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Abstract

This thesis is concerned with the solution of systems Volterra integro-differential

by the application of jon methods. This is a timely topic
since such methods can often be i d efficiently on parallel
It derives convergence results for both the regular kernel and the weakly singular

kernel cases, and although our primary concern is with numerical methods, we
consider both analytic and numerical solutions.

In Chapter 1 we study the history of waveform relaxation methods and try to
bring the reader up to date with what is presently known about these methods. We
emphasize their application to the solution of systems of ordinary differential equa-
tions and Volterra integral equations. In each case, we consider both the continuous-

time and discrete-time methods and give convergence results for each. Therefore,

this chapter will set the stage for the lication of ! i h
to the solution of Volterra integro-differential equations in Chapter 2.

Chapter 2 is the main chapter of the thesis and contains all of the original results
from my research. It begins by giving the standard resolvent representation of the
analytic solution of Volterra integro-differential equations, with both regular kernels
and weakly singular kernels. It then consid: i time iteration

relaxation methods, in which we assume that the resulting equations can be solved
exactly. We prove that these methods converge uniformly on all bounded intervals.

However, the main body of results in this chapter, concern the collocation so-
lution of the iterates that result when waveform relaxation methods are applied to

Volterra integro-differential equations. We will consider convergence, both as the

ii



steplength tends to zero and as the number of iterations tend to infinity. We study
the effect various iterative methods used to solve the resulting implicit nonlinear al-

gebraic ions have on the and lete the di ization by taking

into account the use of quadrature to solve the integrals in the method. Throughout

the chapter we include ical les which ill the various theorems,

with tables of results and discussion placed in a section at the end of this chapter.

In Chapter 3, we point out that a major source of applications of Volterra integro-
differential equations are the Volterra partial integro-differential equations. We also
mention topics not considered in the main body of the thesis. These include numer-
ical stability of Volterra integro-differential equations, and the use of graded meshes
for the solution of Volterra integro-differential equations, with weakly singular ker-

nels.
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Chapter 1

Waveform Relaxation Methods:
History and the State of the Art

1.1 Introduction

Relaxation (WR) i involve the partitioning of a system of equa-

tions. Each of the resulting are i over a number

of iterative steps with information from each subsystem being passed on only at the
end of each pass. This is an old idea, embodied in the use of Picard-Lindeldf itera-

ial However,

tions in the proof of various exi theorems in
recently these methods have become of practical interest because of their ability to
decouple the large systems of equations that often arise, either naturally from prac-

tical problems, or because of the necessity of using implicit methods. In addition,

the availability of new parallel have d these i

This idea was originally i duced by Lel. (1982) and Lel et al.

(1982) for the analysis of large scale dynamical systems. In particular, these authors
were modelling metal oxide semi-conductor digital circuits. Since the modelling of

very large scale integrated (VLSI) circuits involves the solution of a very large system



of equations, the motivation for these methods is clear. See White et al. (1985) for
a survey of these applications and the book by White and Sangiovanni-Vincentelli
(1987).

Subsequently, these methods were developed for ordinary differential equations
(ODEs), with Miekkala and Nevanlinna (1987a, 1987b) and Nevanlinna (1989a,
1989b, 1990) putting the convergence theory on a sound mathematical basis. See
also Skeel (1989), Lie and Skalin (1992), Lubich (1992), Bellen and Zennaro (1993),
Bellen et al., (1993) and Bellen et al. (1994). We also refer the reader to the book
Burrage (1995).

The computational problems for ODEs are even worse for Volterra integral equa-
tions, since one has to continually recompute the lag-term arising from the integral
part. Crisci et al. (1993) and DAlterio and Vecchio (1995a, 1995b) studied Parallel
Iterated VRK methods, Crisci et al. (1995) and Paone and Vecchio (1993, 1994)
studied Block Volterra Linear methods and Vecchio (1996) studied Parallel Trans-
formed methods. More recently, Crisci et al. (1996a) considered continuous-time

waveform relaxation methods, where we assume that the VIE can be solved exactly.

Then Crisci et al. (1996b and 1997a) i duced discrete-time waveform
Volterra Runge-Kutta methods to solve the numerical problem. See also Brunner et
al. (1998) for waveform relaxation methods for VIEs with weakly singular kernels.
Finally, Crisci et al. (1997b) have been looking at time-point relaxation methods
for Volterra integro-differential equations with regular kernels.

Of course, iterative techniques and relazation methods for the solution of systems
of algebraic equations have a much longer history. The Jacobi method, sometimes

called the “method of si displ " and the G: Seidel method




were well known. An early attempt to increase the rate of convergence led a British

engineer, Richard Southwell to develop a method of relazation scheme, which became

the to the lazatic i hni See Allen (1954) for the

history of these ideas, and see Axelsson (1994) for a modern introduction.

1.2 Summary of the Thesis

In Chapter 1 we give a brief history of waveform relaxation and its special case time-
point relaxation (TR) methods for the solution of ordinary differential equations and
Volterra integral and integro-differential equations (VIEs and VIDES, respectively)
up to the time of writing of this thesis. Chapter 2 forms the main body of the
thesis and contains all of the original results of the thesis research. In fact, Chapter

1 will introduce and lay the ground work for Chapter 2. In Chapter 3, we point

of Volterra integ; ions is

out that a major source of

the partial integro-diffe ial i The i-di ization of such

leads to a large system of Volterra integro-differential equations and would benefit
from a time-point relaxation approach. Finally we look back over the thesis, draw
some conclusions and point out areas where the analysis can be taken further. For
example, different windowing and different splitting functions could be utilized, or
higher order inner iteration schemes could be applied to take advantage of high order
outer iteration methods. We also address topics not considered in the main body
of the thesis. These include numerical stability of Volterra integro-differential equa-
tions, and the use of graded meshes for the solution of Volterra integro-differential
equations, with weakly singular kernels.

We begin by listing the original results in the order in which they will be pre-
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sented. See also Tables 2.2, 2.3 and 2.4 for a listing of the most important results.

o Theorem 2.7 The continuous-time iteration WR method (2.53) for the so-

lution of the VIDE with regular kernel (??), is uniformly convergent on all
bounded intervals [0, T].

« Theorem 2.10 The continuous-time iteration WR method (2.87) for the so-
lution of the VIDE with weakly singular kernel (2.21), is uniformly convergent
on all bounded intervals [0, T].

e Theorem 2.11 The discrete-time iteration TR method, using Gauss-Jacobi

or G: Seidel i i is

e Theorem 2.12 The discrete-time iteration TR method (2.128), for the solu-
tion of the VIDE with regular kernel (2.106), using ¢ Gauss-Jacobi or Gauss-

Seidel iterations, is convergent for g — 0o, for sufficiently small steplength.

Corollary 2.2 The discrete-time iteration TR method (2.128), for the solu-

tion of the VIDE with weakly singular kernel (2.107), using g Gauss-Jacobi

or G: Seidel i i is for ¢ = oo, for sufficiently small
steplength.
e Theorem 2.15 The discrete-time iteration TR method (2.128), for the solu-

tion of the VIDE with regular kernel (2.106), using ¢ Gauss-Jacobi or Gauss-

Seidel i ions and r-point collocation at the G points, has nodal order

min{2r,q+ 1}.

e Corollary 2.3 The discrete-time iteration TR method (2.128), for the solution
of the VIDE with weakly singular kernel (2.107), using ¢ Gauss-Jacobi or

4



G Seidel i ions and r-point collocation, has order of global convergence

l-a,for0<a<l.

Theorem 2.16 The discrete-time iteration TR method (2.146), for the solu-
tion of the VIDE with regular kernel (2.106), using ¢ Gauss-Jacobi or Gauss-

Seidel if i s Picard fixed-point i ions and r-point collocation at the

Gauss-points, has nodal order min{2r, g + 1,q + s}.

Corollary 2.4 The discrete-time iteration TR method (2.146), for the solution
of the VIDE with weakly singular kernel (2.107), using q Gauss-Jacobi or
Gauss-Seidel iterations, s Picard fixed-point iterations and r-point collocation,
has order of global convergence 1 — a for 0 < a < 1.

Theorem 2.18 The discrete-time iteration TR method (2.128), for the solu-

tion of the VIDE with regular kernel (2.106), using ¢ Gauss-Jacobi or Gauss-

Seidel if i s Newton i i and r-point coll ion at the Gauss-

points, has nodal order min{2r,q + 1,2q}.

Theorem 2.20 The discrete-time iteration TR method (2.128), for the solu-
tion of the VIDE with regular kernel (2.106), using g Gauss-Jacobi or Gauss-
Seidel iterations, s Modified Newton iterations and r-point collocation at the

Gauss-points, has nodal order min{2r,q + 1, (s + 1)g}.

Theorem 2.21 The discrete-time iteration TR method (2.168), for the solu-
tion of the VIDE with regular kernel (2.106), using g Gauss-Jacobi or Gauss-
Seidel iterations, s Picard fixed-point iterations, r-point collocation and r-

point i latory quad at the Gauss-points, has nodal order min{2r, g+




Lg+sh

o Theorem 2.22 The discrete-time iteration TR method (2.168), for the solu-
tion of the VIDE with regular kernel (2.106), using g Gauss-Jacobi or Gauss-

Seidel iterations, s Newton iterations, r-point collocation and r-point interpo-

latory quadrature at the Gauss-points, has nodal order min{2r, g + 1,2q}.

© Theorem 2.23 The discrete-time iteration TR method (2.168), for the solu-
tion of the VIDE with regular kernel (2.106), using ¢ Gauss-Jacobi or Gauss-

Seidel iterations, s Modified Newton iterations, r-point collocation and r-point

latory quad at the Gauss-points, has nodal order min{2r,q +
1,(s+1)q}.

Ci

‘Time ion WR Method:
The main results for this section are given by Theorems 2.7 and 2.10 which show

of the methods; see jon 2.5. However, from equations (2.58)

and (2.59) for Theorem 2.7 and equation (2.90) for Theorem 2.10 it is clear that the
error can be quite large on [0, ], for larger values of T. Therefore one may wish
to employ the idea of windows and subdivide the interval [0,T] so as to promote
relatively fast convergence on each of these subintervals; see Section 1.4.3.

Of course, our main concern in this thesis is the discrete-time TR iteration
methods and there we employ windows of length equal to the steplength; see Section
2.3.

Comparing Theorems 2.7, 2.8, 2.9 and 2.10, and Corollary 2.1 we will see that
continuous-time iteration WR methods for ODEs and VIDES are uniformly conver-

gent on all bounded intervals [0, 7], whereas VIEs ate only conditionally convergent.
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Therefore, VIDEs behave more like ODEs than VIEs.

Di: te-Time ion TR Method:

The remaining results concern discrete-time iteration TR methods which form
the basis for the computational solution of VIDEs. In Section 2.3.1 we show that
TR methods decouple an m-dimensional VIDE into a system of m one-dimensional
VIDEs which are then easier to solve and (depending on the iteration mode chosen)

easier to il on parallel

Theorem 2.12 and Corollary 2.2 show that the discrete-time iteration TR meth-
ods converge as the number of Gauss-Jacobi or Gauss-Seidel iterations ¢ — oo, but
we are not claiming that they supply the solution of the problems. We must first as-
sume an underlying numerical method, and we choose a collocation method, where
we take Gauss points for the regular kernel case. Theorem 2.15 essentially tells us
that if we take r (Gauss) collocation points, we will require ¢ = 2r — 1 iterations to
attain the optimal nodal order of 2r. It is not hard to see that this theorem can be
extended to methods using other collocation points.

Corollary 2.3 points to a limitation of these methods when applied to VIDEs
with weakly singular kernels, since the order of global convergence is limited to
1—a, 0< a< 1. This is clearly a direct result of a limitation of the underlying
numerical method; see Theorem 2.14. The good news is that applying a TR iteration
method to such an equation, in itself, is not adversely affected by the weak singularity
in the kernel.

In any realistic problem, Theorem 2.15 and Corollary 2.3 will not suffice. We

must progress to Theorem 2.21 for the regular kernel VIDE and similarly to Corollary
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2.4 for the weakly singular kernel VIDE (also see Remark, in Section 2.4). This
is because we usually cannot solve the resulting implicit algebraic equations and
integrals in closed form. Concerning the use of interpolatory quadrature, for the
regular kernel case, we assumed that this quadrature always employed the Gauss
points. However, other points could be used, although there will be an accompanying
decrease in optimal nodal order. Of course one can always use the same set of points
for the quadrature as for the collocation method, without any additional loss of nodal
order. See Brunner and van der Houwen (1986). Recall from Section 2.4 that we
are using natural discretizations.

Theorems 2.18 and 2.20 consider the case where we use a method of higher order
than simple Picard fixed-point to solve the resulting algebraic equations, namely,
Newton and modified Newton, respectively; Theorems 2.22 and 2.23 are the corre-
sponding discretized versions. However, all these results are disappointing, since our
nodal order is restricted to min{2r,q+ 1}, where we have r-point Gauss collocation,
r-point interpolatory Gauss quadrature and g Gauss-Jacobi or Gauss-Seidel inner
iterations. Clearly we attain the same nodal order by using just onc outer iteration
and it does not matter what method, Picard, Newton or modified Newton we use.
Therefore the increased cost incurred with the Newton or modified Newton is not
justified.

We conclude by giving the numerical results from various tests. We tested the
results of Theorem 2.16 with a linear test problem (Test Problem 2.1), the results of
Theorems 2.21, 2.22 and 2.23 with a nonlinear test problem (Test Problem 2.2) and
the results of Corollary 2.4 with a linear test problem with various weakly singular

kernels (Test Problem 2.3).



Future Work/Open Problems

Finally in Chapter 3, we conclude with a list of topics for future work that include
some open problems. For example, to promote faster convergence, different window-
ing and different splitting functions could be utilized, for both the continuous-time
and discrete-time WR methods. And in the case of discrete-time TR methods, a
higher order inner iteration scheme, like the Newton method, could be applied to
take full advantage of the higher order outer iteration schemes, like the Newton and
modified Newton methods. Also, a variety of collocation points and interpolatory
quadrature formulae could be employed in the underlying numerical method. The
two main open problems coming from the thesis are numerical stability of VIDEs,

and the poor convergence of VIDEs with weakly singular kernels.

1.3 Ordinary Differential Systems
We are first concerned with the solution of the initial value problem (IVP)
Y(t)=ft,y), y0) =y, t€0T] (1.1)

where y is a vector on ®™, f : [0,T] x ®™ — ®™, 0 < T < oo, and we assume that

the function f is continuous and satisfies a Lipschitz condition in y. The idea behind

waveform relaxation methods is already ined in the historical h taken
by Picard. That is, a sequence of solutions y!(t),y%(t),...,y"(t), is constructed,
where the initial solution y°(t) is assumed given, and it is hoped that the sequence
converges to the solution y(t). This means that we solve a sequence of differential

equations
:‘:"'(‘) = f(ty'™h), telo,T], (1.2)
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¥(0) = o,

or equivalently,
.
(t) = at
V(O =0+ [ Sy (s))ds,
q = 1,2,.... Clearly, we have decoupled the m-dimensional system into m inde-
pendent quadrature problems. As pointed out by Burrage (1995), this approach is
“embarrassingly parallel”, with updating being the only interaction necessary be-

tween U ly, the of this method is very slow,

and we must search for more efficient algorithms. Thus we consider other iteration
schemes which give more efficient methods.
We choose a function G : [0, T] x ®™ x R™ — R™, such that
Gt u,u) = f(t,u),

for all ¢ € [0,7] and for all u € R™. Assume that the initial solution y°(t) is given
and compute a sequence y'(t), y2(£), - .., y%(t), of solutions of the equations

d -1

V'O = G yThy), te[nT], (1.3)

¥(0)

Yo,

or
€ 1,
V(O =vo+ [ Gyls,y7(s),87())ds,
g=1,2,..., which converges to the solution y(t) of (1.1) as q — co.
These solutions are called waveforms and the function Gy is called a splitting
function, since it defines how the problem is to be split up into subsystems. The

following iteration schemes are possible:

10



 Picard Iteration
Gy(t,u,v) = f(t,u).
e Gauss-Jacobi Iteration
Gy(t,u,v) = filtyury- o Uit Uiy Uity oo s Um)s
fori=1,2,...,m.
e Gauss-Seidel Iteration
Gty u,v) = fi(h V1, ... Vi, Vi Uity -y Um),
fori=1,2,...,m.
e Newton Iteration
Grtty) = 1)+ Zitlpmale ol
The methods employing Picard and Gauss-Jacobi iteration are fully parallel,
but have the disadvantage that large quantities of past data must be stored. This

can be a computational difficulty if the dimension of the system m is large. On

the other hand, methods using Gauss-Seidel and Newton iteration schemes avoid

this problem, but do not lend themselves to efficient impl ion on parallel
hi C ing speed of gence, we suggest that the reader consult

Burrage (1995), Chapters 7 and 8.

Time I ion WR. Method

1.3.1 C

These methods given by (1.3) are called continuous-time iteration WR methods,
since they do not involve yet the discretization of the time interval and the appli-

cation of numerical methods to solve the resulting differential equations. There is

11



much that can be said about the convergence rates of each of these iteration schemes,
especially, for particular problems (e.g. linear), and we refer the reader to Bellen
and Zennaro (1991, 1993), Burrage (1995), Chapter 7, 't Hout (1995) and Burrage
et al. (1996).

For example, assume the function f in (1.1) is continuously differentiable and

satisfies a Lipschitz condition, in some norm [| - [|, with constant L, i.e.
£t 31) — £l < Lllvs — w2l

for all y1,y; € R™ and all ¢ € [0, T]. In addition assume that the splitting function

G/(t,u,v) is continuously differentiable and satisfies the following Lipschiz condition

in u and v, with Lipschitz constants Ly, L,, respectively,

IG(t,1,9) = Gy(tyua, )| S Lullus — wals iy
G (tyu, ) = Grltywyoalll S Lallos = wall ’

for all uy, uz,v1,v; in ®™ and ¢ in [0,T]. Then the resulting WR method (1.3)
converges uniformly in [0, T], where
L,T)?
5" = vllr < exp(La?) LT 140 — ylir, (L3)
q = 1,2, Note that we are referring to the usual maximum norm from the

Banach space of continuous vector valued functions, defined on [0,T],

lylir := maxiepmlly()ll,
inherited from any vector norm of R™. See Bellen and Zennaro (1991) and Burrage
(1995), Theorem 7.9.2
One can also give convergence results, where the two-sided Lipschitz constant
Ly of the splitting function G with respect to the second argument is replaced by

a one-sided Lipschitz condition, see Burrage (1995), Theorem 7.9.3.

12



1.3.2 Time Discretization

Since (1.3) can seldom be solved in closed form we must discretize the time interval

0,7] and apply a ical method to imate the solution. Numerical meth-

ods generally fall into the two categories of linear multistep (LMS) and one-step
methods (typically Runge-Kutta). Since this thesis concerns collocation methods,
which are continuous implicit Runge-Kutta (IRK) methods, we give a few standard
results. See Hairer et al. (1993) and Lambert (1991).

Consider a partition Iy : 0 =to < t; < -+- < In =T, tnyy — tn =: h, for
n=0,1,...,N — 1, where the points {t,}/_, are called the mesh points or nodes.
The approximation yn41 to the exact solution y(tn41) of (1.1) is given by an r-stage

Runge-Kutta method,

Yart = yn+hY biki (1.6)
=
ko= /(z.+qh,yn+hza;ik,), i=12...,n
=

n=0,1,...,N — 1. Assume that the row-sum condition always holds:

a=Y e
=

The coefficients occurring in the method are often displayed in a Butcher array:

] c|A
or simply 5




upon defining the r-dimensional vectors ¢ and b and the r x r matrix A:
c=lenea-nelT, b=[bibyy.. b]T, A=lag]

© We say that an RK method is explicit if:

a; =0, if j2i, j=1,2,...,r A strictly lower triangular.

® We say that an RK method is semi-implicit (or diagonally implicit) if:

, if >4, j=1,2,...,7 & A lower triangular.

e We say that an RK method is implicit if:

aij #0, for some j > i, A not lower triangular.

Runge-Kutta methods are discrete, in that they yield approximations only at the
mesh points. However, if interpolation is added, can they be defined throughout the
interval [0, T, in which case we call them continuous methods. Collocation methods,
on the other hand, are defined over the interval [0,T] and therefore have a natural
interpolation built into their definition. They are therefore examples of continuous
IRK methods.

Collocation methods involve choosing a unique function (usually a piecewise
polynomial) by the condition that it satisfies the given problem, (L.1), at a given
set of points called the collocation points.

Note: These pi i 1 ials are called pol; ial splines and a colloca-

tion method utilizing them is called a polynomial spline collocation method. Since

14



such methods are prevalent and since we exclusively deal with this type of collo-
cation method in this thesis, we will refer to them simply as collocation methods.
°

Recall the partition Ty : 0 = to < &) < - < ty = T, tags — ta =: h,
forn = 0,1,...,N — 1, and let Zy := {tn : m = 1,...,N — 1} be the set of
interior points. Also let Zy := Zy UT, and define the intervals oo := [0,t,] and
Gui=(tastasth n=1,2,...,N = 1.

Given integers r and d satisfying —1 < d < r — 1, and letting , denote the
space of real polynomials of degree not exceeding r, we define the finite-dimensional
space SE(Zy) of (real) polynomial splines of degree r and continuity class d, with
the knots Zy:

S9(Zy) := {n € CX[0,T)) : Non :=Tm € Tr,n =0,1,...,N —1}. (L7)

Note that S((Zy) is a finite dimensional subspace of C¥([0,T]), and

dim S9(Zy) = N(r—d)+d+1, —-1<d<r—1 (1.8)

The two most useful cases are d = —1, in which the functions may have jump

discontinuities at the knots Zy, and d = 0, in which we have continuity over all of

[0,T]. The latter case is most useful for ODES (although d = 1 is also used), and the
former for VIEs. See Brunner and van der Houwen (1986) and Brunner (1998).

Associated with this partition Iy we consider the collocation points Ty :=

{ta+cih;j=1,2,...,r; n=0,1,...,N—1}, where 0 < ¢; < s < -~ <& < 1,

and choose a continuous piecewise polynomial  of degree at most r which satisfies



(1.1) on the set Tiv. More precisely, we wish to determine n € S{%(Zy), so that
7(t) = f(tn), n0) =y, for teTn. (1.9)

Since this equation defines the collocation method, it is called the collocation
equation. To show the connection between collocation methods and continuous
IKR methods choose 7 € S®(Zy). Then n(t, + Th) represents the approximation
to the exact solution y(tn + Th) of (1.1) given by this collocation method, where
re[o,1].

Then the collocation equation becomes
7' (tn + c;h) = f(ta + cih,n(ta + c;h)), - 1(0) = yo, (1.10)

1,2,...,m, n=0,1,...,N - L.

Note that there are Nr collocation conditions plus the given initial condition
n(0) = yo; this number equals the dimension of the space S{(Zy); see (1.8). There-
fore, since n'(tn + Th) € Ty, forn = 0,1,...,N — 1, and 7 € (0, 1], we can use

Lagrange polynomial interpolation to get

7t + 7h) = 3o 1/t + i) (),

where L;(r) are the fund I Lagrange polynomial
T To
Li(r) = l;I ey (1.11)
k#j

Then
Ata+7h) = n(ta) +h [ 1(ta+ vh)dv, TE[0,1],
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which becomes

ntn+78) = nt) + 4 [ (’i et c,-ln)L,'(v)) do,
=

or,
n(ta +7h) =n(t-)+hz’:a,-(r)n,», (1.12)
where B
ai(r) = [ Litwdv,
and

Yos =0'(ta + c;h) = f(tn + cihyntn + c;h)), (1.13)

j=12.mn=0,1,...,N—1
Using (1.12) we can rewrite (1.13) to get the following form of the collocation

method for the solution of (1.1):
Nta+7h) = nta) +hY ei(r)Ya; TE[0,1], (1.14)
=
Yoi = f (t. +6ha(ta) +h Zm(c,»)m) s i=L2.n
=

wheren =0,1,...,N - 1.
It is clear that for & > 0 sufficiently small, the resulting collocation method (1.14)
is defined throughout the interval [0,7] and is therefore a continuous numerical

method. Setting 7 = 1, (1.14) becomes
Ntarr) = 1ta) +h 3 ai(DYaj, TE[0,1], (1.15)
=

Yos = f (tn () ou(6Was) i = 12,
=

17



where n = 0,1,...,N — 1. It is easy to see that (1.15) is equivalent to the r-stage

implicit Runge-Kutta method (1.6) with coefficients given by:
aje = au(c;) =[’ Li(r)dr and b; = a;(1) =L' Li(r)dr, jk=1,2,...,r.

For easy reference, we put this result in the following theorem. See also Hairer
et al. (1993).
Theorem 1.1 (Guillow and Soulé 1969, Wright 1970) Consider the initial value
problem given by (1.1) and suppose it is solved by collocation based on the collocation
points 0 < ¢, < €2 < -+ < & < 1 in the polynomial spline space S{°(Zy), leading
to the method given by (1.15). Then this method coincides on the nodes Zy with the
implicit Runge-Kutta method given by (1.6).

In order to quantify the ion of errors in a ical method, we consider

the concept of order.

Definition 1.1 The Runge-Kulta method (1.6) has order p, if for all sufficiently
smooth problems (1.1),

lly(h) = wll < CR?*!,
Jor some constant 0 < C < oo, where y is the ezact solution and y, is the numerical

solution generated at t, = h.

Note that this is equivalent to requiring that the Taylor series for the exact
solution y(h) and the Taylor series for the numerical solution y;, expanded about
Yo, are identical up to and including the A? term. See Lambert (1991), Section 5.2,

where he discusses the concept of the local truncation error. We call e(h) := y(h)—y
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the local error at h, since it involves the local error committed at the first step in the
iteration, see Hairer et al (1993). This definition can be extended to any step, if we
impose the localizing assumption, which assumes that all “back values” are exact;
see Lambert (1991).

Recall the asymptotic symbol O.
Definition 1.2 For functions f(z) and g(z)
f(z)=0lg(z)], asz—ra,

where a is a constant, if for some constant C

)l
lo(a)] = ©

sz a.
See Kahn (1990).

