.2 show that the discrete-time iteration TR meth­

ods converge as the number of Gauss-Jacobi or Gauss-Seidel iterations q --+ 00, but

we are not claiming that they supply the solution of the problems. We must first as­

sume an underlying numerical method, and we choose a collocation method, where

we take Gauss points for the regular kernel case. Theorem 2.15 essentially tells us

that if We take r (Gauss) collocation points, we will require q = 2r -I iterations to

attain the optimal nodal order of 2r. It is not hard to see that this theorem can be

extended to methods using other collocation points.

Corollary 2.3 points to a limitation of these methods when applied to VIDEs

with weakly singular kernels, since the order of global convergence is limited to

1 - cr, 0 < 0 < L This is clearly a direct result of a limitation of the underlying

numerical method;~ Theorem 2.14. The good news is that applying a TR iteration

method to such an equation, in itself, is not adversely affected by the weak singularity

in the kernel.

In any realistic problem, Theorem 2.15 and Corollary 2.3 will not suffice. We

must progress to Theorem 2.21 for the regular kernel VIDE and similarly to Corollary



2.4 for the weakly singular kernel VIDE (also see Remark, in Section 2.4). This

is because we usually calloot solve the resulting implicit algebraic equations and

integrals in closed form. Concerning the use of interpolatory quadrature, for the

regular kernel case, we assumed that this quadrature always employed the Gauss

points. However, other points could be used, although there will be an accompanying

decrease in optimal nodal order. Of course one can always use the same set of points

for the quadrature as for the collocation method, without any additionall05s of nodal

order. See Brunner and van der Houwen (1986). Recall from Section 2.4 that we

are using natural discretizations.

Theorems 2.18 and 2.20 consider the case where we use a method of higher order

than simple Picard fixed-point to solve the resulting aJgebraic equations, namely,

Newton and modified Newton, respectively; Theorems 2.22 and 2.23 are the corre­

sponding discretized versions. However, all these results are disappointing, since our

nodal order is restricted to min{2r,q+ I}, where we have r-point Gauss collocation,

r-point interpolatory Gauss quadrature and q Gauss-Jacobi or Gauss-Seidel inner

iterations. Clearly we attain the same nodal order by using just one outer iteration

and it does not matter what method, Picard, Newton or modified Newton we usc.

Therefore the increased cost incurred with the Newton or modified Newton is not

justified.

We conclude by giving the numerical results from various tests. We tested the

results of Theorem 2.16 with a linear test problem (Test Problem 2.1), the results of

Theorems 2.21, 2.22 and 2.23 with a nonlinear test problem (Test Problem 2.2) and

the results of Corollary 2.4 with a linear test problem with various weakly singular

kernels (Test Problem 2.3).



Future Work/Open Problems

Finally in Chapter 3, we conclude with a list of topics for future work that include

some open problems. for example, to promote faster convergence, different window­

ing and different splitting functions could be utilized, for both the continuous·time

and discrete-time WR methods. And in the case of discrete-time TR methods, a

higher order inner iteration scheme, like the Newton method, could be applied to

take full advantage of the higher order outer iteration !!chemes, like the Newton and

modified Newton methods. Also, a variety of collocation points and interpolatory

quadrature formulae could be employed in the underlying numerical method. The

two main open problems coming from the thesis are numerical stability of VIDEs,

and the poor convergence of VIDEs with weakly singular kernels.

1.3 Ordinary Differential Systems

We are first concerned with the solution of the initial value problem (IVP)

!I(') ~ fl', y), y(O) ~ Yo, , E [0, TI (Ll)

where y is a vector on R"', ! : [0, TJ x R'" -+ R"', 0 < T < 00, and we assume that

the function! is continuous and satisfies a Lipschitz condition in y. The idea behind

waveform relaxation methods is already contained in the historical approach taken

by Picard. That is, a sequence of solutions yl(t),y~(t), .. ,y'(l), is constructed,

where the initial solution yO(t) is assumed given, and it is hoped that the sequence

converges to the solution y(t). This means that we solve a sequence of differential

equations

!(t,y,-I), t E (O,TJ, 11.2)



y'(O) = Yo,

or equivalently,

y'(t) = Yo + 10' f(.5,y'-'(s))ds,

q = 1,2,.. Clearly, we have decoupled the m-dimensional system into m inde­

pendent quadrature problems. As pointed out by Burrage (1995), this approach is

"embarrassingly parallel", with updating being the only interaction necessary be­

tween subsystems. Unfortunately, the convergence of this method is very slow,

and we must search for more efficient algorithms. Thus we consider other iteration

schemes which give more efficient methods.

We choose a function GJ : [0, T] x ~m X ~m -+ ~m, such that

G,(l,u,u) =[(t,u),

for aJl t E [O,T] and for all u E ~"'. Assume that the initial solution yO(t) is given

and compute a sequence yl (i), y'(t), .. ,if(t), of solutions of the equations

(1.3)

0'.

q = 1,2, .., which converges to the solution y(t) of (1.1) as q -+ 00.

These solutions arc called waveforms and the function G, is called a splitting

functioo, since it defines how the problem is to be split up into subsystems. The

following iteration schemes are possible:

10



• Picard Iteralion

• Gauss·Jacobi Ileralion

fori=1,2, .. ,m.

• Gauss-Seidel Iteration

'C/(t,u,v) = f,(t, v" .. ,V'_I,V"lIi+I, • . ,11 ... ),

fori= 1,2, .. ,m.

• Newton Iteration

The methods employing Picard and Gauss-Jacobi iteratioD are fully parallel,

but have the disadvantage that large quantities of past data must be stored. This

can be a computationaJ difficulty if the dimension of the system m is large. On

the other hand, methods using Gauss-Seidel and Newton iteration schemes avoid

this problem, but do not lend themselves to efficient implementatioD on paraJlel

architectures. Concerning speed of convergence, we suggest that the reader consult

Burrage (1995), Chapters 1 and 8.

1.3.1 Continuous-Time Iteration WR Methods

These methods given by (1.3) are called continuous-time iteration WR methods,

since they do not involve yet the discretization of the time interval and the appli­

cation of numerical methods to solve the resulting differential equations. There is

II



much that can be said about the convergence rate5 of each of these iteration schemes,

e5pecially, for particular problems (e.g. linear), and we refer the reader to BeUen

and Zennaro (1991, 1993), Burrage (1995), Chapter 7, 't Hout (1995) and Burrage

et al. (1996).

For example, assume the function f in (1.1) is continuously differentiable and

satisfies a Lipschitz condition, in some norm n·11, with constant L, i.e.

for all YI, Y2 E !R"" and all t E [0, TJ. In addition assume that the splitting function

GJ(!' 1.1, v) is continuously differentiable and satisfies the following Lipschiz condition

in 1.1 and v, with Lipschitz constant!> L" £2, respectively,

IIGJ(t,ul>V)-GJ(t,1.I2,V)1I :S Ldlu, - u2 I1,} (1.4)
IIGJ(t,u, VI) - GJ(t,u, v2)11 :S £.211vl - v211.

for all U/tU2,Vj,V2 in !R"" and t in [O,TJ. Then the resulting WR method (1.3)

converges uniformly in [0, TJ, where

(1.5)

q = 1,2,... Note that we are referring to the usual maximum norm from the

Banach space of continuous vector valued functions, defined on [O,TJ,

IIYIIT:= max'Elo.nlly(t)II,

inherited from any vector norm ofR"'. See Bellen and Zennaro (1991) and Burrage

(1995), Theorem 7.9.2

One can also give convergence results, where the two-sided Lipschitz constant

£.2 of the splitting function G J with respect to the second argument is replaced by

a one-sided Lipschitz condition, see Burrage (1995), Theorem 7.9.3.

12



1.3.2 Time Discretization

Since (1.3) can seldom be solved in closed fonn we must disc::retize the time interval

(0, TJ and apply a numerical method to appro"imate the solution. Numerical metb·

ods generally fall into the two categories of linear multistep (LMS) and one-step

methods (typically Runge-Kutta.). Since this thesis concerns colloca.t.ion methods,

which are continuous implicit Runge-Kutta (IRK) methods, we give a few standard

results. See Haiter d 01. (1993) and Lambert (1991).

Consider a partition ON : 0 = to < t l < ... < IN = T, t"+1 - l .. =: h, for

n = 0, I, .. , N - I, where the points {l ..}~~o arc called the mc"h points or nodcII.

The approximation y..+1 to the exact solution y(l ..+d of (1.1) is given by an r-stage

Runge-Kutla method,

k,

y.. +htb;k;

f(t_+Cih,Y.. +htaiiki) , i=I,2, ... ,r,,.,

(\.6)

n = 0, I, .. , N - 1. Auume that the row-slim condition always holds:

e;=ta;j,
i-I

i= 1,2, .. ,r.

The coefficients occurring in the method are often displa.yed in a Butcher array:

<, a" an
<, a" a,.

*or simply

"- ad a"
b, b, b.

13



upon defining the r.-dimensional vectors c and bud the r x r matrix A:

• We say that an RK method is explicit if:

G;j = 0, if i;?: i, i = 1,2, .. ,r c:> A strictly lower triangular.

• We say that an RK method is semi-implicit (or diagonally implicit) if:

(1;;=0, if i>i,j=l,2, .. ,r~Alowertriangular.

• We say that an RK method is implicit if:

a;; :f: 0, for some j > i,~ A not lower triangular.

Runge-Kutta methods are discrete, in that they yield approximations only at the

mesh points. However, if interpolation is added, can they be defined throughout the

interval 10, T], in which case we call them continllOVS methods. Collocation methods,

on the other hand, are defined over the inter~ 10, TJ and therefore have a. natllrul

interpolation built into their definition. They are therefore examples of continuous

IRK methods.

Collocation methods involve choosing a unique function (usually a. piecewise

polynomial) by the condition that it satisfies the given problem, (LI), at a given

set of points called the collocation points.

Note: These piecewise polynomials are called polynomial splines and a colloca­

tion method utilizing them is called a polynomial $pline collocation method. Since

14



such methods are prevalent and since we exclusively deal with this type of collo­

cation method in this thesis, we will refer to them simply as colloca.tion methods.

Recall the partition n,.. : 0 = to < II < .. < I", = T, ' ..+! - ,,, =: h,

forn = 0,1, .. ,N-I, ~d let Zrv:= {1 ft : n = I, .. ,N-I} be the set of

interior points. Also let Z",:= Z,..UT, a.od define the intervals (70:= (O,l.) and

(7,,:=(I.. ,l,,+", n=I,2, .. ,N-1.

Given integers rand d 5a.tisfying -1 :5 d :5 r - I, and letting 11",. denote the

space of real polynomials of degree not exceeding r, we define the finite-dimensional

space S!d)(Zrv) of (real) polynomial splines of degree rand continuily class d, with

the knots Z,..:

Note that S!.l)(Z",) is a finite dimensional subspace of C"({O, TD, and

dim~I)(Z",)=N(r-d)+d+I, -1 $d$r-1. (1.8)

The two most useful C&SeS are d = -I, in which the functions may have jump

discontinuities at the knots Z"" and d = 0, in which we have continuity over all of

(O,TI. The latter case is most useful for ODEs (although d = I is also used), and the

former for VIEs. See Brunner ~d van der Houwen (1986) and Brunner (1998).

A5$OCiated with this partition illY we consider the collocation points TIY :=

{t" + cjh;j = 1,2, .. ,r; n = 0,1, .. , N - I}, where 0 $ CI < C2 < .. < c,. S I,

and choose a continuous piecewise polynomial TJ of degree at most r which satisfies
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(Ll) on the set TN. More precisely, we wish to determine,., E S!O)(ZN), so that

,.,'(t) = /(t,,.,), '1(0) = Yo, for t E TN. (1.9)

Since this equation defines the collocation method, it is called the collocation

equation. To show the connection between collocation methods and continuous

IKR methods choose '1 E S!O)(ZN)' Then '1(t.. +rh) represents the approximation

to the exact solution y(t .. + rh) of (Ll) given by this collocation method, where

T E [0,1].

Then the collocation equation becomes

j=I,2, . . ,T,n=O,I, .. ,N-1.

Note that tbere are Nr collocation conditions plus the given initial condition

,.,(0) = Yo; this number equals the dimension of the space S!O)(ZN); see (1.8). There­

fore, since ,.,'(t.. + rh) E 11"_1> for n = 0,1, .. , N - 1, and r E (0,1], we can use

Lagrange polynomial interpolation to get

,.,'(t.. + Th) = j;""(t.. +cjh)Lj(r),

where Lj(r) are the fundamental Lagrange polynomials:

(1.11)

Then

'1(t" + rh) = '1(1,,) +h loT '1'(t.. + vh)dv, r E [0,11,
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which becomes

I)(t.. + rh) = 1)0.. )+ h L~ Ct I)'(t.. + Cjh)Lj(V») dv,

0'.

where

aod

1)0.. +Th) = I)(t .. )+htOj(T)V...;,
j_1

(1.12)

V..,j =I)'(t.. + ejh) =J(t .. + cjh,'1(t.. + cjh»), (Ll3)

j=l,2, .. ,r, n=O,l, .. ,N-1.

Using (1.12) we can rewrite (1.13) to get the following form of the collocation

method for the solution of (1.1):

I)(t .. +Th) '10.. )+htOj(T)Y...;, Te(O,l].
j ..1

(1.14)

Y...; = J(t"+Cih,I)(t ..)+h~O.(Cj)Y,,"'), i=l,2, .. ,r.

where n = 0, I, ..• N - I.

It is clear that for h > 0 sufficiently small, the resulting collocation method (1.14)

is defined throughout the interval [0, TJ and is therefore a continuous numerK;~1

method. Setting T = I, (1.14) becomes

l)(t ..+I) 1)(~.. )+htoi(l)Y...;, TE[O,II, (1.15)
j=1

Y...; l(t.. +Cjh,I)(t.. )+hi;a.(Cj)Y....),j=I,2, .. ,r,
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where n = 0,1, _., N - 1. It is easy to see that (LIS) is equivalent to the r-stage

implicit Runge-Kutta method (1.6) with coefficients given by:

For easy rererence, we put this result in the rollowing theorem. See also Hairer

et al. (1993).

Theorem 1.1 (Guillou and Souli 1969, Wn'ght 1970) Coruider the initial value

problem given oy (1.1) and suppose it is solved. by collocation 6a.sed on the collocation

points 0 S Ct < C'l < ... < c,.. $ 1 in the polynomial spline sp6cc S!°){ZN), lead.ing

to the method given by (1.15). Then this method coincidu on the nodu ZN with the

implicit Runge-Kulla method given by (1.6).

In order to quantify the propagation or erron in a numerical method, .....e consider

the concept or order.

Definition 1.1 The Runge-Kulla method (1.6) has order p, if for all suffidenlly

smooth problems (1.1),

for 50me constant 0 < C < 00, mere y is the e:ract so/tttion and YI is the n"merical

solution generutul at t. = h.

Note that this is equivalent to requiring that the Taylor series ror the exact

solution y(h) and the Taylor series ror the numerical solution Ylt expiUtded about

Yo, are identical up to and including the h' term. See Lambert (1991), Section 5.2,

where he discusses the concept orthe local truncation error. We call e(h) := y(h}-YI
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the local error at h, since it involves the local error committed at the first step in the

iteration, see Hairer et al (1993). This definitioo can be extended to any step, if we

impose tbe localizing assumption, wbicb assumes tbat all "back valuesn are exact;

see Lambert (1991).

Recall the asymptotic symbol O.

Definition 1.2 For functions f(x) and g(x)

f(x) = O[g(x)], as x -t a,

where a is a constant, q for some conslanl C

See Kahn (1990).

Using this notation, we now say that a method of order p, has a local error

O(h!>+'), where it is clear that this involves the limit as h -t O. If no localizing

assumption is made,

En+l:=y(l"+I)-Y"+I, 0=1,2, .. ,N-I,

is the global error at tn+l and includes the accumulation of errors after several steps.

This always leads to a loss of one power of h in the order. If the local error is

O(hP+I), then the global error will be O(h"). Sec Lambert (1991), Section 3.5 for

a nice discussion of these ideas through specific examples, or Hairer et al (1993),

Section II.3 for a formal proof.
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Definition 1.3 If 4 Runge-KuUo. method (1.6) defined by*, $o.ti&fiu the

condition

t ';;'1-' = <t la,
i-I

a = 1,2, .. ,r, i = 1,2, ... ,r,

then it is $o.id 10 $o.ti&fy one of Butcher'$ simplifying 4.fSvmptions, n4mdy, C(r).

We now state the following characterization of collocation methods; see Hairer

et al. (1993).

Theorem 1.2 (Hairt.r et tJl. 1993) A continuous implicit Runge-Kutta method with

distinct C, tJnd order at letU! r i$ a collocation method iff C(r) is true.

Since a continuous method i!j defined throughout the interval [0, TI, we can con­

!jider the question of order at any or all point(s) in this interval. Tbererore for

collocation, we can talk about the order of global convergence throughout the inter­

Vil.1 and the order of local convergence at specific points; for example, at the nodes.

Ca.re should be taken not to confuse these two notions with the terms local error

and global error, defined previously. Because of their importance in the thesis, we

itemize these two definitions.

• If 11 is the exact solution and 'fJ is the nUmeTica.l (collocation) solution (1.14),

to the problem (1.1), then if

11'(')11 ,= 11.(.) - .«)11 = O(h'), • E tN,

the numerica.! method has nodtJl order p.
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• If y is the exact solution and '1 is tile numerical (collocation) solution (1.14),

to the problem (l.l), then if

the numerical method has order of global convergence p (throughout (0, TJ).

Theorem 1.3 (Hairer et at. 1993) The r4point collocation method, given by (1.1./),

based on the space S!I))(ZN) in general has order of global o;onvergence r throughout

(0, TI, when applied to the solution of (1.1), iff is r times continuously differentiable.

However, if the {e;} satisfy the condition

(i.e. if the degree of precision of the quadrature formula is ~ r) then the order is

r+l.

However, tile nodal order may be greater than rj this is called local superconvergence.

For example Gauss, Radau IIA, and Lobatto IlIA are collocation methods with nodal

orders 2r, 2r - 1, and 2r - 2, respectively.

See Lambert (1991), pp. 194-196, and Hairer et al. (1993), pp. 211-214, for

more related details. Brunner (1998) gives a general survey of the application of

collocation to the numerical solution of differential and Volterra integral equations.

1.3.3 Discrete-Time Iteration WR Methods

The Dame discrete-time iteration WR methods refers to waveform relaxation meth4

ods that involve discretization of the time interval and application of numerical
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methods to solve the resulting diffuential equation (1.3). For example sec Burrage

(1995), Chapter 8, for the case where the underlying numerical method is linear

multistep.

Consider a partition fiN : 0 = lo < It < ... < t N = T, t ..+! - I.. =; h, for

n = 0, I, .. , N - I, and divide the integration interval (0, TJ into It subintervals,

called windolPs, each of length }/h, Le.

10, TI = :Qr'hN,(H l)hN].

where N = !I. Then the discrete-time WR method is applied, in tum, to each

window.

Definition 1.4 In a discrete-time WR method, if /II = I, that is, the window length

coincides with the step length, h, then the method is co.lled a time_paint refa%alion

(TR) method.

Following Bellen et 0.1. (1993), we study discrete-time iteration TR methods

involving the Gauss-Jacobi and Gauss~Seidel iteration schemes and consider in this

paper the use of collocation as the underlying numerical method. Bellen d af.

(1993) employed continuous Runge Kutta (CRK) methods with interpolation given

hy natural conlinuou utensions (NCEs). As we stated in Section 1.3.2, collocation

methods have a natural interpolation built into their definition.

Let .;(t) be any component Yi(l) of the exact solution yet), of the problem above

givenby(I.I),i=1,2, .. m.lnaddition,wedefine

u(l):= [YI(l),y~(t), ··,y;-a(t)I, v(I):= (Y;+I(t),Yi+~(t),.. ,Ym(t)].
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The problem can tben be written component-wise as;

z'O) = I(l,u,z,v), z(O) =(Yo)i,

where we have suppressed the subscript i, by letting it be understood that the i'lI­

component of I is used. We usume that tbl:! (continuous) approximation '1(t) to thl:!

solution yet) hu already been computed for I e [0,1,,1. To find the approximation

Z,,(t) of the corresponding jlll.component of '1(1) generated by tbe numerical method

for t E [I", t,,+t1 we consider first, the continuous-time iterations

~Z'I(t) l(t, U,-I, z'l, ll'l-I)

z'(I,,) '1i(t .. ),

q = 1,2, .. , i = i, 2, .. ,111. This requires that we define the initial guess for these

components when q = 0, and although it is arbitrary, BeUeD d (II. (i993) take it to

be the components of the constant function '1(1.. ). That is, for all t E (t.. , 1"+11, n =

O,i, .. ,N-l

UO(t) Iy~(t),y~(t), ··,ytl(t)} = ['1I(t .. ),'h(t,,), . . ,'1i-I(I.. lJ,

tl°(I) (yf+l(t),yf+1(t), .. ,y~(t)J = ('1i+lO,,),'1;+1(I .. ), .. ,'1_(t.. )],

where 'leO) = Yo. We will take a slightly different approach in this thesis and

therefore get a better nodal order; see Remark, in Section 2.3.7.

Collocation is now applied to generate approximations for each iteration and for

each of the components of y. This is continued for either a fixed number of iterations

or until some measure of the difference between two successive approximations is

less than a given tolerance.
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We now look more dosely at the form the colloation will take. Given the set

ofcolloca.tion points TN = {t .. +cjh;j = 1,2, .. ,T; n = 0,1, .. ,N -i}, where

o ~ CI < C, < ... < c,. ~ i the method becomes:

Z:(t .. + rh) Z.. (t.. ) + h t Qj(T)Y:,j, r E [0, I] (1.l6)
j:1

Y:J f (t .. + cjh,u:-I(t.. +cjh),Z..(I.. )

+ hEOk(Cj)Y:.. ,V:-'(t.. +Cjh») , j=I,2, .. ,T.

As explained earlier, we have suppressed the subscript i, by letting it be under·

stood that the i'~-componentof both the function f and the Y':,j is used. Also, we

have extended the definition of u{t) and v{t) to u.. (t) and v.. (t), respectively.

The iterations in the above method are of Gauss-Jacobi type; see Section 1.3.

Note that we compute all the components of '1(t) for t E [t.. , t"• .] before we "up­

grade" to the new values. That is, we do not use the "new" '1;(t) to compute the

remlLining components, even thougb we have calculated it. In the Gauss-Seidel iter­

ations, we use the new components of '1{t) as soon as they are oomputed. As before,

we first consider the continuous-time iteration.

~:l.(t) !(t,u·,:l·,v·- I
)

z·(t... ) 'li{t.. ),

q= 1,2, .. , i = 1,2, .. ,m, and for t E (t.. ,t... .I,n =0,1, .. , N -1, and let

UO(t) (y~(t),y~(t), ... , ytl(t)J = ['11(1..), "h(t .. }, .. , '1;_I(t .. »),

v°(t) [Y?I(t),Y?2(t), .. ,y~(t)] = ['1i.l(t .. ),'1;.2(t.. ), .. ,11... (t .. )],

where '1(0) = Yo. Again, collocation is now applied,
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Z:(t .. +rh) Z.. (t.. ) +htOj(r)~, r E (0, 11 (1.17)
i-I

Y:.; / (t .. + cjh, u:(t.. + cih), Z..(/ .. )

+ h~O"(Ci)Y~.lI:-I(t .. +Cih)), j=I,2, .. ,T.

We refer the reader to the discussion at the end of Section 1.3 of the relative merits

of these iteration schemes. In any case, a staDdard contraction principle argument

shows that for sufficiently small h, th~ methods (1.16) and (1.17) are well defined

and converge to the same limit as q ~ 00. As far iLl order conditions are concerned,

Bellcn et al. (1993) give the following theorem, which r have adapted for collocation

methods.

Theorem 1.4 (Bellen et al. 1993) Assuming the function / in (I.1) is sufficiently

smooth and the underlying coUcea/ion method has order p., then the order 0/ method8

(J.16) and (I.n) if p =min{p·,q}, for q iteratioM.

Stopping Error

Since all collocation methods are implicit Runge-Kutta methods, they involve the

solution of systems of implicit nonlinear algeb~ic equations. This clearly involves

some iter....tive method, which can be a Picard fixed-point iteration or some vuiant of

the Newton method. Picard iteration increa.ses the order of accuracy by one ....t each

iteration, BurrlLge (1995). This slow rate of convergence can be oftcn troublesome,

so we are led to consider Newton-type iterations, and in particular, the "stopping"

error involved. Sugiura and Torii (1991) derived estimates of the Newton stopping

error by using results originally due to Kantorovich and Akilov (1982). Later Spijker
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(1994) conside~ed the effect of these e~rors on the order of the underlying Runge­

Kutta methods.

In Section 2.3.9, we consider the case where Newton's method is used to solve

the system of implicit algebraic equations appearing in (1.16) and (1.17). We refer

the reader to Theorem 2.18.

Evaluation of the Jacobian in Newton's method can be very expensive, especially

if it must be continually updated. Therefore, one often uses the modified Newton

method, in which the Jacobian is evaluated once, and this value is used in all sub­

sequent calculations, Lambert (1991). We therefore get new stopping errors, and in

general, a reduction in order. We refer the reader to Section 2.3.10 and Theorem

2.20.

However, as stated in Section 2.3.10, the use of high o~der methods to solve the

implicit algebraic equations is not justified. See the discussion in that section and

Table 2.1.

1.4 Volterra Integral Systems

After considering ODEs, it is quite natural to try to extend these methods to Volterra

integ~al equations and integra-differential equations. In the papers by Crisci, et at.

(1996a,1996b,1997a), the authors apply WR techniques to VIEs: they are conce~ned

with the solution of the second kind VIE

y(t) = f(t) + l k(t,s,y(s»ds, t E (O,TJ, (1.18)

where y is a vector on ;Rm, f: [O,T] -+ ;Rm, k: S x;Rm -+ ;Rm, where 0 < T < 00

and S = {(t,s) : 0:5 .5 :5 t :5 T}. For its theo~y, see Miner (1971) and Gripenberg
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et al. (1990).

