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Abstract

In this thesis we introduce new types of starter sequences, pseudo-starter sequences,

starter-labellings, and generalized (extended) starter sequences. We apply these new

sequences to graph labeling. All the necessary conditions for the existence of starter,

pseudo-starter, extended, m-fold, excess, and generalized (extended) starter sequences

are determined, and some of these conditions are shown to be sufficient. The rela-

tionship between starter sequences and graph labellings is introduced. Moreover, the

starter-labeling and the minimum hooked starter-labeling of paths, cycles, and k-

windmills are investigated. We show that all paths, cycles, and k-windmills can be

starter-labelled or minimum starter-labelled.
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Chapter 1

Introduction

Starters have been widely used in several combinatorial designs, such as Room squares

[47], Howell designs ([3], [12]), Kirkman triple systems [48], and round-robin tourna-

ments [50]. Starters were first used by Stanton and Mullin to construct Room squares

[47]. Since then, starters have been widely used in several combinatorial designs. A

starter in the odd order additive abelian group G is a set of unordered pairs of ele-

ments of G such that each non-zero element occurs precisely once in some pair, and

also precisely once as the difference of one of the pairs. Thus, {xi : 1 ≤ i ≤ n}
⋃
{yi :

1 ≤ i ≤ n} = G \ {0} and the differences {±(x1 − y1),±(x2 − y2), . . . ,±(xn − yn)}

are also all the non-zero elements of G, where |G| = 2n + 1. For example, the pairs

{5, 6}, {2, 4}, {3, 8}, {1, 7} form a starter in Z9.

Similarly, let G be an abelian group of order 2n written multiplicatively with

identity element e and a unique element g∗ of order 2. An even starter in G is a set

of unordered pairs S = {{ai, bi} : 1 ≤ i ≤ n − 1} which satisfies the two conditions:

{ai : 1 ≤ i ≤ n − 1}
⋃
{bi : 1 ≤ i ≤ n − 1} are all the non-identity elements of G

except one, denoted mE, and {a−1i bi, b
−1
i ai : 1 ≤ i ≤ n− 1} = G \ {e, g∗}.

Now, suppose S = {{xi, yi} : 1 ≤ i ≤ n} and T = {{ui, vi} : 1 ≤ i ≤ n} are two
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starters in the same group G, without loss of generality, assume that yi− xi = vi− ui

for all i. Then S and T are orthogonal starters if ui − xi = uj − xj implies i = j,

and if ui 6= xi for any i. For example, two starters T = {{4, 5}, {1, 3}, {2, 6}} and

V = {{2, 3}, {4, 6}, {1, 5}} are orthogonal starters in Z7.

Perhaps, the most well known applications for starters are in Room squares and

one-factorizations of the complete graph. A Room square of side n (or of order

n + 1) is a square array with n cells in each row and each column, such that each

cell is either empty or contains an unordered pair of symbols chosen from a set of

n + 1 elements. Each row and each column contains each element precisely once.

For example, we can construct a Room square of side 7 from two orthogonal starters

S = {{3, 4}, {6, 1}, {5, 2}} and T = {{4, 5}, {1, 3}, {2, 6}}, where S and T can be

written as starter-sequences (5, 3, 1, 1, 3, 5) and (2, 4, 2, 1, 1, 4), respectively.

Table 1.1: A Room square of side 7.

∞0 52 61 34

45 ∞1 63 02

13 56 ∞2 04

24 60 ∞3 15

26 35 01 ∞4

30 46 12 ∞5

41 50 23 ∞6

It is obvious that the rows of a Room square of side n are all one-factors of

the complete graph Kn+1, as are the columns. Therefore, a Room square can be

interpreted as two orthogonal one-factorizations, a row factorization and a column

factorization. For an extensive bibliography of results on Room squares and related
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designs, the reader is referred to [9] and [14].

A Skolem sequence of order n is an integer sequence of length 2n, in which each of

the integers 1, 2, . . . , n occurs exactly twice in the sequence, and for each 1 ≤ i ≤ n, the

two occurrences of i are separated by exactly i−1 integers. For example, the sequence

(1, 1, 3, 4, 5, 3, 2, 4, 2, 5) is equivalent to the partition of the numbers 1, 2, . . . , 10 into

the pairs (1, 2), (7, 9), (3, 6), (4, 8), (5, 10); this sequence is known as Skolem sequence

of order 5. Skolem sequences were introduced in 1957 by Thoralf Skolem [45]; he also

determined the necessary and sufficient conditions for their existence. In 1961, Okeefe

[29] proved that hooked Skolem sequences exist if and only if n ≡ 2, 3 (mod 4). In

1966, Rosa [37] introduced split Skolem sequences by adding a hook in the middle of

the Skolem sequences, and he also introduced hooked split Skolem sequences. Usually

in the literature these sequences are called Rosa and hooked Rosa sequences. In 1981,

Abraham and Kotziy [2] introduced the extended Skolem sequence where the hook

occurs anywhere in the sequence. In 1981, Stanton and Goulden [46] introduced near-

Skolem sequences in order to construct cyclic Steiner triple systems. In 1991, Mendel-

sohn and Shalaby [26] introduced the concept of Skolem-labellings of graphs, and also

provided the necessary and sufficient conditions for Skolem-labelling of paths and cy-

cles. In 1992, Shalaby [43] proved the existence theorems for near-Skolem sequences.

In 1998, Shalaby and Al-Gwazi [41] introduced generalized extended and near-Skolem

sequences. In 1999, Mendelsohn and Shalaby [27] determined the condition for the

existence of Skolem-labelling for k-windmills. In 2008, Baker and Manzer [5] ob-

tained the necessary conditions for the Skolem-labeling of generalized k-windmills in

which the vanes need not be of the same length and proved that these conditions are

sufficient in the case where k = 3.

A Langford sequence of defect d and length m is a Skolem sequence where D =

{d, d+1, . . . , d+m−1}. For example, the sequence (10, 8, 6, 4, 9, 7, 5, 4, 6, 8, 10, 5, 7, 9)
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is a Langford sequence of defect 4 and length 7. It corresponds to the partition

{(1, 11), (2, 10), (3, 9), (4, 8), (5, 14), (6, 13), (7, 12)} of P = [1, 14] into differences in

D = [4, 10]. Throughout this thesis, the notation [a, b] = {a, a + 1, . . . , b}. Lang-

ford sequences were introduced in 1958 by C. Dudly Langford [21]; since that time,

Langford sequences have been approached in different ways. In 1959, Priday [35] and

Davies [11] solved the problem completely for d = 2. In 1966, Gillespia [17] intro-

duced the generalized Langford sequences of order n with multiplicity s; he showed

that there are no generalized Langford sequences for n = 2, 3, 4, 5, or 6 where λ = 3.

He also showed that there is no generalized Langford sequence if the multiplicity is

bigger than the order. In 1968, Levine [22] proved that if the multiplicity (λ) is even,

then there is no generalized (λ)-Langford sequence for n ≡ 1 or 2 (mod 4), and also

that if λ = 6t+3, then there is no generalized λ-Langford sequence for n ≡ 2, 3, 4, 5, 6,

or 7 (mod 9). In 1971, Roselle and Thomasson [39] determined the necessary condi-

tions for the existence of λ-Langford sequences, where λ = pet, and p is prime, and e

and t are positive integers. These conditions are n ≡ −1, 0, 1, . . . , or p−2 (mod pe+1).

In 1971, Roselle [40] also introduced generalized Skolem sequences. In 2014, Mata-

Montero, Normore, and Shalaby [25] provided new algorithms for generalized Skolem

and Langford sequences with a minimum number of hooks.

Influenced by Skolem sequences, Shalaby [42] introduced the concept of starter-

sequences which he called pseudo-Skolem sequences. We notice that Skolem sequences

are a special case of starter sequences when the number of defects is zero. It is

well known that a Skolem sequence of order n can be used to construct a starter in

Z2n+1. Moreover, an extended Skolem sequence of order n can be used to construct

an even starter in Z2n+2. For more details about Skolem-type sequences and Langford

sequences, the reader is referred to [9] and [16].

A starter sequence of order n, is a sequence of 2n positive integers (s1, s2, . . . , s2n)
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such that, for every r ∈ {1, 2, . . . , n}, either r or −r appears exactly twice in the

sequence, and if si = sj = r or −r , then |j − i| = r or −r, respectively, where −r is

the additive inverse of r in Z2n+1, and −r is referred to as a defect of the sequence.

For example, the sequence (6, 2, 5, 2, 1, 1, 6, 5) is a starter sequence of order 4 with two

defects: −3 and −4 in the group Z9. We can also define a starter sequence of order

n as a partition of the set {1, 2, . . . , 2n} into n disjoint ordered pairs {(ar, br)} such

that ar < br and br = ar + r for r = 1(−1), 2(−2), . . . , n(−n).

In this thesis, we study starters as sequences. The motivation behind this is

that writing Skolem’s partition in sequences has produced massively valuable results

in combinatorics along with a wide range of applications. For example, Skolem se-

quences were applied in triple systems, graph labeling, graph factorizations, coding

and communication networks. Another motivation is that starter sequences are gen-

eralizations of Skolem sequences. In addition, in 2015 Mariusz Meszka and Alexander

Rosa [28] determined cubic graphs with at most 22 vertices which are leaves of par-

tial triple systems by using Skolem-type sequences. In 2016, Lianton Lan and others

[20] completely determined the sizes of optimal cyclic (n, d, 3)3 codes with minimum

distance 1 ≤ d ≤ 6 via Skolem-type sequences. Due to the significance of Skolem-

type sequences and starters, in this thesis we investigate starter-type sequences as a

generalization of Skolem-type sequences.

The thesis consists of six chapters. In chapter 1, we provide a brief historical

background and we present some useful concepts and results which are used in this

thesis. In chapter 2, we introduce some new starter sequences, we establish the

necessary and sufficient conditions for the existence of starter sequences with one

defect for all admissible orders and defects. We also determine all the necessary

conditions for the existence of starter sequences with two or more defects for all

admissible orders. In chapter 3, we introduce the concept of starter-labelled graphs,
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we show that every path of length m can be starter-labelled with one defect if and only

if m ≡ 3, 5 (mod 8). We show that all 3-windmills with m ≡ 1, 3, 5, 7 (mod 8) can

be starter-labelled, except for the case m = 1. In fact, we investigate necessary and

sufficient conditions for the existence of the starter-labelled graph and the minimum

hooked starter-labelled graph of paths, cycles, and k-windmils. The results of starter-

labelled k-windmills can be found in [31] and the results regarding starter-labelled

paths and cycles can be found in [33].

In chapter 4, we introduce the concept of pseudo-starter sequences, we present

several types of pseudo-starter sequences, and we determine some of the conditions

for the existence of such sequences. The results of this chapter can be found in [33].

In chapter 5, we generalize the concept of starter sequences, we introduce generalized

starter sequences and generalized extended starter sequences, and we determine the

necessary conditions for their existence. Moreover, we obtain, with few possible ex-

ceptions, the minimum number of hooks and their permissible locations. The results

of this chapter can be found in [32]. In chapter 6, we give a brief summary of the

thesis and open questions for further research.

1.1 Preliminaries

In this section, we provide useful concepts and theorems which are relevant to the

results presented in this thesis.

Definition 1.1.1. A starter for an abelian additive group G of odd order (2n + 1)

is a set of unordered pairs S = {{ai, bi} : 1 ≤ i ≤ n} which satisfies the conditions:

1. The set S partitions the non-zero elements of G; in other words

{ai : 1 ≤ i ≤ n}
⋃
{bi : 1 ≤ i ≤ n} = G \ {0}, and
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2. every non-zero element of G occurs as a difference of exactly one pair

of the set S; that is {±(ai − bi) : 1 ≤ i ≤ n} = G \ {0}.

Example 1.1.1. The pairs {{2, 3}, {4, 6}, {1, 5}} form a starter in Z7.

Definition 1.1.2. [9] A Skolem sequence of order n is a sequence Sn = (s1, s2, . . . , s2n)

of 2n integers satisfying the conditions:

1. for every k ∈ {1, 2, . . . , n}, there exist exactly two elements si, sj ∈ Sn such that

si = sj = k, and

2. if si = sj = k with i < j, then j − i = k.

Example 1.1.2. If n = 5, the partition {{8, 9}, {3, 5}, {1, 4}, {6, 10}, {2, 7}}, or

equivalently, the sequence (3, 5, 2, 3, 2, 4, 5, 1, 1, 4), is a Skolem sequence of order 5.

Definition 1.1.3. [43] A near-Skolem sequence of order n and defect q is an

integer sequence (s1, s2, . . . , s2n−2), denoted by q-near Sn, such that for every k ∈

{1, 2, . . . , q − 1, q + 1, . . . , n}, there are exactly two elements si, sj ∈ q-near Sn where

si = sj = k, and if si = sj = k, then |i− j| = k.

Definition 1.1.4. [7] A k-extended q-near-Skolem sequence of order n is a

sequence N q
n(k) = (s1, s2, . . . , s2n−1) satisfying the conditions of near-Skolem se-

quences, with the additional condition that it contains exactly one empty position,

which is in position k, denoted by ∗ or 0.

Example 1.1.3. N 3
7 (8) = (4, 2, 6, 2, 4, 7, 5, 0, 6, 1, 1, 5, 7), or equivalently, the collec-

tion {(10, 11), (2, 4), (1, 5), (7, 12), (3, 9), (6, 13)} is an 8-extended 3-near-Skolem se-

quence of order 7.

Definition 1.1.5. [34] Suppose that {k, n} ⊂ N such that n ≥ 2 and 1 ≤ k ≤ 2n− 1.

A k-pseudo-Skolem sequence of order n, denoted k-pseudo-Sn, is a distribution
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of the elements of the multiset {1, 2, . . . , 2n − 1, k} into a collection of ordered pairs

{(ai, bi) : i = 1, 2, . . . , n} such that ai < bi and bi − ai = i, and the pairs that do not

contain k are mutually disjoint (there are exactly two pairs containing k).

Definition 1.1.6. [16] A generalized Skolem sequence of order n and multiplicity

λ is a sequence GSn = (s1, s2, ..., sλn) of integers such that, for each i ∈ {1, 2, . . . , n},

there are exactly λ positions in the sequence GSn : j1, j2 = j1+i, . . . , jλ = j1+(λ−1)i

and sj1 = sj2 = . . . = sjλ = i.

Definition 1.1.7. [9] A Langford sequence of defect d and with m differences is

an integer sequence Lmd = (l1, l2, . . . , l2m) such that the following conditions hold:

1. for each k ∈ {d, d+ 1, . . . , d+m− 1}, there are exactly two elements li, lj ∈ Lmd

such that li = lj = k, and

2. if li = lj = k, then |j − i| = k.

In this thesis, the largest difference in a Langford sequence, d + m − 1, is called

the order of the Langford sequence.

Definition 1.1.8. [9] A k-extended Langford sequence of defect d with m differ-

ences is a langford sequence Lmd (k) = (l1, l2, . . . , l2m+1) with the added condition that

it contains exactly one empty position, which is in position k.

A hooked Langford sequence of defect d with m differences, hLmd , is a 2m-extended

Langford sequence of defect d with m differences.

Definition 1.1.9. [36] A Rosa sequence of order n is a sequence (r1, r2, . . . , r2n+1)

satisfying the conditions of Skolem sequences, with the added condition that rn+1 = 0.

Definition 1.1.10. [23] A (p, q)-extended Rosa sequence is a sequence of length

2n + 2 containing each of the symbols {0, 1, . . . , n} exactly twice, and in which two
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occurrences of the integer j > 0 are separated by exactly j−1 symbols. Such sequences

are denoted by Rn(p, q).

Theorem 1.1.1. [45] A Skolem sequence of order n exists if and only if n ≡ 0, 1 (mod 4).

Theorem 1.1.2. [36] A Rosa sequence of order n exists if and only if n ≡ 0, 3 (mod 4).

Theorem 1.1.3. [23] An Rn(p, q) exists if and only if p 6≡ q (mod 2) and n ≡

0, 1 (mod 4), or if p ≡ q (mod 2) and n ≡ 2, 3 (mod 4), with the exception of R1(2, 3)

and R4(5, 6).

Theorem 1.1.4. [44] A Langford sequence of defect d and m differences exists if and

only if the following conditions hold:

1. m ≥ 2d− 1, and

2. m ≡ 0, 1 (mod 4) when d is odd, or m ≡ 0, 3 (mod 4) when d is even.

Theorem 1.1.5. [44] A hooked Langford sequence of defect d and m differences exists

if and only if the following conditions hold:

1. m(m+ 1− 2d) + 2 ≥ 0, and

2. m ≡ 2, 3 (mod 4) when d is odd, or m ≡ 1, 2 (mod 4) when d is even.

Theorem 1.1.6. [24] A k-extended Langford sequence of length m and defect 2 exists

if and only if m ≡ 0, 3 (mod 4) if k is odd, or m ≡ 1, 2 (mod 4) if k is even.

Theorem 1.1.7. [24] A k-extended Langford sequence of length m and defect 3 exists

if and only if the following conditions hold:

1. m ≥ 3, and

2. m ≡ 0, 1 (mod 4) when k is odd, or m ≡ 2, 3 (mod 4) when k is even, with the

exception of (m, k) = (3, 2), (3, 6), (4, 1), (4, 5), (4, 9).
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Theorem 1.1.8. [43] An m-near-Skolem sequence of order n exists if and only if

n ≡ 0, 1 (mod 4) and m is odd, or n ≡ 2, 3 (mod 4) and m is even.

Theorem 1.1.9. [7] There exists a k-extended q-near-Skolem sequence of order n for

all triples (n, q, k) such that either

1. n ≡ 0, 1 (mod 4) and q, k have the same parity, or

2. n ≡ 2, 3 (mod 4) and q, k have opposite parity,

with the exception of (n, q, k) = (3, 2, 3), (4, 2, 4).

Theorem 1.1.10. [34] A k-pseudo-Skolem-Sn exists when k is odd and n ≡ 2, 3

(mod 4), or when k is even and n ≡ 0, 1 (mod 4).



Chapter 2

The Existence of Starter Sequences

and m–fold Starter Sequences

2.1 Starter Sequences

In this section, we establish the necessary and sufficient conditions for the existence

of starter sequences with one defect for all admissible orders and defects. We also

determine all necessary conditions for the existence of starter sequences with two or

more defects for all admissible orders. We begin this section with the definition of

starter sequences.

Definition 2.1.1. A starter sequence of order n, denoted by SSn, is a sequence

of 2n positive integers (s1, s2, . . . , s2n) such that, for every positive integer i ∈ [1, n],

either i or −i appears exactly twice in the sequence SSn, and if sa = sb = i or −i,

then |b−a| = i or −i, respectively, where −i is the additive inverse of i in Z2n+1, and

−i is refereed to as a defect of the sequence.

Throughout this thesis, we shall use the notation SSmn to denote a starter sequence

of order n with m defects.
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By Definition 2.1.1, it is obvious that the defect 2n does not occur in any starter

sequence of order n. Moreover, the defects 2n− 1 and 2n− 2 cannot appear together

in any starter sequence of order n.

Theorem 2.1.1. There exists a starter sequence of order n with one defect (SS1
n) if

and only if n ≡ 2, 3 (mod 4).

Proof. We first determine the necessary conditions for the existence of the required

sequences. Let (s1, s2, ..., s2n) be a starter sequence of order n with one defect. For

each r ∈ {{1, 2, . . . , n}\{i}}∪{2n+ 1− i}, we construct an ordered pair (ar, br) such

that sar = sbr = r. Now consider the sum of all sums and the sum of all differences

of these subscripts:

∑
r

(br + ar) =
2n∑
r=1

r =
(2n)(2n+ 1)

2
= n(2n+ 1) (2.1.1)

∑
r

(br − ar) =
n∑
r=1

r − i+ (2n+ 1)− i =
n(n+ 1)

2
+ 2n− 2i+ 1, (2.1.2)

where i ∈ [1, n]. Solving this system for
∑

r br, we obtain
∑

r br = 5n2+7n−4i+2
4

. Since

the left hand side of the last equation is an integer, this implies that (5n2+7n−4i+2)

must be divisible by 4, which happens only when n ≡ 2, 3 (mod 4).

Now we prove that these necessary conditions are sufficient. For small orders n = 2

and n = 3, it is straightforward to construct the required sequences. If n ≡ 2, 3

(mod 4) and n > 3, then we use k-extended q-near Skolem sequences of order n to

construct SS1
n. By Theorem 1.1.9 we ensure that there exists an N q

n(k) for all triples

(n, q, k) such that n ≡ 2, 3 (mod 4) and q, k are of opposite parity. As such, we choose

a suitable N q
n(k) such that we can place the defect (2n + 1 − q) at the beginning of

the sequence and we fill the empty position (k) with the defect 2n+ 1− q. �

For example, to construct a starter sequence of order 6 and one defect (d = 9),
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we begin with N 4
6 (9) = (5, 1, 1, 3, 6, 5, 3, 2, 0, 2, 6), and then we place the defect at

the beginning of the sequence and we also fill the hook of the sequence as follows:

(9, 5, 1, 1, 3, 6, 5, 3, 2, 9, 2, 6) = SS1
6 .

Theorem 2.1.2. There exists a starter sequence of order n with two defects (SS2
n)

only if n ≡ 0, 1 (mod 4).

Proof. Let (s1, s2, ..., s2n) be a starter sequence with two defects. For each r ∈

{{1, 2, . . . , n} \ {i, j}} ∪ {2n+ 1− i, 2n+ 1− j}, we construct an ordered pair (ar, br)

such that sar = sbr = r. By using the same technique as in the proof of Theorem

2.1.1, we obtain the following equations:

∑
r

(ar + br) =
2n∑
r=1

r =
(2n)(2n+ 1)

2
= 2n2 + n (2.1.3)

∑
r

(br − ar) =
n∑
r=1

r − 2i− 2j + 4n+ 2 =
n(n+ 1)

2
− 2i− 2j + 4n+ 2 (2.1.4)

Hence, ∑
r

br =
5n2 + 11n− 4i− 4j + 4

4
. (2.1.5)

Since the left hand side of the equation (2.1.5) is a non-negative integer, this implies

that (5n2+11n−4i−4j+4) must be divisible by 4, which happens only when n ≡ 0, 1

(mod 4).

Moreover, we prove that these necessary conditions are sufficient in some certain

cases of defects. Suppose that n ≡ 0, 1 (mod 4), where d1 = n + 1 and d2 = n + 2.

Then, according to Theorem 1.1.3, we can use (p, q)-extended Rosa sequences to

construct starter sequences for all admissible orders of n with two defects as fol-

lows: the defect d1 is placed in front of the sequence Rn−2(n − 3, n + 1) and the

second hook at the position (n + 1) is filled with d1, and the other defect (d2) is

appended to the end of the sequence of Rn−2(n − 3, n + 1) and the first hook at
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the position (n − 3) is filled with the defect d2. For instance, in order to construct

a starter sequence of order 8 with two defects, d1 = 9 and d2 = 10, we begin by

constructing R6(5, 9) = (6, 4, 1, 1, 0, 4, 6, 5, 0, 2, 3, 2, 5, 3), and then we place d1 and d2

in suitable places as follows (9, 6, 4, 1, 1, 10, 4, 6, 5, 9, 2, 3, 2, 5, 3, 10). Similarly, we can

use R7(6, 10) = (7, 5, 6, 1, 1, 0, 5, 7, 6, 0, 4, 2, 3, 2, 4, 3) to obtain a starter sequence of

order 9 with two defects, (10, 7, 5, 6, 1, 1, 11, 5, 7, 6, 10, 4, 2, 3, 2, 4, 3, 11), where the set

of defects is {10,11}.

In the case that (d1 = 2n−1, d2 = 2n−3), we can use Langford sequences to con-

struct starter sequences for all the admissible orders of n with two defects as follows:

for n ≡ 0 (mod 4), let n = 4s, and s ≥ 4; we know that L4s−4
5 exists according to The-

orem (1.1.4); then the required starter sequence is: (2n−1, 2n−3, L4s−4
5 , 3, 1, 1, 3, 2n−

3, 2n− 1).

For n ≡ 1 (mod 4), let n = 1 + 4s, and s > 2; then the required starter sequence

is (2n− 1, 2n− 3, L4s−3
5 , 3, 1, 1, 3, 2n− 3, 2n− 1). To complete this part, we list below

the sequences for n = 4, 5, 8, 9, and 12, respectively:

5, 6, 1, 1, 2, 5, 2, 6

9, 7, 5, 3, 1, 1, 3, 5, 7, 9

15, 13, 7, 5, 3, 8, 6, 3, 5, 7, 1, 1, 6, 8, 13, 15

17, 15, 9, 7, 5, 3, 6, 8, 3, 5, 7, 9, 6, 1, 1, 8, 15, 17

23, 21, 10, 8, 6, 3, 11, 12, 3, 9, 6, 8, 10, 7, 1, 1, 5, 11, 9, 12, 7, 5, 21, 23.

In the case that d1 = n+ 1, and d2 = 2n−1, we use extended Langford sequences,

which exist according to Theorem (1.1.7). For n ≡ 0, 1 (mod 4), and n > 5, we first

construct an extended Langford sequence with n−3 differences, and then the defect d2

is placed in the first and last positions of the required sequence, and the other defect

(d1) is placed in the second position and the hook of the extended Langford sequence

as follows: SS2
n = (2n−1), (n+1)(Ln−33 (n+1)), 1, 1, (2n−1). For instance, we use an
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extended Langford sequence, L5
3(9) = (4, 6, 7, 3, 4, 5, 3, 6, ∗, 7, 5), to construct a starter

sequence of order 8 and two defects: (15, 9, 4, 6, 7, 3, 4, 5, 3, 6, 9, 7, 5, 1, 1, 15).