Using this notation, we now say that a method of order p, has a local error
O(h?*), where it is clear that this involves the limit as A — 0. If no localizing

assumption is made,
Eng1 = Y(tnt1) =Ynt1, n=1,2,...,N—1,

is the global error at tn4; and includes the accumulation of errors after several steps.
This always leads to a loss of one power of A in the order. If the local error is
O(h?*), then the global error will be O(h?). See Lambert (1991), Section 3.5 for
a nice discussion of these ideas through specific examples, or Hairer et al (1993),

Section I3 for a formal proof.



Definition 1.3 If a Runge-Kutta method (1.6) defined by Lf—;‘f-, satisfies the
condition

Yag Tt =cle, o=12...,1

=

then it is said to satisfy one of Butcher’s simplifying assumptions, namely, C(r).

We now state the following ch ization of collocati hods; see Hairer

et al. (1993).

Theorem 1.2 (Hairer et al. 1993) A continuous implicit Runge-Kutta method with

distinct ¢; and order at least  is a collocation method iff C(r) is true.

Since a continuous method is defined throughout the interval [0, ], we can con-
sider the question of order at any or all point(s) in this interval. Therefore for
collocation, we can talk about the order of global convergence throughout the inter-
val and the order of local convergence at specific points; for example, at the nodes.
Care should be taken not to confuse these two notions with the terms local error
and global error, defined previously. Because of their importance in the thesis, we

itemize these two definitions.

e If y is the exact solution and 7 is the numerical (collocation) solution (1.14),

to the problem (1.1), then if
lle(®)ll == lly(t) = a(0)ll = O(R?),  t€& Zn,

the numerical method has nodal order p.
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o If y is the exact solution and 7 is the numerical (collocation) solution (1.14),

to the problem (1.1), then if

llellz = max {lly(t) — ()1} = O”),

the numerical method has order of global convergence p (throughout [0, 7]).

Theorem 1.3 (Hairer et al. 1993) The r-point collocation method, given by (1.14),
based on the space S©(Zy) in general has order of global convergence r throughout
[0, T], when applied to the solution of (1.1), if f is r times continuously differentiable.

Houwever, if the {c:} satisfy the condition
i
[ Tt —eds =0,
0 =1

(i.e. if the degree of precision of the quadrature formula is > r) then the order is

r+1.

However, the nodal order may be greater than r; this is called local superconvergence.
For example Gauss, Radau IIA, and Lobatto ITIA are collocation methods with nodal
orders 2r, 2r — 1, and 2r — 2, respectively.

See Lambert (1991), pp. 194-196, and Hairer et al. (1993), pp. 211-214, for
more related details. Brunner (1998) gives a general survey of the application of

llocation to the ical solution of di ial and Volterra integral equations.

1.3.3 Discrete-Time Iteration WR Methods

The name discrete-time iteration WR methods refers to waveform relaxation meth-

ods that involve discretization of the time interval and application of numerical
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methods to solve the resulting differential equation (1.3). For example see Burrage
(1995), Chapter 8, for the case where the underlying numerical method is linear
multistep.

Consider a partition Iy : 0 = to < t; < -+ < ty = T, tayy — tn =: h, for
n=0,1,...,N — 1, and divide the integration interval [0, 7] into  subintervals,
called windows, each of length Nh, i.c.

0,7 = ‘U-l[sw, (s + 1)hN],

where N = L. Then the discrete-time WR method is applied, in turn, to each

window.

Definition 1.4 In a discrete-time WR method, if N' = 1, that is, the window length
coincides with the step length, h, then the method is called a time-point relazation

(TR) method.

Following Bellen et al. (1993), we study discrete-time iteration TR methods
involving the Gauss-Jacobi and Gauss-Seidel iteration schemes and consider in this

paper the use of collocation as the underlyis ical method. Bellen et al.

(1993) employed continuous Runge Kutta (CRK) methods with interpolation given
by natural continuous extensions (NCEs). As we stated in Section 1.3.2, collocation
methods have a natural interpolation built into their definition.

Let =(t) be any component yi(t) of the exact solution y(t), of the problem above

given by (L.1), i =1,2,...m. In addition, we define

v v(t) = [ () visa(t), - ym ()]

u(t) = [ui(8), va(t), - -
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The problem can then be written component-wise as:
F) = ftuzv),  20)= (%)

where we have suppressed the subscript i, by letting it be understood that the i‘*-
component of f is used. We assume that the (continuous) approximation n(t) to the

solution y(¢) has already been computed for ¢ € [0,t,]. To find the approximation

Zu(t) of the cor ding it of n(t) d by the ical method

for t € [tn,tas1] we consider first, the continuous-time iterations

20 = St o)
#) = mit),

..., m. This requires that we define the initial guess for these

=1
components when ¢ = 0, and although it is arbitrary, Bellen et al. (1993) take it to
be the components of the constant function 5(ts). That is, for all t € [tn,ta41)yn =

0,1,...,N -1

w(t) = [0, 450, ¥ (O] = [ltn)s maltn), - Mima(2n)),

1) = (0,80 (O] = Miaa (ta)s Misa(ta), - -y ()],

where n(0) = yo. We will take a slightly different approach in this thesis and
therefore get a better nodal order; see Remark, in Section 2.3.7.
Collocation is now applied to generate approximations for each iteration and for

each of the components of y. This is continued for either a fixed number of iterations

or until some measure of the diffe between two i i i is

less than a given tolerance.



We now look more closely at the form the collocation will take. Given the set
of collocation points T = {tx + &iAi7 = 1,2,...,75 1 = 0,1,....,N — 1}, where
0<c¢; < <...<¢ <1 the method becomes:

Zi(tat7h) = Za(ta) +h _ila,(r)y:J, refo.1) (1.16)
<
Vi = f(ta+cih,ui (b +ch), Za(ta)
+ h Z () Yilk o3 (ta + c,h)) v, TR eah
P

As explained calier, we bave suppressed the subscript #, by letting it be under-
stood that the i%-component of both the function f and the ¥ is used. Also, we
have extended the definition of u(z) and u(2) to un(t) and vy(t), respectively.

‘The itecations in the above method ate of Gauss-Jacobi type; see Section 1.3.
Note that we compute all the components of 1(t) for ¢ € [tn, bnsa] before we “up-
grade” to the new values. That is, we do not use the “new” 7;(t) to compute the
remaining components, even though we have calculated it. In the Gauss- Seidel iter-
ations, we use the Dew compoocats of n(Z) as 5000 as they are computed. As before,

we first consider the continuous-time iterations
LW = Sl
F(ta) = mlta),
g=1,2,..., i=1,2,...,m, and for ¢ € [ta,tusilyn =0,1,..., N — 1, and let
() = [0, 53(0), ... ¥ (O] = [m(ta), maltn), - i (t)],
W) = [yl (1), ¥ha(t); - ¥ (O] = (s (ta), misa(tn)s - - T ()]s
where 7(0) = yo. Again, collocation is now applied,
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Z3(ta+7h) = zn(t.)+h):a,(rm,, rel (117)
Ve = St bt + ) Zulte)

+ A Zm(cj)Y' e +CI‘II)) o =12
=t

We refer the reader to the discussion at the end of Section 1.3 of the relative merits
of these iteration schemes. In any case, a standard contraction principle argument
shows that for sufficiently small A, these methods (1.16) and (1.17) are well defined
and converge to the same limit as g = 00. As far as order conditions are concerned,
Bellen et al. (1993) give the following theorem, which [ have adapted for collocation

methods.

Theorem 1.4 (Bellen et al. 1993) Assuming the function f in (1.1) is sufficiently
smooth and the underlying collocation method has order p*, then the order of methods
(1.16) and (1.17) is p = min{p",q}, for q iterations.

Stopping Error

Since all collocation methods are implicit Runge-Kutta methods, they involve the
solution of systems of implicit nonlinear algebraic equations. This clearly involves
some iterative method, which can be a Picard fixed-point iteration or some variant of

the Newton method. Picard iteration increases the order of accuracy by one at each

iteration, Burrage (1995). This slow rate of gence can be often

s0 we are led to consider Newton-type iterations, and in the “stopping”
error involved. Sugiura and Torii (1991) derived estimates of the Newton stopping

error by using results originally due to Kantorovich and Akilov (1982). Later Spijker

25



(1994) considered the effect of these errors on the order of the underlying Runge-
Kutta methods.

In Section 2.3.9, we consider the case where Newton’s method is used to solve
the system of implicit algebraic equations appearing in (1.16) and (1.17). We refer
the reader to Theorem 2.18.

Evaluation of the Jacobian in Newton’s method can be very expensive, especially
if it must be continually updated. Therefore, one often uses the modified Newton
method, in which the Jacobian is evaluated once, and this value is used in all sub-
sequent calculations, Lambert (1991). We therefore get new stopping errors, and in
general, a reduction in order. We refer the reader to Section 2.3.10 and Theorem
2.20.

However, as stated in Section 2.3.10, the use of high order methods to solve the
implicit algebraic equations is not justified. See the discussion in that section and

Table 2.1.

1.4 Volterra Integral Systems

After considering ODEs, it is quite natural to try to extend these methods to Volterra

integral equations and integro-di ions. In the papers by Crisci, et al.
(19962,1996b,1997a), the authors apply WR techniques to VIESs: they are concerned
with the solution of the second kind VIE

y(t) = f(t)+L‘lc(t,s,y(s))ds, teo,7], (1.18)
where y is a vector on ®™, f : [0,T] = R™, k: § x R™ — R™, where 0 < T < 00
and S = {(t,5) :0 < s < t < T}. For its theory, see Miller (1971) and Gripenberg
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et al. (1990).
In this thesis we will study Volterra integro-differential systems (VIDEs) which
involve, in a very natural way, elements from both ODEs and VIEs. The non-linear

Volterra integro-differential equation of interest is given by:
.
¥'(t) = f(t.,y) +/a k(t,s,y(s))ds, y(0)=w, te€[0,T], (1.19)

where y is a vector on ®™, f : [0,T] x R™ — ®™, k : § x R™ — R™, where
0<T<ocoand S ={(t,s):0<s<t<T} Weassume that the function f is
defined and continuous on the bounded interval [0, ], the kernel k is defined and
continuous on the triangle S and both f and k satisfy Lipschitz conditions in y.
Then, (1.19) possesses a unique solution y € C'([0, T]). Recently, Crisci et al.
(1997b) have been looking at WR methods applied to VIDES, with regular kernels.
A Volterra integro-differential equation can be considered a differential equation
with a “memory” term, or lag term, that is represented by the integral. Therefore,
unlike a differential equation, which depends only on local information, a VIDE

depends on global information. That is, it considers its whole “past history”, as

does a VIE.
Again, the simplest iteration scheme is Picard or fixed-point iteration. That is,

we construct a sequence of solutions y(£),4%(%), -, ¥?(£), by solving the equations:
yo(t) = f(t) + /; K(t,s,57" (s))ds, te€[0,T], (1.20)

¢=1,2,..., and we take y°(t) = f(t), which converges to the solution y(t) of (1.18),

as g — oo.



In the case of the VIDE (1.19) we have
d .
FYO = Sy + [ Kesy i) te0 7] (21)
¥(0) = v,
g=1,2,...and y°(t) is arbitrary, with y7(t) converging to the solution y(¢) of (1.19),
as g co.
Unfortunately, as with ODEs (see Section 1.2) the convergence of this method
is very slow and we must search for more efficient algorithms. Thus, we choose a
splitting function Gi : § x ™ x R™ — R™, for the kernel k(t, s, y) such that
Galtssu,w) = kit 5,u),
for all (t,s) € S and for all u € ™. We consider the Volterra integral equation,
(1.18).
Compute a sequence y'(t),y*(t),...,y%(t), of solutions of the equations
.
V(O = [0+ [ Glts vy )y ()ds, te0T]  (122)
Lo = 1),
q = 1,2,..., which converges to the solution y(t) of (1.18) as ¢ — co. As before,
we refer to these solutions as waveforms. Again, the following iteration schemes are

popular (see Section 1.3).

o Picard Iteration
Gty s,u,v) = k(t, s,u).

e Gauss-Jacobi Iteration
G(ty s, uyv) = Kilty 8,1y -y Uimty Uiy Uity -+ ),
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fori=1,2,...,m.
e Gauss-Seidel Iteration
Gty 5,u,0) = ki(t, 5,01, ., Victy Uiy Uity - - s Um),
fori=1,2,...,m.

o Newton Iteration
k
Giltys,uyv) = k(t,5,u) + 5 (85, y)ly=ulv — ).

For the Volterra integro-differential equation (1.19) we must also choose a split-
ting function Gy : [0,7] x R™ x R™ — R™, where 0 < T < oo, for the function
f(t,y) such that

Gy(t,u,u) = f(t,u),
for all ¢ € [0, T) and for all u € R™. See Section 1.3, for typical forms of G .
Then we compute a sequence y'(t),3%(t),...,y%(t), of solutions of the equations

2@ = Gty ) + [ Gultusy™ ) ()ds, te[0,T] (129)
v(0)

Yo

¢=1,2,..., and y°(t) is arbitrary, which converges to the solution y(t) of (1.19) as
q— 0.

We may use any of the iteration schemes mentioned above for G and any of the
iteration schemes mentioned in Section 1.3 for G;. See the discussion at the end of

that section which compares the four iteration modes.



1.4.1 Continuous-Time Iteration WR Methods

Recall that these methods given by (1.22) and (1.23) are called continuous-time
iteration WR methods, since they do not involve the discretization of the time
interval and the application of numerical methods to solve the resulting Volterra
equations.

In the case of the Volterra integral equation (1.18), see Crisci et al. (1996a) for
convergence results for the continuous time WR method (1.22). For example, it
is shown that if the splitting function Gi(t,s,u,v) satisfies the following uniform

Lipschiz condition in u and v, with Lipschit: L, and L, respectively,

IGk(t, 5, u1,v1) = Gi(ty s, u2,02)l| < Lallur = wa| + Laflvr — valf, (L.24)

for all u;,us,v;,v; in R™ and for all (¢,s) € S, then the resulting WR method

converges in [0,7;], where

1
B
Li+ L2

(see Crisci et al. (1996a)). Note that we are referring to the usual maximum

T

norm from the Banach space of conti vector valued functions, defined on [0,T]

inherited from any vector norm of ®™. (Note: I beleive the WR method converges,
as in the VIDE case, on any bounded [0,7]. See Theorem 2.7).

These authors also show that convergence of (1.22) can be extended to any finite
interval [0, 7], if a linear kernel is assumed in (1.18). In addition, they consider the

following linear convolution kernel

k(t,s,y(s)) = [A+ B(t - $)ly(s),
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for (1.18) and show that gence of (1.22) can b ded to the infinite interval

[0, 00).
The case of Volterra integro-diffe ial ions will be idered in Chapter

2 of this thesis. We will see that VIDEs have more in common with ODEs than
VIEs, with regard to convergence results. For example, assume that, in line with the
ODE case and the VIE case, the splitting functions for f and  satisfy conditions
(1.4) and (1.24), respectively. Then the method converges uniformly for all finite

T >0, and a result similar to that given by (1.5) can be given, see Theorem 2.7.

1.4.2 Time Discretization

In analogy with the case for ODEs in Section 1.3.2, (1.22) and (1.23) can seldom
be solved in closed form, so we must discretize the time interval [0, 7] and apply a
numerical method to approximate the solution. Therefore, we consider the numerical
solution of (1.18) and (1.19). We can use a linear method (VLM) or a Runge-
Kutta method (VRK), see Brunner and van der Houwen (1986), Chapters 3 and 4,
respectively.

Consider a partition [y : 0 = #o < t; < ... < ty = T, tay; —tn = h, for

n =0,1,...,N — 1. We deal with the Volterra integral equation and the Volterra

integro-differential equation
Volterra integral equation:
Rewrite (1.18) in a form related to this partition:

y(t) = Fu(t) + h®n(t), tE [tastasa], n=0,1,...,N -1, (1.25)
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where the expression F, defined by

Fut) = f(t) +/ﬂ" k(t,5,(5))ds, L€ [tmrtnss)y n=0,1,...,N—1,

is called the lag or tail term, and the function ®,(t), defined by

80.(0) = [ Mes,u(&)ds, tEltntani], n=0,1,.., N =1,

is called the (exact) increment function for the interval [t,,f.4]. The numerical

method must now approximate both the lag term and the increment function. In

general, these are independent problems.

Let 4 represent the approximation to the exact solution y(tns.) of (1.25), and

let us use an r-stage Runge-Kutta method to generate these approximations. This

leads to the Pouzet-Volterra-Runge-Kutta method (PVRK):

Ynt1

@.(t)

Yoi

Fi(1)

n=0,1

Fulta + h) + h®,(ta + h), (1.26)
3 bik(t,ta + ek, Vo),
=
Fultn + cih) + A Y aik(tn + b, ta + c5h, Ya ),
=
i=1,2,...,r

FO+h S S bkt + b, Vi),
==

Volterra integro-differential equation:

Rewrite (1.19):

Y(t) = f(t,y)+ Fu(t) + h®a(t), L€ [ta,tan], n=0,1,...,N —1, (1.27)

32



¥(0) = o,
where we call
tn
A= [Tkt s u6)ds, e lttanl, n =01, N =1,
the lag or tail term; the function ®,(t), defined by
.
hon(t) = [ bty y()ds, tEltmtuna) n =01 N~ 1,
tn

is called the (exact) increment function for the interval [tn, tny1]-

As in the case of VIEs, the numerical method must now deal with the two

(independent) problems of imating the lag term and the increment function.
However, the VIDE has the additional ODE-type problem due to the term f(t,y).

As in the case of VIEs, we use an r-stage Runge-Kutta method to generate
the approximation a4 to the exact solution y(tas1) of (1.27). This leads to the

Pouzet-Volterra-integro-differential- Runge- Kutta method (PVDRK):

Yot = Yt B30 b {Fltn + cih Yai) + Falt + cih) + ho(ta +cih)
=
n=0,1,...,N—1, (1.28)
Yoi = tnth 3o {Fltn + ek Yos) + Fulta + cih) + halts + )}
P
= Lol

Bulta +cih) = Y ajk(ta +cihytat+ah,Yoy), j=12,...,m,
=

et o
Fit) = Y S bk(t,ti+chY,), n=01,...,N—1
=1

(1.29)
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A VRK or VDRK method, whose lag term formula is as in (1.26) or (1.28), is
called an eztended PVRK or PVDRK method, respectively. Note that these methods

are completely characterized by their Butcher arrays:
c
)

and the corresponding RK methods for ODEs is called the associated RK method.
Recall the definition of order of RK methods (for ODEs) given by Definition 1.1,
and subsequent discussion. Clearly these definitions apply to the case of Volterra
cquations. See Brunner and van der Houwen, (1986), Chapter 4, for the following

result.

Theorem 1.5 (Brunner ct al. 1982, Lubich 1981 and 1982) If the associated
Runge-Kutta method of a Pouzet-Volterra-Runge-Kutta method or a Pouzet-Volterra-
integro-differential-Runge-Kutta method has order p, then these methods have order

p-

Recall that the row-sum condition always holds:

.
=3 a
=
and in analogy to RK methods for ODES, we can define explicit, semi-implicit and
implicit PVRK and PVDRK methods; see Section 1.3.2.

d coll methods as of

In Section 1.3.2 we di

implicit Runge-Kutta methods for the solution of ODEs. The same discussion is
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relevant to Volterra equations. Our focus is on Volterra integro-differential equa-
tions; for Volterra integral equations many similar techniques apply. See Brunner
and van der Houwen (1986).

We now extend collocation methods to Volterra integro-differential equations (see
also Brunner and van der Houwen (1986)). Volterra integro-differential equations
will employ conti llocati imations in the space S©(Zy). Collo-

cation for the solution of the Volterra integro-differential equation (1.19) can be
derived in a completely analogous fashion to the derivation of collocation for the
solution of the ODE (1.1). See Section 1.3.2.

Recall the partition Iy : 0 = to < t; < -++ < ty = T, taps = ta =t h, (for
n=0,1,...,N—1), the set Zy := {ta :n = 1,2,..., N — 1} of interior mesh points,

and Zy := Zy UT. Also, recall the set of collocation points Ty = {t, + c;hi j =

1,2 n=0,1,...,N -1}, where0< ¢ < <--- < < 1.
Consider collocation on S(9)(Zy) for the solution of (1.19), that is, choose 5 €

S((Zy) such that
70 = ftn)+ [ Kesa(shds, n0)=tw, t€Tw.  (130)

Note that there are Nr collocation conditions plus the given initial condition
7(0) = yo; this number equals the dimension of the space S{°)(Zy); see (1.8). There-
fore, since, n'(tn + Th) € Ty, for n = 0,1,...,N — 1 and 7 € (0,1], we can use

Lagrange polynomial interpolation to get

7t +7h) = S (ta+ )Y, T E 0,1,

| Lagrange polynomials,

d

where Lj(r) are the fi
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L= I 2=
i

=1 GG
k#5

Then
.
Htn +Th) = nlta) + h/o 7 (tn + vh)dv,

which becomes
(ta+Th) = n(ta) +h Y a;(r)Ya;, TE[0,1]
=

Yo

St shonltn + ) + [kt + ciby,1(0))d

L7 ktn + v,
e
forn=0,1,...,N — 1, where

a;(r) = fo L;(v)dv.

These equations can then be written as

Altn +7h) = n(ta) +h S a(r)Vass TE[0,1] (1.31)
Yai = 1 (1t ashunttn) 4 E an(e¥er)
=
+ Ay /' K (tn + cihy i+ Thyn(t + Th)) dr
1=0 70
+ [k (t,. + syt +7hy7(ta) + hg ak(r)yu) &

forn=0,1,...,N - 1.



Observe that the collocation solution defined by (1.31) is not only defined through-
out the interval of definition [0, 7], but in fact, is continuous there, as well. Such a
method is called ezact since the integrals appearing have not been approximated by
suitable quadrature formulas. For most realistic problems, it will not be possible to
evaluate these integrals in closed form, but they will have to be approximated. This
leads to fully discretized methods. In light of the importance of these considerations,
we give a few relevant results on numerical quadrature. See Brunner and van der
Houwen (1986), Chapter 2.

Discretized Methods
Consider the integral
19)= [ a0,
where a and b are finite and a@ < b. Then the numerical approximation I.(¢) to I(¢)

is given by

L) = Y- casbltas), (132)
&

where the points tno < tng < *** < tan are called the abscissas and do not nec-
essarily lie in the interval [a,5]. We call the {ca;}7o the coefficients or quadrature
weights of the method. Also we call

Ea(9) = 1(8) - 1n(#)
the quadrature error and I,(®) the (n + 1)-point quadrature formula. We say that a
quadrature formula is ezact for a function ¢ if Eq(¢) = 0.
Definition 1.5 A quadrature formula has degree of precision q if it is ezact for all
polynomials ¢ of degree not ezceeding q, but if En(t7+') # 0.
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Let us interpolate the function ¢ by L polynomial i 4
Palti 6] = 30 8{tn ) Lns(0),
=

where p,[t; @] is the polynomial interpolation of ¢(t) at the n +1 points tng < tni <

«+- < t, . not necessarily lying in the interval [a,b] and the L., ; are given by (1.11).
Then the quadrature weights in (1.32) are given by

g /‘ Lo j()dt. (1.33)
Such a formula is called interpolatory, and since the coeflicients are unique, we get
the following result.
Theorem 1.6 (Brunner and van der Houwen 1986) A quadrature formula based on
n+1 (distinct) points is of interpolatory type if and only if its degree of precision q
is greater than or equal to n.

See Brunner and van der Houwen (1986), Section 2.1.2.

Therefore an (n + 1)-point interpolatory quadrature formula has a minimum
degree of precision equal to n. However, this degree of precision can be exceeded for
particular choices of the abeissas {t. ;}. The maximum degres of precision possible
is 2n + 1 and occurs when the Gauss points are taken as the abcissas. We then get
the Gauss-Legendre formulas. See Brunner and van der Houwen (1986), Section 2.3.

We now assume that interpolatory quadrature based on the abscissas {t, +cih :
i=1,2,...,r} is used to approximate the integrals in (1.31). This will lead to the
Jfully discretized method. Find 5 € S©(Zy) from:

(ta+7h) = n(ta) + hzr:a,v(r)Y,.J, T€(0,1] (1.34)
i=1
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Yo = f (:.‘ +eihn(ta) +h 3 aule;)Ya ,,)
=
s
+ R Y a(1)k(ta + cih, to + cih,n(t: + cxh))
==

+ A axlei)k (t. + by tn + cehon(ta) +h i“-(ck)yn.c) ’
= -~

i=42,...,1,

forn=0,1,...,N - L
Next, setting 7 = 1, (1.34) becomes

Mtst) = nlta) +hga,-(x)yw-, (1.35)

Yo = 1 (et +h E aule))
=

Aty
+ kY Y aw(1)k (tn + by ty + cehyn(t + cih))
=
+ A ek (., ekt chialta)+ hZa.(q)v.,) ,
k=1 =1
i=12,...,n
forn=0,1,...,N—1.
The coeflcients are given by:
.
ase=aules) = [ Lu(r)dr and b =a;(1) = [ Lirdr, Gk=12....n
Thus we have the following theorems:

Theorem 1.7 (Brunner and van der Houwen 1986) Consider the Volterra integro-
differential equation (1.19) and suppose it is solved by collocation using the collo-

cation points Ty in the space S{°(Zy). Also assume that the integrals appearing
pace S
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in the resulting method are approzimated by interpolatory quadrature, based on the
N-1,7=1,2,.

abscissas {tn + c;h :n =0,1, ,r}, leading to the discretized

method given by (1.35), where we assume that the kernel can be smoothly extended to
values outside the triangle S. Then this method coincides with the implicit extended
Pouzet-Volterra-integro-differential-Runge-Kutta method given by (1.28).

See Brunner and van der Houwen (1986), p. 291.

Theorem 1.8 (Brunner and van der Houwen 1986) Consider the Volterra integro-
differential equation (1.19), where f and k are r times continuously differentiable on
[0, 7] and S, respectively, and suppose it is solved by collocation using the collocation
points Ty in the polynomial spline space S©)(Zy). Also assume that the integrals ap-
pearing in the resulting method are approzimated by interpolatory quadrature, based
on the abscissas {t + c;h :n =0,1,...,N —1,j = 1,2,...,r}, leading to the dis-
cretized method given by (1.94). Then this method has order of global convergence
r throughout [0, T}, regardless of the choice of the (distinct) collocation parameters,
{c;}

See Brunner and van der Houwen (1986), Corollary 5.4.1.