In this thesis we will study Volterra irdegro.di.f!erentiai systems (VlDEs) which

involve, in a very natural way, elements from both ODEs and VIEs. The non·linear

Volterra integTO"differential equation of interest is given by:

y'(!) = f(t,y) + fa' k(t,.s,y(.s))d", y(O) = Yo, t E {O, TI, (1.19)

where y is a vector on R"', f : [O,T] x R'" -+ R"', k : S x!R'" -+ R"', where

o < T < 00 and S = {(t,,,) ; 0 :5 s :5 t :5 T}. We a.ssume that the function f is

defined and continuous on the bounded interval [0, Tj, the kernel k is defined and

continuous on the triangle S and both f and k satisfy Lipschitz conditions in y.

Then, (1.19) possesses a unique solution y E CI([O,Tn. Recently, Crisci et ai.

(l997b) have been looking at WR methods applied to VIDEs, with regular kernels.

A Volterra integro-differential equation can be considered a differential equation

with a "memory" term, or lag term, that is represented by the integral. Therefore,

unlike a differential equation, wb.ich depends only on local information, a VrDE

depends on global informatioo. That is, it considers its whole "past history", as

does a VIE.

Again, the simplest iteration scheme is Picard or fixed~point iteration. That is,

we construct a sequence of solutions yl(t),yl(t), .. , y"(t), by solving the equations:

y'(l) = f(t} + fa' k(t,.J,y,-I(.J))d.J, t E [0, TI, (1.20)

q = 1,2, .. , and we take yO(t) = {(t), which converges to the solution y(t) of(I.18),

as q -+ 00.
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In the case of the VIDE (1.19) we have

~Y'(l) :: f(t,y'-') +10' k(t,$,y,-I(,,»ds, t E [O,T] (1.21)

y'(O) = !JO,

q:: 1,2, .. and yO(t) is arbitnuy, with y"(t) converging to the solution y(t) of (1.19),

as q -+ 00.

Unfortunately, as with ODEs (see Sectton 1.2) the convergence of this method

is very slow and we must search for more efficient algorithms. Thus, we choose a

splitting function G Ir : S)(!l'" x!l'" -+ R"', for the kernel k(t,s,y) such that

G..(t,s,u,u) = k(t,s,u),

for all (t,s) E S and for all u E Rm. We consider the Volterra integral equation,

(1.18).

Compute a sequence yl(t),y2(t), .. ,y"(t), of solutions of the equations

y"(t) = f(t) + l'G,,(t,s,y,-I($),y'(,,»d'.s, t E [0, T] (1.22)

,'(I) - !('),

q:: 1,2, .., which converges to the solution y(t) of (1.18) as q -+ 00. As before,

we refer to these solutions as w(weforrru. Again, the following iteration schemes are

popular (see Section 1.3).

• Picard Iteration

G..(t,.s,u,v) = k(t,s,u) .

• Gauss-Jacobi Iteration
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fori= 1,2, .. ,m.

• Gauss-Seidel Iteration

fori= 1,2, .. ,m.

• Newton Iteration

G.t(t,J,U,v) = k(t,J,u) + ~(t,J,Y)I.",,,(V - ul.

For the Volterra integro-differential equation (1.19) we must also chomc a split.

ting function Gf : [0, TI >< R'" >< ~m -+ ~'", where 0 < T < 00, for the function

f(t,y) such that

G,(t, 1.1, 1.1) = f(t, u),

for all t E [0, TI and for all 1.1 E ~m. See Section 1.3, for typical forms of G,.

Then we compute a sequence yl(t),ll(t), ... ,~(t), of solutions of the equations

~y.(t) G,(t,y·-',y·) + l G.t(I,J,y·-I(.),Y·(J))dJ, t E (0, TJ (1.23)

y·(O) Yo,

q = 1,2,. _., and yO(t) is arbitruy, which converges to the solution y(t) of (1.19) as

q -+ 00.

We may use any of the iteration schemes mentioned above for G.t and any of the

iteration schemes mentioned in Section 1.3 for G,. See the discussion at the end of

that section which compares the four iteration modes.
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1.4.1 Continuous-Time Iteration WR Methods

Recall that these methods given by (1.22) and (1.23) are called continuous-time

iteTation WR rnetbods, since they do not involve the discretiution of the time

interval and the application of numerical methods to solve the resulting Volterra

equations.

In the case of the Volterra integral equation (LlS), see Crisci el al. (1996&) for

convergence results for the continuous time WR method (1.22). For example, it

is shown that if the splitting function G.(t,,,, u, v) satisfies the following uniform

Lipschiz condition in u and v, with Lipschitz constants L l and £1, respectively,

for all Ul,U2,VllVJ in R'" and for all (t,") E 5, then the resulting WR method

converges in [a, T.], where

T
, < LI~L,

(see Crisci dol. (l996a». Note that we are: referring to the usual maximum

norm from the Banach space of continuous vector valued functions, defined 00 [O,T]

inherited. from any vector norm of R"'. (Note: I belcive the WR method converge5,

as io the VIDE case, on any bounded (0, Tj. See Theorem 2.7).

These authors also show that convergence of (1.22) can be extended to any finite

interval [a, TI, if a linear kernel is ~sumed. in (1.18). In addition, they consider the

following linear convolution kernel

k(f,s,y(.sn = [A + B(t - s)]y(.s),
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for (1.18) and show that con~enceof(1.22) can be extended to tbe infinite interva.J

The case of Volterra integTO-differential equations will be considered in Chillpter

2 of this thesis. We will see that VIDEs billve more in common with ODEs than

VIEs, with regard to convergence results. For ex~ple, a.ssume that, in line with the

ODE COJSe and the VIE case, the spljttins functions for f and It; satisfy conditions

(1.4) and (1.24), respectively. Then the method converges uniformly for a.Jj finite

T > 0, illnd a result simila.r to that given hy (1.5) can be given, see Theorem 2.7.

1.4.2 Time Discretization

In analogy with the case for ODEs in Section 1.3.2, (1.22) and (1.23) can seldom

be solved in closed form, so we must discretize the time interval (0, T] and illpply ill

numerical method to approximate the solution. Therefore, we consider the numerical

solution of (Ll8) and (1.19). We can use a linear method (VLM) or a Runge­

Kutta method (VRK), see Brunner and va.n der Houwen (1986), Chapters 3 and 4,

respectively.

Consider a partition ON : 0 = to < t 1 < ... < IN = T, t.+ 1 - l. = h, for

n = 0,1, .. I N - 1. \Ve deal with the Volterra integral equation and the Volterra

integro-differential equation separately.

Volterra integral equation:

Re....Tite (l.l8) in a form related to this partition:

yet) = F..(t)+h...(l), l E [t .. ,t..+d, n =0,1, .. ,N -I, (1.25)
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where the expression F.. deflned by

F.(t):=!(t) + J:"k(t,.5,y(s))d.s, fe[t.,f .... I, n=O,I, .. ,N-I,

is called the Jag or fail term, and the [unct)oD .,,(f), defined by

h.,,(t) := L~ k(f, s,y(s))ds, t E [t .. , t... .), n = 0,1,. " N - I,

is called the (exact) incrrment function for the interval [f.. ,f..+lI. The numerical

method must now approximate both the lag term iUld the increment function. In

general, these are independent problems.

Let Yn.1 represent the approximation to the exact solution y(f.... ) of (1.25), and

let us use an r·stage Runge-Kulla method to gCDerate these approximations. This

leads to the Pou:et· Volterra-Runge-Kulla method (PVRK):

F.. (t.. + h) + hi..(tn + h),

in(f) - ~ bik(t, tn + e;h, Yn,i},

Y...; Fn(t.. + e;h) + htia;jk(t. + c;h,t .. + cjh, Y..,j),

i= 1,2, .. ,r

F.. (t) !(t) + h~~b~k(f,tl+C~h, Yt.. ),

1'1 = O,L, .. ,N-l.

VolletTa integ!O-differentiai equation:

Rewrite (1.19):

(1.26)

y'(t) f(t,y) + F.. (t) + h4J.. (f), t E (t.. ,ln.d, 1'1 = 0,1, .. , N -I, (1.27)
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y(O) ~ Yo,

where we caJl

F~(t):= fol~k(t,s,y(s»)ds, lE{t .. ,t,,+.], n=O,l, .. ,N-I,

the lag or tail term; the function 4I .. (t), defined by

hto.. (t):= {k(t,s,y(.s»ds, tE[t.. ,t..+tl, n=O,l, .. ,N-I,

is called the (exact) increment function for the interval [t.. , t ..+L]'

As in the case of VIEs, the numerical method must now deal with the two

(independent) problems of approximating the lag term and the increment function.

However, the VlDE has the additional ODE-type problem due to the term fel,y).

As in the case of VIEs, we use an r-stage Runge-Kutta method to generate

the approximation Yn+l to the exact solution y(t ..+d of (1.27). This leads to the

Pouzel· Vofterra-inlegro-differential.Runge.Kulla method (PVDRK):

Yn+l Y.. + h tb; {Jet.. + c;h, Y..,') + F,,(t .. + e;h) + h~,,(t.. + c,-h)} ,

n=O,l, .. ,N-I, (1.28)

y",; y" + h Ea;j {t(t" + cjh, Y"J) + t.,(t" + cjh) + h~"(t,, + cjh)} ,
j=l

i = 1,2, . . ,T,

~ajlk(t"+Cjh,!,,+clh,y,,,,), j=1,2, ",T,

t ..(t) h~~b~k(t,tl+C.h,)'j,.), n=O,I, .. ,N-I,

(1.29)
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A YRK or YORK method, whose lag tenn formula is as in (1.26) or (1.28), is

ca.lled an alf!.ndetl PVRK or PVDRK method, respectively. Note that these methods

are completely characterized by their Bulchf!.r arrays:

~
---rv-'

and the corresponding RK methods for ODEs is called the associalf!.d RK method.

Recall the definition of order of RK methods (for ODEs) given by Definition 1.1,

and subsequent discussion. Clearly these definitions apply to the case of Volterra

equations. See Brunner and van der Houwen, (1986), Chapter 4, for the foHowing

result.

Theorem 1.5 (Brunner d al. 1982, Lubich 1981 and 1982) If the lZUocialed

Runge.Kulla method of a Pouzd· Vollerra-Runge-Kutta method or a Pouzet- Volterra­

integro-dijfert!nlial-Runge-Kutta method has order p, then theu mdhods have Drder

p.

RecaJl that the J"OIl7-s.m condition always holds:

c.=ta'i'
i_I

i= 1,2, ._,r,

and in analogy to RK methods fO(" ODEs, we can define explicit, semi-implicit and

implicit PVRK and PVDRK methods; see Section 1.3.2.

In Section 1.3.2 we discussed collocation methods as examples of continuous

implicit Runge-Kutta methods for the solution of ODEs. The same discuuion is
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relevant to Volterra equations. Our rocus is on Volterra integro-differential equa­

tions; for Volterra. integral equations ma.ny similar techniques apply. See Brurmer

and van der Rouwen (1986).

\Ve now extend collocation methods to Volterra int.egro-differential equations (lee

also Brunner and van der Hou~"en (1986». Volterra integro-differential equations

will employ continuous collocation approximations in the space SSO,(Z.... ). Collo­

cation ror the solution of the Volterra integro-differential equation (1.19) can be

derived in a completely analogous rashion to the derivation or collocation ror the

solution or the ODE (1.1). See Section 1.3.2.

Recall the partition n.... : 0 = to < t, < ... < tN = T, t..+! - t .. =: h, (ror

n = 0, I, .. ,N-I), the set Z.... := {t .. : n = 1,2, . . ,N -I) or interior mesh points,

and Z .... := ZN U T. Also, recall the set or collocation points T.... = {t .. + cjh;j =

1,2, .. ,r; n=O,I, .. ,N-I},whereO$c,<c2<· . <c".$1.

Consider collocation on SjO)(ZN) for the solution of (1.19), that is, choose" e

SjO'(ZN) such that

Note that there are Nr collocation conditions plus the giveD. initial condition

,,(0) = Yo; this number equals the dimension of the space SjO,(Z.... ); see (1.8). There­

fore, since, ,,'(t,. + rh) e 'II"._a, for n = 0,1, .. , N - I and r E (0,11, we can use

Lagrange polynomial interpolation to get

J1'(t .. + rh) = t J1'(t .. + cjh)Lj(r), r E [0, II,
je'

where Lj(r) are the fundamental Lagrange polynomials,
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Lj(T) = fJI ~=::.
J.-;'j

Then

l1(t~ + Th) = '1(/.. ) + h fo~ '1'(t.. + vh)dv,

which becomes

'1(t~ + Th) '1(/ .. ) + h taj(T)Y...j , T E (0, I}
j .. (

Y" J f(/~ + cjh,'1(t~ + cjh) +In k(tn + cjh, v, '1(v»dv

+ Ln+~,1o. k(t .. + cjh, V,'1(v»dv,

for n = 0, I, .. ,N - I, where

aj(T) = k~ Lj(v)dv.

These equations can then be written as

'1(t.. + rh) (1.31)

Y..J f (tn + cj h,'1(t.. ) + h 1; O"J.(Cj)y",J.)

+ h~l k(t.. + cjh,t/+Th,'1(t/+Th))dT

+ h r'k (t n +c;h,t" + Th,'1(t,,) +h Eat(T)Y...J<) dT,
Jo t=l

forn=O,I, .. ,N-I.
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Observe that the collocation solution defined by (1.31) is not only defined through­

out the interval of definition [0, T], but in fact, is continuous there, as well. Such a

method is called t.zact since the integrals appearing have not been approximated by

suitable quadrature formulas. For most realistic problems, it will not be possible to

evaluate these integrals in dosed fonn, but they will have to be approximated. This

leads to fully discrdized methods. In light of the importance ofthesc considerations,

we give a few relevant results on numerical quadrature. See Brunner and van der

Houwen (1986), Chapter 2.

Discretized Methods

Consider the integral

[(0) ~ 1.' O(t)d',

wberc a and b are finite and a < b. Then the numerical approximation l ..(r/J) to 1(¢J)

is given hy

[,(0) ~ f;"',iO("J)' (1.32)
j.O

where the points tn,o < tn•1 < ... < t .. ,.. are called the abscissas and do not nec-

essarily lie in the interval [a,b]. We call the (c,..j}j=o the coefficients or quadrature

weights of the method. Also we call

E,(O) ~ [(0) - [,(0)

the quadrature enllrand l ..(¢) the (n + I)-point quadrature formula. We say that a

quadrature formula is exact for a function ¢ if E..(¢) = o.

Definition 1.5 A quadrature formula has degree of precision q if it is exact for all

polynomials ¢ of degree not exceeding q, but if E.. (t9+1) '" O.
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Let us interpolate the function 4J by Lagrange polynomiaJ interpolation,

where P.. (tj ~I is the polynomial interpolation of <$(f) at the n + I points t .. .o < t ... 1 <

... < t .. ,A not necessarily lying in the inteTval (a, bj and the L..J are given by (1.11).

Then the quadrature weights in (1.32) are given by

(1.33)

Such a formula is caJled interpolatory, and since the coefficients are unique, we get

the following result.

Theorem 1.6 (Brunner and lI(1n der Houwen 1986) A qU(ldrature formul(l oosed on

n + I (distinct) poinu is 01 interpolatory type if (lnd only if iu degree of prec13ion q

is gre(lter th(ln or equ(li to n.

See Brunner and van der Houwen (1986), Section 2.1.2.

Therefore an (n + I)-point interpolatory quadrature formula has a minimum

degree of precision equal to n. However, this degree of precision can be exceeded for

particular choices of the abcissa.s {t ...;}. The maximum degree of precision possible

is 2n + 1 and occurs when the G(lU&S points are taken as the abcissas. We then get

the Gauu-Legendre formulas. See Brunner and van der Houv.~n (1986), Section 2.3.

We now assume that interpolatory quadrature bued on the abscissaJ; (t .. +c.;h:

i = 1,2, .. ,r} is used to approximate the integrals in (1.31). This will lead to the

fully discretized method. Find" E S!O)(ZH) from:

'1(t.. +1"h) 1/(t .. ) + h tOi(T)Y...;, 1" e [0,11
i .. l
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Y...,i f(l"+Cih''1(t ..)+h~OIr(Cj)Y",,)

+ h~~O.(I)k(t.. +cih,tt +Clrh,'7<t,+~h»

+ h~O'(Cj)k (t .. +cjh,l.. +clrh,'1(t..) +hEo.(CIr)Y.... ) ,

j = 1,2, .. ,r,

forn=O,I, .. ,N-t.

Next, setting T = 1, (1.34) becomes

'1(t .. ) + h tQj(I)YnJ ,
i_I

YnJ f(tn+cih''1(tn)+h~O'(Cj)Y''.Ir)
.._I r

+ h ~ '?;OIr(I)k(t .. + cih, t, + Clr h,'1(t, +cl;h))

+ h t ol(cj)k (I.. +Sh, t.. + clh, '1(t .. ) + h t O.(4,)v...•) ,...., ._1
j= 1,2, .. ,r,

for n = 0,1, .. , N - I.

The coefficients are given by:

(1.35)

Thus we have the following theorems:

Theorem 1.7 (Brunner and tUln der Houwen 1986) Cornider the Volterra integro­

differenHal eqtlation (1.19) and suppose it is solved by collocation using the collo·

cation points TN in the space S!O)(ZN). Also a.nume that the integtlJls appellring
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in the resulting method o~ approrimated by interpolatory quadrature, /Hued on the

abscissas {t" + cjh : n = 0, 1, ... , N - I,i = 1,2, .. ,r}, leading to the ducreti.:ed

method giuen by (l.SS), where toe as.slime that the kemel con be smoothly utended to

uailles olitside the triangle S. Then this method coincides with the implicit utended

POlUet· Volterro-integro.diJJerentiol.Runge.Kulta method given by (1.28).

See Brunner and van der Houwen (1986), p. 291.

Theorem 1.8 (Brunner and van der Houtoen 1986) Consider the Volterro integro­

differentio.l equation (1.19), where f and k are r times continuously differentiable on

(O, T] and S, re&pectil.lt:ly, and suppo&e it i& &oll.led by collocation using the collocation

point& TN in the polynomial spline space S!O)(ZN). Af&o aS6ume that the integral& ap­

pearing in the re6ulting method are o.pprorimated by interpolatory quadrature, based

on the absciuG.f {t" + cjh : n = 0, I, ... , N - I,i = 1,2, .. ,r}, leading to the di&.

cretued method giuen by (1.3./). Then this method has order of global conuergence

r throughout (0, TJ, regardleu of the choice of the (distinct) collocation ptJrnmders,

{Cj}.

See Brutl.oer and van der Houwen (1986), Corollary 5.4.1.

It is possible to attain superconvergence at the nodes t", n = 1,2, .. ,N -I. Ir

the Radau I poinu ror (0,1) or Radau II points ror (0, 1] are taken ror the collocation

parameters {e;}, we get nodal order 2r -lor if the Lobatto points ror 10, 11 ;ue used,

we get nodal order 2r - 2. Fortunately, we also attain the optimal order 2r (as in

ODEs) with the Gauss points. Clearly, in this way, a Volterra integro-differential

equation is "closer" to an ordinary differential equation, than to a Volterra integral

equation. See Brunner and van der Houwen (1986), Sections 5.4.2 and 5.4.3.
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So far the methods we have considered for the numerical solution of Volterra

equations have employed kernel values k(t,s,y) with s > I in the discretization of

the increment function ()n which are outside the natural definition of the kernel. Tais

can be rectified by a transformation and the resulting methods are called modified

methods of de H009 and Weiss; see Brunner and van der Houwen (1986), p. 263.

In particular, for the VIDE (1.19), we replace tae abscissas, {I .. + Cj,h : n =

0,1, .. ,N -1,k = 1,2, .. ,r} in (1.34) by the abscissas, {In + c"cjh

0,1, .. , N - l;j,k = 1,2, .. ,r}. To better see how this works, consider the follow-

ing integral from (1.31)

l e
, k (In + cjh,l .. + Th,'1(I .. ) + h ~O'.(T)Y.... ) dT

Cj fo' k (t .. + cjh,l .. + Cj{h,'1(t .. ) + h ~O"(Cj{)Y",,) d{ (1.36)

~CjO',,(1)k (t.. + cjh,l.. + c"cj h,l1(tn) +h~O"(CkCj)Y",,),

wherc we have used a transformation of variable and interpolatory quadrature with

lhc weights given as in (1.33).

The method becomes,

l1(t .. +Th) (1.37)

Y..,i f (I.. + cjh, '1(t.. ) + h j; O'k(Cj)y...,,)

.._I ~

+ h ~EO',,(I)k(/n +cjh,I/+ c"h,l1(l/ +c"h))

+ h ECjO',,(l)k (I.. +cjh,t.. +c"cjh,l1(I.. ) + h~(J'(C"Cj)Y",,),

j = 1,2, . . ,r,
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forn=O,I, .. ,N-I.

Since it is these methods that we use in the thesis and sioce .....e are primarily

interested in methods of optimaJ order, we give the following theorem.

Theorem 1.9 (Brunner 198-1) Consider the Volterra inte~differentia/ equation

(J.J9), when: f and k an: 2r tima continuoq&ly differentiable on [0, T) and 5,

respectively, and uppose it is so/ued by collocation wing the collocation poinl6 TN

in the polvnomial spline &pacc Sjo,(Z,.,,). Also auqme that the integrals appearing in

the resqlting method are &olued by interpolatory quadndqre, Ixued on the aluci&&a&

{t,+ckh:/=O,l, .. ,n-I,k=I,2, .. ,r} and{tn+ckcjh:n=O,l, .. ,N­

Ijj,k = 1,2, .. ,r}, leading to the discretized method given by (1.37). Then thi&

method has a nodal order of2r, iff the r collocation parameters, {Cj}, are taken to

be the GauS& point& in (0, 1).

1.4.3 Discrete-Time Iteration WR Methods

In Section 1.3.3, we considered discrete-time iteration WR methods for the solution

of ODEs. \Ve now turn our attention to discrete-time iteration WR methods ror

Volterra equations. We reall that these: are waveform relaxation methods tha.t

involve discretization of the time interval .a.nd application of numerical methods to

solve the resulting VIE, given by (1.22), or the VIDE, given by (1.23).

Consider a partition ON : 0 = to < t) < ... < tN = T, tn+! - t .. =: h, for

n = 0, I, .. , N - I, ilmd divide the integration interval [0, T] ioto Ie subintervals,

called window.J, each of length Nh. i.e.

IO,TI~ QI,hN,(Hl)hN],
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where JI = !i;. Then the discrete-time \VR method is applied, in turn, to each

window. In this thesis, we concentrate on & special ca.se of the WR method, caJ.led

the time-point relaxation (TR) method, which results when N = I. See Definition

1.4.

If the PVRK method (1.26) is applied to the Dumertul solution of (1.22), for

each iteration q, the result is the discrde-time lime-point re/aution VoIJe1Tl1 Rtmge­

Ktdta method, or simply TRPVRK method, Crisci d GI., (1997a). We give a few

details.

The approximation '1'(1) to the exact solution yet) is evaluated a fixed number

of times, say q = 1,2, .. , q, on each window

using the PVRK method (1.26). The approximation on the interval [t.. , t"+I] is given

by

'1"(t .. +h) F:'(t. + h) + hi~,(t. + h), (1.38)

i:'(t) to,k(t,t.. +C;h,V:J),

V,,',i 1':.'(1. +e;h) +htaiiG,,(t.. +e;h,t. +cih, V::;I, V:J ),
i-I

F:'(t) I(t) + h ~i;b~k(t,tl +c.h, l1'.1l,

v:... F:'(t" + e;h),

i = 1,2, .. ,r, q = 1,2, .. ,q, and n = 0,1, .. ,N -1, where G" is the splitting

function; see Section 1.4.
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We refer to this method as the TRPVRK method.

ff the splitting function C if satisfies the Lipschitz condition (1.24), then the

method (1.38) is convergent as h -+ 0, for every q/. In analogy with Theorem lA,

we have

Theorem 1.10 (Crisci et 0.1. 1997a) Assume lhat the functions f and kin (1.18)

are sufficiently smoolh and the splitting function Cif in (/.22) satisfies the Lipschitz

condition (J.!?4). Then if the underlying PVRK (1.26), has order p., the TRPVRK

method (1.38) has order p = min{p·, q + I}, for q iterations.

See Crisci et al. (1997a).

Concerning the VIDE (1.19), we can apply a PVORK method (1.28) to solve

(1.23), for each iteration q. The resulting method is a discrete-lime time-point relax­

alion Pouzel- Volterra-integro-differential-Runge-Kulta method (TRPVDRK). How­

ever we shall use the collocation method (1.37) in this thesis. In Chapter 2, we will

consider this method in detail.

1.4.4 Weakly Singular Kernels

So far we have restricted our discussion to Volterra equations with regular kernels;

see (1.18) and (1.19). We now drop this restriction and consider the class of Volterra

equations with weakly singular kernels. That is, in both of these problems, we let

k(t,s,y(s)):= (t - $r"'K(t,s,y(s»,

where 0 < a < 1, (t,s) e 5, and K is a regular kernel.
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The second-kind Volterra integral equation with weakly singular kernel is given

by

'E 10,71, (1.40)

where 0 < 0- < 1, y is a vector on 'loa, f: 10,71 ~ 'l'" and K: 5 x R'" ~ R"',

where 0 < T < 00. We assume that (1040) possesses a unique solution y E C(!O, Tj)i

see Brunner and van der Houwen (1986), Chapter l.

The Volterra integro-differential equation with weakly singular kernel is given

by:

vet) = f(t,y) + let - s)-" K(t,s,y(s»)ds, y(O) =Yo, t E [0, n, (1.41)

where 0 <0 < l,y is avectoroD R"',f: [O,T] xR'" ~ R'" and K: SxR'" ~ R"',

where 0 < T < 00. We assume that (tAl) possesses a unique solution y E CI([O, TI)i

see Brunner and van der Houwen (1986), Chapter 1.

The results for Volterra equations witb regular kernels, in the previous section,

assumed polynomial spline collocation employing a uniform mesh n : 0 = to < i l <

. < tN, l"+1 - t. = h, for n = 0,1, .. , N - I. Under such conditions, the global

convergence error for the solution of (1.40) and (1.41) drops to O(h l - O ), where

°< a < I, regardless of how we choose the collocation parameters and regardless

of how we choose the degree of the underlying polynomials. In fact, tbis is the

best we can do in the sense that the exponent 1 - a cannot be replaced by any

number greater than I - Q:. Furthermore, superconvergence is lost, as well. To

do better, one must consider suitable graded meshes for polynomial collocation, or

nonpolynomialspline spaces for uniform meshes. See Brunner (1986a), Brunner and

van der Houwen (1986), Chapter 1 and 6, Brunner (1998), Tang (1992 and 1993),



and Brunner d (It. (1998). See also Chapter 3.
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Chapter 2

Waveform Relaxation Methods for
Volterra
Integro-Differential Equations

2.1 The Analytic Solution

In this thesis we will study systems of VolterTll integro.differential eqllal1'ons (VIDEs)

which involve, in a very natural way, elementll from systems of ordinary differential

equations (ODEs) and systems of Volterra integral equations (VIEs). We begin

by giving some standard results on the existence and smoothness of solutions for

VIDEs. See Brunner and van der Houwen (1986), Chapter 1.