To complete this part, we list the required sequences of orders 4 and 5, respectively:

(7, 5, 3, 1, 1, 3, 5, 7) and (9, 6, 4, 1, 1, 3, 4, 6, 3, 9). �

Starter sequences with more than two defects are natural generalizations of the

starter sequences which are represented early in this section. Now we determine the

necessary conditions for the existence of starter sequences with more than two defects,

and we may conjecture that these necessary conditions are sufficient.

For example, the sequence (10, 7, 4, 8, 1, 1, 4, 2, 7, 2, 10, 8) is a starter sequence of or-

der 6 with three defects, while the sequence (12, 10, 1, 1, 11, 9, 2, 3, 2, 4, 3, 10, 12, 4, 9, 11)

is a starter sequence of order 8 with four defects.

Theorem 2.1.3. Assuming that D is a set of defects for starter sequences of order n

such that |D| > 2, then the necessary conditions for the existence of these sequences

with the set D of defects are either n ≡ 0, 1 (mod 4) and |D| is even, or n ≡ 2, 3

(mod 4) and |D| is odd.

Proof. Assume that D = {d1, d2, . . . , dm}, and that (s1, s2, ..., s2n) is a starter sequence

of order n with m defects, such that dj = 2n + 1 − ij. By using the same technique

in Theorem (2.1.1), we construct ordered pairs {(ar, br)} such that sar = sbr = r, and

we obtain the following equations:

∑
r

(ar + br) =
2n∑
r=1

r =
(2n)(2n+ 1)

2
= 2n2 + n (2.1.6)

∑
r

(br − ar) =
n∑
r=1

r − 2(i1 + i2 + ...+ im) +m(2n+ 1) (2.1.7)

By Solving this system for
∑

r br, we obtain:
∑n

r=1 br = 5n2+2n+4mn+2m−4(i1+i2+...+im)
4

.

Since
∑n

r=1 br is an integer, this implies that 5n2 +2n+4mn+2m−4(i1 + i2 + ...+ im)
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must be divisible by 4. This implies that either n ≡ 0, 1 (mod 4) and m is even, or

n ≡ 2, 3 (mod 4) and m is odd. �

2.2 Hooked Starter Sequences

In this section, we introduce hooked starter sequences, establish the necessary and

sufficient conditions for the existence of hooked starter sequences with one defect

for all admissible orders and defects, and determine some of the conditions for the

existence of hooked starter sequences with two defects.

Definition 2.2.1. A hooked starter sequence of order n, denoted by hSSn, is a

sequence of 2n+1 integers (s1, s2, ..., s2n+1) satisfying conditions (1)and (2) for starter

sequences, with the added condition that s2n = 0. This element is called the hook or

the null element, and it is denoted by 0, or ∗.

For example, (8, 3, 4, 2, 3, 2, 4, 0, 8) is a hooked starter sequence of order 4 with

one defect, and (10, 1, 1, 4, 5, 7, 2, 4, 2, 5, 10, 0, 7) is a hooked starter sequence of order

6 with two defects.

Theorem 2.2.1. There exists a hooked starter sequence of order n with one defect

(hSS1
n) if and only if n ≡ 0, 1 (mod 4).

Proof. We determine the necessary conditions by using the same technique as in

Theorem 2.1.1. Hence,

∑
r

(ar + br) =
2n+1∑
r=1

r − 2n =
(2n+ 1)(2n+ 2)

2
− 2n (2.2.1)

∑
r

(br − ar) =
n∑
r=1

r − 2k + 2n+ 1 =
n(n+ 1)

2
− 2k + 2n+ 1 (2.2.2)
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By solving the system for
∑
br, we obtain:

∑
r br = 5n2+7n−4k+4

4
. Since the values of

br are positive integers, this implies that 5n2+7n−4k+4
4

must be a positive integer, which

happens only when n ≡ 0, 1 (mod 4).

Concerning the sufficiency, suppose that n ≡ 0, 1 (mod 4). For the minimum

value of the defects (d = n+1), we can use a Rosa sequence of order n, where n ≡ 0, 3

(mod 4), which exists according to Theorem (1.1.2). Then we fill the middle hook

with (n + 1), and we put the second copy of (n + 1) at the end of the sequence. For

instance, we can use a Rosa sequence of order three, (1, 1, 3, 0, 2, 3, 2), to construct

a hooked starter sequence of order 4 and one defect: (1, 1, 3, 5, 2, 3, 2, 0, 5). For all

the remaining possible cases of the defect (n + 1 < d ≤ 2n), we can use extended

near-Skolem sequences to construct the required hooked starter sequences of all the

permissible orders. Therefore, if n ≡ 0, 1 (mod 4), and d = 2n + 1 − m, then an

m-extended m-near Skolem sequence of order n exists according to Theorem (1.1.9).

Now we can construct a hooked starter sequence of order n with one defect d by

appending 0,m to the end of N q
n(k). �

For instance, to build a hooked starter sequence of order 4 and one defect (d = 6),

we can use a 3-extended 3-near-Skolem sequence of order four (4, 2, 0, 2, 4, 1, 1), fill the

hook with the defect d = 6, and put the second copy of d in the position S9 in order

to obtain a hooked starter sequence of order 4 with one defect such as the following:

(4, 2, 6, 2, 4, 1, 1, 0, 6).

Theorem 2.2.2. There exists a hooked starter sequence of order n with two defects

(hSS2
n) only if n ≡ 2, 3 (mod 4) and n > 2 .

Proof. By using a similar technique as in the proof of Theorem (2.2.1), we deter-

mine the necessary conditions of hSS2
n. Moreover, we prove that these necessary

conditions are sufficient when the pair of defects are {n + 1, 2n} or {n + 1, n + 2}.
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In the case that the set of defects D = {n + 1, 2n}, we can construct the required

sequences by using extended Langford sequences with (d = 2), which exist by The-

orem (1.1.6). To begin, the defect 2n is placed at the beginning and the end of

the required sequence, and the defect n + 1 is placed in the second position, and

the positions from 3 to 2n − 1, inclusive, are occupied by Ln−12 (n + 1) such that

the hook of the Langford sequence is filled by the defect n + 1. Therefore, the re-

quired sequences are given by: 2n, n + 1(Ln−12 (n + 1)), 0, 2n. For example, using

L4
2(7) = (2, 4, 2, 5, 3, 4, 0, 3, 5), we can build a hooked starter sequence of order 6 with

two defects hSS2
6 = (12, 7, 2, 4, 2, 5, 3, 4, 7, 3, 5, ∗, 12).

In the case that D = {n + 1, n + 2}, to construct starter sequences of order n

with two defects, we use (p, q)-extended Rosa sequences, which exist according to

Theorem (1.1.3). First, we place the defect n+ 1 in the first position of the required

sequence and Rn−2(p, q) in the positions from 2 to 2n − 1, inclusive, such that we

can replace the two zeros p and q by n + 2 and n + 1, respectively; then we place

the second copy of n + 2 in the last position (2n + 1) of the required sequence,

and thus the position 2n will be occupied by zero. For instance, we use R4(4, 7) =

(2, 3, 2, ∗, 3, 4, ∗, 1, 1, 4) to construct hSS2
6 = (7, 2, 3, 2, 8, 3, 4, 7, 1, 1, 4, ∗, 8). Similarly,

we use R5(5, 8) = (1, 1, 3, 5, ∗, 3, 4, ∗, 5, 2, 4, 2) to construct a hooked starter sequence

of order 7 with two defects: hSS2
7 = (8, 1, 1, 3, 5, 9, 3, 4, 8, 5, 2, 4, 2, ∗, 9). �

2.3 Extended Starter Sequences

Definition 2.3.1. A k-extended starter sequence of order n, denoted by SSn(k)

or k-ext SSn, is a sequence (s1, s2, . . . , s2n+1) of 2n + 1 non-negative integers that

satisfy the conditions of a starter sequence with the added condition that sk = 0 for

some k ∈ {1, 2, . . . , 2n+ 1}.
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We notice that an extended starter sequence of order n exists for all values of n

such that the defect is either n + 1 or n + 2. This is not difficult to prove by using

the same technique used in [2].

Theorem 2.3.1. An extended starter sequence of order n with one defect (SS1
n(k))

exists for each positive integer n where d is either (n+ 1) or (n+ 2).

Proof. Given a positive integer (n), we can construct an extended starter sequence of

order n with one defect of either (n+ 1) or (n+ 2) as follows:

(k, k−2, . . . , 5, 3, 1, 1, 3, 5, . . . , k−2, k, e, e−2, . . . , 4, 2, 0, 2, 4, . . . , e−2, e), where k and

e are the largest odd and even numbers, respectively, in the set E = {1, 2, 3, . . . , n−

1, n+ 1}, when d = (n+ 1), and if d = (n+ 2) then E = {1, 2, . . . , n−2, n, n+ 2}. �

Theorem 2.3.2. There exists a k-extended starter sequence of order n with one defect

(SS1
n(k)) only if either

1. k is even and n ≡ 0, 1 (mod 4), or

2. k is odd and n ≡ 2, 3 (mod 4).

Proof. Consider the set of subscripts {(ar, br) : r = 1, 2, ..., n}; then

∑
r

(ar + br) =
2n+1∑
r=1

r − k = (2n+ 1)(n+ 1)− k, (2.3.1)

∑
r

(br − ar) =
n∑
r=1

r −m+ (2n+ 1−m) =
n(n+ 1)

2
+ 2n− 2m+ 1. (2.3.2)

By adding (2.3.1) and (2.3.2) we obtain
∑

r br = 5n2+11n−2k+4
4

−m. This implies that

5n2+11n−2k+4
4

must be an integer, which happens only if either k is even and n ≡ 0, 1

(mod 4) or k is odd and n ≡ 2, 3 (mod 4).

For small orders of n, it is straightforward to construct a k-extended starter se-

quence of order n with one defect, where k is odd. For large orders, we prove that these
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necessary conditions are sufficient in the case d = n+1 or d = 2n. If n ≡ 2, 3 (mod 4),

n > 3, and k is odd, then we can construct extended starter sequences of order n,

with the lowest possible defect (d = n+ 1) by using extended near-Skolem sequences.

In the case that n ≡ 2, (mod 4), we use extended near-Skolem sequences of order 3

(mod 4) and q = n, which exist by Theorem (1.1.9). For example, a 5-extended 6-near

Skolem sequence of order seven N 6
7 (5) = (7, 4, 1, 1, 0, 4, 5, 7, 2, 3, 2, 5, 3) is equivalent

to a 5-extended starter sequence of order 6 with one defect provided that (d = n+ 1).

In the case that n ≡ 3 (mod 4), we use extended near-Skolem sequences of or-

der 0 (mod 4) and q = n, which also exist according to Theorem (1.1.9). For

instance, using an 11-extended 7-near Skolem sequence of order eight, N 7
8 (11) =

(8, 6, 4, 2, 5, 2, 4, 6, 8, 5, 0, 3, 1, 1, 3), is equivalent to using an 11-extended starter se-

quence of order 7 with one defect.

Similarly, in the case that n ≡ 0, 1 (mod 4), k is even, and d = n + 1, we use

a k-extended near-Skolem sequence of order 1, 2 (mod 4) respectively where q = n.

In the case that n ≡ 0, 1 (mod 4) and k is even, and d = 2n, we can construct a k-

extended starter sequence of order n with one defect by using an extended Langford

sequence with the defect d = 2. Therefore, SS1
n(k) = 2n, Ln−12 (k), 2n. For example, by

using L4
2(3) = (3, 5, 0, 3, 4, 2, 5, 2, 4), we can construct a 4-extended Starter sequence

of order 5 with one defect: SS1
5(4) = (10, 3, 5, 0, 3, 4, 2, 5, 2, 4, 10). Similarly, in case

n ≡ 2, 3 (mod 4), d = 2n, and k is odd, then SS1
n(k) = 2n, Ln−12 (k), 2n. In the case

that k = 2, d = 2n− 1, and n ≡ 0, 1 (mod 4), we use a hooked Langford sequence to

construct the required sequence :SS1
n(2) = (2n− 1, 0, 1, 1, hLn−23 ). �

By a similar argument, we can determine the necessary conditions for the existence

of k-starter sequences with r defects, where (1 < r ≤ n− 1).

Theorem 2.3.3. Let D be a set of defects for starter sequences of order n, where

D = {d1, d2, . . . , dr}, 1 < r ≤ n − 1, and n + 1 ≤ |di| ≤ 2n − 2; then there exists a
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k-extended starter sequence of order n such that 1 ≤ k ≤ 2n+ 1 with r defects only if

either

1. r and k have different parities, and n ≡ 0, 1 (mod 4), or

2. r and k have the same parity, and n ≡ 2, 3 (mod 4).

2.4 m–fold starter sequences

The concept of m–fold starter sequences was introduced in [1]. In this section, we

provide more details about mfold starter sequences. Throughout this thesis, for every

integer a the notation a(−a) means that either a or −a appears in the sequence.

Definition 2.4.1. An m–fold starter sequence (s1, s2, . . . , s2nm) of order n is a

sequence of 2nm integers such that, for every k ∈ {1(−1), 2(−2), . . . , n(−n)}, there

exists m disjoint pairs (i, i+ k), i ∈ {1, 2, . . . , 2nm} such that si = si+k = k.

For example, (5, 6, 1, 1, 2, 5, 2, 6, 5, 6, 1, 1, 2, 5, 2, 6, 5, 6, 1, 1, 2, 5, 2, 6) is a 3–fold starter

sequence of order 4 with two defects.

Similarly, an m–fold extended starter sequence of order n is a sequence

(s1, s2, . . . , s2nm+1) of 2nm+ 1 integers satisfying the conditions of the m–fold starter

sequences with the added condition that there is exactly one subscript y, such that

sy = 0. If s2nm = 0, then the extended sequence is called a hooked m–fold starter

sequence. For example, (4, 5, 1, 1, 4, 5, 5, 4, 1, 1, 5, 4, 4, 5, 1, 1, 4, 0, 5) is a hooked 3–fold

starter sequence of order 3 with two defects. Note that a 1–fold starter sequence is a

starter sequence. Hence, throughout the rest of this chapter, we assume that m ≥ 2.
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2.4.1 The existence of m–fold starter sequences

Now we are ready to establish the existence of m–fold starter sequences with one

defect, and we generalize this result to m–fold starter sequences with more than one

defect.

Theorem 2.4.1. An m–fold starter sequence of order n with one defect exists if and

only if n ≡ 2, 3 (mod 4), or n ≡ 0, 1 (mod 4) and m is even.

Proof. Suppose that (s1, s2, . . . , s2mn) is anm–fold starter sequence of order n with one

defect. Consider the sum of all sums, and the sum of all differences of the subscripts

i and j:
n∑
i=1

m∑
j=1

(bij + aij) =
2mn(2mn+ 1)

2
, (2.4.1)

n∑
i=1

m∑
j=1

(bij − aij) =
mn(n+ 1)

2
−mk +m(2n+ 1− k)

=
mn(n+ 1)− 4m(k − n) + 2m

2
.

(2.4.2)

By adding (2.4.1) and (2.4.2) and then dividing by 2, we obtain

n∑
i=1

m∑
j=1

bij =
mn(4mn+ n+ 7)− 4mk + 2m

4
(2.4.3)

The left side of (2.4.3) is always an integer. Hence n ≡ 2, 3 (mod 4), or n ≡ 0, 1

(mod 4) and m is even.

Now we prove that these necessary conditions are also sufficient. If n ≡ 2, 3

(mod 4), then we construct an m–fold starter sequence of order n by placing m copies

of the starter sequences of order n with one defect side by side.

If n ≡ 0, 1 (mod 4) and m is even, then any hooked starter sequence of order

n with one defect can be hooked together with its reverse to build a 2-fold starter

sequence with one defect. By putting the first term of the reverse sequence in the
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hook of the sequence and fitting the last term of the sequence in the hook of the

reverse, then we place m
2

of these 2-fold starter sequences with one defect together

side by side to form an m–fold starter sequence with one defect. For example, the

hooked starter sequence of order 4 with one defect (8, 3, 4, 2, 3, 2, 4, ∗, 8), and its re-

verse (8, ∗, 4, 2, 3, 2, 4, 3, 8) form a 2-fold starter sequence of order 4 with one defect

(8, 3, 4, 2, 3, 2, 4, 8, 8, 4, 2, 3, 2, 4, 3, 8). Therefore, we can construct any m–fold starter

sequence of order 4 with one defect wherem is even. For instance, (8, 3, 4, 2, 3, 2, 4, 8, 8,

4, 2, 3, 2, 4, 3, 8, 8, 3, 4, 2, 3, 2, 4, 8, 8, 4, 2, 3, 2, 4, 3, 8) is 4-fold starter sequence of order

4 with one defect. �

Theorem 2.4.2. An m–fold starter sequence of order n with two defects exists if and

only if

1. n ≡ 0, 1 (mod 4), or

2. n ≡ 2, 3 (mod 4) and m is even.

Proof. Suppose that (s1, s2, . . . , s2mn) is an m–fold starter sequence of order n with

two defects. By using the same technique as in the proof of Theorem (2.4.1), we

obtain:
n∑
i=1

m∑
j=1

bij =
mn(4mn+ n+ 11)− 4m(k1 + k2 − 1)

4
(2.4.4)

The left side of (2.4.4) is always an integer; hence, n ≡ 0, 1 (mod 4), or n ≡ 2, 3

(mod 4) and m is even. We prove that the necessary conditions are also sufficient. If

n ≡ 0, 1 (mod 4), then we construct an m–fold starter sequence of order n with two

defects by placing m copies of the starter sequence of order n with two defects side

by side.

If n ≡ 2, 3 (mod 4) and m is even, then any hooked starter sequence of order n with

two defects can be hooked together with its reverse to build a 2-fold starter sequence
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of order n with two defects. Then, m
2

of these 2-fold starter sequence with two defects

are placed together side by side to form an m–fold starter sequence of order n with

two defects. For example, the hooked starter sequence of order 6 with two defects

(12, 9, 5, 6, 2, 3, 2, 5, 3, 6, 9, ∗, 12), and its reverse (12, ∗, 9, 6, 3, 5, 2, 3, 2, 6, 5, 9, 12), form

any m–fold starter sequence of order 6 with two defects, where m is even. For instance,

the sequence: (12, 9, 5, 6, 2, 3, 2,5, 3, 6, 9, 12, 12, 9, 6,3, 5,2, 3, 2, 6, 5, 9,12,

12, 9, 5, 6, 2, 3, 2, 5, 3, 6, 9, 12, 12, 9,6, 3, 5, 2, 3, 2, 6, 5, 9, 12) is a 4–fold starter sequence

of order 6 with two defects. �

Similarly, we establish the necessary conditions for m–fold starter sequences of

order n with r defects, where r > 2, and we may conjecture that these necessary

conditions are sufficient.

Theorem 2.4.3. Let n, m, and r be positive integers, (3 ≤ r ≤ n − 1), and let

(s1, s2, s3, . . . , s2mn) be an m–fold starter sequence of order n with r defects (d1, d2, . . . , dr).

Then one of the following must hold:

1. n ≡ 0, 1 (mod 4) and r is even,

2. n ≡ 0, 1 (mod 4), and r is odd and m is even,

3. n ≡ 2, 3 (mod 4) and r is odd, or

4. n ≡ 2, 3 (mod 4), and r and m are even.

2.4.2 Hooked m–fold starter sequences

In this section, we introduce hooked m–fold starter sequences, and we investigate the

conditions for their existence.

Theorem 2.4.4. A hooked m–fold starter sequence of order n with one defect exists

if and only if n ≡ 0 or 1 (mod 4) and m is odd.
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Proof. Suppose that (s1, s2, . . . , s2mn+1) is a hooked m–fold starter sequence of order

n with one defect. By using a similar argument as in the proof of Theorem (2.4.1),

we obtain:
n∑
i=1

m∑
j=1

(bij + aij) =
(2mn+ 1)(2mn+ 2)

2
− 2mn (2.4.5)

n∑
i=1

m∑
j=1

(bij − aij) =
mn(n+ 5)− 4mk + 2m

2
(2.4.6)

n∑
i=1

m∑
j=1

bij =
mn(4mn+ n+ 7)− 4mk + 2m+ 2

4
(2.4.7)

The left side of (2.4.7) is always an integer. Hence, n ≡ 0 or 1 (mod 4) and m is odd.

Concerning the sufficiency, suppose that n ≡ 0, 1 (mod 4), and m is odd. Then, a

hooked m–fold starter sequence of order n with one defect can be presented by using

m−1
2

combinations of a hooked starter sequence of order n with one defect and its re-

verse, followed by a copy of the hooked starter sequence with one defect. For example,

the hooked starter sequence of order 5 with one defect (0, 3, 4, 5, 3, 2, 4, 2, 5, ∗, 10), and

its reverse (10, ∗, 5, 2, 4, 2, 3, 5, 4, 3, 10), form a 2-fold starter sequence of order 5 with

one defect (10, 3, 4, 5, 3, 2, 4, 2, 5, 10, 10, 5, 2, 4, 2, 3, 5, 4, 3, 10). We can easily construct

any hooked m–fold starter sequence of order 5 with one defect, where m is odd. For

instance, (10, 3, 4, 5, 3, 2, 4, 2, 5, 10, 10, 5, 2, 4, 2, 3, 5, 4, 3, 10, 10, 3, 4, 5, 3, 2, 4, 2, 5, ∗, 10)

is a hooked 3-fold starter sequence of order 5 with one defect. �

Theorem 2.4.5. A hooked m–fold starter sequence of order n with two defects exists

if and only if n ≡ 2 or 3 (mod 4) and m is odd.

Proof. Suppose that (s1, s2, . . . , s2mn+1) is a hooked m–fold starter sequence of order

n with two defects. Similarly, we obtain:

n∑
i=1

m∑
j=1

bij =
mn(4mn+ n+ 11)− 4m(k1 + k2) + 4m+ 2

4
. (2.4.8)
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The left side of (2.4.8) is always an integer; hence, n ≡ 2 or 3 (mod 4) and m is odd.

Sufficiency: if n ≡ 2 or 3 (mod 4), and m is odd, then a hooked m–fold starter

sequence of order n with two defects can be presented by using m−1
2

combinations of

a hooked starter sequence of order n with two defects and its reverse, and adding the

hooked starter sequence with two defects at the end. This completes the proof. �

By a similar approach, we establish the necessary conditions for hooked starter

sequences with more than two defects.

Theorem 2.4.6. Let n, m, r, and dr be positive integers, where (3 ≤ r ≤ n − 1),

and n+ 1 ≤ di ≤ (2n), and (s1, s2, . . . , s2mn+1) is a hooked m–fold starter sequence of

order n with r defects (d1, d2, . . . , dr). Then one of the following must hold:

1. n ≡ 0 or 1 (mod 4), and r and m are odd; or

2. n ≡ 2 or 3 (mod 4), and r is even and m is odd.

2.4.3 Extended m–fold starter sequences

In this section, we introduce extended m–fold starter sequences, and we determine

the necessary conditions and some of the sufficient conditions for the existence of

extended m–fold starter sequences of order n.

Theorem 2.4.7. Let (s1, s2, . . . , s2nm+1) be a k-extended m–fold starter sequence of

order n with one defect. Then one of the following must hold:

1. n ≡ 2, 3 (mod 4), and k is odd; or

2. n ≡ 0, 1 (mod 4), and m and k are of opposite parity.

Proof. Suppose that (s1, s2, . . . , s2mn+1) is a k-extended m–fold starter sequence of

order n with one defect, and sk = 0. By using the same technique as in the proof of
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Theorem (2.4.1), we obtain:

n∑
i=1

m∑
j=1

(bij + aij) =
(2mn+ 1)(2mn+ 2)

2
− k, (2.4.9)

n∑
i=1

m∑
j=1

(bij − aij) =
mn2 +mn− 4mr + 4mn+ 2m

2
. (2.4.10)

By adding (2.4.9) and (2.4.10), and then dividing by 2, we obtain

n∑
i=1

m∑
j=1

bij =
mn(4mn+ n+ 11)− 4mr + 2m+ 2− 2k

4
. (2.4.11)

The left side of (2.4.11) is always an integer, hence

1. n ≡ 2, 3 (mod 4), and k is odd; or

2. n ≡ 0, 1 (mod 4), and m and k are of opposite parity.

We investigate the sufficiency: first, suppose that n ≡ 2, 3 (mod 4) and k is odd. It

will be sufficient to build the required sequences with zeros in the odd positions from

1 to 2n+ 1 inclusive. We first exhibit the two smallest cases:

In the case that n = 2:

0, 3, 1, 1, 3, 3, 1, 1, 3

3, 3, 0, 3, 3, 1, 1, 1, 1

1, 1, 3, 3, 0, 3, 3, 1, 1

0, 4, 2, 4, 2, 4, 2, 4, 2

2, 4, 2, 4, 0, 4, 2, 4, 2.

In the case that n = 3:

0, 4, 4, 1, 1, 4, 4, 2, 2, 2, 2, 1, 1

1, 1, 0, 4, 4, 1, 1, 4, 4, 2, 2, 2, 2

2, 2, 2, 2, 0, 4, 4, 1, 1, 4, 4, 1, 1
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2, 2, 2, 2, 1, 1, 0, 4, 4, 1, 1, 4, 4

0, 5, 5, 1, 1, 3, 5, 5, 3, 3, 1, 1, 3

5, 3, 0, 5, 3, 5, 1, 1, 5, 3, 1, 1, 3

5, 1, 1, 5, 0, 5, 3, 3, 5, 3, 3, 1, 1

5, 3, 1, 1, 3, 5, 0, 5, 3, 1, 1, 3, 5

0, 6, 2, 3, 2, 6, 3, 6, 2, 3, 2, 6, 3

6, 2, 0, 2, 3, 6, 6, 3, 2, 3, 2, 6, 3

2, 6, 2, 3, 0, 6, 3, 6, 2, 3, 2, 6, 3

3, 6, 2, 3, 2, 6, 0, 6, 2, 3, 2, 6, 3.