It is possible to attain superconvergence at the nodes t,, n =1,2,...,N — 1. If
the Radau I points for [0, 1) or Radau II points for (0, 1] are taken for the collocation
parameters {c;}, we get nodal order 2r — 1 or if the Lobatto points for [0, 1] are used,
we get nodal order 2r — 2. Fortunately, we also attain the optimal order 2r (as in
ODEs) with the Gauss points. Clearly, in this way, a Volterra integro-differential
equation is “closer” to an ordinary differential equation, than to a Volterra integral

equation. See Brunner and van der Houwen (1986), Sections 5.4.2 and 5.4.3.
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So far the methods we have considered for the numerical solution of Volterra
equations have employed kernel values k(t,s,y) with s > ¢ in the discretization of
the increment function ®, which are outside the natural definition of the kernel. This
can be rectified by a transformation and the resulting methods ate called modified
methods of de Hoog and Weiss; see Brunner and van der Houwen (1986), p. 263.

In particular, for the VIDE (1.19), we replace the abscissas, {tn + cxh : n =
0,1,...,N = 1,k = 1,2,...,r} in (1.34) by the abscissas, {tn + cxcjh : n =
0,1,...,N —1;j,k =1,2,...,r}. To better see how this works, consider the follow-

ing integral from (1.31)
/;’ k (t,. + cihyta + Thyn(ta) + h zr:a.(f)Yn.,) dr
-
= ¢ /DI k (2» + ¢k, tn + cibh, ntn) + hi:a.(cjf)m.,) de (1.36)
-]

~ Y cox(l)k (t,. + cjh, ta + cxcih, (ta) + R i: Q;(Ckcj))/n,.) "
= =

where we have used a transformation of variable and interpolatory quadrature with
the weights given as in (1.33).

The method becomes,

n(tn +7h) = q(z“)+hia,(r)x.,, relo,1] (137

Yoi = 1 (tn +eshy(ta) +h 3 m(c,-m,k)
=
+ & f Z (L) (tn + cih, b+ cch,n(t + k)
&

+ kY cor(1)k (t,. + ik by + crcih, n(ta) + R Y a.(ckcj)Yn,.) )
=1 =
i=L2...,n
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forn=0,1,...,N -1
Since it is these methods that we use in the thesis and since we are primarily

interested in methods of optimal order, we give the following theorem.

Theorem 1.9 (Brunner 198§) Consider the Volterra integro-differential equation
(1.19), where f and k are 2r times continuously differentiable on [0,T] and S,
respectively, and suppose it is solved by collocation using the collocation points Ty
in the polynomial spline space S©®/(Zy). Also assume that the integrals appearing in
the resulting method are solved by interpolatory quadrature, based on the abscissas
{titeh:l=01,...,n—1,k=12...,r} and {ta + ckcih i n = 0,1,...,N —
15,k = 1,2,...,r}, leading to the discretized method given by (1.97). Then this
method has a nodal order of 2r, iff the r collocation parameters, {c;}, are taken to

be the Gauss points in (0,1).
1.4.3 Discrete-Time Iteration WR Methods

In Section 1.3.3, we considered discrete-time iteration WR methods for the solution
of ODEs. We now turn our attention to discrete-time iteration WR methods for
Volterra equations. We recall that these are waveform relaxation methods that
involve discretization of the time interval and application of numerical methods to
solve the resulting VIE, given by (1.22), or the VIDE, given by (1.23).

Consider a partition [y : 0 = tq < #; < -~ < ty = T, tnyy — t, =: h, for
n =0,1,...,N — 1, and divide the integration interval [0, ] into x subintervals,
called windows, each of length Nk, i.e.

[0,7) = ‘L;J:[,w, (s +1)hN],
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where A = Z. Then the discrete-time WR method is applied, in turn, to cach
window. In this thesis, we concentrate on a special case of the WR method, called
the time-point relaxation (TR) method, which results when A = 1. See Definition

14.
If the PVRK method (1.26) is applied to the numerical solution of (1.22), for

each iteration g, the result is the discrete-time time-point relazation Volterra Runge-
Kutta method, or simply TRPVRK method, Crisci et al., (1997a). We give a few

details.
The approximation 7%(t) to the exact solution y(t) is evaluated a fixed number

of times, say g = 1,2,...,q; on each window
[0,t1], [ta, tal, - - [tgw-1), W],
using the PVRK method (1.26). The approximation on the interval [tn, tn1] is given

by

n(ta+h) = F¥(ta+ h)+h®¥ (L, +h), (1.38)
BU(0) = bk(tita+ah YD),
=

Yo = BY(t+ah) +h 3 auGulta + bty + Gh YIS YE,),
-

o
Far(t) = f(t)+h 3 3 bk(t,ti+c,h, YY),
=S
Y2 = F¥(ta+ch),
i=12,...,r, ¢q=1,2,...,q; and n = 0,1,..., N — 1, where G is the splitting
function; see Section 1.4.
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We refer to this method as the TRPVRK method.
If the splitting function Gy satisfies the Lipschitz condition (1.24), then the
method (1.38) is convergent as h — 0, for every q;. In analogy with Theorem 1.4,

we have

Theorem 1.10 (Crisci et al. 1997a) Assume that the functions f and k in (1.18)
are sufficiently smooth and the splitting function Gy in (1.28) satisfies the Lipschitz
condition (1.24). Then if the underlying PVRK (1.26), has order p", the TRPVRK

method (1.38) has order p = min{p",q + 1}, for q iterations.

See Crisci et al. (1997a).

Concerning the VIDE (1.19), we can apply a PVDRK method (1.28) to solve
(1.23), for each iteration g. The resulting method is a discrete-time time-point relaz-
ation Pouzet-Volterra-integro-differential-Runge-Kutta method (TRPVDRK). How-
ever we shall use the collocation method (1.37) in this thesis. In Chapter 2, we will

consider this method in detail.

1.4.4 Weakly Singular Kernels

So far we have restricted our discussion to Volterra equations with regular kernels;
see (1.18) and (1.19). We now drop this restriction and consider the class of Volterra

equations with weakly singular kernels. That is, in both of these problems, we let
k(t,s,y(s)) := (¢t — 8)™K(t,5,y(s)), (1.39)

where 0 < a <1, (t,5) € S, and K is a regular kernel.
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The second-kind Volterra integral equation with weakly singular kernel is given
by
y(t) = f(t) +[:(l =) K(t,s,y(s))ds, teo,T], (1.40)
where 0 < @ < 1, y is a vector on R™, £ : [0,T] - R™ and K : S x R™ — R™,
where 0 < T < co. We assume that (1.40) possesses a unique solution y € C([0, T]);
see Brunner and van der Houwen (1986), Chapter 1.
The Volterra integro-differential equation with weakly singular kernel is given
by:
Yy =f(t.y) + /u'(l —8)7°K(ts,y(s))ds,  y(0) =yo, t€[0,T], (1.41)

where 0 < a < 1,y is a vector on R™, f : [0,7] x R™ — R™ and K : S x ®™ — R™,
where 0 < T < co. We assume that (1.41) possesses a unique solution y € C'([0, T]);
see Brunner and van der Houwen (1986), Chapter 1.

The results for Volterra equations with regular kernels, in the previous section,

1 jal spline coll auniformmeshI:0=1to <t <

assumed
os <Ny tagt —ta =h, forn =0,1,...,N — 1. Under such conditions, the global
convergence error for the solution of (1.40) and (1.41) drops to O(h'~*), where

and

0 < @ < 1, regardless of how we choose the
of how we choose the degree of the underlying polynomials. In fact, this is the
best we can do in the sense that the exponent 1 — a cannot be replaced by any
number greater than 1 — a. Furthermore, superconvergence is lost, as well. To
do better, one must consider suitable graded meshes for polynomial collocation, or
nonpolynomial spline spaces for uniform meshes. See Brunner (1986a), Brunner and

van der Houwen (1986), Chapter 1 and 6, Brunner (1998), Tang (1992 and 1993),
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and Brunner et al. (1998). See also Chapter 3.
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Chapter 2

Waveform Relaxation Methods for
Volterra
Integro-Differential Equations

2.1 The Analytic Solution

In this thesis we will study systems of Volterra integro-differential equations (VIDEs)
which involve, in a very natural way, elements from systems of ordinary differential
equations (ODEs) and systems of Volterra integral equations (VIEs). We begin
by giving some standard results on the existence and smoothness of solutions for

VIDEs. See Brunner and van der Houwen (1986), Chapter 1.

Theorem 2.1 (Miller 1971) Given the initial value problem (1.19). If the function
f is defined and continuous on the bounded interval [0,T] and the kernel k is defined

and continuous on the triangle S, and both satisfy the following Lipschitz conditions:
1/t y) — f(&. 9 < Lylly - 3ll,

[Ik(t, s, 2) — k(t, 5, D)l < Lllz = 2|,
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where (t,s) € S and y, §, 2, € R™, then (1.19) possesses a unique solution that

is continuous on [0,T], and possesses a continuous derivative on [0,T].

Note: We have required that the functions f and k in the above theorem,
satisfy Lipschitz conditions for y € ®™. If however, these conditions apply only
on some compact region of R™, we can only give a local existence theorem. That
is, we can only be sure of the existence of a (unique) continuous solution on some
neighbourhood (—4,8), for some 0 < § < T. See Brunner and van der Houwen
(1986). o

If we assume a special linear equation, we can write down the analytic solution,
and subsequently, give a more complete analysis of the smoothness of these solutions.
Therefore, we consider the following example, where we take the one-dimensional

case, m = 1; the analysis of the m-dimensional case is essentially the same.
Example 2.1

y'(t) = a(t)y(t) + 9(t) +/ﬂr k(t,s)y(s)ds,  y(0) =w, t€[0,T], (2.1)
where a,g: [0,T] —+ R, k: § = R, with a,g € C((0,T]) and k € C(S).

Under these conditions (2.1) possesses a unique solution on [0, ], which we can
explicitly write down in terms of a special kernel, continuous on S; see Theorem
2.2. To motivate this discussion, we take the following simple example in which we
can use ODE theory to write down this special kernel. As a bonus, we will use this

example in the proof of Theorem 2.7 in Section 2.2.1.
Example 2.2
;
VO =ay®) +90+ [[by()s,  yO) =3 teloT], (22)
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where a and b are non-zero real constants, g : [0,T] — R and g € C((0, ).
Clearly (2.2) is equivalent to the second-order linear constant coefficient ODE
V() = ay()) + by + 9 4O = w0, V(O =aw+g(0) teT], (23)
which is equivalent to the first order system
y(t))’ (o 1)(y<e)) ( 0
=3 + N 2.4,
( V(1) b a){ve ) o0 @4
where [y, ayo + 9(0)]7 are known initial values.
The solution can then be found by applying the variation of constants formula;
see Edwards and Penney (1994), Section 2.7 for a solution based on equation (2.3)
and Hairer, et al. (1993) for a solution based on equation (2.4). We give details for

the first case.

Consider the characteristic equation of (2.3),
M_ar-b=0,

and for simplicity, assume the roots are real and distinct, that is
X —ad—b=A-M)A-X), (2:5)

where A, # Az, A € R, i =1,2. By expanding the RHS of (2.5),
Mtd=a (2.6)

Note, that Ay, \; are the eigenvalues of the matrix
(22)
ba)
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associated with (2.4).

Clearly the complementary solution of (2.3), g, is given by
ye(t) = c1e™ + e,

where ¢y, c; are arbitrary constants. By the variation of constants formula, we can

write the particular solution y, of (2.3) in the form,
.
w(t) = [ Glt.9)g/(s)ds, @7

where
eMlt-1) _ gha(t-2)
A—A

(t,5) € S, where G is called a Green’s function for (2.3), see Edwards and Penney

G(t,s) = (2.8)

(1994). Applying integration by parts to (2.7), and using (2.8), where we note that
G(t,t) =0, t€[0,T], we obtain

t 3§
(i) = ~G(t,009(0) — [ 566, 9)g(s)ds,
in which case the solution to (2.3) is
y(t) = cre™t + et — G(1,0)g(0) — /‘ 2 6t s)g(s)ds (2.9)
Using Leibniz's Rule, see Zwillinger (1992), we now apply the initial conditions
¥(0) = w
¥(0) = ayo+g(0),

in which case the constants ¢, ¢, become

_w(a=2)+9(0) _ _  wyola=X)+9(0)
T PYESP VI
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By (2.6) they can be written as

_whi+9(0)  _ wha+g(0)
a=TTeS a=-tEils (2.10)

Define the resolvent kernel R(t,s) by setting:

_BG;:, 8) _ Mt —dgehd s @)

R(t,s) = —
Therefore, using (2.11), (2.10), and (2.9), the solution to (2.3) and therefore (2.2)

becomes

V() = R(t,0)go + [ " R(t,5)g(s)ds. (2.12)
We note that, in this simple case of (2.2), its resolvent kernel, defined by (2.11),
is of the form R(t —s). Such kernels form an important class of kernels called
convolution kernels.
Fortunately, this approach to the solution of (2.2), can be extended to the more
general equation (2.1). We formally define the following function. See Grossman
and Miller (1970) and Brunner (1986b).

Definition 2.1 Let the function R : S — R be defined by

% = —R(z,s)a(s)—[ R(t,7)k(r,s)dr, (t,5) €S,
Rit,t) = 1, t>s (2.13)
The function R is called the resoluent kernel of (2.1), and the above equation

(2.13) is called the resolvent equation associated with it. We leave it to the reader

to check that R(t,s) given by (2.11) satisfies the resolvent equation (2.13).
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The following theorem uses this resolvent kernel to give a representation of the
solution of (2.1), analogous to the representation of the solution of (2.2), given by
(2.12).

Theorem 2.2 (Grossman and Miller 1970) Let a € C([0,T)), k € C(S), and as-
sume that R satisfies (2.13). Then, for any g € C([0,T)), the initial-value problem

(2.1) has a unique solution y € C'([0,T1), given by

Y(t) = R(t,0)wo + [ “R(t,s)g(s)ds, te[0,T). (2.14)

Proof:

For y € C'[0, T, the following identity follows from integration by parts:

9R(t,s)
s

[ {meswo + 2ol as - moowo - Ruow), (@19)
for t € [0,T). Since R(t,) = 1, for all > s, we establish
w0 = 0w + [ {Rew + 2Dy}, @ie)
for t € [0,T]. If y is a solution to the VIDE (2.1), then substitution of the expression
from (2.1) for y/(s) into (2.16) yields
W) = RO+ [ R(ts) {ale)sls) +o(s) + [ ks, rlalr)dr b ds
+ [ 2Ry yas, @)
for t € [0, T]. We rewrite the double integral in (2.17), by interchanging the variables

s and 7, that is

i i [ Rt sk(s, (s,
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[ [ ek shats)dsdr.

‘We now apply Dirichlet’s formula, see Brunner and van der Houwen (1986), to obtain

A - (/. ‘R, r)k(r,:)dr) y(s)ds. (2.18)
Therefore, using (2.18) we rewrite (2.17) as
) = RO+ [ Rt s)gls)ds
5 ja {an(: 3) 4 R(t, s)a(s) + j R, T)k(r,s)dr} ys)ds  (2.19)
for ¢ € [0,T). Since R(t, s) satisfies the resolvent equation (2.13),
"R(‘ ORL3) | py, s)as) + [ Bk s)dr =0, telo Ty,
equation (2.19) becomes
u() = R0+ [ R(t,)g(s)ds,

and the result is proved. O

It is easy to see that the function R, given by (2.11) also satisfies the following
equation (2.20), which is called the adjoint resolvent equation associated with (2.2).
Definition 2.2 Let the function R: S — R be defined by

RS _ py s)at) + [' k(t,7)R(r,s)dr, (t,s) €S,
ot s
R(s,;s) = 1, s<t. (2.20)
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Therefore, for (2.2), Theorem 2.2 is true, if R is given by (2.20) or equivalently by
(2.13). Fortunately, this equivalence can be extended to the more general equation
(2.1). We refer the reader to the paper by Grossman and Miller (1970), in which the
equivalence of (2.13) and (2.20) was first proved. In this thesis, we supply the proof
of the corresponding result for the case of a VIDE with a weakly singular kernel,
which also follows from Grossman and Miller (1970). See Theorem 2.5.

Note that the resolvent kernel is completely described by the data of the homo-
geneous equation corresponding to (2.1). It should be pointed out that the repre-
sentation given by (2.14) can also be derived from rewriting (2.1) as a second-kind
VIE and applying the classical results for Volterra integral equations. See Brunner
and van der Houwen (1986) and Brunner (1986b).

By Theorem 2.2, the smoothness of the solutions to (2.1) is strongly dependent
on the smoothness of the resolvent kernel R. In light of this, we give the following

lemma.

Lemma 2.1 (Brunner 1986b) If a € C*([0,T]) and k € C™(S), for some n € No,
then the resolvent kernel R associated with the VIDE (2.1) and given by (2.13) or
(equivalently) (2.20), is an element of the space C™+1(S).

See Brunner (1986b). The following theorem is an immediate consequence of The-

orem 2.2 and Lemma 2.1.

Theorem 2.3 (Brunner 1986b) Let a € C*([0,T}), k € C™(S), for some n € Na,
and assume that R satisfies (2.13), or (equivalently) (2.20). Then for any g €
C¥([0,T]), with v > n, the unique solution y of the initial-value problem (2.1)
satisfies y € C™+1([0, T}).
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Proof:

If we differentiate (2.14) n + 1 times, using Leibniz’s rule, the highest order deriva-
tive of g(¢) that appears is of order n, while we get highest order derivatives of order
n + 1 for the resolvent kernel R. The result then follows from Lemma 2.1. O

Consider the following nonlinear VIDE, with a weakly singular kernel, given by
v(t)=flt.y) + [ (t—)™"k(t,5,y(s))ds, y(0)=wo, t€[0,T], (221

where 0 < a < 1 and y is a vector in R™. Assume f and k are given as in Theorem
2.1. We will assume that this equation posses a unique continuous solution on [0, T},
with a continuous first derivative.

However, in many cases we will resort to its linear counterpart; see Theorem 2.5.

We first consider an example analogous to Example 2.2.
Example 2.3

VO =au®) +9(0)+b (= ue)ds, O =va, teO.TL (22
where 0 < @ < 1, a and b are real constants and g : [0,T] — R, with g € C([0, T}).

Under these conditions (2.22) possesses a unique solution on [0,7]. However,
we immediately notice a difference between this example and Example 2.2. Clearly,
we cannot use Leibniz’s Rule to differentiate (2.22), since the kernel (¢ — s)~ is
unbounded on the diagonal (t,t) where t € [0,7] and 0 < & < 1. We can however,

rewrite (2.22) as the second-kind VIE
ut) = a0+ [ Qe sialy(s)ds, (22)
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for £ € [0, T], where
Qtsia) = a+b [(r—s)odr = a+b%
for (t,5) € S,0<a<1and

a(t) == +[g(a)ds, te,T].

(2.24)

Since the kernel @, in (2.24) is continuous (hence bounded) on [0, 7], (2.23) can be

solved by classical methods for Volterra integral equations. See Brunner and van

der Houwen (1986) and Brunner (1986b).

If we assume that the nonhomogeneous term in (2.22) has a Laplace transform,

we can use the convolution theorem for Laplace transforms to solve it.

Let us denote by £{(t)} = F(s) the Laplace transform of a function f.

See Edwards and Penney (1994). The proof of the following theorem is omitted.

Theorem 2.4 Consider Ezample 2.5. Then (2.22) has a unique solution y €

C\([0,T)) given by
¥(t) = 00w + | 8- )g(s)ds,

where

(1 —-a)

o)=L {32-- — }, te(0,T),

withl<a<l.

Denote the 1 (: ion) kernel R iated with (2.22) by,

R(t,s;a) = ®(t - s),
for 0 < a < 1 and (t,s) € S, where ® is given by (2.26).

56

(2.25)

(2.26)

(2.27)



In analogy with (2.12), the solution of (2.22) can be written

.
v(t) = Rt 0; @)y + [ R(t,sia)a(s)ds, @28)
for 0 < a < 1 and ¢ € [0,T]. Equation (2.22) reduces to (2.2), if @ = 0, in which

case Example 2.3 reduces to Example 2.2. Therefore (2.26) becomes

a(t) = £ {;} (2.29)

#_as—b
where we assume, again, for ease of exposition, as in Example 2.2, that
2 —as—b=(s—s1)(s —s2),

where s; # s3, and s; € R, i = 1,2. See equation (2.5).
Then, by partial fraction expansion and by elementary properties of the Laplace

transform, we find

_ s,e"‘ b sze”‘
(1) = Sy (2.30)

in which case the resolvent kernel R given by (2.27) becomes the previously defined
resolvent kernel R, given by (2.11), and the solution given by (2.28) becomes (2.12).
We now generalize these results, by considering an example analogous to Example

2.1, in which we can give a theorem analogous to Theorem 2.2.
Example 2.4
.
y'(t) = a(!)y(!)+y(l)+[) (t—s)"k(t, s)y(s)ds, y(0) =wo, te€[0,T], (2.31)

where 0 < a < 1, and a,g and k, are as in Ezample 2.1.
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Under these conditions (2.31) possesses a unique solution y € C*([0, 7]), which
we can explicitly write down in terms of the resolvent kernel. As with Example
(2.1), we can define (formally) this resolvent kernel by the solution of the resolvent

equation, or the adjoint resolvent equation.

Definition 2.3 For 0 < a < 1, let the function R: S — R be formally defined by

WMbsi0) - _p,sadats) - (- o) R T )r, (L5) €S,
Rit,tta) = 1, t>s. (2.32)

This function R, given by (2.32) is called the resolvent kernel of (2.31), and
(2.32) is called the resolvent equation associated with (2.31). The resolvent kernel

can equivalently be defined as follows.

Definition 2.4 For0 < a < 1, let the function R: S — R be formally defined by

ingtﬂ‘l R(t,sieda(t) + [ (¢ = 1) okt IR s ), (L)€ S,
R(s,50) = 1, s<t. (233)

Equation (2.33) is called the adjoint resolvent equation associated with (2.31).

Note that if we set a = 0 in (2.31), it reduces to (2.1). Therefore, setting & = 0
in (2.32) and (2.33) gives (2.13) and (2.20), respectively.

We now give the following representation of the solution of (2.31) in terms of
this resolvent kernel R, the proof of which will establish the equivalency of (2.32)
and (2.33).

Theorem 2.5 (Brunner 1983) Let a € C([0,T]), k € C(S), and assume that
R(t,s;a) satisfies (2.92) or (equivalently) (2.33). Then, for any g € C([0,T]),
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the initial-value problem (2.91) has a unique solution y € C'([0,T]), given by

vlt) = R0 + [ Rit,s;a)gls)ds, ¢ €[0T @31)

Clearly, the proof of Theorem 2.2 can be adapted in a straightforward way to
supply the following result. However, we choose a different proof, one that explicitly
shows that (2.32) and (2.33) define the same function R. As in Example 2.3, we
rewrite (2.31) as the integral equation (2.35), given below, where the kernel @, given
by (2.36) is continuous (hence bounded) on S, for all 0 < a < 1.

w0 = a0 + [ Qt,sily(s)ds, (235)
for t € [0, ], where
Qt,550) == a(s) + [(r — 5)=k(r, s)dr, (2.36)
for ({,s)€Sand 0 < @ <1, and
at) =vo+ [ 9(s)ds, tE[O.TL (2.37)

We also need the classical results for second-kind VIEs with continuous kernels
and we collect these results in the following Lemma 2.2. See Brunner and van der

Houwen (1986) and Brunner (1986b).
Lemma 2.2 (Brunner 1986b) Consider the Volterra integral equation,
)
v®) =90+ [ Kt,9u(s)ds, te.T], (2:38)
where g: [0,T] » R, k: S — R and k € C(S).
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o If g€ C([0,T)), then (2.98) has a unique solution y € C([0,T]) given by the
ezpression
v =g0) - [ Rt s)gls)ds, €07, @39)

where the resolvent kernel R : S — R satisfies (equivalently) the resolvent

equation:
R(t,s) = —k(t,s) +/" Rt 1k(r,s)dr,  (Ls)€S,  (240)
or the adjoint resolvent equation
R(t,s) = —kt,s) + [ KGR ), (L) €S, (241)
Furthermore, for n € No, if k € C*(S), then R € C™(S).

Ifg € CY((0,T]), then (2.98) has a unique solution y € C([0,T]) given by the

expression
y(t) = U(t,O)y(O)+L'U(t,s)g'(s)ds, tefo,T], (2.42)

where U(t,s) is the unique continuous solution of

Ut,) =1+ [ kUG s)dr, () €5, (243)
and
‘?%’s) =R(t,s), (ts)ES. (2.44)

Proof of Theorem 2.5:
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Using Lemma 2.2, let Rq be the resolvent kernel associated with the kernel Q.
Note that it is continuous, hence bounded on S for all 0 < & < 1, and satisfies the
resolvent equation (2.40), which for us is given by

.

Rq(t,sia) = —Q(t, s;@) +f Ro(t,7;0)Q(,s;0)dr (t,s) € S, (2.45)
where 0 < a < 1. Also, the (unique) continuous solution of (2.35), and therefore of
(2.31), can be written

¢
y(t) = q(t) -/0 Rq(t,s;a)q(s)ds, te[0,T], (2.46)

0 <a <1, see (2.39).
Define
.
R(t,s;a) =1 4/ Ro(t,r;a)dr, (t,5)€ S, (247)
A
forall 0 < a < 1. Then, by using (2.37) and (2.47), and Dirichlet’s Formula,
the solution given by (2.46) above becomes (2.34), as desired. Now, since Rq is
continuous on § for all 0 < & < 1, it follows that
R(t,t;a)=1, t2s, 0<a<l.
To show that R satisfies (2.32), we first note, from Leibniz’s Rule that
‘W%"—) = Ro(t,sia), (4,s)€S 0<a<l.

Then using (2.36) and since Rq satisfies (2.45), we find

OR(t,5;0)

e —Q(t,s: a)+/,‘ﬁq(t,r;a)Q(r,s;a)dr (ts)es

- {1 - /” Ra(t,™; a)d‘r} a(s) (2.48)
- [{1- [ Retu.& a)de} (r — )2k, shar,
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where (t,s) € S and 0 < a < 1. Hint: To get one of the terms, you will need to
swap variables 7 and £, and then perform an interchange of variables by applying
Dirichlet’s formula. If we apply (2.47) to (2.48), it becomes (2.32), as desired.