Theorem 2.1 (Miller 1971) Given the initiol \HZIve problem (1./9). Illhe {u.nction

f u definuJ and continuous on the bounded interval rO, Tj and the kernel k is defined

and continuou" on the triangle 5, and 60th satufy the following Lipschitz conditions:

IIk(t,,,, z) - k(t,s, i)1l :::; t.lI.: - ill,
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where (t,3) E 5 and y, g, z, i E Rm, then (1.J9) posse.sses a unique solution that

is continuous on [0, TJ, and pOS3esse.s a continuous derivative on {O, TJ.

Note: We have required that the functions f and k in the above theorem,

satisfy Lipschitz conditions (or y E ;Rm. If however, these conditions apply only

on some compact region of Rm, we can only give a local existence theorem. That

is, we can only be sure of thc existence o( a (unique) continuous solution on some

neighbourhood (-0,0), (or some 0 < Ii < T. See Brunner and van der Houwen

(1986). Q

If we assume a special linear equation, we can write down the analytic solution,

and subsequently, give a more complete analysis of the smoothness of these solutions.

Therefore, we consider the following example, where we take the one-dimensional

case, m = 1; the analysis of the m·dimensional case is essentially the same.

Example 2.1

y'(t) = a(t)y(t) + get) + fa' k(/,.s)y(s)ds, y(O) = Yo, t E [0, T], (2.1)

where a,g: [0, T] --+ H, k: 5 --+ H, with a,g E C((O, TJ) and k E C(S).

Under these conditions (2.1) possesses a unique solution on [0, Tj, which we can

explicitly write down in terms of a special kernel, continuous on S; see Theorem

2.2. To motivate this discussion, we take the following simple example in which we

can use ODE theory to write down this special kernel. As a bonus, we will use this

example in the proof of Theorem 2.7 in Section 2.2.1.

Example 2.2

yet) = ay(t) + get) +l by(s)ds, yeO) = Yo, t E IO,T], (2.2)
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(2.4)

where a and b an: non-zero real con.!ltants, g: [0, T]-+ Rand 9 € CI{[O, Tj).

Clearly (2.2) is equivalent to the second---order linear constant coefficient ODE

y"(t) = ay'{t) + by(t) + g'(t), yeO) = Yo, y'(O) = ayo + g(O) t E [0, Tj, (2.3)

which is equivalent to the first order system

( :'\:\ )' = (~ ;) ( :'\:\ ) + ( i1,) ),
where [Yo,ayo + g(O)]T are known initial values.

The solution can then be found by applying the lIariation of cons/ants fonnula;

see Edwards and Penney (1994), Section 2.7 for a solution based on equation (2.3)

and Hairer, d at. (1993) for a solution based on equation (2.4). We give details for

the first case.

Consider the characteristic equation of (2.3),

and for simplicity, assume the roots are real and distinct, that is

where Al of A2' Ai E H, i = 1,2. By expanding the RHS of (2.5),

(2.5)

(2.6)

Note, that AI, A2 are the eigenvalues of the matrix;
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associated with (2.4).

Clearly the complementary solution of (2.3), Ye, is given by

where Cl,C2 are arbitrary constants. By the variation of constants formula, we can

write the particular solution Y, of (2.3) in the form,

y,(t);: fa' G(t,s)g'(s)ds,

where

(2.7)

(2.8)

(t,s) E 5, where G is called a Green's function for (2.3), see Edwards and Penney

(1994). Applying integration by parts to (2.7), and using (2.8), where we note that

G(t, t) = 0, t E (0, TI, we obtain

y,(t) = -O(t,O)g(O) -fa' -!s0(t,S)9(s)ds,

in which case the solution to (2.3) is

Using Leibniz's Rule, see Zwillinger (1992), we now apply the initial conditions

y(O) = Yo
y'(0) = 4Yo + g(O),

in which case the constants Cl,C2 become
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By (2.6) they ca.n be written as

(2.10)

Define the T"9o{l1~nl kernel R(t,s) by setting:

Therefore, using (2.11), (2.10), and (2.9), the solution to (2.3) and therefore (2.2)

becomes

1I(t) = R(I,O)Yo + l R(t,s)g(.f)d.f. (2.12)

We note that, in this simple case of (2.2), its resolvent kernel, defined by (2.11),

is of the form R(t - 0$). Such kernels form an important class of kernels called

convolution kernels.

Fortunately, this approach to the solution of (2.2), can be extended to the more

general equation (2.1). We fonnally define the following function. See Grossman

and MiUer (1970) a.nd Brunner (1986b).

Definition 2.1 wi th~ jv.netion R: 5 -+!Ii be JefineJ 6"

8R(I,.,)
---a;-

R(f,t)

-R(l,s)a(s) - [R(I,1')k(1',s)d1', (1,0$) E 5,

1, t ~ s. (2.13)

The function R is ca.lled the T"9olvent kernel of (2.1), and the above equation

(2.13) is called the resolvent equation associated with it. We leave it to the reader

to chcck that R(t,s) given by (2.11) satisfies the resolvent equation (2.13).
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The following theorem uses this resolvent kercel to give a representation of the

solution of (2.1), an.alogous to the representation of the solution of (2.2), given by

(2.12).

Theorem 2.2 (Groumon and Miller 1970) Let 0 e C((O, TD, k e C(5), and as·

.sume thot R .sotufiu (e.13). Then, for ony 9 e C([O, TJ), the initial-l1Glue pro61em

(e.I) hu a lmique .solution y e CI([O, 1']), given 6y

y(t) = R(t,O)Yo+ fa' R(t,.s)g(.s)d.s, t e [o,TI· (2.14)

Proof:

For y e GI[O, T), the following identity follows from integration by parts:

l {R(t,,,)y'(.s) + aR~:,.s)y(.s)} d.s = R(t,t}y(t) - R(t,O)y(O), (2.15)

for t e (0, T). Since R(t,t) = I, for all t 2:.s, we establish

y(l) = R(t,O)y(O) + l {R(l,,,)y'(.s) + aR~~,.s)y(.s}} d.s, (2.16)

for t e [0, TJ. Ify is a solution to the VIDE (2.1), then substitution of the expression

from (2.1) for y'(.s) into (2.16) yields

y(t) R(t,O)Yo+ l R(t,,,) {a(.s)y(.s)+9(.s)+ L-k(.s, T)y(T}dT} d.s

+ L' aR~:,.s)y(.s)cU, (2.17)

for t e to, T]. We rewrite the double integral in (2.17), by interchanging the Voilriables

" and T, that is

l L- R(t,.s)k(",T)y(T)dTd.. ,
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10' 10'" R(t,T)k(T,,,)y(,,)d,,dT.

We now apply Dirichlet', fonnula, see Brunner and van der Houwen (1986), to obt~n

fo' (J.' R(~,T)k(T,.s)dT) y(,,)d.s.

Therefore, using (2.18) we rewrite (2.17) as

(2.18)

yet) R(t,O)Yo+ 10' R(t,,,)g(.s)d.s

+ fa' {(}R~:,,,) + R{t,.s)a(,,) +l' R(t,T)k(T,S)dT}y(.s)d.s (2.19)

for ~ E 10, TJ. Sillce R(t,.s) satisfies the resolvent equation (2.13),

aR~:,.s) + R(t,,,)a(.s) + J.' R(~, T)k(T,.s)dT = 0, t E [0, TJ.

equation (2.19) becomes

yet) = R{t,O)Yo + l R(~,.s)g(.s)d.s,

and the result is proved. a

It is easy to see that the function R, given by (2.11) also satisfies the following

equatioll (2.20), which is called the adftJint resofven~ eqvCltion associated with (2.2).

Definition 2.2 Ld the junction R : 5 -+ ~ k defined ~y

aR~~,") R(~,,,)a(t) + J.' k(t,T)R(T,.s)dT, (t,.s) E 5,

R(.s,,,) :II: 1, .s:5 t. (2.20)
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Therefore, for (2.2), Theorem 2.2 is true, if R is given by (2.20) or equivalently by

(2.13). Fortunately, this equiva.l.en<;e <;an be extended to the more general equation

(2.1). We refer tbe reader to the paper by Grossman and Miller (1970), in whkb the

equivalen<;e of (2.13) and (2.20) was first proved. In this thesis, .....e supply the proof

of the rorresponding result for the <;ase of a VlDE with a. weakly singular kernel,

whkh also follows from Grossman and Miller (1970). See Theorem 2.5.

Note that the resolvent kernel is <;ompletdy des<;ribed by the data of the homo­

geneous equation rorrespondiog to (2.1). It should be pointed out that the repre-­

sentation given by (2.14) <;an also be derived from rewriting (2.1) as a se<:ond-kind

VIE and applying the classical results for Volterra integral equations. See Brunner

and van der Houwen (1986) and Brunner (1986b).

By Theorem 2.2, the smoothness of the solutions to (2.1) is strongly dependent

on the smoothness of the resolvent kernel R. In light of this, we give the following

lemma.

Lemma 2.1 (Brunner 19866) If (1 E C"([O, T]) and k E C"(S), for some n E No,

then the resolvent kernel R associated with the VIDE (£.1) and given 6y (£.13) or

(equivalently) (£.20), is an element of the space C"+I(S).

See Brunner (198Gb). The following theorem is an immediate <;onsequen<;e of The-­

orem 2.2 and Lemma 2.1.

Theorem 2.3 (Brunner 19866) Let a E C"([O, T]), k E e"(s), for some n E No,

and as.sume that R satisfies (2.13), or (UJltivalently) (2.20). Then for any 9 E

C"([O, Tj), UJith /,I ;?: n, the unique solution y of the initial-value problem (2.1)

satisfies y E CIt+l((O, T]).
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Prool:

If we differentiate (2.14) n + 1 times. using Leibniz's rule, the highest order deri\1l­

tive of g(t) that appears is of order n, while we get higbest order derivatives of order

n + 1 for tbe resolvent kernel R. Tbe result tben follows from Lemma 2.1. CI

Consider the following nonlinear VIDE, with a weakly singular kernel, given by

y'(t) = f(t,y) + let - ")-OkO,J',y(,,ndJ', yeO) =Yo, t E (O,TI, (2.21)

where 0 < 0 < 1 and y is a vector in R"'. Assume / and k are given as in Theorem

2.1. We will auume tbat this equation posses a unique continuous solution on [0, TJ,
with a continuous first derivative.

However, in many cases we will resort to its linear counterpart; see Theorem 2.5.

We first consider an example analogous to Example 2.2.

Example 2.3

y'(t) = ay(t) + get) + b l (t - .s)-<>y(,,)d.s, yeO) = Yo. t E [0, T], (2.22)

where a < 0 < 1, a and b are real co1l5tanu and g: (0, TJ -+ R, with. 9 E C([O, TJ).

Under tbese conditions (2.22) possesses a unique solution on [0, TI. However.

we immediately notice a difference between this example and Example 2.2. Clearly,

we cannot use Leibniz's Rule to differentiate (2.22), since the kernel (t - .s)-<> is

unbounded on the diagonal (t,t) where t E [0, T) and 0 < Q < 1. We can however,

rewrite (2.22) as the second-kind VIE

yet) = q(t) +l Q(t,.sjo)y(.s)d.s, (2.23)



for t E [0, TI, where

Q(t,.!IjQ) :== CI + 6[(T - .!I)-OdT == a +6(t ~~)~_O (2.24)

for (t,.!I) E S, 0 < Q < I and

q(t) := Yo + fa' g(J}d.!l, t E [0, TJ·

Since the kernel Q, in (2.24) is continuous (hence bounded) on [0, TJ, (2.23) can be

solved by c1usical methods for Volterra integral equations. See Brunner and van

der Houwen (1986) and Brunner (l986b).

If we usume that the nonhomogeneous term in (2.22) has a Laplac.e tr.msform,

v.:e can use the convolution theorem for Laplace transforms to solve it.

Let us denote by L:{/(t)} =F(s) the Laplac.e transform of a function f.

See Edwards and Penney (1994). Tbe proof of the following tbeorem is omitted.

Theorem 2.4 Consider Erample 2.$. Then (2.22) has a unique solution y e

CI(IO, TJ) given by

yet) == .(tlYo + fa' .(t - s)g(s)ds,

{
,'-0 }

.(t) = .c- I
.12 - 0 (lSI-o brei Q) , t e [0, n,

witltO<o<l.

Denote the resolvent (convolution) kernel R a.ssociated with (2.22) by,

R(t,J:jo)==.(t-J),

for 0 < a < 1 and (t,J:) e S, where ~ is given by (2.26).
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In analogy with (2.12), the solution of (2.22) can be written

yet) = R(t,O;a)yO +l R(I,s;o)g(s)do5, (2.28)

for °< 0 < 1 and t E [0, TI. Equation (2.22) reduces to (2.2), if 0 = 0, in which

case Example 2.3 reduces to Example 2.2. Therefore (2.26) becomes

~(t) = £-1 {s'l_:o5 -b}'

where we assume, again, for ease of exposition, as in Example 2.2, that

(2.29)

where 051 ::F o5'l, and 05; E R, i = 1,2. See equation (2.5).

Then, by partial fraction expansion and by elementary properties of the Laplace

transform, we find
~(t)= sle·,I-05'Ze',I,

s,-05'Z
(2.30)

in which case the resolvent kernel R given by (2.27) becomes the previously defined

resolvent kernel R, given by (2.11), and the solution given by (2.28) becomes (2.12).

We now generalize these results, by considering an example analogous to Example

2.1, in which we can give a theorem analogous to Theorem 2.2.

Example 2.4

y'(t) = a(t)y(t) +get) + l (t - s)-Ok(t,s)Y(05)ds, yeO) = Yo, t E [0, TIt (2.31)

where 0 < a < 1, and a,g and k, are as in Example 2.1.
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Under these conditions (2.31) possesses a unique solution y E GI([O, TJ), which

we can explicitly write down in terms of the resolvent kernel. As with Example

(2.1), we can define (formally) this resolvent kernel by the solution of the resolvent

equation, or the adjoint resolvent equation.

Definition 2.3 For 0 < et < 1, let the function R: 5 ~ ~ be jonnally defined by

8R(t,s;et)-a-,-
R(t,tjet)

-R(t,s;et)a(s) -leT - s)-O R(t,Tja)k(T, S)dT, (t,s) E 5,

1, t 2: s. (2.32)

This function R, given by (2.32) is called the resolvent kernel of (2.31), and

(2.32) is called the re.solvent equation associated with (2.31). The resolvent kernel

can equivalently be defined as follows.

Definition 2.4 For 0 < a < I, let the function R: 5 ..... R be jonnalfy defined by

8R(t,s;et)--a,-
R(s,sjo)

R(t,sja)a(t) + [(t - T)-Ok(t,T)R(T,Sjet)dT, (t,s) e 5,

1, s:$ t. (2.33)

Equation (2.33) is called the adjoint resolvent equation associated with (2.31).

Note that if we set et = 0 in (2.31), it rwuces to (2.1). Therefore, setting Q = 0

in (2.32) and (2.33) gives (2.13) and (2.20), respectively.

We now give the following representation of the solution of (2.31) in terms of

this resolvent kernel R, the proof of which will establish the equivalency of (2.32)

and (2.33).

Theorem 2.5 (Brunner 1989) Let a e G([O, TJ), k E C(S), and assume that

R(t,s;et) satisfies (2.92) or (equivalently) (2.33). Then, jor any 9 E G([O, TJ),
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the initial-value problem (2.31) has a unique solution y E C1([O, T]), given by

yet) = R(t,O; a)Yo + l R(t,s;a)g(3)d3, t E [O,T]. (2.34)

Clearly, the proof of Theor<;lm 2.2 l;:an b<;l adapted in a straightforward way to

supply the foHowing result. However, we choose a different proof, one that explicitly

shows that (2.32) and (2.33) define the same function R. As in Example 2.3, we

rewrite (2.31) as the integral equation (2.35), given below, where the kernel Q, given

by (2.36) is continuous (hence bounded) on S, for all 0 < a < 1.

yet) = q(t) + l Q(t,3;a)y(s)ds,

for t E [0, TI, where

Q(t,3;0:):= a(s) +J.'(1" - sr"'k(r,s)dr,

for (l,s) E Sand 0 < 0: < I, and

q(t) := Yo + 10' g(s)ds, t E [0, TI·

(2.35)

(2.36)

(2.37)

We also need the classical results for second-kind VIEs with continuous kernels

and we collect these results in the following Lemma 2.2. See Brunner and van cler

Houwen (1986) and Brunner (1986b).

Lemma 2.2 (Brunner 19866) Consider /he Volterra integral equation,

y(t) = 9(/) + fo' k(t,s)y(s)ds, t E [0, T], (2.38)

where 9: [O,T]-+ R, k: S -+ Rand k E C(S).
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• If 9 E G([O, T]), then (2.38) has a unique solution y E G([O, Tj) given by the

e%pression

y(t) = get) -l R(t,s)g(s)ds, t E [0, TJ, (2.39)

where the resolvent kernel R : S -+ R satisfies (equivalently) the resolvent

equation:

R(t,s) = -k(t,s) + [R(t,T)k(T,s)dr, (t,s) E 5, (2.40)

or the adjoint ruolvent equation

R(t,s) = -k(t,s) + [k(t,r)R(r,s)dT, (t,s) E S. (2.41)

Furthermore, Jor n E No, iJ k E G"(S), then R E C"(S) .

• If 9 E G1([0, T]), then (2.38) has II unique solution y E G([O, T]) given by the

upression

yet) = U(t,O)g(O) + l U(!,s)g'(s)d.s, t E [0, TI, (2.42)

where U(t,s) is the unique continuous $olution of

U(t,s) = 1 +l' k(t,r)U(r,s)dr, (t,s) E S, (2.43)

Proof of Theorem 2.5:

au~:,$) = R(t,s), (t,s) E S.
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Using Lemma 2.2, let Rq be the resolvent kernel associated with the kernel Q.

Note that it is continuous, hence bounded on 5 for atl 0 < Q < I, and satisfies the

resolvent equation (2.40), which for us is given by

Rq(t,.s;Q) = -Q(t,.s;Q) + [Rq(t,riQ)Q(r,.sio)dr (t,.s) E 5, (2.45)

where 0 < ct < L Also, the (unique) continuous solution of (2.35), and therefore of

(2.31), can be written

y(t) = q(t) -l Rq(t,.s;o)q(.s)d.s, t E (O, Tj, (2.46)

o < Q < 1, see (2.39).

Define

R(t,.s;o):= 1-[ Rq(t,-riQ)dr, (t,.s) E S, (2.47)

for all 0 < 0 < 1. Then, by using (2.37) and (2.47), and Dirichlet's Formula,

the solution given by (2.46) above becomes (2.34), as desired. Now, since Rq is

continuous on 5 for aU 0 < Q < 1, it follows that

R(t,t;Q)=l, t;?:.s, 0<0<1.

To show that R satisfies (2.32), we first note, from Leibniz's Rule that

aR(~.s.s;Q) = Rq(t,siO), (t,.s) E 5 0 < 0 < 1.

Then using (2.36) and since R.q satisfies (2.45), we find

aR(~.ss;o) -Q(t,siO) +l' Rq(t,riQ)Q(r,.s;o)d-r (t,.s) E 5

-{l- 1'Rq(t,r;o)dr}a(s) (2.48)

- J.' {J - £' !lq(t,I;Q)dl}(r-.)-Ok(T,.)dT,
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where (i,iS) E Sand 0 < cr < 1. Hint: To get one of the terms, you will need to

swap variables T and {, and then perform an interchange of variables by applying

Dirichlet's formula. If we apply (2.47) to (2.48), it becomes (2.32), as desired.

To show that (2.33) also defines the same function R, we note that from (2.37),

q E GI(O, TI and we can use the second part of Lemma 2.2. Using (2.42), the

(unique) continuous solution of (2.35), and therefore (2.31) can be written

y(t) = U{t,O;o)q(O) +l'U(t,sio)q'(J)ds, t E (0, TI, (2.49)

o < ct < 1, where U is the unique continuous solution of

U(t,s;o):= 1 + 1.' Q(t,T;O)U(T,J;o)dr, (t,05) E S, (2.50)

for all 0 < cr < 1. However, from (2.37), it is clear that

qeD) = Yo, q'(s) = g(s),

for (t,s) E S. Therefore this function U gives the solution (2.34), as well. Since Q

is continuous on 5 for aJl 0 < 0 < 1, it follows that

U(3,SiO) = 1, 1$ :5t, 0 <0 < 1.

Apply Leibniz's Rule to (2.50), noting that

Q(t,t;o) = a(t), aQ(~tT;O) = (t - T)-"'k(t,T),

for D:5 T < t :5 T. We determine

aU(t,si O)
--&t-

U(s,05;o)

U(t,3;0)a(t) + 1.'(t - T)-"'k(t,r)U(T,.5;o)dr, 0,3) E 5,

1, for 1$:5 t,
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and °< Q < 1. The equivalence of (2.32) and (2.33), then follows from the unique­

ness of the solution II to (2.31). 0

There is a price to pay for the weak singularity in (2.31), a.Il the following lemma

and theorem shows.

Lemma 2.3 (Bnmner and van der Houwen 1986) (fa E C"([O, Tn and k E C"(S),

for some n E No, and °< Q < 1, with k not vanishing identically on S, then the

resolvent kernel R fJ3sociated with (2.31) and given by (2.32) or {equivalenlly} (2.33),

is an element of the space CI(S) n C"+l(S), where

S := ({t,s) E R2 : O:S s < t :S T}.

For more details, we refer the reader to Brunner (1985), where a complete char­

acterization of the kernel R is given for 11. VIE with weakly singular kernel. As

pointed out in the paper, this characterization can be easily extended to the VIDE

with weakly singular kernel, given by (2.31), by rewriting it a.Il an integral equation.

We now give the following theorem from Brunner and van der Houwen (1986);

compare with Theorem 2.3.

Theorem 2.6 (Brunner and van der Houwen 1986) Let a E G"([O, Tj) and k E

G"(S), for some n E No, and 0 < a < 1, Then, provided 9 E G"([O, TI), with '" ~ n,

the unique solution y of the initia/·value problem (f.31) satisfies:

• YE CI([O, T]) n C"+I«O, Tn,
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• Iy"(t)l ~ lItl-o, lor .ome po~ilive corul.:ml 11/', "'U:Clr", = 0.

Then aJthough Theorem 2.5 guarantees that the problem gi~n by (2.31) hu a

unique solution y E CI((O, T», its second order derivouive is unbounded at l = 0.

See Brunner (1983).

2.2 Continuous-Time Iteration WR Methods

We consider the nonlinear VIDE given by (1.19), and recall the following definitions

from Chapter 1, Sections 1.3 and 1.'1.

Choose a function OJ : [0, TI x R'" x R'" -+ R"', for the function I such that

OJ(t,u,u) = I(t,u), (2.51)

for aJll E [O,T] and for aU u E R"', and a function 0.: S x R'" x R'" -+ R"', for

the kernel k, so that:

C.(I,.5,u,u) = k(t,~,u), (2.52)

for aJl (l,~) E S and for all u e R".

We compute a sequence yl(l), y7(I), .. ,y·(C), of solutions of the equations

~Y'(l) O/(t,y,-I,y") + fo' C.(I,~,y·-I(s:),y.(~»d.5
.'(0) - y" (2.53)

where yO(t) is arbitrary and q = 1,2, .. , t E 10, TI, which converges to the solution

y(l) of (1.19) as q -+ 00.
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It is typical to choose the initial solution to be the constant function

We recall that these solutions are called wOlJe/orms, and the functions G I, Gt are

called splitting functions. We may use any of the iteration schemes mentioned earlier

(Sections 1.3 and lA, respectively) for GI and C t , independently. This is one of

the major differences between WR methods applied to VIDEs and those applied

to ODEs. In Section 2.3.3 we will give an illustration of this; see Example 2.8.

Clearly, the methods employing Picard and Gauss-Jacobi iteration are fully parallel.

The resulting methods given by (2.53) arc called continuous-time iteration WR

methods, since they do not involve yet the discretization of the time interval and

the application of numerical methods to solve the resulting VIDE.

Remark

In some applications, see Brunner (1989), VIDEs occur in the following nonstandard

Corm:

y'(t) = /(/,y) + l k(t,s,y(t),y(.,))d.s, yeO) = Yo, t E [0, TI, (2.54)

with assumptions analogous to those for (1.19).

Clearly, the splitting function, GI , for / is defined as beforc. Define a function

G k : S x R'" x R'" x !R'" x !R'" --+ R"', satisfying:

for all (/,5) E S and all u,it E R"'. For illustration, we give two iteration schemes:
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• Picard Iteration

Gt(t,s,u,v,u,v) = k(t,s,u,u) .

• GaulIlI-Jacobi Iteration

;G",(t,s,u,v,u,ii)

fori=1,2, __ ,m.

The ana.logue of equation (2.53) is,

k;(t,s,uit .. ,Ui_I,Vi,U'+I, .. ,Um ,

Ul, ... ,U;_I,V"Ui+I' .. ,u... ),

where yO(t) is arbitrary and q = 1,2, .. , t E [0, TJ. But in the following, we consider

only VIDEs of the form (Ll9). 0

2.2.1 VIDEs with Regular Kernels

Consider the continuous-time iteration WR method (2.53) for the solution of the

integro-differentia.l equation (l.19), with regular kernel; see Theorem 2.1. The fol·

lowing Theorem 2.7 gives convergence results for (2.53), but in order for us to state

this theorem, we recall the usual maximum norm. Given a continuous vector valued

function, y, defined on [O,T]

for the vector norm II . II on ~"'-
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We assume that the norm lI·n is generated by an inner product (".) on R'" x!R"'.

In most cases, however, this inner product is (u, vh := uTv, U, v E !R"', so the norm

generated is the usualI2-oorm defioed by lIull2 = v'UTU = )'£:('=1 u~.

The proof of the theorem to follow was adapted from a similar result for ODEs

given in Burrage (1995). See Theorem 2.8.