If n ≡ 2, 3 (mod 4) and k is odd, and n > 3, then according to Theorem (2.1.1),

we know that there exists a starter sequence of order (n) with one defect. We also

know that there exists a SS1
n(k), and that k is odd, so we can use m − 1 copies

of SS1
n and one copy for the extended starter sequence (k-ext-SSn). If n ≡ 0 or

1 (mod 4), m is even, and k is odd, then according to Theorem (2.2.1), we know

that a hooked starter sequence of order n with one defect exists (hSS1
n), and since

m is even, we hook hSS1
n with its reverse and we concatenate hSS1

n with SS1
n. In

particular, if n ≡ 2, 3 (mod 4), n > 3, k is odd, and (d = n + 1), then we can con-

struct the required extended m–fold starter sequence by using m− 1 copies of n-near

Skolem sequence of order n + 1 and a k-extended n-near Skolem sequence of order

n + 1 in the appropriate position. For example, a 6-near Skolem sequences of order

seven, (7, 2, 3, 2, 4, 3, 5, 7, 4, 1, 1, 5), and the 5-extended 6-near Skolem sequence of or-

der seven, (7, 4, 1, 1, 0, 4, 5, 7, 2, 3, 2, 5, 3), can be used to obtain an extended m–fold

starter sequence of order 6 with one defect.

For n ≡ 2 (mod 4), k = 1, and d = n+ 2, the required sequence has the form:

0
1
, n+2

2
, n
3
,
−2→. . ., 2

n
2
+2
, n+2
n
2
+3
, 2
n
2
+4
,

+2→. . ., n
n+3

, n+2
n+4

, n
n+5

, n−2
n+6

,
−2→. . ., 2

3n
2
+4
, n+2

3n
2
+5
, 2

3n
2
+6
,

+2→. . ., n−2
2n+4

, n
2n+5

,

n−3
2n+6

, n−5
2n+7

,
−2→. . ., 1

5n
2
+4
, 1

5n
2
+5
,

+2→. . ., n−5
3n+2

, n−3
3n+3

, n−3
3n+4

, n−5
3n+5

,
−2→. . ., 1

7n
2
+2
, 1

7n
2
+3
,

+2→. . ., n−5
4n
, n−3
4n+1

.
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For k = 3 and n > 6, we can construct the required sequence using the following

formula:

4
1
, 2
2
, 0
3
, 2
4
, 4
5
, n+2

6
, n
7
,
−2→. . ., 2

n
2
+6
, n+2
n
2
+7
, 2
n
2
+8
,

+2→. . ., n
n+7

, n+2
n+8

, n
n+9

, n−2
n+10

,
−2→. . ., 6

3n
2
+6
, 1

3n
2
+7
, 1

3n
2
+8
, n+2

3n
2
+9
,

n−3
3n
2
+10

, n−5
3n
2
+11

, 6
3n
2
+12

,
+2→. . ., n−2

2n+8
, n
2n+9

, n−7
2n+10

, n−9
2n+11

,
−2→. . ., 3

5n
2
+5
, n−5

5n
2
+6
, n−3

5n
2
+7
, 3

5n
2
+8
,

+2→. . ., n−7
3n+3

,

n−3
3n+4

, n−5
3n+5

,
−2→. . ., 1

7n
2
+2
, 1

7n
2
+3
,

+2→. . ., n−5
4n
, n−3
4n+1

.

If n = 6, the required sequence is: (4, 2, 0, 2, 4, 8, 6, 4, 2, 8, 2, 4, 6, 8, 6, 1, 1, 8, 3, 3, 6, 3, 3,

1, 1). Where n ≡ 3 (mod 4), k = 1, and d = n + 2, the required sequence has the

form:

0
1
, n+2

2
, n
3
,
−2→. . ., 1

n+1
2

+2
, 1
n+1
2

+3
,

+2→. . ., n
n+3

, n+2
n+4

, n−3
n+5

, n−5
n+6

,
−2→. . ., 2

3n+5
2

, n−33n+7
2

, 2
3n+9

2

,
+2→. . ., n−5

2n+1
, n−3
2n+2

,

, n−5
2n+3

, n−7
2n+4

,
−2→. . ., 2

5n−1
2

, n−35n+1
2

, 2
5n+3

2

,
+2→. . ., n−7

3n−3 ,
n−5
3n−2 ,

n+2
3n−1 ,

n
3n
,
−2→. . ., 1

7n−1
2

, 1
7n+1

2

,
+2→. . ., n

4n
, n+2
4n+1

.

In the case that k = 1 and d > n + 1, in order to construct a 1-extended starter se-

quence of order n and one defect, we put the zero at the first position of the required

sequence. Then we use a k extended q-near Skolem sequence of order n and insert the

inverse of the missing number at the front of the near-Skolem and the second q−1 to fill

the hook of the sequence. For example, we use the sequence (5, 1, 1, 3, 6, 5, 3, 2, ∗, 2, 6)

which is an N4
6 (10), to construct a 1-extended starter sequence of order 6 and one

defect: (0, 9, 5, 1, 1, 3, 6, 5, 3, 2, 9, 2, 6). �

Similarly, we can also determine the necessary conditions for the existence of ex-

tended m–fold starter sequences of order n with more than one defect.

Theorem 2.4.8. Let n, m, r, and dr be positive integers, where 2 ≤ r ≤ n − 1 and

n + 1 ≤ dr ≤ (2n − 1), and (s1, s2, s3, . . . , s2mn+1) is a k-extended m–fold starter

sequence of order n with r defects (d1, d2, . . . , dr). Then one of the following must

hold:

1. n ≡ 0, 1 (mod 4), where r is even and k is odd;

2. n ≡ 0, 1 (mod 4), where r and k are odd, and m is even;
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3. n ≡ 0, 1 (mod 4), where r and m are odd, and k is even; or

4. n ≡ 2, 3 (mod 4), where r and k are odd.

2.5 Excess starter sequences

In this section, we introduce another new generalization of starter sequences in which

one integer occurs in two sets. We begin this section by introducing the concept of

excess starter sequences of order n and surplus p.

Definition 2.5.1. An excess starter sequence of order n and surplus p is a sequence

X p
n = (s1, s2, . . . , s2n+2) of 2n+ 2 integers satisfying:

1. for every j ∈ {1(−1), 2(−2), . . . , p− 1(−(P − 1)), p+ 1(−(P + 1)), . . . , n(−n)}

there are exactly two elements su, sv ∈X p
n such that su = sv = j and |v−u| = j,

2. there are exactly four elements sa = sb = sc = sd = p and |b− a| = |d− c| = p.

For example, X 4
4 = (6, 4, 1, 1, 4, 4, 6, 2, 4, 2) is an excess-starter sequence of order

4 with one defect and a surplus p = 4.

It is not difficult to determine the necessary conditions for the existence of such

sequences. Moreover, the settling of the existence problem for the extended starter

sequences with one defect will imply the sufficient conditions for existence of the excess

starter sequences with one defect.

Theorem 2.5.1. An excess starter sequence of order n with one defect and surplus

p exists only if either n ≡ 0, 1 (mod 4) and p is even, or n ≡ 2, 3 (mod 4) and p is

odd.

Proof. Let (s1, s2, . . . , s2n+2) be an excess starter sequence of order n with one defect

and surplus p. Consider the sum of all sums, and the sum of all differences of the
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subscripts ar and br, such that br − ar = k, and k appears at least twice in X p
n .

∑
r

(br + ar) =
2n+2∑
r=1

r =
(2n+ 2)(2n+ 3)

2
; (2.5.1)

∑
r

(br − ar) =
n∑
r=1

r − d+ p+ (2n+ 1− d) =
(n)(n+ 1)

2
+ 2n− 2d+ p+ 1. (2.5.2)

where 1 ≤ p ≤ 2n and 1 ≤ d ≤ n.

By adding (2.5.1) and (2.5.2), then dividing by 2, we obtain

∑
r

br =
n(5n+ 15)− 4d+ 2p+ 8

4
. (2.5.3)

The left side of (2.5.3) is always an integer; hence, n ≡ 0, 1 (mod 4) and p is even, or

n ≡ 2, 3 (mod 4) and p is odd. �

Similarly, we determine the necessary conditions for the existence of excess starter

sequences for all admissible numbers of defects.

Theorem 2.5.2. An excess starter sequence of order n with r defects (r > 1) and

surplus p exists only if either

1. n ≡ 0, 1 (mod 4), and r and p have different parities; or

2. n ≡ 2, 3 (mod 4), and r and p have the same parity.

Proof. Let (s1, s2, . . . , s2n+2) be an excess starter sequence of order n with r-defects

and surplus p. Consider the sum of all sums, and the sum of all differences of the

subscripts (ar, br). Hence,

∑
r

br =
n(5n+ 11)− 4(d1 + d2 + . . .+ dr) + r(4n+ 2) + 2p+ 6

4
. (2.5.4)
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The left side of (2.5.4) is always an integer; hence, either n ≡ 0, 1 (mod 4), and r and

p have different parities, or n ≡ 2, 3 (mod 4), and r and p have the same parity. �

For example, X 2
6 = (12, 10, 8, 2, 4, 2, 7, 2, 4, 2, 8, 10, 12, 7) is an excess-starter se-

quence of order 6 with four defects and surplus p = 2. In addition, we can gener-

alize the excess starter sequence to more than one surplus; for example, (X 2,5
4 =

5, 5, 1, 1, 3, 5, 5, 3, 2, 2, 2, 2) is a double excess starter sequence of order 4 with one

defect and two surpluses 2 and 5.

Theorem 2.5.3. If 1 ≤ u < v ≤ 2n, then a double excess starter sequence of order n

with one defect, and with two surpluses u and v (X u,v
n ), exists only if either:

1. n ≡ 2, 3 (mod 4) and u ≡ v (mod 2); or

2. n ≡ 0, 1 (mod 4) and u � v (mod 2).

Proof. Let (s1, s2, . . . , s2n+4) be a double excess starter sequence of order n with one

defect and two surpluses u and v. Consider the sum of all sums, and the sum of all

differences of the subscripts ar and br:

∑
r

(ar + br) =
2n+4∑
r=1

r =
(2n+ 4)(2n+ 5)

2
(2.5.5)

∑
r

(br−ar) =
(n)(n+ 1)

2
−2d+2n+u+v+1 =

n(n+ 5)− 4d+ 2(u+ v + 1)

2
(2.5.6)

where 1 ≤ m ≤ n and 1 ≤ u, v ≤ 2n.

By subtracting (2.5.6) from (2.5.5) we obtain:

∑
r

ar =
n(5n+ 23)− 4d+ 2(u+ v) + 18

4
(2.5.7)

The left side of (2.5.7) is always an integer; hence, n ≡ 2, 3 (mod 4) and u ≡ v

(mod 2) or, n ≡ 0, 1 (mod 4) and u � v (mod 2). �
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It is interesting to realize that the settling of the existence question for the extended

starter sequences will imply the sufficient conditions for the existence of the excess

starter sequences.

Example 2.5.1. X 3,4
5 = (10, 3, 9, 3, 3, 4, 3, 6, 4, 4, 10, 9, 4, 6) is a double excess starter

sequence of order 5 with three defects and two surpluses 3 and 4.

Theorem 2.5.4. An excess starter sequence of order n with r defects (r > 1) and

two surpluses u and v exists only if either

1. n ≡ 0, 1 (mod 4), and r is even and u ≡ v (mod 2);

2. n ≡ 0, 1 (mod 4), and r is odd and u � v (mod 2);

3. n ≡ 2, 3 (mod 4), and r is even and u � v (mod 2); or

4. n ≡ 2, 3 (mod 4), and r is odd and u ≡ v (mod 2);

Proof. Let (s1, s2, . . . , s2n+2) be an excess starter sequence of order n with r-defects

and two surpluses u and v. Consider the sum of all sums, and the sum of all differences

of the subscripts. Hence,

∑
r

br =
n(5n+ 19)− 4(d1 + d2 + . . .+ dr) + 4nr + 2r + 2u+ 2v + 20

4
(2.5.8)

The left side of (2.5.8) is always an integer; this implies the items (1), (2), (3), and (4)

in the statement of the theorem. �



Chapter 3

Starter Labelling of Paths, Cycles,

and Windmills

In this chapter, we introduce the concept of starter-labelled graphs and we explore the

necessary and sufficient conditions for the existence of starter and minimum hooked

starter labelling of paths, cycles, and k-windmils. We begin this chapter by intro-

ducing starter-labelled graphs and hooked starter-labelled graphs. Throughout this

chapter, G = (V,E) is an undirected graph and dG(u, v) is the length of a shortest

path in G connecting vertices u and v.

The results of starter-labelled k-windmills have appeared in [31].

Definition 3.0.2. A starter-labelled graph is a pair (G,L), where:

(a) G = (V,E) is a graph with 2n vertices,

(b) L : V −→ {1(1−1), 2(2)−1, . . . , n(n)−1} is a surjection, and i−1 is the additive

inverse in the group Z2n+1,

(c) for each k ∈ {1(1−1), 2(2)−1, . . . , n(n)−1}, there exist exactly two vertices u,w ∈

V such that L(u) = L(w) = k, and dG(u, v) = k,and
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(d) if Ĝ = (V, Ê) and Ê ⊂ E then (Ĝ, L) violates (c).

Definition 3.0.3. A hooked starter-labelled graph is a pair (G,L) satisfying the con-

ditions of Definition (1.1) with (b̂) instead of (b):

(b̂) L : V −→ {0} ∪ {1(1−1), 2(2)−1, . . . , n(n)−1} is a surjection.

3.1 Starter Labelling of Paths

In this section, we will exhibit the starter (hooked starter) labelling of paths with as

few hooks as possible.

Theorem 3.1.1. Every path of length m can be:

1. Starter-labelled with an odd number of defects (bm+1
4
c) if m ≡ 3, 5 (mod 8).

2. Starter-labelled with an even number of defects (bm+1
4
c) if m ≡ 1, 7 (mod 8).

3. Hooked starter-labelled if m is even.

Proof. 1-(a) For paths of length m = 3+8s, we label the vertices 1, 2, . . . , 4 + 8s, and

then use the construction: {(r, 5 + 8s− r), 1 ≤ r ≤ m+1
2
}.

(b) For paths of length m = 5 + 8s, the vertices are labeled 1, 2, . . . , 6 + 8s, and we

use the construction: (r, 7 + 8s− r), 1 ≤ r ≤ m+1
2

.

2-(a) For paths of length m = 7 + 8s, the vertices are labeled 1, 2, . . . , 8s + 8, and we

can use the construction (r, 9 + 8s− r), 1 ≤ r ≤ m+1
2

.

(b) For paths of length m = 1 + 8s, the vertices are labeled 1, 2, . . . , 2 + 8s, and we

can use the construction (r, 3 + 8s − r), 1 ≤ r ≤ m+1
2

. Moreover, we can use

another construction:
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(r + 1, 8s+ 3− r), r = 1, 2, . . . ,
⌊
m+1
4

⌋
(4s+ 1− r, 4s+ 1 + r), r = 1, 2, . . . ,

⌊
m+1
4

⌋
− 1

(1, 4s+ 1), (6s+ 1, 6s+ 2).

3- Since m is even, then m ≡ 0, 2, 4, 6 (mod 8). In the case that m ≡ 0(mod 8),

we label the vertices 1, 2, 3, . . . , 8s + 1, and we can use the construction: {(r +

1, 8s + 1 − r), 0 ≤ r ≤ m
2
− 1} to obtain a hooked starter labelled with

one hook in the middle. Similarly, we can prove the remaining cases (m ≡

2, 4, 6 (mod 8), andm > 6).

�

Theorem 3.1.2. Every path of length m can be starter-labelled with one defect if and

only if m ≡ 3, 5 (mod 8).

Proof. Let Pm be a path of length m. Its vertices are labeled by a starter sequence of

order n with one defect (d); (Sdn = s1, s2, s3, ..., s2n) such thatD = {{1, 2, 3, . . . , n}\{q}}∪

{d}, where d = 2n+ 1− q. Consider the set of subscripts {(ar, br) : br − ar = r}, the

sum of all sums, and the sum of all differences of the subscripts:

n∑
r=1

br +
n∑
r=1

ar =
n∑
r=1

(ar + br) =
2n∑
j=1

j =
(2n)(2n+ 1)

2
= 2n2 + n (3.1.1)

n∑
r=1

br −
n∑
r=1

ar =
n∑
r=1

r + 2n− 2q + 1 =
n(n+ 1)

2
+ 2n− 2q + 1. (3.1.2)

By subtracting (3.1.2) from (3.1.1 ), we obtain
∑n

r=1 ar = 3n2−3n+4q−2
4

. Since the left

hand side of the equation is an integer, this implies that 3n2 − 3n + 4q − 2 must be

divisible by 4, which occurs only when n ≡ 2, 3 (mod 4). This implies that m ≡ 3, 5

(mod 8).

Now the following is the proof of the sufficiency. By Theorem (1.1.9), we know
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that if n ≡ 2, 3 (mod 4), and q and k have opposite parity, then there exists a k-

extended q-near-Skolem sequence N q
n(k) except (n, q, k) = (3, 2, 3). Therefore, we can

use N q
n(k) to construct the required labeling. Then we append the defect d at the

end of N q
n(k), and fill the hole of N q

n(k) by putting the defect at the position k. For

instance, we can use N 5
6 (4), which is a 4-extended 5-near-Skolem sequence with one

defect to construct a starter-labelled sequence with one defect to label the path P12.

We begin with N 5
6 (4), (6, 4, 2, ∗, 2, 4, 6, 3, 1, 1, 3), and then we insert the defect 8 at

the positions (4, 12). Hence, we will obtain a starter labelling of order 6 with one

defect of the path, as shown in Figure 3.1.

Figure 3.1: A starter labelling with one defect for P12.

In the case that (n, q, k) = (3, 2, 3), we can construct only two starter sequences

of order 3 with one defect, S5
3 = 5− 3− 1− 1− 3− 5, and S4

3 = 4− 1− 1− 2− 4− 2.

Clearly, the existence of starter and hooked starter sequences is equivalent to starter

and hooked starter labelings of paths. Now we provide additional constructions to

obtain starter-labelled paths with one defect, where d = n + 1, n + 2. In each case,

the solution is given in the form of a table. The first column indicates the difference

i = bi − ai, the second and third columns of the tables give the two subscripts of ai

and bi, respectively. The difference i will be placed in the sequence at two positions:

ai and bi.

Case 1: Paths of length m ≡ 3 (mod 8) and d = n+1. Let the vertices be 1, 2, . . . , 4+

8s.
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Table 3.1: The construction for m = 3 + 8s and d = n+ 1.

i ai bi r

1 5s+ 2 5s+ 3

2r 2s+ 1− r 2s+ 1 + r 1 ≤ r ≤ 2s

4s+ 3 2s+ 1 6s+ 4

2s+ 1 6s+ 3 8s+ 4

4s+ 3− 2r 4s+ 1 + r 8s+ 4− r 1 ≤ r ≤ s

2s+ 1− 2r 5s+ 3 + r 7s+ 4− r 1 ≤ r ≤ (s− 1)

Similarly, we can label the paths of length m ≡ 3 (mod 8) when d = n+ 2.

Table 3.2: The construction for m = 3 + 8s and d = n+ 2.

i ai bi r

1 5s+ 4 5s+ 5 -

2r 2s+ 2− r 2s+ 2 + r 1 ≤ r ≤ 2s+ 1

4s+ 4 2s+ 2 6s+ 6 -

2r + 1 6s+ 5− r 6s+ 6 + r -

4s+ 3− 2r 4s+ 1 + r 8s+ 4− r 1 ≤ r ≤ s

2s+ 2r + 1 5s+ 4− r 7s+ 5 + r 1 ≤ r ≤ (s− 1)

Case 2: Paths of length m ≡ 5 (mod 8) and d = n + 1. Let the vertices be

1, 2, . . . , 6 + 8s.
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Table 3.3: The construction for m = 5 + 8s and d = n+ 1.

i ai bi r

2r 2s+ 3− r 2s+ 3 + r 1 ≤ r ≤ 2m+ 2

4s+ 1 2s+ 3 6s+ 4

4s− 1− 2r 4s+ 6 + r 8s+ 5− r 0 ≤ r ≤ s− 2

2s− 1− 2r 5s+ 5 + r 7s+ 4− r 0 ≤ r ≤ s− 2

1 7s+ 5 7s+ 6

2s+ 1 6s+ 5 8s+ 6

If the defect is n + 2, then we can produce a starter-labeling with one defect for

a path of length m ≡ 5 (mod 8). Let the vertices be 1, 2, 3, . . . , 6 + 8s, where s ∈ N.

The following construction is valid for all s ≥ 1.

Table 3.4: The construction for m = 5 + 8s and d = n+ 2.

i ai bi r

4s− 2r + 5 r 4s− r + 5 1 ≤ r ≤ 2s+ 1

4s+ 5 2s+ 2 6s+ 7 −

1 5s+ 5 5s+ 6 −

2s+ 2r + 4 5s− r + 4 7s+ r + 8 0 ≤ r ≤ s− 2

2s+ 2 2s+ 3 4s+ 5 −

2r 6s+ 7− r 6s+ 7 + r 0 ≤ r ≤ s

�

Theorem 3.1.3. Every path of length m can be starter-labelled with two defects only

if m ≡ 1, 7 (mod 8).

Proof. Similar to Theorem 2.1.2. �
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In a similar vein, we determine the necessary conditions for the existence of starter

sequences with n defects.

Theorem 3.1.4. Every path of length m can be starter-labelled with n defects only if

n is even and m ≡ 1, 7 (mod 8), or n is odd and m ≡ 3, 5 (mod 8).

3.2 Starter Labelling of Cycles

In this section, we investigate a starter (hooked starter) labelling of cycles with as

few hooks as possible. Although cycles cannot be starter-labelled, they can be hooked

starter-labelled.

Theorem 3.2.1. Every cycle of length m ≥ 5 can be:

1. Starter-labelled with two hooks and one defect when m is even.

2. Starter-labelled with three hooks and one defect when m is odd.

Proof. We divide the proof into four subcases as shown in Table(5):
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Table 3.5: The construction for Cm, m ≥ 5.

The length Label ai bi r

4s 2r s− r + 1 s+ r + 1 1 ≤ r ≤ s

2r + 1 3s− r 3s+ r + 1 0 ≤ r ≤ s− 2

2 + 4s 2r s+ 2− r s+ r + 2 1 ≤ r ≤ s− 1

2r + 1 3s+ 2− r 3s+ 3 + r 0 ≤ r ≤ s− 1

1 + 4s 2r s+ 1− r s+ r + 1 1 ≤ r ≤ s

2r + 1 3s+ 2− r 3s+ 1 + r 0 ≤ r ≤ s− 1

3 + 4s 2r s+ 2− r s+ 2 + 1 1 ≤ r ≤ s− 1

2r + 1 3s+ 3− r 3s+ 4− r 0 ≤ r ≤ s− 1

�

3.3 Starter-Labelling of Windmills

In this section, we investigate starter-labelled k-windmills. The results of this section

have been published in [31].

Definition 3.3.1. A k-windmill is a tree containing k paths of equal positive lengths,

called vanes, which share a center vertex called the pivot or the center.

Example 3.3.1. Figure 3.2 illustrates a hooked starter-labelled 4-windmill.

According to definition (3.0.2), a hooked starter-labeled graph can have some

vertices labelled zero, but every edge is still essential. This leads us to the definition

of the strong (weak) starter-labelled graph.

Definition 3.3.2. A graph on 2n vertices can be strongly starter-labelled if the removal

of any edge destroys the starter-labelled.
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Figure 2: Weak starter-labelled 3-windmills.

Example 3. Figure 1 illustrates a hooked starter-labelled
graph for 4-windmills.

According to Definition 2, a hooked starter-labelled
graph can have some vertices labelled zero, but every edge
is still essential. This leads us to the definition of the strong
(weak) starter-labelled graph.

Definition 4. A graph on 2𝑛 vertices can be strongly starter-
labelled if the removal of any edge destroys the starter
labelling.

Definition 5. A graph on 2𝑛 vertices can be weakly starter-
labelled if there exists at least one edge in the graph such that
the removal of that edge does not destroy the starter labelling.

Example 6. Figures 2 and 3 show weak starter-labelled 3-
windmills and strong starter-labelled 3-windmills, respec-
tively.
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Figure 3: Strong starter-labelled 3-windmills.

Table 1

𝑏
𝑖,𝑗

𝑎
𝑖,𝑗

≤ 𝑟 ≤ Label

(2, (𝑚 − 1)/2 + 𝑟 + 1) (2, (𝑚 − 1)/2 − 𝑟) 0 ≤ 𝑟 ≤ 𝑚 − 1
2

2𝑟 + 1

(3, 𝑟) (1, 𝑟) 1 ≤ 𝑟 ≤ 𝑚 2𝑟

Table 2

𝑎
𝑖,𝑗

𝑏
𝑖,𝑗

≤ 𝑟 ≤ Label

(2, 𝑚/2 − 𝑟) (2, 𝑚/2 + 𝑟 + 1) 0 ≤ 𝑟 ≤ 𝑚

2
− 1 2𝑟 + 1

(3, 𝑚) (0, 0) — 𝑚

(3, 𝑟) (1, 𝑟) 1 ≤ 𝑟 ≤ 𝑚

2
− 1 2𝑟

(3, 𝑟) (1, 𝑟 + 1) 𝑚

2
≤ 𝑟 ≤ 𝑚 − 1 2𝑟 + 1

Definition 7. A 𝑘-windmill is a tree containing 𝑘 paths of
equal positive length, called vanes, which share a center
vertex called the pivot or the center.

