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Abstract 

The effect of porosity on elastic modulus was studied. First, a study with experimental 

load-deflection curve using Finite Element Analysis and beam theory, Euler-Bernoulli 

and Timoshenko, to investigate the effect of porosity on elastic modulus of a 

cantilever beam undergoing tip loading. It was determined that porosity amount and 

location affected the elastic modulus of a cantilever beam undergoing tip loading. 

Second, an investigation into the applicability of atomistic modelling of vacancies as 

a method of studying the effect of porosity on elastic modulus was completed for two 

materials, pure iron and iron-chromium. The study involved testing several force 

fields and parameter sets to determine accuracy and reliability of prediction. It was 

determined that vacancy amount did influence elastic modulus, with some force fields 

and parameter sets providing more accurate prediction in modulus and reduction in 

modulus due to vacancies. Results were compared to experimental data and Finite 

Element model from literature. 
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1. Chapter 1: Introduction 

1.1. Background of Porosity  

Porosity, or small voids within a body, is of critical importance to study. 

Porosity has been shown to negatively impact the mechanical properties of materials, 

with several of these properties being directly related to the failure criteria of a 

material. Before quantifying the effect porosity has on mechanical properties, it must 

be determined which class of porosity is to be studied. Zhang and Wang [1] 

categorized porosity into three classes: 1) low porosity (less than 10% porous), 2) 

low to medium porosity (10 – 70% porous), and 3) high porosity (more than 70% 

porosity). The distinction into three classes has allowed the development of various 

models studying the effect of porosity on mechanical properties. Yang [2] showed that 

low porosity materials can be modelled under the assumption of no interaction 

between pores – in other words, the pores are sufficiently far enough apart that stress 

concentrations generated by individual pores are not felt by other pores. Due to this 

assumption, when determining the effect of porosity on elastic modulus in low 

porosity materials, the only parameter that must be studied is the total porosity, 

allowing the model to be independent of material properties. The overlapping 

spherical pore model, equation (1-1), developed by Gao et al. [3] does not include 

material properties, a model shown by Morrissey and Nakhla [4] to be the most 

accurate empirical model to predict the reduction of elastic modulus in low porosity 

materials in the elastic region.  
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 𝐸𝑠𝑠 = 𝐸0 (1 − 
𝜙

0.652
)

2.23

 (1-1) 

 

For the other classes the interaction of pores cannot be neglected. As such, 

models developed to study low to medium and high porosity materials must include 

material specific parameters. According to Zhang and Wang [1], these materials were 

treated as a “structure system with the [ideal material] solid being treated as 

structural components […] and pores are regarded as empty space.”  

Prior to the distinction of porosity into classes and with a focus on 

experimentation, Romanova, Krimer, and Tumanov [5] showed that pores affect 

many mechanical properties. These pores decrease the ultimate strength, the yield 

stress, and fatigue life in cyclic bending. In [5], it was shown that the decrease in 

mechanical properties was exponential with increasing porosity percent. In addition, 

large decreases were observed in the presence of large pores, while less drastic 

reductions in mechanical properties were observed in combinations of small and 

large pores [5]. Romanova et al. [5] posit that as the number of pores or total pore 

volume increases it is more likely that individual pores are affected by stress 

concentrations, leading to crack initiation, propagation, and, ultimately, failure [5]. 

Discussing pore shapes and the affect they have on mechanical properties, Romanova 

et al. [5] stated that pores changed shape as size increased, noting that “small pores 

[…] were spherical” and “large pores were […] irregular elongated shapes […] 

[acting] as ‘internal notches’ […] [increasing] […] stress concentration[s].” Lastly, 

Romanova et al. [5] concludes that “useful life […] decreases exponentially with 
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increase in porosity.” It is evident from the conclusions of Romanova et al. [5] that 

porosity clearly affects the mechanical properties and lifecycle of a structure. As such, 

the effect of porosity on the mechanical integrity of a structure must be investigated 

to better understand the mechanical response and behaviour throughout the 

structure’s lifecycle.  

To study the effects of porosity on mechanical response of a structure without 

knowing pore distribution, Hardin and Beckermann [6] showed that the elastic 

modulus could be modelled “as a function into finite element simulations […] 

[resulting] in accurate stress-strain fields in the elastic regime.” Being able to study 

the effect of porosity on the mechanical properties of a material or structure with 

finite element (FE) is of utmost importance. Without this conclusion, researchers and 

engineers would have to model individual pores within FE models to study the effect 

of porosity – a dramatic increase in the time required to study an area of interest.  

From the prior discussion, it can be reasoned that a material with macroscale 

pores would possess less carrying-capacity than the same material with no pores. 

This is because the total area over which the force is carried is reduced with the 

presence of macroscale pores; thus, with less material the carrying-capacity is 

reduced. The same cannot be said, with confidence, for the effect of microscale pores.  

Let’s suppose that there is a porosity of 1% in two identical bodies of the same 

material. Now, let’s have one body have several large macroscale pores which 

obviously reduce the total volume of the body, with a total porosity of 1%. Let the 

other body have millions of small microscale pores, still totalling 1% total porosity. It 
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is obvious that the large pores create stress concentrations and will reduce the 

carrying-capacity of the material. It is not as obvious, but can be inferred, that the 

millions of microscale pores will also have stress concentrations and thus should 

reduce the carrying-capacity of the body. Therefore, since the effect of large, 

macroscale pores is understood and known, then the effect of small, microscale pores 

must also be understood and known. 

To study the effect of microscale pores, two approaches were developed. First, 

a macroscale FE model was built in Abaqus to quantify the effect of microscale 

porosity on the elastic modulus of a cantilever. Second, an atomistic-scale molecular 

dynamics simulation was performed to quantify the effect of vacancies on elastic 

modulus. It is postulated that a vacancy-based atomistic model would capture a 

similar effect to the macroscale FE model, in that the elastic modulus is reduced with 

increasing porosity (or vacancies). The purpose of this thesis is to provide 

justification for the use of simulations for the study of microscale porosity on elastic 

modulus and to demonstrate the usefulness of simulations. 

1.2. Justification of Simulations  

With the increase of computational power, more sophisticated modelling and 

simulation capabilities have been developed, allowing for more accurate calculations 

than previously performed for the determination of material properties and 

response. There are several benefits of performing computer-based simulations over 

physical experiments. Some of these benefits are purely economic, while others 

include the ease at which modifications can be performed and still be studied. For 



 

14 
 

example, when performing a simple uniaxial tension test, a load frame is required 

which is a high capital expenditure (CAPEX) item. As well, there are the financial and 

time expenses of preparing samples and performing the experiment. In addition, the 

financial and time costs of any one of these steps can increase dramatically if more 

accurate results are required or if modifications must be made to the equipment or 

samples. Conversely, performing a FE simulation of a uniaxial tension test requires a 

FE software package and a computer, both of which could be high CAPEX items, but 

are in general less expensive than a load frame. In addition, this method allows for 

easier manipulation of the remaining factors. Once a simulation has been developed, 

the efficiency of repeating the test with various parameters is much higher than 

physical experiments. In a simulation, if the material type or shape changes this is a 

much more simple, quick, and cost efficient adjustment when compared to physical 

experiments. As well, if the speed of testing must be adjusted, it too can easily be 

manipulated. In addition, computer scripts can be written which can automate the 

running of simulations to allow for less downtime and more efficient use of time. 

Lastly, small sources of error that are present in physical experiments, such as if the 

load frame has a slight rotation during the test, are removed.  This error would not be 

present in a computer based simulation without being designed to do so, thus 

allowing for more accurate testing. 

1.3. Thesis Overview and Purpose 

The overall purpose of this Master’s Thesis was to investigate the effect of 

porosity on the elastic modulus using FE Analysis and Molecular Dynamics 

simulations. To accomplish this, a 3D FE model was first built to allow for the study 
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of porosity amount and location on the elastic modulus of a cantilever beam 

undergoing tip loading. This model was built using experimental load-deflection 

results and Scanning Electron Microscope (SEM) images found in literature. Various 

porosity amounts were tested in various distributions throughout the length of the 

cantilever to study the influence porosity amount and location has on elastic modulus. 

After the FE model was completed, molecular dynamics simulations were used to 

study the effect of atomistic-scale vacancies on the elastic modulus. This study 

involved testing various force fields and parameters available in literature. 

This thesis is written in manuscript format with four chapters. Chapter 1 

provides the background information relevant to porosity’s effect on the strength of 

a material as found in literature. Chapter 2 focuses on the analysis of a micro-

cantilever beam using 3D FE Analysis. This study involved an in-depth analysis to first 

prove the use of FE Analysis and then apply it to the micro-cantilever beam found in 

literature. Chapter 3 involves an investigation into the applicability of atomistic-scale 

modelling using molecular dynamics simulations to determine effect of vacancies on 

elastic modulus. Chapter 3 involves studying several relevant force fields and 

parameter sets to determine the effect of vacancies on elastic modulus of a uniaxial 

tension test for two materials – pure iron, and iron-chromium. Finally, Chapter 4 

summarizes the findings and provides an overview of the results of the two studies.  