Theorem 2.7 Consider the integro-differential equation (1.19) and assume that the

continuous splitting functions G / and G,. stdisfy (2.51) and (2.52), respectively, and

assume the following uniform Lipschitz conditions in u and v:

IIG/(t,u,v)-G/{t,u,v)1I :5 Lf.dlu-ull,
IIGf (t,u,v)-Gf{t,u,v)1I :5 Lpllv-vll,

for all u, v, U, Ii in !R'" and t in [0, T], and

(2.56)

IIG,.{t,s,u,v) - G,.{t,s,u,Ii)1I :5 L,..dlu - ull + L,..21Iv -vII, (2.57)

for aff u, v, ti, v in !R'" and for all (t,s) E S. Assume that the initial solution yO(t) E

C([O,T)). Then the resulting WR method (2.53) converges uniformly in [O,T], for

all finite T> o.
If L/.2 = LI<.2 = 0, then for q = 1,2, ... ,

lIyQ-yllr:5!i(Lf,I+LI<"T)q lIyO-yllT. (2.58)

otherwise, if L,.,2 is not zero, then

where
L/,2+~

2 .
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Remark: The case L•., = °iUld L1.2 i: °is the well known ODE Ca!ie discussed,

for example in Burage (1995). 0

Proof:

We will need the followiog lemma.

Lemma 2.4 Coruider 'he linear Vofte1"r'l:l in'egro-differential inequality,

y'(,) S a(i)y(t) +g(t) + l k(t,.J)Y(.J)d.J, ! E 10, TJ, (2.61)

where y E CI([O, TJ), a,g E C«O, T]) and k E C(S). A15o, a and k are nonnegative

in [0, T] and 5, re.tpedivdy. SUPpo5e that r if the ,o/ution of

r'(t) = a(t)r(i) + g(i) + l k(i,s)r(s)ds, reO) =- yeO), t E [0, TI. (2.62)

Then

y(l) s ,(Il. I E [0. TI.

Proof:

The integro-differential inequality (2.61) is equi~ent to the integral inequality

y('):5 q{') +t Q(t,s)y(s)dI, t E [0, TI,

where

Q(t,s) :=«(s)+ 1.' k(T,s)dT, (i,.!!) E S,

q(t) := yeO) +t g(s)d.!!, t E [0, TI·
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Since y, q and Q are continuous on their respective domains, and Q is nonnegative,

we can apply Theorem 2.1 in Bainov and Simeonov (1992) to conclude that

yet) :5 ret), t e (0, Tj,

where r is the solution of

ret) = q(t) + fo' Q(t,.'J)r(.'J)ds, t E [0, Tj.

By Theorem 2.2, tbe proof is complete. 0

Proof of Theorem 2.7:

For q = 0,1, ... , and t E [0, TI. define e'(t) := y'(!) - yet). Then for q = 1,2,

and t E [0, T] by the definition of the splitting functions GI, G,.,

de'(!) dy'(t) dye!)
dt ~-dt

G/(t,y,-I,y') -G/(t,y,y)

+ fo' {G,.(t,.'J,y,-I(.'J),y'(.f)) - G,.(t,,,,y(.f),y(.'J))} d.f,

using (1.l9), (2.51), (2.52) and (2.53). By linearity oftbe inner product,

(de;~t) ,e'(t») (0I(t,y,-I, y") - GIO, y,-I, y), e'(t»

+ (GI(t,y,-1 ,y) - G/(t,y,y),e'(t))

+ (10' {G,.(t,.f,y,-I(.f),y'(.'J)) - Gl(t,s,Y(.f),Y(.f))}d.'J,e'(t)).

Using tbe Cauchy-Schwarz inequality, see Lancaster and Tismenetsky (1985),

and the Lipschitz condition (2.56) for GI (in both components) we obtain

(de;~!),e'(t)) ::5 LI.3I1e'(t)1I2 + L/.dle'-'(!)II . lIe'(!)11

+ II j,' {G.(I",y·-,(,j,y'(,n - G.(I",y(,),y(,n} d,II·II,'(I)II·
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Then the Lipschitz condition (2.57) for G" leads to

(de;~t),e'(t)) :5 L/.2l1e'(t)1l2+ L/.dle'-'(t)lI'lle'(t)1I

+ L' {L".,lIe'-'(.J)1I + L",2l1e'(.J)U} d.J ·lIe'(tlll·

When is lIe'(t)11 not differentiable? Only at points t where e'(t) = 0, in which cue

(2.58) and (2.59) are satisfied. Therefore we assume that lIe'(t)1l #- O.

From the product rule for derivatives for the (real) inner product,

(de;~t) ,e'(m = ~~lIe'(t)1I2 = lIe'(t)ll~lfe'(t)J11

it follows that

Next define the positive function v'(t) := 1Ie'(t)II, and consider the solution of the

inlegro-differeotial inequality

subject to the initial condition v'(O) = O. This integro-differential inequality can be

solved by considering the corresponding integro-differential equation,

where v"(O) = 0, see Lemma 2.4. Note that, for simplicity of notation, I use the

same symbol v' for the solution of (2.64). It is here that we need the continuity

of yeO) to guarantee the continuity of vO(t) needed in Lemma 2.4. Note that v' is

piecewise CIon (0, TI, for q = 1,2, .. j see the comment at the top of this page.
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Equation (2.64) is Example 2.1 which bas a solution given by (2.14), where the

resolvent kernel R satisfies (2.13).

However, we can write down this resolvent kernel R, explicitly; see equation

(2.11).

Let .\.\,.\.2 be the solutions of the quadratic

that is

.\.;=Lf.2±~, (2.65)

i = 1,2, and note that these roots are always real and distinct, except for the case

where L1.2 = L.,2 = O.

Assume L.,2 is not zero.

Then (2.64) can be solved to give

where the resolvent kernel R(t,s) is given by

Therefore, returning to the inequality (2.63),

Let us define
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aDd

IIvOIl,:= ~~, vOe.. ),

for ~ E [0, TI_ By inspection of (2.65), it is easy to see that ~I is always positive

and ~2 is always negative and by the triangle inequality,..\, 2: 1..\:1. Then,

IR(t, .. )I S I>'~;~(';:)I + I),~~~(t;:l

Since >., < 0, and 1..\:1 :5 ..\,.

Then

(t,s) eS.

IRet,")I:5)" ~..\2 (e~'(l-.) + 1). (t,.,) ES.

However, since L/.2 :5 .j4Lt ,2 + L},2'

-'-'-<1A
I
-)" - ,

and it follows that

IIRII,:5 (,'" + 1), 'E 10,T].

Then for q = I and using JlRlI, and IIvon•• (2.67) becomes

vICt):S fo' [L", + l' L",ldT] tis OIRII.· ilvOIl,), (2.68)

which can be integrated in closed fonn

By induction,

• <' ( q' ) L~~jLLt,+j ~ 0
v (t) _ ~ j!(q _ j)! (q +jl! (e ,I + l)'lJv II ..
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for all t E [0, T] and q = 1,2, ... , which we rewrite as

Since h~j)! ~~, for j =0,1, . . ,q,

and by using the binomial theorem

It is clear that the iteration scheme converges uniformly, as q -+ cx>, for all finite

T>O,and

q = 1,2, .., where T > 0 is finite.

Assume L1.2 = Li:,2 = O.

Then (2.64) becomes

with v9 (O) =O. This can be solved by direct integration, to become

Again, returning to the inequality (2.63),

13
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This equation is similar to (2.67), so similar analysis gives

'( q' ) L'-; L; t'·;
!,IV(t) ::; f; j!(q ~ ill J(~ ;;)! -lI vD II" (2.76)

for all t E (0, TJ and q = 1,2, ... ; compare with (2.70). Continuing with the argu~

ments that led to (2.72), we establish

Again, it is dear that the iteration scheme converges uniformly, as q -+ 00 for

all finite T > 0, and

lIyV
- yilT :5 ~(LI" + Lk,lT)V lIyo - YilT, (2.78)

q = 1,2, .., where T is finite and T > O. [J

To illustrate this result we consider the following (nonhomogenCQus) linear two-

dimensional problem.

Example 2.5 Consider the following Volterra integro.differential system

(
Yi(t) ) = (0 1) ( y,(t) ) + I' (0 1) ( y,(,) ) d, + ( 1-,' )
y;(t) 1 0 Y"l(t) 10 1 0 Y"l(s) 1 - e' ,

where {Yl.D Y"l,OIT = 11 lIT are the given initial conditions. Then the solution is
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We compute a sequence of ~olutions using (2.53), where we take the initial soIu-

tion

(YM) (')y~{t) = 1 '

for t E [O,TJ.

For the Gauss-Jacobi iteration scheme we obtain the following iterates:

yJ{t)

yJ(/)

j= 1,2; q= 1,2, ...

For the Gauss-Seidel iteration scheme we obtain the following iterates:

y~(t)
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y;(t)

q= 1,2, ...

(2.80)

(2.81)

Clearly, for both iteration schemes,

fnr j = 1,2; t E (O,TJ.

Note that we increase the order of accuracy by one for each iteration q taken.

For this particular test equation, the Gauss-Seidel iteration scheme converges "ap­

proximately" twice as fast as the Gauss-Jacobi iteration scheme; compare (2.80) and

(2.81), to (2.79), respectively. In Burrage (1995), he comments that for certain lin-

eae systems of equations, Gauss-Seidel iteration will converge approximately twice

as fast as Gauss-Jacobi iterations.

Let us compare Thcon:m 2.7 with the analogous theorems for ODEs and VIEs;

recall Chapter 1, Sections 1.3.1 and 1.4.1. We consider ODEs first.

In Burrage (1995), we acquire the following result for a. nonlinear autonomous

ODE

y'(') ~ fly), yeO) -""

for t E [0, Tj, y E R'" and / : R'" -+ R"'.

(2.82)

Theorem 2.8 (Burro.ge 1995) Coruider the autonomous differenlial equation (e.8!!)

and ll$.sume that the splitting function GJ given by

GJ(u,u) = f(u),
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lor all u e R"', and GJ ; R'" )( !l'" -+ R'" if conlinuou./J with reJlpect to bollt

CQmponenU Gnd ./JatiJfiu Imi/orm Lipschi~ CQndilion,f in u and v:

for Gil u, v, il, v in R"'. Then the resulting WR methoJ

q;:; 1,2, .. , t e (0, T], conl1Crgu uniformly in [0, TI, for ail finite T > 0, and

(2.83)

See Jansen ct al. (1994) for an illustration for Theorem 2.8, anaiogou.!i to our

Example 2.5 for Theorem 2.7.

We OlD use our Theorem 2.7 to develop a re.!iult for non~autonomousdifferential

equations.

Corollary 2.1 COn&ider the non-autonomous differential equation (l./) Gnd a.s.

nme that the splitting function Gf giuen by (e.51) u continuous with re6pect to

both components and ./JatiJfiu uniform Lip./Jchi~ condition in u and v:

IfGf(t,u,v)-Gf (t,il,vlll :$ L/.Illu-ull.
IIGf (t.u,v) - Gf(t, u,ii)1l :$ Lf.111v - vII,

for all u, v. u, jj in R'" Gnd t in (0, T). A.uume y"(t) e C([O, TI). Then the ruulling

WR method (/.3) converges uniformly in (0, TI, for Gil finite T > 0. If Lf .1 = 0,

then,

(2.84)
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otherwise

Proof:

The proof follows by setting

in Theorem 2.7. 0

Note that (2.84) is identical with (2.83) from Theorem 2.8 (upon setting L1.2 =
0). Equation (2.85) shows a significant departure from (2.83), but we still increase

the order of accuracy by one for each iteration q.

For the sake of comparison, we briefly turn to VIEs where we have the following

result.

Theorem 2.9 (Crisci et al. 1996a) Consider (J.l7) and assume that the splitting

function G k given by (2.52), satisfies a uniform Lipschiz condition in u and v:

for all tI, v, U, ii in Rm and for all (t, s) E S. Then the resulting WR method (J.21)

converges in [0, rd. where

For the proof, see Crisci et af. (1996a).

Note, that we do not get uniform convergence for all finite r > 0 for VIEs, as we

do for VIDEs and ODEs, see Theorem 2.7 and Corollary 2.1, respectively. In this
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sense, a Volterra integnMlifferential equation is more like a "perturbed" ordinM)'

differential equation than a Volterra integral equation. However, if we assume a

linear VIE we CilD extend this convergence to all finite T > 0, Crisci et c/. (1996a).

See Section 1.4.1.

2.2.2 VInEs with Weakly Singular Kernels

To complete our analysis of continuous-time iteration WR methods, we return to

the special nonlinear VIDE (2.21), with a weakly-singular kernel. We now give

a theorem analogous La Theorem 2.7 for this problem. Our main concern in this

theorem is to find out how the presence of the weak singularitr affects the way the

order changes with the number of iterations q taken. As before, we choose splitting

functions G, for the function f and G~ for k, given by (2.51) and (2.52), respectively.

Again, the previous iteration schemes can be used.

We compute a sequence yl(t), y2(~), .. , y.(t), of solutions of the equations

~y.(t) G,(t,y,-I ,y') +l(t -.t)-oGt(I,.t,y'-'(.t),y'(.tnd.t

y·(O) Yo, (2.87)

where yO(t) is arbitnry and q = 1,2, .. , t E [0, T) and 0 < 0 < I, which converges

to the solution yet) of (2.21) as q -+ 00. [t is typical to choose the initial solution

to be the constant function equal to the given initw value, that is

yO(t) = Yo, t E [0, TJ.

We may use any of the iteration schemes mentioned earlier (see the beginning of

Section 2.2) for G, and anyone for G~, independently.
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We recaJl that the resulting methods given by (2.87) are c.uJed continuou.!·time

iteralion WR methods, .ince they do not involve lid the discretization of the time

interval and the application of numeriea1 methods to solve the resulting VIOEs.

Theorem 2.10 gives conveTgence results for these methods. Recall the definitions of

the norm introduced in Section 2.2.1.

Theorem 2.10 Con.siJer the integro-dif/erenlial equation IDilh wea/cfy lJingular leer.

nef (£.21) and IZ.flJume thal it possrsselJ a unique softdion y E GI([O, TJ). AIJ5ume

that the IJpfilling function.! G / and Gk given by (2.51) and (2.52), respectively, are

continuous with relJpect to IJoth component.J and lJati.sfy uniform Lipschiz condition

in u and v:

IIG,(t,u,v) - G,(t,ti,v)1I S Lollu - till,
IIG/(t,u, v) - G/(t,u,v)1I .:5 Lpllv - vII,

for all u, v, ii, v in R'" and t E {O, Tj, and

(2.88)

for alfu,v,ii,v in R'" and (l,.!) E S. A.ssume that the initial solution Jf E C(lo, TJ).

Then the resulting WR method (1.87) alnL'er'Jes unlform/y in [0, TI, for all finile

T >0.

Forq= 1,2, ...,

where 0 .-: 0 < 1, and

IIRIIT:= oW~~T IR(T,lJjo)l,

where R is given by (2.27) and (£.26).
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Proof:

The proof will be based on the following lemmas.

Lemma 2.$ ForO < 0 < 1 and p > -1,

In addition, we will need to solve an integro-differential inequality in which the

kernel has a weak singularity. Therefore, we give the following [emma which is a

generalization of Lemma 2.4.

Lemma 2.6 Coruider the linear Volterra integro-differentia/ inequality, with weGkly

singulGr kernel,

y'(t) :5 a(t)y(t) + g(t) +1'(t -.sr-k(t,.f)y(.t:)d", t E [0, TJ, (2.91)

where 0 < a < I, y E CI((a, Tj), 0.,9 E C«O, Tj) Gnd k E C(S). Also, a and k are

nonnegGtiue in 10, T) and 5, rupectiuely. 5uppo.t:e that r i.t: the solution of

r'(t) = a(t)r(t)+g(t)+ !o'(t-.t:)-Ok(t,.t:)r(.t:)d.t:, reO) = y(O), t E (0, TI. (2.92)

Then

!Ill) ",(I). t E {O,T].
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Proof:

Tbe integro-differential inequality (2.91) is equivalent to tbe integral inequality

yet) :s q(t) + L' Q(t, "i a)y(.)d.s, t e [0, TJ,

where

O<a<l,and

q(t) := yeO) + l' g(")d,,, t e [0, TJ·

Since y, q and Q are continuous on tbeir respective domains, and Q is nonnegative,

we can apply Theorem 2.1 in Ba.inov and Simeonov (1992) to conclude that

y(t):s ret), t E [O,TI,

where r is the solution of

r(l) = q{t) + l Q{t'''ia)r(,,)d.s, t E [0, TI_ (2.93)

By Theorem 2.5, the proof is complete. 0

Proof of Tbeorem 2.10:

For q = 0,1, ... , and t E [0, TJ, define e'(t) := y"(t) - yet). Then for q =
1,2, .. , °< Q < I and t e [0,71, by the definition of the splitting functions

dy'(t) dy(t)
-;Jt-dt"
G,(t,y'-I,y') - G/(t,y,y)

+ L'(t - "tit {Gt(t,,,,y'-l(,,),y'("») - Gt(t,,,,y(,,),y(s))} d",

82



using (2.21), (2.51), (2.52) and (2.87). By the linearity of the inner product,

(de;~t) ,e'(t») (G/(t,y,-I ,y') - G/(t,y,-I ,y),e'(t»

+ (G/(t,y,-I ,y) - G/(t,y,y),e'(t))

+ (.Io'(t-s)-O

{Gk(t,.s, y,-I(S), y'(s)) - Gk(t, s,y(s), y(s))} ds, e'(t)).

Using the Cauchy-Schwarz inequality and the Lipschitz condition for G/ (in both

components), given by (2.88),

(de;?) ,e'(t)) :$ L/.~lIe'(t)lI~ + L/.dle,-I(t)I!'lIe'(t)1I

+ n.lo'(t - s)-O {Gk(t,.s,y,-I(S),y'(.s)) - Gk(t,S,y(s),y(sH}dsli

11"(1)11·

Now using the Lipschitz condition (2.89) for Ok,

(de;~t),e'(t» :::; L/.~lIe'(t)W + L/.dleH(t)II·lIe'(!)1I

+ Io'<t - s)-O {Lk.dle,-I(s)1I + Lk,~lIe'(s)ll}ds 'l!e'(t)lI·

Without loss of generality, we assume lIe'(t)!I1 0; see the comment on the top of

page 70.

From the product rule for derivatives for the (real) inner product,

(de;~t),e'(t)}= ~~lIe'(t)lI~ =: lIe'(t)II~lIe'(t)l[.

~lIe'(t)1l :5 L/.211e'(t)1I+L"dle,-I(t)lI+.Io'(t-sro {Lk.~lle'(s)1I + LIr •, l[e,-I(s)lI} ds.
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Next define the positive function v'(t) ;= lle'(l)1I and consider the solution of

the integro-differential inequality

~lI'(t) s: L,.Jv'(t} + l(t-s)-OLl ,JlI'(,f)d.s

+ {LJ.1V'-I(l) + l(t-,f)-OLl.1V,-I(,f)d.s}. (2.94)

This inlegro-differential inequality can be solved by considering the cofTespond·

ing integro-differential equation,

~v'(t) LJ.Jv'(t) + l(t - s}-O Ll .2V'(s)ds

+ {L/.IV'-l(t) + l(t-stoL,l,.IV,,-l(S)ds}, (2.95)

where v'(O) = 0; see Lemma 2.6. Note that, for simplicity of notation, I use the

same symbol v' for the solution of (2.95). It is here that we need the continuity

of yO(l) to guarantee the continuity of vO(I) needed in Lemma 2.6. Note that tI' is

piecewise C' on (0, TI, for q = 1,2, ...; see the comment on the top of page 70.

This is Example 2.3, whose solution is given by (2.28), where the resolvent keroel

R is given by (2.27) and (2.26), where (t,s) E S and 0 < Q < 1; see Theorem 2.4.

Note that, by Lemma 2.3, this resolvent kernel is continuous, and therefore bouoded

on S.

Then (2.95) can be solved to give

where 0 <0 < I, l E 10,T] and q= 1,2, ..

Returning to the inequality (2.94)
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where 0 <0 < 1, t E (O,T] and q= 1,2, ..

Let u.s define

IIRII.:= ~:,?,IR(t,,,;o)l,

and

for t E (OtT] and 0 < 0 < 1.

Then for q = 1 and using IIRII! and IIvoll!, (2.97) becomes

which can be integrated in closed form, using Lemma 2.5. Thus,

for t e (0, T] and °< 0 < 1. Substitute this expreMion (2.99) into (2.97) with q = 2,

using the recursion property of the r fUDction to simplify your answer. We find

for t E 10, T] and °< 0 < 1. Similarly, for q = 3,
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(2.101)

for t E [0, T] and 0 < Q < 1. Note th.e binomial coefficient in front of each. term.

By induction, we establish

(2.102)

for all t E {O,TI and q = 1,2, ..., where 0 < Q < L Now, since r(q+j(l-o)+ 1) ~

r(q+ I) =q!, for j =0,1, .. ,q, we can rewrite (2.102), to obtain

v'(t):5 ~t ("( q~ oJ') L~~j (Luf(l - ct)t1-"y IIRII~ ·I[VOlJh (2.103)
q'i=O ). q }.

which. by the Binomial Theorem is

Therefore, the iteration scheme converges uniformly on [0, T), as q -+ 00, and

where 0 <0 < I, q= 1,2, ... , and T> 0 is finite. 0

We now compare Theorem 2.7 (see equation (2.59)) and Theorem 2.10 (see equa­

tion (2.90)), where for easy of comparison, we set L/.I equal to zero. Then for

q = 1,2, ... , where C l ,C2 are constants we have:



Regular Kernel (0 = 0):

Weakly Singular Kernel (0 < 0 < I):

Note that r(1 - 0) -+ +00 as 0 -+ 1-.

2.3 Discrete-Time Iteration WR Methods

For most applied problems, we will not be able to solve analytically the equations

arising in (2.53) or (2.87), but will have to use some numerical method. In this

case, where we discretize the time interval and apply numerical methods to solve

the VIDEs, we obtain discre/e-time iteration WR methods, see Chapter 1, Sections

1.4.3 and 1.4.4. For the remainder of tb.is chapter, we specialize our analysis in the

following four ways:

• We consider a special nonlinear Volterra integro-differential equation. This is

the form usually found in applications.

• With one exception (see Section 2.3.3) we use the same iteration modes for

the splitting functions Gland Gk •

• The time intervals over which the iterations take place coincide with the step

length.

• We use collocation methods as our underlying numerical methods.
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For the purposes of this thesis, we call these methods time-point relazation eo/·

location methods, or TRCol, for short. In addition, we consider the Gauss-Jacobi

and Gauss-Seidel iteration modes, only.

2.3.1 The Problem

Since it arises often in applications, we are concerned with the numerical solution

of the VIDE

y'(t) = [(t,y) + l a(t - s)K(y(s»)ds, (2.106)

wherey isa vector on R"',f: {O,T] xR'" -+ R"', K: R'" -loR"', where °< T < 00,

and a is a scalar function, possibly a. COlO, TJ or CI[O, TJ function and we have

the initial condition yeO) = Yo E R"'. Also, we assume that the kernel K and the

function f are continuous on S and [0, Tj, respectively, and satisfy uniform Lipschitz

conditions (in y) with Lipschitz constants LK and Lit respectively. Referring to

Tlleorem 2.1, this equation has a unique solution y E CI([O, TI). Theorem 2.7

considered continuous-time iteration WR methods for tile solutioo of the problem

(1.19), which includes this problem as a special case.

By relaxing the requirement that the scalar function a be cont.inuous on [0, Tj,

we determine the following "weakly singular" version of the problem (2.106),

y'(t) = f(t,y)+ l(t -.s)-OK(y(s))d.s, (2.107)

where 0 < 0: < 1 and we assume it has a unique solution y E CI([O, Til, for each

initial value Yo. Clearly, this is a special case of the problem given by (2.21). See

Theorem 2.10.

Since the problem is taking place in R'" we let z(t) be some (fixed) component
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Yi(t) of the exact soilltion yet), i = 1,2, ... m and define

u(/) ,~ [y,(I),,,,(/), .. ,",-.(1)1,

(2.108)

vet) := [Yi+lO),YiH(I), ... ,y",(t)j.

The problem can then be written componentwise u:

z'(l) = 10,1.1, z,v) + l u(t - .s)K(u(.s),z(.s), v(.s))d.s, (2.109)

z(O) = (Yo);, where we have suppressed the sllbscript i, by letting it be understood

that the i'h-component of both I and K are being lIsed.

Gauss-Jacobi iterations:

Consider a partition nN : 0 = to < II < ... < IN = T, t;+1 - t i = h, for

i = 0, 1, .. ,N - I and assume that the (continllous) approximation q(t) to the

solution Ye'l bas already been computed for I E [O,t .. l. To find tbe approximation

Z.(l) oftbe corresponding j'lIo-eomponent of '1(1) generated by the numerical method

for t E (I.. , t ..+IJ we consider first, the continuous-time iterations

~:'(t) I(t,u..-I,:',v,-t) + l" a(t -.s)K(y(.s»d&

+ {a(I-.s)K(u"-'(.s)':'(.s),trl(.s))d.s

:'(t.. ) q;(t .. ), (2.110)

where z'(O) = (Yo)" for q = 1,2, ... and i = 1,2, .. , m. In analogy with (2.108) for

i=I,2, .. ,mandq=O,I, ..,define
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(2.111)

We define the initial guess for these components when q = 0 and although it is

arbitruy, it is usually taken to be the components of the computed solution on

the preceding inter~, except for the first interval, in which case it is the conslant

function equal to the corresponding component of the given initial value, Yo. That

is, let

uD(ll (y?(t)t!J~(t), .. 'Y?_I(t)] = (I'/I{t - h), '11(t - h), ... ,'7;_1(1 - h)],

VO(t) [Y?+I(t),II?H(t), .. ,y::'(t)J =['1,+I(t - h),'7iH(t - h), .. , 71... (t - h)].

te[t",t ..+il. n=1,2, .. ,N-t (2.112)

uD(ll I(Yo)., (Yoh, .. , (Yo),-d,

vO(I) [(110);+1. h'o);.2," ,(Yo)",J·

t E fa, til

Collocation is the numerical method we use to generate these approximations

for each iteration and for each of the components of y. This is continued for either a

fixed Dumber of iterations or until some norm of the difference between two successiyc

approximatioll5 is less than iii. given tolerance. We DOW look more closely at the form

this collocation will td:e. The reader may wish to return to Chapter I, Section

1.4.2; we are using equation (1.31). Re<:a.ll thAt this method is an exact method,

in that the integrals appearing in the method are not approximated. In practical

implementation, quadrAture formulu will be needed.