2. Necessity

We notice that a tree 𝑇 = (𝑉, 𝐸) can only be starter-labelled if
the number of the vertices is even (|𝑉| = 2𝑛).This implies that
the length of the vane must be odd and that all 𝑘-windmills
where 𝑘 is even cannot be starter-labelled. In addition, an
obvious degeneracy condition for a starter-label (a hooked
starter-label) of a tree 𝑇 is that the tree must have a path of
length at least (𝑛 + 1). Thus, only 3-windmills can be starter-
labelled.

2.1. Starter Parity. Mendelsohn and Shalaby [13] defined
Skolem parity and proved that it was necessary for the
existence of any Skolem-labelled tree. Similarly, we establish
the parity condition for starter-labelled 𝑘-windmills.

Definition 8. The starter parity of a vertex 𝑢 of a tree 𝑇 =

(𝑉, 𝐸) is the sum of the lengths of the paths from 𝑢 to all the
vertices of the tree (𝑇). Thus, 𝑃

𝑢
= ∑V∈𝑉 𝑑(𝑢, V) (mod 2).

Lemma 9 (Mendelsohn and Shalaby [13]). If 𝑇 is a tree with
2𝑛 vertices, then the starter parity of𝑇 is independent of 𝑢 ∈ 𝑉.

Figure 3.2: A hooked starter-labelled 4-windmills
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Example 3. Figure 1 illustrates a hooked starter-labelled
graph for 4-windmills.

According to Definition 2, a hooked starter-labelled
graph can have some vertices labelled zero, but every edge
is still essential. This leads us to the definition of the strong
(weak) starter-labelled graph.

Definition 4. A graph on 2𝑛 vertices can be strongly starter-
labelled if the removal of any edge destroys the starter
labelling.

Definition 5. A graph on 2𝑛 vertices can be weakly starter-
labelled if there exists at least one edge in the graph such that
the removal of that edge does not destroy the starter labelling.

Example 6. Figures 2 and 3 show weak starter-labelled 3-
windmills and strong starter-labelled 3-windmills, respec-
tively.
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Table 1

𝑏
𝑖,𝑗

𝑎
𝑖,𝑗

≤ 𝑟 ≤ Label

(2, (𝑚 − 1)/2 + 𝑟 + 1) (2, (𝑚 − 1)/2 − 𝑟) 0 ≤ 𝑟 ≤ 𝑚 − 1
2

2𝑟 + 1

(3, 𝑟) (1, 𝑟) 1 ≤ 𝑟 ≤ 𝑚 2𝑟

Table 2

𝑎
𝑖,𝑗

𝑏
𝑖,𝑗

≤ 𝑟 ≤ Label

(2, 𝑚/2 − 𝑟) (2, 𝑚/2 + 𝑟 + 1) 0 ≤ 𝑟 ≤ 𝑚

2
− 1 2𝑟 + 1

(3, 𝑚) (0, 0) — 𝑚

(3, 𝑟) (1, 𝑟) 1 ≤ 𝑟 ≤ 𝑚

2
− 1 2𝑟

(3, 𝑟) (1, 𝑟 + 1) 𝑚

2
≤ 𝑟 ≤ 𝑚 − 1 2𝑟 + 1

Definition 7. A 𝑘-windmill is a tree containing 𝑘 paths of
equal positive length, called vanes, which share a center
vertex called the pivot or the center.

2. Necessity

We notice that a tree 𝑇 = (𝑉, 𝐸) can only be starter-labelled if
the number of the vertices is even (|𝑉| = 2𝑛).This implies that
the length of the vane must be odd and that all 𝑘-windmills
where 𝑘 is even cannot be starter-labelled. In addition, an
obvious degeneracy condition for a starter-label (a hooked
starter-label) of a tree 𝑇 is that the tree must have a path of
length at least (𝑛 + 1). Thus, only 3-windmills can be starter-
labelled.

2.1. Starter Parity. Mendelsohn and Shalaby [13] defined
Skolem parity and proved that it was necessary for the
existence of any Skolem-labelled tree. Similarly, we establish
the parity condition for starter-labelled 𝑘-windmills.

Definition 8. The starter parity of a vertex 𝑢 of a tree 𝑇 =

(𝑉, 𝐸) is the sum of the lengths of the paths from 𝑢 to all the
vertices of the tree (𝑇). Thus, 𝑃

𝑢
= ∑V∈𝑉 𝑑(𝑢, V) (mod 2).

Lemma 9 (Mendelsohn and Shalaby [13]). If 𝑇 is a tree with
2𝑛 vertices, then the starter parity of𝑇 is independent of 𝑢 ∈ 𝑉.

Figure 3.3: A weak starter-labelled 3-windmill

Definition 3.3.3. A graph on 2n vertices can be weakly starter-labelled if there exists

at least one edge in the graph such that the removal of that edge does not destroy the

starter-labelled graph.

Example 3.3.2. Figures 3.3 and 3.4 show a weak starter-labelled 3-windmill and a

strong starter-labelled 3-windmill, respectively.
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Figure 2: Weak starter-labelled 3-windmills.

Example 3. Figure 1 illustrates a hooked starter-labelled
graph for 4-windmills.

According to Definition 2, a hooked starter-labelled
graph can have some vertices labelled zero, but every edge
is still essential. This leads us to the definition of the strong
(weak) starter-labelled graph.

Definition 4. A graph on 2𝑛 vertices can be strongly starter-
labelled if the removal of any edge destroys the starter
labelling.

Definition 5. A graph on 2𝑛 vertices can be weakly starter-
labelled if there exists at least one edge in the graph such that
the removal of that edge does not destroy the starter labelling.

Example 6. Figures 2 and 3 show weak starter-labelled 3-
windmills and strong starter-labelled 3-windmills, respec-
tively.
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Figure 3: Strong starter-labelled 3-windmills.

Table 1

𝑏
𝑖,𝑗

𝑎
𝑖,𝑗

≤ 𝑟 ≤ Label

(2, (𝑚 − 1)/2 + 𝑟 + 1) (2, (𝑚 − 1)/2 − 𝑟) 0 ≤ 𝑟 ≤ 𝑚 − 1
2

2𝑟 + 1

(3, 𝑟) (1, 𝑟) 1 ≤ 𝑟 ≤ 𝑚 2𝑟

Table 2

𝑎
𝑖,𝑗

𝑏
𝑖,𝑗

≤ 𝑟 ≤ Label

(2, 𝑚/2 − 𝑟) (2, 𝑚/2 + 𝑟 + 1) 0 ≤ 𝑟 ≤ 𝑚

2
− 1 2𝑟 + 1

(3, 𝑚) (0, 0) — 𝑚

(3, 𝑟) (1, 𝑟) 1 ≤ 𝑟 ≤ 𝑚

2
− 1 2𝑟

(3, 𝑟) (1, 𝑟 + 1) 𝑚

2
≤ 𝑟 ≤ 𝑚 − 1 2𝑟 + 1

Definition 7. A 𝑘-windmill is a tree containing 𝑘 paths of
equal positive length, called vanes, which share a center
vertex called the pivot or the center.

2. Necessity

We notice that a tree 𝑇 = (𝑉, 𝐸) can only be starter-labelled if
the number of the vertices is even (|𝑉| = 2𝑛).This implies that
the length of the vane must be odd and that all 𝑘-windmills
where 𝑘 is even cannot be starter-labelled. In addition, an
obvious degeneracy condition for a starter-label (a hooked
starter-label) of a tree 𝑇 is that the tree must have a path of
length at least (𝑛 + 1). Thus, only 3-windmills can be starter-
labelled.

2.1. Starter Parity. Mendelsohn and Shalaby [13] defined
Skolem parity and proved that it was necessary for the
existence of any Skolem-labelled tree. Similarly, we establish
the parity condition for starter-labelled 𝑘-windmills.

Definition 8. The starter parity of a vertex 𝑢 of a tree 𝑇 =

(𝑉, 𝐸) is the sum of the lengths of the paths from 𝑢 to all the
vertices of the tree (𝑇). Thus, 𝑃

𝑢
= ∑V∈𝑉 𝑑(𝑢, V) (mod 2).

Lemma 9 (Mendelsohn and Shalaby [13]). If 𝑇 is a tree with
2𝑛 vertices, then the starter parity of𝑇 is independent of 𝑢 ∈ 𝑉.

Figure 3.4: A strong starter-labelled 3-windmill

3.3.1 Necessity

We notice that a tree T = (V,E) can only be a starter-labelled graph if the number

of vertices is even (|V | = 2n). This implies that the length of the vane must be odd

and that all k-windmills where k is even cannot be starter-labelled. In addition, an

obvious degeneracy condition for a starter-labeling (a hooked starter-labeling) of a

tree T is that the tree must have a path of a length of at least (n + 1). Thus, only

3-windmills can be starter-labelled.

3.3.2 Starter Parity

Shalaby and Mendelsohn [27] defined Skolem parity and proved that it was neces-

sary for the existence of any Skolem-labelled tree. Similarly, we establish the parity

conditions for starter-labelled k-windmills.

Definition 3.3.4. The starter parity of a vertex u of a tree T = (V,E) is the sum

of the lengths of the paths from u to all the verices of the tree (T). Thus, Pu =∑
v∈V d(u, v) (mod 2).

Lemma 3.3.1. [27] If T is a tree with 2n vertices, then the starter parity of T is

independent of u ∈ V .



44

Lemma 3.3.2. If G is a starter-labelled k-windmill with 2n vertices and k vanes,

then either:

(1) n ≡ 0, 2 (mod 4), and the starter parity of G is odd, or

(2) n ≡ 1, 3 (mod 4), and the starter parity of G is even.

Proof. Assume that G is starter-labelled k-windmill with 2n vertices and k vanes of

length m. Using the center point c to calculate the starter parity, we obtain:

Pc =
∑
v∈V

d(c, v) =
k∑
i=1

m(m+ 1)/2

=
km2 − 1

2
+ n.

Since G is starter-labelled graph, k = 3 and m must be odd (m ≡ 1, 3 (mod 4)).

We notice that if m ≡ 1 (mod 4) ⇒ 3m2 ≡ 3 (mod 4) ⇒ 3m2 − 1 ≡ 2 (mod 4).

Similarly, if m ≡ 3 (mod 4) ⇒ 3m2 ≡ 27 (mod 4) and since 27 ≡ 3 (mod 4), then

3m2 − 1 ≡ 2 (mod 4) (by the transitivity). Now we consider all the cases of n:

(1) If n ≡ 0 (mod 4), then Pc = (1 + 2j) + (4r)⇒ the starter parity is odd;

(2) If n ≡ 1 (mod 4), then Pc = (1 + 2j) + (1 + 4r)⇒ the starter parity is even;

(3) If n ≡ 2 (mod 4), then Pc = (1 + 2j) + (2 + 4r)⇒ the starter parity is odd;

(4) If n ≡ 3 (mod 4), then Pc = (1 + 2j) + (3 + 4r)⇒ the starter parity is even.

�

3.3.3 The Degeneracy Condition

We saw that a graph with 2n vertices must have at least a path of length (n + 1) in

order to be starter-labelled. Therefore, all windmills with more than 3 vanes cannot
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be labelled by a starter-sequence. For a (possibly hooked) starter-labelled k-windmill

with equal vanes of length m, the largest label is 2m, the maximum number of edges

in the corresponding path not used in any other path is 2m, and covering all edges

of 2 vanes. Also, labels that are bigger than m must cover parts of 2 vanes. The

label m may cover the complete vane. Thus, for all labels mi with m ≤ mi ≤ 2m, the

maximum number of edges covered is no more than:

2m+ (2m− 1) + ...+m =
3(m2 +m)

2
. (3.3.1)

Moreover, the labels ni < m must cover at least one edge covered by another label,

so the total number of edges for these labels is at most

1 + 2 + . . .+ (m− 1) =
m2 −m

2
. (3.3.2)

Therefore, the maximum number of edges is ≤ (3.3.1) + (3.3.2) = 2m2 +m. Since the

total number of edges in a k-windmill is km, hence k ≤ 2m+ 1.

3.3.4 Sufficiency

In this section, we provide and prove the sufficient conditions for obtaining the starter-

label (minimum hooked starter label) for all k-windmills, where k is the number of the

vanes; we count them arbitrarily (say counter clockwise) from 1 to k. Let m indicate

the length of the vane of the windmill; then each vertex v can be represented by a

pair (i, j) where i is the number of the vane and j is its distance from the center, and

the center point is denoted by (0, 0).



46

3.3.5 3–Windmills

Lemma 3.3.3. All 3–windmills with m ≡ 1, 3, 5, 7 (mod 8) can be starter-labelled,

except for the case m = 1.

Proof. The following construction gives us the pairs ai,j and bi,j, where the number

of defects is bm
4
c in the case m ≡ 1, 5 (mod 8), and dm

4
e in the the case m ≡ 3, 7

(mod 8).

bi,j ai,j ≤ r ≤ label

(2, m−1
2

+ r + 1) (2, m−1
2
− r) 0 ≤ r ≤ m−1

2
2r + 1

(3, r) (1, r) 1 ≤ r ≤ m 2r

�

Lemma 3.3.4. All 3–windmills with vane length m ≡ 0, 2, 4, 6 (mod 8) can be

minimum hooked starter-labelled with exactly one-hook.

Proof. The solution is given by the following table, where the number of the defects

is bm
4
c .

ai,j bi,j ≤ r ≤ label

(2, m
2
− r) (2, m

2
+ r + 1) 0 ≤ r ≤ m

2
− 1 2r + 1

(3,m) (0, 0) − m

(3, r) (1, r) 1 ≤ r ≤ m
2
− 1 2r

(3, r) (1, r + 1) m
2
≤ r ≤ m− 1 2r+1

�

3.3.6 4−Windmills

All 4-windmills have an odd number of vertices, so there is no starter labelling. The

minimum hooked starter labelling in this case has at least three hooks.
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Lemma 3.3.5. All 4–windmills with m ≥ 2 can be minimum hooked starter-labelled

with exactly three hooks.

Proof. Case 1 :m is odd. The solution is given by the following table.

ai,j bi,j ≤ r ≤ label

(3, r) (1, r) 1 ≤ r ≤ m 2r

(2,m) (0, 0) − m

(4, r + 1) (2, r) 1 ≤ r < m− (m+1
2

) 2r + 1

(4,m− m+1
2

+ 1) (4,m− m+1
2

+ 2) − 1

(4, r + 2) (2, r − 1) m− m+1
2

< r ≤ m− 2 2r + 1

Case 2 : m is even. The solution is given by the following table.

ai,j bi,j ≤ r ≤ label

(3, r) (1, r) 1 ≤ r ≤ m 2r

(4, 1) (2,m) − m+ 1

(4, r + 1) (2, r) 1 ≤ r < m
2

2r + 1

(4, m
2

+ 2) (4, m
2

+ 1) − 1

(4, r + 2) (2, r − 1) m
2
< r ≤ m− 2 2r + 1

The following table provides the construction of the pairs ai,j and bi,j for a weak

starter-labelling of 4–windmills.

ai,j bi,j ≤ r ≤ label

(3, r) (1, r) 1 ≤ r ≤ m 2r

(4, r + 1) (2, r) 0 ≤ r ≤ m− 2 2r + 1

Remark: We can construct a hooked starter-labelling with zero defects (skolem

labelling) and one hook for all 4–windmills; the following tables provide such a required
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construction:

Case 1 : m ≡ 0 (mod 2)

ai,j bi,j ≤ r ≤ label

(2, r) (1, r) 1 ≤ r ≤ m 2r

(3, 1) (3,m) − m− 1

(4, m
2

) (4, m
2
− 1) − 1

(3, r) (4, r + 1) m
2
≤ r ≤ m− 1 2r + 1

(3, r + 1) (4, r) 1 ≤ r ≤ m
2
− 2 2r + 1

Case 2 : m ≡ 1 (mod 2)

ai,j bi,j ≤ r ≤ label

(2, r) (1, r) 1 ≤ r ≤ m 2r

(0, 0) (3,m) − m

(3, r) (4, r + 1) m+1
2
≤ r ≤ m− 1 2r + 1

(3, r + 1) (4, r) 1 ≤ r ≤ m−1
2
− 1 2r + 1

(4, m−1
2

) (4, m−1
2

+ 1) − 1

3.3.7 k–Windmills, k > 4

In this case there is no starter-labelling. Thus, the only possibility is minimum hooked

starter labelling.

Lemma 3.3.6. For any k–windmill, the condition k + 1 < 2m is sufficient for mini-

mum hooked starter labelling.

Proof. Fix m and consider separate cases for k.

Case (1) The number of vanes is even (k = 2t). Label the vanes L1, Lk, L2, Lk−1, . . . , Lt, Lt+1,

and the solution is given in Table 3.3.7.
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ai,j bi,j ≤ r ≤ label

(k,m) (1,m) − 2m

(k − r + 1,m− r) (r,m) 2 ≤ r ≤ t 2m− r

(k− r + 2,m− r) (k− r + 2,m) 3 ≤ r ≤ t+ 1 r

(k, r − 1) (1, r + 1) t+ 2 ≤ 2r ≤ 2m− t− 1 2r

(k − 1, r − 1) (2, r + 2) t+ 2 ≤ 2r + 1 ≤ 2m− t− 1 2r + 1

(3, 2) (3, 1) − 1

(4, 2) (4, 0) − 2

Case (2) k = 2t + 1, t > 2. Label the vanes L1, Lk, L2, Lk−1, . . . , Lt, Lk+1−t, Lk−t.

ai,j bi,j ≤ r ≤ label

(k,m) (1,m) − 2m

(k − r + 1,m− r) (r,m) 2 ≤ r ≤ t 2m− r

(3,m− t− 1) (k− t,m) − 2m− t− 1

(k− r + 2,m− r) (k− r + 2,m) 3 ≤ r ≤ t+ 1 r

(k, r − 1) (1, r + 1) t+ 2 ≤ 2r < 2m− t− 1 2r

(k − 1, r − 1) (2, r + 2) t+ 2 ≤ 2r + 1 < 2m− t− 1 2r + 1

(4, 1) (0, 0) − 1

(4, 4) (4, 2) − 2
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Case (3) k = 5, . Label the vanes L1, L2, . . . , L5.

ai,j bi,j ≤ r ≤ label

(5,m) (1,m) − 2m

(4,m− 2) (2,m) − 2m− 2

(1,m− 2) (3,m− 1) − 2m− 3

(4,m− 3) (4,m) − 3

(5, r) (1, r) 4 ≤ 2r < 2m− 4 2r

(4, r − 1) (2, r + 2) 4 ≤ 2r + 1 < 2m− 4 2r + 1

(3,m− 3) (1,m− 1) − 2m− 4

(5,m− 2) (5,m− 1) − 1

(3,m− 2) (3,m) − 2

�



Chapter 4

Pseudo-Starter Sequences

In this chapter, we introduce new sequences called pseudo-starter sequences, present

several types of pseudo-starter sequences, and determine some of the conditions for

their existence. In a starter sequence, every term (position) is occupied by only one

number. If we allow some of the terms to be occupied by more than one number,

then we construct a pseudo-starter sequence. In fact, pseudo-starter sequences are a

generalization of pseudo-Skolem sequences. The results of this chapter are to appear

in [33].

Definition 4.0.5. Suppose that k and n are positive integers, such that n ≥ 3 and

1 ≤ k ≤ 2n − 1. A k-pseudo starter sequence of order n (k-pseudo-starter-Sn) is

a sequence (s1, s2, . . . , sk−1,
ŝk
sk, sk+1, . . . , s2n−1) with the property that, for each i ∈

{1(1−1), 2(2−1), . . . , n(n−1)}, either i or i−1 occurs in the sequence twice; they are

separated by either i − 1 elements or i−1 − 1 elements, respectively, where i−1 is the

additive inverse of i in the group Z2n+1.

Example 4.0.3. The sequence (
6

4, 1, 1, 2, 4, 2, 6) or {(1, 5), (1, 7),(2, 3), (4, 6)} is a

1-pseudo starter sequence-S4 with one defect, where the pocket is located in the first

term of the sequence as shown in Figure 4.1. For n = 5, the sequence (2,
7

6, 2, 3, 1, 1,
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, 3, 6, 7) or {(5, 6), (1, 3), (4, 7), (2, 8), (2, 9)} is a 2-pseudo starter sequence-S5 with

one defect, and the pocket is located in the second term of the sequence, as shown in

Figure 4.2. Similarly, ( 7, 3, 2, 5,
3

2, 1, 1, 7, 5) or {(6, 7), (3, 5), (2, 5), (4, 9),

(1, 8)} is a 5-pseudo starter-S5 with one defect and is shown in Figure 4.3.

Figure 4.1: A starter-labelled graph corresponding to (
6
4, 1, 1, 2, 4, 2, 6).

Figure 4.2: A starter-labelled graph corresponding to (2,
7
6 2, 3, 1, 1, 3, 6, 7).

Figure 4.3: A starter-labelled graph corresponding to (7, 3, 2, 5,
3
2, 1, 1, 7, 5).

According to Definition (4.0.5), a k-pseudo-starter-Sn has exactly one pocket,

which is in position k. Similarly, we can also define pseudo-starter sequences with

more than one pocket.

Definition 4.0.6. Suppose that k1, k2, . . . , km and n are positive integers, such that

n ≥ 2 and 1 ≤ k ≤ 2n−m , for each 1 ≤  ≤ m. A {k1, k2, . . . , km}-pseudo starter
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sequence of order n, denoted by {k1, k2, . . . , km}-pseudo starter-Sn, is a sequence

(s1, s2, . . . ,
ˆsk1
sk1 , sk1+1, . . . ,

ˆsk2
sk2 , sk2+1, . . . ,

ˆskm
skm , skm+1, . . . , s2n−m) of positive integers such

that, for each i ∈ {1(1−1), 2(2−1), . . . , n(n−1)}, either i or i−1 occurs in the sequence

twice; they are separated by either i− 1 or i−1 − 1 elements, respectively.

Example 4.0.4. The sequence (
9

4, 10, 3, 5, 4 , 3 , 6 , 2 , 5,
9

2, 1,
10

1 , 6) is a {1, 10, 12}-

pseudo starter-S8 with two defects; the pockets are located at the first, tenth, and

twelfth positions with 1, 10, and 12 being the pockets of the sequence as shown in

Figure 4.4.

Figure 4.4: A starter-labelled graph corresponding to (
9
4, 10, 3, 5, 4 , 3 , 6 , 2 , 5,

9
2, 1,

10
1 , 6).

In this chapter, we are interested in pseudo-starter sequences with two elements in

each pocket. However, the definitions above can be easily generalized to pseudo-starter

sequences with more than two elements in each pocket. We can also define sequences

such that some of the positions are filled by null elements. By using known Skolem-

type sequences, we can obtain pseudo-starter sequences, and consequently starter label

classes of hexagonal chains or rail-siding graphs. For example, using the 6-near Skolem

sequence of order seven S7 (7, 2, 3, 2, 4, 3, 5, 7, 4, 1, 1, 5), we can build pseudo-starter

sequences with one defect:(9, 7, 2, 3, 2, 4, 3, 5, 7,
9

4, 1, 1, 5), (
9

7, 2, 3, 2, 4, 3, 5, 7, 4,
9

1,

1, 5),(7,
9

2, 3, 2, 4, 3, 5, 7, 4, 1,
9

1, 5), (7, 2,
9

3, 2, 4, 3, 5, 7, 4, 1, 1,
9

5), and (7, 2, 3,
9

2,4, 3, 5, 7,

4, 1, 1, 5, 9). Hence, we obtain starter-labellings for the graphs. Similarly, we can

obtain infinite families of pseudo-starter sequences by using known Skolem-type se-

quences. For example, using the Skolem sequence S5 (2, 4, 2, 3, 5, 4, 3, 1, 1, 5), and as-

signing labels 6 and 8 to suitable positions of S5, we can build (8, 2,
6

4, 2, 3, 5, 4, 3,

8
6
1
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, 1, 5), (8,
6

2, 4, 2, 3, 5, 4,
6

3,
8

1, 1, 5), and (
8

2, 4, 2,
6

3, 5, 4, 3, 1,
8

1,
6

5), as shown in Figures 4.5,

4.6, and 4.7, respectively.

Figure 4.5: A starter-labelled graph corresponding to (8, 2,
6
4, 2, 3, 5, 4, 3,

8
6
1, 1, 5).

Figure 4.6: A starter-labelled graph corresponding to (8,
6
2, 4, 2, 3, 5, 4,

6
3,

8
1, 1, 5).

Figure 4.7: A starter-labelled graph corresponding to (
8
2, 4, 2,

6
3, 5, 4, 3, 1,

8
1,

6
5).

4.0.8 Pseudo-Starter Sequences with One Pocket

In this section, we obtain the necessary and sufficient conditions for the existence of

a k-pseudo starter sequence-Sn.