 

16 
 

1.4. Co-authorship Statement 

 In the following sections of this thesis, some of the work was collaborative. As 

such, the author aims to outline the contributions made by the co-authors for each 
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 In the second chapter, the paper titled A Finite Element Model to Study the 

Effect of Porosity Location on the Elastic Modulus of a Cantilever Beam, contributions 

were made by Liam Morrissey. The design and identification of the research proposal, 

the practical aspects of the research, the data analysis, and the manuscript 

preparation was completed by the author of this thesis. Morrissey provided an 

Abaqus FE model of a two-dimensional cantilever to determine the relationship 

between reduction in modulus and porosity concentration. This is present in the 

section 2.3.4 Finite Element Model – Reduction in Modulus due to Porosity under 

Bending. As a result of completing this model, Morrissey also provided the written 

procedure for how the model was built, as well as the results provided from this 

model, which can be seen in section 2.4.2 Finite Element Model – Two-Dimensional 
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 In the third chapter, the paper titled A Molecular Dynamics Analysis of 
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2. Chapter 2: A Finite Element Model to Study the Effect 

of Porosity Location on the Elastic Modulus of a Cantilever 

Beam 

Abstract: The effect of the location of porosity concentration on elastic modulus of a 

cantilever beam is investigated. First, one-dimensional investigation with beam 

theory, Euler-Bernoulli and Timoshenko, was performed to estimate the modulus 

based on load-deflection curve. Second, three-dimensional Finite Element (FE) model 

in Abaqus was developed to identify the effect of porosity concentration. The use of 

macro-models such as beam theory and three-dimensional FE model enabled 

enhanced understanding of the effect of porosity on modulus. 
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2.1. Introduction 

2.1.1. Background 

It is known that porosity affects the mechanical properties of metals. In many 

materials, increases in macroscale pore sizes have shown to decrease ultimate 

strength, yield stress, and fatigue life [1]. However, due to advancements in 

manufacturing, pores in metals tend to be on the microscale instead of macroscale. 

This presents new concerns since the effect on a material’s mechanical properties due 

to this microporosity is unknown [2]. This is critical because without understanding 

how microporosity affects a material, the ability to predict behavior due to loading 

throughout its lifecycle is difficult. Throughout the life cycle of a structure, exposure 

to various environmental conditions, sometimes harsh, is possible. Due to these 

environmental conditions, it is possible that porosity can be increased in the material 

as shown by Morrissey, Handrigan, and Nakhla [3]. As such, structures may be 

affected in various locations, and in differing amounts, depending on the exposure to 

the environment. It is critical to understand if the location of porosity has an effect on 

a structure.  

2.2. Purpose of Study 

It is known that porosity has an effect on elastic modulus. The work of 

Morrissey and Nakhla [4] presented a literature review on existing models available 

in literature. These models, mostly empirical, describe the effect of porosity on elastic 

modulus. In their study, Morrissey and Nakhla [4] developed a two-dimensional 
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Finite Element (FE) model that successfully captured the effect of porosity on elastic 

modulus in tension.  

In the current work, a three-dimensional FE model is developed to investigate 

the effect of porosity on elastic modulus in bending. The effects of uniform 

distribution and concentrated zones of porosity were investigated. All FE model 

results were compared to test data reported in literature. 

2.3. Procedures 

2.3.1. Understanding Experimental Setup and Data 

The first step in this study was to examine experimental load versus deflection 

data for micro-cantilevers. For this study, the work by Gong [5] was first analyzed to 

understand the correct beam theory to apply for determining elastic modulus, as well 

as to develop the three-dimensional FE model. An experimental elastic modulus of 

147 GPa is reported in [5] for beam 5. As well, Gong’s three-dimensional FE model 

captured the trend of porosity reduction with an average error in prediction of +38% 

compared to experimental results. 

It is reported in [5] that samples were heat treated such that an average grain 

size of 8-10 µm was obtained. From these samples, the micro-cantilevers were 

produced at the University of California, Berkeley (UCB) using a focused ion beam 

(FIB). The FIB was used to cut three trenches using a 7-15 nA beam current – forming 

a U-shaped trench that had a width of 20-30 µm and a depth of 10 µm. Then using a 

1-3 nA beam current, the outline of the beam was refined. Lastly, the sample was 

rotated 45°, both clockwise and counter-clockwise, around the longitudinal axis of the 
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beam to allow for cutting of the triangular bottom of the beam. See Figure 2-1 for a 

schematic of the cross-section. After the microcantilever was manufactured, a 

MicroMaterials nanoindenter was used to apply loading at the microcantilever beam 

tip and report beam tip displacement as the load was applied. The load was applied 

with a displacement rate of 10 nm/s until fracture. Lastly, the depth of indentation 

into bulk material was removed from the measured deflection to ensure only the 

displacement due to bending is measured. A Scanning Electron Microscope (SEM) 

image of the microcantilever with the nanoindenter from [5] is shown in Figure 2-2. 

 
Figure 2-1 - Schematic of beam cross-section 

 

 
Figure 2-2 - SEM image of microcantilever and nanoindenter from [5] 
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2.3.2. Discussion of Beam Theory  

To obtain the beam’s elastic modulus from load-deflection data, two beam 

theories are chosen: Euler-Bernoulli beam theory and Timoshenko beam theory. The 

Euler-Bernoulli beam theory equation for the tip deflection of a cantilever due to an 

applied tip load is given by equation (2-1), while equation (2-2) provides the equation 

for Timoshenko beam theory. 

 𝛿𝑇𝑖𝑝−𝐸𝐵 =  
𝑃𝐿3

3𝐸𝐼
 (2-1) 

 

 𝛿𝑇𝑖𝑝−𝑇𝑖𝑚𝑜𝑠ℎ𝑒𝑛𝑘𝑜 =  
𝑃𝐿3

3𝐸𝐼
+  

𝑃𝐿

𝜅𝐴𝐺
 (2-2) 

 

In equations (2-1) and (2-2), P is the applied load, L is the length of the moment 

arm, E is the elastic modulus, A and I are the area and second moment of area of the 

cross-section, κ is the Timoshenko shear coefficient, and G is the shear modulus, given 

by the equation: 

𝐺 =  
𝐸

2(1 + 𝜈)
 

where ν is Poisson’s ratio. 

It can be seen that the equations are similar with the exception that 

Timoshenko beam theory includes the deflection due to the shear force. To discuss 

the rationale of deciding between the two beam theories, one must understand the 

restrictions and assumptions of Euler-Bernoulli beam theory. 
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There are several restrictions for Euler-Bernoulli beam theory. The beam 

must: 1) undergo uniform bending, 2) have a high slenderness ratio (greater than 

10:1), 3) be made of homogeneous material, 4) undergo symmetric loading through 

the width, and 5) possess a uniform cross-section. These restrictions lead to several 

assumptions: 1) plane cross-sections remain plane, 2) normal cross-sections remain 

normal, and 3) cross-section is rigid.  

Euler-Bernoulli beam theory was developed for long, slender beams with a 

slenderness ratio of at least 10:1. At high slenderness ratios, the influence of shear 

deformation and stress are less pronounced and the assumptions of Euler-Bernoulli 

beam theory are holding. Meanwhile, for beams with low slenderness ratios, the effect 

of shear is more pronounced, violating the assumption on cross-section remaining 

normal to the neutral axis and making Timoshenko beam theory more efficient.  

Before continuing the discussion comparing Euler-Bernoulli to Timoshenko 

beam theory, equations (2-1) and (2-2) have been re-written in equations (2-3) and 

(2-4), in terms of a rectangular cross-section, as shown in Figure 2-3, to clearly 

demonstrate the effect of slenderness ratio on deflection. 

 
Figure 2-3 - Rectangular cross-section 
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 𝛿𝑇𝑖𝑝−𝐸𝐵 =  
4𝑃

𝐸𝑏
(

𝐿

ℎ
)

3

 (2-3) 

 

 𝛿𝑇𝑖𝑝−𝑇𝑖𝑚𝑜𝑠ℎ𝑒𝑛𝑘𝑜 =  
4𝑃

𝐸𝑏
(

𝐿

ℎ
)

3

+  
𝑃

𝑏𝜅𝐺
(

𝐿

ℎ
) (2-4) 

 

As it can be seen from equations (2-3) and (2-4), slenderness ratio, the ratio 

between the length and height of the beam, clearly influences the deflection of the 

beam. It is known, and can be observed through equation (2-3) that beams of long, 

slender geometry will deflect more than short, stubby beams made of the same cross-

sectional geometry and material. By observing Timoshenko’s beam theory, equation 

(2-4), to study the effect of slenderness ratio, it can be seen that the first term has a 

cubic dependence on the slenderness ratio, while the second term, the shear effect 

term, has only a direct dependence on the slenderness ratio. As slenderness ratio 

increases, the second term becomes negligible compared to the first, and as a result it 

can be neglected, yielding to Euler-Bernoulli beam theory provided in equation (2-3). 

This clearly demonstrates what was stated prior – that at high slenderness ratios, the 

influence of shear deformation and stress are less pronounced; however, as 

slenderness ratio decreases and the beam becomes stubbier, the shear effect term is 

no longer negligible and can no longer be neglected. In addition, for materials weaker 

in shear, the shear effect is more pronounced and as such the contribution to 

deflection cannot be neglected. Thus, the effect due to shear must be included, at 

which point Timoshenko beam theory should be utilized. 
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Another factor for deciding between Euler-Bernoulli beam theory and 

Timoshenko beam theory is the boundary conditions. For a cantilever beam, Euler-

Bernoulli beam theory was developed around the assumption that the beam has zero 

deflection, slope, and curvature at the root – no shear effect due to uniform bending 

restriction. A true cantilever is rigidly supported at one end, whereas the beam from 

[5] is not rigidly supported – the top face of the substrate is free to move. As such, the 

cantilever is not prevented from sloping at the root, thus another restriction for Euler-

Bernoulli beam theory is violated. Timoshenko beam theory was not developed 

around this restriction, hence the reasoning for including the effect of shear on the 

beam. 