Consider the set of collocation points TN = {t" + cjh;j = 1,2, .. ,r; n =
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0,1, .. , N - I}, where 0:::; c, < c~ < ... < c,. :5 1 and recall that the parameters

associated with a collocation method are oAT) = f; LAOd{, where the Lj are the

fundamental Lagrange polynomials with respect to the set {Cj}. In analogy with

(2.111), for i = 1,2, .. ,m, n = 0,1, .. ,N -1 and q = 0,1, ... , define

and

T E [0,1], where f/ E S$O)(ZN).

Clearly, the initial functions u~, v~ are defined as in (2.112), i.e.

u~(t) [f/~(t),'1~(t), .. ,TJ?_I(t)] = ['1,(t - h),f/~(t - h), .. , TJ;_I(t - h)],

v~(t) [f/?+l(t),'1?+2(t), .. ,'1::'(t)] = [f/i+l(t - h),'1i+2(t - h), . . , '1... (t - h)J,

tE[t",t,,+d, n=I,2, .. ,N-I

t4(t) [(Yoh,(Yoh, .. ,(YO)i-a),

vg(t) [(Yo)i+h (YO)i+l, .. , (Yo) ... ].

IE [O,td

The method becomes

(2.Il3)

Z:(t,, + Th) Z,,(t,,)+htQj(T)Y:.j , TEIO,I) (2.114)
j=l

V.:',j f (t" +Cjh,U~-I(/"+ cjh), Z,,(t,,) +h EQk(Cj)Y""k,V:-'(t,, +Cjh»)

+ h ~fo' a{(I" +cjh) - (tl + {h)]K(TJ(t, + {h»d{
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+ h foe, a[(Cj - Oh]

K (u:-'''' Hh), Z.('.) + h i: a.«)y:,.,u:-'". + ,h») dO,..,
where q = 1,2, .. , n = 0, 1, ... , N - I and u~,v~ are given by (2.113).

Clearly, the corresponding method for solution of the weakly singular problem

(2.107) is

Z:(t,,+Th) (2.115)

Y,,'.j f (tn + Cjh,U~-I(t.. + c,h), Zn(t,,) + h 1; Qk(Cj)Y,,'..t,v:-I(tn + elh»

+ h~ t[(tn + ejh) - (ll + {hW'" K(11(t/ + {h))d{

+ h f[«1 -OW"

K (u:-1(tn + {h), Zn(tn) +h ~a*(Oy:.,,,V:-l(tn + {h l) d{,

where 0 <0 < 1,q= 1,2, .. ,n =0,1,. _,N -1 and u~,v~ are given by (2.113).

As in the case of (2.109) and (2.110), we have suppressed the subscript i, by

letting it be understood that the i''''~componentof both the function I, the kernel

K and the Yn'J are being used.

Since the iterations in the above method involve decoupling the system of equa­

tions, they arc naturally suited to implementation on parallel architectures. Sec

Burrage (1995) for the ODE situation. Note that we compute all the components

of '7(t) for t E [t", tn+d before we "upgrade" to the new values. That is, we do not

use the "new" '7;(t) to compute the remaining components, even though we have

calculated it. In the Gauss-Seidel iterations, we use the new components of '7(t) as

soon as they are computed.
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Cauu_Sejde! iter.tig"':

As before, we fint consider the continuous-time iter~tions

~z.(t) !(t,u·,z·,v·- I )+ £- a(t -.s)K(y(.s})ds

+ l aCt - .s)K(u·(.l,z·(s}, v·-'(.s})ds

z·(t .. ) '1.(t .. ),

z·(O} = (Yo)., q= 1,2, .. , i= 1,2, .. ,m,andforaJlt E (t .. ,t,,+d,n =0,1, .. ,N­

t and uO,vo are given by (2.112).

Again, collocation is now applied to a system of m one-dimensional VIDEs

Z~(t" + Th) Z,,(t,,)+hEoi(T)Y:J' Te[O,I]
i-I

(2.116)

Yn•J f (tn + cih,U:(tn + eih), Zn(tn) + h~ Ot(Cj)Y:.t, v:-I(tn + Cih))

+ h ~.f o[(tn +cjh)-(t, +~h)]K(,,(tl+ (h})de

+ hI' a((ci - ~)hl

K (u:(tn + (h),Z..(tn ) + h~ Ot(e)Y":..t,v:-I(t.. + eh)) d{,

where q = 1,2, .. ,n = 0,1, .. , N - 1 and u:,v: are given by (2.113).

Clearly, the cofresponding method fOf solution of the weakly singular problem

(2.107) is

Z:(tn +Th) Z..(t .. ) + h tOi(1")Y:J' 1" E (0, I)
i-I

(2.117)
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+ hE [[(t" + Cih) - {h + {hW'" K('1{t/ + {h»d{
/=0 0

+ h foc, [{Ci - {)hr"

K (I.l~(t" + {h),Z,,(t,,) + h~ Ok({)Y:.k,V~-I(t.. + {h») d{,

where 0 < a < 1,q = 1,2, .. ,n = 0,1, .. , N - 1 and 1.l~,V~ are given by (2.113).

2.3.2 Commutativity

In the procedure we have described above, time-point relaxation is applied to the

m-dimensional system to decouple it into a system of m one-dimensional VIDEs,

each of which is solved by collocation for each iteration. A natural question to

ask, then, is whether the application of these methods can be commuted? That

is, if we first apply collocation, which gives us an implicit m-dimensional system of

algebraic equations to solve, and then use time-point relaxation to solve this system

iteratively, will we get the same approximation? That is, does the following diagram

commute?

y ~ "

When time-point relaxation (using Gauss-Jacobi iterations) is applied first to

the problem followed by the application of collocation we refer to the resulting

methods as time-point relaxation Gauss-Jacobi collocation methods, abbreviated

TRGJCol. If Gauss-Seidel iterations are used instead, we call the methods time­

point relaxation Gauss-Seidel collocation methods, abbreviated TRGSCol. When a
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collocation method is applied first to lhe problem followed by the application of time­

point relaxation (using Gauss-Jacobi iterations) we refer to the resulting methods as

collocation time-point relaxation Gauss-Jacobi methods, abbreviated CoITRGJ. If

Gauss-Seidel iterations are used instead, we call the methods collocation time-point

relaxation Gauss-Seidel methods, abbreviated CoITRGS.

Theorem 2.11 If we take the same initial guesses for '10 (t" + rh) and yO(t" +
rh), n=O,I, .. ,N-I, rE [0,1]; that is if

'1°(t" + rh) = ,/(t" + rh) = g(t" + rh),

then the time-point relaxation Gauss-Jacobi collocation method is equivalent to the

collocation time-point relaxation Gauss-Jacobi method, which we can symbolize as:

TRGJCoI. == CoITRGJ,

and similarly, the time-point relaxation Gauss-Seidel collocatian method is equivalent

to the collocation time-point relaxation Gauss-Seidel method, which we can symbolize

TRGSCoi. == GoiTReS.

Proof:

Since our interest in this chapter concerns the problem given by (2.106), our proof

will be developed using this problem. However, it is clear that the arguments to fol­

low apply to the more general VIDE with regular kernel (1.19), and weakly singular

kernel (2.21).
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Assume 11(t) is known on [0, tn], n = 1, .. , N, where, for all cases, we let I1{t)

represent the resulting numerical solution of the problem. Our job then, will be

to generate solutions on [t.. ,t..+1]. We continue with the concise component-wise

notation, letting z(t) represent a typical ill'-component, i = 1,2, ... , m of the exact

solution yet), and Z,,(t) represent the corresponding component of the numerical

solution '7(t). In addition, we suppress the subscript i whenever possible by letting

it be understood that the appropriate component of the vectors being referred to

are being used.

TRGJCol - CoITRGJ;

Time-point relaxation (using Gauss-Jacobi iterations) decouples the system of

integro-differential equations, so the il~-componentof (2.106) becomes

~zq(t) !(t,lJq-1,Z\Vq- l
) + lR aCt -s)K(y(s»)ds

+ i: aCt - s)K(uq-l(s),zq(s),vq-l(s»ds

zq(t .. ) '7;(t .. ),

zq(O) = (YO)i. q = 1,2, ... , i = 1.2, .. , m, and for all t E [tn, t,,+d,n =0, I, .. ,N-

1. From the assumption of the theorem, we take the initial guess as:

for n = 0,1, .. ,N-I and T E [0,1]; that is

lJO(l) (g1(l),92(t), .. ,9i-l(t)].

vO(t) (g'+I(t),9i+2(t), .. ,g... (t)}
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wherei= 1,2, .. ,m.

Colloation is now applied to generate tbe approximations wh.ic::h rot" each ilera-

tion is given by (2.11-4).

Apply collocation to (2.106) to get the following continuous m-dimensionl ap-

proxima.tion:

'I/(t.. +Th) 'I/(tn)+htOj(T)Y....;, TE(O,lj,
jcc!

Y"J f (t"+Cih''I/(!")+h~Q.(Cj)Y,, .• )

+ h 'f f· al(l" + cjh) - (1/ + eh)jK('7(t, + eh»de
,.0 10

+ h [', ol('i - ()hlK (0('0) + h t o.({)Yo,.) de,
Jo •• 1

Time-point relaxation (using Gauss-Jacobi iterations) can now be applied to

decouple this system of (Ilge6raic equations. To evoke the condjtions of the theorem,

we let the initial guess for '7(t.. + Th) satidy tbe equation

"O(t" + Th) = g(l.. + Th),

n = 0,1, .. , N - I and T E [0, IJ; tbat is

u:(l) [gl(t),g,(t), .. ,9i_.(t)],

v:(t) [g,+I(t),g,+2(t), .. ,g... (l»)

wherei= 1,2, .. ,m.

The i'~-componentof ",(l) becomes (2.114).
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This establishes the first equivalence and similar arguments estahlish the second

equivalence, for Gauss-Seidel iterations. 0

Let us illustrate these ideas by the special case of Jl:1.

2.3.3 Three Examples in !R2

We now give the following examples in R1, that are all special cases of (2.106),

with the same smoothness assumptions. This will require us to refer to specific

components of the vectors ~.j and rather than clutter the symbol with yet another

subscript to represent this component number, we will use a superscript to the irn·

mediate left of the symboL That is ;Y:J , will be used to represent the i'h-component

of y"q.j'

Example 2.6 Consider the case m = 2 of problem (2.106).

Assume [71I(t), 'h(t)]T is known on [0,1,,1, n = 0,1, .. N - 1, where we let '1 rep­

resent the resulting numerical solution of the problem. Our job, then, will be to

generate solutions on [tn, tn+a1, using time-point relaxation (two-stage) collocation.

We assume that

71°(tn +rh) = 71(tn-1 +rh), forn=I,2, .. ,N-I, rE[O,I],

and

'1~(t" +rh)
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r E (0,1], where

Iy:,j Il (t" + cjh,'II(t .. ) + h{o,(cj) IY..'.I + 02(Cj) IY,,',2},'I;-l(l .. + cjh))

+ hE f' a[(l .. + cjh) - (11 + ~h))K'('II(tl + ~h), Th(tl + ~h))d~
1=<1 10

+ hfJ a[(cj - {)h]

K I ('11(1.. ) + h{O',W IY:,I + 0'2(~) lY..'.2},'I;-I(t" + ~h)) d~,

and

2y,,',j h (t" + cjh,'Ir-l(t .. + cj h),11:I(t .. ) + h{O'I(Cj) 2Y:.1 + 0'2(Cj) 2Y"~2})

+ hE fla[(1,,+cjh)-(tl+~h)JK2('II(tl+{h),'I2(tl+~h))d{
1=<1 10

+ hf a{(" - {)h{

K2 ('I:-l(t.. + ~h),'72{t .. ) + h{al({) 2Y:.1 + a2(~) 2Y..'.2}) d{,

for j ""'- 1,2, and q "" 1,2, ..

'7W.. + r h)

'1W.. +rh)

r E (0,1], where

'71{t .. ) + h{adr) IY:. l + a2(r) ly:.2},

'72(t .. ) + h{adr) 2Y"',1 + o2(r) 2Y:.2},
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+ hE fla[(tn+Cjh)-{ll+{h)]Kl(l7l(ll+{h),Ih(t/+{h»d{
1=0 Jo

+ h f a[(aj - ~)hJ

K1 ('lI(tn) +h{aIW IY:.1 +£t,({) lY:',},'1;-I(t.. +{h») de,

.,d

2y:.j f, (t n +cjh,,/W.. +cjh),'h(ln) +h{o](Cj) 'Y':. l +o,(c;) ,y"q,,})

+ h~t a(i.. +cjh) - (l, + {h)]K'('1I(lj + {h),Th(t/ + {h»d{

+ h f a[(aj - ()h]

K, ('1W .. + {h),'11(t .. ) +h{OIW ,y..q,l +a,W ,y..q,,}) de,

for j = 1,2, and q = 1,2, ..

Example 2.7 Consider the following Volterra intl!gro-dijfcrt!.ntiul system

where the 4ij are ,-wI constants, [Yt,(h Y2JlIT are given initial conditions and we Wit

one-stage collocation.

Assume ['7I(I),'h(t)]7 is known aD [O,ln], n = 0,1, .. N - 1, where we let '1

represent the resulting numerical solution of the problem. OUf job then, will be to

generate solutions on [t .. ,t,,+d, using time-point relaxation (one-stage) collocation.

We assume that

for n = 1,2, .. ,N -I, and
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for T E [O,lJ.

:IIlQ.!(&l,

T E [0, II, where

1]W.. +Th)

1];(t.. +Th)

1]1 (t.) + hT Iy:,

'h(l.) + hT 1y..',

Iy.., o.lJ{'7I(t.. ) + hc Iy,,"} + 0.12'7;-1(1.. +ch)

+ hE to.[(t.. +ehl-(t,+{hl]K1(J1I(t, + {h),Ih(t1 + {h»d{
1-0 10

+ h foe a[(e - {)hIK1(J1I(I.. ) + {h IY.',1];-I(I .. + {h))d{,

aDd

2y: 0.21'7r- l (t.. + ch) + o.n(Jh(t.) + he 2y..'} +

+ hE t o.[(l .. +ch) -(t, +{h»)K, (1]I(tl + {h),rn(t/ + {h»)d{
1-0 10

+ h foe o.[(c - {)hIK2(J1:- I (l. + {h),f11(t,,) + {h 2Y..')d{,

n = 0,1, .. ,N -1 and q = 1,2, ", where we call the single collocatton point CI =: c

and we have used the (act that

aCT) =T.
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where

'1W.. +Th)

~(l.. +Th)

'11(1 .. )+hT Iy:,

'h(t.) + hT 2y..'. T E [0, Il,

Iy..' CII{'1I(t.. ) + he Iy..'} + aI2'1;-I(t.. + ch)

+ hE ta[(l .. +ch)-(I/+{h)jK1('1I(I, + {h),'12(t, + {h))d{
,..oJo

+ h foe al(c - {)hjKt ('1I(I.. ) + {h IY':.'1;-I(I .. + {h))d{.

2y.: a21'1f(t. + ch) +a22{'h(I.. ) + he 'Y.'l +

+ hEr al(t. + ch) - (II + {h)jK2('1I(f/ + {h).'h(ll + {h))d{
/..0 10

+ h J: cUe - {)hIK2('11(t. + {h). '12(1.) + {h 'Y:)~.

n =0,1•.. ,N-l and q= 1,2, ..

As promised in Section 2.3, we now give an ex~ple where we use different

iteration schemes fOf the splitting functions G,and G•.

EXaJnple 2.8 Consider E%arnple E.7 and again use one-slage collocation and GallU­

Jacobi and Gauss-Seidel mode." respectively, forG,. However, a.ssume K; E CI(S),

i = 1,2, and use Newlon ilerotion for G•.
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Assume ['1I(t),Ih(t)]T is known on [o,t"l, n = 0, I, .. N - 1, where we let '1

represent the resulting numerical solution of the problem. Our job, then, will be to

generate solutions on It", t,,+d, using time-point relaxation (one-stage) collocation.

We assume that

forn::::: 1,2, .. ,N -1, and

1JO(rh)::::: (Yl,o,y~,of, r E [0, II.

In both methods to follow, we assume that Newton iteration is used for Gk • To

simplify the resulting equations, we write:

where this partial derivative is evaluated at

Yl '1:-1
(1" +{h)

Y~ ~-I(t" + {h),

fori,j:::::l,2, n:::::O,I, .. ,N-i,q:::::1,2 .. and{E[O,IJ.

Gauss-Jacobi iterations for G(

where

'1W,,+rh)

'1W,,+rh)

'11(t .. )+hr Iy,,'.

'12(t .. ) + hr 2y"" r E [O,IJ,
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+ h~ f a[(!n +ch) - (t l + {h)]KI('1I(!1 + {h),Ih(t, + {h»d{

+ h 1"a[(e- {)h] (Kd'1l(tn) + h{ ly:-I ,rn(!.. ) + h{ 2yn,-I)

+ h{{JlI({){'Y: _I yn,-I] + J,2({)fY: _2 Y,."-'n) d{,

2y,,' a21'1:- I (tn + ch) + a22{Ih(t .. ) + he 2y:} +

+ hE f'a[(ln+eh)-(t/+{h»)K2('1I(ll + {h),'12(t, + {h))d{
I=olo

+ h 10" al(e - {)h] (K2('1I(tn) + h{ Ly:_ 1 ,rn(tn) + h{ 2yn,-I)

+ h{{J21(eWy,,' _I Yn,-I] + J22({)FYn' _2 y..,-In) d{,

n "" 0,1, .. ,N-I and q == 1,2, .. , where we call the single collocation pointe, =: e

and we have used the fact that

Gauss~Seidei iterations for G (

'1Wn+ rh )

'1Wn+ rh )

where

fh(t ..)+hr LY.."

'12(l .. ) + hr 2y.." r E [0,1],

Iy,,' all{'1I(t.. ) + he Iy,,'} + a12'7f- ' (!.. + eh)

+ h~f a[(l.. +ch) - (l/+{h)]K\('1I(t1 + {h),'12(11 + {h))d{
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+ h foc o[(e - {)hJ (K1('1I(t,,) + h{ ly:-I,1J2(t,,) + h{ 'ly••t-I)

+ h{{JlI({)(ly,,' _I Y,,'-Ij + In(Ofy..' _'l y..'-IU) J{,

'ly,,' O'lI'1W" + ch) + o:n{Ih(t,,) + he 'ly,,'} +

+ hE f' 0((1" +ch) -(I, + {h)]K'l('1dt, + {h),Ih(t, + {h))J{
Id 10

+ h foc o[(c - {)h] (K'l('1I(t,,) + h{ ly:_1 ,'1'l(t.. ) + h{ 'lY"t-I)

+ h{{J'lI({)Py", _I y..,-Ij + J:n({)ry..' _'l y,.'-IH) d{,

11=0,1, .. ,N-landq=I,2, ..

2.3.4 Convergence of the Iterations

In Section 2.2 we considered the question of convergence of the continuous-time

iteration waveform relaxation methods, see Theorems 2.7 and 2.10. \Ve now ask the

same question for the discrete-time methods. That is, are these methods (2.114),

(2.115), (2.116) and (2.117) well defined ;as q ..... oo? Using standa.rd contraction

principle arguments, we now show tha.t these limits do exist for sufficiently sma.ll h.

It should be pointed out that we ace not concen:aed in this section, with the

function the methods converge to, just tha.t they do converge. \Ve leave this other

question to later sections.

In both the Gauss·Jacobi (2.114) and the Gauss·Seidcl (2.116) methods, col1o-

cation on (t .. , t ..+d gives

(2.118)
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q = 1,2, .. and r e 10, I], where the initial guess, Z:(t .. + rh) = Z..(t.. _1 + rh), for

n = 1,2, .. ,N-l, and Zg(rh) =(Yo);,fori= 1,2, .. ,m and r e (0,1]. rfwe<:an

show that Y"'J -+ Y..J , as q -+ 00, then we find immediately

Z.. (t .. +Th) Z..(t.. )+htoj(r)Y..J , TE[O,1],
j=l

YnJ f (t n + <:jh,un(t.. +cjh),Zn(tn) + h E0.l:(Cj)Yn..l:,vn(t.. + cjh))

+ h~ 10' a((t .. + cjh) - (tl + {h)]K('l(t l + {h»d{

+ h f' a(cj - {)h]

K (u ..(t .. + {h), Z.. (tn)+ h ~O.l:({)Y"'.l:,vn(t .. + {h») d{,

where u~,v~ are given by (2.113) and we indicate limits (as q -+ 00) by dropping

the subs<:ript q.

This requires a standard contraction principle type argument. That is, given

(2.119)

then the sequeo<:e {x'} defined by

(2.120)

where 'X0 is arbitrary, converges to the unique solution of (2.119), if the oonditions

of the following theorem are satisfied.

Lemma 2.7 lA!t "'('X) satisfy a Lipschitz condition
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for aU x,.i with Lipschitz constant Lc satisfying 0 :S Lc < 1. Then there ezists

a unique solution z of (2.119), and if {z~} is defined by (2.120), then z~ -+ Z as

q -+ 00.

See Lambert (1991).

First we havcto rewrite tile methoos (2.114) and (2.116), in vector form that will

allow us to apply this lemma. To facilitate this, we introduce the following vectors

and matrices:

([IY:,,,ly:.2,.. ,IY:.~JT,rY:.1,2Y:.2' .. ,2Y..".,f,

["'Y..".!,'" Y..".2, .. ,'" Y:.~lT(,

q = 1,2, ..

MiER'""'"m, i= 1,2,

M i = (m••) ={Ol u=i and v= ri/rl
otllerwise

(2.121)

where we deline, for any real number a, ral to be the smallest integer greater than

or equal to a. That is, M,. bas all zeros, except for a singlc 1 in row it column ri/rl:

o 0 0

o 1 0

o 0 0

(2.122)

A;(-r) E ~m"~m, i = 1,2, .. m, T E [O,IJ:
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k( )_( J-{ oJ,(r) u=iandv=r(i-t)+k,k=1,2, .. ,T
, T - a.... - 0 otherwise

That is, A;(,..) has all zeros, except for the row elements, Ql(r),o7(T), ... ,Or("'),

beginning at row i, column rei - I) + 1:

A.(r) ~ [ ~
o 0

Jo adr) 02(r) oAr) 0 (2.123)

o 0

We first consider Gauss-Jacobi iteratioos. To do this we write the ex:pression

for iy,.'.,,-. explicitly showing all components.

iy:.; = "(tn +cj h,'7i(ln) +h~Q*(Ci) lY..'.i l,'72(t.. ) + h ~Ok(Ci) Zy:.;I,.

'7.(t .. ) + h Eat(e;) iY:;.,'7;+I(t .. ) + h~ OtCCj) i+lY:k"\

'lm(t.. ) + hE o",(Cj) "'y,,~.kl)

+ h!:at a[(t.. + ejk) - (II + {h)]K;('1{tl + {h»d{ (2.124)

+ h f' al(cj - {)hl

K; (171 (L .. ) +h EatW Iy"q,;I,'72(t,,) + h ~ak({) 2Y,,9,;;I,

'7;(t,,)+h Ea",({) iY..',.. ,'1i+l(t,,) +h~ai{{) ;+ly..q.*"

'1",0 .. ) + hE a.({)"'Y"',;l) de, T E [0,1],

wherei=I,2, .. m, j=1,2, .. randq=1,2, ..
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Note: In light of tbe initial guess ~(t..+Th) = Z..O"_I+Th), for n = 1,2, .. , N-I,

and Zg(Th) = (Yo)" for i = 1,2, .. ,m, T E 10,1). it is dear that we take

'~.; 'Y.. -1.i, for n=I,2, .. ,N-I,

(2.125)

;~ = 0,

for i = 1,2, .. m, j = 1,2, .. r, and we recall tbat we indicate limits (as q -+ <Xl)

by dropping the subscript q, that is

Clearly (2.124) gives a single component of the rm-dimensional vector Y..' defined

by (2.121). Now using tbe matrices (2.122) and (2.123), we obtain

v: t.t.M(;-.,.+; [f (,. + c;h,,('.) +hIA;(c;)Y: + ,f;., A'(C;lV:-'I)
I,,/d

+ hfal(C;-TlhIK(,,,.)+hIA;(T)Y:+ &: A,(T)Y:-'I)d+2.126)

+ f: t M(i_I)~+;hEl' (l[(~.. + t:;hl - (tl + Th))K('7(tl + Th))dT,
i ... j... 1.0 0

q = 1,2, .. and V,::' given by (2.125).
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The corresponding version for Gauss-Seidel iterations is

Y,," ttM(i-I),+j [t(t,,+Cjh,q(t,,)+h{EAk(Cj)Y: + t AI«Cj)y",,-ll)
.=1,,,,1 1<=1 k=,+1

+ h foe, a{(cj -T")h]K (q(t,,) +h{EAk(T)Y: +kEl AI«T)Y:-1l) dT]

+ f:t M{i_I),+jhEl a((t" + cjh) - (tl + Th)IK{'1{tl + Th»)dT, (2.127)
'=IJ=1 1=0

q = 1,2, .. and Y~ given by (2.125).

To complete the vector formulation, we define the following vectors:

O(T) E !W:

I." E R"'x", is the identity matrix, and recall the definition of the direct product

0, sometimes called Kronecker or tensor product of matrices. See Lancaster and

Tismenetsky (1985). Then I." 0 oT(T) E R"'x,,,, is given by

Then, in both cases we can write the method in vector form. Equation (2.118)

becomes

where Y"o is given by (2.125), for T E (0, II, q = 1,2, .. and n = 0, 1, .. , N -1. The

only difference between iteration modes is the expression for Y,,", which is given by
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(2.126) or (2.127). Observe that

~Ak(T) = 1",®aT(T).

Then, as we now show in the following theorem, in the limit as q -. CQ, this method

becomes

I](t" + Th) = I](t,,) + h{l", 0 QT(T)]' Y", T E (0, I], (2.129)

where for both modes of iteration,

Y" t t M(;_l)r+Af(t.. + cjh, I](t,,) + hl/", 0 aT(Cj)] V,,)
i_lj=1

+ h foc, a[(Cj - T)hJK(I](t,,) + h(/", 0 QT(T)]' Y.. )dT] (2.130)

+ t t M(i_l)r+jh~ f a((t" + cjh) - (tl + Th)]K(I](t l + Th»)dT,
;=lj=1 /=0 0

n = 0, I, .. , N - I, where we drop the subscript q on Y" to indicate that the limit

as q -+ CQ has been taken. Now, using the vectOr formulation we can apply Lemma

2.7 to prOve the following theorem.