Theorem 4.0.1. Let {k, n} ⊂ N such that n ≥ 2 and 1 ≤ k ≤ 2n− 1. If a k-pseudo

starter sequence-Sn of order n with one defect exists, then either k is odd and n ≡ 0, 1

(mod 4), or k is even and n ≡ 2, 3 (mod 4).
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Proof. Suppose that {k, n} ⊂ N and there exists a k-pseudo starter-Sn with one

defect. We will first find the necessary conditions for such sequences:

n∑
i=1

(ai + bi) =
2n−1∑
i=1

i+ k

= n(2n− 1) + k, (4.0.1)

n∑
i=1

(bi − ai) =
n∑
i=1

i− r + (2n+ 1− r), 1 ≤ r ≤ n

=
n(n+ 5)

2
− 2r + 1. (4.0.2)

By adding (4.0.1) to (4.0.2), we obtain
∑n

i=1 bi = n(5n+3)
4

+ k
2
+ 1

2
−r. Since

∑n
i=1 bi ∈ N,

we can conclude that either k is odd and n ≡ 0, 1 (mod 4), or k is even and n ≡ 2, 3

(mod 4). �

Now we can prove that the necessary conditions for having a k-pseudo-starter se-

quence Sn are also sufficient by building such sequences for any suitable pair of k

and n. In order to explain the idea of the construction, we can give constructions for

k ∈ {1, 2} before presenting the theorem and its proof.

Case 1: When k = 1, we know that if n ≡ 0, 1 (mod 4), then a 3-near Skolem

sequence of order n exists, which implies the existence of 1-pseudo starter sequence

of order n with one defect. We obtain such a sequence by putting 2n − 2 in both

the first and the 2n − 1 positions; thus, we obtain a 1-pseudo starter sequence with

one pocket and one defect. For example, the sequence (4, 5, 1, 1, 4, 2, 5, 2) is a 3-near

Skolem sequence of order 5. By putting label 8 in the first and ninth positions, we

obtain a 1-pseudo starter sequence of order 5 with one defect and one pocket: (
8

4 , 5, 1,
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1, 4, 2, 5, 2, 8). Similarly, the sequence (4, 1, 1, 2, 4, 2) is a 3-near Skolem sequence of or-

der 4. By putting 6 in the first and the seventh positions, we obtain a 1-pseudo starter

sequence of order 4 with one defect: (
6

4, 1, 1, 2, 4, 2, 6). We notice that we can find a

1-pseudo starter sequence of order n with one defect by using a (2n − 3)-extended

near-Skolem sequence or a hooked near-Skolem sequence. If we use a (2n−3)-extended

near-Skolem sequence, then we can acquire a 1-pseudo starter sequence of order n with

one defect by filling the hook with (2n− 4) and by placing the pocket at the first po-

sition. For example, given (7, 3, 6, 2, 3, 2, 8, 7, 6, 4, 1, 1, 0, 4, 8), which is a 13-extended

5-near-Skolem sequence of order 8, we can obtain (
12

7 , 3, 6, 2, 3, 2, 8, 7, 6, 4, 1, 1, 12, 4, 8),

which is a 1-pseudo starter sequence of order 8 with one defect.

Similarly, we can obtain a 1-pseudo starter sequence of order n from a hooked

near-Skolem sequence by filling the hook with (2n− 3) and placing the pocket at the

first position. For example, (7, 5, 3, 9, 6, 3, 5, 7, 8, 2, 6, 2, 9, 1, 1, 0, 8) is a hooked 4-near

Skolem sequence of order 9. By putting label 15 into the hook and by having the

pocket at the first position, we can obtain a 1-pseudo starter sequence of order 9 with

one defect: (
15

7 , 5, 3 , 9, 6, 3, 5, 7 , 8, 2, 6, 2, 9, 1, 1, 15, 8).

Case 2: When k = 2, if a 2-pseudo starter-Sn with one defect exists, then n ≡

2, 3 (mod 4) and n > 3. If we have a 4−near Skolem sequence of order n, then

we will have a 2−pseudo starter sequence of order n with one defect by assign-

ing the label (2n − 3) to the second and (2n − 1) positions. For example, given

the 4-near Skolem S10 (3, 9, 2, 3, 2, 7, 5, 10, 8, 6, 9, 5, 7, 1, 1, 6, 8, 10), we can obtain (3,
17

9

, 2, 3, 2, 7, 5, 10, 8, 6, 9, 5, 7, 1, 1, 6, 8, 10, 17), which is a 2-pseudo starter sequence of or-

der 10 with one defect.

Theorem 4.0.2. A k-pseudo starter sequence-Sn of order n with one defect exists

when k is odd and n ≡ 0, 1 (mod 4), or when k is even and n ≡ 2, 3 (mod 4).
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Proof. The cases k = 1, 2 have already been established. By symmetry, the cases

k = 2n− 1, 2n− 2 are also established. We discuss the rest of the cases in two parts:

3 ≤ k < (n − 1) and k = n − 1, n. For 3 ≤ k < (n − 1), we prove that there exists

a k-pseudo starter sequence. Assuming that k is odd and n ≡ 0, 1 (mod 4), we

notice that k+ 2 is odd; hence, a (k+ 2)-near Skolem sequence of order n exists when

n ≡ 0, 1 (mod 4) by Theorem (1.1.8). Therefore, we can obtain a pseudo-starter

sequence of order n with one defect from the near-Skolem sequence by assigning the

label (2n − k − 1) to the positions k and (2n − 1). Assuming that k is even, and

n ≡ 2, 3 (mod 4), then a (k+ 2)-near Skolem sequence of order n exists by Theorem

(1.1.8). Hence, we can obtain a pseudo-starter sequence of order n with one defect

from the near-Skolem sequence by assigning the label (2n+1−(k+2)) to the positions

k and (2n− 1).

If n ≡ 0 (mod 4), n ≥ 12 and k = n − 1, then we can build a k-pseudo-starter

sequence-Sn with one defect as follows:

n−2
1
, n−4

2
,
−2→. . ., 4

n
2
−2 ,

2
n
2
−1 ,

n+1
n
2

, 2
n
2
+1

, 4
n
2
+2
,

+2→. . ., n−4
n−2 ,

n
2 +1

n−2
n−1 ,

n−1
n
, n−3
n+1

,
−2→. . .,

n
2
+3

5n
4
−2 ,

1
5n
4
−1 ,

1
5n
4

,
n
2
−1

5n
4
+1
,

−2→. . ., 3
3n
2
−1 ,

n
2
+1
3n
2

, n+1
3n
2
+1

, 3
3n
2
+2
,

+2→. . .,
n
2
−1
7n
4

,
n
2
+3

7n
4
+1
,

+2→. . ., n−3
2n−2 ,

n−1
2n−1 .

For n = 4 : (2, 5,
3

2, 1, 1, 3, 5).

For n = 8 : (6, 4, 2, 9, 2, 4,
6

5, 7, 1, 1, 3, 5, 9, 3, 7).

If n ≡ 1 (mod 4) and k = n, then we can build a k-pseudo-starter sequence-Sn with

one defect (d = n+ 1) as follows:

n−1
1
, n−3

2
,
−2→. . ., 4

(n−3
2

)
, 2
(n−1

2
)
, n+1
(n+1

2
)
, 2
(n+3

2
)
, 4
(n+5

2
)
,

+2→. . ., n−3
n−1 ,

(n+1
2 )

n−1
n
, n−2
n+1

,n−4
n+2

,
−2→. . .,

(n+5
2

)

(
5(n−1)

4
)
, 1
( 5n−1

4
)
,

1
( 5n+3

4
)
,

(n−3
2

)

( 5n+7
4

)
,
−2→. . ., 5

3(n−1)
2

, 3
( 3n−1

2
)
,

(n+1
2

)

( 3n+1
2

)
, n+1

3(n+1)
2

, 3
( 3n+5

2
)
, 5
( 3n+7

2
)
,

+2→. . .,
(n−3

2
)

( 7n+1
4

)
,

(n+5
2

)

( 7n+5
4

)
,

+2→. . ., n−4
2n−2 ,

n−2
2n−1 .

If n ≡ 2 (mod 4), and k = n, then we can construct a k-pseudo-starter sequence-Sn

with one defect (d = n+ 1) by the flowing construction:

n−4
1
, n−6

2
,
−2→. . ., 2

n
2
−2 ,

n−2
n
2
−1 ,

2
n
2
,

+2→. . ., n−6
n−4 ,

n−4
n−3 ,

n+1
n−2 ,

n−1
n−1 ,

(n2−2)

n−3
n
, n−5
n+1

,
−2→. . .,

n
2

( 5n−6
4

)
,

n
2
−4

( 5n−2
4

)
,
−2→. . ., 3

3n
2
−4 ,
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n−2
3n
2
−3 ,

n
2
−2

3n
2
−2 ,

3
3n
2
−1 ,

+2→. . ., 1
( 7n−14

4
)
, 1
( 7n−10

4
)
,

n
2

( 7n−6
4

)
,

+2→. . ., n−1
2n−2 ,

n+1
2n−1 . �

Theorem 4.0.3. Let {k, n} ⊂ N such that n > 4 and 1 ≤ k ≤ 2n − 1. A k-pseudo

starter sequence-Sn of order n with two defects exists if and only if either k is odd and

n ≡ 2, 3 (mod 4), or k is even and n ≡ 0, 1 (mod 4).

Proof. Suppose that {k, n} ⊂ N and there exists a k-pseudo starter-Sn with two

defects. We will first find the necessary conditions for such sequences as well.

n∑
i=1

(ai + bi) =
2n−1∑
i=1

i+ k

= n(2n− 1) + k, (4.0.3)

n∑
i=1

(bi − ai) =
n∑
i=1

i− r1 − r2 + (2n+ 1− r1) + (2n+ 1− r2)

=
n(n+ 1)

2
− 2r1 − 2r2 + 4n+ 2. (4.0.4)

Thus,
∑n

i=1 bi = n(5n+7)
4

+ k
2
− r1 − r2 + 1, where r1, r2 ∈ N, 1 ≤ r1 < r2 ≤ n. Since∑n

i=1 bi ∈ N, we can conclude that either k is odd and n ≡ 2, 3 (mod 4), or k is

even and n ≡ 0, 1 (mod 4). This completes the proof of the necessity. Now if n ≡ 0

(mod 4), then we can construct a k-pseudo-starter sequence Sn with two defects for

n = 4m, wherem ≥ 4:

n+2
1
, n
2
, n−2

3
,
−2→. . ., 2

n
2
+1
, n+4
n
2
+2
, 2
n
2
+3
,

+2→. . ., n−2
n+1

, n
n+2

, n+2
n+3

, n−5
n+4

, n−7
n+5

,
−2→. . ., 13

3n
2
−5 ,

9
11

3n
2
−4 ,

−2→. . ., 3
3n
2
−1 ,

1
3n
2

,

1
3n
2
+1
, 3

3n
2
+2
,

+2→. . ., 9
3n
2
+5
, n+4

3n
2
+6
, 11

3n
2
+7
,

+2→. . ., n−5
2n−1 .

For n = 8 : (12, 10, 8, 6, 4, 2, 3, 2, 4,
3

6, 8, 10, 12, 1, 1).

For n = 12 : (16, 14, 12, 10, 8, 6, 4, 2, 7, 2, 4, 6, 8, 10, 12,
14

7 , 16, 5, 3, 1, 1, 3, 5).

Now if n = 4m + 1 where m ≥ 3, then we can construct a k-pseudo-starter sequence

Sn with two defects:



59

n+3
1
, n+1

2
, n−1

3
,
−2→. . ., 2

(n+3
2

)
, n−4
(n+5

2
)
, 2
(n+7

2
)
,

+2→. . ., n−1
n+2

, n+1
n+3

, n+3
n+4

, n−6
n+5

, n−8
n+6

,
−2→. . ., 9

( 3n−5
2

)
,

7
n−4

( 3n−3
2

)
, 5
( 3n−1

2
)
,

−2→. . ., 1
( 3n+3

2
)
, 1
( 3n+5

2
)
,

+2→. . ., n−8
2n−2 ,

n−6
2n−1 .

For n = 5 : (8, 6, 4, 2, 1,
1

2, 4, 6, 8).

For n = 9 : (12, 10, 8, 6, 4, 2, 5, 2, 4, 6, 8,
5

10, 12, 3, 1, 1, 3). �

Theorem 4.0.4. Let {k, n,m} ⊂ N, such that n ≥ 2, 1 ≤ k ≤ 2n−1 and 1 ≤ m < n.

If a k-pseudo starter sequence-Sn of order n with m defects exists, then either n ≡ 0, 1

(mod 4) and k and m have the same parity, or n ≡ 2, 3 (mod 4) and n and m have

opposite parity.

Proof. Suppose that {k, n} ⊂ N and there exists a k-pseudo starter-Sn with m defects.

We will first find the necessary conditions for such sequences:

n∑
i=1

(ai + bi) =
2n−1∑
i=1

i+ k

= n(2n− 1) + k, (4.0.5)

n∑
i=1

(bi − ai) =
n∑
i=1

i− 2(r1 + r2 + . . .+ rm) + 2nm+m

=
n(n+ 1 + 4m)

2
− 2(r1 + r2 + . . .+ rm) +m. (4.0.6)

So,
∑n

i=1 bi = n(5n+4m−1)
4

−(r1+r2+. . .+rm)+ k
2

+m
2

, and 1 ≤ r1 < r2 < . . . < rm ≤ n.

Since
∑n

i=1 bi ∈ N, we can conclude that either n ≡ 0, 1 (mod 4) and k and m have

the same parity, or n ≡ 2, 3 (mod 4) and k and m have opposite parity. �

4.0.9 Pseudo-Starter Sequences with Two Pockets

Theorem 4.0.5. Let {k1, k2, n} ⊂ N such that n ≥ 2 and 1 ≤ k1 < k2 ≤ 2n − 2. A

{k1, k2}-pseudo starter-Sn of order n with one defect exists only if one of the following
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two conditions holds:

1. n ≡ 0, 1 (mod 4) and k1 and k2 have the same parity;

2. n ≡ 2, 3 (mod 4) and k1 and k2 have opposite parity.

Proof. If there exists a {k1, k2}-pseudo starter sequence-Sn with one defect, then:

n∑
i=1

(ai + bi) =
2n−2∑
i=1

i+ k1 + k2

= (n− 1)(2n− 1) + k1 + k2, (4.0.7)

n∑
i=1

(bi − ai) =
n∑
i=1

i− r + (2n+ 1− r)

=
n(n+ 5)

2
− 2r + 1. (4.0.8)

Thus,
∑n

i=1 bi = n(5n−1)
4

+ k1
2

+ k2
2
− r + 1. Since

∑n
i=1 bi ∈ N, we can conclude that,

if a pseudo-starter sequence with two pockets and one defect exists, then n ≡ 0, 1

(mod 4) and k1 and k2 have the same parity, or n ≡ 2, 3 (mod 4) and k1 and k2 have

different parities. This completes the proof of the necessity. We notice that these

necessity conditions are sufficient when 2n− 3 > k2 − k1 > n.

Now if n ≡ 2, 3 (mod 4) and k1 and k2 have opposite parity, then k2− k1 is odd.

Assuming that m = k2 − k1, then m−1 is even. As a result of this, we know that an

m−1-near-Skolem Sn exists. Hence, we can construct a {k1, k2}-pseudo starter Sn with

one defect by putting the label m in positions k1 and k2 of the sequence. Similarly, if

n ≡ 0, 1 (mod 4) and k1 and k2 have the same parity, then m−1 is odd. Therefore,

an m−1-near-Skolem Sn exists according to Theorem (1.1.8). Thus, we can construct

a {k1, k2}-pseudo starter Sn with one defect by assigning the label m to positions k1

and k2 of the sequence. �
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Theorem 4.0.6. Let {k1, k2, n,m} ⊂ N such that n ≥ 2, 1 ≤ k1 < k2 ≤ 2n − 2 and

1 ≤ m < n. A {k1, k2}-pseudo starter-Sn of order n with m defects exists only if one

of the following two conditions hold:

1. n ≡ 0, 1 (mod 4) and one of {m, k1, k2} is odd and the remaining of them

have the same parity;

2. n ≡ 2, 3 (mod 4) and one of {m, k1, k2} is even and the remaining of them

have the same parity.

Proof. Assume that a {k1, k2}-pseudo starter-Sn of order n with m defects exists.

Hence,

n∑
i=1

bi =
n(5n+ 4m− 5) + 2

4
− (r1 + r2 + . . .+ rm) +

k1
2

+
k2
2

+
m

2
.

Therefore, we conclude that if n ≡ 0, 1 (mod 4), then one of {m, k1, k2} is odd

and the remaining of them have the same parity. If n ≡ 2, 3 (mod 4), then one of

{m, k1, k2} is even and the remaining of them have the same parity. �

4.0.10 Pseudo-Starter Sequences with Three Pockets

Theorem 4.0.7. Let {k1, k2, k3, n} ⊂ N such that n ≥ 3 and 1 ≤ k1 < k2 < k3 ≤

2n − 3. A {k1, k2, k3}-pseudo starter sequence-Sn of order n with one defect exists

only if one of the following two conditions holds:

1. n ≡ 0, 1 (mod 4) and either only one of {k1, k2, k3} is even or all three of them

are even;

2. n ≡ 2, 3 (mod 4) and either only one of {k1, k2, k3} is odd or all three of them

are odd.
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Proof. Assuming that a {k1, k2, k3}-pseudo starter sequence-Sn of order n with one

defect exists, then

n∑
i=1

(ai + bi) =
2n−3∑
i=1

i+ k1 + k2 + k3

= (n− 1)(2n− 3) + k1 + k2 + k3, (4.0.9)

n∑
i=1

(bi − ai) =
n∑
i=1

i− r + (2n+ 1− r)

=
n(n+ 1)

2
+ 2n− 2r + 1. (4.0.10)

Thus,
∑n

i=1 bi = 5n(n−1)
4

+ k1
2

+ k2
2

+ k3
2

+ 2− r. Since
∑n

i=1 bi ∈ N, we conclude that

n ≡ 0, 1 (mod 4), and either only one or each ki is even for i ∈ {1, 2, 3}, or n ≡ 2, 3

(mod 4) and either only one or each ki is odd for i ∈ {1, 2, 3}. This completes the

proof of the necessity. �

Now we will present some constructions for prescribed pseudo-starter sequences

with three pockets and one defect.

(i) Pockets in positions i, n− 2, and n+ 1 + i, where 1 ≤ i ≤ n− 4:

We are looking to find a {i, n− 2, n+ 1 + i}-pseudo-starter-Sn with one defect.

By theorem (4.0.7), {i, n−2, n+ 1 + i}-pseudo-starter-Sn with one defect exists

only if n ≡ 2, 3 (mod 4). Theses conditions are sufficient. If we have a {n− 2}-

pseudo-Skolem-Sn−1, then we can construct a {i, n−2, n+1+ i}-pseudo-starter

sequence Sn with one defect. By assigning the label (n + 1) to positions i and

n+ 1 + i, by theorem (1.1.10) we know that a {n− 2}-pseudo Skolem sequence-

Sn−1 exists when n ≡ 2, 3 (mod 4).

Example 4.0.5. Consider (5, 3, 1,
4

1, 3, 5, 2, 4, 2) as a 4-pseudo Skolem sequence
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of order five. We can obtain (
7

5, 3, 1,
4

1, 3, 5, 2
7

4, 2) and (5,
7

3, 1,
4

1, 3, 5, 2, 4,
7

2) as a

{1, 4, 8}-and a {2, 4, 9}-pseudo starter sequences of order six with one defect.

(ii) Pockets are in the first, middle, and last positions:

We are looking to construct a {1, n − 1, 2n − 3}-pseudo starter-Sn with one

defect. By theorem (4.0.7), such a sequence exists only if n ≡ 1, or 2 (mod 4)

(which implies that only one of ki is even or each ki is odd).

For case n ≡ 1 (mod 4), let n = 1 + 4s. For s ≥ 3, the solution is given by the

following construction:
n+1
n−1
1
, n−3

2
, n−5

3
,
−2→. . ., 4

(n−3
2

)
, 2
(n−1

2
)
, n−2
(n+1

2
)
, 2
(n+3

2
)
, 4
(n+5

2
)
,

+2→. . ., n−5
n−2 ,

(n+1
2 )

n−3
n−1 ,

n−1
n
, n−4
n+1

, n+1
n+2

, n−6
n+3

, n−8
n+4

,

−2→. . .,
(n+5

2
)

( 5n−5
4

)
,

(n−3
2

)

( 5n−1
4

)
,
−2→. . ., 3

( 3n−5
2

)
, n−2
( 3n−3

2
)
,

(n+1
2

)

( 3n−1
2

)
, 3
( 3n+1

2
)
,

+2→. . .,
(n−3

2
)

( 7n−7
4

)
, 1
( 7n−3

4
)
, 1
( 7n+1

4
)
,

(n+5
2

)

( 7n+5
4

)
,
−2→. . ., n−8

2n−4 ,
n−4
n−6
2n−3 .

To complete the proof, we list the sequences for n = 5 and 9 :

n = 5 : (
2

6, 4, 2,
1

3, 1, 4,
3

6).

n = 9 : (
8

10, 6, 4, 2, 5, 2, 4,
7

6, 8, 5, 10, 3, 1, 1,
3

7).

For n ≡ 2 (mod 4), the general construction for {1, n− 1, 2n− 3}-Sn with one defect

can be written as follows:
n−1
n−3
1
, n−5

2
, n−7

3
,
−2→. . .,

(n
2
+2)

(n−6
4

)
,
(n
2
−2)

(n−2
4

)
,
−2→. . ., 3

(n
2
−3) ,

n+1
(n
2
−2) ,

n
2

(n
2
−1) ,

3
(n
2
)
,

+2→. . .,
n
2
−2

( 3n−10
4

)
, 1
( 3n−6

4
)
, 1
( 3n−2

4
)
,

n
2
+2

( 3n+2
4

)
,

+2→. . ., n−7
n−4 ,

n−5
n−3 ,

n−3
n−2 ,

n
2

n−2
n−1 ,

n−1
n
, n−4
n+1

, n−6
n+2

, n−8
n+3

,
−2→. . ., 4

( 3n
2
−3) ,

2
( 3n

2
−2) ,

n+1
3n
2
−1 ,

2
( 3n

2
)
, 4

3n
2
+1
,

+2→. . ., n−8
2n−5 ,

n−6
2n−4 ,

n−4
n−2
2n−3 .

(iii) Pockets are in the second, middle, and penultimate positions: we are looking

to construct {2, n − 1, 2n − 4}-pseudo starter-Sn with one defect. By the necessary

conditions obtained above, such sequences exists only if n ≡ 1, 2 (mod 4). The

general construction for n ≡ 1 (mod 4) for the case {2, n− 1, 2n− 4} − Sn with one

defect (d = n+ 1) can be written as follows:
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n−1
1
,
n−3
n−5
2
, n−7

3
, n−9

4
,
−2→. . ., 2

(n−3
2

)
, n+1
(n−1

2
)
, 2
(n+1

2
)
, 4

(n+3
2

)
,

+2→. . ., n−5
n−3 ,

n−2
n−2 ,

(n+1
2 )

n−3
n−1 ,

n−1
n
, n−4
n+1

, n−6
n+2

,
−2→. . .,

(n+5
2

)

( 5n−9
4

)
, 1
( 5n−5

4
)
, 1
( 5n−1

4
)
,

(n−3
2

)

( 5n+3
4

)
,
−2→. . ., 3

( 3n−3
2

)
,

(n+1
2

)

( 3n−1
2

)
, n+1
( 3n+1

2
)
, 3
( 3n+3

2
)
, 5
( 3n+5

2
)
,

+2→. . .,
(n−3

2
)

( 7n−3
4

)
,

(n+5
2

)

( 7n+1
4

)
,

+2→. . .,

n−8
2n−5 ,

n−6
n−4
2n−4 ,

n−4
2n−3 .

The construction for n ≡ 1 (mod 4) for the case {2, n− 1, 2n− 4}-Sn with one defect

(d = n+ 2) can be written as follows:

n−5
1
,
n−9
n−7
2
, n−11

3
,
−2→. . ., 2

(n−7
2

)
, n−3
(n−5

2
)
, 2
(n−3

2
)
,

+2→. . ., n−9
n−7 ,

n+2
n−6 ,

n−7
n−5 ,

n−5
n−4 ,

n
n−3 ,

n−2
n−2 ,

n−4
n−6
n−1 ,

n−8
n
,
−2→. . .,

(n+1
2

)

( 5n−17
4

)
,

(n−7
2

)

( 5n−13
4

)
,

+2→. . ., 3
( 3n−13

2
)
, n−3
( 3n−11

2
)
,

(n−3
2

)

( 3n−9
2

)
, 3
( 3n−7

2
)
,

+2→. . .,
(n−7

2
)

( 7n−27
4

)
, 1
( 7n−23

4
)
, 1
( 7n−19

4
)
,

(n+1
2

)

( 7n−15
4

)
,

+2→. . ., n−6
2n−7 ,

(n−3
2

)

2n−6 ,
n−4
2n−5 ,

n+2
n−2
2n−4 ,

n
2n−3 .

The general construction for n ≡ 2 (mod 4) for the case {2, n− 1, 2n− 4} − Sn with

one defect (d = n+ 1) as follows:

n−1
1
,
n−3
n+1
2
, n−5

3
, n−7

4
,
−2→. . .,

n
2

(n+2
4

)
, 1
(n+6

4
)
, 1
(n+10

4
)
,
(n
2
−4)

(n+14
4

)
,
−2→. . ., 3

(n
2
)
,
(n
2
−2)

(n
2
−2) ,

n−2
(n
2
+2)

, 3
(n
2
+3)

,
+2→. . .,

(n
2
−4)

( 3n−2
4

)
,

n
2

( 3n+2
4

)
,

+2→. . ., n−5
n−2 ,

(n2−2)

n−3
n−1 ,

n−1
n
, n−4
n+1

, n−6
n+2

, n+1
n+3

, n−8
n+4

, n−10
n+5

,
−2→
...
, 2
( 3n

2
−1) ,

n−2
( 3n

2
)
, 2
( 3n

2
+1)

, 4
( 3n

2
+2)

,
+2→. . .,

n−10
2n−5 ,

n−8
n−6
2n−4 ,

n−4
2n−3 .