To show that (2.33) also defines the same function R, we note that from (2.37),
g € C![0,T] and we can use the second part of Lemma 2.2. Using (2.42), the

(unique) continuous solution of (2.35), and therefore (2.31) can be written
’

y(t) = U(t,0; @)q(0) +/n U(t,s;e)q'(s)ds, te[0,T], (2.49)

0 <a <1, where U is the unique continuous solution of
.

Ultys;e) =1 +/ Qt, ra)U(r, s;a)dr,  (L,s) € S, (2.50)

for all 0 < & < 1. However, from (2.37), it is clear that
9(0) = %o, q'(s) =g(s),

for (t,5) € S. Therefore this function U gives the solution (2.34), as well. Since Q

is continuous on S for all 0 < & < 1, it follows that

U(s,sia) =1, s<t, 0<a<l

Apply Leibniz’s Rule to (2.50), noting that
oty =av, 2T ok,
for 0 < 7 <t <T. We determine
&‘a’:;ﬂ = U(t,s;a)a(t) + j:‘(l —71)%k(t,T)U(T,s;a)dT, (t,s) €S,
U(s,si0) = 1, for s<t,
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and 0 < a < 1. The equivalence of (2.32) and (2.33), then follows from the unique-

ness of the solution y to (2.31). O

There is a price to pay for the weak singularity in (2.31), as the following lemma

and theorem shows.

Lemma 2.3 (Brunner and van der Houwen 1986) If a € C*({0,T]) and k € C*(S),
for some n € No, and 0 < a < 1, with k not vanishing identically on S, then the
resolvent kernel R associated with (2.31) and given by (2.32) or (equivalently) (2.83),
is an element of the space C*(S) N C™*(8), where

S:={(t,s)eR*:0<s<t<T}h

For more details, we refer the reader to Brunner (1985), where a complete char-
acterization of the kernel R is given for a VIE with weakly singular kernel. As
pointed out in the paper, this characterization can be easily extended to the VIDE
with weakly singular kernel, given by (2.31), by rewriting it as an integral equation.

We now give the following theorem from Brunner and van der Houwen (1986);

compare with Theorem 2.3.

Theorem 2.6 (Brunner and van der Houwen 1986) Let a € C™([0,T)) and k €
C™(S), for some n € N, and 0 < & < 1, Then, provided g € C*([0,T)), withv > n,
the unique solution y of the initial-value problem (2.31) satisfies:

e y € CY([0,T)) NC™*((0,T)),
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o |y"(t)] < ¥i~°, for some positive constant ¥, “near”t = 0.

Then although Theorem 2.5 guarantees that the problem given by (2.31) has a
unique solution y € C'([0,T]), its second order derivative is unbounded at ¢ = 0.
See Brunner (1983).

2.2 Continuous-Time Iteration WR Methods

‘We consider the nonlinear VIDE given by (1.19), and recall the following definitions
from Chapter 1, Sections 1.3 and 1.4.
Choose a function G : [0, 7] x ®™ x ®™ — R™, for the function f such that

Gy(t,u,u) = f(t,u), (2.51)

for all ¢ € [0,7] and for all u € R™, and a function Gy : § x R™ x R™ — R™, for
the kernel k, so that:

Gt s,u,u) = k(t,s,u), (252)
for all (¢,s) € S and for all u € R™.

We compute a sequence y(t), 4*(t), - - - ,y*(t), of solutions of the equations

4 .
ZVO = Gty v + [ Gultis,y™ )y (s))ds

VO = w, (253)

where y°(t) is arbitrary and ¢ = 1,2,..., t € [0, T], which converges to the solution

y(t) of (1.19) as q — co.



It is typical to choose the initial solution to be the constant function
Pt =v, te[o,T)

We recall that these solutions are called waveforms, and the functions G,Gj are

called splitting functions. We may use any of the iteration schemes mentioned earlier

(Sections 1.3 and 1.4, respectively) for Gy and Gy, independently. This is one of

the major differences between WR methods applied to VIDEs and those applied

to ODEs. In Section 2.3.3 we will give an illustration of this; see Example 2.8.

Clearly, the methods ing Picard and Gauss-Jacobi iteration are fully parallel.

The resulting methods given by (2.53) are called continuous-time iteration WR.
methods, since they do not involve yet the discretization of the time interval and
the application of numerical methods to solve the resulting VIDE.

Remark:
In some applications, see Brunner (1989), VIDEs occur in the following nonstandard

form:

V(O = ) + [ HusyOu)ds, y0) =w, 0T, (254)

with assumptions analogous to those for (1.19).
Clearly, the splitting function, G, for f is defined as before. Define a function

Cp: S x R™ x R™ x R™ x R™ — R™, satisfying:
Giltys,u,u, %, ) = k(t, s,u,2),

for all (¢,s) € S and all u, % € R™. For illustration, we give two iteration schemes:
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o Picard Iteration

Gilt, s,u,v,8,8) = k(t, s, u, ).
o Gauss-Jacobi Iteration

Gilty s, u,v,8,9) = Kty unye . vinn, v,

iy eeny Bicty By Bigrs -
fori=1,2,...,m.

The analogue of equation (2.53) is,

Sy(t) = Gty y") + fo Galt, s,y (1), 47(8), 477" (), 47°(s))ds (2.55)
¥(0) = w,
where y°(t) is arbitrary and ¢ = 1,2, .., £ € [0,T]. But in the following, we consider

only VIDEs of the form (1.19). o
2.2.1 VIDEs with Regular Kernels

Consider the continuous-time iteration WR method (2.53) for the solution of the
integro-differential equation (1.19), with regular kernel; see Theorem 2.1. The fol-
lowing Theorem 2.7 gives convergence results for (2.53), but in order for us to state

this theorem, we recall the usual i norm. Given a i vector valued

function, y, defined on [0,T]
llyllr := max v,

for the vector norm || - || on R™.
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We assume that the norm ||- || is generated by an inner product (-, -) on ®™ x ®™.

In most cases, however, this inner product is (u,v); := uTv, u,v € R™, so the norm
generated is the usual l-norm defined by ||ull; = vaTu = /T, u?.
The proof of the theorem to follow was adapted from 2 similar result for ODEs

given in Burrage (1995). See Theorem 2.8.

Theorem 2.7 Consider the integro-differential equation (1.19) and assume that the
continuous splitting functions Gy and Gy, satisfy (2.51) and (2.52), respectively, and
assume the following uniform Lipschitz conditions in u and v:

IGt,u,0) = Gyt @)l < Lyalfu =il 58
G (t,w,0) = Grt,w,)ll < Lyallo =3l :

for all u,v,@,5 in R™ and ¢ in [0,T], and

[IGi(ts s, u,v) = Ga(t,s, &, D)l < Liallu — all + Liallv — 3, (2.57)

for all u,v,,5 in R™ and for all (t,s) € S. Assume that the initial solution y°(t) €

C([0,T])). Then the resulting WR method (2.53) converges uniformly in [0, T}, for
all finite T > 0.

IfLyz =Lz =0, then for q=1,2,

T9
lly* —ullr < T (Lpa+ LeaT)* - 18° = ylir, (2.58)
otheruise, if Lyz is not zero, then
T9
lly* —yllr < T (Lya + LiaT)* - (2T +1)ly° - ylir, (2.59)
where
L+ \f4Lez + L2
SO il ] (2.60)

! 2
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Remark: The case Ly = 0 and Ly # 0 is the well known ODE case discussed,
for example in Burrage (1995). o

Proof:

We will need the following lemma.

Lemma 2.4 Consider the linear Volterra integro-differential inequality,
VO Salt®) +9(0) + [ ke, slu(sds,  te,T], (261)

where y € C1([0,T]), a,g € C([0,T]) and k € C(S). Also, a and k are nonnegative
in [0,T] and S, respectively. Suppose that r is the solution of

#(t) = a(t)r(t) +9(t) + fo‘ku,s)r(s)ds. r(0)=y(0), te[0,T]. (2.62)

Then
y(t) <r(t), telo,T).
Proof:
The integro-di jal i lity (2.61) is equi to the integral inequality
WO <a0) + [ Qs teloT],
where
Qts)=a(s) + [ Krskdr, (L5 €5,
and

o) =90 + [ o(s)ds, te[0,7).
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Since y, g and Q are continuous on their respective domains, and @ is nonnegative,

we can apply Theorem 2.1 in Bainov and Simeonov (1992) to conclude that
yt)<r(t), telo,T),
where r is the solution of
MO =40+ [ Qt)r(s)ds, te(0T].

By Theorem 2.2, the proof is complete. O
Proof of Theorem 2.7:
For g =0,1,..., and ¢ € [0, T}, define e(t) := y¥(t) — y(t). Then for g = 1,2,...,

and t € [0,T] by the definition of the splitting functions G, G,
ded(t) _ dy'(t) _ dy(t)
dt i dt

= Gy(t,y"",¥") = G,(t.y,v)
+ [ {Gultisr™(9),47(6) = Gults,u(s), (D)} ds,

using (1.19), (2.51), (2.52) and (2.53). By linearity of the inner product,

Dy = Gty9) = Grl v, (O)

+ (Gy(t,¥*",y) = Gs(t,y,y),€"(1))

+ ([ {Gult5,577(9),47(6)) = Galt,5,9(5),u(s) } ds, ¥ (0)-
Using the Cauchy-Sch i ity, see L ter and Ti ky (1985),

and the Lipschitz condition (2.56) for G/ (in both components) we obtain

E0 @) < Lual@IF + Ll @ - 1Ol

+ /n' {Glt, 5,577 (5),4%()) — Gilt, 5, (), y(s)) } ds - le*(2) -

(o
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Then the Lipschitz condition (2.57) for Gy leads to

EQ o) < Ll + Liale Ol - IOl

¢ 1,
+ [ {Lealle @l + Lualler ()} ds - e (o)l
When is [|e%(t)]| not differentiable? Only at points ¢ where e(t) = 0, in which case
(2.58) and (2.59) are satisfied. Therefore we assume that [[e?(£)]] # 0.
From the product rule for derivatives for the (real) inner product,

20 a0y = 3 e OIF = e,

S 2dt

it follows that
SO S Liall X+ Lpaller™ @l + [ {Eaalle?(6) + Lialler=(3)1} ds.

Next define the positive function v%(t) := [|e%(t)]], and consider the solution of the

integro-differential inequality
%u'(l) < Lyav'(t) +/o' Liav*(s)ds + {L,,.v'-‘(:) + /n' L“v"'(s)d.s}, (2.63)

subject to the initial condition v7{0) = 0. This integro-differential inequality can be

solved by considering the ding integro-di i ti
4 . ;
27O =L+ [ Luav'(s)ds + {Low 0+ [ st (o)dsh, (264)

where v%(0) = 0, see Lemma 2.4. Note that, for simplicity of notation, I use the
same symbol v? for the solution of (2.64). It is here that we need the continuity
of y°(t) to guarantee the continuity of v°(t) needed in Lemma 2.4. Note that v is

piecewise C' on [0,T), for ¢ =1,2,...; see the comment at the top of this page.
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Equation (2.64) is Example 2.1 which has a solution given by (2.14), where the
resolvent kernel R satisfies (2.13).

However, we can write down this resolvent kernel R, explicitly; see equation
(2.11).

Let A1, Az be the solutions of the quadratic

AN = Lyad — L2 =0,
that is

Lja+\/4Li2 + L2
PO L cudied £ (2.65)

2

i=1,2, and note that these roots are always real and distinct, except for the case
where Lyz = Lyz = 0.
Assume Ly is not zero.
Then (2.64) can be solved to give
3 ;
() = [ RG.s) [L/,nv““(s) + [ Lo ryar] d,

where the resolvent kernel R(t,s) is given by

M) _ 3, aems)
Rit,s) = M 2 e (2.66)
1= Az
Therefore, returning to the inequality (2.63),
wi(t) < /0' R(t,s) [L/‘;v““(s) +[ Lk,,uq-'(f).zr] ds. (2.67)

Let us define
IRl := max |R(t,s)l,

0gs<t
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and
lo°lle := o@%""(')v
for t € [0, T]. By inspection of (2.65), it is easy to see that ), is always positive
and ); is always negative and by the triangle inequality, A; > |A;]. Then,

MyeMti=s)
A=A

Apeha(t=9)

ST (t,s) €S.

R(t,9)] < ’

Since A; < 0, and |Az| < Ay,

A <2y, (t,s) €S,

Then
IR(t,3) < 5 (e*"“" +1), (Ls)eS.
However, since Ly < ,/4Ln + L,.z-
A
<
R =

and it follows that
IRl < (4t +1), te[0,T).
Then for ¢ = 1 and using || R||; and [[v°]|,, (2.67) becomes
"
SOEYA [L,.. + [ Ledr]ds (IR 100, (2.68)
which can be integrated in closed form
v'(8) < (Lyat + Lea?/2) - (M + DI, tE€[0,T). (2:69)
By induction,

M LA gk .
w023 (7agy) Doy @O G
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for all ¢ € [0,T] and g = 1,2,..., which we rewrite as

) L (Leaty
(g+)"

w0 <03 (s NGRS

=

Since gy < g for i =0,1,...,q,

wss z ( 3 L7 (Leat) - (@ + 17,

A WA

and by using the binomial theorem

9
vi(t) < ;—'(L,,. + Liat)' - (€M +1)7[v°)f, forall t € [0, T].

(2.71)

(2.72)

It is clear that the iteration scheme converges uniformly, as ¢ — oo, for all finite

T >0, and

T
lly* —yllr < F (Lya+ LeaT)" - (M7 + 118" ~ yllz,

q=1,2,..., where T > 0 is finite.
Assume Ly = L2 = 0.
Then (2.64) becomes
d .
V0= Lyav™ () +/; Liav®™(s)ds,
with v9(0) = 0. This can be solved by direct integration, to become
" "
V(L) = LJ,]A v (s)ds + Liy A (t = 7)o" (r)dr.

Again, returning to the inequality (2.63),

3

(2.73)

(2.74)



O) S Lpa [ 01" o)ds + Lua [, (2.75)

This equation is similar to (2.67), so similar analysis gives

preih e
) e et 216)

(g+5)
for all ¢t € [0,7] and q = 1,2, ...; compare with (2.70). Continuing with the argu-

0<% (s

i=o

ments that led to (2.72), we establish
“
V() < o7 (Lpa + Leat)" - 1%, t€[0,T). (2.77)
Again, it is clear that the iteration scheme converges uniformly, as g — oo for

all finite T > 0, and

I = sl < T (ga o LeaT)" I =yl .78)

¢=1,2,..., where T is finite and T > 0. O
To illustrate this result we consider the following (nonhomogeneous) linear two-

dimensional problem.

Example 2.5 Consider the following Volterra integro-differential system

()= (2 o) (58) £ (3 ) (5 ) (322).

where [y1.0 y20]” = [L 1]T are the given initial conditions. Then the solution is
ne))_ (e
wa(t) e )"
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We compute a sequence of solutions using (2.53), where we take the initial solu-

(#3)-(2)-
for t € [0,T).

For the Gauss-Jacobi iteration scheme we obtain the following iterates:

tion

2
Yo = groto—e
L
= {1+1)~§!._4_‘_.,,.
Al
w(t) = $+5+2t1+41+4—32'
-0 [ O L
I G ST T
# B 3 618 7
gy i S
) = {‘*‘*5*7}'?‘?‘ 7
12 17 ,ﬂH—Z
(1) = st s syt oL g
yi(t) {1+ g+ +q!} ] (2.79)

L2 o= L2

For the Gauss-Seidel iteration scheme we obtain the following iterates:

S e e
w() = {1+ Foa

2 2t4 s 38
wu(t) = {1+t+§}——‘3_—l—3—---

7.0 35 65 W
wi) = {l+t+:,ﬁ+—!}



(o = RPN wall TN ¢ o | e SO

W) = {“‘“’2!+ +(24;—1)!} q+ 1! =50
= LU o A .

weo = {””*E“ +(2q)!} S (281)

=1,
Clearly, for both iteration schemes,
Jim y3(0) =yi(t) = ¢,
forj=1,2 te[0,T).

Note that we increase the order of accuracy by one for each iteration g taken.
For this particular test equation, the Gauss-Seidel iteration scheme converges “ap-
proximately” twice as fast as the Gauss-Jacobi iteration scheme; compare (2.80) and
(2.81), to (2.79), respectively. In Burrage (1995), he comments that for certain lin-
ear systems of equations, Gauss-Seidel iteration will converge approximately twice
as fast as Gauss-Jacobi iterations.

Let us compare Theorem 2.7 with the analogous theorems for ODEs and VIEs;
recall Chapter 1, Sections 1.3.1 and 1.4.1. We consider ODEs first.

In Burrage (1995), we acquire the following result for a nonlinear autonomous
ODE

Y =f@). ¥(0) =y, (2.82)
for t €[0,7], y € R™ and f: R™ — R™.
Theorem 2.8 (Burrage 1995) Consider the autonomous differential equation (2.82)

and assume that the splitting function Gy given by
Gy(uu) = f(u),
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for all u € R™, and Gy : R™ x R™ — R™ is conlinuous with respect to both
components and satisfies uniform Lipschiz conditions in u and v:

IG/(u,0) =Gs(@ )l < Lyallu—all,
IGs(u,v) = Gr(w, D)l < Lyallv —3ll,

Jor all u,v,@,5 in R™. Then the resulting WR method
d -
VO =G, ¥(0) =w,

, L €[0,T], converges uniformly in [0, ], for all finite T > 0, and

L T)
R L @89

See Jansen et al. (1994) for an illustration for Theorem 2.8, analogous to our
Example 2.5 for Theorem 2.7.
We can use our Theorem 2.7 to develop a result for non-autonomous differential

equations.

Corollary 2.1 Consider the non-autonomous differential equation (1.1) and as-
sume that the splitting function G given by (2.51) is continuous with respect to
both components and satisfies uniform Lipschiz condition in u and v:

[IG/(t,u,v) = Gyt @, 0)l < Lyallu—all,
IGs(t,u,v) = Gs(t,u, )l < Lyallo -3l

Jor all u,v,%,5 in R™ and t in [0,T]. Assume y°(t) € C([0,T]). Then the resulting
WR method (1.3) converges uniformly in [0,T), for all finite T > 0. If Lyz =0,
then,

o~k < EBT5 ey, @8)
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otherwise

L. T)*
lly® — yllr < & “ D (5197 1) 14° = vl (285)
Proof:
The proof follows by setting
Ly =Lep =0,

in Theorem 2.7. O

Note that (2.84) is identical with (2.83) from Theorem 2.8 (upon setting L2 =
0). Equation (2.85) shows a significant departure from (2.83), but we still increase
the order of accuracy by one for each iteration g.

For the sake of comparison, we briefly turn to VIEs where we have the following
result.
Theorem 2.9 (Crisci et al. 1996a) Consider (1.17) and assume that the splitting

function Gy, given by (2.52), satisfies a uniform Lipschiz condition in u and v:
1Gx (2,5, 4,9) — Gi(t, 8,8, 5)|| < Leallu — &l + Liallv = 3] (2.86)

for all u,v,@,5 in R™ and for all (t,s) € S. Then the resulting WR method (1.21)

converges in [0, T3], where
1
Ty < ——.
<L+,

For the proof, see Crisci et al. (1996a).
Note, that we do not get uniform convergence for all finite T > 0 for VIEs, as we

do for VIDEs and ODEs, see Theorem 2.7 and Corollary 2.1, respectively. In this
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sense, a Volterra integro-differential equation is more like a “perturbed” ordinary
differential equation than a Volterra integral equation. However, if we assume a
linear VIE we can extend this convergence to all finite T > 0, Crisci ef al. (1996a).
See Section 1.4.1.

2.2.2 VIDEs with Weakly Singular Kernels

To complete our analysis of continuous-time iteration WR methods, we return to
the special nonlinear VIDE (2.21), with a weakly-singular kernel. We now give
a theorem analogous to Theorem 2.7 for this problem. Our main concern in this
theorem is to find out how the presence of the weak singularity affects the way the
order changes with the number of iterations q taken. As before, we choose splitting
functions Gy for the function f and G for k, given by (2.51) and (2.52), respectively.
Again, the previous iteration schemes can be used.

We compute a sequence y'(t),y?(t), ..., y%(t), of solutions of the equations
d .
70 = Gty )+ /o (&= 8)™°Gu(t, 5,577 (), 47(s))ds
¥'(0) = o, (2.87)

where y°(¢) is arbitrary and ¢ =1,2,..., £ € [0,7] and 0 < a < 1, which converges
to the solution y(t) of (2.21) as ¢ — oo. It is typical to choose the initial solution

to be the constant function equal to the given initial value, that is

YO =w telT]

We may use any of the iteration schemes mentioned earlier (see the beginning of

Section 2.2) for G, and any one for Gy, independently.
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We recall that the resulting methods given by (2.87) are called continuous-time
iteration WR methods, since they do not involve yet the discretization of the time
interval and the application of numerical methods to solve the resulting VIDEs.
Theorem 2.10 gives convergence results for these methods. Recall the definitions of
the norm introduced in Section 2.2.1.

Theorem 2.10 Consider the integro-differential equation with weakly singular ker-
nel (2.21) and assume that it possesses a unigue solution y € C'([0,T}). Assume
that the splitting functions G and Gy given by (2.51) and (2.52), respectively, are

continuous with respect to both components and satisfy uniform Lipschiz condition

inu and v:
1G (¢, u,0) = Gt 8, 0)| < Lygllu —all, (2.88)
1Gs(t,u,v) = Go(t,u,B)| < Lyallv —3ll,
for all u,v,, in R™ and t € [0,T], and
[1G(t,5,u,v) = Ge(t, s, %,3)|| < Liallu — @l + Lialle — 3]}, (2.89)

for all u,v,,5 in R™ and (t,s) € S. Assume that the initial solution y° € C([0,T)).
Then the resulting WR method (2.87) converges uniformly in [0,T), for all finite
T>0.

Forq=1,2,...,

lly* = yllr < % (Lra + LeaD(1 = T'2)" || RYE lly° — vz, (2.90)

where 0 < a < 1, and
[[Rllr := max |R(T,s;a)l,

0<s<T

where R is given by (2.27) and (2.26).
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Proof:
The proof will be based on the following lemmas.

Lemma 2.5 ForO0<a<1andp> -1,

[ [-nremaras=Toal@ D e

In addition, we will need to solve an integro-differential inequality in which the
kernel has a weak singularity. Therefore, we give the following lemma which is a

generalization of Lemma 2.4.

Lemma 2.6 Consider the linear Volterra integro-differential inequality, with weakly

singular kernel,
VO S a0 +90) + [[E- ke (s, te.TL  (291)

where 0 < a < 1, y € C([0,T]), a,g € C([0,T]) and k € C(S). Also, a and k are
nonnegative in [0,T] and S, respectively. Suppose that r is the solution of

(1) = a(t)r(t) +9(t) + L‘(l—s)"’k(l,s)r(a)ds, #0)=y(0), te[0,T]. (292)
Then

y(t) <r(t), te[0,T].
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Proof:

The integ; i ial i lity (2.91) is ival to the integral inequality
v Sa)+ [ Qsialu(slds, €07,
where
Q(t,s; @) == a(s) + /:‘(‘r — s)"%k(r,s)dr, (t,s)€ S,
0<a<l,and
o) =0 + [ o()ds, te (0,7
Since y, q and Q are continuous on their respective domains, and Q is nonnegative,

we can apply Theorem 2.1 in Bainov and Simeonov (1992) to conclude that
u(t) <r(t), telo,T),
where r is the solution of
(t) = q(t) + /u' Q(t,s;a)r(s)ds, te[0,T). (2.93)
By Theorem 2.5, the proof is complete. 0
Proof of Theorem 2.10:

For ¢ = 0,1,..., and ¢ € [0,7], define e(t) := y7(t) — y(t). Then for g =

1,2,..., 0 < a < 1and t € [0,T], by the definition of the splitting functions
G, Gr,
deo) _ dy())  dy(®

a dat dt
Gyt y* ™" y") = Gy(t,y,y)

+ [ 5 {Gult 97 (5),8°(5)) = Galtys, (5D, u(s) } ds,
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using (2.21), (2.51), (2.52) and (2.87). By the linearity of the inner product,

S0 o) = (G/(6y" 8 = Grlty ), 0)

+ (Gy(t,y" ™" y) = Gs(t,y,v), (1))
+ (fe-9
{Gk(t,s, ¥ (), ¥7(s)) = Glt, 5, y(s), y(s))} ds, e7(t)).

S

Using the Cauchy-Sch i lity and the Lipschit: dition for G (in both

components), given by (2.88),

(de ()

W) < Lalle@IF + Lialle™ Ol - 1€
£ =97 {Galty 5,5 (),57(6)) = Gty u(s) (o) s
llexl-

Now using the Lipschitz condition (2.89) for Gy,

$W ww) < Ll @I + Ll O11- €O

+ f (¢ = ) {Lealle™ @)l + Lualle* ()1} ds - [l

&5

Without loss of generality, we assume ||e?(t)|| # 0; see the comment on the top of
page 70.

From the product rule for derivatives for the (real) inner product,

L0, @) = 3 21O = IO

e
el < Lall @I+ Lraller O+ [ (=5 {Laallet(o) + Lnaller™ (o)} .
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Next define the positive function v7(t) := [|e%(t)]| and consider the solution of
the integro-differential inequality

L) € L@+ [ o)Lt (a)ds

+ {tw 0+ [C-o bt o). @

This integro-differential inequality can be solved by considering the correspond-
ing integro-differential equation,

S0 = L)+ [ (€9 Lia(s)ds
+ {L,.-v"‘(t)+fn'(l “5)_°Lk,1v"‘(a)da}. (2.95)

where v%(0) = 0; see Lemma 2.6. Note that, for simplicity of notation, I use the
same symbol v? for the solution of (2.95). It is here that we need the continuity
of y°(t) to guarantee the continuity of v°(t) needed in Lemma 2.6. Note that v7 is
piecewise C* on [0, T}, for ¢ = 1,2,...; see the comment on the top of page 70.

This is Example 2.3, whose solution is given by (2.28), where the resolvent kernel
R is given by (2.27) and (2.26), where (t,s) € S and 0 < a < 1; see Theorem 2.4.
Note that, by Lemma 2.3, this resolvent kernel is continuous, and therefore bounded
on S.