Theorem 2.12 Consider the Volterra integro-differential aJuation (2./06), where

K and f satisfy uniform Lipschitz conditions (in y) with Lipschitz constants L/\ and

LJ, respectively, and the scalar function a is a COlO, T] function, where 0 < T < 00.

Then the time-point relaxation coUocation method (2.128), where the iteration mode

is Gauss·Jacobi or Gauss-Seidel, in which case the expression for Y~ is given by

(2.126) or (2.127), respectively, converges as q -+ CQ fOT sufficiently sma// h > 0.

In this case, the two methods are identical and we have:

Y" = tt M(i_I)r+j[f(f" +cjh,I](t,,) +h[1", 0aT(cj)]' V,,)
;=lj=1

111



+ h i C

' a[(Cj - T)hJK(I'J(tn) + h(Im 18 aT(T)!' Y,,)dTJ (2.131)

+ tt M[i_I..-+jh El a[(t" +cjh) - (t , + Th)JK(I'J(lt + Th»dT,
i=lj"'l 1=0 0

n=:O,I, .. ,N-I.

Proof:

Let T E [0, IJ and n E {O,I, .. , N -l} fixed, and consider iteration over q =: 1,2, ..

We can show that I'Jq(t.. +Th) converges as q -+ cx>, if we ca.n show that Yo: converges

as q -+ cx>, where y"q is given by (2.126) or (2.127), and ~ is given by (2.125).

Clearly, y"q is given implicitlll by (2.126) and (2.127), and we apply Lemma 2.7

to these expressions.

Let us consider Y,.:' and Y,:' and calculate their difference. We get, for Gauss-

Jacobi iterations,

IIV.' -".'11

[
/(tn + cjh,l'J(t n) +h{A;(cj)Y,:' + "'~I A",(Cj)y"q-l})

It-;'i

+ h f' a[(cj -T)hIK(l1(t,,) + h{A;(T)Y,.:' + "'~I AIt(TJY':-I})dT]

"'f'i

- f t M(i_ljr+j
i.lj=1

[
/(t,,+Cj h,l1(tn)+h{A;(Cj)V/+ 1t~1 AIt(cj)V/-

1
})

"'''';
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+ hf ·ICc; - T)hIK(q(I"1 + h{A,(TIY: + t A.(T)Y"'-'})dT] II.. ,
Iql'i

q=1,2, ..

Define the non-negative real number .c.,

6:= max{J)M(i_I)T+ill, IIA,(r)1I : i = 1,2, .. 1m, j = 1,2, .. ,r, T E [0, II}.

Note that we have implicitly assumed that the above matrix norm is compatible

with OUT vector norm !I·ll. That is, for any vector v and matrix Q. where the product

Qv is defined

IIQvll ~ IIQII·lIvll·

See Lancaster and Tismenetsky (1985).

We now apply the generalized triangle inequality and recall that both f and

K satisfy Lipschitz conditions with Lipscbitz constants L! and LK , respectively.

Therefore, the above simplifies to

IIY:-Y"'II IIttM"-,,,.+;
;=1 ;=1

[(
/(10+ c;h. q(I") + h{A,(c;)Y: + .~, A.(c;)y:-'})

kjfi

- f(t .. +cj h,'1(tn) + h{A,(cj)Y,: + .~I Ak<Ci)y/-I}))

I",!.;
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+ h J:' al(cj-T)h] (K('1(~")+h{Ai(T)Y:+ .tl AI:(T)y..'-I})

I:i-'

_ K(q('.) + hIA;(T)Y: + .~, A.(T)Y:-'lldT)] II
",,,.

" 6ttll [(J('.+c;h,'Il'.)+hIA;(c;)Y: + t A.(c;)y:-'ll
••IJ_' 1<. I

k-;"

- I(t.. +cj h,'1(l.. ) + h{A;(Cj)Yn~ + t Al-(Cj)Yn
q

-
I
})).. ,

• 'It;

+ h1"' a[{cj - T)hJ (K{1J(ln) + h{A;(T)Y..' + t A..(T)y.:-I})
o 1:,.,1

."i

- K(q('.) + hIA;(T)Y: + .t A.(T)>':-'lldT)] II
ki-i

" 6 tt {hLIIIA;(C;)(Y: - >':) + t A.(c;)(y:-' - >':-')11
;..Ii_' 10 ••.".

+ h J:' lal(c; - T)hJl

hLKIIA;(r)(Y..' - Y" ') + t~1 A,,(r)(y..,-I - Vn'-lll1dT}

"".
" 6tt {hL/{6I1Y: - >':11 +(m -1)61IYr' - >,:-'lIl

i.li-I
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+ h /0"' la[(cj - r)hJl

hLK{6IlY..' - y..qll +(m_l)6I1y..,-1 - Yn'-'II}dr

S 6tth{16I1Y: - ":11 +(m - l)6I1Y:-' - ,,:-'IIHL/
'=lj.. 1

q= 1,2, ..

Since a(l) is bounded on [O,T]

(2.l32)

where am~z:= max{fa(t)1 : 0 s: t s: T}, and we recall that Cj € [0,11, "l/j. Then

and solving for llYn' - Y..'lI, we get

IIY.' _ f-'II < rm(m - 1)61h(L, + LKham~z)llYn,-1 - V..,-lll
n n - 1 _ rm61h(L, + LKham~z) (2.134)

::s: hLGJllYn,-1 _ V:-llI,

q = 1, 2, ..., and for sufficiently small h, so that 0 s: hLGJ < 1.

In the case of Gauss~Seidei iterations, analogous calculations give

which becomes

IIY: - V:II s: r61h(L, + LKham~z) (2.135)

(m(m
2
+ I)IIY: _ Yn '!1 + em -; I)m llY:-1 - Yn '-III).
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Hence, solving for IIY,,' - Y,,'II, we obtain

(2.136)

q"" 1,2, ... , and again, for sufficiently small h, so that 0:5 hLGS < 1. Now, using

the existence and uniqueness conclusions of Lemma 2.7, the proof is complete. 0

Of course, in toe case where we iterate a fixed number of times, or where we

iterate until some norm of the difference between two successive approximations is

less than some given tolerance, we define the limit as the last value calculated.

For the weakly singular case given by (2.107), the method is again given by

(2.128), where for Gau8s...Jacobi iterations

v: t.t.M"-,,.H [I ('d <ih."('.J +hlA;«i)Y: + &: A.«i)Y:-'I)

+ hj,"[(Ci-TJWOK("(,.J+h1A;(T)Y:+ .~. A'(TJY:-'J)dT]
Iql"

+ ft M(i_l)~+jhEl[(t" + cjh) - (tl + ThWQ K('J(tl + Th»dT, (2.137)
;=lj=1 I~ 0

and for Gauss-Seidel iterations

v,,' ~t M(;-Il~+j [I (tn +cj h,1/(I,,) +hfE Ak(Cj)V,,' +kEl Ak(Cj)y,,'-I})

+ h foe, [(Cj - T)hrQK ('J(t,,) +hff Ak(T)y"q + k"fl Ak(T)y,,'-I}) dr]
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+ f:t M(i_l)r+jh 'f L1{(t" + cjh) - (tl + rhWOK(17(t , + rh»dr, (2.138)
i=ljzt h,O 0

q = 1,2, .. ,0 <0 < I and l': is given by (2.125).

The following corollary is immediate.

Corollary 2.2 COr\&iJe,. the Vo/ler-ru int£gf'O-JiJ1er£ntial equation with lI1f!:akly sin_

gular kemd gilJen by (2.101), mizen K anJ f !atu!y uniform Lip!chitz conditiom

(in y) wiUr. Lip!chitz corutant..f L K ant! L" n!peclilldy, and 0 < 0 < 1. Then the

time-point relazation collocation method (2.128), when Ihe iterntion mode u Caun­

Jacobi 0,. Gaun-Seidd, in which case the exprusion fo,. V..' is gillen by (2.137) 0,.

(2.138), nspeclillely, conllerges to V.. as q -;. 00 for sufficiently small h > O. In Ihis

case, Ihe two methods coincide and we obtain:

Y" f:t M{i_I)r'+j[f(t .. + cj h,17(t .. ) + hl/... @oT(cj)]' Y.. )
i_Ij_1

+ h fo~ll(cj - T)h]-OK('1(t .. ) + hl/... 00T(T)]' Y,,)drJ (2.139)

+ f: t MCi_t)r'+jhE!o'[(t.. + cjh) - (t , + ThWOK(17(tj + rh»dT,
i .. tj_l 1.0 0

n=O,I, .. ,N-I.

Proof:

The proof is the same as the proof of Theorem 2.12 except for the ca.lculation in

(2.132), which becomes

fo~1 ja(cj _ r)hllJr = ie/((Cj _ r)hroJT = h~O~j~O ~ t~oo'

whereO<o<landj=1,2, .. ,r.
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Then for Gauss-Jacobi iterations (2.134) becomes

$ ""{m - 1).61h(L/+~) IIY:-1
- Y:-IU

1-,.m.61h(L/+~)

0< ct < 1, q= 1,2, .. and forOS hLcJ < I.

Similarly, for Gauss-Seidel it.era.tions (2.136) becomes:

II Y:- Y:II
$ ~82h(L/+~)IIY:-'-Y..'-'U

1-~81h(L/+~)

$ hLcsllY':- ' - Yr'll,

0< Q < I, q = 1,2, .. and again, for sufficiently small h, so that 0 S hLcs < I.

Now, using the exi.stence and uniqueness conclusions of Lemma 2.7, the proof is

complete. a

2.3.5 Optimal order conditions

In the previous section, we showed tbat for sufficiently small h, the time-point

relaxation collocation method (2.128), for each mode of iteration, (2.126), or (2.127)

is well defined and converges to the same: !mique method given by (2.131), as q -+ 00.

However, we do not know if the solution given by this method has any relation to

the eud solution y of (2.106). We now tackle the question of convergence of these

methods as h -+ O.

In particular, we will be concerned with the conditions necessary for optimal

order of convergence at the nodes. See Section 1.4.2, where we discuss the idea of

superconvergence at the nodes.
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Recall that an r-stage collocation method has an order of global convergence of

r, but if the collocation parameters {Ci} are chosen in special ways, we can attain

higher order at the nodes, provided the analytic solution is sufficiently regular. In

particular, if the Gauss points are taken we attain the optimal nodal order 2r. Sec

Theorems 1.8 and 1.9, respectively. See Hairer at al (l993) for similar results for

ODEs. In the next sections we consider the conditions necessary to attain this

optimal nodal order, 2r. Clearly, this analysis can he repeated for lo.....er order

methods, like the Radau II and the Lobatto methods.

We start out by considering the simplest case. Let us list all tbe assumptions:

• Tbe iteration q is taken to 00.

• The implicit algebraic equations in (2.126) and (2.127) can be solved exactly.

• The integrals in equations (2.126) and (2.127) can be found analytically.

In the coming sections we eliminate, in order, each of these assumptions. The

final method will be the most realistic, and we win refer to it as the fully discretized

time-point relaxation collocation method.

Alongside with these results we will also consider the VIDE with weakly singular

kernel (2.107), whose time-point relaxation collocation method is given by (2.128),

where the iteration mode is Gauss-Jacobi or Gauss-Seidel ((2.137) or (2.138), re­

spectively). However, for polynomial spline collocation employing a uniform mesh,

the global convergence is of order 1 - Q', where 0 < Q' < 1. See Section 1.4.4.
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2.3.6 The Ideal Case

We take this simplest case a.nd assume that tbe integrals and implicit algebraic

equations in (2.126) and (2.127) can be solved exactly, and we take the limit as the

number of iterations q goes to infinity. The idea in this toe<:tiOD is to show tbat, if

we take an r-stage collocation as the underlying method, we can attain an optimal

nodal order of 2r (if the Gauss.points are taken iU the collocation poiots). The

following theorem and proof;ue given in Brunner (1984).

Theorem 2.13 (Brunner 198.0 Consider the VoltC"lI intcgro-diffcnmtial equation

given by (2.106), and the regions D, := [O,T] x R'" and OK := S x R"', where

0< T < (XI (lnd i = 1,2, .. ,m. Assume the following regularity conditions:

Also, consider the time-point rdazation aJllocation method (2.128), where the ite,..·

tion mode is Gauu·J(Jcobi or C.U$$-Seidc/, in tohidl c:a.sc the erpressions for Y: are

(f!.1!!6) and (2_/!1), re.sputively_ A.s5ume thct the integrals and implicit algebraic

equations in (1!.11!6) and (1!.121) can he solued nect/y, and take the limit as the

number oj iterations q gou to infinity. Then the optimal nodel order is given bll1!r,

i/the r collocation parameters {co} are taken to be the Gau.u points on (0,1).
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PROOF:

We begin by pointing out that thi:s proof does not differ from the c1iWiicaJ. proof,

:since the TR method (2.128) :simply becomes the dusica1 method (2.129) in the

limit as tbe number of iten.tioO$ q -+ 00.

Define e(~) := y(t) - '1(t), where y refe", to the exact solution of the problem,

and '1 refers to the (collocation) approximation in the limit as q -+ 00. That is,

'1(l .. +rh) 11(t.. )+h[l... ®aT(r)!.Y.. ,

Y.. f t M(i_I}r+j[/(t.. + cj h,'1(t.. ) + h[t", 0 aT(Cj)]' Y.. )
i_I;_1

+ h lac, a[(cj - r)hJK(11{t.. ) + h[t... 0aT(r)]. Y.. )drl

+ f t M(i_l)~+jh I: f a(t.. + cjh) - (t/ + rh)IK('1(tl + rh»)dr,
ialj_' 1-0 °

r e (0,11 and n = 0, I, .. ,N - 1, where the subscript q on Y.. has been dropped

to indicate that the limit u q -+ 00 bas been taken. Recall that 11 e S!°'(ZN).

Since '1 satisfies the problem (2.106) at the collocation points TN = {t" + cjh;j =
1,2, .. ,T; n=O,I, .. ,N-I},

'1'(l) = I(t, '1) + fo' a(t -.s)K('1(.s»d.s - ci"{l), l e [O,T), (2.140)

witb 6(0) = O. In fact, the defect 0 ~i:shes on the set TN of collocation point'.

Subtraction of (2.106) from (2.1<10) gives,

<'(') ~ f(',") - f(I,.) + ],' a(. - 'lIK("(,)) - K(.(,))jd, +0('),

where e(O) = 0, since 11(0) =y(O) = Yo. Since T is at least one, both f and K are

differentiable with respect to y, (i.e., at least, 1 e C 2(DJ ) and K e C2 {D K »), so we
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can apply the mean value theorem, to convert this non4line&r equation to the linear

equation

e'(t) = A(t)e(t) + l' aCt - ,,)k(,,)e(,,)ds +cf(t), (2.141)

e(O) = O. Here A(t) is the m x m Jacobian matrix of f with respect to y, where

each row is evaluated at a different mean value; that is

where for each t E [0, T), the mean value <;,i = 1,2, .. , m is an internal point of

the line segment in R'" joining y{t) to '1(t).

Simila.rly,

.(.) ~ (a~:;»),

where for each" E S, the mean value It,-,i = 1,2, .. ,m is an internal point of the

line segment in R'" joining y(,,) to '1($). See Lambert (1991).

The solution of the equation is given by Theorem 2.2, using the resolvent kernel

Rio (2.13),

e(t) = R(t,O)· e(O) + fo' R(t,s)· cf(..)d.. , t E [0, T],

and we recall that e(O) = O.

At the nodal poinu

e(t.. ) = hEll R(t,.,tt +Th). cf(tt + Th)dT. (2.142)
bolo

To complete the calculation, we evaluate the integrals using an interpolatory quadra­

ture formula. based on abscissas {tt+d;h} where 0:5 d l < ... < d~:5 1, a.nd weights
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{Wjl,U=1,2•... r). Then,

e(I.} = fa E fEwjRCt.ftfe +djh) 6(t. +djh) + E..J<) ,
noU""1

where E..,k denotes the ertor tenn associated with the qu.-drature formula.. Choosing

d j = Cj (the collocation pa.ra.meten), we get J(t. + ejk) = 0 for j = 1,2, ..• T, k =

0, I, .. n -1, and the above equation becomes

e(t.. ) = h·EE..... _

Since this sum contains at most N terms, where Nh ""' T < 00, the order of the

nodal error e( tn ) equals the order of the quadrature error. Choosing these collocation

parameters equal to the Gauss points in (0,1), we establish optimal quadrature order

Note, that it is here where we require the regularity conditions itemized in the

assumptions of this theorem. (0 order to guarantee the optimal quadrature order

2r, we assume that the integrand is sufficiently smooth (i.e., an element of the space

C2~(.», since the error formula. contains derivatives of the integrand of this same

order; see Brunner (19M) and Brunner and van der Houwen (1986). Therefore, let

us look more closely a.t the integrand in (2.142). R(t.. , t" + Th) . b(t" + Th), where

k =0, I•.. n-I, n =0, 1, .. ,N-I and T E (0, Ii. and show that it has smoothness

oforderC2T (-).

Firstly, 6" E C"((t".t"+ll! since by (2.140) it inherits the smoothness of f. G and

K, and on (t",t"H), 1/ is a. polynomial. Observe that the resolvent kernel is derived

from the linear equation (2.141). Since A E c'r-I([O, Tl) and a,k E c'r-I(S), by

Lemma 2.1 this resolvent kernel R E c'r(s). O.
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We now consider the VlDE with weakly singulM kernel given by (2.107) iUld give

the following theorem from Brunner (1986a).

Theorem 2.1-4 (Brvnner /986a) Coruider the Volterra integro-di/ferentiol e'l"Gtion

with weakly singulGrl:erTlel given by (2./01), Gnd the regioru DJ := (0, T) x R'" Gnd

DK := S x.R"', where 0 < T < 00 Gnd i = 1,2, .. ,m. A"nme the {ollowing

rrgu/Grity conditioru:

and assume that K does not vanish identically. Also, consider the time-point relaz­

aaon collocation method given by (2. /28), where the iteration mode is Gauss-Jacobi

or Gauss-Seidel, in which case the expression {or Y,,' i. given by (2./37) or (2./38),

respeetilJdy. A8Sume IhGt the integmls and implicit algebraic equatioru in (f.137)

and (2./38) can b.e solved uactly, and we: take the limit as the nvmb.er o{ itera/ioru

II goes to infinity. Then the gfo6a1 converyena: is o{ order 1 - cr, where 0 < 0' < 1

regardlus o{ hoVJ the collocation pammeter. {Cj: a S c. < e,: < ... < c,. S I} are

chosen. That is, the erTOr eel) = yet) - 'let) satisfiu

2.3.1 The Effect of Iteration

Again, we assume that the integrals and the implicit algebraic equations in (2.126)

and (2.127) can be treated exactly, but the number of iterations is finite. We can

then consider the resulting effect on the underlying order of the method, which for
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us is optimal at 2r. In particular, we will be interested in establishing the minimum

number of iterations necessary to regain the optimal order 2r.

Let us define e'l(t}:==- y(l) - ,,'(t), q ==-1,2, .. and note that

,'(t) (y(t) - ,(1)) + (.(t) - .'(1))

eO) + ('(t),

where we define C'(t) := ,,(t) - "'(I). By tlte triangle inequality at the nodal points

'"
(2.143)

The previous theorem gives us the order of e(tn}, so we need only consider the order

of C'(tn ), since the order of e'(tn) will be the minimum of these two orders. Fortu­

nately, the same calculations that showed convergence of tlte iterations in Section

2.3.4 can be repeated to give the order of convergence of ('(tn).

Theorem 2.15 Consider the Volterra integro-differential equation (2.106), and the

regionsDJ := [O,T]xlR'" and DK :=Sx!R"', where 0 < T < 00 andi = 1,2, .. ,m.

Assume the following regularity conditions:

• a E C2r-l([O, TJ).

Also, the kernel K and the/unction f satufy uniform Lipschitz conditions (in y) with

Lipschitz constants L K and L" respectively. Also, consider Ihe time-poinl relazation

125



cofl0C4tion method (2./28), tDhere the iteration mode is GatJU·Jaco6i (f!.126) 0'"

GalUS-Seidel (2.127), and lI.Uwme thal the integrals and implicit algdrvic et(Uctions

in (!!.1!!6) cnd (2./f!1) Cdn 6e .olved uactly. Then the optimclnodal orde,.. is given

by v = min{2""q+ I}, prouided the,.. collocction pG1'CImde,." {co} cre tGKen to be the

Gaw.! point& in (0,1).

PROOF:

In ligbt of (2.143), we need only show that 1I('(t.. )l1 = O(h'+1). Therefore,lubtract­

ing (2.128) from (2.129),

~(t.. +'Th) '1(t .. + 'Th) - '1'(t .. + 'Th)

hU... GoT('T)!' [Y.. - Y,n

where q = 1,2, .. ,'T € [0, IJ, n = 0,1, ... , N - I and ~ given by (2.125), we now

look more closely at the difference Y.. - Y..'.

We have already calculated this difference, see Theorem 2.12, and in particular,

(2.134) and (2.136). Thus, for Gauss-Jacobi iterations,

IIY.. - Y:I :5 ,..m(m -ll)6;:~:h7L~:';:-:~~~)-Y:-1JI

:5 hLcJIIY.. - y..,-III,

q = 1,2, .. and ~ is given by (2.125). In the case of Gauss-Seidel iterations,

IIY.. -Y:II :5 ~0&+LKhc ...u)lJy,,-Y"'-'1l
1- ~62h(LI+ LKha...a~)

:5 hLcsllY.. - Y:-'II,
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q = 1,2, .. and Y:' is given by (2.125).

Applying these resuJts recun;ively, ror Gauss·Jacobi iterations

IIY.. - Y:II:S h'LbIIY. - ~II,

q = 1,2, .. and ~ is given by (2.125).

For Gauss-Seidel iterations, the result is

IIY.. - Y,,'lI:S h'LhsIlY. - ~II·

So we obtain, ror Gauss-Jacobi iterations

(2."4)

(2.145)

1It:"(t" + Th)1I IIh[l." aT(T)I· IY. - Y:1I1

:S hili... 0 a T(T)1I . [h'LbIlY.. - ~Ul :5 const h,,+l

q = 1,2, .. , T E [0, IJ, n = 0, I, .. ,N -1 and ~ is given by (2.125).

For Gauss-Seidel iterations,

11"('_ + Th)1I IIhlt. "aT(T)] ·IY. - Y:1I1

:5 hili... 0aT (r)lI· [h"LhsIlY. - V:11I:5 const h'+l

q= 1,2, .. , rE (O,IJ, n = 0,1, .. ,N-I and ~ isgivcn by (2.125).

Hence,

as h-t 0+, and 10
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as h -+ 0+, if the collocation points are taken to be the Gauss poiots in (0,1).

Therefore the nod,,", order is II = min{2r,q+ I}. 0

Remark:

Compare Theorem 2.15 for VIDEs to Theorem 1.10 for VIEs. Both res:ulu show tha.t

we ohtain the order p~ of the underlying nuJDet'ic.a1 method in q = p~ - 1 iteratioos.

Ho"'-e~r, this depends 00 the ioitia.l solution (2.125) taken. In performing the

numerical testing of Test Problem 2.2, for the Gauss-Jacobi case (only), I noticed

that if I took y"o to be the null vedor, I would need q = p~ iterations to regain the

order p~ of the underlying numerical method. Therefore, Theorem 1.4 for ODEs i$

compatible with Theorem 2.15. Q

To test and illustrate this result we consider the following simple linear two­

dimensional test problem:

Test Problem 2.1 Consider the following Vollerro integra-differential system

where (YI,o, Y2,o)T are given initial conditioru.

U we define

Y(Il -- ( y,(I) )
- ",(I)'

and differentiate, this linear VIDE becomes the following first order ODE

(
Y(t))' ( ~ ~ ~ ~ ) ( yet) )
Y'(I) ~ -2 2 -3 1 Y'(I) ,

2 -2 1-3
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where

Y'(O) ~ (-: _~) YeO).

Choosing the initial votJue

we get the solution

Y(t) = ( :=::g::a).
See Edwards and Penney (1994).

I wrote a C++ program to solve such a two dimcnsionallinear VIDE using both

one-point and two-point collocation (Gauss points).

In Section 2.5, see Tables 2.5, 2.6, 2.7 and 2.8 which summarize the results or

these tests.

We now consider the VIDE with weakly singular kernel given by (2.107).

Corollary 2.3 Consider the Vollernz integro.differentia/ equation with weakly $in-

gular kernel gil)en by (f!.107). and the regions DJ := [0, T] x R'" and D" := S x 'l"',

where 0 < T < 00 and i = 1,2, .. , m. A.uume the /offollling regularity csmditions:

and a.uume that K does not IJ(Inish identically. Also, consider the time-point re/az­

ation collocation method gillen by (J!.1J!8), where the iteration mode is Gauu·Jacobi

(2./37) or Gauss-Seidel (2.138). Assume that the integral.s and implicit algebraic

equations in (2.137) and (2./38) can be solved ezacUy. Then the order o/global

convergence is given by 1 - 0, where 0 < Q < 1 and we u.se r-point collocation.
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Proof:

This follows from Theorem 2.14 by applying the proof u.sed in Theorem 2.15 and

using the results given in the proof of Corollary 2.2. 0

2.3.8 Stopping Error

Since the underlying method is a collocation method, which is an implicit contin­

uous Volterra Runge-.Kutta method, one must solve a system of implicit nonlinear

algebraic equations to proceed with the method. That is, to find the Y: using

(2.126) or (2.127), 'o\'e must again use an iterative method, which can be a Picard·

type fixed.point it.eration or some variant of the Newton method. Our job in this

section will be to j!;ive the error associated with ·stopping" this final iteration after

a finite number of iterations. In paTtic:ular, we will establish the minimum number

of iterations necessary to regain the optimal order 2r (for the regular kernel case).

We assume that the integrals in (2.125) and (2.127) can be found analytic;ally,

leaving a later sec:tion to deal with the fully discretized cases, where we also approx­

imate these integrals. We shall see that this will not result in a reduction of order

if we use interpolatory quadrature, where the collocation Gauss points are taken as

the quadrature abscissas.