We can also obtain another construction for n ≡ 2 (mod 4) such that n ≥ 18:

n−3
1
,
n−1
n−5
2
, n−7

3
, n−9

4
,
−2→. . .,

(n
2
+2)

(n−6
4

)
,
(n
2
−2)

(n−2
4

)
,
−2→. . ., 3

(n
2
−3) ,

n+1
(n
2
−2) ,

n
2

(n
2
−1) ,

3
n
2
,

+2→. . .,
n
2
−2

( 3n−10
4

)
, 1
( 3n−6

4
)
, 1
( 3n−2

4
)
,

n
2
+2

( 3n+2
4

)
,

+2→. . ., n−3
n−2 ,

n
2

n−2
n−1 ,

n−4
n
, n−1
n+1

, n−6
n+2

, n−8
n+3

, n−10
n+4

,
−2→. . ., 4

( 3n
2
−3) ,

2
( 3n

2
−2) ,

n+1
3n
2
−1 ,

2
3n
2

, 4
3n
2
+1
,

+2→. . .,

n−10
2n−6 ,

n−8
2n−5 ,

n−6
n−4
2n−4 ,

n−2
2n−3 .

Theorem 4.0.8. Let {k1, k2, k3, n,m} ⊂ N such that n ≥ 3, 1 ≤ k1 < k2 < k3 ≤

2n − 3 and 1 ≤ m < n. A {k1, k2, k3}-pseudo starter-Sn of order n with m defects

exists only if one of the following two conditions holds:

1. n ≡ 0, 1 (mod 4) and either only one of {m, k1, k2, k3} is even or only one of

them is odd;

2. n ≡ 2, 3 (mod 4) and either all four of {m, k1, k2, k3} have the same parity or

precisely two of them are even.
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Proof. Assume that a {k1, k2, k3}-pseudo starter-Sn of order n with m defects exists.

Hence,

n∑
i=1

bi =
n(5n+ 4m− 9) + 6

4
− (r1 + r2 + . . .+ rm) +

k1
2

+
k2
2

+
k3
2

+
m

2
.

Since
∑n

i=1 bi is an integer, then n(5n+4m−9)+6
4

+ k1
2

+ k2
2

+ k3
2

+ m
2

must be an integer.

Therefore, we conclude that if n ≡ 0, 1 (mod 4), then either one of {m, k1, k2, k3}

is even or one of them is odd, and if n ≡ 2, 3 (mod 4) then, either all the elements

of {m, k1, k2, k3} have the same parity or only two of them are even. �

4.1 Starter Labelling of Classes of Hexagonal Chains

In this section, we determine the necessary conditions for labelling classes of hexagonal

chains by using (hooked) starter sequences with one defect. We use h to denote the

number of hexagonal subgraphs of a hexagonal chain.

4.1.1 Type (I) Hexagonal Chains

A type (I) hexagonal chainH1
h is a graph with P4h+2 being its main path, the maximum

degree of the graph is 3 (∆(H1
h) = 3), V (H1

h) = 6h + 2, and the end vertices are not

inflated. The general form of such graphs is shown in Figure 4.8.

Figure 4.8: Type (I) Hexagonal Chains.

Theorem 4.1.1. The graph H1
h can be starter-labelled with one defect only if h ≡ 2, 3

(mod 4).
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Proof. If ai and bi are the smallest and largest positions respectively of the label i in

the sequence, then

3h+1∑
i=1

(ai + bi) =
4h+2∑
i=1

i+
h−1∑
i=0

(4i+ 3) +
h−1∑
i=0

(4i+ 4)

= (2h+ 1)(4h+ 3) + 4
h−1∑
i=0

i+ 3h+ 4
h−1∑
i=0

i+ 4h

= (2h+ 1)(4h+ 3) + 8
h−1∑
i=1

i+ 7h

= 12h2 + 13h+ 3, (4.1.1)

3h+1∑
i=1

(bi − ai) =
3h+1∑
i=1

i− r + (6h+ 3− r)

=
(3h+ 1)(3h+ 2)

2
− 2r + 6h+ 3. (4.1.2)

By adding (4.1.1) and (4.1.2), we obtain
∑3h+1

i=1 bi = 33h2+47h+14
4

− r. Since
∑3h+1

i=1 bi +

r ∈ N, we conclude that h ≡ 2, 3 (mod 4). �

Similarly, we can prove Theorems (4.1.2) and (4.1.3).

Example 4.1.1. Figure 4.9 illustrates a starter-labelled with one defect of H1
2 .

Figure 4.9: A starter-labelled H1
2 with one defect.
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4.1.2 Type (II) Hexagonal Chains

A type (II) hexagonal chain H2
h is a graph with P4h+1 being its main path, ∆(H2

h) =

3, V (H2
h) = 6h+ 1, and non-inflated end vertices. The general form of such graphs is

shown in Figure (4.10).

Figure 4.10: Type (II) Hexagonal Chains.

Theorem 4.1.2. The graph H2
h can be starter-labelled with one defect only if h ≡ 1, 2

(mod 4).

4.1.3 Type (III) Hexagonal Chains

A type (III) hexagonal chain H3
h is a graph with P4h−1 being its main path, ∆ =

3, V (H3
h) = 6h, and non-inflated end vertices. The general form of such graphs is

shown in Figure 4.11.

Figure 4.11: Type (III) Hexagonal Chains.

Example 4.1.2. Figure 4.12 shows a starter-labelled with one defect of H3
2 .

Figure 4.12: A starter labelled with one defect H3
2 .
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Theorem 4.1.3. The graph H3
h can be starter-labelled with one defect only if h ≡ 1, 2

(mod 4).

4.1.4 Type (IV) Hexagonal Chains

A type IV hexagonal chain H4
h is a graph with P3h+1 being its main rail, ∆ =

4, V (H4
h) = 5h + 1, and the end vertices are not inflated. The general form of such

graphs is shown in Figure 4.13.

Figure 4.13: Type (IV) Hexagonal Chains.

Theorem 4.1.4. The graph H4
h can be starter-labelled with one defect only if h ≡

1, 3, 5 (mod 8).

Proof. If ai and bi are the smallest and largest positions respectively of the label i in

the sequence, then

5h+1
2∑
i=1

(ai + bi) =
3h+1∑
i=1

i+
h−1∑
i=0

(3i+ 2) +
h−1∑
i=0

(3i+ 3)

=
(3h+ 1)(3h+ 2)

2
+ 6

h−1∑
i=1

i+ 5h

=
15h2 + 13h+ 2

2
, (4.1.3)

5h+1
2∑
i=1

(bi − ai) =

5h+1
2∑
i=1

i− r + (5h+ 2− r)

=
25h2 + 60h+ 19

8
− 2r. (4.1.4)
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By adding (4.1.3) and (4.1.4), we obtain 2
∑ 5h+1

2
i=1 bi = 85h2+112h+27

8
− 2r. This implies

that h ≡ 1, 3, 5 (mod 8). �



Chapter 5

Generalized Starter Sequences

In this chapter, we introduce generalized (extended) starter sequences and provide

some of the conditions for the existence of generalized (extended) starter sequences.

The results of this chapter have been accepted for the publication in Journal of Infor-

mation and Optimization Sciences [32].

Definition 5.0.1. A generalized starter sequence of order n and multiplicity λ is a

sequence (s1, s2, ..., sλn) of λn integers satisfying the following conditions:

1. for every i ∈ {1, 2, . . . , n}, either i or −i appears exactly in λ positions in the

sequence, j1, j2 = j1 + i, . . . , jλ = j1 + (λ − 1)i or j1, j2 = j1 + (−i), . . . , jλ =

j1 + (λ− 1)(−i);

2. sj1 = sj2 = . . . = sjλ = i or −i, respectively. Where −i is the additive inverse

of i in Z2n+1, and −i is referred to as a defect of the sequence.

We shall use the notation (λ, n)-starter sequence to label a starter sequence of order

n with multiplicity λ. For example, the sequence (2, 13, 2, 5, 2, 7, 9, 11, 5, 1, 1, 1, 7, 5, 13,

9, 6, 4,11, 7,3, 4, 6, 3, 9, 4, 3, 13, 6, 11) is a (3, 10)-starter sequence with two defects.
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Definition 5.0.2. A generalized extended starter sequence of order n and mul-

tiplicity λ is a sequence GESSn = (s1, s2, s3, ..., sλn+h) of λn + h integers satisfying

the conditions of generalized starter sequences, and in addition there are exactly h

zeros in the sequence, where h is the minimum number of zeros such that the sequence

exists.

For example, the sequence (3, 7, 0, 3, 6, 0, 3, 2, 7, 2, 6, 2, 1, 1, 1, 7, 6) is a generalized

extended starter sequence of order 5 where the multiplicity is λ = 3, with two defects,

and a minimum number of hooks (h = 2). The following proposition gives a partial

result in the case λ = 3.

Proposition 5.0.1. There are no generalized starter sequences for orders n = 2, 3, 4, 5, 6,

or 7 with multiplicity λ = 3.

Proof. The case n = 2 is straightforward.

Consider the case n = 3. Assume that there is a generalized starter sequence of

order n = 3 and multiplicity λ = 3. Hence, the sequence must be of the form:

(s1, s2, s3, s4, s5, s6, s7, s8, s9). Neither 5 nor 6 appear in the sequence. So, only one

defect (d = 4) must be in the desired sequence. Therefore, the entire sequence must

be of the form: (4, s2, s3, s4, 4, s6, s7, s8, 4). Clearly, the first occurrence of 2 in the

sequence is at s2 or s4; hence, either s2 = s4 = s6 = 2 or s4 = s6 = s8 = 2. Since

the spaces are already occupied by the 2
′
s and 4

′
s, it is not possible to put the 1

′
s in

this sequence. Therefore, there is no generalized starter sequence of order n = 3 and

multiplicity λ = 3.

In the case n = 4, if the desired sequence is possible, then the sequence must

be of the form: (s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12). Therefore, the defects 6, 7,

and 8 cannot occur in the sequence. Hence, the defect (d = 5) must be in the

sequence. Therefore, the sequence either begins or ends with a 5. Consider the case
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(5, s2, s3, s4, s5, 5, s7, s8, s9, s10, 5, s12); here s2 = s5 = s8 = 3 or s4 = s7 = s10 = 3, but

in both cases it is not possible to put the 2
′
s in the sequence. A similar argument can

be made when the sequence ends with a 5. Therefore, there is no generalized starter

sequence of order n = 4 and multiplicity λ = 3.

Now, suppose that the order is n = 5. Clearly the defects 8, 9, and 10 can-

not occur as elements in the sequence. Hence, either 6 or 7 appears in the se-

quence as a defect. If (d = 7), then the entire sequence must be of the form:

(7, s2, s3, s4, s5, s6, s7, 7, s9, s10, s11, s12, s13, s14, 7). So, the first occurrence of 5 in the

sequence must be at s2 or s4. Thus, either s2 = s7 = s12 = 5, or s4 = s9 = s14 = 5.

When we consider the case s2 = s7 = s12 = 5, there is only one way to insert the

3’s in the sequence: s3 = s6 = s9 = 3. Since the spaces are already occupied by the

7
′
s, 5

′
s,and 3

′
s, we cannot put the 2

′
s in the sequence. A similar argument can be

applied when s4 = s9 = s14 = 5. Therefore, there is no generalized starter sequence

of order n = 5, λ = 3, and d = 7.

In the alternate case (d = 6), we must have the subsequence (6, s2, s3, s4, s5, s6, 6, s8,

s9, s10, s11, s12, 6) in the proposed sequence. Hence, without loss of generality, the en-

tire sequence must be of the form: (6, s2, s3, s4, s5, s6, 6, s8, s9, s10, s11, s12, 6, s14, s15),

or (s1, 6, s3, s4, s5 , s6, s7, 6, s9, s10, s11, s12 , s13, 6, s15). But it is not possible to insert

all the 4
′
s, 3

′
s, 2

′
s, and 1

′
s in the desired sequence. Therefore, there is no starter

sequence of order n = 5 and multiplicity λ = 3. Similar arguments can be made to

prove the remaining cases (n = 6, and 7). Hence, there are no starter sequences of

orders n = 2, 3, 4, 5, 6, or 7 with multiplicity λ = 3. �

Remark: We have shown by computer search that there are no generalized starter

sequences of orders n = 13 or n = 16 with multiplicity λ = 3.

Propositions 5.0.2 and 5.0.3 provide some of the necessary conditions for the existence

of (λ, n)-generalized starter sequences.
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Proposition 5.0.2. There exists a generalized starter sequence of order n and mul-

tiplicity λ only if λ ≤ n.

Proof. Assume that there exists a generalized starter sequence of order n and multi-

plicity λ such that λ > n. Hence, the sequence will be of length λn, and will have at

least one defect (d ≥ n+1). Consider the minimum value of d. Then, the integer n+1

appears λ times in the sequence. By the definition of generalized starter sequences,

we know that between any two consecutive occurrences of the integer n+ 1 there are

exactly n entries; so the total length of the subsequence containing all the integers

n+ 1 will be λ+ n(λ− 1). This implies that the length of the subsequence is greater

than λn which leads to a contradiction. This completes the proof. �

By using the same technique as in the proof of proposition 5.0.2, we can obtain

another necessary condition for the existence of a generalized starter sequence of

order n, multiplicity λ, and in which the largest defect appears in the sequence d, as

shown in the following proposition.

Proposition 5.0.3. There exists a generalized starter sequence of order n and mul-

tiplicity λ only if (λ− 1)d+ 1 ≤ λn, where d is the largest defect which appears in the

sequence.

5.1 More Results

In this section we extend the results of generalized Langford sequences ([39], [25]) and

generalized Skolem sequences [41].

Theorem 5.1.1. Let λ = pet, where p is the smallest prime factor of λ and e, t

are positive integers. If a generalized starter sequence of order n, one defect d, and

multiplicity λ exists, then n must satisfy one of the following congruences:
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n ≡


−p, 1− p, 2− p, . . . ,−1 (mod pe+1), if d ≡ 0 and − d 6≡ 0 (mod p);

0, 1, 2, . . . , p− 1 (mod pe+1), if both d, −d ≡ 0, or both d, −d 6≡ 0 (mod p);

p, 1 + p, 2 + p, . . . , 2p− 1 (mod pe+1), if d 6≡ 0 and − d ≡ 0 (mod p).

Such that d = −r, where − r is the additive inverse of r in the group Z2n+1.

Proof. Let GSSn,1 = (s1, s2, ..., sλn) be a generalized starter sequence of order n, one

defect (d), and multiplicity λ = tpe. Arrange the terms of the sequence GSSn,1 into

the ntpe−1 × p matrix B = (bij) according to the definition: bij = s(i−1)p+j (1 ≤ i ≤

ntpe−1; 1 ≤ j ≤ p):

B =



b1,1 b1,2 · · · b1,p

b2,1 b2,2 · · · b2,n
...

... · · · ...

bntpe−1,1 bntpe−1,2 · · · bntpe−1,p


.

Consider the set E = {{1, 2, . . . , n} \ {r}}∪ {d}, where 1 ≤ r ≤ n, d = −r, and −r is

the additive inverse of r in Z2n+1. Now, let M = |{b ∈ E : b ≡ 0 (mod p)}|. Hence,

M =


bn
p
c, if both d, −d ≡ 0, or both d, −d 6≡ 0 (mod p);

bn
p
c+ 1, if d ≡ 0 and − d 6≡ 0 (mod p);

bn
p
c − 1, if d 6≡ 0 and − d ≡ 0 (mod p).

Notice that for every b in the set E, two observations are made:

1. if b ≡ 0 (mod p), then b will always appear λ = tpe times in a single column of

the matrix B;

2. if b 6≡ 0 (mod p), then b appears exactly tpe−1 times in every column of the

matrix B.
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The first condition implies that, in order to have a perfect starter sequence, M must

be a multiple of p. Hence, M
tpe−1 ≡ 0 (mod p) ⇒ M = cs for some integer c. Now we

will consider all the possible values of M .

Case (1): If M = bn
p
c, then bn

p
c ≡ 0 (mod s). But if n ≡ i (mod p), then n = n0p+ i

=⇒ n0 = n−i
p
, 0 ≤ i ≤ p− 1; thus bn0p+i

p
c ≡ 0 (mod s) =⇒ n0 ≡ 0 (mod s)

=⇒ n−i
p

= c0s, for some integer c0 =⇒ n− i = c0tp
e+1 =⇒ n ≡ i (mod pe+1).

Therefore, in the case of generalized starter sequence of order n, multiplicity s = tpe,

and one defect, where the defect and its inverse are both multiples of p or neither of

them is a multiple of p, in order for a such sequence to exist, n must satisfy one of

the following congruency classes: n ≡ 0, 1, 2, . . . , p− 1 (mod pe+1).

Case (2): If M = bn
p
c+ 1, then bn

p
c+ 1 ≡ 0 (mod s). But if n ≡ i (mod p)

=⇒ n0 = n−i
p
, 0 ≤ i ≤ p− 1, then bn0p+i

p
c+ 1 ≡ 0 (mod s)⇒ n0 + 1 ≡ 0 (mod s)

=⇒ n−i
p

+ 1 = c0s, for some integer c0 =⇒ n − i = −p + c0tp
e+1 =⇒ n ≡ i − p

(mod pe+1).

Therefore, if a generalized starter sequence of order n exists with multiplicity s = tpe,

and with one defect, where the defect is a multiple of p but its inverse is not a

multiple of p, then n must satisfy one of the following congruency classes: n ≡

−p, 1− p, 2− p, . . . ,−1 (mod pe+1).

Case (3): If M = bn
p
c − 1, then bn

p
c − 1 ≡ 0 (mod s). But if n ≡ i (mod p)⇒ n0 =

n−i
p
,

0 ≤ i ≤ p−1 , then bn0p+i
p
c−1 ≡ 0 (mod s)⇒ n0−1 ≡ 0 (mod s)⇒ n−i

p
−1 = c0s,

for some integer c0. Hence, n− i = p+ c0tp
e+1 =⇒ n ≡ i+ p (mod pe+1). Therefore,

n must satisfy one of the congruences: n ≡ p, 1 + p, 2 + p, . . . , 2p− 1 (mod pe+1). �

Theorem 5.1.2. Let λ = pet, A2 = {r1, r2}, and D2 = {d1, d2}, where p is the

smallest prime factor of λ, and e, t, r1, r2, d1, and d2 are positive integers, A∗2 =

{x ∈ A2 : x ≡ 0 (mod p)}, andD∗2 = {d ∈ D2 : d ≡ 0 (mod p)}. If a generalized
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starter sequence of order n, two defects d1 and d2, and multiplicity λ exists, then n

must satisfy one of the following congruences:

n ≡



−2p, 1− 2p, 2− 2p, . . . ,−1− p (mod pe+1), if |D∗
2 | = 2 and |A∗

2| = 0;

0, 1, 2, . . . , p− 1 (mod pe+1), if |D∗
2 | = |A∗

2| = i, where i ∈ {0, 1, 2};

−p, 1− p, 2− p, . . . ,−1 (mod pe+1), if |D∗
2 | = 1 and |A∗

2| = 0, or |D∗
2 | = 2 and |A∗

2| = 1;

p, 1 + p, 2 + p, . . . , 2p− 1 (mod pe+1), if |D∗
2 | = 0 and |A∗

2| = 1, or |D∗
2 | = 1 and |A∗

2| = 2;

2p, 1 + 2p, 2 + 2p, . . . , 3p− 1 (mod pe+1), if |D∗
2 | = 0, and |A∗

2| = 2.

Where d1 = −r1, d2 = −r2, and the inverse is the additive inverse in the group

Z2n+1.

Proof. Let GSSn,2 = (s1, s2, ..., sλn) be a generalized starter sequence of order (n),

multiplicity λ = tpe, and two defects: d1 = −r1, and d2 = −r2. Arrange the terms of

the sequence GSSn,2 into the ntpe−1× p matrix B = (bij) according to the definition:

bij = s(i−1)p+j (1 ≤ i ≤ ntpe−1; 1 ≤ j ≤ p):

B =



b1,1 b1,2 · · · b1,p

b2,1 b2,2 · · · b2,n
...

... · · · ...

bntpe−1,1 bntpe−1,2 · · · bntpe−1,p


.

Consider the set E = {{1, 2, . . . , n} \ {r1, r2}} ∪ {−r1,−r2}, where 1 ≤ r1 < r2 ≤ n

and −r is the additive inverse of r in Z2n+1. Now, let M = |{b ∈ E : b ≡ 0 (mod p)}|,

A2 = {r1, r2}, D2 = {d1, d2}, A∗2 = {x ∈ A2 : x ≡ 0 (mod p)}, andD∗2 = {d ∈ D2 :

d ≡ 0 (mod p)}. Hence,
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M =



bn
p
c+ 2, if |D∗2| = 2 and |A∗2| = 0;

bn
p
c+ 1, if |D∗2| = 1 and |A∗2| = 0, or |D∗2| = 2 and |A∗2| = 1;

bn
p
c, if |D∗2| = |A∗2| = i, where i ∈ {0, 1, 2};

bn
p
c − 1, if |D∗2| = 0 and |A∗2| = 1, or |D∗2| = 1 and |A∗2| = 2;

bn
p
c − 2, if |D∗2| = 0, and |A∗2| = 2.

Notice that for every b in the set E, two observations are made:

1. if b ≡ 0 (mod p), then b appears all λ = tpe times in a single column of the

matrix B;

2. if b 6≡ 0 (mod p), then b appears exactly tpe−1 times in every column of the

matrix B.

The first condition implies that, to have a perfect starter sequence, M must be a

multiple of p. Hence, M
tpe−1 ≡ 0 (mod p) ⇒ M = cs for some integer c. Now we

consider all the possible values of M :

Case (1): If M = bn
p
c+ 2, then bn

p
c+ 2 ≡ 0 (mod s).

But if n ≡ i (mod p) =⇒ n0 = n−i
p
, 0 ≤ i ≤ p− 1 , then

bn0p+i
p
c+ 2 ≡ 0 (mod s) =⇒ n0 + 2 ≡ 0 (mod s) =⇒ n−i

p
+ 2 = c0s, for some integer

c0

=⇒ n − i = −2p + c0tp
e+1 =⇒ n ≡ i − 2p (mod pe+1). Therefore, for a generalized

starter sequence of order n, multiplicity s = tpe, and two defects, where the defects

are both multiples of p but none of their inverses is multiple of p, to exist, n must

satisfy one of the following congruency classes: n ≡ −2p, 1 − 2p, 2 − 2p, . . . ,−1 − p

(mod pe+1).

By the proof of Theorem (5.1.1), we obtain the results of the following three cases:

Case (2): If M = bn
p
c+ 1, then n ≡ −p, 1− p, 2− p, . . . ,−1 (mod pe+1);
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Case (3): If M = bn
p
c, then n ≡ 0, 1, 2, . . . , p− 1 (mod pe+1);

Case (4): If M = bn
p
c − 1, then n ≡ p, 1 + p, 2 + p, . . . , 2p− 1 (mod pe+1).

Case (5): If M = bn
p
c − 2, then bn

p
c − 2 ≡ 0 (mod s). But if n ≡ i (mod p)

=⇒ n0 = n−i
p
, 0 ≤ i ≤ p− 1. Therefore,

bn0p+i
p
c− 2 ≡ 0 (mod s) =⇒ n0− 2 ≡ 0 (mod s) =⇒ n−i

p
− 2 = c0s, for some integer

c0

=⇒ n− i = 2p+ c0tp
e+1 =⇒ n ≡ i+ 2p (mod pe+1).

Therefore, for a generalized starter sequence of order n, multiplicity s = tpe, and

two defects, where neither of the them is a multiple of p but their inverses are both

multiples of p, to exist, n must satisfy one of the following congruency classes: n ≡

2p, 1 + 2p, . . . , 3p− 1 (mod pe+1). �

Theorem 5.1.3. Let λ = pet, A3 = {r1, r2, r3}, and D3 = {d1, d2, d3}, where p is

the smallest prime factor of λ, the elements {e, t, d1, d2, d3, r1, r2, r3} are positive

integers, A∗3 = {x ∈ A3 : x ≡ 0 (mod p)}, andD∗3 = {d ∈ D2 : d ≡ 0 (mod p)}. If

a generalized starter sequence of order n, three defects (d1 = −r1, d2 = −r2, and d3 =

−r3), and multiplicity λ exists, then n must satisfy one of the following congruences:

n ≡



−3p, 1− 3p, 2− 3p, . . . ,−1− 2p (mod pe+1), if |A∗3| = 0 and |D∗3 | = 3;

−2p, 1− 2p, 2− 2p, . . . ,−1− p (mod pe+1), if |A∗3| = 0 and |D∗3 | = 2, or |A∗3| = 1 and |D∗3 | = 3;

0, 1, 2, . . . , p− 1 (mod pe+1), if |A∗3| = |D∗3 | = i, where i ∈ {0, 1, 2, 3};

−p, 1− p, . . . ,−1 (mod pe+1), if |A∗3| = 0, |D∗3 | = 1, or |A∗3| = 1, |D∗3 | = 2, or |A∗3| = 3, |D∗3 | = 2;

p, 1 + p, . . . , 2p− 1 (mod pe+1), if |A∗3| = 1, |D∗3 | = 0, or |A∗3| = 2, |D∗3 | = 1, or |A∗3| = 3, |D∗3 | = 2;

2p, 1 + 2p, 2 + 2p, . . . , 3p− 1 (mod pe+1), if |A∗3| = 2 and |D∗3 | = 0, or |A∗3| = 3 and |D∗3 | = 1;

3p, 1 + 3p, 2 + 3p, . . . , 4p− 1 (mod pe+1), if |A∗3| = 3 and |D∗3 | = 0.