Then (2.95) can be solved to give
u~(1)=jo' R(t,s;a) [Ll,.v'_'(s)+/ﬂl(s—r)"'Lg‘.v"J('r)dr ds,  (2.96)
where0 <a<1,t€(0,7)and ¢g=1,2,....

Returning to the inequality (2.94)
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() < [ Rtsi) Lt () + [[(6 =) Luawt = (r)dr] ds,

where0 <a<1,t€[0,T] and ¢=1,2,....
Let us define

IRl = |R(t,s;a)l,

e
and
11e°lle = o v%(s),
fort€[0,T]and 0 < < 1.
Then for g = 1 and using || R||c and [|v°]|¢, (2.97) becomes

o) < [ (Bt [ =) Luadr] ds (1RIL- 1710,

which can be integrated in closed form, using Lemma 2.5. Thus,

vi(t) < (L/..l + %:;’)t’ ) .

(IRlle - 12°f1),

(2.97)

(2.98)

(2.99)

fort € [0,T] and 0 < a < 1. Substitute this expression (2.99) into (2.97) with g = 2,

using the recursion property of the I' function to simplify your answer. We find

LB Lubulf(—a)f= | L3031 - a)=2
v < ( Ol Ta=e) " D628
CURIE - 1°lle)s

fort €[0,7] and 0 < a < 1. Similarly, for ¢ = 3,
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e .
2 < (Lr’(;') hl"p'(rs(lT;)t @on
Ly L3, D31 — o)t L3, 1%(1 — a)té=2
4 aln ‘S(e(- S, *~'r((7_3 u))‘ ) AURIE - 10°11),

for t € [0,T] and 0 < a < 1. Note the binomial coefficient in front of each term.

By induction, we establish

" g\ Ly LTI - a)tlerimie
v(t)<z( T — J)l) NCESESE)

for all ¢ € [0, ] and g = 1,2,..., where 0 < a < 1. Now, since [(q+3j(1 —a) +1) >
[(g+1) =

LRI - [12°1le), (2.102)

!, for j=0,1,...,q, we can rewrite (2.102), to obtain

vi() < 'Z( = ).) L35 (Leal(t = )Y RS- 1%, (2103)

which by the Binomial Theorem is

o
'(0) < G (Lya + Leal(1 - a)t'=2) R - [[oOle- (2.104)
Therefore, the iteration scheme converges uniformly on [0, 7], as ¢ — oo, and
9 T° 1-a\? 9. 0
I = ylir < 75 (g + Lual(1 = )T ) IR - ly° = ylir, (2.105)

where0 <a <1,¢g=1,2,...,and T > 0 is finite. O
We now compare Theorem 2.7 (see equation (2.59)) and Theorem 2.10 (see equa-
tion (2.90)), where for easy of comparison, we set Ly, equal to zero. Then for

q=1,2,..., where C,,C; are constants we have:
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Regular Kernel (a = 0):

T2
lly" = vlir < CTLL. = - 8" = -

Weakly Singular Kernel (0 < @ < 1):

Ta(2-a)
— - lv° — ylir-

lly* —yllr < CILL,(L - @)—

Note that ['(1 —a) =+ +ocoas a = 1.

2.3 Discrete-Time Iteration WR Methods

For most applied problems, we will not be able to solve analytically the equations
arising in (2.53) or (2.87), but will have to use some numerical method. In this
case, where we discretize the time interval and apply numerical methods to solve
the VIDES, we obtain discrete-time iteration WR methods, see Chapter 1, Sections
1.4.3 and 1.4.4. For the remainder of this chapter, we specialize our analysis in the

following four ways:

e We consider a special Volterra integ ial equation. This is

the form usually found in applications.

« With one exception (see Section 2.3.3) we use the same iteration modes for

the splitting functions G and Gi.

o The time intervals over which the iterations take place coincide with the step

length.
 We use collocation methods as our underlying numerical methods.
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For the purposes of this thesis, we call these methods time-point relazation col-
location methods, or TRCol, for short. In addition, we consider the Gauss-Jacobi

and Gauss-Seidel iteration modes, only.
2.3.1 The Problem

Since it arises often in we are d with the ical solution

of the VIDE

VO = )+ [ alt = K (u(s))ds, (2.106)
where y is a vector on ™, f: [0, T] xR™ -+ R™, K : R™ — R™, where 0 < T < o0,
and a is a scalar function, possibly a C°[0,7] or C'[0,T] function and we have
the initial condition y(0) = yo € ®™. Also, we assume that the kernel K and the

function f are continuous on S and [0, 7], respectively, and satisfy uniform Lipschitz

conditions (in y) with Lipschitz Ly and Ly, respectively. Referring to
Theorem 2.1, this equation has a unique solution y € C'([0,7]). Theorem 2.7
considered continuous-time iteration WR methods for the solution of the problem
(1.19), which includes this problem as a special case.

By relaxing the requirement that the scalar function a be continuous on [0, 7],

we determine the following “weakly singular” version of the problem (2.106),
. ¢
vy = f(t,y)+fa (t =)™ K(y(s))ds, (2.107)

where 0 < a < 1 and we assume it has a unique solution y € C'([0,T]), for each
initial value yo. Clearly, this is a special case of the problem given by (2.21). See
Theorem 2.10.

Since the problem is taking place in ®™ we let z(t) be some (fixed) component
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i(#) of the exact solution y(t), i = 1,2,...m and define

u(t) = [wi(t),y2(t),- -, ma ()l

(2.108)
v(t) = [yirr(t)syisa(t), -, ym(t)]
The problem can then be written componentwise as:
#0) = f(tyu,2,0) + [ alt = K (uls), 2(s), (s))ds, (2109)

2(0) = (yo)i, where we have suppressed the subscript i, by letting it be understood
that the i**-component of both f and K are being used.
Gauss-.

Consider a partition Iy : 0 = to < t; < -+~ < ty = T, tiys — t; = h, for

i =0,1,....,N — 1 and assume that the (continuous) approximation n(t) to the

solution y(t) has already been computed for ¢ € [0,,]. To find the approximation

Zu(t) of the ding i of n(t) by the numerical method
for t € [ta,ta+1] we consider first, the continuous-time iterations
Lo = s+ [l - 9K
+ [ alt = K, 24(s), 0 (s))ds
() = mlta), (2.110)

where z9(0) = (yo)i, for ¢ = 1,2,... and i = 1,2,...,m. In analogy with (2.108) for
i=1,2,...,mand g=0,1,..., define

wi(t) = [yi(0),3(t), .- i (O
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(2111)

() = [y (), h ()

We define the initial guess for these components when g = 0 and although it is
arbitrary, it is usually taken to be the components of the computed solution on
the preceding interval, except for the first interval, in which case it is the constant
function equal to the corresponding component of the given initial value, yo. That

is, let

w(t) = [, 83(0), -y ()] = [t = h)ima(t = k)., mia(t = )],

V) = (B () uiha(t), - Y(0)] = [ira(t = B) miga(t = B), ... (= B)],
L€ [taytapa) n=1,2,...,N =1 (2.112)
2(t) = [(¥o)r, (Yo)as- - -+ (%o)iz1s

»(8)

[(Wo)is+1: (Mo)it2s - - - (Yo)um]-
te [0,y

Collocation is the numerical method we use to generate these approximations
for each iteration and for each of the components of y. This is continued for either a
fixed number of iterations or until some norm of the difference between two successive
approximations is less than a given tolerance. We now look more closely at the form
this collocation will take. The reader may wish to return to Chapter 1, Section
1.4.2; we are using equation (1.31). Recall that this method is an exact method,
in that the integrals appearing in the method are not approximated. In practical
implementation, quadrature formulas will be needed.

Consider the set of collocation points Ty = {tn + cjh;j = 1,2,...,ri n =
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0,1,...,N — 1}, where 0 € ¢, < ¢ < - < ¢ < 1 and recall that the parameters

associated with a collocation method are ay(r) = JJ L;(£)d€, where the L; are the

d 1L jals with respect to the set {c;}. In analogy with

(2.111), for i =1,2,...,m, n=0,1,...,N —1land ¢=0,1,..., define
ul(ta + 7h) = [0f(tn + Th), 3 (ta + Th), ... 0l (ta + TH)],
and
v (tn + 7h) = [nfy1 (b + TR) i (tn + 7h), ... 1% (8 + TR)),

7 € [0,1], where n € S©)(Zn).

Clearly, the initial functions u3, v3 are defined as in (2.112), i.e.

wd(t) = [0, m3(8)s-- - nia (O] = [m(t = k), ma(t = h),-..,mima(t — )],
v(t) = @ (8), 082 (), -y (O] = [Miaa (¢ = B) miga(t = B)soe s im( = )],
t€ltmtnnl, n=1,2,...,N =1 (2.113)
u(t) = [(%0)1, (¥o)2:---» (¥o)i-t]s
() = [(Wo)isr, (vo)iszr-- -, (Y0)m]-
te0,t]

The method becomes

Zitath) = Zu(ta) +h 3 ax(¥ TE[] @114)
V= F (tn + Ut (b + ), Zaltn) + h 30 a(cs) Vs vd™ (b + c,h))
+ B [ allta+ k) — 0+ ERK (s + EmNde
=070
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+ & [ alte; - O]
(4 60, 20(0) + S Voo €0))
wherer =12, om0 Tyo0ey W= Toand v, o e given by (118
Clearly, the corresponding method for solution of the weakly singular problem
(2.107) is
Zi(ta+Th) = Zua(ta) +h Z’;a;(r)Y:,,-, refo,1] (2.115)
Yy = 1 (bbbt 8 20+ B k(K 450
+ h:‘ié /0‘[(2,. +cih) = (L + ER)"* K (n(t: + Eh))dE
+ 4 [l —On™
(47 4 60, 200) OVt €0))

where 0 <@ < 1,¢=1,2,...,n=0,1,...,N — 1 and u3, % are given by (2.113).
As in the case of (2.109) and (2.110), we have suppressed the subscript i, by

letting it be und d that the i* of both the function f, the kernel
K and the Y, are being used.
Since the iterations in the above method involve decoupling the system of equa-

suited to i on parallel i See

tions, they are
Burrage (1995) for the ODE situation. Note that we compute all the components
of 7(t) for ¢ € [tn, tns1] before we “upgrade” to the new values. That is, we do not

use the “new” (1) to compute the remaining components, even though we have

lculated it. In the Gauss-Seidel iterations, we use the new components of 7(t) as
soon as they are computed.
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Gauss-!

As before, we first consider the continuous-time iterations
%a(z) = f(t,u%,2%0"") + L" a(t — s)K(y(s))ds
+ [ " aft — $)K(u(s), 2*(s), 27" (s))ds
F(ta) = milta),

29(0) = (%) =1,2,..., i = 1,2,...,m, and for all € [tn,tnss),n =0,1,...,N—
1 and u°,v° are given by (2.112).

Again, collocation is now applied to a system of m one-dimensional VIDEs

23t th) = Za(ta) +h S a(OVY, TE[0,1] (2.116)
=1
Y = f (;,, + cih, ul(tn + cih), Za(ta) + b ij ()Y v (tn + c,h))
k=1
+ B [ alltn +eh) — (6 + ERNK(nlts + ER)E
=’
"_[:’ al(c; — )]
K (st + ). 2u00) + 5 oV, 70 + )
k=1

+

where g=1,2,...,n=0,1,...,N — 1 and u2, 2 are given by (2.113).
Clearly, the corresponding method for solution of the weakly singular problem
(2.107) is

Zi(tath) = Zolta) +h oV TE[0,1] @117)
i=1
vy o= f (t,. i ULt + cjh), Za(tn) + A 3 () Vv (tn + c_,-h))
=
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+ B [ltn+esh) = o+ ERIK (s + ER)de
=0 7’0
+ b [l - W
K (uf.(ln +&h), Zn(ta) +h iak(f)Y..',k,v.".“(ln +€h)) dg,
where 0 <@ < 1,¢=1,2,...,n=0,1,...,N — 1 and u2, 2 are given by (2.113).

2.3.2 Commutativity

In the dure we have d above, time-point rel ion is applied to the

dimensional system to decouple it into a system of m one-dimensional VIDEs,
each of which is solved by collocation for each iteration. A natural question to
ask, then, is whether the application of these methods can be commuted? That
is, if we first apply collocation, which gives us an implicit m-dimensional system of
algebraic equations to solve, and then use time-point relaxation to solve this system
iteratively, will we get the same approximation? That is, does the following diagram

commute?

y =
1 1

=X = {Za}L,

When time-point relaxation (using Gauss-Jacobi iterations) is applied first to
the problem followed by the application of collocation we refer to the resulting
methods as time-point relaxation Gauss-Jacobi collocation methods, abbreviated
TRGJCol. If Gauss-Seidel iterations are used instead, we call the methods time-
point relaxation Gauss-Seidel collocation methods, iated TRGSCol. When a
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collocation method is applied first to the problem followed by the application of time-

point relaxation (using Gauss-Jacobi iterations) we refer to the resulting methods as
collocation time-point relaxation Gauss-Jacobi methods, abbreviated ColTRGJ. If
Gauss-Seidel iterations are used instead, we call the methods collocation time-point

1 Son G Seidel methods, abbreviated ColTRGS.

Theorem 2.11 If we take the same initial guesses for n°(t, + Th) and y°(t. +

Th), n=0,1,...,N =1, 7 € [0,1]; that is if
7°(tn + 7h) = 4°(ta + Th) = g(tn + Th),

then the time-point relazation Ge Jacobi collocation method is equivalent to the

collocation time-point relazation Gauss-Jacobi method, which we can symbolize as:

TRGJCol = ColTRGJ,

and similarly, the ti int ion G Seidel collocation method is equivals

to the collocation ti int relazation G Seidel method, which we can symbolize
as:

TRGSCol = ColTRGS.

Proof:
Since our interest in this chapter concerns the problem given by (2.106), our proof
will be developed using this problem. However, it is clear that the arguments to fol-
low apply to the more general VIDE with regular kernel (1.19), and weakly singular
kernel (2.21).
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Assume 7(t) is known on [0,t,], n =1,..., N, where, for all cases, we let n(t)
represent the resulting numerical solution of the problem. Our job then, will be
to generate solutions on [t,,tn41]. We continue with the concise component-wise
notation, letting z(t) represent a typical i**-component, i = 1,2,...,m of the exact

solution y(t), and Za(t) rep the di of the ical

solution 7(¢). In addition, we suppress the subscript i whenever possible by letting
it be understood that the appropriate component of the vectors being referred to

are being used.

TRG. ColTRGJ:

TRGJCol:

Time-point relaxation (using Gauss-Jacobi iterations) decouples the system of
integro-diff ial i so the i**. of (2.106) becomes

%zv(t) - /(l,u"“,z',v"")+/|;‘"ﬂ(1—5)’((!!(5))d5
+ [ alt= K (s, 29(5), 07 (s))ds
2(tn) = nilta),

29(0) = (o) 4= 1,2,..., i = 1,2,...,m, and for all ¢ € [tm, tnsi)sn

1. From the assumption of the theorem, we take the initial guess as:
¥(tn +7h) = g(ta + 7h),
forn=0,1,...,N — 1 and 7 € [0, 1]; that is
W) = [01(t)g2(),- -, 91 (1)),
(1) = [gira(t) givalt)s- -, gm ()]
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wherei =1,2,...,m.
Collocation is now applied to generate the approximations which for each itera-
tion is given by (2.114).
ColTRGJ:
Apply collocation to (2.106) to get the

proximation:
Wb Th) = n(ta) + RS ax(¥as, TE0,1],
=1
Yoi = 1 (tn +eshynlta) +hY m(c,»m.k)
=

2
+hY /ﬂ' al(tn +cjh) — (b + ER) K (n(ts + €h))dE

=0
b [l = OHIK (200) 45 5 (Vo)

Time-point relaxation (using Gauss-Jacobi iterations) can now be applied to

decouple this system of algebraic i To evoke the conditions of the theorem,

we let the initial guess for n(t, + Th) satisfy the equation
7°(ta + Th) = g(tn + Th),
n=0,1,...,N —1and 7 € [0,1]; that is

u(t) = [5(8).0(t),... g (1))
V() = [giea(8) gira(t), - 1 gm(D)]

wherei =1,2,...,m.

The i**-component of 7(t) becomes (2.114).
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This blishes the first equivals and similar establish the second

qui , for G Seidel if i a

Let us illustrate these ideas by the special case of R2.
2.3.3 Three Examples in #?

We now give the following examples in ®?, that are all special cases of (2.106),
with the same smoothness assumptions. This will require us to refer to specific
components of the vectors Y;7; and rather than clutter the symbol with yet another

bscript to this number, we will use a superscript to the im-

mediate left of the symbol. That is ‘Y;7;, will be used to represent the i**-component
of Y3,
Example 2.6 Consider the case m =2 of problem (2.106).

Assume [1(£), 72(¢)]7 is known on [0,ta], n = 0,1,... N — 1, where we let 7 rep-

resent the resulting numerical solution of the problem. Our job, then, will be to

generate solutions on [ts, tas1], using time-poi (two-stage)

We assume that

7°(tn + Th) =n(ta—y +Th), forn=1,2,...,N—1, r€[0,1],

7°(rh) = [y10,520]" for 7€ [0,1].

n(ta+7h) = mta) + h{en(r) 'V, + a(7) 'Yo},
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(ta+7h) = malta) +h{aa(7) 2y + aa(r) ¥},
7 € [0,1], where
W= fi (e chymta) + h{oa(e) 'Y + aa(ey) 'Y} m ™ (8 + b))
+ A [l 5b) = (e ERIB e+ €81 e+ €R))E
+ b7 alle; = O]
Ky (m(ta) + h{oa(6) 'Y, + 0a(€) 'Yz}, ms ™ (tn + €R)) d,

W = fo(tn ek (b + i), malta) + h{oa(es) Vi + aales) *Yia})
+ B3 [ alltn+ ) = (14 WK 1+ €8, el + €
=0
b [ alte; - e)h)
Ko (107" (ta + €R), ma(ta) + h{ea(€) *¥i, + ca(€) Yia}) dE,

®

forj=1,2,and g =1,2,....
TRGSCol:

Ti(ta +7h) = m(ta) +h{en(r) 'V +eo(r) 'Via},
n(ta+Th) = m(ta) +h{ea(r) *Y + aa(7) *¥1},

€ [0,1], where

W3 = (4 ehm(ta) + hea() Vi + aa(es) Yilah a8 + k)
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+ 83 [ allta+csh) = (04 ERIKL (it + E),malt + ER))dE
=070
+ b [ alle; -]
Ky (m(ta) + h{en(§) 'Yy + 0a(§) 'Vila},nf ™" (tn + £R)) dE,

yg;

2 (tn + cibyni(tn + cih), ma(tn) + hlan(e5) Y + aales) 2Yiia})

+

WE [ allen+ ) = -+ EMIRS e + ), s+ R
k7 alte; - om)

Kz (n(tn + ER), ma(ta) + h{a (&) ¥y + 0a(€) 2V} dé,

*

for j=1,2,and ¢=1,2,

Example 2.7 Consider the following Volterra integro-differential system
( ¥t ) - ( LIt ) ( wn(t) ) + fo:a(i = 8)Ki(y1(s), y2(s))ds )
vi(t) a axn w(t) Joa(t = s)Ka(yr(s), y2(s))ds )
where the a;; are real constants, [y10,y20]" are given initial conditions and we use

one-stage collocation.

Assume [n(t),72(¢)]T is known on [0,2,], n = 0,1,...N — 1, where we let 7
represent the resulting numerical solution of the problem. Our job then, will be to

generate solutions on [tn,tn41], using time-point ion (& tage) collocation

We assume that
7°(tn +7h) = n(ta-s + Th)
forn=1,2,...,N -1, and
7°(rh) = [yr.0:¥20]",
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for 7 € [0,1].
TRGJCol:

ni(ta +7h) = m(ta) +hr 'Yy,

n3(ta +7h) = m(ts) + hr ?Y2,
7 € [0,1], where

i = au{m(ta) + he 'Y} + i (t + ch)

B [ altn + k) — -+ €A Ko+ €8),mtt + ER))E
=

4

+

b [ allc = AR (ma(ta) + €h 'Y, mi™ (1 + €AY,
and

S = auni M (ta + ch) + an{m(ta) + he *VS} +
net
+ B [ al(tn +ch) = (1 + €A Kalm(ts + €R),malt + ER))dE
=0

+ b [ al(c— ORIKI™ (o + €R), maltn) + € Y2)dE,

n=0,1,..., N—1land ¢ = 1,2,..., where we call the single collocation point ¢; =: ¢
and we have used the fact that

a(r)=T.
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TRGSCol:

ni(ta +7h) = m(ta) +hr 'Y7,
n(ta+7h) = m(ta) + AT 7Y, TE[0,1],

where
Wi o= an{m(ts) + he 'Y} + aran§ ™ (tn + ch)
S [l 4 ) =t R+ €8), i+ €M
+ b [ allc = MM (t) +Eh Ylng (tn + ER)dE,
and

Ve = aunilta +eh) +anfmlta) + he Y7} +
+ B [ allta +ch) — (1 ERKalm(t + €8),malt + ER))E
=070

&

b [ al(e - OhIKa(rl(tn + ER), m(ta) + €A V),

n=0,1,..,N—landg=1.2,.
As promised in Section 2.3, we now give an example where we use different

iteration schemes for the splitting functions G and Gi.

Example 2.8 Consider Ezample 2.7 and again use one-stage collocation and Gauss-
Jacobi and Gauss-Seidel modes, respectively, for G;. However, assume K; € C\(S),

i=1,2, and use Newton iteration for Gi.
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Assume [7,(t), n2(t)]7 is known on [0,4,], n = 0,1,... N — 1, where we let 7
represent the resulting numerical solution of the problem. Our job, then, will be to

generate solutions on [tn, tas1], using time-point relaxation (one-stage) coll

We assume that
7%(tn + Th) = n(tay + Th)

forn=1,

N —1, and

7°(rh) = Y10, 920" T €[0,1].

In both methods to follow, we assume that Newton iteration is used for G;. To

simplify the resulting equations, we write:
OKi(y1,y2)
Ji() = 2B ve)
O
where this partial derivative is evaluated at
u o= 07 (ta+Eh)
ya = n§ ' (ta+ER),

fori,j=1,2, n=0,1,...,N —1,g=1,2...and £ € [0,1].

Gauss-Jacobi iterations for G

ni(ta+7h) = m(ta) +h7 'V,
ni(ta+7h) = mata) +hT'YS, TE(0,1),
where
Y = au{m(ta) + he 'Y} + aianf ™ (ta + ch)
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£ WS [ el o)t ERNEL G+ ), o + )
=
+ h [ al(c— O] (Kalm(ta) + he 'Y malta) + hE 2V

+ RE(OIY? = YT + Ja(OPYS 2 YY) de,

and

2Y0 = ann{" (ta + ch) + an{m(ta) + he Y} +

RS [ allta + k) — (-+ ERNKaCm (s + €8),malts + ER))dE
=

+

+ b [ allc— ] (Kalm(ta) + e 'Y matn) + he P2
+ ROV = YT+ TPV =P Y de,
n=0,1,...,N—1and g=1,2,..., where we call the single collocation point ¢, =: ¢
and we have used the fact that
a(r)=r.

Gauss-Seidel iterations for G;:

M(ta +7h) = m(ta) +hr 'V,

ni(ta +7h) = my(ta) +h7?¥I, T E[01],
where

i = an{m(ta) +he 'Y} + @i (ta + ch)
+ BT [ alltn +ch) — b+ ERIK (mat + €R),mlts + €M)
&
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+ h [ al(c— A (Ku(m(ta) + hE 'Y ma(ta) + hE YY)

+ AEI(OIYS =" Y]+ Ju(OPYS - YI)) de,
and

Y2 = auni(ta +ch) + an{m(ts) + he *V} +
+ RS [ allta +ch) = (e + ERK s+ €R),malt + €R))d
=0 70

+ b [ al(c— ©h] (Ka(m(ta) + € "Y1 ma(tn) + hE 2

RELIn ()Y = Y+ Jn(O)PYS = Y'1}) de,

&

n=0,1,.,N-landq=12,....

2.3.4 Convergence of the Iterations

In Section 2.2 we considered the question of of the i ti
iteration waveform relaxation methods, see Theorems 2.7 and 2.10. We now ask the
same question for the discrete-time methods. That is, are these methods (2.114),
(2.115), (2.116) and (2.117) well defined as g — oo? Using standard contraction
principle arguments, we now show that these limits do exist for sufficiently small A.

It should be pointed out that we are not concerned in this section, with the
function the methods converge to, just that they do converge. We leave this other
question to later sections.

In both the Gauss-Jacobi (2.114) and the Gauss-Seidel (2.116) methods, collo-

cation on [tn,ta41] gives

Z3(ta + ) = Zu(ta) + A 3 g (RV, (2.118)
=t
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g=1,2,... and 7 € [0, 1], where the initial guess, Z3(tn + Th) = Zn(ta-y + Th), for
n=1,2,...,N —1,and Z8(rh) = ()i, for i = 1,2,...,m and 7 € [0,1]. If we can

show that ¥; — Yo, as g — oo, then we find immediately

Zn(ta +7h) = Zn(tn) + hjz:;":("')yndv reo,1],
Vai = f (1 chosaltn + ). Zult) + 5 k(6 oo + o)
W [ el )= 1 €K o+ )
+h j al(; — €]
K (u,.(t,. +£h), Za(tn) + b g‘ @ (E)Yaks vn(tn + Eh)) de,

where u2,v? are given by (2.113) and we indicate limits (as ¢ — co) by dropping
the subscript q.

This requires a standard contraction principle type argument. That is, given
z=¢(z), @R >R, (2.119)

then the sequence {27} defined by

]

Pz, g=1,2,..., (2.120)

where 29 is arbitrary, converges to the unique solution of (2.119), if the conditions

of the following theorem are satisfied.
Lemma 2.7 Let ¢(z) satisfy a Lipschitz condition

lle(2) — @@ < Lellz — 2
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Jor all z,% with Lipschilz constant L. salisfying 0 < L. < 1. Then there ezists
a unique solution Z of (2.119), and if {z°} is defined by (2.120), then 9 — Z as

q—oo.