Lastly, Euler-Bernoulli beam theory was developed under the restriction of 

uniform pure bending being applied to the beam, with no introduction of shear to the 

system. However, when a point load is applied to a beam, shear is introduced within 

the beam. As such, yet another restriction for Euler-Bernoulli beam theory is violated. 

As stated before, Timoshenko beam theory does not neglect the effect due to the shear 

force, and as such, the limitations of the applied load are not as strict as they are for 

Euler-Bernoulli beam theory. 

A discussion on the geometry of the microcantilever is required to allow for 

critical analysis of the beam theory to which most confidence is held. Microcantilever 

beam 5 in [5] is approximately 7.5 µm tall, 4 µm wide, and 28 µm long. The load is 

applied at approximately 27 µm from the root – this will be taken to be the total length 

since deflection is also measured at this location. The cross-section is right-
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pentagonal shaped, Figure 2-1, as proposed by Maio and Roberts in [6]. The authors 

believe the cross-section was chosen for the simplicity of manufacturing of the beams 

through the use of FIB cutting. From the dimensions provided in [5], the beam is 

considered to be short and stubby with a low slenderness ratio. As well, observing 

Figure 2-2, it is evident the beam is not undergoing uniform bending since the 

indenter acts as a concentrated, point load – this type of load, as discussed earlier, 

introduces shear into the cantilever. Lastly, continuing observations of the 

microcantilever, it can be stated that the microcantilever is not rigidly supported at 

the root. Due to these factors, shear effects may be highly pronounced, especially at 

the root, as such, both Euler-Bernoulli and Timoshenko beam theories were 

compared in the current study. 

The next step in the analysis was to study the load-deflection curve in [5]. 

From the slope of the load-deflection curve, the elastic modulus was estimated using 

both Euler-Bernoulli and Timoshenko beam theory. To perform this calculation, 

equations (2-1) and (2-2) for Euler-Bernoulli and Timoshenko beam theory were re-

written in terms of the load-deflection ratio, as shown in equations (2-5) and (2-6).  

 
𝑃

𝛿𝑇𝑖𝑝−𝐸𝐵
=  

3𝐸𝐼

𝐿3
 (2-5) 

 

 
𝑃

𝛿𝑇𝑖𝑝−𝑇𝑖𝑚𝑜𝑠ℎ𝑒𝑛𝑘𝑜
=  

3𝐸𝐼𝜅𝐴𝐺

3𝐸𝐼𝐿 + 𝜅𝐴𝐺𝐿3
 (2-6) 
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Now that a clear understanding of the two beam theories has been developed, 

a discussion on the assumptions made for this study is provided.  

2.3.3. Assumptions  

For this study, several assumptions are made. Uranium Dioxide is highly 

anisotropic [7, 8]; however, it is assumed that the material acts as an isotropic 

material since the microcantilevers are ideally contained within a single crystal-grain. 

It is reported in [5] that not all microcantilevers are within a single grain; however, 

without additional information on number of grains and grain orientation, the 

assumption will remain. The FE model assumes the beam is solid, homogeneous and 

has a constant cross-section free of imperfections. As well, the FE model assumes 

uniform porosity distribution across the cross-section. Lastly, it is assumed that the 

effect on Poisson’s ratio for porosities less than 5% is negligible [9, 10].  

2.3.4. Finite Element Model – Reduction in Modulus due to Porosity under Bending 

To accurately understand the effect of porosity on elastic modulus of a 

cantilever in bending, a FE model must be studied. The work of Morrissey and Nakhla 

[4] demonstrated that, when in tension, the effect of pores in low porosity materials, 

when voids do not interact, can be accurately modelled using relationships that 

account only for pore volume. However, during bending, the top and bottom portion 

of the beam are in different states of stress – one is in tension, while the other is in 

compression. Therefore, for a model to be able to be used for bending, it must also be 

accurate in both tensile and compressive loading. To validate the model for bending, 

the model developed by Morrissey and Nakhla [4] was tested under a compressive 
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load. Within this model, a macroscopic plate with a consolidated pore, representing 

various total porosities, is placed under loading and the slope of the resulting stress-

strain curve is then used to determine a reduced modulus compared to the nominal 

modulus. Results from this model were then compared to the Gibson and Ashby 

model [11], a commonly referenced model to predict the elastic modulus of open- and 

closed-cell foams under compression (equations (2-7) and (2-8), respectively). 

 
𝐸𝑟𝑒𝑑𝑢𝑐𝑒𝑑

𝐸𝑝𝑒𝑟𝑓𝑒𝑐𝑡
= (

𝜌𝑓

𝜌𝑠
)

2

 (2-7) 

 

 
𝐸𝑟𝑒𝑑𝑢𝑐𝑒𝑑

𝐸𝑝𝑒𝑟𝑓𝑒𝑐𝑡
= 𝜙 (

𝜌𝑓

𝜌𝑠
)

2

+ (1 − 𝜙)
𝜌𝑓

𝜌𝑠
 (2-8) 

where ρf is the density of the porous material, ρs is the density of the solid material, 

and ϕ is the fraction of solid contained in the cell edges (taken as 0.9 in this case). 

Referring to Figure 2-4, the results from the Morrissey and Nakhla [4] model 

showed strong agreement with the Gibson and Ashby model. Results were between 

the predicted values for open- and closed-cell foam with ϕ of 0.9. Therefore, since the 

Morrissey and Nakhla [4] model is accurate in both tension and compression, it can 

be used to approximate bending of a porous material. 
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Figure 2-4 - Comparison of Morrissey and Nakhla [4], and Gibson and Ashby [11] 
compression models 
 

After verifying the validity of the model for bending, a FE model was developed 

in Abaqus to test the effect of pore volume on the reduction of elastic modulus. For 

the FE model, a long, slender beam with a slenderness ratio of 10:1 was placed under 

bending using a concentrated tip load, as shown in Figure 2-5. Since it is a cantilever 

beam undergoing tip loading, it is known that the normal stress will vary along the 

beam length. As such, the location of porosity will likely factor into the reduction of 

elastic modulus and thus the model must be tested not only for pore volume, but also 

pore location. From the FE model, the resulting slope of the load-deflection curve was 

then used to determine the elastic modulus. First, a non-porous beam with a nominal 

modulus of 200 GPa was placed under loading. As expected, the resulting slope of the 

load-deflection curve provided the nominal modulus. Next, a consolidated spherical 

pore representing total porosities of 2.5% and 5% was placed at various locations 
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along the length of the beam. The beam was loaded as before and the modulus of 

elasticity for each case was calculated from the slopes of the resulting load-deflection 

curves. These values were then compared against the original nominal modulus to 

obtain a percent reduction in elastic modulus as a function of pore location along the 

beam length for both 2.5% and 5% porosity. 

 
Figure 2-5 – FE Model undergoing Bending 
 

2.3.5. Finite Element Model – Three-Dimensional Beam 

With an understanding of how porosity amount and location affects the elastic 

modulus of a cantilever beam undergoing tip loading, a FE model to replicate the 

experimental setup must be completed. To build the FE model, a three-dimensional, 

deformable solid part was created in Abaqus. The substrate was sketched and 

extruded to create a cube. From the front face, the geometry was sketched and 

extruded to create the beam. The actual beam from [5] and the currently developed 

FE model are shown in Figure 2-6. The beam and substrate were then partitioned to 

allow for separate modification of material properties and mesh development. The 

beam was further partitioned into three segments of equal length, shown in Figure 

2-7. This allows for different material properties to be applied to each segment.  
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Figure 2-6 - SEM Picture of Experimental Setup [5] (left), Abaqus FE model this study 

(right) 

 

 
Figure 2-7 - Beam Sections (From left to right: Tip, Middle, Root, Substrate). 
 

The next step was to develop the mesh. The mesh was refined differently 

within the beam than the substrate. The beam had 11,088 3D stress hex quadratic 

reduced integration elements, while the substrate had 4,464 3D stress hex quadratic 

reduced integration elements. 
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After this, boundary conditions are applied to the FE model. The side, rear, and 

bottom faces of the substrate have fixed boundary conditions, while the top and front 

faces, as well as the beam itself, are free surfaces, as shown in Figure 2-8 (lighter 

colors indicate free surfaces while darker indicate fixed surfaces). Next, a tip load was 

applied to the beam. Since the applied load may deform and create an indentation in 

the top surface where it is applied, the deflection is measured from the bottom side, 

directly under the location of the applied load. This ensures that the deflection data 

excludes the amount of indentation into the top of the beam to allow for more 

accurate calculation of the elastic modulus. 

 
Figure 2-8 - Boundary Conditions (Top, Front, and Beam are free surfaces; all other 
sides fixed). 
 

Before continuing the analysis, the size of the substrate must be determined 

such that its size does not cause stiffening of the beam due to the applied boundary 

conditions. However, before proceeding to substrate sizing, the magnitude of error in 

prediction due to a three-dimensional analysis must first be known. 
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An analysis was completed to determine the apparent reduction in modulus 

due to the three-dimensional analysis. First, a two-dimensional rectangular beam was 

analyzed using Euler-Bernoulli elements in Abaqus. Next, a three-dimensional 

analysis was completed using the same beam profile using 3D stress elements. Figure 

2-9a shows the geometry of the 3D FE model. For each case, the modulus is calculated 

using load-deflection data and is normalized with the nominal modulus of 200 GPa. 

As can be seen from Table 2-1, the two-dimensional analysis, with a convergent mesh, 

is insensitive of the slenderness-ratio so it is able to return the nominal modulus. 

However, the three-dimensional analysis is sensitive to the effect of slenderness ratio. 