As before we assume that the approximation FJ is already computed on {O,t.]

and the approximation on the interval ft", t".d is given by

,,·"(t... + rh) = FJ(t.. ) + h(l... 0QT(r)J. (Y:)', (2.146)

q=I,2, .. ,3=1,2, .. , rE(O,ljandn=O,I, .. ,N-I.

Also, FJ··O(I .. + rh) = FJ·-I(t .. + rh) and FJ°(l., + rh) = FJ(tn_1 + rh), for n =

1,2, '" N - 1, and "O(rh) = Yo, for r E [O,IJ. The expressions for (Y..·)· depend on
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the types of iteration modes used over both q and .I, and we refer to these as the

"inner" and "outer" iterations, respectively. Rec:all that Y: is gi~ by (2.126) or

(2.127). Assume q = 1,2, .. is fixed and consider PiClU"d fixed-point iteration over

,,= 1,2, ... to evaluate the Y:. Let

wbere (y:)O =Y:-I and ~ is given by (2.125).

Then for Gauss-Jacobi iterations ~ obtain

(Y..')· = f t M{i_I.,+j
'",lj_1

(2.147)

[I ('O+,;h,,(tol +hlA,«;)(y:)'-' + :~; A.(,;)Y:-'l)

+ hf al('; - T)h]K (,(to) +hlA,(T)(Y:)'-' + &; A.(T)Y:-'l) dT]

+ t t M{'_ly+jhE11
a[(t" + cjh} - (ll + rh)JK(,,(t, + rh}}dr,

i_lj.,1 ,-0 °
q=I,2, .. and.s=1,2, ...

The corresponding version for Gauss-Seidel iterations is

(Y:)' ~ ttM"_,,.+;
'_lj_1

(2.148)

[I (10 +,;h,,(lo ) +h(t A.(,;)(Y:)'-' + t A.(,;)Y:-'l)
i_I boi+1

+ h J:' a((cj - r)h]

K (,(10) + hit A.(T)(Y:)'-' + t A.(T)y:-' I) dT]
hoi i_i+1
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+ :ttM(;-ljr+jh~ l' a[O.. +cjh) - (tl +rh)]K('1(tl +rh»dr,
;=lj=1 1=0 0

q=I,2, .. ands=I,2, ..

To find the stopping error for iteration over s, we must look at IIV: - (Y,.')·II.

Clearly the results of Section 2.3.4, in particular (2.133) and (2.135), can be applied.

Therefore, for Gauss-Jacobi iteration mode, we find, for q E {1,2, ..} fixed and

S = 1,2, ... ,

and for Gauss-Seidel iteration mode

where we recall that

l::::.:= max{IIMci-I)r+jl!, IIA;(r)1I : i = 1,2, .. ,m; j = 1,2, .. ,r; r E [0, In,

aod

am= := max{la(t)l: 0:$ t:$ T}.

Then applying this recursively, for both iteration modes, we obtain, for q fixed and

S = 1,2, ... ,

But (Y:)o = y..q-I, and from the result!! of Section 2.3.7

lI y,;'-y,.v-'lI II(Y':-Y.. l+(y.. -y':-'lil

:$ lIy..q - Y.. II + IIY.. - Y,:-'II

O(hq
) +O(hH )

O(hQ
-

I ).

132



Putting these two results together, we find

(2.149)

These results are now collected in the following tbeorem, which applies to both tbe

Gauss-Jacobi and Gauss-Seidel ite~tion modes.

Theorem 2.16 Consider Ihe Volh:rn:z integro-differential equation given by (2./06),

and the regions DJ :_ (O,T] x Jl"' and DK := S x R"', where 0 < T < 00 and

i -== 1,2, .. ,m. A.uume the following regularity conditions:

Also, the kernel K and the funetion f .w.tisfy uniform Lipschitz condilions (in y)

with Lipschitz eonstanu LK and LJ, respectively. Also, eonsider the time-point re­

{lUation eolloeation method (£.1.6), where the inner iteration mode is Gauss·Jacobi

or Gauss-Seidel and the outer one is Picard ped-point, in which ease the erpression

for (Y:)$ is given by (£.141) or (2./48), respectively, and a.ulllme that the integra/$

in these erpressions om be found aael/y. Then the opamaJ nodal order is given by

/.I = min{2r,q+ l,q+s}, provided the r eollOCfJ.tion paramele1"3 {co} are taken to 6e

the Gauss poinu in (0,1).
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Proof:

Let usdefine~"(t) :=y(t) -'1'''0). q= 1,2, .. ,.5 = 1,2•.. , and note tha.t

e'''(l) (y(t) - '10» + ('1(1) - '1'(1)) + ('1'(1) - '1,..(t»

." e(l) + £'0) +("'(1),

when: we define £'1"(1) := '1'(1) - '1,..(t). By setting I ,. I .. and using the tria.ngle

inequality, we establish

The previous two theorems, Theorem 2.13 and Theorem 2.15, give us the order of

e(t.. ) and (9(1 .. ), respectively. so we only need consider the order of £'1"0.. ), since

the order of e,·'(t .. ), will be the minimum of these three orders.

Subtracting (2.146) from (2.128), we find

11""(1. + .h)1I IIhl/." o'(.}) IY: - (y:l'lIl

s hll/. "o'('l.·IIY: - (Y:YII,

q = 1.2, .. , .5 = 1,2, .. , T E 10.11 and n = O,I •... ,N - 1. Recalling equation

(2.149),

and therefore
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as h -+ 0+, ifthe colloation points are taken to be the G~U5S points in (0,1).0

To test and illustrate this result we consider the rollowing simple nonlinear two­

dimensional test problem:

Test Problem 2.2 Consider tAe 'ollolDing VDllerna inlegro.differential IIy."em

where [YI,o,Y2.o1T are gillen initial conditions.

The non-homogeneous terms are

The solution corresponding to the initial values,

YI/J 0,

112.0 I,

is given by

YI(l) le-',

Y2(f) e-2',
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I wrote a C++ program to solve this two-dimensional nonlinear VIDE using

both one-point and two-point collocation (Gauss points). I applied Picard iteration

to solve the implicit algebraic equations and I used one and two point Gauss quadra­

ture, respectively, to evaluate the integrals. Although we postpone the discussion

of the approximation of the integrals that occur in these methods until Sedioo 2.4,

we can say that it does not result in a reduction of the order.

In Section 2.5, Tables 2.9, 2.10 and 2.11 summarize the results of these tests,

which verify Theorem 2.16.

Weakly Singular Case

Consider the VIDE with weakly singular kernel given by (2.107). Then the time­

poiot relaxation collocation method is given by (2.146), where for Gauss·Jacobi

iterations we establish

(y:)' ~ t:t M"_'>+i
;=1';=1

(2.151)

[fC+Cih,"«ol+h{A.CCi)(Y:)'-' + :~: A.CCi)Yr'l)

+ hf[Cci - TIW"K ("«0) + hiA.(T)(y:l'-' + t A'CT)Y:-'l) dT]
o " .. I

"lI!i

+ tt Mc'_I}r+.;h~ t((tn + c.;h) -(tl +T"hW<>K(,,(t, +T"h))dT",
' .. l';=1 /,.,0 0

0<0<1, q=I,2, .. ands=I,2, ..

The corresponding version for Gauss-Seidel iterations is

(Y:I' ~ t:t M(O-»'+i
.=1';=1
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[I (,. +cjh,.('.)+ hit A,(ciHY,,')'-' + f: A.(Ci)Y:-'J)
.1:=1 4-=;+\

+ h foc, [(c; - r)hJ-o

K (.(t.)+hIEA.(T)(Y:)'-' + .E. A.(T)Y:-'l) dT]

+ f: t M(i_Ij'+ih~11
[(/n + cjh) - (II + rhl!-OK(,,(ll + rh))dr,

i_1j_\ /=0 0

O<a<l, q=1,2, .. ands=I,2, ..

Coroollary 2.4 Consider the VoltCM'l'Z integro-differential equation with weakly sin-

gu/arkemdgivcn by (2.107), and the regions D,:= [O,T] x~m and DK := Sx!R"',

where 0 < T < o:l and i = 1,2, .. ,m. Assume the following regularity conditions:

and Il.'lsume that K does not vanish identically. Also, consider the time-point reo

la:r:ation collcx;alion method given by (2./-/6), where the inner iteration mode is

Gauss-Jacobi or Gauss-Seidel, and the outer is Picard fixed-point, in which case

the ezpression for (y..q). is given by (fl./Sl) or (2.152), respectively and the integrals

in these expressions can be solved ezactly. Then the order of glo/w,l convergence is

given by 1 - Q, where 0 < Q < 1 and we use r-point collocation.

Proof:

This follows from Theorem 2.14 by applying the proof used in Theorem 2.16 and

using the results given in the proof of Corollary 2.2. O.
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To test and illustrate this result we consider the following simple linear two­

dimensional test problem witb weakly singular kernel:

Test Problem 2.3 Consider the following Volterra integro.differential system

0< a < 1, where [Yl'o'Y'l,O]T are gillen initial conditions.

We assume the solution:

subject to the initial conditions

Yl!J 0,

Y2.o 0,

where 0 < 0 < I. The non-homogeneous terms are then given by

91(t) (4 _ o)t3-<> + 3t~-<> + 3r(lr(6°)~~)- 0\5_2<>,

92(t) 2(4 - o)t3-<> + 5t~-<> + 5r(lr(6°2r2~)- O)t5- 2<>,
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forO<o< 1.

Note that this problem is a two-dimensional version of the problem given in

Example 2.3. However, by Theorem 2.6, the solution (2.153) is not a typicaJ solution.

For compvison, let us assume the following solution to Test Problem 2.3

subject to the same initial conditions as (2.153),

YI,O 0,

Y'z.o 0,

where 0 < a < L The non-homogeneous terms are now given by

91(t) (2 - o)t l -<> + 3t~-<> + 3r(lr(402~(~)- 0) t3-~<>,

!h(t) 2(2 - a)t l -'" + 5t~-" + 5r(lr(t)r2~)- 0),3-1<>,

(2.154)

forO<a< I.

I wrote @MATLAB softwlU'C: to solve this test problem, using both of these

solution•. We used two-point collocation (Gauss-points), Picard iteration (one iter­

ation) to solve the implicit algebraic equations and two point Gauss quadra.ture to

solve the integrals. The inner iteration was Gauss·Jacobi with q = 3 iterations, so

for both solutions (2.153) and (2.154), we expect a.n order of global convergence of
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1 - 0, where 0 < 0 < l. See Corollary 2.4 and the "Remark" at the end of Section

2.4.

The results of these te5ts are collected in Tables 2.12 and 2.13, Section 2.5.

2.3.9 Newton Iteration

In addition to the simple Picard iteratioD, ....-e coDsider the Newton type methods

to wive the implicit algebraic equations in the method. To apply the Newton type

iteration formulu, we let (2.126) and (2.127) be written V: = F(V:, y",-I), and

define

P(y"',y,,,-I) = V,,' - F(Y,,' , y",-I) = 0, (2.155)

q E {1,2, ...} (fixed). The form of F and therefore P is dear and depends on which

inner iteration scheme, Gauss~Jacobi or Gauss~Seidel we are considering. We now

apply Newton's methods to the solution of (2.155), which in turn will provide a

solution to (2.126) or (2.127).

The Newton method for (2.155) with initial value (Y,,')O = (V,:-I), where q =

1,2, .. (fixed) and ~ is given by (2.125), is given by

where s = 1,2, .. and P' is the Jacobian of P. Let us look more closely at the form

of P'. Firstly,

where Inn is the rm-dimensional identity matrix. We subsequently must look at the

form of aF(Ya'Y,,;:-t). In order to justify taking these derivatives and moving the
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derivative "inside" the integral sign (for the integra.! component) we must assume

sufficient regularity conditions for f and K. These are given in Theorem 2.18.

By the linearity property of derivatives, we detennine for the Gauss·Jacobi mode

of iteration

where diag( {Ui}l:.I) is the rm·dimensiona.! square block matrix with diagonal blocks

Vi, i = 1,2, . . ,Tn, that is

[

u,

di,g({U.}:':'.J - r U.

where Ui = J(j;, K';'1i)(Y..', Yr ' ) is the matrix:

where each element ju.. is given by

j.... Q ..(c;.)~(!"+ c;.h,·) + h foc- a[(c,. - 'T)hlQu('T)~~i(')dT

o.(",)/;.(",)+hl;;(",),

i = 1,2, .. ,m, U = 1,2, ... ,r, v = 1,2, .. ,r and 'T E [0,1]. To get a picture

of these block matrices, let us write out the components for the case r = 2. For

i= 1,2, .. ,m,
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Therefore

where both partials of f and K are evaluated at (Y,:')·_l and y:- l .

For the Gauss-Seidel mode of iteration, aF(;;,rnq
-

l

) becomes the following

lower triangular block matrix of partial derivatives,

where L({Vi;}j~i:l) is the Tm-dimensioual square block matrix with blocks

Vi';, i:::::1,2, .. ,m,i:::::l,2, .. ,i,thatis

[

U"

L({U,,},••• ,) ~ U"

U.,

Vi,i
0)a ,

U.~
where Vi'; ::::: J(fi,K;; 'f/;)(Y;O, ynq-l) is the matrix

where each element in is given by

i",,, ::::: a,,(c,.)~(tn + c,.h,.) +h f~ a(c", -1')hJo,,('T)~:i(')d'T,

:::::: a,,(c,.)/;;(c,.) + hfij(c,.),

i = 1,2, .. ,m, i::::: 1,2, .. ,i, u::::: 1,2, .. ,T, v::::: 1,2, .. ,T and orE [0,1].

Again we write out the components for the case T = 2. For i ~ i = 1,2, .. , m,
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Therefore,

where both pa.rtial derivatives of / and K ue evaluated at (Y:)O_I and y:- I •

The stopping error ror Newton's method is Qf')W derived by a straightforward

exlension of the results given in Sugiura. and Torii (1991), which were derived by

using results originally due to Kantorovich and Akilov (1982). We now give this

theorem, adapting it for our purposes. We refer the reader to Theorem 2.18 ror the

assumed regularity conditions.

Theorem 2.17 (Kantorovich and Akiloll /982) ut (Yn')O e R'"m and BCe):= {Y,,' :

llYn' - (Y,noll :S e} be the closed ball around (Yn')o. Suppose:

IIrp«Y:)')1I $ {,

grp-(Y:)II:S T, Y,,' e B(e).

If

l-~ 1+~
---~= Co:S e :Sel = ---{,

p p

then (ft. 155) hu e unique solution Yn' in B(e) end
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Applyin& this theorem to our problem, for Gi.ug.Jacobi iteri.tion,

[P'(y:-l, Y,,'-IW'

(I.... - h dicg({J(f;, K,i'1;)(y:- I , y:-1n::'I)]-'

l~.

as h -+ 0, which means that the first condition of the theorem, given hy (2.159), i.

fulfilled, since r will exist for sllfficiently sma.ll h. Now,

IIrp"(y:. Y:-'JII " hlWll1l (diay(IJ(/;. K,,",)(y:. Y:-')};;',J)' II

:S T,

and since both f and K are at least twice continuously differentiable, (see Theorem

2.18), hence bounded, this establishes the third condition, given by (2.161), and

allows us the conclude that T = O(h).

Similarly for Gauss~Seidei iteration,

[P'(y",-I, y",-IW'

(l~". - h L({J(f;, K i i'1j)(y",-I, Y:-')}i';;i.l)r l

l~.

as h ~ 0, which means that the first condition of the theorem, given by (2.159), is

fulfilled, since r will exist for sufficiently small h.

II rp·'CY:. Y:-'lll " hlWll1l (L({J(f,. K"q;l(y:. Y:-'ll;',,:,l)' II

:S T.
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This establishes the third condition, given by (2.161), and allows us the conclude

that T = O{h). This theorem can now be applied directly to OUf problem for both

iteration schemes.

Theorem 2.18 Consider the Volterra integro-diffe~ntial equation given by (2.106),

and the regions D, := [O,T) x Jlm and DK := S x Jlrn, where 0 < T < 00 and

i = 1,2, .. ,m. Assume the following regularity conditions:

• a E ~'-I{[O, TJ).

Also, the kernel K and the function f satisfy uniform Lipschitz conditions (in y)

with Lipschitz constants LK and L" respective/yo Also, consider the time-point relaz­

ation collocation method (2./28), where the inner iterotion mode is Gauss-Jacobi or

Gauss-Seidel and the outer one is given by the Newton method (2./56), in which case

the ezpressionfor P(Y,:' ,Yr l ) is given by (2./55), the expression for F(Y,:', ynq-l) is

given by (2.126) or (2./27), and the ezpression for P,{Y"q, Y..'1- I ) is given by (2.157)

or (2.158), respectively. Also assume that the integrals in these ezpressions can be

found exactly. Then the optimal nodal order is given by v = min{2r,q + 1,2'q},

provided the r collocation parameters {e;} are the r Gauss points in (O,I).

Proof:

For qE {1,2, ..} fixed and n =0,1, .. ,N -1,

where the expressions for F is given by (2.126) or (2.127). We consider three cases:
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• Case 1: For q = 1 and n = 0,

using (2.125), where the expression for F is given by (2.126) or (2.127). By

the assumed regularity of tbe problem, IlF(O,O)1I is bounded.

• Case 2: For q = 1 and n = 1,2, ... , N - 1,

using (2.125) and Theorem 2.12, in which case Yn _ 1 = F(Yn _ l , Yn-di see

equation (2.131). Note that this assumes limits as q -+ 00.

• Case 3: Forq=2,3, ... andn=0,1, .. ,N-I,

Similar calculations that led to (2.133) and (2.135), give us

IIF(y~-I, y:_:2) _ F(yn·-
I , y:-I)ll :5 rm(m - l)6,:2h(L, + LKhum",,)

IIY,,·-:2 - y:-llI,

for Gauss-Jacobi iterations and

IIF(y:-I, Y".-:2) _ F(y:-l, y,:_l) II :5 r m (m
2
- I) 6,:2h(L, + LKham~r)

IIY,,·-:2 - y:-III,

for Gauss-Seidel iterations.
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Since. in both cues,

by (2.144) and (2.145), we conclude that

Therefore in a.se! 1 and 2. for q =- 1, n = 0, I•.. , N - l we have P((Y•.'J°, y:- I
) =

O(hO). See Section 1.3.2, Definition 1.2. Combining with Case three we conclude

that for q = 1,2, .. , n = 0, I, ..• N - 1. the starting error satisfies

This together with the fact that f --+ I,M, as h -+ 0. implies UfP((Y.n°. Y..'-')!l ""

O(h'-'), 50 we can take {= O(h'-') in Theorem 2.17. Also. since above we showed

that T =- O(h), we get p = T{ = O(h') in Theorem 2.17.

Consider tbe expressions given in (2.162). For sufficiently small b, P < ~, and

hence

I-~-+l,

as h -+ O. Thus eo is bounded (q = I) or eo -+ 0 (q > I) as h -+ O. Also,

Il+~{1~2~.

and 50 e, -+ 00, as h -+ o.

Therefore. by Theorem 2.17, we conclude that (2.155) bas a unique solution Y..'

in B(e), for each q = 1,2, ...• and

ll(Y..')· - Y..'II ~ (2;:;'{ = O(h2"-l), .s = 0. I..
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The proof then follows by combining these resulu with those of Section 2.3.8, in

particula.r the proof of Thecwem 2.16, since

11'''(1. + Th)1I 1Ih[!. "QT(T») [lY:)' - Y:1I1

,; hill. "QT(T)II·[I(Y:)' - >':11.

q = 1,2, ." s = 1,2, .. , T e 10, I), (y:>o = y..,-I for n = 0,1, .. ,N - I, and Y:
is given by (2.125). 0

2.3.10 Modifled Newton Method

Evaluation of the Jacobian P' can be very expensive, especially if it must be con­

tinually updated. Therefore, one often uses the modified Newton method, in which

the Jacobian is evaluated once, and this value is used in all subsequent calculations.

We therefore establish new stopping errors and in general, II. reduction in order.

The modified Newton method (or (2.155) with initial value (Y,n° = y:-I, where

q E {I, 2, ...} (fixed) and Y.:' is given by (2.125), is given by

where.s = 1,2, ." and

for Gauss-Jacobi iteration and

P'«y..9)O, Y,:_l) = Jrm _ h· L({JUi. K;i'1i)(Y,:-I, y..q-l)}i;;,.l)' (2.166)
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for Gauss-Seidel iteration. See Section 2.3.9.

The following theorem given by Kantorovich and Akilov (1982), can be used to

give order conditions for the modified Newton method.

Theorem 2.19 (Kantorovich and Akilov 1982) Let (y,.:')O E R.... and B(e):= {Y,.:':

JjYJ - (YJ)OIl :5 e} be the closed ball around (Y,n°. Suppose:

r - [P'«YJl'Jr' ~;''''

II rp«YJl'lIl5 e,

IIrp"(YJJIl "T, VJ E B('l·

1/

P=i~<~,
1-~ l+~
---~ = eo:5 e:5 e\ = ---e,

p p

then (2.164) has a unique solution Y,,9 in B(e) and

lI(Y..')·-Y"Qll:5 ~(I_~)'+l, s=O,I, ..

The following theorem is immediate.

Theorem 2.20 Consider the Volterra integra-differential equation given by (2.106),

and the regions DJ := [a,TI x R'" and DK := S x R"', where a < T < 00 and

i = 1,2, .. ,m. Assume the/ollowing regularity conditions:

• / E C"(D,l,
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• a E ~-I([O,Tn.
Ala:o, the kemel K and the function f satisfy 'Mniform Lipsc1litz condititJns (in y)

with Lipsc1litz corutanu L K and LI , rupectiL'Cly. Also, coruider the time-point re­

(aralion CDllOCD.tion method (!./!8), tIlhere the inner iteration mode is Gatf,$s·Jllcobi

or GIIII.5$Seidel lind the outer is given by Me modified Newton method (2.16./), in

which case the up1U5ion for P(Y,,', y",-I) is given by (2.155), the t.rprusioru for

F(Y,,', y,.'-I) is given by (2.126) or (!U2?), lind the eqre.uion for P'«y",)O, y:-I )

is given by (2.165) or (2.166), respectively. Auume that the integrala: in these

erprcS5ioru can be found ezactly. Then the optimal nor/ol order is given by /I =­

min{2r,q+ I,(s+ l)q}, provided the r col/aeolion parameters {c.-} are the r Gauu

points in (0,1).

Proof:

Since all the conditions were verified for NeWlon's method, VtOC need only apply the

final conditions of the theorem. Using Theorem 2.19, for each q = 1,2, .., we find

Expand 1 -~ in a Taylor Series about the origin for p < !' and use the fact

from Section 2.3.9 that p = O(h') and (" = O(h,-I). This implies that

The result then follows by applying the results of Section 2.3.8, since

11""('. +Th)1I IIh[/.@aT(T)I-I(Y:)' - Y:III

" hll/.@aT(T)II·II(Y:)'- Y:II.
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q=I,2, .. , $=1,2, .. , TE {O,ll,(Y,no= y..,-I rorn=O,I, .. ,N-l,and~

is given by (2.125). 0

Let us compare Theorems 2.16, 2.18;;md 2.20 in Table 2.1.

Ta.ble 2.1: Comparisons of Picard and Newton Methods

Order min 2r,q+ 1,a.nd...
$ Picard Newton Modified Newton

q+l 2q 2q
q+2 4q 3q
q+ 3 8q 4q
q+4 16q 5q

Note:

The inner itera.tion mode sets the limit q + 1 on the order a.nd this order can be

attained easily with Picard iteration $ = 1. Both the Newton and modified Newton

methods reach this limit also with $ =1. Therefore, if we are to ta.ke full advantage

of the higher orders possible with the Newton methods we must use a. higher order

method (possibly a Newton method) for the inner iteration mode. 0

To illustrate we solved Test Problem 2.2 using both the Newton and modified

Newton methods to solve the implicit equations. I wrote a @M.ATLAB program

using Gauss·Jacobi inner iteration, two-point collocation (Ga.uss points) ror the un­

derlying numerical method and two point Gauss quadrature to evaluate the integnus.

In practice it is not efficient to invert the matrix given in (2.156). Therefore we mul­

tiply this equation by P'((y..,).-I, y..,-I) and solve tbe following algebraic system by
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LU decomposition, see Lambert (1991),

where s = 1,2, ... , and

is the incrC9Tlent that must he added to (Y,n'-l to get (Y,n'.

We recall that P' is given by (2.151) and note that for this test problem we can

calculate these partial derivatives in dosed form.

Similar remarks apply to the modified Newton method. In Section 2.5, Tables

2.14 and 2.15 summarize the results of these tests.

2.4 The Discretized Case

All the results of the previous sections assume that the integrals appcaring in the

methods can be found analytically. However, in general, we are interested in the so­

lution of a non~linear VIDE, whose kcrnel is sufficiently complicated to require that

the integrals be approximated by suitable quadrature formulas. In other words, we

have the so called discrdizt.d cast.s, sometimes called fully discretizt.d cast.s. There­

forc, we must compute an approximation which is a perturbation of the previous

results. In order to illustrate how this can be accomplished, let us consider the case

where the outcr iteration mode is Picard fixed-point. The extension to the Newton

cases is clear.

We consider an approximation "q., e S~O)(Z",), which satisfies the equation
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q = 1,2, .. ,3 = 1,2, .. , T E {O,l] and n =0,1, .. ,N -1. Also, Ijq·°(t,,+Th) =
Ijq-l(t,,+Th) and 1j°(t,,+Th) =!}(/,,_I +Th), for n =1,2, . _, N -I, and IjO(Th) = Yo,

for T E [0,11_

The expressions for (y"q), depend on the types of inner and outer iteration modes

used over both q and 3; sec (2.147) or (2.148), respectively. Clearly, many quadrature

formulas can be used to approximate these integrals; however, we choose interpola­

tory quadrature. In particular, we choose Gauss quadrature with abscissas {tt+eph}

and {t,,+Ci~h},with corresponding weights {wIt} = {a,,(l)} and {Wi"} = {cia,,(I)},

respectively, where l = 0, 1,_ . ,n -1, n = 0,1, . . ,N - I and j,p = 1,2, . . ,r. See

Section 1.4.2, equation (1.37).

For Gauss-.Jacobi iterations (YD' becomes

ftMCi-'lr+i
;",lj=1

[
J(t" + cjh,!}(tn) + h{A;(cj)(Y,,")'-' + I<'f;., AI«CilY,,"-'})

I<,t;

+ h ~Cja,,(I)' a[(cj -cjc,,)h)K(Ij(tn) +h{A,(cj~)(Y,,")'-'

+ ,f;, A,(OjG>lV:-'lJ]
1<"'''

+ f: t M(i~'~+i
;=lj=1

hE t 0,,(1) a[(/n + cjh) - (t l + e"h)]K(!}(/, + e"h),
/=01=1
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q = 1,2, ... , n = 0,1, .. . ,N - 1, where (Y,n° = Y:-I and Y: is given by (2.125).