Proof. Let GSSn,3 = (s1, s2, ..., sλn) be a generalized starter sequence of order (n),

multiplicity λ = tpe, and three defects d1, d2, and d3. Arrange the terms of the se-

quence GSSn,3 into the ntpe−1 × p matrix, B = (bij) according to the following rule:

bij = s(i−1)p+j (1 ≤ i ≤ ntpe−1; 1 ≤ j ≤ p):
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B =



b1,1 b1,2 · · · b1,p

b2,1 b2,2 · · · b2,n
...

... · · · ...

bntpe−1,1 bntpe−1,2 · · · bntpe−1,p


.

Consider the set E = {{1, 2, . . . , n} \ {r1, r2, r3}} ∪ {−r1,−r2,−r3}, where 1 ≤ r1 <

r2 < r3 ≤ n and −r is the additive inverse of r in Z2n+1. Now, let M = |{b ∈ E : b ≡ 0

(mod p)}|,

A3 = {r1, r2, r3}, D3 = {d1, d2, d3}, A∗3 = {x ∈ A3 : x ≡ 0 (mod p)}, andD∗3 = {d ∈

D3 : d ≡ 0 (mod p)}. Hence,

M =



bn
p
c+ 3, if |A∗3| = 0 and |D∗3| = 3;

bn
p
c+ 2, if|A∗3| = 0 and |D∗3| = 2, or |A∗3| = 1 and |D∗3| = 3;

bn
p
c+ 1, if|A∗3| = 0 and |D∗3| = 1, or |A∗3| = 1 and |D∗3| = 2, or |A∗3| = 3 and |D∗3| = 2;

bn
p
c, if |A∗3| = |D∗3| = i, where i ∈ {0, 1, 2, 3};

bn
p
c − 1, if|A∗3| = 1 and |D∗3| = 0, or |A∗3| = 2 and |D∗3| = 1, or |A∗3| = 3 and |D∗3| = 2;

bn
p
c − 2 if |A∗3| = 2 and |D∗3| = 0, or |A∗3| = 3 and |D∗3| = 1;

bn
p
c − 3, |A∗3| = 3 and |D∗3| = 0.

Notice that, for every b in the set E, two observations are made:

1. if b ≡ 0 (mod p), then b appears all λ = tpe times in a single column of the

array B;

2. if b 6≡ 0 (mod p), then b appears exactly tpe−1 times in every column of the

array B.

The first condition implies that, to have a perfect starter sequence, M must be a

multiple of p. Hence, M
tpe−1 ≡ 0 (mod p) ⇒ M = cs for some integer c. Now we will

consider all the possible values of M .
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Case (1): If M = bn
p
c+ 3, then bn

p
c+ 3 ≡ 0 (mod s).

But if n ≡ i (mod p) =⇒ n0 = n−i
p
, 0 ≤ i ≤ p− 1 , then

bn0p+i
p
c+ 3 ≡ 0 (mod s) =⇒ n0 + 3 ≡ 0 (mod s) =⇒ n−i

p
+ 3 = c0s, for some integer

c0

=⇒ n − i = −3p + c0tp
e+1 =⇒ n ≡ i − 3p (mod pe+1). Therefore, if a generalized

starter sequence of order n exists, with multiplicity s = tpe and three defects, where

the defects are multiple of p but none of their inverses is a multiple of p, then n must

satisfy one of the following congruency classes: n ≡ −3p, 1− 3p, 2− 3p, . . . ,−1− 2p

(mod pe+1).

By the proof of Theorem (5.1.2), we obtain the result of the following case:

Case (2): If M = bn
p
c+ 2, then n ≡ −2p, 1− 2p, 2− 2p, . . . ,−1− p (mod pe+1).

Now by the proof of Theorem (5.1.1), we obtain the results of the following three

cases:

Case (3): If M = bn
p
c+ 1, then n ≡ −p, 1− p, 2− p, . . . ,−1 (mod pe+1).

Case (4): If M = bn
p
c, then n ≡ 0, 1, 2, . . . , p− 1 (mod pe+1).

Case (5): If M = bn
p
c − 1, then n ≡ p, 1 + p, 2 + p, . . . , 2p− 1 (mod pe+1).

By the proof of Theorem (5.1.2) we obtain the results of the following cases:

Case (6): If M = bn
p
c − 2, then n ≡ 2p, 1 + 2p, 2 + 2p, . . . , 3p− 1 (mod pe+1).

Case (7): If M = bn
p
c − 3, then bn

p
c − 3 ≡ 0 (mod s).

But if n ≡ i (mod p) =⇒ n0 = n−i
p
, 0 ≤ i ≤ p− 1 , then

bn0p+i
p
c− 3 ≡ 0 (mod s) =⇒ n0− 3 ≡ 0 (mod s) =⇒ n−i

p
− 3 = c0s, for some integer

c0

=⇒ n− i = 3p+ c0tp
e+1 =⇒ n ≡ i+ 3p (mod pe+1).

Therefore, for a generalized starter sequence of order n exists, with multiplicity s =

tpe, and three defects, where none of them is a multiple of p, but their inverses are

multiples of p, then n must satisfy one of the following congruency classes: n ≡



81

3p, 1 + 3p, . . . , 4p− 1 (mod pe+1).

�

Theorem 5.1.4. Let λ = pet, where p is the smallest prime factor of λ, and e and t

are positive integers. If a generalized extended starter sequence of order n, one defect

d, and multiplicity λ exists, then n must satisfy one of the following congruences:

n ≡


kp, kp+ 1, . . . , kp+ p− 1 (mod pe+1), if both d, −d ≡ 0, or d, −d 6≡ 0 (mod p);

kp− p, kp+ (1− p), . . . , kp− 1 (mod pe+1), if d 6≡ 0, and − d ≡ 0 (mod p);

(k + 1)p, (k + 1)p+ 1, . . . , p(k + 1) + (p− 1) (mod pe+1), if d ≡ 0, and − d 6≡ 0 (mod p).

Such that d = −r, where −r is the additive inverse of r in the group Z2n+1

Proof. Let GESn,1 = (s1, s2, ..., sλn+h) be a generalized extended starter sequence of

order n, one defect d, multiplicity λ = tpe, and h zeros. Arrange the terms of the

sequence GESSn,1 into the (ntpe−1 + dh
p
e) × p matrix, B = (bij) according to the

following rule: bij = s(i−1)p+j (1 ≤ i ≤ ntpe−1 + dh
p
e; 1 ≤ j ≤ p):

B =



b1,1 b1,2 · · · b1,k 0 · · · b1,p

b2,1 b2,2 · · · b2,k b2,k+1 · · · b2,n

· · · · · · · · · · · · 0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · 0

bntpe−1+dh
p
e,1 bntpe−1+dh

p
e,2 · · · bntpe−1+dh

p
e,k ∗ ∗ ∗


.

Consider the set E = {{1, 2, . . . , n} \ {r}} ∪ {−r}, where 1 ≤ r ≤ n and −r is the

additive inverse of r in the group Z2n+1. Now, let M = |{b ∈ E : b ≡ 0 (mod p)}|.
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Hence,

M =


bn
p
c, if both d, −d ≡ 0, or d and − d 6≡ 0 (mod p);

bn
p
c+ 1, if d ≡ 0, and − d 6≡ 0 (mod p);

bn
p
c − 1, if − d ≡ 0, and d 6≡ 0 (mod p).

Notice that, for every b in the set E, two observations are made:

1. if b ≡ 0 (mod p), then b appears all λ = tpe times in a single column of the

matrix B;

2. if b 6≡ 0 (mod p), then b appears exactly tpe−1 times in every column of the

matrix B.

The first condition implies that, to have a perfect starter sequence, M must be a

multiple of p. Now, if M is not a multiple of p, then we say that

M ≡ k(mod p) ⇒ M
tpe−1 ≡ k

tpe−1 (mod p). Hence, M = k + cλ for some integer c.

Therefore, M ≡ k(mod λ). Now, we will consider all the possible values of M .

Case (1): If M = bn
p
c, then bn

p
c ≡ k (mod λ).

But if n ≡ i (mod p), then n0 = n−i
p
, 0 ≤ i ≤ p− 1; thus

bn0p+i
p
c ≡ k (mod λ) =⇒ n0 ≡ k (mod λ) =⇒ n−i

p
= k + c0λ, for some integer c0

=⇒ n− i = kp+ c0tp
e+1 =⇒ n ≡ kp+ i (mod pe+1).

Therefore, if a generalized extended starter sequence of order n exists, with multiplic-

ity λ = tpe and one defect, where the defect and its inverse are both multiples of p or

neither of them is a multiple of p, then n must satisfy one of the congruences:

n ≡ kp, kp+ 1, . . . , kp+ p− 1 (mod pe+1).

Case (2): If M = bn
p
c+ 1, then bn

p
c+ 1 ≡ k (mod λ).

But if n ≡ i (mod p) =⇒ n0 = n−i
p
, 0 ≤ i ≤ p− 1 , then
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bn0p+i
p
c + 1 ≡ k (mod λ) =⇒ n0 + 1 ≡ k (mod λ) =⇒ n−i

p
+ 1 = k + c0λ, for some

integer c0

=⇒ n− i = kp− p+ c0tp
e+1 =⇒ n ≡ kp+ (i− p) (mod pe+1).

Therefore, if a generalized extended starter sequence of order n exists, with multiplic-

ity λ = tpe and one defect, where the defect is a multiple of p but its inverse is not a

multiple of p, then n must satisfy one of the congruences:

n ≡ kp− p, kp+ (1− p), kp+ (2− p), . . . , kp− 1 (mod pe+1).

Case (3): If M = bn
p
c − 1, then bn

p
c − 1 ≡ k (mod λ).

But if n ≡ i (mod p) =⇒ n0 = n−i
p
, 0 ≤ i ≤ p− 1 , then

bn0p+i
p
c − 1 ≡ k (mod λ) =⇒ n0 − 1 ≡ k (mod λ) =⇒ n−i

p
− 1 = k + c0λ, for some

integer c0

=⇒ n− i = kp+ p+ c0tp
e+1 =⇒ n ≡ i+ (k + 1)p (mod pe+1).

Therefore, n must satisfy one of the congruences:

n ≡ (k + 1)p, 1 + (k + 1)p, . . . , (p− 1) + (k + 1)p (mod pe+1). �

Theorem 5.1.5. Let λ = pet, A2 = {r1, r2}, D2 = {d1, d2}, A∗2 = {x ∈ A2 : x ≡ 0

(mod p)}, and D∗2 = {d ∈ D2 : d ≡ 0 (mod p)}, where di = −ri, 1 ≤ i ≤ 2, and p

is the smallest prime factor of λ and e, t, r1, r2 are positive integers, and −ri is the

additive inverse of ri in the group Z2n+1. If a generalized extended starter sequence of

order n, two defects d1, d2, and multiplicity λ exists, then n must satisfy one of the

following congruences:

n ≡



(k − 2)p, 1 + (k − 2)p, . . . , (k − 1)p− 1 (mod pe+1), if |D∗2 | = 2 and |A∗2| = 0;

kp, kp+ 1, . . . , kp+ p− 1 (mod pe+1), if |D∗2 | = |A∗2| = i, where i ∈ {0, 1, 2};

kp− p, kp+ (1− p), . . . , kp− 1 (mod pe+1), if |D∗2 | = 1 and |A∗2| = 0, or |D∗2 | = 2 and |A∗2| = 1;

(k + 1)p, 1 + (k + 1)p, . . . , (2 + k)p− 1 (mod pe+1), if |D∗2 | = 0 and |A∗2| = 1, or |D∗2 | = 1 and |A∗2| = 2;

(2 + k)p, 1 + (2 + k)p, . . . , (3 + k)p− 1 (mod pe+1), if |D∗2 | = 0, and |A∗2| = 2.

Proof. Let GESn,2 = (s1, s2, ..., sλn+h) be a generalized extended starter sequence of

order (n), two defects d1 and d2, multiplicity λ = tpe, and h zeros. Arrange the terms

of the sequence GESSn,2 into the (ntpe−1 + dh
p
e)× p matrix, B = (bij), according to
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the following rule: bij = s(i−1)p+j (1 ≤ i ≤ ntpe−1 + dh
p
e; 1 ≤ j ≤ p).

B =



b1,1 b1,2 · · · b1,k 0 · · · b1,p

b2,1 b2,2 · · · b2,k b2,k+1 · · · b2,n

· · · · · · · · · · · · 0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · 0

bntpe−1+dh
p
e,1 bntpe−1+dh

p
e,2 · · · bntpe−1+dh

p
e,k ∗ ∗ ∗


.

Consider the set E = {{1, 2, . . . , n} \ {r1, r2}}∪{d1, d2}, where 1 ≤ r1 < r2 ≤ n, d1 =

−r1, d2 = −r2, and −r is the additive inverse of r in the group Z2n+1. Now, let

M = |{b ∈ E : b ≡ 0 (mod p)}|, A2 = {r1, r2}, D2 = {d1, d2}, A∗2 = {x ∈ A2 : x ≡ 0

(mod p)}, andD∗2 = {d ∈ D2 : d ≡ 0 (mod p)}. Hence,

M =



bn
p
c+ 2, if |D∗2| = 2 and |A∗2| = 0;

bn
p
c+ 1, if |D∗2| = 1 and |A∗2| = 0, or |D∗2| = 2 and |A∗2| = 1;

bn
p
c, if |D∗2| = |A∗2| = i, where i ∈ {0, 1, 2};

bn
p
c − 1, if |D∗2| = 0 and |A∗2| = 1, or |D∗2| = 1 and |A∗2| = 2;

bn
p
c − 2, if |D∗2| = 0, and |A∗2| = 2.

Notice that, for every b in the set E, two observations are made:

1. if b ≡ 0 (mod p), then b appears λ = tpe times in a single column of the matrix

B;

2. if b 6≡ 0 (mod p), then b appears exactly tpe−1 times in every column of the

matrix B.

The first condition implies that, to have a perfect starter sequence, M must be a

multiple of p. Now, if M is not a multiple of p, then we say that

M ≡ k(mod p) ⇒ M
tpe−1 ≡ k

tpe−1 (mod p). Hence, M = k + cλ for some integer c.
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Therefore, M ≡ k(mod λ). Now, we consider all the possible values of M . We only

need to investigate the first case and the last case; the remaining cases are already

considered in Theorem (5.1.4).

Case (1): If M = bn
p
c+ 2, then bn

p
c+ 2 ≡ k (mod λ).

But if n ≡ i (mod p) =⇒ n0 = n−i
p
, 0 ≤ i ≤ p− 1, then

bn0p+i
p
c + 2 ≡ k (mod s) =⇒ n0 + 2 ≡ k (mod λ) =⇒ n−i

p
+ 2 = k + c0λ, for some

integer c0

=⇒ n− i = (k − 2)p+ c0tp
e+1 =⇒ n ≡ i+ (k − 2)p (mod pe+1).

Therefore, n must satisfy one of the following congruency classes:

n ≡ (k − 2)p, 1 + (k − 2)p, 2 + (k − 2)p, . . . , (k − 1)p− 1 (mod pe+1).

Case (2): If M = bn
p
c, then n ≡ kp, kp+ 1, kp+ 2, . . . , kp+ p− 1 (mod pe+1).

Case (3): If M = bn
p
c + 1, then n ≡ kp − p, kp + (1 − p), kp + (2 − p), . . . , kp − 1

(mod pe+1).

Case (4): If M = bn
p
c − 1, then n ≡ (k + 1)p, 1 + (k + 1)p, . . . , (p − 1) + (k + 1)p

(mod pe+1).

Case (5): If M = bn
p
c − 2, then bn

p
c − 2 ≡ k (mod λ).

But if n ≡ i (mod p) =⇒ n0 = n−i
p
, 0 ≤ i ≤ p− 1 , then

bn0p+i
p
c − 2 ≡ k (mod λ) =⇒ n0 − 2 ≡ k (mod λ) =⇒ n−i

p
− 2 = k + c0λ, for some

integer c0

=⇒ n− i = (2 + k)p+ c0tp
e+1 =⇒ n ≡ i+ (2 + k)p (mod pe+1).

Therefore, n must satisfy one of the following congruences:

n ≡ (2 + k)p, 1 + (2 + k)p, 2 + (2 + k)p, . . . , (3 + k)p− 1 (mod pe+1). �

Theorem 5.1.6. Let λ = pet, A3 = {r1, r2, r3}, and D3 = {d1, d2, d3}, where p is

the smallest prime factor of λ, the elements {e, t, d1, d2, d3, r1, r2, r3} are positive

integers, A3 = {r1, r2, r3}, D3 = {d1, d2, d3}, A∗3 = {x ∈ A3 : x ≡ 0 (mod p)}, and

D∗3 = {d ∈ D3 : d ≡ 0 (mod p)}. If a generalized extended starter sequence of order

n, with three defects (di = −ri, i ∈ {1, 2, 3}), and multiplicity λ exists, then n must
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satisfy one of the following congruences modulo pe+1:

n ≡



(k − 3)p, 1 + (k − 3)p, . . . , (k − 2)p− 1, if |A∗3| = 0 and |D∗3 | = 3;

(k − 2)p, 1 + (k − 2)p, . . . , (k − 1)p− 1, if |A∗3| = 0 and |D∗3 | = 2, or |A∗3| = 1 and |D∗3 | = 3;

kp, kp+ 1, . . . , kp+ p− 1, if |A∗3| = |D∗3 | = i, where i ∈ {0, 1, 2, 3};

kp− p, kp+ (1− p), . . . , kp− 1, if |A∗3| = 0, |D∗3 | = 1, or |A∗3| = 1, |D∗3 | = 2, or |A∗3| = 3, |D∗3 | = 2;

(k + 1)p, 1 + (k + 1)p, . . . , (p− 1) + (k + 1)p, if |A∗3| = 1, |D∗3 | = 0, or |A∗3| = 2, |D∗3 | = 1, or|A∗3| = 3, |D∗3 | = 2;

(2 + k)p, 1 + (2 + k)p, . . . , (3 + k)p− 1, if |A∗3| = 2 and |D∗3 | = 0, or |A∗3| = 3 and |D∗3 | = 1;

(k + 3)p, 1 + (k + 3)p, . . . , (k + 4)p− 1, if |A∗3| = 3 and |D∗3 | = 0.

Proof. Let GESn,3 = (s1, s2, ..., sλn+h) be a generalized extended starter sequence of

order n, multiplicity λ = tpe, three defects d1, d2, and d3, and h zeros. Arrange the

terms of the sequence GESSn,3 into the (ntpe−1+dh
p
e)×p matrix, B = (bij), according

to the following rule: bij = s(i−1)p+j (1 ≤ i ≤ ntpe−1 + dh
p
e; 1 ≤ j ≤ p).

B =



b1,1 b1,2 · · · b1,k 0 · · · b1,p

b2,1 b2,2 · · · b2,k b2,k+1 · · · b2,n

· · · · · · · · · · · · 0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · 0

bntpe−1+dh
p
e,1 bntpe−1+dh

p
e,2 · · · bntpe−1+dh

p
e,k ∗ ∗ ∗


.

Consider the set E = {{1, 2, . . . , n} \ {r1, r2, r3}} ∪ {−r1,−r2,−r3}, where 1 ≤ r1 <

r2 < r3 ≤ n and −r is the additive inverse of r in Z2n+1. Now, let M = |{b ∈ E : b ≡ 0

(mod p)}|,

A3 = {r1, r2, r3}, D3 = {d1, d2, d3}, A∗3 = {x ∈ A3 : x ≡ 0 (mod p)}, andD∗3 = {d ∈

D3 : d ≡ 0 (mod p)}. Hence,
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M =



bn
p
c+ 3, if |A∗3| = 0 and |D∗3| = 3;

bn
p
c+ 2, if|A∗3| = 0 and |D∗3| = 2, or |A∗3| = 1 and |D∗3| = 3;

bn
p
c+ 1, if|A∗3| = 0 and |D∗3| = 1, or |A∗3| = 1 and |D∗3| = 2, or |A∗3| = 3 and |D∗3| = 2;

bn
p
c, if |A∗3| = |D∗3| = i, where i ∈ {0, 1, 2, 3};

bn
p
c − 1, if|A∗3| = 1 and |D∗3| = 0, or |A∗3| = 2 and |D∗3| = 1, or |A∗3| = 3 and |D∗3| = 2;

bn
p
c − 2, if |A∗3| = 2 and |D∗3| = 0, or |A∗3| = 3 and |D∗3| = 1;

bn
p
c − 3, |A∗3| = 3 and |D∗3| = 0.

Notice that, for every b in the set E, two observations are made:

1. if b ≡ 0 (mod p), then b appears λ = tpe times in a single column of the array

B.

2. if b 6≡ 0 (mod p), then b appears exactly tpe−1 times in every column of the

array B.

The first condition implies that, to have a perfect starter sequence, M must be a

multiple of p. Hence, M
tpe−1 ≡ k (mod p) ⇒ M = cλ for some integer c. Now we

consider all the possible values of M .

Case (1): If M = bn
p
c+ 3, then bn

p
c+ 3 ≡ k (mod λ).

But if n ≡ i (mod p) =⇒ n0 = n−i
p
, 0 ≤ i ≤ p− 1 , then

bn0p+i
p
c + 3 ≡ k (mod λ) =⇒ n0 + 3 ≡ k (mod λ) =⇒ n−i

p
+ 3 = k + c0λ, for some

integer c0

=⇒ n− i = (k − 3)p+ c0tp
e+1 =⇒ n ≡ i+ (k − 3)p (mod pe+1).

Therefore, n must satisfy one of the following congruency classes: n ≡ (k − 3)p, 1 +

(k − 3)p, 2 + (k − 3)p, . . . , (k − 2)p− 1 (mod pe+1).

The following cases are already considered in Theorem 5.1.5

Case (2): If M = bn
p
c+2, then n ≡ (k−2)p, 1+(k−2)p, . . . , (k−1)p−1 (mod pe+1).
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Case (3): If M = bn
p
c, then n ≡ kp, kp+ 1, kp+ 2, . . . , kp+ p− 1 (mod pe+1).

Case (4): If M = bn
p
c + 1, then n ≡ kp − p, kp + (1 − p), kp + (2 − p), . . . , kp − 1

(mod pe+1).

Case (5): If M = bn
p
c − 1, then n ≡ (k + 1)p, 1 + (k + 1)p, . . . , (p − 1) + (k + 1)p

(mod pe+1).

Case (6): If M = bn
p
c−2, then n ≡ (2+k)p, 1+(2+k)p, . . . , (3+k)p−1 (mod pe+1).

Case (7): If M = bn
p
c − 3, then bn

p
c − 3 ≡ k (mod λ).

But if n ≡ i (mod p) =⇒ n0 = n−i
p
, 0 ≤ i ≤ p− 1 , then

bn0p+i
p
c − 3 ≡ k (mod λ) =⇒ n0 − 3 ≡ k (mod λ) =⇒ n−i

p
− 3 = k + c0λ, for some

integer c0

=⇒ n− i = (k + 3)p+ c0tp
e+1 =⇒ n ≡ i+ (k + 3)p (mod pe+1).

Therefore, n must satisfy one of the congruences:

n ≡ (k + 3)p, 1 + (k + 3)p, 2 + (k + 3)p, . . . , (k + 4)p− 1 (mod pe+1).

�

Corollary 5.1.1. If a generalized extended starter sequence S = (s1, s2, . . . , sλn+h) of

order n, and multiplicity λ = tpe exists, then the expected minimum number of zeros

is given by:

h = (p − k)(λ − 1). The permissible locations of these zeros are calculated as si

such that i ≡ k + 1, . . . , p − 1, 0 (mod p). Provided that k 6≡ 0 (mod p), where

M = |{b ∈ E : b ≡ 0 (mod p)| ≡ k (mod p).

Proof. In case |{b ∈ E : b ≡ 0 (mod p)| is not a multiple of p, then the array B must

have (p − k) columns each containing λ zeros. Hence, the lower bound is attained

when the entries bntpe−1,k+1, bntpe−1,k+2, . . . , bntpe−1,p are all 0 or ∗, but all these will lie

outside the sequence; thus, we attain the lower bound of zeros, which is (p−k)(s−1).

Since bij = s(i−1)p+j, (1 ≤ i ≤ ntpe−1; 1 ≤ j ≤ p), the permissible locations for the
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zeros are given by si, such that i ≡ k + 1, . . . , p− 1, 0 (mod p). �

5.2 Examples

The following example shows the minimum possible value of n for a perfect starter

sequence with multiplicity λ = 3.

Example 5.2.1. Consider the perfect starter sequence with two defects for the case

(n, λ, h) = (8, 3, 0) given below in matrix form:

9 6 10

1 1 1

2 6 2

9 2 5

10 6 3

4 5 3

9 4 3

5 10 4



.

Note λ = pet =⇒ p = 3, t = e = 1. A = {7, 8}, D = {9, 10}, A∗ = φ, andD∗ = {9}.

Since bn
p
c+ 1 ≡ k (mod p) =⇒ 0 ≡ k (mod 3), then

n ≡ −p, 1− p, 2− p, . . . ,−1 (mod pe+1)⇔8 ≡ −1 (mod 9)

⇔ 8 ≡ 8 (mod 9).