The three-dimensional analysis includes Poisson’s effect – some of the energy is being 

stored in cross-sectional deformation (Poisson’s contractions) instead of deflecting 

the beam and, as such, the prediction of modulus is slightly off. The beam studied in 

[5] has a slenderness ratio of less than four, so by completing a three-dimensional FE 

study, there may be large errors when using Euler-Bernoulli beam theory to calculate 

the elastic modulus. To continue the analysis, a three-dimensional analysis must be 

conducted to determine geometric effects on modulus prediction.  

Table 2-1 - Comparison of Two-Dimensional and Three-Dimensional Analysis 

Slenderness Ratio Two-Dimensional Three-Dimensional 
L/h E(Euler)/E0 E(Euler)/E0 

2 1 0.865 
5 1 0.983 

10 1 0.999 
20 1 1.002 
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Figure 2-9 – Geometry of 3D Beam A) Rectangular, B) Right-pentagonal 
 

Next, a study was completed to determine the apparent reduction in modulus 

due to beam geometry. As stated previously, the beam is short and stubby with a low 

slenderness ratio and the effect of this geometry on modulus must be studied as well. 

To perform this study, two beams were studied with slenderness ratios ranging from 

2 to 20, one with a rectangular profile and the other with a right-pentagonal profile 

similar to [5] and [6]. Figure 2-10 shows the cross-sections studied while Figure 2-9 

shows the geometry of the model for rectangular and right-pentagonal cross-sections.  

 
Figure 2-10 - Rectangular and Right-Pentagonal Cross-section 

 



 

35 
 

Using a nominal modulus of 200 GPa, the apparent reduction in modulus due 

to geometry was determined, as shown in Table 2-2. The modulus was calculated 

using the load-deflection data from the FE models using both Euler-Bernoulli and 

Timoshenko beam theory, equations (2-5) and (2-6), respectively. Next, the modulus 

for each was normalized with the nominal modulus to determine the accuracy of 

prediction. It is apparent that as the slenderness ratio, L/h, increases, the normalized 

modulus for each beam approaches unity, in other words, the modulus predicted from 

the FE models approach the nominal modulus, thus recovering the true strength of 

the beam. However, it is evident that large errors in prediction exist for beams with 

low slenderness ratios when using Euler-Bernoulli beam theory – an error of 14% 

under prediction for the rectangular beam profile and almost an error of 10% under 

prediction for the right-pentagonal beam profile. Conversely, when using 

Timoshenko beam theory, the modulus is being slightly over-predicted 

(approximately +3% and lower). Due to the errors shown, care must be taken when 

determining the modulus of a beam in three-dimensional analysis. As stated before, 

the slenderness ratio of the beam studied in [5] was less than four and as such, 

potentially large errors are present in calculating the modulus. 

Table 2-2 - Reduction in Modulus due to Geometry 

 Rectangular Beam Right-Pentagonal Beam 
L/h EEuler/Enom ETimo/Enom EEuler/Enom ETimo/Enom 

2 0.865 1.0307 0.908427319 1.0250 
5 0.983 1.0135 0.991312249 1.0117 

10 0.999 1.0069 1.000915188 1.0061 
20 1.002 1.0035 1.001792239 1.0031 
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After these studies were completed, the calculated modulus of a perfect beam 

with nominal modulus of 219 GPa and zero porosity was required. This was to 

provide a baseline for the predicted modulus due to the boundary conditions alone. 

As stated prior, it was unsure if the size of the substrate would have an effect on the 

results and as such, the FE model was first tested with various substrate sizes before 

testing porosity concentration and location. 

For simplicity, the substrate was constrained to be a solid cube to reduce the 

number of variables that would have to be varied. Four substrate sizes were 

considered and the dimensions were scaled due to the beam’s largest cross-sectional 

dimension – height. A schematic of the FE model with labels is shown in Figure 2-11. 

Substrate sizes were labelled A through D, with A being the smallest and D the largest. 

Substrate size A was approximately the same size as the height of the beam – an 8 µm 

x 8 µm x 8 µm cube. Substrate sizes B, C, and D were approximately one-and-a-half 

times (15 µm x 15 µm x 15 µm), three-times (20 µm x 20 µm x 20 µm), and six-times 

(40 µm x 40 µm x 40 µm) larger than the beam height, respectively. With each 

substrate size, the model was tested under constant tip load and the load-deflection 

data was used to calculate an elastic modulus. It should be noted that for a fully 

restrained cantilever, with no porosity, the nominal modulus should be returned; 

however, it is expected that a lesser modulus will be calculated due to the non-ideal 

boundary condition at the root of the beam. 
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Figure 2-11 - Geometry of 3D FE Model 

 

A comparison of the modulus obtained for each of the four cases is shown in 

Table 2-3. As can be seen, the size of the substrate does affect the response of the 

beam; however, as long as the substrate is at least three-times the height of the beam, 

the effect is insignificant. This is expected since when the substrate is small, the fixed 

boundary condition has a greater effect on the rigidity of the root of the beam since 

the stresses that propagate through the substrate do not sufficiently diminish before 

reaching the fixed boundary condition, thus effectively stiffening the beam and over-

predicting the modulus. As the substrate size is increased, this effect is reduced to a 

point such that the modulus is unchanged since the fixed boundary condition is 

sufficiently far enough away from the root of the beam allowing the stresses to 

diminish, thus allowing for accurate modelling of the experimental setup. For this 

study, Substrate size D was chosen for the final 3D FE model to ensure the fixed 

boundary condition did not influence the results.  
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Table 2-3 - Comparison of substrate size 

Substrate Size Modulus Calculated (GPa) % Reduction from Nominal 

A 186.7 -14.7 

B 182 -16.9 

C 180 -17.8 

D 180 -17.8 

 

With the size of the substrate determined, it can be observed that due to the 

non-ideal boundary conditions, the calculated modulus from the load-deflection data 

is 18% less than the nominal modulus for the perfect, non-porous beam. This 

apparent reduction in modulus will become the base case to which the models with 

porosity will be compared. The justification is to isolate the effect of porosity and 

porosity location on reducing the modulus and clearly describe the effect on elastic 

modulus. If comparisons are made to the nominal modulus, the apparent reduction in 

modulus due to non-ideal boundary conditions (-18%) is included, thus the reduction 

in modulus due to porosity and porosity location is not clearly presented. 

After the base case was developed, the percent reduction values determined 

in the previous section from the 2D FE model were applied to the nominal elastic 

modulus for Uranium Dioxide and a new modulus was calculated for when porosity 

is concentrated within different sections of the beam. A similar process was 

completed for when the porosity is uniformly distributed over the entire length of the 

beam. In this case, the percent reduction was approximately equal to the reduction 

experienced when porosity was concentrated at the tip for both porosities. 
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Next, the reduced modulus for each case was imported into the 3D FE model 

for the various setups. The reduced modulus for each case was applied to specific 

sections of the beam where the porosity was to be concentrated while the remaining 

sections of the FE model, including the substrate, were considered to be equal to the 

nominal modulus of 219 GPa for Uranium Dioxide [12]. 

2.4. Results And Discussion 

2.4.1. Determination of Elastic Modulus from Experimental Data 

Using the load-deflection curve reported in [5], the data was extracted and the 

slope for the linear section was determined to be approximately 1932 N/m. Next, the 

elastic modulus was calculated using both Euler-Bernoulli and Timoshenko beam 

theory from equations (2-5) and (2-6), resulting in 148 GPa and 154 GPa, respectively. 

This is compared to the reported modulus in [5] in Table 2-4.  

Table 2-4 - Comparison of Calculated Modulus 

Beam Theory This Study Reported in [5] 

Euler-Bernoulli 148 GPa 147 GPa 

Timoshenko 154 GPa - 

 

The authors believe that Timoshenko beam theory is the most accurate simply 

because of the inclusion of the effect due to shear. The justification for this is that the 

beam has a low slenderness ratio (less than four), the beam is not rigidly supported 

at the root, and the applied point load introduces shear into the beam, all three of 

which violate the restrictions of Euler-Bernoulli beam theory. As such, Timoshenko 

beam theory will be used to calculate the elastic modulus within this study. 
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2.4.2. Finite Element Model – Two-Dimensional Beam 

Figure 2-12 and Figure 2-13 show the load-deflection curves for the cantilever 

beam with porosities of 2.5% and 5% at various locations along the length, 

respectively. As it can be seen, there is a clear effect on the elastic modulus as the 

porosity increases and as the porosity location is moved towards the root. From the 

slope of the load-deflection curves, the elastic modulus was calculated for each case 

using Timoshenko beam theory, equation (2-6), and was then compared to the 

nominal modulus inputted into the model.  

 
Figure 2-12 - Load-Deflection for 2.5% porosity at various locations along beam length 
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Figure 2-13 - Load-Deflection for 5% porosity at various locations along beam length 

 

Figure 2-14 shows the reduction in elastic modulus due to pore location and 

total porosity of a cantilever beam undergoing bending due to an applied tip load. 

Compared to the work of Morrissey and Nakhla [4], which showed pore location and 

orientation did not influence the reduction in elastic modulus of a plate with a hole 

undergoing tensile loading, the same cannot be said for a beam undergoing bending. 