See Lambert (1991).
First we have to rewrite the methods (2.114) and (2.116), in vector form that will
allow us to apply this lemma. To facilitate this, we introduce the following vectors

and matrices:

YieRm™:
Vo= (Ve S P e Vi s (RUOD)
Y3 V. YEIT)
g=12,....
M; € gxm, rm:
L _[1 u=iandv=[i/r]
M=ot} ‘{ 0 otherwise d

where we define, for any real number a, [a] to be the smallest integer greater than
or equal to a. That is, M; has all zeros, except for a single 1 in row i, column [i/r]:

0000 -0

0 - 010 -0/ (2.122)

Afr) € R, =



K=t = { G0 B R

That is, Ai(r) has all zeros, except for the row elements, ay(r),az(r),.. ., ar(r),

beginning at row i, column r(i — 1) + 1:

0---00 0 0 0 - 0
A =] 0 - 0 @) axr) - a(m) 0 - 0. (2.123)
0--00 0 -0 0.0

We first consider Gauss-Jacobi iterations. To do this we write the expression

for ‘Y3, explicitly showing all components.

iy,

1

7 (:,. ephmilta) + h:; on(es) YK malta) + hguk(c,) e,
)+ R 3 () Wi mea (1) + DIENC LSS
nlt) + 5 () )
+ ;.z I el + k) = (i WVttt + ERNAE (@124)
+ h / “ af(c; — €)h]
s (mlt) + 55 oull) Wi e + 5 an€) VI
ni(ta) +h gnkm Vet tn) + 5 an(®) I,
mmlta) + A5 oV ), 7 (0.1),
wherei =1,2,...m, j=1,2,...rand ¢=1,2,....
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Note: In light of the initial guess Z3(t,+7h) = Zn(ta—1+7h), forn = 1,2,...,N-1,
and Z3(th) = ()i, for i =1,2,...,m, 7 € [0,1], it is clear that we take

YO = Wy, for n=12...,N-1,
(2.125)
¥ =0,

fori =1,2,...m, j = 1,2,...r, and we recall that we indicate limits (as ¢ = o)

by dropping the subscript g, that is

Varg = Jm R AR

Clearly (2.124) gives a single component of the rm-dimensional vector Y defined
by (2.121). Now using the matrices (2.122) and (2.123), we obtain

S
i

8 = B3 Maciess || ta + cihan(t) +HAYI + 3 A}
i=1j= k=1

k#i

+ b [ alle; K [ ) +ALAMYS + 5 AV} | dr| @2126)
i 1
+ B E Mo S [ ol + )= (o TWIK ot + ),
22 &

¢=1,2,... and Y2 given by (2.125).
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The ding version for Gi Seidel i ions is

Yi

=1 5=

55 Mecuyas [/ (cn +eshn(ta) + ALY AV + 3 mu,-m“})
1 k=1 k=i+1

+ b7 alle — K (n(z") A A+ S Ak(rw:")) -ir]
k=1 k=i+1

5e

355 Moyt S [ alta + k) = (6 + TR ot + TR, (2127
i

b=t =
g=1,2,... and Y2 given by (2.125).
To complete the vector formulation, we define the following vectors:

a(r) R

a(7) = [ (7), az(7), ..., e (7)]T, T€[0,1].

I, € R™*™ is the identity matrix, and recall the definition of the direct product
®, sometimes called Kronecker or tensor product of matrices. See Lancaster and

Tismenetsky (1985). Then I, ® a”(r) € R™*"™ is given by

aT(z) = @ e 0
I@a(r)=]| 0 s aT(r) - of, rempu.
0 0 - dT(r)

Then, in both cases we can write the method in vector form. Equation (2.118)
becomes

79(tn + 7h) = 1(t) + h{ln ® a7 (7)] - Y2, (2.128)

where Y2 is given by (2.125), for 7 € [0,1], ¢ =1,2,...and n = 0,1,..., N — 1. The

only difference between iteration modes is the expression for Y;7, which is given by
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(2.126) or (2.127). Observe that
> Aw(r) = In ®aT(7).
a

Then, as we now show in the following theorem, in the limit as q — oo, this method
becomes

tn +7h) =n0(ts) + Al ® T (7)] - Yo, 7€ [0,1], (2.129)

where for both modes of iteration,

b

i ; Moy (tn + cihyn(ta) + hlln ® o™ (c)] - Ya)
+h L af(c; = T)AK (n(ta) + hllm ® o™ (7)] - Ya)dr] (2.130)

+ S M S [ alltn+ k) = (14 TRIK (s + 7,
=1 =0 70

=i
n=0,1,...,N — 1, where we drop the subscript q on Y, to indicate that the limit
as g — oo has been taken. Now, using the vector formulation we can apply Lemma

2.7 to prove the following theorem.

Theorem 2.12 Consider the Volterra integro-differential equation (2.106), where
K and f satisfy uniform Lipschitz conditions (iny) with Lipschit Lk and

Ly, respectively, and the scalar function a is a C°[0, T] function, where 0 < T < co.
Then the time-point relazation collocation method (2.128), where the iteration mode
is Gauss-Jacobi or Gauss-Seidel, in which case the expression for Y is given by

(2.126) or (2.127), ivel, as q = oo for sufficiently small h > 0.

In this case, the two methods are identical and we have:

o= it Mty [f (1 + ey n(ta) + hlln ® a7 (c))] - Ya)
1

=1 5=
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+ b7 al(e; = IBK((ta) + hlIn @ oT(7)] - Ya)dr] (2.131)
+ f; ; - ':fé /n' a(tn + ch) = (t + TRYK (n(ts + Th))dr,
n =0,1,...,N—,1.
Proof:
Let 7 € [0,1] and n € {0, 1,..., N —1} fixed, and consider iteration over g = 1,2, .....
We can show that 79(t, + Th) converges as ¢ — 0o, if we can show that Y7 converges
as g — oo, where Y7 is given by (2.126) or (2.127), and Y is given by (2.125).
Clearly, Y is given implicitly by (2.126) and (2.127), and we apply Lemma 2.7
to these expressions.
Let us consider ¥ and ¥ and calculate their difference. We get, for Gauss-

Jacobi iterations,

M= = IS M

Flta+ cihun(t) + MAGIYI+ 35 Ade)¥VI ')
k#iQ

+ b [7 alle; A (n(ta) + ALAGIYS + 30 APV Ndr

k#i

= XX Mionyss
St

Htn - cibyn(ta) + RAG)Y + 35 A"
=
k#i
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b [ alles = DMKt + MAGI + 3 AR Yyar I
KE
7=1,2,....

Define the non-negative real number A,
A = max{|M-yessll 1A s i =1,2,...,m, j=1,2,...,r, T€[0,1]}.

Note that we have implicitly assumed that the above matrix norm is compatible
with our vector norm |-||. That is, for any vector v and matrix Q, where the product
Qu is defined

llQull < lIQfl - llll-

See Lancaster and Tismenetsky (1985).
We now apply the generalized triangle inequality and recall that both f and

K satisfy Lipschitz diti with Lipschitz Ly and Lk,

Therefore, the above simplifies to

M=% = 1S M

Fltn+cibun(t) + AAGYI + 30 Ade)Ye™')
=1

k#i

© fltatohltn) +AAE + 30 Ade)VTD)
&g

k#i
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IA

+

A

In

hf' a[(c; — 7)A] | K(n(ta) + A{A(T)Y] + i A()Y))
° o

E#i

Kla(ta) + HAMIY + 3 Mr)?."‘))dr]] It
k=1

AT [[,@, bt HhAGYI + 30 Ade)VID
i=1 y=1 k=1

ki

F(ta + cih,n(ta) + A{A(c;)Ya' + f: Ak(ci)y-nq_l)))
17

5 Ay

=

&
k

h /., “ al(c; — 7)h] (K(n(tn) +h{A(TYS +
:

K(n(ta) + H{AGYS + 30 A,.(rm"'))dr]}u
e

k#i

AT -V + 5 Ade)v - %
=¥~ o
b [ laltes = Al
ALY -V + 3 A~ 1&"‘)1|dr]
e
ol

AE S {RLABIYE Vol + (m = DAY — V1)
bR
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+ b [ lal(es = TIA
RL{BI¥S = Valll+ (m = ANV = %7 I} dr
A5 S A{LAIVE -V + (m = DAY - VN

A

+ Lk [ lalles ~ TAllén }

G2 s
Since a(t) is bounded on [0,T]

7 lal(e; = T)Alldr < Citmar < Gmass @132)

where apqz 1= max{[a(t)| : 0 < t < T}, and we recall that ¢; € [0, 1], Vj. Then

1Y = V31| S rmAR(Ly+ Lichamae)(IY2 =Ya'll + (m = 1)Y= V")), (2.133)

and solving for ||,y — Y|, we get

rm(m — 1)A’h(L; + Lichames) [V~ = Y7l
(2.134)

= <
Ivz-va < 1= rmA?R(Ly + Lichamaz)
< RLas|VI =Y,

q=1,2,..., and for sufficiently small h, so that 0 < hLgs < 1.

In the case of Gauss-Seidel iterations, analogous calculations give
1Y — Y2l < rAh(Ly + Lichamas) i‘(illy.f =Y+ (m = )Y = V),
5
which becomes
IY2 = Y2l < rA?h(Ly+ Lichapas) (2.135)

(mlmt D g+ B ).
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Hence, solving for ||Y;7 — ¥§]|, we obtain

= rm=1)m A2p, h 9-1 _ yra-1
WYe—va < 3 (Li.+ Lichama:)|Y~! — Y~!||

1 — AR (L, + Lichamas) . (2.136)
< kLes|Yit =¥

¢=1,2,..., and again, for sufficiently small h, so that 0 < hLgs < 1. Now, using

the exi: and 1 of Lemma 2.7, the proof is complete. O

Of course, in the case where we iterate a fixed number of times, or where we

iterate until some norm of the between two i il i is
less than some given tolerance, we define the limit as the last value calculated.
For the weakly singular case given by (2.107), the method is again given by

(2.128), where for Gauss-Jacobi iterations

Y = B3 Mecess || ot ehn(t) + ALY+ 30 Ae)¥a)
=1 =
& h/:[(c,-—r)h]“’[( o) + MAMYI+ 3 A | ar

=

k#i

o i
+ LS Meurrih L [ [t + k) — (6 + TR)* K (n(ts + Th))dr, (2.137)
e =

=1 5

and for Gauss-Seidel iterations
Yi o= 33 Miiets [f (ln +cihun(ta) + ALY Au(e)YE + 3 Ak(E,)Yn'_'))
==t = [ty

[l = A (1) A An¥ + 35 Adnvey) ar
o k=1 k=it+l
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+ B Mot S [t )~ o+ R K ot + )M, (213)
b

=5
g=1,2,..., 0<a<1and ¥? is given by (2.125).
The following corollary is immediate.

Corollary 2.2 Consider the Volterra integro-differential equation with weakly sin-
qular kernel given by (2.107), where K and f satisfy uniform Lipschitz conditions
(in y) with Lipschitz constants Lk and Ly, respectively, and 0 < a < 1. Then the
time-point relazation collocation method (2.128), where the iteration mode is Gauss-
Jacobi or Gauss-Seidel, in which case the ezpression for Y3 is given by (2.137) or
(2.138), respectively, converges to Y, as q — oo for sufficiently small h > 0. In this
case, the two methods coincide and we obtain:

Yo = 13 Mioiysslf(tn + b n(ta) + hlln ® a7 (c;)] - Ya)

i=15=1

+ b [7le; = A K (ata) + Wl ® 7()] - Ya)d] (2.139)

+ S Mo S [t ) = (4 TR Kot + TR,
: =

=1 5=

n=0,1,...,N-1.

Proof:

The proof is the same as the proof of Theorem 2.12 except for the calculation in

(2.132), which becomes

/: la[(c; — 7)h]ldr = [:’[(c’, —o)hjedr = Inl'"_

where0 <a<land j=1,2,...,7.
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Then for Gauss-Jacobi iterations (2.134) becomes

rm(m — 1)A% (L; + “8=) Vg~ — V)|
1—rmath (L + 252

e -vsl <

< hLayllYi =¥,
0<a<l,¢g=1,2,...and for 0 < hlgs < 1.
Similarly, for G Seidel i i (2.136) b

Amgtim Ath (L + BEZ) IYe~! — Vet

lv;e — ¥zl = =
= 1— et Azh (L, + Leb=s)

A

< hLes|lYet - ¥V,
0<a<l, ¢g=1,2,... and again, for sufficiently small h, so that 0 < hLgs < 1.

Now, using the exi and of Lemma 2.7, the proof is

complete. O
2.3.5 Optimal order conditions

In the previous section, we showed that for sufficiently small A, the time-point
relaxation collocation method (2.128), for each mode of iteration, (2.126), or (2.127)
is well defined and converges to the same unigue method given by (2.131), as g — co.
However, we do not know if the solution given by this method has any relation to
the exact solution y of (2.106). We now tackle the question of convergence of these
methods as h — 0.

In particular, we will be d with the conditions necessary for optimal

order of convergence at the nodes. See Section 1.4.2, where we discuss the idea of

superconvergence at the nodes.
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Recall that an r-stage collocation method has an order of global convergence of
r, but if the collocation parameters {c;} are chosen in special ways, we can attain
higher order at the nodes, provided the analytic solution is sufficiently regular. In
particular, if the Gauss points are taken we attain the optimal nodal order 2r. See
Theorems 1.8 and 1.9, respectively. See Hairer at al (1993) for similar results for
ODEs. In the next sections we consider the conditions necessary to attain this
optimal nodal order, 2r. Clearly, this analysis can be repeated for lower order
methods, like the Radau II and the Lobatto methods.

We start out by considering the simplest case. Let us list all the assumptions:
e The iteration g is taken to oo.

o The implicit algebraic equations in (2.126) and (2.127) can be solved exactly.
o The integrals in equations (2.126) and (2.127) can be found analytically.

In the coming sections we eliminate, in order, each of these assumptions. The
final method will be the most realistic, and we will refer to it as the fully discretized
time-point relaxation collocation method.

Alongside with these results we will also consider the VIDE with weakly singular
kernel (2.107), whose time-point relaxation collocation method is given by (2.128),

where the iteration mode is Gauss-Jacobi or Gauss-Seidel ((2.137) or (2.138), re-

spectively). However, for polynomial spline collocati ploying a uniform mesh,

the global convergence is of order 1 — a, where 0 < a < 1. See Section 1.4.4.
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2.3.6 The Ideal Case

We take this simplest case and assume that the integrals and implicit algebraic
equations in (2.126) and (2.127) can be solved exactly, and we take the limit as the
number of iterations g goes to infinity. The idea in this section is to show that, if
we take an r-stage collocation as the underlying method, we can attain an optimal
nodal order of 2r (if the Gauss-points are taken as the collocation points). The

following theorem and proof are given in Brunner (1984).
Theorem 2.13 (Brunner 1984) Consider the Volterra integro-differential equation
given by (2.106), and the regions Dy := [0,T] x ®™ and Dy = S x R™, where
0<T<ooandi=1,2,...,m. Assume the following regularity conditions:

* [eC¥(Dy),

* K € C¥"(Dx),

e aeCT([0,T)).

Also, consider the time-point relazation collocation method (2.128), where the itera-
tion mode is Gauss-Jacobi or Gauss-Seidel, in which case the ezpressions for Y are
(2.126) and (2.127), respectively. Assume that the integrals and implicit algebraic
equations in (2.126) and (2.127) can be solved ezactly, and take the limit as the
number of iterations q goes to infinity. Then the optimal nodal order is given by 2r,
if the r collocation parameters {c;} are taken to be the Gauss points on (0,1).
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PROOF:

We begin by pointing out that this proof does not differ from the classical proof,
since the TR method (2.128) simply becomes the classical method (2.129) in the
limit as the number of iterations g — co.

Define e(t) := y(t) — (t), where y refers to the exact solution of the problem,

and 7 refers to the (collocation) approximation in the limit as g — oo. That is,

Nta+7h) = n(ta) + k[l @ a™(7)] - Ya,

Yo = 55 Meuypsslf(ta + cihon(tn) + Al ® aT(c)] - Ya)
=1 j=1

+ b 7 alle; — HIK(r(t) + bl @ aT()] - Vo))
b S M S [ alltn + eh) = (b PRI ot + ),
i=1j=1 =0

7 €[0,1] and n =0,1,...,N — 1, where the subscript g on Y, has been dropped
to indicate that the limit as ¢ — oo has been taken. Recall that n € S©(Zy).
Since 7 satisfies the problem (2.106) at the collocation points Ty = {t. +¢;

L,2,...,5n=0,1,...,N -1},

7(t) = f(t,n) + /; a(t — s)K(n(s))ds — &(t), te€[0,T], (2.140)
with 8(0) = 0. In fact, the defect 5 vanishes on the set Ty of collocation points.
Subtraction of (2.106) from (2.140) gives,

€(t) = f(t.y) — f(t.) + /0' a(t — s)[K(y(s)) — K(n(s))lds + 5(¢),
where ¢(0) = 0, since 7(0) = y(0) = yo. Since r is at least one, both f and K are
differentiable with respect to y, (i.e., at least, f € C*(D;) and K € C*(D)), so we
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can apply the mean value theorem, to convert this non-linear equation to the linear
equation

() = Ae(t) + [ " at — s)k(s)e(s)ds + &(2), (2.141)
€(0) = 0. Here A(t) is the m x m Jacobian matrix of f with respect to y, where

each row is evaluated at a different mean value; that is

where for each ¢ € [0,7], the mean value (i = 1,2,...,m is an internal point of
the line segment in R™ joining y(t) to 7(t).
Similarly,

k(s) = (
where for each s € S, the mean value x;,i = 1,2,...,m is an internal point of the
line segment in R™ joining y(s) to n(s). See Lambert (1991).

The solution of the equation is given by Theorem 2.2, using the resolvent kernel

Rin (213),
e(t) = R(t,0) - e(0) +/ﬂ‘ R(t,s)-8(s)ds, te[o,T],

and we recall that e(0) = 0.
At the nodal points

et =h3S A " R{ta,te +7h) - 8(ti + Th)dr. (2.142)
k=00

To complete the calculation, we evaluate the integrals using an interpolatory quadra-

ture formula based on abscissas {ti +d;h} where 0 < dy < - < d, < 1, and weights
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{w;},(G =1,2,...7). Then,

e(ta) = l.'f (,Z ; R(tn, b + dsh) - 8(t + dsh) + 5_,,) s
k=0 \j=1

where E, x denotes the error term associated with the quadrature formula. Choosing
d; = ¢; (the collocation parameters), we get §(ty + c;h) = 0 for j = 1,2,...,r, k=
0,1,...n —1, and the above equation becomes

e(t,) =h- E Epg.
=]

Since this sum contains at most N terms, where Nh = T < oo, the order of the
nodal error e(t,) equals the order of the quadrature error. Choosing these collocation
parameters equal to the Gauss points in (0,1), we establish optimal quadrature order
2r.

Note, that it is here where we require the regularity conditions itemized in the
assumptions of this theorem. In order to guarantee the optimal quadrature order
2r, we assume that the integrand is sufficiently smooth (i.e., an element of the space
C?(-)), since the error formula contains derivatives of the integrand of this same
order; see Brunner (1984) and Brunner and van der Houwen (1986). Therefore, let
us look more closely at the integrand in (2.142), R(tn,t + Th) - 8(tx + h), where
k=0,1,...n—1,n=0,1,...,N—1and 7 € [0,1], and show that it has smoothness
of order C7(-).

Firstly, § € C*[(t, tx41)] since by (2.140) it inherits the smoothness of f, a and
K, and on (t, tk41), 7 is a polynomial. Observe that the resolvent kernel is derived
from the linear equation (2.141). Since A € C*~([0,T]) and a,k € C*~'(S), by
Lemma 2.1 this resolvent kernel R € C*(S). O.
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We now consider the VIDE with weakly singular kernel given by (2.107) and give
the following theorem from Brunner (1986a).

Theorem 2.14 (Brunner 1986a) Consider the Volterra integro-differential equation
with weakly singular kernel given by (2.107), and the regions Dy := [0,T] x R™ and
Dx = S xR™, where 0 < T < o0 and i = 1,2,...,m. Assume the following
regularity conditions:

* fEC(Dy),
* K €C"(Dx),

and assume that K does not vanish identically. Also, consider the time-point relaz-
ation collocation method given by (2.128), where the iteration mode is Gauss-Jacobi
or Gauss-Seidel, in which case the ezpression for Y3 is given by (2.197) or (2.138),
respectively. Assume that the integrals and implicit algebraic equations in (2.187)
and (2.138) can be solved ezactly, and we take the limit as the number of iterations
g goes to infinity. Then the global convergence is of order 1 — a, where 0 < a < 1

of how the collocation p {;:0€a << <¢ <1} are

chosen. That is, the error e(t) = y(t) — n(t) satisfies

llellr = O(k*2).

2.3.7 The Effect of Iteration

Again, we assume that the integrals and the implicit algebraic equations in (2.126)
and (2.127) can be treated exactly, but the number of iterations is finite. We can

then consider the resulting effect on the underlying order of the method, which for
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us is optimal at 2r. In i we will be i d in blishing the mini:

number of iterations necessary to regain the optimal order 2r.

Let us define e7(t) := y(t) - 7%(t), g =1,2,... and note that

) = (5(t) = () + (n(t) — n°(®)
e(t) + (1),

where we define €7(t) := n(t) — %(t). By the triangle inequality at the nodal points
tn

lle?(ta)ll < lle(t)ll + lle? (2a)ll- (2.143)
The previous theorem gives us the order of e(t,.), so we need only consider the order
of €9(t,), since the order of €7(t,) will be the minimum of these two orders. Fortu-

nately, the same lations that showed of the i ions in Section

2.3.4 can be repeated to give the order of convergence of €%(t, ).

Theorem 2.15 Consider the Volterra integro-differential equation (2.106), and the
regions Dy :=[0,T] xR™ and Di := SxR™, where 0 <T < 00 andi =1,2,...,m.
Assume the following regularity conditions:

e feC¥(Dy),

* K € C*"(Dk),

e aeC*([0,T]).
Also, the kernel K and the function f satisfy uniform Lipschitz conditions (in y) with

Lipschit Ly and Ly, ively. Also, consider the time-point relazation
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collocation method (2.128), where the iteration mode is Gauss-Jacobi (2.126) or
Gauss-Seidel (2.127), and assume that the integrals and implicit algebraic equations
in (2.126) and (2.127) can be solved ezactly. Then the optimal nodal order is given
by v = min{2r,q+ 1}, provided the r collocation parameters {c;} are taken to be the

Gauss points in (0,1).

PROOF:
In light of (2.143), we need only show that [[¢?(¢,)]| = O(h*"). Therefore, subtract-
ing (2.128) from (2.129),

E(ta+7h) = n(ta+7h) = n%(ta + Th)
= hlln®a"(7)]-[Ya - Y],

where ¢ = 1,2,...,7 €[0,1], n=0,1,...,N — 1 and Y2 given by (2.125), we now

look more closely at the difference ¥, — Y.
We have already calculated this difference, see Theorem 2.12, and in particular,

(2.134) and (2.136). Thus, for Gauss-Jacobi iterations,

rm(m — 1)A%h(Ly + Lichames)[|Ya — Y3~'||
T —rm&h(Ly + Lchamaz)
< hLas|lYa— Y3,

I¥a =¥l

IA

g=1,2,...and Y2 is given by (2.125). In the case of Gauss-Seidel iterations,
Hmsm AZR(Ly + Lichamas)|lYa — Y3~

1— 2GR A(Ly + Lichamas)

< hLgs|lY, =Y,

II¥e = Y21

A
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g=1,2,... and Y2 is given by (2.125).
Applying these results recursively, for Gauss-Jacobi iterations

I¥a = V2l < B2LE,|IYa = YU,

g=1,2,...and Y is given by (2.125).
For Gauss-Seidel iterations, the result is
IIYa — Y31 < RTLES||Yn — Y2l
So we obtain, for Gauss-Jacobi iterations

le*(tn+7h)| = [[AlIn ® @ ()] [Ya = Y1]I|
< Alln ® (1)l [A*LE,||Ya = Y2 < const - A7,

g=1,2,..., 7€[0,1], n=0,1,...,N — 1 and Y2 is given by (2.125).

For Gauss-Seidel iterations,

et +7h) = [Alln @ @™()] - [Ya = Y]l
< hllm @ aT (1)l - [A*LEsIYa — Y2Il] < const - AT+,

r€[0,1], n=0,1,...,N — 1 and Y2 is given by (2.125).

lle'(a)ll = O(e"),

as h — 0%, and so
(L) = O(R™nGra+))),
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as h — O, if the collocation points are taken to be the Gauss points in (0,1).
Therefore the nodal order is v = min{2r,q+1}. O
Remark:
Compare Theorem 2.15 for VIDEs to Theorem 1.10 for VIEs. Both results show that
we obtain the order p” of the underlying numerical method in ¢ = p~ — 1 iterations.
However, this depends on the initial solution (2.125) taken. In performing the
numerical testing of Test Problem 2.2, for the Gauss-Jacobi case (only), I noticed
that if I took Y2 to be the null vector, I would need ¢ = p" iterations to regain the
order p* of the underlying numerical method. Therefore, Theorem 1.4 for ODEs is
compatible with Theorem 2.15. o

To test and illustrate this result we consider the following simple linear two-

dimensional test problem:
Test Problem 2.1 Consider the following Volterra integro-differential system
o) _ (-3 1) wlt) ¢ -2 z)(y.m)
(v,(t) R PARAC) +[(72 =2 nis) )%
where [y1.0,y20]7 are given initial conditions.

If we define
Y(t) = ( ;;E:{ )

and differentiate, this linear VIDE becomes the following first order ODE

Y(e) ) _ 3 g 111 ? Y(t)
( Y'(t) ) =l-2 2 -3 1 ( Y'(t) )
2 -2 1 -3
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Y'(0) = ( -3 _; )y(o).

Y(0)=(§).

Y= ( :::gtg )

See Edwards and Penney (1994).

Choosing the initial value

we get the solution

I wrote a C++ program to solve such a two dimensional linear VIDE using both

point and two-point collocation (Gauss points).

In Section 2.5, see Tables 2.5, 2.6, 2.7 and 2.8 which summarize the results of
these tests.

We now consider the VIDE with weakly singular kernel given by (2.107).