Example 5.2.2. Consider the perfect starter sequence with three defects for the case

(n, λ, h) = (18, 4, 0), given below in (transpose) array form. In fact, this example

shows the smallest order for the perfect starter sequences with multiplicity (λ = 4).

7 1 1 21 10 13 14 7 3 10 19 3 11 14 10 15 5 9 3 10 14 5 6 11 21

19 1 1 7 8 20 3 15 8 3 7 13 8 21 12 20 8 11 5 19 12 9 15 5 13
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6 9 14 6 19 15 6 2 2 2 2

20 12 4 11 4 9 4 12 4 21 20

Note λ = pet =⇒ p = 2 = e, t = 1. A = {16, 17, 18}, D = {19, 20, 21}, |A∗| =

2, and |D∗| = 1.

Since bn
p
c − 1 ≡ k (mod p) =⇒ 0 ≡ k (mod 8), then

n ≡ p, 1 + p, 2 + p, . . . , 2p− 1 (mod pe+1)⇔18 ≡ 2 (mod 8)

⇔ 2 ≡ 2 (mod 8).

Example 5.2.3. Consider a hooked starter sequence with one defect for the case

(n, λ, h) = (6, 3, 2), given below in array form.

2 6 2

8 2 0

4 6 0

3 4 8

3 6 4

3 1 1

1 8 ?



.

since bn
p
c ≡ k (mod p) =⇒ 2 ≡ k (mod 3), then

n ≡ kp, kp+ 1, kp+ 2, . . . , kp+ p− 1 (mod pe+1)⇔6 ≡ 2(3) (mod 3)

⇔ 0 ≡ 0 (mod 3).

Now, the expected minimum number of zeros is calculated as h = (p − k)(s − 1) ⇒
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h = 2. This is in fact the case for the given sequence, where we have two zeros in the

third column of the array. However, the last zero in the array lies outside the sequence

represented by a star. The permissible locations of the zeros are given by si, such that

i ≡ k + 1, . . . , p − 1, 0 (mod p) ⇒ i ≡ 0 (mod 3). This is in fact the case for the

given sequence, where 6, 9 ≡ 0 (mod 3).

Example 5.2.4. Consider a hooked starter sequence with three defects for the case

(n, λ, h) = (9, 4, 3), given below in (transpose) array form:

12 4 11 4 10 4 12 4 3 10 5 3 12 11 10 5 1 1 12 10

0 2 2 2 2 6 3 11 6 3 0 6 5 0 6 1 1 5 11 ?

Note λ = pet =⇒ p = 2 = e, t = 1. A = {7, 8, 9}, D = {10, 11, 12}, |A∗| =

1, and |D∗| = 2. since, bn
p
c+ 1 ≡ k (mod p) =⇒ 1 ≡ k (mod 2) then

n ≡ kp− p, kp+ (1− p), . . . , kp− 1 (mod pe+1)⇔9 ≡ 1 (mod 8)

⇔ 1 ≡ 1 (mod 8).

Now, the expected minimum number of zeros is calculated as h = (p − k)(s − 1) ⇒

h = 3. This is in fact the case for the given sequence. The permissible locations of

the zeros are given by si such that i ≡ k + 1, . . . , p− 1, 0 (mod p)⇒ i ≡ 0 (mod 2).

This is in fact the case for the given sequence, where 2, 22, 28 ≡ 0 (mod 2).

5.3 Computational Results

In this section, we present some computational results for generalized (extended)

starter sequences with the minimum number of zeros (hooks) and with multiplicity
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(λ = 3, 4) as shown in Tables (1) and (2). These results were obtained by an exhaus-

tive computer search. The original program was written by David Churchill in his

Honors project under the supervision of Nabil Shalaby. New results are presented here

in this section, an exhaustive search shows that there exists one generalized extended

starter sequence of order 17 and multiplicity λ = 4.

(4, 17)-GES:

7, 19, 1, 1, 1, 1, 21, 7, 10, 8, 13, 20, 14, 3, 7, 15, 3, 8, 10, 3, 19, 7, 3, 13, 11, 8, 14, 21, 10, 12, 15, 20, 5, 8,

9, 11, 13, 5, 10, 19, 14, 12, 5, 9, 6, 15, 11, 5, 21, 13, 6, 20, 9, 12, 14, 4, 6, 11, 19, 4, 15, 9, 6, 4, 2, 12, 2, 4, 2,

21, 2, 20.

The next result is that there exists one generalized starter sequence (4, 18)-GSS, one

(4, 19)-GSS, and four (4, 20)-GSS .

n = 18 and λ = 4

7, 19, 1, 1, 1, 1, 21, 7, 10, , 8, 13, 20, 14, 3, 7, 15, 3, 8, 10, 3, 19, 7, 3, 13, 11, 8, 14, 21, 10, 12, 15, 20, 5, 8,

9, 11, 13, 5, 10, 19, 14, 12, 5, 9, 6, 15, 11, 5, 21, 13, 6, 20, 9, 12, 14, 4, 6, 11, 19, 4, 15, 9, 6, 4, 2, 12, 2, 4, 2,

21, 2, 20.

n = 19 and λ = 4

5, 17, 2, 19, 2, 5, 2, 21, 2, 15, 5, 9, 11, 4, 13, 5, 16, 4, 17, 14, 9, 4, 19, 11, 15, 4, 10, 13, 21, 9, 7, 12, 16, 14, 11,

17, 10, 7, 9, 15, 13, 19, 8, 12, 7, 11, 10, 14, 16, 21, 8, 7, 17, 13, 15, 12, 10, 6, 8, 3, 19, 14, 3, 6, 16, 3, 8, 12, 3,

6, 21, 1, 1, 1, 1, 6.

n = 20 and λ = 4

20, 11, 22, 1, 1, 1, 1, 24, 14, 16, 3, 18, 11, 3, 7, 12, 3, 13, 15, 3, 20, 7, 14, 11, 22, 16, 6, 12, 7, 18, 13, 24, 6, 15,

11, 7, 14, 8, 6, 12, 20, 16, 10, 13, 6, 8, 22, 18, 15, 9, 14, 12, 10, 8, 5, 24, 13, 16, 9, 5, 20, 8, 10, 15, 5, 18, 4, 9,

22, 5, 4, 2, 10, 2, 4, 2, 9, 2, 4, 24.

20, 24, 4, 2, 9, 2, 4, 2, 10, 2, 4, 5, 22, 9, 4, 18, 5, 15, 10, 8, 20, 5, 9, 16, 13, 24, 5, 8, 10, 12, 14, 9, 15, 18, 22,

5, 6, 13, 10, 16, 20, 12, 6, 8, 14, 7, 11, 15, 6, 24, 13, 18, 7, 12, 6, 16, 22, 11, 14, 7, 20, 3, 15, 13, 3, 12, 7, 3,

11, 18, 3, 16, 14, 24, 1, 1, 1, 1, 22, 11.
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5, 11, 6, 19, 25, 5, 20, 14, 6, 23, 5, 13, 11, 15, 6, 5, 1, 1, 1, 1, 6, 14, 19, 11, 13, 17, 20, 3, 15, 25, 3, 7, 23, 3,

11, 14, 3, 13, 7, 12, 8, 19, 17, 15, 9, 7, 20, 10, 8, 14, 13, 12, 7, 9, 25, 23, 8, 10, 15, 17, 19, 4, 9, 12, 8, 4, 20,

10, 2, 4, 2, 9, 2, 4, 2, 12, 17, 10, 23, 25.

26, 2, 16, 2, 5, 2, 17, 2, 4, 5, 18, 21, 4, 8, 5, 10, 4, 7, 16, 5, 4, 8, 19, 17, 7, 10, 26, 12, 18, 8, 13, 7, 21, 14, 16,

10, 6, 8, 7, 12, 17, 19, 6, 13, 11, 10, 18, 14, 6, 9, 16, 12, 26, 21, 6, 11, 13, 17, 9, 3, 19, 14, 3, 12, 18, 3, 11, 9,

3, 13, 1, 1, 1, 1, 21, 14, 9, 11, 26, 19.
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n
Samples of the generalized (extended) starter sequences of order (n),

multiplicity (λ = 3), with the minimum number of zeros (h).
h

Number of the starter
sequences including

Skolem sequences

2 –

–

0

3 –

–

0

4 5,7,0,3,0,5,3,0,7,3,5,1,1,1,0,7 4 52

6,0,1,1,1,5,6,0,0,2,5,2,6,2,0,5

2,5,2,6,2,0,5,0,0,6,0,5,1,1,1,6

7,0,4,6,0,0,4,7,0,6,4,1,1,1,7,6

5 8,5,1,,1,1,4,5,0,8,4,2,5,2,4,2,0,8 2 14

6,7,1,1,1,2,6,2,7,2,3,0,6,3,0,7,3

3,7,0,3,6,0,3,2,7,2,6,2,1,1,1,7,6

7,1,1,1,6,0,3,7,0,3,6,2,3,2,7,2,6

6 9,1,1,1,2,5,2,6,2,9,5,3,0,6,3,5,0,3,9,6 2 48

7,9,2,5,2,0,2,7,5,3,9,0,3,5,7,3,1,1,1,9

9,5,6,1,1,1,5,0,6,9,3,5,0,3,6,2,3,2,9,2

8,9,0,2,7,2,3,2,8,3,9,7,3,1,1,1,8,0,7,9

7 5,7,0,4,9,5,3,4,7,3,5,4,3,9,2,7,2,0,2,1,1,1,9 2 132

7,10,0,3,4,0,3,7,4,3,6,10,4,2,7,2,6,2,1,1,1,10,6

11,9,0,5,1,1,1,7,5,3,9,11,3,5,7,3,2,0,2,9,2,7,11

8,10,4,1,1,1,4,6,8,3,4,10,3,6,0,3,8,0,2,6,2,10,2

8 9,6,10,1,1,1,2,6,2,9,2,5,10,6,3,4,5,3,9,4,3,5,10,4 0 2

4,10,5,3,4,9,3,5,4,3,6,10,5,2,9,2,6,2,1,1,1,,10,6,9

9 4,11,9,3,4,5,3,7,4,3,5,9,11,6,7,5,1,1,1,6,9,7,2,11,2,6 0 36

10,8,12,5,1,1,1,4,5,8,10,4,6,5,12,4,3,8,6,3,10,2,3,2,6,2,12

5,10,12,3,4,5,3,8,4,3,5,10,4,6,12,8,1,1,1,6,2,10,2,8,2,6,12

12,8,1,1,1,10,5,3,6,8,3,5,12,3,6,10,5,8,4,2,6,2,4,2,12,10,4

10 10,14,6,1,1,1,3,9,6,3,10,8,3,4,6,14,9,4,5,8,10,4,2,5,2,9,2,8,5,14 0 172

13,10,3,7,5,3,6,9,3,5,7,10,6,13,5,4,9,7,6,4,2,10,2,4,2,9,13,1,1,1

14,10,4,12,8,2,4,2,5,2,4,10,8,5,14,12,3,6,5,3,8,10,3,6,1,1,1,12,14,6

5,3,10,13,3,5,9,3,6,4,5,7,10,4,6,9,13,4,7,2,6,2,10,2,9,7,1,1,1,13

11 11,9,13,2,5,2,6,2,8,5,9,11,6,7,5,13,8,4,6,9,7,4,11,3,8,4,3,7,13,3,1,1,1 0 196

16,5,13,11,4,2,5,2,4,2,8,5,4,9,11,13,16,6,8,1,1,1,9,6,3,11,8,3,13,6,3,9,16

16,8,3,4,11,3,6,4,3,8,10,4,6,9,5,11,16,8,6,5,10,2,9,2,5,2,11,1,1,1,10,9,16

3,4,13,3,14,4,3,12,2,4,2,5,2,7,8,13,5,6,14,12,7,5,8,6,1,1,1,7,13,6,8,12,14

12 12,16,1,1,1,10,2,7,2,11,2,8,12,5,7,10,6,16,5,8,11,7,6,5,12,10,4,8,6,3,4,11,3,16,4,3 0 550

13 –

–

0

14 14,20,4,13,11,3,4,12,3,8,4,3,10,5,14,11,13,8,5,12,7,20,10,5,6,8,11,7,14,13,6,12, 0 5904

10,2,7,2,6,2,1,1,1,20.

14,19,17,13,9,6,1,1,1,3,11,6,3,9,14,3,13,6,8,17,19,11,9,2,7,2,8,2,14,13,5,7,11,4,

8,5,17,4,7,19,5,4.

15 15,21,12,14,6,2,13,2,5,2,6,9,11,5,12,15,6,14,5,13,9,3,21,11,3,8,12,3,7,9,15,14,13,8, 0 27414

11,7,4,1,1,1,4,8,7,21,4.

15,18,12,20,14,1,1,1,2,8,2,10,2,7,12,15,6,8,14,18,7,10,6,20,9,8,12,7,6,5,15,10,14,9,

5,3,4,18,3,5,4, 3,9,20,4.

Table 5.1: (3,n)-(extended) starter sequences with the minimum number of zeros.
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n

Samples of the generalized (extended) starter sequences of order (n),

multiplicity (λ = 4), with the minimum number of zeros (h). h

Number of the starter
sequences including

Skolem sequences

2 2,0,2,0,2,0,2,1,1,1,1 3 2

1,1,1,1,2,0,2,0,2,0,2

3 4,2,0,2,4,2,0,2,4,0,0,0,4,1,1,1,1 5 6

4,0,0,2,4,2,0,2,4,2,0,0,4,1,1,1,1

4,0,0,0,4,2,0,2,4,2,0,2,4,1,1,1,1

4 5,0,6,0,0,5,0,2,6,2,5,2,0,2,6,5,1,1,1,1,6 5 2

6,1,1,1,1,5,6,2,0,2,5,2,6,2,0,5,0,0,6,0,5

5 6,3,7,0,3,0,6,3,0,7,3,2,6,2,0,2,7,2,6,1,1,1,1,7 4 8

7,1,1,1,1,6,3,7,0,3,0,6,3,0,7,3,2,6,2,0,2,7,2,6

3,7,0,3,0,6,3,0,7,3,2,6,2,0,2,7,2,6,1,1,1,1,7,6

2,7,2,0,2,6,2,3,7,0,3,6,0,3,0,7,3,6,1,1,1,1,7,6

6 6,8,1,1,1,1,6,3,0,8,3,4,6,3,0,4,3,8,6,4,2,0,2,4,2,8,2 3 2

2,8,2,4,2,0,2,4,6,8,3,4,0,3,6,4,3,8,0,3,6,1,1,1,1,8,6

7 4,5,8,2,4,2,5,2,4,2,8,5,4,6,3,0,5,3,8,6,3,0,0,3,0,6,8,1,1,1,1,6 4 12

2,4,2,8,2,4,2,5,6,4,0,8,5,4,6,3,0,5,3,8,6,3,5,0,3,0,6,8,1,1,1,1

6,1,1,1,1,8,6,0,3,0,5,3,6,8,3,5,0,3,6,4,5,8,0,4,2,5,2,4,2,8,2,4

1,1,1,1,2,4,2,8,2,4,2,5,6,4,0,8,5,4,6,3,0,5,3,8,6,3,5,0,3,0,3,6,8

8 8,10,1,1,1,1,4,6,8,0,4,10,5,6,4,0,8,5,4,6,3,10,5,3,8,6,3,5,2,3,2,10,2,0,2 3 6

2,0,2,10,2,3,2,5,3,6,8,3,5,10,3,6,4,5,8,0,4,6,5,10,4,0,8,6,4,1,1,1,1,10,8

9 10,11,12,5,1,1,1,1,5,6,10,0,11,5,12,6,3,0,5,3,10,6,3,11,4,3,12,2,4,2,11,2,4,2,12 3 10

12,0,4,2,11,2,4,2,10,2,4,6,12,3,4,11,3,6,10,3,5,0,3,6,12,5,11,0,10,6,5,1,1,1,1,5,12,11,10

10 14,5,1,1,1,1,5,6,9,0,10,5,0,6,14,8,5,9,3,6,10,3,0,8,3,6,9,3,14,4,10,8, 3 6

2,4,2,9,2,4,2,8,10,4,14.

11,2,4,2,8,2,4,2,9,7,4,11,8,6,4,3,7,9,3,6,8,3,11,7,3,6,9,5,8,0,7,6,5,11,

0,9,0,5,1,1,1,1,5.

11,2,4,2,0,2,4,2,9,7,4,11,8,6,4,3,7,9,3,6,8,3,11,7,3,6,9,5,8,0,

7,6,5,11,0,9,8,5,1,1,1,1,5.

11 11,13,14,7,1,1,1,1,5,0,7,11,8,5,13,0,14,7,5,6,8,0,11,5,7,6,3,13,8,3,14,6, 3 30

3,11,4,3,8,6,4,2,13,2,4,2,14,2,4.

13,1,1,1,1,6,3,7,8,3,12,6,3,13,7,3,8,6,9,0,5,7,12,6,8,5,13,9,7,4,5,0,8,4,12,

5,9,4,2,13,2,4,2,0,2,9,12.

12 13,5,10,14,0,0,5,1,1,1,1,5,10,13,7,4,5,14,6,4,9,7,10,4,6,8,13,4,7,9,6,14,10, 2 2

8,3,7,6,3,9,13,3,8,2,3,2,14,2,9,2,8

13 2,6,2,0,2,15,2,6,1,1,1,1,11,6,8,13,5,10,7,6,15,5,,10,7,6,15,5,11,9,7,5,10,13, 3 10

0,8,5,7,9,11,15,4,10,8,7,4,13,9,3,4,11,3,10,4,3,15,9,3,0,13.

10,1,1,1,1,12,16,4,0,14,10,4,2,0,2,4,2,12,2,4,10,5,16,14,8,9,5,6,7,12,10,5,8,6,

9,7,5,14,16,6,8,12,7,9,3,6,0,3,8,7,3,14,9,3,16.

14 17,13,14,6,7,1,1,1,1,6,9,7,10,11,13,6,14,17,7,9,3,6,10,3,11,7,3,13,9,3,14,8,10, 1 4

5,17,11,0,9,5,8,13,4,10,5,14,4,11,8,5,4,2,17,2,4,2,8,2.

17,9,14,6,7,1,1,1,1,6,9,7,10,11,13,6,14,17,7,9,3,6,10,3,11,7,3,13,9,3,14,8,10,

5,17,11,0,4,5,8,13,4,10,5,14,4,11,8,5,4,2,17,2,13,2,8,2.

15 4,10,8,19,4,15,11,6,4,7,8,10,4,6,13,14,7,11,8,6,15,10,19,7,9,6,8,13,11,14,7,10,2,9, 2 6

2,15,2,0,2,11,13,19,9,14,5,1,1,1,1,5,15,9,3,13,5,3,0,14,3,5,19,3.

8,10,17,2,18,2,4,2,8,2,4,10,0,16,4,5,8,11,4,17,5,10,18,12,8,5,6,7,11,16,5,10,6,9,7,12,17,

0,6,11,18,7,9,3,6,16,3,12,7,3,11,9,3,17,1,1,1,1,18,12,9,16

16 23,13,16,17,3,10,5,3,20,0,3,5,0,3,13,10,5,14,16,11,17,5,7,23,9,10,6,13,20,7,11,14,6,9, 2 12

16,10,7,17,6,8,13,11,9,7,6,14,23,8,20,4,16,9,11,4,17,8,2,4,2,14,2,4,2,8,1,1,1,1,20,23.

18,2,21,2,12,2,13,2,9,6,1,1,1,1,16,6,12,9,18,13,11,6,15,21,5,8,9,6,12,5,16,11,13,8,5,9,

18,15,10,5,12,8,11,7,21,13,16,4,10,8,7,4,15,11,18,4,0,7,10,4,3,0,16,3,7,21,3,15,10,3.

Table 5.2: (4,n)-(extended) starter sequences with the minimum number of zeros.



Chapter 6

Conclusion and Further Research

In this thesis, new families of the starter sequences were introduced, which will be

useful in combinatorial designs and graph theory. Moreover, all the necessary con-

ditions and some of the sufficient conditions of their existence were determined. We

introduced starter-labelled graphs, and we provided the conditions for the existence

of the minimum hooked starter-labeling of paths, cycles, and k-windmills. We also

introduced pseudo-starter sequences, which is a generalization of pseudo-Skolem se-

quences. Furthermore, we provided some of the conditions for the existence of sev-

eral types of pseudo-starter sequences. We also introduced generalized (extended)

starter sequences, we determined the necessary conditions for their existence, and we

determined, with few possible exceptions, the minimum number of zeros and their

permissible locations for the existence of generalized (extended) starter sequences.

In future work, we can introduce another generalization of a starter sequence, called

near-starter sequences. It is not hard to determine their necessary conditions by using

the same technique that we have used in this thesis.

Definition 6.0.1. An m-near-starter sequence of order n is a sequence of 2n − 2

positive integers m-near-SSn = (s1, s2, . . . , s2n−2) such that, for every positive integer
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i ∈ [1, n]\{m}, either i or i−1 appears exactly twice in the sequence m-near-SSn, and

if sa = sb = i or i−1, then |b− a| = i or i−1, respectively, such that i−1 is the additive

inverse of i in Z2n+1, where i−1 is referred to as a defect of the sequence, and m is

the missing point.

For example, the sequence (9, 6, 2, 5, 2, 1, 1, 6, 5, 9) is a 3-near-starter sequence of

order 6 with one defect (4−1) where the missing point (m = 3).

Theorem 6.0.1. There exists an m-near-starter sequence of order n with one defect

only if one of the following condition holds:

1. n ≡ 0, 1 (mod 4) and m is even, or

2. n ≡ 2, 3 (mod 4) and m is odd.

Definition 6.0.2. A k-extended m-near-starter sequence of order n is a sequence m-

near-SSn(k) = (s1, s2, . . . , s2n−1) satisfying the conditions of near-starter sequences,

with the additional condition that it contains exactly one empty position, which is in

position k, denoted by ∗ or 0.

For example, the sequence (12, 6, 4, 2, 7, 2, 4, 6, 0, 1, 1, 7, 12) is a 9-extended-near-

starter sequence of order 7 with one defect (3−1) and m = 5.

Theorem 6.0.2. There exists a k-extended m-near-starter sequence of order n with

one defect only if one of the following condition holds:

1. n ≡ 0, 1 (mod 4), and m and k are of opposite parity, or

2. n ≡ 2, 3 (mod 4), and m and k are of the same parity.

Some open problems include:

1. Determining the sufficient conditions for the existence of near-starter sequences

and extended near-starter sequences.
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2. Proving that the necessary conditions are sufficient for the existence of perfect,

hooked, and extended starter sequences with m defects for all the remaining

admissible defects, where m > 2.

3. Determining the sufficient conditions for the existence of excess starter se-

quences.

4. Determining the sufficient conditions for the existence of pseudo-starter se-

quences for all admissible defects.

5. Determining the sufficient conditions for labelling classes of hexagonal chains by

using starter sequences for all admissible defects.

6. Finding some applications of pseudo-starter sequences.

7. Determining the sufficient conditions for the existence of generalized perfect,

extended, and near-starter sequences.

8. Finding some applications of the generalized perfect, extended, and near-starter

sequences.



Bibliography

[1] A. Ababneh and N. Shalaby. Structure of indecomposable m-fold starters.
(preprint).

[2] J. Abrham and A. Kotzig. Skolem sequences and additive permutations. Discrete
Math., 37:143–146, 1981.

[3] B. A. Anderson and K. B. Gross. Starter-adder methods in the construction of
Howell designs. J. Austral. Math. Soc. Ser. A, 24(3):375–384, 1977.

[4] C. A. Baker. Extended Skolem sequences. J. Combin. Des., 3(5):363–379, 1995.

[5] C. A. Baker and J. D. A. Manzer. Skolem-labeling of generalized three-vane
windmills. Australas. J. Combin., 41:175–204, 2008.

[6] C. A. Baker, R. J. Nowakowski, N. Shalaby, and A. Sharary. m-fold and extended
m-fold Skolem sequences, 1994.

[7] C.A. Baker, V. Link, and N. Shalaby. Extended near skolem sequences. preprint.

[8] K. Chen, G. Ge, and L. Zhu. Starters and related codes. J. Statist. Plann.
Inference, 86(2):379–395, 2000. Special issue in honor of Professor Ralph Stanton.

[9] Charles J. Colbourn and Jeffrey H. Dinitz, editors. Handbook of combinatorial
designs. Discrete Mathematics and its Applications (Boca Raton). Chapman &
Hall/CRC, Boca Raton, FL, second edition, 2007.

[10] Charles J. Colbourn and Eric Mendelsohn. Kotzig factorizations: existence and
computational results. In Theory and practice of combinatorics, volume 60 of
North-Holland Math. Stud., pages 65–78. North-Holland, Amsterdam, 1982.

[11] Roy O. Davies. On Langford’s problem. II. Math. Gaz., 43:253–255, 1959.

[12] J. H. Dinitz and D. R. Stinson. A note on Howell designs of odd side. Utilitas
Math., 18:207–216, 1980.

[13] J. H. Dinitz and D. R. Stinson. The spectrum of Room cubes. European J.
Combin., 2(3):221–230, 1981.



100

[14] Jeffrey H. Dinitz and Douglas R. Stinson, editors. Contemporary design theory.
Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley
& Sons, Inc., New York, 1992. A collection of surveys, A Wiley-Interscience
Publication.

[15] Norman J. Finizio and Philip A. Leonard. Inductive extensions of some Z-
cyclic whist tournaments. Discrete Math., 197/198:299–307, 1999. 16th British
Combinatorial Conference (London, 1997).
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