When low porosity beams are placed in bending the pore location clearly influences 

the percent reduction in elastic modulus. This is expected since the normal stresses 

vary along the length of the beam. The percent reduction increases significantly as 

pores are moved closer to the root. For example, at 2.5% total porosity the percent 

reduction in elastic modulus increases from 1.4% at a point five-sixths of the total 

length away from the root to 4.0% at one-sixth of the total length away from the root. 
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Moreover, this increase is even more pronounced for 5% total porosity. At 5% total 

porosity, the percent reduction increased from 2% at five-sixths of the total length 

away from the root to 16% at one-sixth of the total length away from the root. As such, 

it is clearly demonstrated that pore location influences the reduction in elastic 

modulus, especially at higher porosities, with the largest reduction occuring with 

porosities concentrated at the root. This result is expected since the normal stresses 

will reach a maximum at the root for a cantilever undergoing tip loading. 

 
Figure 2-14 - Percent reductions in modulus due to porosity concentration along 
percent length of the beam. 
 

2.4.3. Finite Element Model – Three-Dimensional Beam 

In Figure 2-15, the Abaqus FE models completed for this study are compared 

with experimental load versus deflection data reported in [5]. The limits of the results 

to which all other models should be contained within are the experimental results 

from [5] and the pore free Perfect beam FE model from this study. These limits are 
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clear since a higher modulus cannot be predicted for a beam with pores than a beam 

without pores, and a lower modulus cannot be predicted than the experimental data 

as this would indicate the simulation was not representative of the experiment. From 

this, it is evident that the FE models studied in this study are within these limits and 

capture the trend of the experimental results from [5] with an average error of 

+14.8%, as compared with the calculated approximate error of +38% reported in [5]. 

It can be observed from Figure 2-15, the FE models for total porosities of 2.5% 

concentrated in various segments along the beam show that there is a minimal effect 

to reduce the modulus of the beam. A similar trend is found in the 5% porosity FE 

models, with the exception of the FE model where the 5% porosity is concentrated at 

the root. As such, it is evident that unless porosities are concentrated towards the root, 

the effect on reducing the load-deflection curve is minimal.  

 
Figure 2-15 - Load-Deflection Comparison of This Study with [5] Experimental. 
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Some of the error in the FE models can be contributed to the assumptions made 

in this study. The FE models completed in this study assumed a uniform, constant 

cross-section, free of imperfections, which is not the case when observing SEM images 

of the beam in [5]. As well, the FE models were isotropic due to the single-grain 

assumption, but as reported in [5] this was not true. Lastly, the porosity concentration 

in the FE models completed in this study do not include the effect of pores away from 

the neutral plane – it is assumed the porosity is concentrated uniformly across the 

cross-section with no bias away from the neutral plane. Without more information 

provided in [5] on the exact location and size of pores it is difficult to model various 

pore sizes in various locations and obtain accurate results which replicate the 

experiment. As well, this last assumption may have a large effect on the accuracy of the 

FE model, since for a cantilever beam undergoing bending due to tip loading, the 

maximum normal stresses are located at the root, but away from the neutral plane and 

towards the upper and bottom surfaces. Therefore, if the porosity, especially if it is a 

singular large pore, is located at the point where normal stress is approaching the 

maximum, the effect on reducing elastic modulus will be the greatest. The presence of 

a large pore would also violate the assumption that the cross-section remained 

constant as a large pore would cause the cross-section to vary along the beam length 

throughout the pore. As well, if the large pore is located close to the surface of the beam 

it is probable it would be present as a surface defect or hole, also changing the cross-

section along the length. Such defects can be seen in SEM images reported in [5]. Due 

to the assumptions and the inability to enhance the FE model any further, the authors 

are satisfied with the accuracy of the model. 



 

45 
 

Next, a comparison between all FE models by this study and by Gong is made 

with the experimental data in Figure 2-16. It is first noted that several of Gong’s FE 

models predict a higher modulus than the Perfect beam FE model, which is not 

possible as previously stated. From Gong’s results, it is evident that the Single Pore 

Root FE model has the largest effect, comparable to this study’s FE model for 5% 

porosity concentrated at the root. This single pore is located approximately in the 

location of maximum normal stress; however, the exact placement from the neutral 

plane is unknown and as such it is difficult to compare to the FE models completed in 

this study. From observing Figure 2-15 and Figure 2-16, it is evident that porosity 

location does have an effect on the modulus of elasticity of a cantilever. 

 
Figure 2-16 - Load-Deflection Comparison of All Data. 
 

A final comparison of porosity uniformly distributed throughout the entire 

length of the beam to porosity concentrated at various locations is made for 2.5% and 

5% porosities in Figure 2-17 and Figure 2-18, respectively.  
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As can be seen from Figure 2-17 and Figure 2-18, the effect of the location of 

porosity concentration diminishes if the total porosity is uniformly distributed along 

the beam or is concentrated beyond half the beam length. This is intuitive since, if the 

porosity is concentrated in a region of lesser stress – away from the root – its effect to 

reduce modulus is less pronounced. Similarly, if the same porosity concentration is 

distributed over the entire length there is less “total” porosity in each segment. In 

other words, 2.5% total porosity distributed evenly results in approximately 0.8% 

total porosity in each segment (root, middle, and tip); thus, resulting in less porosity 

in a region of higher stresses. Comparatively, 5% total porosity distributed over the 

entire length results in approximately 1.7% porosity in each beam segment. Since this 

value is less than 2.5%, which showed to have minimal effect on reducing the modulus 

even when concentrated at the root, the 5% total porosity distributed over the beam 

length will also have minimal effect on reducing the modulus. 

 
Figure 2-17 - Load-Deflection Comparison for 2.5% Porosity 
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The FE models completed in this study, which assume uniform porosity 

distribution across the cross-section throughout various segments of the beam, have 

shown with certainty that porosities of 5% have a large effect on the behavior of the 

beam when concentrated close to the root. However, if these large porosities are 

uniformly distributed over the length, or concentrated in a location away from the root 

– at or beyond half the beam length – the effect decreases drastically. As for porosities 

of 2.5% and lower, it can be concluded that there is minimal effect on the beam’s 

modulus regardless of distribution and concentration throughout the length. 

 
Figure 2-18 - Load-Deflection Comparison for 5% Porosity 
 

2.5. Conclusions 

This study supports the results from Morrissey and Nakhla [4] – a macroscale 

FE model is able to capture the effect of a microscale property such as microporosity 

on elastic modulus. This study has also proven that to perform the analysis of 

microcantilevers effectively and accurately, one should utilize Timoshenko beam 
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theory paired with a 3D FE model. This is because Timoshenko beam theory works 

with various slenderness ratios and 3D FE model can capture Poisson’s effect, can 

model non-ideal boundary conditions, and provides realistic modelling of the 

analysis. Lastly, this study has proven that the amount of porosity and the location of 

porosity concentration have a clear effect on the elastic modulus. Several cases were 

analyzed and it was determined that porosities concentrated at the root have the 

largest effect on the elastic modulus of a cantilever, while porosities uniformly 

distributed over the length, or concentrated away from the root, have minimal effect 

on elastic modulus.  
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3. Chapter 3: A Molecular Dynamics Analysis of 

Atomistic-scale Vacancies in various metals to predict the 

Reduction in Elastic Modulus 

Abstract: The effect of vacancy percentage is tested to predict reduction in elastic 

modulus. Two materials are tested – pure iron and iron-chromium. Several force 

fields and parameter sets are compared using molecular dynamics simulation. 

Comparisons to experimental data and Finite Element model from literature are 

made. It is determined that molecular dynamics simulations captures trend of 

reducing elastic modulus due to vacancy percentage. 
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3.1. Introduction 

 With the increased viability of computer-based simulations, Morrissey and 

Nakhla [1] have demonstrated that the effect of a microscale property (porosity) on 

the strength of a material can be captured using a macroscale Finite Element (FE) 

model. Morrissey and Nakhla [1] built a FE model to perform uniaxial tension on a 

slab of material with a hole, where the size of the hole was dependent on a percentage 

of porosity ranging from 0 to 10%. For each value of porosity, a value for the reduction 

in modulus was determined. Their FE model had an average error of less than 1% 

compared to experimental data from literature. 

 In addition, the work of Handrigan et al. demonstrated the capabilities of a 

macroscale FE model to capture the effect of a microscale property (porosity) on the 

elastic modulus and behavior of a cantilever [2]. The work of Handrigan et al. built 

upon the original work of Morrissey and Nakhla [1] to allow for accurate analysis and 

determination of the load-deflection curve and calculation of elastic modulus for a 

microcantilever beam. Using the experimental data provided in [3], Handrigan et al. 

developed a FE model which replicated the experimental setup without performing 

the experiment themselves. In [3], microcantilevers were created in a slab of Uranium 

Oxide and then put under bending until failure through the application of a tip load 

created by a nanoindenter. An experiment of this type has high associated costs, not 

only with equipment CAPEX, but also through sample preparation and 

experimentation. With limited information on sample geometry, grain orientation, 

and imperfections, Handrigan et al. were able to capture the trend of experimental 



 

52 
 

results with an average error of +14% – compared to the average error of +38% 

calculated from [3].  

 Since the effect of porosity, a microscale property, could be captured through 

the application of macroscale FE models, it is now postulated that the effect of 

porosity can be captured on the atomistic-scale using molecular dynamics 

simulations.  

Building upon the work of Morrissey and Nakhla [1], this work will attempt a 

similar procedure except on the atomistic-scale using molecular dynamics. On the 

atomistic-scale, the percentage of vacancies will be thought of as porosity percentage 

(i.e., 1% porosity corresponds to 1% vacancies) since porosity is essentially a void of 

material within a body. 

To perform accurate atomistic simulations, an accurate force field and 

parameter set is required. The work of Rajabpour et al. [4] first demonstrated how 

the chosen force field affected the determination of elastic constants of an iron and 

iron-carbon system, clearly demonstrating the accuracy of several force fields. 