Corollary 2.3 Consider the Volterra integro-differential equation with weakly sin-
gular kernel given by (2.107), and the regions Dy :=[0,T] x R™ and Dx := S x ®™,

where 0 < T < 0o and i = 1,2,...,m. Assume the following reqularity conditions:
* feC(Dy),
* K €C"(Dx),
and assume that K does not vanish identically. Also, consider the time-point relaz-
ation collocation method given by (2.128), where the iteration mode is Gauss-Jacobi
(2.137) or Gauss-Seidel (2.138). Assume that the integrals and implicit algebraic

equations in (2.197) and (2.198) can be solved ezactly. Then the order of global

convergence is given by 1 — o, where 0 < a < 1 and we use r-point collocation.
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Proof:
This follows from Theorem 2.14 by applying the proof used in Theorem 2.15 and
using the results given in the proof of Corollary 2.2. O

2.3.8 Stopping Error

Since the underlying method is a coll ion method, which is an implicit contin-
uous Volterra Runge-Kutta method, one must solve a system of implicit nonlinear
algebraic equations to proceed with the method. That is, to find the Y7 using
(2.126) or (2.127), we must again use an iterative method, which can be a Picard-
type fixed-point iteration or some variant of the Newton method. Our job in this
section will be to give the error associated with “stopping” this final iteration after
2 finite number of iterations. In particular, we will establish the minimum number
of iterations necessary to regain the optimal order 2r (for the regular kernel case).

We assume that the integrals in (2.126) and (2.127) can be found analytically,
leaving a later section to deal with the fully discretized cases, where we also approx-
imate these integrals. We shall see that this will not result in a reduction of order
if we use interpolatory quadrature, where the collocation Gauss points are taken as
the quadrature abscissas.

As before we assume that the approximation 7 is already computed on [0,1,]
and the approximation on the interval [t,, tn41] is given by

7%(ta + 7h) = n(ta) + h[In @ aT (7)] - (¥7)", (2-146)

¢=12,...,s=12,..., 7€[0,]]and n =0,1,...,N— 1.

Also, n%9(t, + Th) = n?"'(ta + 7h) and 0%t + Th) = n(tn-1 + Th), for n =
1,2,...,N — 1, and 7°(h) = yo, for 7 € [0, 1]. The expressions for (¥,7)* depend on
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the types of iteration modes used over both g and s, and we refer to these as the
“inner” and “outer” iterations, respectively. Recall that Y is given by (2.126) or
(2.127). Assume g = 1,2,.... is fixed and consider Picard fixed-point iteration over
s=1,2,... to evaluate the Y. Let

lim(¥3) = ¥5,
where (¥7)° = Yg~! and Y2 is given by (2.125).

Then for Gauss-Jacobi iterations we obtain

VD = T3 Mocuyss (2147

=1 j=

1| tnt cibuntn) + MAGY + 3 Ade)Ve)
k#i

+ b [7alle; = PRI | nlta) + HAGI + B anvey | dr
=

k#i
- - wat i
+ LY Maoipash X [ ollta +csh) = (6 + TR K (n(ts + 7h))dr,
=1 =1 =070
q=12,...and 5=1,2,...
The ding version for G Seidel i is
(Y3 = 33 Mg-urss (2.148)
=

[/ (tn +eshyn(ta) + ALY Ae) (Y + 3 A.(Cj)w-'))
k=1 k=il
+ b [ al(e; = )A]
K (n(m A A+ 3 A.(r)vr'}) dr]
k=1 ke=id1
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+ 5 M g ) altta+ k) = o+ rRNK atts + 7)),
¢=1,2,...and e i
To find the stopping error for iteration over s, we must look at ||[¥ — (Y)*||.
Clearly the results of Section 2.3.4, in particular (2.133) and (2.135), can be applied.
Therefore, for Gauss-Jacobi iteration mode, we find, for ¢ € {1,2,...} fixed and
s=1,2,...,
1Y = (Y3)°ll < rmA%h(Ly + Lchamaz) 1Y — (Y37l

and for Gauss-Seidel iteration mode

I1¥7 = (Y1)l < r&%h(Ly + Lichamas) (mT+l)\[}',? = (YJ)"'IJ),
where we recall that

A = max{||Mi—pess I 1A 1 i = 1,2,...,m5 j=1,2,...,r5 T€[0,1]},
and

@maz :=max{la(t)| :0< ¢t < T}
Then applying this recursively, for both iteration modes, we obtain, for ¢ fixed and
s=1,2,...,
1Y = (0l < C - WY = (V0)°ll-
But (Y{)° = Y7~!, and from the results of Section 2.3.7
Ve =Y = (Y3 = Ya) + (Ya = YT
< VP -Yall+ Y= Y27

(]

0(h?) +0(h"~)
= o(h").
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Putting these two results together, we find
Y3 = (¥3)°ll = o(h* ). (2.149)

These results are now collected in the following theorem, which applies to both the

Gauss-Jacobi and Gauss-Seidel iteration modes.

Theorem 2.16 Consider the Volterra integro-differential equation given by (2.106),
and the regions Dy := [0,T] x ®™ and Dy := § x R™, where 0 < T < oo and

i=1,2,...,m. Assume the following reqularity conditions:
e feC¥(Dy),
® K €C¥(Dx),
o aeCrY([0,T]).

Also, the kernel K and the function f satisfy uniform Lipschitz conditions (in y)
with Lipschitz constants Ly and L;, respectively. Also, consider the time-point re-
lazation collocation method (2.146), where the inner iteration mode is Gauss-Jacobi
or Gauss-Seidel and the outer one is Picard fized-point, in which case the ezpression
for (Y3)* is given by (2.147) or (2.148), respectively, and assume that the integrals
in these ezpressions can be found ezactly. Then the optimal nodal order is given by
v = min{2r,q+1,q+s), provided the r collocation parameters {c;} are taken to be
the Gauss points in (0,1).



Proof:

Let us define e®*(¢) := y(t) —n™*(t), ¢=1,2,...,s =1,2,..., and note that
e*(t) = (y(t) —n(t)) + (2(8) = n°() + (n°() — n**(2))
= e(t)+ €(t) + (1),
where we define €3#(2) := n%(t) — 7%(t). By setting ¢ = t, and using the triangle
inequality, we establish
[l (ta)ll < lle(ta)ll + e (n)ll + [l (tn)l- (2.150)
The previous two theorems, Theorem 2.13 and Theorem 2.15, give us the order of
e(t,) and €¥(t,), respectively, so we only need consider the order of €%*(t,), since
the order of e%*(t,), will be the minimum of these three orders.
Subtracting (2.146) from (2.128), we find
lle*(tn+7h)| = [lhllm @ @T(7)] - [¥S = (V)]
< ki@ ()] - Y7 - (VI)Il
g=12,..,5=1,2.., r€[0,1]andn =0,1,..,N — 1. Recalling equation

(2.149),
1Y = (¥2)°ll = O(h**e~Y),

@ (tn) = O(K™),

and therefore
(1) = O(hmintaratiatsl)
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as h — 0%, if the collocation points are taken to be the Gauss points in (0,1). O

To test and illustrate this result we consider the following simple nonlinear two-
dimensional test problem:

Volterra integro-diff ial system

Test Problem 2.2 Consider the foll

(yi(l)) _ ( w(t) = n(t)(t) )
¥i(t) 2y1()wa(t) — 2na(t)

¢ vi(s)wa(s) a(t)
+ /;(t—s) ( y:(s)y’(s) )d.v+ ( g;(l) ) )
where [y10,y20]7 are given initial conditions.

The non-homogeneous terms are

o 2e¥(12t—1) 3t—2
alt) = ef1-20)+=——57—= - =,
—e¥(57t+2) 3t-2
9(t) = o7 -

The solution corresponding to the initial values,

o = 0,

%20 = 1,
is given by

wu(t) = te,

va(t) = e



I wrote a C++ program to solve this two-dimensional nonlinear VIDE using

both point and two-point ion (Gauss points). [ applied Picard iteration

to solve the implicit algebraic equations and I used one and two point Gauss quadra-
ture, respectively, to evaluate the integrals. Although we postpone the discussion
of the approximation of the integrals that occur in these methods until Section 2.4,
we can say that it does not result in a reduction of the order.

In Section 2.5, Tables 2.9, 2.10 and 2.11 summarize the results of these tests,
which verify Theorem 2.16.
Weakly Singular Case

Consider the VIDE with weakly singular kernel given by (2.107). Then the time-
point relaxation collocation method is given by (2.146), where for Gauss-Jacobi

iterations we establish

¥3)y = Zm:Zr:Mﬁ_m, (2.151)

==t

fltate

2te) + HAEIYD 4 3 Ale)ve)

k#i

+ b [Vl = AR 1) +BAMEDT 4 S Ay dr
-

k#i
" x =l oy
+ L% Mopsih 3 [ [t esh) = o+ WK (olt + ),
==t =’
0<a<l,g=12,...ands=12,...
The ding version for Gauss-Seidel iterations is
) = X Miness (2.152)

=1j=1
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[! (tn +ehonlta) + (Y Ae) (¥ 4 3 m(:,)vr'})
k=1 k=it+l
+ b 7=
K (r,(t,.) + h{f: ATV + ij A.(T)Y:-'}) dr]
= Perrl
+ B Mt & [l +ei8) (4 R Kt + 7)),
i=1j=1 1=0
0<a<l,g=1,2,..ands=1,2,....

Corollary 2.4 Consider the Volterra integro-differential equation with weakly sin-
gular kernel given by (2.107), and the regions Dy := [0,T] x R™ and D := S x ®™,

where 0 < T < 00 and i = 1,2,...,m. Assume the following reqularity conditions:
o feC(Dy),
o K € C"(Dk),

and assume that K does not vanish identically. Also, consider the time-point re-
lazation collocation method given by (2.146), where the inner iteration mode is
Gauss-Jacobi or Gauss-Seidel, and the outer is Picard fized-point, in which case
the ezpression for (Y,9)" is given by (2.151) or (2.158), respectively and the integrals
in these ezpressions can be solved ezactly. Then the order of global convergence is

given by 1 —a, where 0 < a < 1 and we use r-point collocation.

Proof:
This follows from Theorem 2.14 by applying the proof used in Theorem 2.16 and

using the results given in the proof of Corollary 2.2. O.
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To test and illustrate this result we consider the following simple linear two-

dimensional test problem with weakly singular kernel:
Test Problem 2.3 Consider the following Volterra integro-differential system
GO _ (1 1) (3O, o aef 1 1) [ 0
(z/m) = (2 2) (o) fe-o(D ) (0 )=
(2]
a® )
0 < a <1, where [yy0,y20]7 are given initial conditions.

We assume the solution:

w(t) = ¢,
n(t) = 27, (2.153)
subject to the initial conditions
o = 0,
Y20 = 0,
where 0 < & < 1. The non-homogeneous terms are then given by
LA -G —e) sz
T(6 —2a)

ST(L — )05 —a) 5 g0
R Gy R

a(t) = (4—a)f= 43t

@(t) = 24-a)f*° 45t
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for0<a<l.
Note that this problem is a two-dimensional version of the problem given in
Example 2.3. However, by Theorem 2.6, the solution (2.153) is not a typical solution.

For comparison, let us assume the following solution to Test Problem 2.3

w(t) = £,

w(t) = 262°°, (2.154)
subject to the same initial conditions as (2.153),

e = 0,

¥20 = 0,

where 0 < a < 1. The non-homogeneous terms are now given by

a(t) = @—ayi-e 4360 LA -G =a) gz

T4 —2a)
alt) = 22-a)'™ +537 + 5——1-(11_?4"11;%_ 2)3-2e,

for0<ac<l.

I wrote ©MATLAB software to solve this test problem, using both of these
solutions. We used two-point collocation (Gauss-points), Picard iteration (one iter-
ation) to solve the implicit algebraic equations and two point Gauss quadrature to

solve the integrals. The inner iteration was G: Jacobi with ¢ = 3 i i so

for both solutions (2.153) and (2.154), we expect an order of global convergence of
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1 — a, where 0 < a < 1. See Corollary 2.4 and the “Remark” at the end of Section

2.4.
The results of these tests are collected in Tables 2.12 and 2.13, Section 2.5.

2.3.9 Newton Iteration

In addition to the simple Picard iteration, we consider the Newton type methods
to solve the implicit algebraic equations in the method. To apply the Newton type
iteration formulas, we let (2.126) and (2.127) be written Y7 = F(¥3,Ys™!), and
define
P(YLYI™) =Y = F(;, YY) =0, (2.155)

q€{1,2,...} (fixed). The form of F and thercfore P is clear and depends on which
inner iteration scheme, Gauss-Jacobi or Gauss-Seidel we are considering. We now
apply Newton'’s methods to the solution of (2.155), which in turn will provide a
solution to (2.126) or (2.127).

The Newton method for (2.155) with initial value (¥)° = (Y3~!), where g =
1,2,... (fixed) and Y2 is given by (2.125), is given by

) = (= = (PO Y} Pyt v, (2.156)

where s =1,2,... and P’ is the Jacobian of P. Let us look more closely at the form

of P'. Firstly,
AF(Y, YY)
- i
where I, is the rm-dimensional identity matrix. We subsequently must look at the
OF (Y3,
Y

PY3Y

Im

form of . In order to justify taking these derivatives and moving the

140



derivative “inside” the integral sign (for the integral component) we must assume
sufficient regularity conditions for f and K. These are given in Theorem 2.18.

By the linearity property of derivatives, we ine for the G Jacobi mode

of iteration

FEOLHLT) b diag({I (S Kism) V2, Y2 M),

where diag({U;}1,) is the rm-dimensional square block matrix with diagonal blocks
U;, i=1,2,...,m, that is

U -0 - 0
diag({UFz) = | © o,
0 0 - Un

where U = J(fi, Kii:)(Y3, Y3~) is the matrix:
I Kiim) (V2 Y2) = Gy
where each element j,, is given by
du = ae) 2+ e+ b [ e = () G
= oyl file) + hI(el)s

i=1,2...,m u=12..rv=12..,rand 7 € (0,1 To geta picture
of these block matrices, let us write out the components for the case r = 2. For

i=1,2,...,m,

U;

( a(e)fi(a) +hIi(a) ax(en)filer) + hlf(er) )
a(er)filea) + hli(ez) caler) filea) + hEi(c2)
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Therefore

PV~ YY) = I — b - diag({J(fi Kism) (V)" VI )}R,),  (2.157)
where both partials of f and K are evaluated at (¥5)*} and ¥;-!.
.
For the Gauss-Seidel mode of iteration, 2X 0 Ya)

i becomes the following
lower triangular block matrix of partial derivatives,

L) b By i) O8, Y i)

where L({U;j}fkiz1) is the rm-dimensional square block matrix with blocks
Usjy i=1,2,...,m, j=1,2,...,i, that is

L{U:s}e

Uni *++ Unm
where U ; = J(fi, Kis n;)(Y3, Y1) is the matrix

J(fir Kiymi) (¥, Y™

(Guw)s

where each element j,, is given by

(e Dttt )+ [ al(ew = bl ) G,
ay(en) fij(eu) + hl(c),

m, 3=1,2,.

i u=1,2,.

. v=12...,rand 7 €[0,1].
Again we write out the components for the case r = 2. For j <i=1,2,...,m,

v = ( anen)fier) + hI(er) an(er)fis(er) + hI(er) )
5= an(er)fislen) + hLb(er) anlea)fisles) +hli(er) )
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Therefore,

P YY) = fom = b - LI (e Ky (V) Y ) i),

(2.158)

where both partial derivatives of f and K are d at (Y7)*" and Y7,

The stopping error for Newton’s method is now derived by a straightforward

extension of the results given in Sugiura and Torii (1991), which were derived by

using results originally due to Kantorovich and Akilov (1982). We now give this

theorem, adapting it for our purposes. We refer the reader to Theorem 2.18 for the

assumed regularity conditions.

Theorem 2.17 (Kantorovich and Akilov 1982) Let (Y)° € R™ and B(e) := {¥ :

Y8 — (Y2)°l| < e} be the closed ball around (Y,7)°. Suppose:

T = [P(r2))] " esists,
TPV < &,

ITP(YOI <X, Y7 € B(e)

I
p=Te<y, =% V:’ 2y case=itVI= "P[‘ %,

then (2.155) has a unique solution Y in B(e) and

vy -vans 225 o
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Applying this theorem to our problem, for Gauss-Jacobi iteration,
Py = [Pyt
= Uem — k- diag({J(fi, Kiin:) (V' Y)Y
= fra,

as h — 0, which means that the first condition of the theorem, given by (2.159), is
fulfilled, since I will exist for sufficiently small h. Now,

ITPYYS, Y| < AU (diag({I(fi Kim) (Y3, Y FE0) I

2 T

and since both f and K are at least twice continuously differentiable, (see Theorem

2.18), hence bounded, this establishes the third condition, given by (2.161), and

allows us the conclude that T = O(k).

Similarly for Gauss-Seidel iteration,
PRy = Porl ey

= [om = k- LI Ui K ) (V3 Y)Y eI

=+ I,

as h — 0, which means that the first condition of the theorem, given by (2.159), is
fulfilled, since T will exist for sufficiently small h.

ICPYY8, Y < AN (B o Kiing) (Y2, Y ) ee) |
S g1

IA
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This establishes the third condition, given by (2.161), and allows us the conclude
that T = O(h). This theorem can now be applied directly to our problem for both
iteration schemes.

Theorem 2.18 Consider the Volterra integro-differential equation given by (2.106),
and the regions Dy := [0,T] x ™ and Di := S x R™, where 0 < T < oo and

i=1,2,...,m. Assume the following regularity conditions:

s feC*(Dy),
e K € C*(Dg),

e ae (0, T]).

Also, the kernel K and the function f satisfy uniform Lipschitz conditions (in y)
with Lipschitz constants Ly and Ly, respectively. Also, consider the time-point relaz-
ation collocation method (2.128), where the inner iteration mode is Gauss-Jacobi or
Gauss-Seidel and the outer one is given by the Newton method (2.156), in which case
the ezpression for P(Y,3,Y3"1) is given by (2.155), the expression for F(Y3,Y3™1) is
given by (2.196) or (2.127), and the eapression for P'(Y,2,Y3™) is given by (2.157)
or (2.158), respectively. Also assume that the integrals in these ezpressions can be
found ezactly. Then the optimal nodal order is given by v = min{2r,q + 1,2'g},
provided the r collocation parameters {c;} are the r Gauss poins in (0,1).

Proof:

For g € {1,2,...} fixed and n =0,1,

=Y = FYLYETY),

PV YY) = PO Y
where the expressions for F is given by (2.126) or (2.127). We consider three cases:
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e Case 1: Forg=1andn =0,
Y§ — F(Y5,Y3) = F(0,0),

using (2.125), where the expression for F is given by (2.126) or (2.127). By

the assumed regularity of the problem, ||F(0,0)]| is bounded.
e Case2: Forq=landn=1,2,...,N -1,
Y2 — F(Y2,Y2) =Yooy — F(Yn_1,Yas1) =0,

using (2.125) and Theorem 2.12, in which case Yoy = F(Ys_1,Yao1); see

equation (2.131). Note that this assumes limits as g — co.
o Case 3: Forg=2,3,...and n =0,1,...,N — 1,
Y - P,V = FYL, V) - L YY)
Similar calculations that led to (2.133) and (2.135), give us
NP, Ye?) = FOGE™ YIS rmlm = DARR(L + Lihane)
I1Y=2 = Y2,
for Gauss-Jacobi iterations and

D AL, + Lichamas)

NP, v - Fog, vyl < 2=l

Y2 — Yoy,
n n

for Gauss-Seidel iterations.
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Since, in both cases,
Y32 =Y S IYE2 = Yall + |IYa — Y27 = O(A"?),
by (2.144) and (2.145), we conclude that
IF(YE",Y37%) — PV, YY) = O(h™).

Therefore in cases 1 and 2, forg=1, n =0,1,..., N — 1 we have P((Y7)°,¥7™') =
O(h®). See Section 1.3.2, Definition 1.2. Combining with Case three we conclude

that for g=1,2,..., n=0,1,..., N — L, the starting error satisfies
P YT = O(R).

This together with the fact that I —» I, as h — 0, implies [|TP((¥9)°, ¥3~1)|| =
O(h71), s0 we can take £ = O(h?~!) in Theorem 2.17. Also, since above we showed
that T = O(h), we get p = Y€ = O(h%) in Theorem 2.17.

Consider the expressions given in (2.162). For sufficiently small b, p < %, and

hence
1-vT=%

,
as h — 0. Thus e is bounded (¢ = 1) or eo — 0 (g > 1) as h — 0. Also,

,H—_ VI= ’/’¢| <2f
P ~a!

=1,

and so e; — 0o, as h — 0.
Therefore, by Theorem 2.17, we conclude that (2.155) has a unique solution Y;#

in B(e), for cach g = 1,2,..., and
vy - van s L oy, =0,
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The proof then follows by combining these results with those of Section 2.3.8, in
particular the proof of Theorem 2.16, since
lle*(ta +7h)l = [IAlIn ® a™(r)] - (V)" — ¥7]I
< Al @™ () - IV — Y2l
a=1,2...,5=12..., T€[Q,1,()° =¥ forn =0,1,...,N — 1, and ¥?
is given by (2.125). O
2.3.10 Modified Newton Method

Evaluation of the Jacobian P’ can be very expensive, especially if it must be con-
tinually updated. Therefore, one often uses the modified Newton method, in which
the Jacobian is evaluated once, and this value is used in all subsequent calculations.
We therefore establish new stopping errors and in general, a reduction in order.

The modified Newton method for (2.155) with initial value (¥?)° = ¥,?~', where
¢ €{1,2,...} (fixed) and Y2 is given by (2.125), is given by

gy = (v = {PYaR. ve ) Py v, (2.164)

where s =1,2,..., and

P((YD)°, YI") = Iom — k- diag({J(fi, Kizni) (V7' YT FEL), (2.165)

for Gauss-Jacobi iteration and

PV Y = Lom = b LI (i Kismy) (VI Y ) o) (2.166)
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for Gauss-Seidel iteration. See Section 2.3.9.
The following theorem given by Kantorovich and Akilov (1982), can be used to

give order conditions for the modified Newton method.

Theorem 2.19 (Kantorovich and Akilov 1982) Let (Y3)° € ™ and B(e)
I¥8 = (Y3)°ll < e} be the closed ball around (Y)°. Suppose:

{yy:

I = [P((¥3)°)] " enists,
TP <6,
ICP IS T, ¥ € Be).
LBy ol = VI,

) p
then (2.164) has a unique solution Y1 in B(e) and

Iy -vas s (1 -vi=zm) ™, mon

p=T5<l, 13}

The following theorem is immediate.

‘Theorem 2.20 Consider the Volterra integro-differential equation given by (2.106),
and the regions Dy := [0,T] x R™ and D := S x R™, where 0 < T < oo and
i=1,2,...,m. Assume the following regularity conditions:

o feC(Dy),

* K € C*(Dg),

149



o aeC*((0,T]).

Also, the kernel K and the function f satisfy uniform Lipschitz conditions (in y)
with Lipschitz constants Lx and Ly, respectively. Also, consider the time-point re-
lazation collocation method (2.128), where the inner iteration mode is Gauss-Jacobi
or Gauss-Seidel and the outer is given by the modified Newton method (2.164), in
which case the ezpression for P(Y7,Y3™") is given by (2.155), the ezpressions for
F(Y3,Y3™") is given by (2.126) or (2.127), and the ezpression for P'((Y3)°, Y3™')
is given by (2.165) or (2.166), respectively. Assume that the integrals in these
ezpressions can be found ezactly. Then the optimal nodal order is given by v =
min{2r,q+1,(s + 1)q}, provided the r collocation parameters {c;} are the r Gauss

points in (0,1).

Proof:
Since all the conditions were verified for Newton’s method, we need only apply the

final conditions of the theorem. Using Theorem 2.19, for each ¢ = 1,2,..., we find

s € G
oy -vans s (1-vi-2%)", =01

Expand 1 — /T =2 in a Taylor Series about the origin for p < 1, and use the fact
from Section 2.3.9 that p = O(h*) and £ = O(h"~"). This implies that

Yy = Y2l = ORE+Y), s =0,1,....
The result then follows by applying the results of Section 2.3.8, since

lle*(ta + TR = [lAllm ® & (7)] - (V1) = Y11
< Al @ a™(n)|| - (Y)Y = Y2l
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g=12...,s=12,..., 7€[0,1],(¥9)° = ¥7' forn = 0,1,...,N — 1, and Y2
is given by (2.125). O
Let us compare Theorems 2.16, 2.18 and 2.20 in Table 2.1.

Table 2.1: Comparisons of Picard and Newton Methods

Order — min{2r,q + 1,and...}
5 | Picard_Newton _Modified Newton
T[e+1 2 2q
2(q+2 4q 3q
3[q+3 8¢ 4q
4)q+4  16g 5q

Note:

The inner iteration mode sets the limit g+ 1 on the order and this order can be
attained easily with Picard iteration s = 1. Both the Newton and modified Newton
methods reach this limit also with s = 1. Therefore, if we are to take full advantage
of the higher orders possible with the Newton methods we must use a higher order

method (possibly a Newton method) for the inner iteration mode. o

To illustrate we solved Test Problem 2.2 using both the Newton and modified
Newton methods to solve the implicit equations. I wrote 2 @MATLAB program
using Gauss-Jacobi inner iteration, two-point collocation (Gauss points) for the un-
derlying numerical method and two point Gauss quadrature to evaluate the integrals.
In practice it is not efficient to invert the matrix given in (2.156). Therefore we mul-

tiply this equation by P'((YJ)*™!,¥7~) and solve the following algebraic system by
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LU decomposition, see Lambert (1991),
PRYD - B =~ + ROy % (2.167)

where s = 1,2,..., and

AV = () - (v
is the increment that must be added to (¥2)'~" to get (¥J)".
We recall that P’ is given by (2.157) and note that for this test problem we can
calculate these partial derivatives in closed form.
Similar remarks apply to the modified Newton method. In Section 2.5, Tables

2.14 and 2.15 summarize the results of these tests.

2.4 The Discretized Case

All the results of the previous sections assume that the integrals appearing in the
methods can be found analytically. However, in general, we are interested in the so-

lution of a non-linear VIDE, whose kernel is sufficiently complicated to require that

the integrals be approxi i by suitable quad formulas. In other words, we

have the so called di: ized cases, i called fully di: ized cases. There-
fore, we must compute an approximation which is a perturbation of the previous
results. In order to illustrate how this can be accomplished, let us consider the case
where the outer iteration mode is Picard fixed-point. The extension to the Newton
cases is clear.