For Gauss-Seidel iterations (Y,,'Y is

tEMci-I)r-+-i
;.. li..1

(2.170)

[/(l ... +cih,;j(t... ) +h(E A.t(C;)(Y:)o-I + t A.t(Ci)Y:-I})
hi .too'+1

+ h tCiO,,(I). a[(Ci - ciCp)hJK(;j(l .. ) +h{E A.t(CiCp)(Y..'y-1
,,_I .t~1

+ f: A.«i<;.)V:-'})]
"..;+-1

+ ttM(i-I)~+i
i_I i-I

hE t 0,,(1)· a[(t" + cih) - (ll + Cph)]K(;j(!1 + <:ph)),
1-01'""1

q= 1,2, .. , n =0,1, .. ,N-I, where (y,.')o= Y:- I and Y: is given by (2.125).

Clearly, these expressions are a perturbation of (2.147) and (2.148), respectively.

Remark: In the integTand of our problem (2.106), the function a is restricted to the

triangle S = ({t,,,): 0 $; & $; t $; T}, where T < (Xl. Therefore, we take the nl!lurnl

discretizations using abcissu t ... + cie.,h; n = 0, I, .. ,N - I, i = 1,2, . . r,p =

1,2, .. r to a.void including values outside S in the domain of a. In special cases,

where we can extend the definition of the kernel to include values of " greater than

values of t, we obtain additional methods of optimal order; see Brunner (1984). Also

see Section 1.04.2. (>

Theorem 2.21 Consider the VoUefTG integro.di1!erential equation given by (f. 106),

and the regions D, := [O,T])( R'" and D,. := S)( R"', where 0 < T < (Xl and
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i = 1,2, .. , m. A$$umt the following regularity condition~:

Also, tht kernel K and the function f satisfy uniform Lipschitz conditiorl$ (in y)

with Lipschiiz con.stanis LK and LJ> re~pectively. Also, considu the time-point relax­

ation collocation mdhod (2.168), where the inner iteration mOOt is Gauss-Jacobi or

Gauss-Seidel and the outer ont is Picard fixed-point. Interpolatory quadrature, cor­

responding to the abscissas {t/+c,h} and {tn +cjc,h} where I = 0, I, .. . ,n -1, n =

O,I, ... ,N-l andj,p= 1,2, .. ,r, are used to sofvt the integrals in which cas!':ihe

expression for (ynq)· is giv!':n by (2.169) or (2.110), respf!ctively.

Then the optimal nodal order is gillen by v = min{2r,q + 1,q+ s}, provided the

r col/o<:ation paramders {e;} are the r Gaus~ points in (0,1).

Proof:

We define ;;q"(t):= yet) - Jjq"(t), q,s = 1,2, .., then

,"'(1) (y(t) - "(I)) + ("(t) - W)) + (.(t) - .'(t) + W(I) - ."(1)

e(t)+i(t)+iq(t)+?"(t),

where we have tbe following definitions:

• e(t) :=y(t) -17(i),
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• i('),~ (q(') - W»,

• i"(t):=Ij{t)-I1'(I),

• i,..(t):=Ij,{t)-rj'''(t),

fOf q,.s = 1,2, ..

Setting t = t. and using the triangle inequality, we have

11"'('.)11 :511'('.)11 + 11'('.)11 + 11"('.)11 + 11"'('.)11,

n =0,1, .. ,N-l.

Theorem 2.16 gives us the order of c(t..),~(tn) and (•.'(tn), where we recall that:

for q,s= 1,2, ..

It is easy to see that the results of Theorem 2.16 do not change if discretized

versions of equations (2.146), (2.147) and (2.148) are assumed. This allows us to

use Theorem 2.16 to give the order of e(t .. ),i·(t... ) and i"'·(t.. '.

Therefore we need only coMider i(t..}.

From Brunner (1984), we get

and therefore

iL5 h --+ 0+, if the collocation points are taken to be the r Gauss points in (0,1). a

For Newton outer iteration:
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Theorem 2.22 Consider the Volterra integra-differential equation given by (2.106),

and the regions D,:= [O,TI x Rm and OK := S x Rm, where 0< T < 00 and

i = 1,2, ... ,m. Assume the following regularity conditions:

• a E Cl~-I([O, TI).

Also, the kemel K and the function f satisfy uniform Lipschitz conditions (in y)

with Lipschitz constants LK and LI , respectively. Also, consider the lime-point re­

laxation collocation method (2.168), where Ihe inner iteration mode is Gauss-Jacobi

or Gauss-Seidel and the outer is given by the Newton method (2.156), in which case

the ezpressionfor P(V:, V..,-l) is gillen by (2.155), the ezpression for F(Y..', V..,-l) is

given by (2.126) or (2.1£7) and the expression for P'(y..', V:- l ) is given by (2.157)

or (2.158), respectively. Assume that the inlegrals in these expressions are approzi­

mated by interpolatory quadrature with abscissas {t l + eph} and {t .. + cjeph}, where

1= O,I, ... ,n -1, n = 0,1, .. ,N -1 and j = 1,2, .. ,r. Then the optimal nodal

order is given by v = min{2r,q+ 1,2~q}, provided the r collocation parameters {c,J

are the r Gauss points in (0, 1).

And (or modified Newton outer iteration:

Theorem 2.23 Consider the Vollerra integro-differential equation given by (2.106),

and the regions 0,:= [O,Tj x Rm and DK := S x R"', where 0 < T < 00 and

i = 1,2, ... , m. Assume the following regularity conditions:
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Also, the kernel K and the function f satisfy uniform Lipschitz conditions (in y)

with Lipschitz constants L K and LI , respectively. Also, consider the time-pain! 1't.~

laxation collocation method (2.168), where the inner iteration mode is Gauss-Jacobi

or Gauss-Seidel and the outer is given by the modified Newton method (2./64), in

which case the expression for P(Y~',y",-I) is given by (2.155), the expressions for

F(Y:, y"q-I) is given by (2.126) or (2.127) and the expression for P'(y:)O) is given

by (2.165) or (2.166), respectilJely. A.ssume that the integrals in these expressions are

approximated by interpolatory quadrature with abscissas {tl + eph} and {t" + cic;,h),

where I = 0,1, .. , n - I, n = 0,1, ... , N - 1 and j = 1,2, .. ,r. Then the opti*

mal nodal order is given by v = min{2r,q + 1,(.'1' + I)q}, prolJided the r collocation

parameters {e;} are the r Caws points in (0,1).

Remark:

When considering the VIDE with weakly singular kernel given by (2.107), the

discretized method (2.168) requires discretized versions of equations (2.15I) and

(2.152). However, special case must he taken to avoid the kernel from becoming

unbounded at the abcissas in the quadrature formulas. In Test Problem 2.3, [

used (two-point) Gauss quadrature at the abcissas {tl + eph}, {t" + cjeph} where
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l = 0,1, ... ,n -I, n =0, I, .. , N -I, j = 1,2 and p = 1,2 in (2.151) and (2.152).

Note that since c, #- 0 and c~ '# I the kernel is finite at these abcissas. We refer

the reader to Brunner and van der Houwen (1986) where they discuss "'product

integration formulas". (>

Summary

We summarize the main theorems of this thesis in Tables 2.2, 2.3 iiUld 2.4.

Table 2.2: Continuous-Time [teration WR Methods

Convergence and Theorem
equations (2.58) and (2.59)
Theorem 2.7
equation (2.90)
Theorem 2.10

Table 2.3: Discrete-Time Iteration TR Methods - Regular Kernel

Order and Theorem

Discretized min{2r,q+ l,q+s}
Theorem 2.21

Newton Modified Newton
min{2r,q + 1,2'qJ min{2r,q + 1,(05 + l)q}
Theorem 2.18 Theorem 2.20
min{2r,q + 1,2'q} min{2r,q+ 1,(3 + l)q}
Theorem 2.22 Theorem 2.23
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Table 2.4: Discrete-Time Iteration TR Methods· Weakly Singular Kernel

Order and Theorem
Type Picard
Exact 1 0', 0 < 0' < 1 for any q ~ 1

Corollary 2.4
Discretized I Q, 0 < 0' < I for any q > 1

Note: In Table 2.4, the poor convergence for discrete-time iteration TR methods

for VIDEs with weakly singular kernel, is due to the fact that we are using uniform

meshes. See Chapter 3. <)

2.5 Numerical Results

This section contains the results of various numerical tests, with a discussion of each.

Linear Test Problem

Consider Tables 2.5, 2.6, 2.7 and 2.8.

These are the results for the two-dimensional linear Test Problem 2.1, using both

one-point and two-point collocation (Gauss points). The error is defined by

t .. = nh, n=O,I, .. ,N, where T= Nh and q= 1,2, ..

• One·Point Collocation

First, consider Tables 2.5 and 2.6. By Theorem 2.15, we expect the order to

be 1/ = min{2,q + I}, since r = 1 and in each table q ~ 1. Not only do we

observe this, but we confirm that this is tbe best we can achieve, since taking
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q> 1 result, in no increase in order. However, the error E~ is generally larger

that E~ which is almost identical to E~. We conclude by noting that there was

no discernable difference in the performance, when using either Gauss-Jacobi

iterations or Gauss-Seidel iterations.

• Two-Point Collocation

In Tables 2.7 and 2.8, we have the results for the case where r = 2, so the

order is v = min{4,q + I}, and we expect the error to decrease by a factor

of t.: over consecutive columns, for fixed q, in each table. For Gauss-Jacobi

iterations, E~ showed an order of 3, while E~ and E: both showed an order

of 4, as predicted by Theorem 2.15. However, for Gauss-Seidel iterations we

attained an order of four even for q = 2, which is better than that predicted

by Theorem 2.15. Clearly, for such a simple linear problem as Test Problem

2.1, the results of Theorem 2.15 can be exceeded.

Note: Tables 2.7 and 2.8 represent the only cases in these tests (in all of Section

2.5) where the order changes across the any of the columns. ¢

Table 2.5: One-Point Collocation· Gauss-Jacobi Iterations (linear)

En X 10- En X 10 En X 10

'" h 0.1 0.05 0.025 h 0.1 0.05 0.025 h 0.1 0.05 0.025
0.2 184 37.4 8.42 42.0 11.3 2.92 48.5 12.1 3.01
0.4 23.8 3.71 0.924 56.8 14.3 3.58 57.7 14.4 3.58
0.8 54.5 15.0 3.87 53.4 13.2 3.26 52.1 13.0 3.24
0.8 SO." 20.2 5.05 44.7 10.9 2.69 42.6 10.6 2.65
1.0 83.1 20.3 5.03 35.7 8.63 2.12 33.5 8.34 2.08
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Table 2.6: One-Point Collocation - Gauss-Seidel Iterations (linear)

E x 10 E? x 10- E.. x lO-

t" h 0.1 0.05 0.025 h 0.1 0.05 0.025 h 0.1 0.05 0.025
0.2 15' 30.8 6.86 48.6 12.1 3.01 48.7 12.1 3.01
0.' 18.3 5,48 1.56 51.7 14,4 3.58 57.8 14,4 3.58
0.0 62.2 16.1 4.09 52.1 13.0 3.24 52.1 13.0 3.24
0.0 77.1 19.0 4.71 42.5 10.6 2.65 42.5 10.6 2.65
1.0 72.7 17.6 4.35 33,4 8.33 2.08 33.8 8.33 2.08

Table 2.7: Two-Point Collocation - Gauss-Jacobi Iterations (linear)

En X 10- E.. x 10 E X lO-

t" h 0.1 0.05 0.025 h 0.1 0.05 0.025 h 0.1 0.05 0.025
0.2 7012 722.0 81.91 195.2 10.53 0.6141 64.77 3.955 0.2454
0.4 2111 210.7 23.61 117.6 6.911 0.4201 74.13 4.608 0.2878
0.0 1245 154.0 19.19 91.62 5,465 0.3339 64.28 4.020 0.2516
0.8 1726 208.4 25.60 70.32 4.132 0.2506 49.38 3.097 0.1941
1.0 1834 217.5 26.48 51.25 2.953 0.1773 35.28 2.222 0.1394

Nonlinear Test Problem

See Tables 2.9, 2.10 and 2.11.

These are the results for the two-dimensional nonlinear Test Problem 2.2, where

we used both one-point and two-point collocation (Gauss points), Picard iteration

to solve the implicit algebraic equa.tions, and one and two point Gauss quadrature,

respectively, to evaluate the integrals.

The error is defined by

t .. =nh, n =0,1, .. ,N, wbereT= Nh and q,s = 1,2, ..
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Table 2.8: Two-Point CoUocation - Gauss-Seidel Iterations (linear)

E: )( 10- E~)( 10 E;: x 10
I. n 0.1 0.05 0.025 h 0.1 0.05 0.025 h 0.1 0.05 0.025
0.2 141.3 7.300 0.4212 62.90 3.915 0.2441 62.91 3.915 0.2441
D.' 105.4 6.596 0.4120 74.09 4.610 0.2878 74.09 4.610 0.2878
D.• 108.5 6.570 0.4031 64.89 4.038 0.2521 64.89 4.038 0.2521
0.8 90.23 5.296 0.3207 SO.10 3.118 0.1947 50.10 3.118 0.1947
1.0 54.IT 3.710 0.2221 36.02 2.242 0.1400 35.02 2.242 0.1400

for the two-point collocation cases, the results for Gauss-Jacobi iterations were

found to be almost identical to the results for Gauss-Seidel iterations, so we do not

include them.

• One-Point Collocation

First, consider Tables 2.9 iLfId 2.10. From Theorem 2.16, sincer = 1, wcexpect

the order to be II = min.{2,q + I,q + .f}. Not only do we observe this, hut

we confirm that this is the IJest we can achieve; that is, taking q,.f > 1 results

iD no increase in order. We conc:lude by Doting that there was DO discernable

difference in the the order, when using eitheT Gauss-Jacobi iterations or Gauss­

Seidel iterations, although the error is generally a little larger for the Gauss~

Jacobi case thiLfl tbe Gauss-Seidel case. As the number of iterations increases

this differences diminishes.

• Two-Point Collocation

In Table 2.11 we have the results for the case where r = 2, so the order is

11= min{4, q + 1, q +.f}, and we expect the error to decrease by a factor of ~

over consecutive columns in each table, for fixed q and s. In fact, as a direct
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consequeoce of Theorem 2.16,

where ii = min{2r,q+ I}, and t .. = nh, n = 0,1, .. ,N. where T = Nh

and q,.s = 1,2, ... This was observed since ~.I and ~2 both showed an

order of four, as did E:,I and 8.:.2. Therefore, from an order point of view,

it never pays to iterate more than once when using Picard iteration to solve

the implicit equations in the method. However, the actual error may become

smaller if more iterates are taken.

Table 2.9: One-Point Collocation· GauS5*Jacobi Iterations (nonlinear)

Eo' x 10 Eo' x 10- Eo' x 10
to h 0.1 0.05 0.025 h - 0.1 0.05 0.025 h 0.1 0.05 0.025
0.2 169.4 40.37 9.685 53.41 14.34 3.666 4.848 1.788 0.6865
0.4 90.02 20.57 4.884 36.44 9.497 2.399 12.00 4.039 1.128
0.6 51.94 11.83 2.822 26.45 6.766 1.697 18.19 5.040 1.311
0.8 45.19 10.82 2.660 20.59 5.260 1.323 21.91 5.639 1.421
1.0 53.82 13.17 3.273 13.38 4.542 1.161 25.08 6.231 1.544

Weakly Singular Test Problem

See Tables 2.12 and 2.13.

These are the results for the two-dimensional linear weakly singular Test Problem

2.3, using two-point collocation (Gau5S*points), Picard iteration (one iteration) to

solve the implicit algebraic equations and two point Gauss quadrature to evaluate

the integrals. We usc Gauss-Jacobi inner iteration mode only. The error is defined
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Table 2.10: One-Point CoUocation • Gauss-Seidel Iterations (nonlinear)

E.' xlO E.' x lO- x 10
t. h 0,1 0,'" O.ll2S h 0.1 0.'" 0,02.5 h 0.1 0.'" 0.02.5
0.2 114.0 21.52 6.647 6.771 2.481 0.7479 4.311 2.429 0.7665
0.' 60,79 14.28 3.437 14.14 3.944 1.033 15.09 4.422 1.174
0,6 36.18 8.727 2.140 16.00 4.081 1.031 20,'" 5.254 1.336
0,' 35.87 9.053 2.276 15.26 3.765 0.9430 22.74 5,722 1.430
1.0 45.64 11.57 2.916 13.68 3.378 0.8540 25.'" 6,205 1.539

Table 2.11: Tw~Point Collocation - Gauss-Seidel Iterations (nonlinear)

E:-' x 10 E' x 10- E' x 10- E.' x 10-

'. h 0,1 0.05 h z:: 0.1 0.05 h 0,1 0.05 h 0.1 0.05
0.2 95.91 5.920 4.690 0.3008 6.L24 0.3191 4.777 0.3021
0.4 52.22 3.286 7.547 0.4814 7.865 0.480l 7.626 0.4834
0.6 34.47 2.324 9.578 0.6106 9.631 0.6044 9.678 0.6143
0.' 31.99 2.315 11.45 0.7297 11.35 0.7192 11.58 0.7354
1.0 36.76 2.717 13.44 0.8569 13.23 0.8422 13.61 0.8648

by

lIe3,IJjT:= max (lly(t) - '13.1(t)lJ} =:: E'o':= max (1I11(l... ,) - '13.I(t..+, )H_}.
'E(O.7) ..-O.I •••..N_I

Comparing tables 2.12 and 2.13, we note that the results in both of these tables

verify Corollary 2.4 and the MRemark" at the end of SectK)D 2.4. Although solu­

tion (2.153) has greater regularity than solution (2.154), we obtain the same order,

namely I - 0'. The only difference is that the higher smoothness in the solution

gives rise to slightly smaller errors £3.1.

Newton Test Problem

See.'fables 2.14 and 2.15.
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Table 2.12; Weakly Singular Solution (2.153)

E, xlO
ct h _ 0.05 h 0.025 h _ 0.0125 h - 0.00625

6.7811 4.1701 2.5951 1.6247

33.285 22.993

152.16 117.14 91.164

11.272

71.407

Table 2.13; Weakly Singular Solution (2.154)

E' x lO-

a h 0.05 h 0.025 h 0.0125 h 0.00625
8.5943 5.3187 3.3201 2.0817

40.396 27.987 19.565 13.744

, 172.78 132.95 103.37 80.889

We solved the two-dimensional nonlinear Test Problem 2.2 using both the New­

ton and modified Newton methods to solve the implicit equations. The inner it­

eration mode was Gauss-Jacobi, the underlying numerical method was two-point

collocation (Gauss points) and two point Gauss quadrature was used to evaluate

the integrals. Also, the system given by (2.167) was solved by LV decomposition.

These results verify Theorems 2.18 and 2.20 which are summarized in Table 2.1.

Since the Newton method and modified Newton method are identical for s = 1 and

the results were found to be almost identical for 5 = 2, we only include the results

for the Newton method.

In Table 2.14, we have the results for the case where q "" 2, s ~ 1, and we expect
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an order of 3. hi Table 2.15, we have the results for the case where q > 2, " ~ I,

and we expect an order of 4. Clearly, all these claims are verified hy these results.

Note that in Tables 2.14 and 2.15 the errors correspoodiog to " = 2 are large.­

than the errors corresponding to " = I. This is likely due to the choice of initial

approximation since the Newton method will eventually converge (in general, it does

not converge monotonicaJly).

Table 2.14: Newton Method

E' x 10- E' x 10-

I- h 0.025 0.0125 0.00625 h 0.025 0.0125 0.00625
0.2 122.98 21.045 3.0067 1251.4 157.28 19.712
0.4 375.86 51.504 6.7330 856.63 108.20 13.593
0.' 516.35 69.438 9.0029 657.20 82.930 10.413
0.8 613.82 83.117 10.810 553.65 69.123 8.6331
1.0 720.70 98.591 12.878 542.98 66.498 8.2232

T...ble 2.15: Newton Metbod

xlO xlO x 10- xlO

I- h _ 0.1 0.05 h 0.1 0.05 h 0.1 0.05 h 0.1 0.05
0.2 57.308 2.8105 446.80 25.377 47.729 3.0224 49.903 3.0166
0.4 63.070 4.1797 246.14 14.247 76.360 4.8389 75.930 4.8036
0.• 72.311 4.8101 194.83 11.917 96.961 6.1508 96.130 6.1086
0.8 81.213 5.3407 229.21 14.327 116.04 7.3640 114.87 7.3101
1.0 93.242 6.1042 288.32 18.005 136.46 8.6610 134.90 8.5921
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Chapter 3

Outlook

3.1 Applications

The major source of VIDEs is the nonlinear partial integro-differential equations, PI­

DEs, where the spatial derivative5 are discretized by the Me/hod of Lines (MOL); see

Schiesser (1991) for partial differential equations, and (or PIDEs see Kauthen (1992),

and Cben and Shih (1998), also for additional references. This semi-discretization

gives rise to a (large) system of VIDEs, and can therefore take advantage of WR

methods, especially the fully pa.ra.llel methods.

Yanik and Fairweather (1988) state in their introduction, that the need to in­

clude -memory" effects in a system which is a function of space and time is often

described by partial integro-differential equations. These uise in various fields of

engineering and physics and include heat transfer, nuclear reactor dynamics and

thermoelasticity.

A particular problem of interest is the reaction diffusion models, with hereditary

effects from population dynamics. Tbese models give rise to PIDEs which combine

spatial diffusion with hereditiU"Y interaction of species. Fife (1979) and Britton
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(1986) &f1:; good references for the diffusion put and Cushin,; (1977) is the standard

reference for the heredity part.

The Jo,mHJl 01 Integral EfUGtion.s, Vol. to, Numbers 1-3, Supplement (1985)

publisbed a special conference issue on integro-differential evolution equations and

applications. See also, Chapter 1 in Kolmanovskii and Myshkis (1992).

3.2 Future Work and Open Problems

No body of "'"Ork stands in isolation; it begins where others have left off and hopefully,

forms a basis for future work. Certainly this thesis began with and utilized the

result.. of a wide variety of authors. We collee::t.ed these results in Cbapter I. And

now we finisb the thesis, by itemi1:ing some topics for future consideration. Some

of these will be straightforward extensions of the theorems we listed in Section 1.2

and others will lead to unanswered questions, some of which may point to extensive

and difficult areas of research.

3.2.1 WR Methods

Consider WR methods with different windowing.

• For the continuous-time iteration WR methods (on 10, TI), we commented

that the error became luge for large T. Therefore we could attempt to ex­

tend Theorems 2.7 and 2.10 to a partition of (0, TI, thereby promoting faster

convergence.

• For the discrete-time iteration WR methods, recall that all employ windows of

length equal to the steplength, which is why they are called time-point (TR)
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methods. Clearly, for some problems, it could be advantageous to employ

different "labour" to different subinte~1 of the integration inte~ (0,1').

And this could be reflected in the windows chosen.

3.2.2 TR Methods for Regular Kernels

• In the discrete--time iteration TR methods, we assumed the nonlinear problem

(2.106). Clearly none of the results for these methods would change if we

assumed the more general nonlinear problem (??).

• We could extend the results for the discrete-time iteration TR methods to the

nonstandard VlDE (2.54); see the "Remark" in Section 2.2.

• In the discrete-time iteration TR methods one could experiment with consid­

ering different splitting functions Gland Gt for / and k, respectively. See

Example 2.8.

• The main theorems of Chapter 2 could be extended to collocation methods,

employing a v,uiety of collocation points;s.nd interpolatory quadrature formu­

lae. See Brunner and van der Houwen (1986).

• Use higher order inner iteration schemes, for example, Newton iteu.tion; see

Section 2.2. This then, we would a.1low us to take advantage of high order

outer iteration methods like the Newton and modified Newton. See Theorems

2.22 and 2.23, respectively.
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3.2.3 TR Methods for Weakly Singular Kernels

In the discrete-time iteration TR methods applied to VinEs with weakly singular

kernels, we are limited by Theorem 2.14, since the underlying numericaJ method

wu polynomial spline collocation on a unifonn mesh; see Table 2.4. In Section 1.4.4

we alluded to the fact that the use of nonpolynomial spline collocation methods or

suitably gnu:led meshes is more suitable for these problems; see Brunner (1986a)

and Brunner and van der Houwen (1986). For example, Tang (1992 and 1993)

showed that on suitably graded meshes, superconvergencc properties are possible and

therefore the restriction of Theorem 2.14 can be removed. Therefore an interesting

proposal would be to consider discrete-time iteration TR methods utilizing such

underlying numerical methods.

3.2.4 Stability

Note that we have two mllin concerns.

• Stability of the underlying classical numericaJ method for the solution of

VlDEs.

• Subility of TR methods in general.

The question of nUme1"ical stability of discrete-time iteration TR methods for the

solution of VIDEs requires addressing both of these concerns.

3.3 Conclusion

This thesis began by studying continuous-time iteration WR methods for VI DEs

with regular and weakly singular kernels. We showed that hy placing very general
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assumptions on the splitting runctions we could ll:ua.nntee unirorm convergeuce or

the iterates on all bounded intervals, although m~ybe ~t the expense of having a

very small window. Many questions remain uaanswered. For example, how do

we extend this analysis to unbounded intervals and how would different splitting

functions affect the convergence rate?

The majority or the thesis dealt with the discrete-time iteration TR methods ror

VIDEa with regular and weakly singular kernels. Using collexation method!; as their

underlying numerical method, we developed detailed order conditions whic::h consid­

ered separately, the effects on the order caused by the itera.tion in the TR method,

the iteration in the method used to solve the implil;it algebraic equations ~nd the

quadrature ronnula employed. The resulting method was thererore rully disc;retized.

The results were eDoouraging ror the regular kernel case, but dis~ppointing ror the

weakly singular kernel case. However this low order is likely due entirely to the use

or uniform meshes, and we hope that this can be remedied by employing suitably

graded meshes.

Again, many problems remain open. They indude, what restrictions must be

placed on the steplength to guarantee convergence or the two types or iterations

employed in the methods?

Although, these unanswered questions are important, I reel that this thesis sets

the stage ror their attack.
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