Expanding upon this work, the work of Morrissey et al. [5] tested various types of 

force fields, such as Embedded Atom Method (EAM), Modified Embedded Atom 

Method (MEAM), Tersoff, and ReaxFF, each with various parameter sets, to test the 

applicability of different force fields to replicate a macroscale uniaxial tension test 

through atomistic modelling. It was concluded that ReaxFF was on average the most 

accurate for obtaining an accurate elastic modulus for pure iron.  
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3.2. Molecular Dynamics 

Molecular Dynamics involves the simulation of atom and molecule movement. 

With known position and velocity of the atoms, Newton’s equations of motion are 

applied to predict future positions and velocities relative to the acceleration of each 

atom. This acceleration is formulated from the interaction of particles through the use 

of a force field which provides information regarding the interaction between certain 

atom types. From this acceleration, the positions and velocities are updated step-by-

step until the simulation has finished.  

In this study, several types of force fields, with various parameter sets for each, 

are investigated. These include EAM, MEAM, Tersoff, and ReaxFF. 

3.2.1. Embedded Atom Method (EAM)  

Based upon the quasiatom theory, Daw and Baskes proposed the EAM force 

field to avoid the problem of defining an accurate volume [6]. Daw and Baskes 

avoided volume-dependency by using the electron embedding energy, a property 

dependent on electron-density, since the density of a system is always definable. Daw 

and Baskes stated that the EAM force field increases the accuracy of elastic properties 

of solids compared to previous pair-potential methods since these pair-potentials 

depended upon the volume-dependent energy whereas the EAM did not. The total 

energy in the EAM is defined in equation (3-1): 

 
𝐸𝑡𝑜𝑡,𝐸𝐴𝑀 =  ∑ 𝐹𝑖(𝜌ℎ,𝑖) +

1

2
∑ 𝜙𝑖𝑗(𝑟𝑖𝑗)
𝑖,𝑗

𝑖 ≠𝑗
𝑖

 
(3-1) 
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where, ρh,i is the host electron density at atom i due to the remaining atoms in the 

system, Fi(ρ) is the energy to embed atom i into the background electron density ρ, 

and ϕij(Rij) is the core-core pair repulsion between atoms i and j separated by the 

distance Rij. By summing over many atoms of the system, EAM is considered a 

multibody potential. More detail on the EAM force field can be found in [6]. 

3.2.2. Modified Embedded Atom Method (MEAM) 

Lee et al. built upon the original EAM force field to develop the MEAM force 

field through the addition of angular forces. Lee et al. proposed the applicability of the 

EAM potential to include Face-Centered Cubic (FCC), Body-Centered Cubic (BCC), and 

Hexagonal Close-Packed (HCP) crystal structures for metals and alloys could be 

possible through the inclusion of angular forces [7]. The total energy in the MEAM 

force field is defined in equation (3-2): 

 𝐸𝑡𝑜𝑡,𝑀𝐸𝐴𝑀 =  ∑ {𝐹𝑖(𝑝𝑖) +  
1

2
∑ 𝜙𝑖𝑗(𝑅𝑖𝑗)

𝑖≠𝑗

}
𝑖

 (3-2) 

 

where F is the embedding energy term which is a function of atomic electron density 

(pi), ϕij is the core-core pair repulsion between atoms i and j separated by distance Rij. 

Similar to EAM, the summation over many atoms within the system allows the MEAM 

force field to also be considered a multibody potential. More detail on the MEAM force 

field can be found in [7]. 

3.2.3. Tersoff 

The Tersoff force field was developed to avoid the increased number of free 

parameters as are present in the multibody force fields of EAM and MEAM. Through 
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avoiding the general N-body form, the Tersoff potential is both tractable and accurate 

since it was developed around real system physics [8]. 

The Tersoff potential is bond order dependent. Bond order for each atom 

depends upon the neighbouring atoms and is highly influential to the physics of the 

system. While it is believe that an atom with many neighbours is said to form weaker 

bonds than atoms with few neighbours, Tersoff stated the most important factor to 

be determined is the coordination number. The coordination number is said to be the 

number of neighbouring atoms close enough to form bonds [8]. The total energy in 

the Tersoff force field is defined in equation (3-3), with a detailed explanation of 

variables provided in [8]. More detail on the Tersoff force field can be found in [8]. 

 

𝐸 =  
1

2
∑ 𝑉𝑖𝑗

𝑖,𝑗
(𝑗≠𝑖)

 

𝑉𝑖𝑗 =  𝑓𝐶(𝑟𝑖𝑗)[𝑓𝑅(𝑟𝑖𝑗) + 𝑏𝑖𝑗𝑓𝐴(𝑟𝑖𝑗)] 

𝑓𝐶(𝑟) =  {

1 𝑖𝑓 𝑟 < 𝑅 − 𝐷
1

2
−

1

2
sin (

𝜋

2

𝑟 − 𝑅

𝐷
) 𝑅 − 𝐷 < 𝑟 < 𝑅 + 𝐷

0 𝑟 > 𝑅 + 𝐷

 

𝑓𝑅(𝑟) = 𝐴𝑒𝑥𝑝(−𝜆1𝑟) 

𝑓𝐴(𝑟) = −𝐵𝑒𝑥𝑝(−𝜆2𝑟) 

𝑏𝑖𝑗 = (1 +  𝛽𝑛Ϛ𝑖𝑗
𝑛

)−
1

2𝑛 

Ϛ𝑖𝑗 =  ∑ 𝑓𝐶(𝑟𝑖𝑘)𝑔(𝜃𝑖𝑗𝑘)exp [

𝑘≠𝑖,𝑗

𝜆3
𝑚(𝑟𝑖𝑗 − 𝑟𝑖𝑘)

𝑚
 

𝑔(𝜃) =  𝛾𝑖𝑗𝑘 (1 +
𝑐2

𝑑2
−  

𝑐2

[𝑑2 + (𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃0)2]
) 

 

(3-3) 
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3.2.4. Reactive Force Field (ReaxFF) 

Originally proposed by van Duin et al. [9], the ReaxFF force field is a bond 

order dependent force field, similar to the Tersoff force field. The inclusion of bond 

order allows for contributions due to various bonding (sigma, pi, and double-pi) over 

the distance between atoms. In addition to bond order inclusion, the added benefit of 

the ReaxFF force is the ability to simulate dynamic formation and breaking of bonds 

within the system. The energy defined in the ReaxFF force field is shown in equation 

(3-4), while the equation of bond order is shown in equation (3-5). More detail on the 

ReaxFF force field can be found in van Duin et al. [9]. 

 
𝐸𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑜𝑣𝑒𝑟 + 𝐸𝑢𝑛𝑑𝑒𝑟 + 𝐸𝑙𝑝 + 𝐸𝑣𝑎𝑙 + 𝐸𝑡𝑜𝑟 + 𝐸𝑣𝑑𝑊𝑎𝑎𝑙𝑠

+ 𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏 
(3-4) 

 

 𝐵𝑂𝑖𝑗
𝑖 = 𝐵𝑂𝑖𝑗

𝜎 + 𝐵𝑂𝑖𝑗
𝜋 + 𝐵𝑂𝑖𝑗

𝜋𝜋 (3-5) 

 

3.3. Methodology 

Similar to the work of Morrissey et al. [5], this work tests the effectiveness of 

various force fields and parameter sets to predict the elastic modulus of iron, but 

extends the work to predict the reduction in elastic modulus due to the presence of 

vacancies. To perform this work, a BCC body of pure iron atoms was placed in tension 

at room temperature to replicate a macroscale uniaxial tension test. From this, the 

stress-strain curves were generated and analyzed to determine the mechanical 

properties. Comparisons were made to Morrissey et al. to ensure zero vacancy 
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systems were accurate to previous work. Afterwards, the study on the effect of 

vacancies was performed for both pure iron and iron-chromium. Molecular dynamics 

simulations were carried out using Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS), as developed by Sandia National Laboratories [10]. 

First, a unit cell of pure iron was created and replicated to obtain 2000 total 

atoms with zero vacancies in a 28.5 Å x 28.5 Å x 28.5 Å cube with periodic boundary 

conditions. Next, from this block of pure iron atoms, atoms were selected at random 

and removed to create vacancies ranging from 1 to 10%. As was concluded in [5], in 

general, the ReaxFF force field is most accurate for a uniaxial tension test; however, a 

study on the various force fields is required to test whether or not another force field 

is more accurate for predicting the reduction of elastic modulus due to vacancy 

percentage. 

Unfortunately, outside of certain laboratory experiments, the use of pure iron 

is not common, as in its pure state, iron does not have favourable properties. As such, 

a study on a stainless steel would be more worthwhile; however, due to the limitation 

of available parameter sets for the various force fields, this is not feasible. Therefore, 

iron with 13% chromium is studied using the two available parameter sets which 

include iron-chromium bonds. While several parameter sets exist for the ReaxFF 

force field, only one includes iron-chromium bond definitions, as such only this 

parameter set can be tested for ReaxFF. The other parameter set to be tested for iron-

chromium is for the EAM force field. 
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For the iron-chromium system, the block of pure iron containing 2000 atoms 

from before was then turned into iron-chromium by selecting, at random, 13% of the 

iron atoms and substituting them for chromium atoms to obtain a block of iron-

chromium. Similar to how vacancies were created for the pure iron, vacancies were 

created in the iron-chromium system.  

Following a similar procedure outlined by Morrissey et al. [5], the input 

parameters for each force field were determined and can be seen in Table 3-1. 