We consider an approximation #%* € S{°(Zy), which satisfies the equation
7%t + Th) = ii(tn) + hlln ® " (7)] - (V0)", (2.168)
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¢=1,2,...,s=1,2,..., 7€[0,]]and n = 0,1,...,N — L. Also, #%°(t, + rh) =
79N (ta+7h) and 7°(tn +7h) = A(ta_y+7h), forn =1,2,..., N—1, and 7°(th) = yo,
for 7 € [0,1].

The expressions for (¥;7)* depend on the types of inner and outer iteration modes
used over both g and s; see (2.147) or (2.148), respectively. Clearly, many quadrature
formulas can be used to approximate these integrals; however, we choose interpola-
tory quadrature. In particular, we choose Gauss quadrature with abscissas {t;+c,h}
and {t,+¢jcyh}, with corresponding weights {w,} = {a,(1)} and {w;,} = {¢jap(1)},

r. See

respectively, where [ = 0,1,...,n—1, n =0,1,...,N—land j,p=1,2,...,
Section 1.4.2, equation (1.37).

For Gauss-Jacobi iterations (V7)* becomes

F = L3 Mevrns (2169)
Fltn + cihailta) + AL + 30 Ade)¥a))
k#Ei

+ A3 (1) - alles — eI Cilta) + A{Aseser) (P2

+ 3 Adee)Ve)
o

n -
23 Mioiyets

==

A S aa(1) - alltn + cih) = (b1 + ARGt + b)),
=0 p=1

+
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¢=1,2,..., n=0,1,...,N — 1, where (¥§)° = ¥s~! and ¥? is given by (2.125).
For Gauss-Seidel iterations (¥3)* is

T = T3 Moipss (2170)
2
[/u,ﬂ,-;.,.-,u.)“(i AT+ 35 Ade)Ve))
2 o
+ B3 ciap(1) - alle; — e )AIKi(ta) + ALY Ax(eiep) (V)
p=t =
> Ak(cjc,)V:*‘))]
k=itl
+ ;; Myt
h ,Z 3 ay(1) - al(ta + cih) — (ti + R)K (it + c5h)),
2524

g=1,2,..., n=0,1,...,N — 1, where (¥7)° = Y7~! and Y7 is given by (2.125).

Clearly, these expressions are a perturbation of (2.147) and (2.148), respectively.
Remark: In the integrand of our problem (2.106), the function a is restricted to the
triangle S = {(t,s) : 0 < s <t < T}, where T < co. Therefore, we take the natural
discretizations using abcissas t, + cioh; n = 0,1,...,N =1, j = 1,2,...r,p =
1,2,...r to avoid including values outside S in the domain of a. In special cases,
where we can extend the definition of the kernel to include values of s greater than
values of t, we obtain additional methods of optimal order; see Brunner (1984). Also
see Section 1.4.2. o

Theorem 2.21 Consider the Volterra integro-differential equation given by (2.106),

and the regions D,

0,7) x R™ and Dg := S x R™, where 0 < T < oo and
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i=1,2,...,m. Assume the following regularity conditions:

e f€C¥(Dy),

o K € C*(Dx),

® ae C* ([0, T)).
Also, the kernel K and the function f satisfy uniform Lipschitz conditions (in y)
with Lipschitz constants Lx and Ly, respectively. Also, consider the time-point relaz-
ation collocation method (2.168), where the inner iteration mode is Gauss-Jacobi or
Gauss-Seidel and the outer one is Picard fized-point. Interpolatory quadrature, cor-
responding to the abscissas {t;+c,h} and {t,+c;jch} where [ =0,1,...,n—1, n=
0,1,...,N—1and j,p=1,2,...,r, are used to solve the integrals in which case the
ezpression for (V)" is given by (2.169) or (2.170), respectively.

Then the optimal nodal order is given by v = min{2r,q +1,q+ s}, provided the

r collocation parameters {c;} are the r Gauss points in (0,1).

Proof:

We define &7°(t) := y(t) — 7*(t), ¢,s =1,2,..., then

&) = (y(t) —n(®) + (n(t) = () + () — 7°(2)) + (77(t) — 57°(2))

]

e(t) + E(t) + &(1) + &°(2),
where we have the following definitions:
o e(t) = y(t) —n(t),
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o &(0) = (n() (1)),
o a(0) = i) - i*(0),

o @) = (1) — (1),

forg,s=1,2,....
Setting ¢ = t, and using the triangle inequality, we have
l1E®* ()l < Ne(ta)ll + NE(E)l + 1t + 1E*(e)l,
n=0,1,...,N~1.

Theorem 2.16 gives us the order of e(t,), €/(t,) and €%(t,,), where we recall that:

o €(ta) :=n(tn) = n%(tn),

o € (tn) = 1%(ta) = 7% (L),
forg,s=1,2,....

It is easy to see that the results of Theorem 2.16 do not change if discretized
versions of equations (2.146), (2.147) and (2.148) are assumed. This allows us to
use Theorem 2.16 to give the order of e(,), &%(t,) and &*(t,,).

Therefore we need only consider £(t.).

From Brunner (1984), we get

&(ta) = O(h™),
and therefore
&(t,) = O(RminGarattatsly
as h — 0%, if the collocation points are taken to be the r Gauss points in (0,1). O

For Newton outer iteration:



Theorem 2.22 Consider the Volterra integro-differential equation given by (2.106),
and the regions Dy := [0,T] x R™ and Dg := § x R™, where 0 < T < oo and

i=1,2,...,m. Assume the following regularity conditions:
e feC*(Dy),
o K € C¥(Dx),
o a€CT ([0, T)).

Also, the kernel K and the function f satisfy uniform Lipschitz conditions (in y)
with Lipschitz constants L and Ly, respectively. Also, consider the time-point re-
lazation collocation method (2.168), where the inner iteration mode is Gauss-Jacobi
or Gauss-Seidel and the outer is given by the Newton method (2.156), in which case
the ezpression for P(YJ,Y3~") is given by (2.155), the expression for F(Y3,Y3™') is
given by (2.126) or (2.127) and the ezpression for P'(Y,YJ"") is given by (2.157)
or (2.158), respectively. Assume that the integrals in these erpressions are approzi-
mated by interpolatory quadrature with abscissas {t; + c,h} and {t. + c;c,h}, where
1=01,....n—1, n=0,1,...,N —1 and j = 1,2,...,r. Then the optimal nodal
order is given by v = min{2r,q+1,2°q}, provided the r collocation parameters {c:}

are the r Gauss points in (0,1).
And for modified Newton outer iteration:

Theorem 2.23 Consider the Volterra integro-differential equation given by (2.106),

and the regions D := [0,T] x R™ and D := S x ®™, where 0 < T < oo and

i=1,2,...,m. Assume the following regularity conditions:
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* feC¥(Dy),
* K € C*(Dx),
e aeC*Y([0,T)).

Also, the kernel K and the function f satisfy uniform Lipschitz conditions (in y)
with Lipschitz constants L and L;, respectively. Also, consider the time-point re-
lazation collocation method (2.168), where the inner iteration mode is Gauss-Jacobi
or Gauss-Seidel and the outer is given by the modified Newton method (2.164), in
which case the ezpression for P(Y3,Y3™1) is given by (2.155), the ezpressions for
F(Yg,Y3Y) is given by (2.126) or (2.127) and the ezpression for P'((YJ)°) is given
by (2.165) or (2.166), respectively. Assume that the integrals in these ezpressions are
approzimated by interpolatory quadrature with abscissas {t,+ c,h} and {t. +cjc,h},
where | = 0,1,...,n—1, n.=0,1,...,N — 1 and j = 1,2,...,r. Then the opti-
mal nodal order is given by v = min{2r,q +1,(s + 1)q}, provided the r collocation

parameters {c;} are the r Gauss points in (0,1).

Remark:

When considering the VIDE with weakly singular kernel given by (2.107), the
discretized method (2.168) requires discretized versions of equations (2.151) and
(2.152). However, special case must be taken to avoid the kernel from becoming
unbounded at the abcissas in the quadrature formulas. In Test Problem 2.3, I

used (two-point) Gauss quadrature at the abcissas {t + cph}, {tn + cicoh} where
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1=0,1,...,n—1,n=0,1,..., N—1, j= 1,2 and p=1,2 in (2.151) and (2.152).

Note that since ¢; # 0 and c; # 1 the kernel is finite at these abcissas. We refer

the reader to Brunner and van der Houwen (1986) where they discuss “product

integration formulas”. o

Summary

We summarize the main theorems of this thesis in Tables 2.2, 2.3 and 2.4.

Table 2.2: Continuous-Time Iteration WR Methods

Kernel Type Convergence and Theorem
Regular equations (2.58) and (2.59)
Theorem 2.7
Weakly Singular | equation (2.90)
Theorem 2.10

Table 2.3: Discrete-Time Iteration TR Methods - Regular Kernel

Order and Theorem

Type Picard Newton Modified Newton

Exact min{2r,q + g+ s} min{2r,q + 1,2q} min{2r,q+ 1, (s + D)a}
Theorem 2.16 Theorem 2.18 Theorem 2.20

Discretized | min{2r,q + L, + s} min{2r,q+ 1,2°q} min{2r,q+ L, (s + D)a}
Theorem 2.21 Theorem 2.22 Theorem 2.23
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Table 2.4: Discrete-Time Iteration TR Methods - Weakly Singular Kernel

Order and Theorem

Type Picard
Exact T-a, 0<a<1 foranyg>1
Corollary 2.4

Discretized [ —a, 0 <a <1 foranyg>1

Note: In Table 2.4, the poor convergence for discrete-time iteration TR methods
for VIDEs with weakly singular kernel, is due to the fact that we are using uniform

meshes. See Chapter 3. o

2.5 Numerical Results

This section contains the results of various numerical tests, with a discussion of each.
Linear Test Problem
Consider Tables 2.5, 2.6, 2.7 and 2.8.

These are the results for the two-dimensional linear Test Problem 2.1, using both

point and two-point collocation (Gauss points). The error is defined by
B} = [le*(ta)ll2 = lly(ta) — n°(tn)ll2s
ta=nh, n=0,1,...,N, where T = Nhand ¢ =1,2,....

« One-Point Collocation
First, consider Tables 2.5 and 2.6. By Theorem 2.15, we expect the order to
be v = min{2,q + 1}, since r = 1 and in each table ¢ > 1. Not only do we

observe this, but we confirm that this is the best we can achieve, since taking
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g > 1 results in no increase in order. However, the error E} is generally larger
that E2 which is almost identical to E2. We conclude by noting that there was

no di in the p when using either Gauss-Jacobi

or G: Seidel i 5

« Two-Point Collocation
In Tables 2.7 and 2.8, we have the results for the case where r = 2, so the
order is v = min{4,q + 1}, and we expect the error to decrease by a factor
of & over consecutive columns, for fixed g, in each table. For Gauss-Jacobi
iterations, E2 showed an order of 3, while £2 and B2 both showed an order
of 4, as predicted by Theorem 2.15. However, for Gauss-Seidel iterations we
attained an order of four even for g = 2, which is better than that predicted
by Theorem 2.15. Clearly, for such a simple linear problem as Test Problem

2.1, the results of Theorem 2.15 can be exceeded.

Note: Tables 2.7 and 2.8 represent the only cases in these tests (in all of Section

2.5) where the order changes across the any of the columns. o

Table 2.5: One-Point Collocation - Gauss-Jacobi Iterations (linear)

ELx 10— EIx 10-° EXx 107
T, |h=0. 005 0025 |h=01 005 002 k=01 005 002
0.2 | 184 374 842 || 420 113 292 [485 121 3.01

0.4 | 23.8 3.71 0.924 | 56.8 143 3.58 || 57.7 144  3.58
0.6 | 54.5 150 3.87 | 53.4 132 3.26 || 52.1 130 3.24
0.8 | 80.6 202 5.05 | 44.7 109  2.69 | 426 106 265
1.0 | 83.1 20.3 5.03 35.7 8.63 2.12 || 33.5 834 2.08
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Table 2.6: One-Point Collocation - Gauss-Seidel ions (linear)

EI <10~ EZ x10~* EI x10~%

t, |h=0.1 0.05 0025 [~A=0.1 005 0025[[~=0.1 0.05 0.025
0.2 | 154 308 6.86 | 48.6 12.1  3.01 [ 48.7 121 3.01
04 183 5.48 156 [ 57.7 144 358 || 57.8 144 358
0.6 | 62.2 16.1 4.09 | 52.1 13.0 324 || 52.1 130 3.24
0.8 | 77.1 19.0 4.71 | 425 10.6 265 || 42.5 106 2.65
1.0 | 72.7 17.6 4.35 | 33.4 8.33 2.08 || 33.8 8.33  2.08

Table 2.7: Two-Point Collocation - Gauss-Jacobi Iterations (linear)

ETx 107 ESx 10" Efx10-7_

7, |h=01 005 0025 |h=01 005 002 |h=01 0.05 0025
027012 7220 81.97 | 1952  10.53 0.6141 | 64.77  3.955 0.2454
042111 2107 2361 1176 6911 04201 | 74.13  4.608 0.2878
0.6|1245 1540 19.19 | 91.62  5.465 0.3339 | 64.28  4.020 0.2516
0.8[1726 2084 2560 | 70.32  4.132 0.2506 | 49.38  3.007 0.1941
101834 217.5 2648 [ 51.25  2.953 0.1773 ] 35.28  2.222 0.1394

Nonlinear Test Problem
See Tables 2.9, 2.10 and 2.11.

These are the results for the two-dimensional nonlinear Test Problem 2.2, where

we used both one-point and two-point collocation (Gauss points), Picard iteration
to solve the implicit algebraic equations, and one and two point Gauss quadrature,
respectively, to evaluate the integrals.
The error is defined by
E3* = [|e**(ta)ll2 = lly(ta) — n"*(ta)ll2s
tn=nh, n=0,1,...,N, where T = Nh and q,s = 1,2,....
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Table 2.8: Two-Point Coll

- Gauss-Seidel Iterations (linear)

EE X107

t. |h=01 0.05 0.025

021413 7300 0.4212
041054  6.596 0.4120
061085 6.570 0.4031
0.8 |90.23 5.296 0.3207
1.0 {64.77 _ 3.710 0.2221

EXx 107
k=01 005 002
6290 3915 0.2441 |
7409 4610 0.2878
6489  4.038 0.2521
5010  3.118 0.1947
3602 2.242 0.1400

For the two-point collocation cases, the results for Gauss-Jacobi iterations were

found to be almost identical to the results for Gauss-Seidel iterations, so we do not

include them.

® One-Point Collocation

First, consider Tables 2.9 and 2.10. From Theorem 2.16, since r = 1, we expect.

the order to be v = min{2,q + 1, + s}. Not only do we observe this, but

we confirm that this is the best we can achieve; that is, taking g,s > 1 results

in no increase in order. We conclude by noting that there was no discernable

difference in the the order, when using either Gauss-Jacobi iterations or Gauss-

Seidel iterations, although the error is generally a little larger for the Gauss-

Jacobi case than the Gauss-Seidel case. As the number of iterations increases

this differences diminishes.

e Two-Point Collocation

In Table 2.11 we have the results for the case where r = 2, so the order is

v =min{4,q+1,q+ s}, and we expect the error to decrease by a factor of 3

over consecutive columns in each table, for fixed ¢ and s. In fact, as a direct.
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consequence of Theorem 2.16,
Ex* =0() = EY',

where 7 = min{2r,q + 1}, and t, = nh, n =0,1,...,N, where T = Nh
and g,s = 1,2,.... This was observed since E3' and E3? both showed an
order of four, as did E*' and E*?. Therefore, from an order point of view,
it never pays to iterate more than once when using Picard iteration to solve
the implicit equations in the method. However, the actual error may become

smaller if more iterates are taken.

Table 2.9: One-Point Collocation - G: Jacobi I ions (nonli )

EITx 10— EF x 10-° EXT X 107

T, |A=0.1 005 0025 h=01 005 002 |h=01 005 _0.025
(02 169.4 40.37 9.685 | 53.41 14.34 3.666 | 4.848  1.788 0.6865
0.4 (9002 2057 4.884 [ 36.44 9497 2399 | 12.00 4.039 1.128
0.6 | 51.94 11.83 2.822 || 26.45 6.766 1.697 || 18.19 5.040 1.311
0.8 [ 45.19 10.82 2.660 | 20.59 5.260 1.323 || 21.91 5.639 1.421
1.0 [53.82  13.17 3.273 [/ 13.38  4.542 1.161 [ 2508  6.231  1.544

‘Weakly Singular Test Problem
See Tables 2.12 and 2.13.
These are the results for the two-dimensional linear weakly singular Test Problem

2.3, using two-point collocation (G points), Picard iteration (one iteration) to

solve the implicit algebraic equations and two point Gauss quadrature to evaluate

the integrals. We use Gauss-Jacobi inner iteration mode only. The error is defined
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Table 2.10: One-Point Coll - Gauss-Seidel (nonlinear)
EF X107 EFF x10-° EFT < 10+
%, |[R=01 005 0025 |h=01 005 0. 0.025
021140 2752 6.647 | 6.771 2481 0.7479 | 4311  2.429 0.7665
046079 1428 3437 1414 3944 1.033[ 1500 4422 1.174
0.6|36.18 8727 2.140 [ 16.00 4081 1.031 | 2005 5254 1.336
083587 9.053 2276 1526  3.765 0.9430 | 22.74 5722 1.430
1.0 [4564 1157 2.916 [ 13.68 3378 0.8540 | 25.05  6.205  1.539
Table 2.11: Two-Point Coll - Gauss-Seidel I ( )
ESTx 10" B3 %107 BT X107 B % 107
A h=01 005|h=01 005]h=01__ 005
0.2 4690  0.3008 | 6.124  0.3191 | 4.7¢77  0.3021
0.4 7.547 04814 | 7.865  0.4801 | 7.626  0.4834
0.6 9.578  0.6106 | 9.631  0.6044 | 9.678  0.6143
08 1145 07207 | 11.35  0.7192 | 11.58  0.7354
1.0 1344 0.8569 | 13.23  0.8422 | 13.61  0.8648
by

lle*tflr = max {llv(t) — (i} ~ B>

aeo®aX {ly(tnss) = 7™ (tas)lleo}-

Comparing tables 2.12 and 2.13, we note that the results in both of these tables
verify Corollary 2.4 and the “Remark” at the end of Section 2.4. Although solu-

tion (2.153) has greater regularity than solution (2.154), we obtain the same order,

namely 1 — a. The only difference is that the higher smoothness in the solution

gives rise to slightly smaller errors E*!.

Newton Test Problem

See‘Tables 2.14 and 2.15.
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Table 2.12: Weakly Singular Solution (2.153)

EST <103
o [h=005 h=002 k=00125 h=00062
[T]67811  4.1701 2.5951 1.6247
1l33.285 22993  16.054 11.272
2 |152.16 117.14 91.164 71.407

Table 2.13: Weakly Singular Solution (2.154)

S U
a[h=005 h=002 h=00125 h=00062
[T|835943 53187  3.3201 2.0817
1|40396 27987  19.565 13.744
2|172.78 13295 10337 80.889

We solved the two-dimensional nonlinear Test Problem 2.2 using both the New-
ton and modified Newton methods to solve the implicit equations. The inner it-
eration mode was Gauss-Jacobi, the underlying numerical method was two-point
collocation (Gauss points) and two point Gauss quadrature was used to evaluate
the integrals. Also, the system given by (2.167) was solved by LU decomposition.

These results verify Theorems 2.18 and 2.20 which are summarized in Table 2.1.
Since the Newton method and modified Newton method are identical for s = 1 and
the results were found to be almost identical for s = 2, we only include the results
for the Newton method.

In Table 2.14, we have the results for the case where ¢ = 2, s > 1, and we expect
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an order of 3. In Table 2.15, we have the results for the case where g > 2, s > 1,
and we expect an order of 4. Clearly, all these claims are verified by these results.
Note that in Tables 2.14 and 2.15 the errors corresponding to s = 2 are larger
than the errors corresponding to s = 1. This is likely due to the choice of initial
approximation since the Newton method will eventually converge (in general, it does

not converge monotonically).

Table 2.14: Newton Method
EFN <107 B %10

%, | h=0025 00125 000625 | h= 0025 0.0125 0.00625
0212298  21.0a5 3.0067 | 12514  157.28 19.712
0.4375.86  51.504 6.7330 || 856.63  108.20 13.593
0.6 (51635  69.433 0.0029 65720 82930 10.413
0.8(613.82  83.117 10.810 | 553.65  69.123 8.6331
10| 720.70 98501 12.878 | 542.98  66.498  8.2232

Table 2.15: Newton Method

ESTx 10 BT X 10 EET < 10° B X 10°°
T, [A=01 005 |h=01 005|h=01_ 005[h=01__ 005
0.2 [ 57.308 2.8105 || 446.80 25.377 || 47.729 3.0224 | 49.903 3.0166
0463070 4.1797 [ 246.14 14.247 || 76.360 4.8389 | 75.930  4.8036
0672311 48101 [ 19483 11917 | 96.961 6.1508 | 96.130  6.1086
08 |81.213 53407 | 22021 14.327 | 116.04 7.3640 | 11487 7.3101
10| 93242 6.1042 | 288.32  18.005 || 136.46 _ 8.6610 | 134.90  8.5921
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Chapter 3
Outlook

3.1 Applications

partial integro-differenti ions, P1-

DEs, where the spatial derivatives are discretized by the Method of Lines (MOL); see

The major source of VIDEs is the

Schiesser (1991) for partial differential equations, and for PIDEs see Kauthen (1992),
and Chen and Shih (1998), also for additional ref This semi-discretizati
gives rise to a (large) system of VIDEs, and can therefore take advantage of WR
methods, especially the fully parallel methods.

Yanik and Fairweather (1988) state in their introduction, that the need to in-

clude “memory” effects in a system which is a function of space and time is often

described by partial integro-di ial i These arise in various fields of
engineering and physics and include heat transfer, nuclear reactor dynamics and
thermoelasticity.

A particular problem of interest is the reaction diffusion models, with hereditary
effects from population dynamics. These models give rise to PIDEs which combine

spatial diffusion with hereditary interaction of species. Fife (1979) and Britton
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(1986) are good references for the diffusion part and Cushing (1977) is the standard
reference for the heredity part.
The Journal of Integral Equations, Vol. 10, Numb

1 (1985)

fe and

a special issue on integ

applications. See also, Chapter 1 in Kolmanovskii and Myshkis (1992).

3.2 Future Work and Open Problems

No body of work stands in isolation; it begins where others have left off and hopefully,
forms a basis for future work. Certainly this thesis began with and utilized the
results of a wide variety of authors. We collected these results in Chapter 1. And
now we finish the thesis, by itemizing some topics for future consideration. Some

of these will be i ward ions of the we listed in Section 1.2

and others will lead to unanswered questions, some of which may point to extensive

and difficult areas of research.

3.2.1 WR Methods
Consider WR methods with different windowing.

 For the continuous-time iteration WR methods (on [0,7]), we commented
that the error became large for large 7. Therefore we could attempt to ex-
tend Theorems 2.7 and 2.10 to a partition of [0, T], thereby promoting faster
convergence.

@ For the discrete-time iteration WR methods, recall that all employ windows of
length equal to the steplength, which is why they are called time-point (TR)

169



methods. Clearly, for some problems, it could be ad to employ
different “labour” to different subintervals of the integration interval [0, 7).
And this could be reflected in the windows chosen.

3.2.2 TR Methods for Regular Kernels

o In the discrete-time iteration TR methods, we assumed the nonlinear problem
(2.106). Clearly none of the results for these methods would change if we

assumed the more general nonlinear problem (??).

® We could extend the results for the discrete-time iteration TR methods to the

nonstandard VIDE (2.54); see the “Remark” in Section 2.2.

o In the discrete-time iteration TR methods one could experiment with consid-
ering different splitting functions G, and G} for f and k, respectively. See
Example 2.8.

® The main theorems of Chapter 2 could be extended to collocation methods,

ing a variety of collocation points and i y formu-

lae. See Brunner and van der Houwen (1986).

o Use higher order inner iteration schemes, for example, Newton iteration; see
Section 2.2. This then, we would allow us to take advantage of high order
outer iteration methods like the Newton and modified Newton. See Theorems
2.22 and 2.23, respectively.
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3.2.3 TR Methods for Weakly Singular Kernels

In the discrete-time iteration TR methods applied to VIDEs with weakly singular
kernels, we are limited by Theorem 2.14, since the underlying numerical method
was polynomial spline collocation on a uniform mesh; see Table 2.4. In Section 1.4.4
we alluded to the fact that the use of nonpolynomial spline collocation methods or
suitably graded meshes is more suitable for these problems; see Brunner (1986a)
and Brunner and van der Houwen (1986). For example, Tang (1992 and 1993)
showed that on suitably graded meshes, superconvergence properties are possible and
therefore the restriction of Theorem 2.14 can be removed. Therefore an interesting
proposal would be to consider discrete-time iteration TR methods utilizing such

underlying numerical methods.

3.2.4 Stability
Note that we have two main concerns.

o Stability of the underlying classical numerical method for the solution of

VIDEs.

o Stability of TR methods in general.
The question of numerical stability of discrete-time iteration TR methods for the
solution of VIDES requires addressing both of these concerns.
3.3 Conclusion

This thesis began by studying continuous-time iteration WR methods for VIDEs
with regular and weakly singular kernels. We showed that by placing very general
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assumptions on the splitting functions we could uniform of
the iterates on all bounded intervals, although maybe at the expense of having a
very small window. Many questions remain unanswered. For example, how do
we extend this analysis to unbounded intervals and how would different splitting
functions affect the convergence rate?

The majority of the thesis dealt with the discrete-time iteration TR methods for
VIDES with regular and weakly singular kernels. Using collocation methods as their

derlyi ical method, we developed detailed order conditions which consid-

ered separately, the effects on the order caused by the iteration in the TR method,
the iteration in the method used to solve the implicit algebraic equations and the
quadrature formula employed. The resulting method was therefore fully discretized.
The results were encouraging for the regular kernel case, but disappointing for the
weakly singular kernel case. However this low order is likely due entirely to the use
of uniform meshes, and we hope that this can be remedied by employing suitably
graded meshes.

Again, many problems remain open. They include, what restrictions must be

placed on the to of the two types of iterations

employed in the methods?
Although, these d ions are important, [ feel that this thesis sets

the stage for their attack.
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