Table 3-1 - Molecular Dynamics Parameters 

Parameter EAM MEAM Tersoff ReaxFF 

Temperature 300K 300K 300K 300K 

Time step 0.001 ps 0.001 ps 0.001 ps 0.25 fs 

Equilibration 50 ps 50 ps 50 ps 50 ps 

 

Each system was equilibrated for 50 ps at 300K using a dynamic Nose-Hoover 

NPT barostat. The systems were allowed to adjust the lattice under natural expansion 

and contraction throughout the equilibration process. As a rough guideline, pressure 

and temperature were damped using coefficients equal to 1000 and 100 times the 

time step for each force field, respectively. 

Once the system was equilibrated, it was then deformed in one direction under 

NPT at 300K with zero pressure to allow for natural Poisson contractions in the 

transverse directions. To ensure only the linear elastic region of the stress-strain 

curve is obtained, strains are kept to a maximum of 2%, thus allowing for the use of 
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Hooke’s law. The 2% strain was applied over 2 ps for each system, which meant 

adjusting time steps and strain rates for each individual force field. It was shown in 

[11] that the time step and strain rate have minimal affect over the linear region of 

the stress-strain curve, as such the authors are comfortable with adjusting both 

parameters to ensure each system is strained to 2% over 2 ps of simulation time. 

3.4. Results 

 Since a study on the accuracy of force field and parameter set on predicting the 

elastic modulus of a pure iron system was performed in Morrissey et al. [5], the 

results for this study will touch briefly on the modulus calculated at 0% vacancy but 

will focus on comparing the reduction in modulus as vacancies increase. 

 First, as can be seen in Table 3-2, the values obtained for the 0% vacancy 

simulations of pure iron in this study are compared to the work of Morrissey et al. [5]. 

The values show favorable agreement between the two studies. This study further 

tested additional ReaxFF parameter sets due to the inclusion of Chromium atoms, the 

results of which are also included in Table 3-2. Unfortunately, only one of the 

additional parameter sets include iron-chromium bonds and cannot be compared to 

an iron-chromium system. As it can be seen, several of the parameter sets for the 

various force fields are not able to predict the nominal modulus of 200 GPa for iron 

[12-15] within a small margin of error (<10%). The EAM and MEAM force fields are, 

on average, highly inaccurate in predicting elastic modulus, with errors as high as 

54%. Conversely, the Tersoff and ReaxFF parameter sets, on average, predict the 

elastic modulus of iron with less error. The authors must state that the accuracy of 
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any parameter set, regardless of the type of force field, is highly dependent on how it 

was parameterized. Several of the parameter sets studied were not exclusively 

developed for predicting mechanical properties. As such, care must be taken when 

using parameter sets to ensure they are parameterized to calculate the desired 

properties. Regardless, this study was performed on several of the currently available 

parameter sets to determine their applicability for predicting elastic modulus. 

Table 3-2 - Comparison of Predicted Elastic Modulus 

Force 
Field 

Parameter Set 

Elastic 
Modulus 

(GPa) (This 
study) 

Error 
from 

Nominal 

Elastic 
Modulus 
(GPa) [5] 

Error 
from 

Nominal 
Ref. 

EAM 

MCM2011 171.95 -14.0% 172 -14.0% [16] 

Fe_mm 141.5 -29.3% 141.5 -29.3% [17] 

Mishin2006 129.65 -35.2% 129 -35.5% [18] 

Average 147.7 -26.2% 147.5 -26.3% - 

MEAM 

Asadi 92.8 -53.6% 93 -53.5% [19] 

Etesami 116.4 -41.8% 116.4 -41.8% [20] 

Average 104.6 -47.7% 104.7 -47.7% - 

Tersoff 
FeC_Henriksson 218.7 9.4% 218 9.0% [21] 

Average 218.7 9.4% 218 9.0% - 

ReaxFF 

CHOFe 137.6 -31.2% -  [22] 

FeOCHCl 182.4 -8.8% 182 -9.0% [23] 

CHOFeAlNiCuS 164.8 -17.6% 165 -17.5% [24] 

CHOFeAlNiCuSCr 164.5 -17.8% -  [25] 

CHOFeAlNiCuSCr_v2 164.4 -17.8% -  [26] 

CHOFeAlNiCuSCr_v3 165 -17.5% -  [27] 

CHOFeAlNiCuSCrSiGe 164.6 -17.7% -  [28] 

Average 163.3 -18.3% 173.5 -13.3% - 

 

For an in-depth description of the parameterization for each parameter set, 

see Table 3-2 for the respective reference. In general, force fields are parameterized 

using various values calculated from quantum mechanics, while some include 

parameterization with the values of the elastic constants. In general, elastic constants 
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are determined through analysis of wide range frequency responses of electrical 

impedance within the crystal [29], which is not directly related to the elastic modulus. 

As such, while parameter sets parameterized with the elastic constants are accurate 

for predicting the elastic constants, they are inaccurate for predicting the elastic 

modulus during a uniaxial tension test. To obtain a parameter set capable of 

predicting an accurate elastic modulus from an atomistic uniaxial tension test, 

parameterization with the elastic modulus should be performed. 

As can be seen prior, the individual parameterization of each parameter set 

highly influences the prediction of elastic modulus, regardless of force field.  When 

comparing the three EAM parameter sets, neither can predict an accurate modulus 

and the values predicted between the three parameter sets are largely varied. 

Similarly, both MEAM parameter sets tested were unable to predict an accurate 

modulus, but predicted an elastic modulus closer in value.  

As discussed previously in this work, and in [5], many of the parameter sets 

were not intended for the prediction of elastic modulus. Of key importance are the 

ReaxFF parameter sets. The ReaxFF parameter sets tested have not included 

parameterization with the elastic constants and are, on average, the most accurate for 

predicting the elastic modulus. The authors believe that the inclusion of bond order 

in ReaxFF allows for more accurate prediction of elastic modulus. This is also evident 

in the single Tersoff parameter set which is also bond order dependent. 

Next, a comparison of the percent reduction in modulus versus the percent 

vacancy is shown in Figure 3-1. As it can be seen, in general, as vacancies reach and 
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exceed 5% the accuracy in prediction of the reduction of elastic modulus varies 

erratically and unpredictably, with some force fields not being as affected as others, 

depending on the parameter set. For example, two of the three parameter sets for the 

EAM force field (Mishin2006 and Fe_mm) have erratic values after 6% for 

Mishin2006 and after 8% for Fe_mm. The third EAM parameter set (MCM2011) has 

some fluctuation at lower percentages (1-3%), but afterwards is consistent 

throughout the remaining tested vacancies. As for the parameter sets for the MEAM 

force field, both exhibit a constant decline in reduction of modulus after 5% vacancies 

which is unintuitive. Conversely, both Tersoff and ReaxFF force fields appear to be, 

on average, more capable of dealing with the increase of vacancies with less 

fluctuations as vacancy percentage increases. This is evident in the single Tersoff 

parameter set; providing consistent results for all vacancy percentages tested. As for 

the parameter sets for ReaxFF, all appear to be consistent to about 5-8% vacancies, 

with large fluctuations appearing after 8% vacancies.  

There are several possible reasons for the inaccuracies. The authors believe 

that at vacancy percentages above 5% it is likely that the vacancies are interacting as 

the body is deformed, thus influencing the strength of the material. In addition, for 

Tersoff and ReaxFF, force fields which are bond order dependent, the authors believe 

that these force fields are, in general, more capable of dealing with increased vacancy 

percentages due to the inclusion of the bond order since the distance between atoms 

is not consistent due to presence of vacancies. Lastly, it is possible that the increased 

number of vacancies is negatively influencing the equilibration of the system. Due to 
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the erratic behavior after 5% vacancies, the authors have chosen to only study 

vacancies up until 5% for all force fields.  

 

Figure 3-1 - Reduction in Elastic Modulus versus Percent Porosity (Vacancy) 

 

Prior to continuing, the authors must confirm the simulations for zero 

vacancies until 5% vacancies were run accurately. To confirm the simulations were 

run as accurately as possible, each system was tested with an NVE ensemble to ensure 

that energy is conserved within the system. As well, the authors performed an 

equilibration time sensitivity analysis to verify that each system was adequately 

equilibrated. Figure 3-2 shows the total energy for each force field over time for one 

of the simulations, while Figure 3-3 shows the equilibration time versus temperature 
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for an EAM, MEAM, Tersoff, and ReaxFF simulation. As can be seen from Figure 3-2, 

the total energy of each system is conserved, thus providing confidence in the results 

of the simulations. In addition, from Figure 3-3, it is evident that each force field has 

reach equilibrium well before 50 ps. Since total energy was conserved and the 

systems reached equilibration well before the deformation, the authors are confident 

the simulations have been performed as accurately as possible. With confidence the 

simulations were completed accurately, a discussion on the values for the reduction 

of elastic modulus due to vacancies is possible. 

 

Figure 3-2 - Energy Conservation Check for each Force Field 
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Figure 3-3 - Equilibration Check for each Force Field 

 

 While some force fields show inaccurate prediction of modulus and erratic 

reductions in modulus due to porosity, several others more accurately predict elastic 

modulus and are more consistent in the predicted reduction in modulus due to 

porosity to much higher values of porosity (up to 8-9%). It is noted that the parameter 

sets which predict a more accurate elastic modulus from Table 3-2 are the parameter 

sets which more accurately predict the reduction in modulus due to vacancy 

percentage. 

The results from the EAM, MEAM, Tersoff, and ReaxFF force fields and their 

respective parameter sets can be seen in Figure 3-4 to Figure 3-7. Included in each 



 

66 
 

figure are experimental results of reduction in elastic modulus versus percent 

porosity and Morrissey and Nakhla’s [1] FE model which was developed to predict 

this reduction. As can be seen in each respective figure, the atomistic model using 

molecular dynamics simulations and percent vacancies is able to accurately predict 

the reduction in elastic modulus due to vacancy percent. 

 

Figure 3-4 - Comparison of EAM for Pure Iron, Morrissey and Nakhla FE Model [1], and 
Experimental data (MgAl2O4 [30], HfO2 [31], Thermoset Polyester Resin [32], Alumina 1 
[33], Alumina 2 [34], and Sintered Iron [35]) for the Reduction in Elastic Modulus versus 
Percent Porosity (Vacancy) 
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Figure 3-5 - Comparison of MEAM for Pure Iron, Morrissey and Nakhla FE Model [1], 
and Experimental data (MgAl2O4 [30], HfO2 [31], Thermoset Polyester Resin [32], 
Alumina 1 [33], Alumina 2 [34], and Sintered Iron [35]) for the Reduction in Elastic 
Modulus versus Percent Porosity (Vacancy) 
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Figure 3-6 - Comparison of Tersoff for Pure Iron, Morrissey and Nakhla FE Model [1], 
and Experimental data (MgAl2O4 [30], HfO2 [31], Thermoset Polyester Resin [32], 
Alumina 1 [33], Alumina 2 [34], and Sintered Iron [35]) for the Reduction in Elastic 
Modulus versus Percent Porosity (Vacancy) 
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Figure 3-7 - Comparison of ReaxFF for Pure Iron, Morrissey and Nakhla FE Model [1], 
and Experimental data (MgAl2O4 [30], HfO2 [31], Thermoset Polyester Resin [32], 
Alumina 1 [33], Alumina 2 [34], and Sintered Iron [35]) for the Reduction in Elastic 
Modulus versus Percent Porosity (Vacancy) 

 

As it can be seen for vacancies of less than 5%, the predicted reduction in 

modulus, regardless of parameter set, appears to be highly accurate with 

experimental results and Morrissey and Nakhla’s [1] FE model. This trend was 

unexpected since several of the parameter sets were unable to predict an accurate 

modulus; however, when the percent reduction is calculated with respect to the zero 

vacancy modulus calculated for each individual parameter set, the trend is followed 

closely. On average, Tersoff and ReaxFF follow the trend more closely and this may 

be possible due to the inclusion of bond order. Table 3-3 shows the average reduction 
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in modulus of all force fields, experimental results, and Morrissey and Nakhla’s [1] FE 

model. 

Table 3-3 - Comparison of Average Reduction from Molecular Dynamics Simulations 
for Pure Iron, Morrissey and Nakhla's FE Model [1], and Experimental Results [30-35] 

 Average Reduction per Force Field    

Percent 
Vacancy 

EAM MEAM Tersoff ReaxFF 

Average 
Reduction 

from all Force 
Fields 

Average 
Reduction 

from 
Experimental 

Results  
[30-35] 

FE 
Model 

[1] 

1 4.6% 5.9% 3.9% 2.8% 4.3% 5.6% 3.1% 

2 5.2% 9.4% 8.4% 5.3% 7.1% 8.2% 6.3% 

3 9.2% 19.2% 11.5% 8.4% 12.1% 10.7% 9.4% 

4 11.8% 21.8% 17.2% 10.8% 15.4% 13.3% 12.5% 

5 15.0% 29.5% 18.6% 13.2% 19.1% 15.9% 15.6% 

 

Now that the authors are confident that ReaxFF force field is the most accurate 

for not only predicting elastic modulus, but also predicting the reduction in modulus 

as porosity changes, a study on an iron-chromium system can be completed. 

Unfortunately, due to the limitation of available parameter sets which include iron-

chromium bonds, only two parameter sets can be studied – one for EAM (FeCr) and 

one for ReaxFF (CHOFeAlNiCuSCr). 

The ReaxFF parameter set was tested for a pure iron system. As such, the 

elastic modulus for an iron-chromium system can be compared. Unfortunately, the 

EAM parameter set requires the presence of chromium atoms and cannot be tested 

in a pure iron system. Therefore, the accuracy of the predicted modulus with the 

inclusion of chromium is uncertain. A comparison of the predicted elastic modulus 

for a zero-vacancy pure iron and iron-chromium system is shown in Table 3-4. It can 
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be seen that both predicted values for the elastic modulus of iron-chromium differ 

from the nominal modulus of approximately 200 GPa for 13% chromium stainless 

steel.  

Table 3-4 - Comparison of Predicted Elastic Modulus for Pure Iron and Iron-Chromium 

Force Field Parameter Set 
Elastic Modulus 

Pure Iron (GPa) 

Elastic Modulus Iron-

Chromium (GPa) 
Ref. 

EAM FeCr - 151.5 [36] 

ReaxFF CHOFeAlNiCuSCr 164.5 175.2 [25] 

 

Figure 3-8 compares the percentage reduction in elastic modulus versus 

percent vacancy for the iron-chromium system for both parameter sets. Included in 

the figure are experimental results of reduction in elastic modulus versus percent 

porosity and Morrissey and Nakhla’s [1] FE model which was developed to predict 

this reduction. As can be seen in Figure 3-8, even though the EAM parameter set is 

unable to predict an accurate modulus, its predicted percent reduction in modulus 

due to vacancies is comparable to that predicted by the ReaxFF parameter set. From 

Table 3-5, it is evident that both parameter sets are accurately capturing the trend of 

the reduction of elastic modulus as vacancy percentage increases when compared to 

experimental results and Morrissey and Nakhla’s [1] FE model. 
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Table 3-5 – Comparison of Average Reduction from Molecular Dynamics Simulations 
for Iron-Chromium, Morrissey and Nakhla's [1] FE Model, and Experimental Results 
[30-35] 

 Average Reduction per 
Force Field 

   

Percent 
Vacancy 

EAM ReaxFF 
Average 

Reduction from 
all Force Fields 

Average Reduction 
from Experimental 

Results [30-35] 

FE Model 
[1] 

1 1.50% 1.8% 1.6% 5.6% 3.1% 

2 4.50% 4.1% 4.3% 8.2% 6.3% 

3 6.20% 7.5% 6.8% 10.7% 9.4% 

4 13.10% 6.7% 9.9% 13.3% 12.5% 

5 15.80% 14.8% 15.3% 15.9% 15.6% 

 

 

Figure 3-8 - Comparison of EAM and ReaxFF for Iron-Chromium, Morrissey and Nakhla 
FE Model [1], and Experimental data (MgAl2O4 [30], HfO2 [31], Thermoset Polyester 
Resin [32], Alumina 1 [33], Alumina 2 [34], and Sintered Iron [35]) for the Reduction in 
Elastic Modulus versus Percent Porosity (Vacancy) 
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3.5. Conclusion 

 The authors have shown that atomistic models are capable of predicting 

accurate elastic modulus with the selection of an appropriate parameter set. In 

addition, it has been shown that several parameter sets are capable of accurately 

predicting the reduction in elastic modulus due to vacancy percentage. More accurate 

predictions will be available as more potentials are parameterized to specific 

experimental data. 
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4. Chapter 4: Summary 

 The work completed in the above chapters was performed to study the 

applicability of using computer models to predict the effect of porosity on the elastic 

modulus of a material. If simulations can be performed, not only is time and money 

being saved, but the efficacy of analysis is improved. In addition, through the use of 

simulations, the replicability of the study is increased. The author of this thesis 

originally discovered the thesis by Gong which inspired the work of Chapter One. 

Gong’s thesis involved the development and analysis of a microscale cantilever. To 

produce a microscale cantilever, several high CAPEX equipment are required: 1) a 

nanoindenter with Scanning Electron Microscope (SEM) capable of applying loads on 

the order of nano-Newtons or displacements at rates of nanometers per second, and 

2) a focused-ion beam capable of producing ion beams on the nano-amperes scale. In 

addition to the costly experimental setup, significant amounts of time were required 

not only to fabricate the cantilevers, but to also prepare the material for the 

fabrication of cantilevers and to perform the experiments themselves. To further 

demonstrate the benefit of simulations, Gong stated that the proper grain sizes were 

not attainable and as such, the experiments were continued on non-ideal specimens. 

Each cantilever was to be contained within a single crystal grain but this was not 

possible, making the cantilever analysis more difficult and less replicable. As a result, 

the development of simulations to study the effect of microscale porosity on elastic 

modulus is highly recommended. The use of simulations allows for easy manipulation 

of the inputs to allow for consistent analysis of a problem. For example, if a new 

geometry was to be studied (e.g., longer cantilever or different cross-section), then 
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new samples must be fabricated which is very costly in terms of money and time; 

however, in a simulation these parameters are easily controlled and manipulated. As 

well, if various specific porosity values were to be studied, this may not be possible 

or would result in significant costs to fabricate experimental microcantilevers with 

the required specific porosity. 

As it has been shown in Chapter 2, the author of this thesis has reduced the 

error in prediction of reduced elastic modulus from +38% to +14% through only the 

application of correct analysis. No experiments were performed to provide more data, 

only a 3D FE model was developed through rigorous analysis. 

As for Chapter 3, the author has shown that molecular dynamics is capable of 

accurately predicting the reduction of elastic modulus due to atomistic-scale 

vacancies, correlating to both experimental data and a FE model from literature. The 

author does not believe that an experiment of this type could be performed currently, 

as such, the utilization of simulations has allowed for the analysis to be performed. 

 

 

  

 

 


