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Abstract

Recently, deep learning algorithms have been used with success in a variety of do-

mains. Deep learning has proven to be a very helpful tool for discovering complicated

structures in high-dimensional and big datasets. In this work, five deep learning mod-

els inspired by AlexNet, VGG, and GoogleNet are developed to predict mechanism

of actions (MOAs) based on phenotypic screens of a number of cells in dimly lit and

noisy images. We demonstrate that our models can predict the MOA for a com-

pendium of drugs that alter cells through single cell or cell population views without

any segmentation and feature extraction steps. According to these results, our models

do not need to fully realize single-cell measurements to profile samples because they

use the morphology of specific phenomena in the cell population samples.

We used an imbalanced High Content Screening big dataset to predict MOAs with

the main goal of understanding how to work properly with deep learning algorithms on

imbalanced datasets when sampling methods, like Oversampling, Undersampling, and

Synthetic Minority Over-sampling (SMOTE) algorithms are used for balancing the

dataset. Based on our findings, it is now clear that the SMOTE sampling algorithm

must be part of the deep learning algorithms when confronting imbalanced datasets.

High Content Screening technologies have to deal with screening thousands of

cells to provide a number of parameters for each cell, such as nuclear size, nuclear

morphology, DNA replication, etc. The success of High Content Screening (HCS)

systems depends on automatic image analysis. Recently, deep learning algorithms

have overcome object recognition challenges on tasks with a single centered object

per image. Present deep learning algorithms have not been applied to images that
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include multiple specific complex objects, such as microscopic images of many objects

such as cells in these images.

Key Words: machine learning, deep learning, Artificial Neural Network, Data

Science, Big Data, High Content Screening, High Content Analysis, Drug Discovery,

Predict Phenomena, Predictive Analysis, Bioinformatics, AlexNet, VGG, GoogleNet,
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Chapter 1

Introduction

High Content Screening (HCS) is a technology applied in biological studies and drug

discovery to recognize objects such as molecules or RNAi that change the phenotype

of a cell [27, 65].

1.1 Problem Statement

HCS is used for phenotypic screening of cells, see Figure 1.1. Phenotypic variations

sometimes can increase or decrease the size or quantity of cellular components such

as proteins or modify the appearance and morphology of a cell.

Recent microscopy and high performance computing technologies have rapidly

advanced the development of high-throughput image-based techniques. The success

of HCS systems is dependent on automated image analysis. These methods deal

with the screening of thousands of cells to provide a number of parameters for each

cell, such as DNA replication, nuclear size, nuclear morphology, etc. Analyzing this

high-dimensional problem requires machine learning algorithms. We believe that as



these parameters are high dimensional, deep learning algorithms can be useful to help

classify, cluster and visualize cells in High Content Screening applications.

Figure 1.1: High Content Screening system overview
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1.2 The Contribution of this Thesis

Analyzing large amounts of microscopy data is a challenging problem. Cell images

have different features, where most of the cells are characterized by noisy and cluttered

background patterns that make segmentation and automatic recognition of cells very

problematic.

1- Recent microscopy and high performance computing technologies have made

advancement of high throughput screening systems that are used in drug discovery,

biology, and chemistry. Most subtle features such as DNA replication, nuclear size,

and nuclear morphology can be observed in each image precisely by using High Con-

tent Analysis (HCA) methods. To solve this high-dimensional problem, biologists

feed single cell information to machine learning algorithms such as K-nearest neigh-

bors, support vector machines, or random forests. According to a recent study [61],

about 70% of the papers on HCA experiments published in Science, Nature, Cell, and

the Proceedings of the National Academy of Sciences from 2000 to 2012 only used one

or two of the cells measured features and less than 15% used more than six. As a

result, about 85% of the research work in HCA underutilized potentially valuable

information that might have helped to speed up early-stage drug discovery [61]. In

this project, we are interested in exploring cutting-edge machine learning algorithms

developed in the field of deep learning to solve high-dimensional data problems with

thousands of measured features.

2- Recently, deep learning algorithms have overcome object recognition challenges.

These tasks normally have a single centered object per image and current algorithms

have not directly been tested on images with populations of objects (for example, the
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population of cells in microscopy images). Generally, there are a number of objects

such as cells in microscopy images. In this project we provide deep learning models

based on populations of objects (cells) and a single cell view in order to predict MOAs

of drugs without using any segmentation or feature extraction steps.

3- HCS, when formulated as a problem in machine learning, is usually considered

as an object recognition task. Cell images have different characteristics. They are

dimly lit and noisy. The main purpose of this project is to predict a label for each

cell or a population of cells, based on poor lighting and noisy images containing a

single cell or a population of cells.

4- In High Content Screening object identification, the natural biological variation

amongst cell populations mostly provides a variety of phenotypes. This subject makes

some phenotypes difficult to recognize and complicates the labeling task, particularly

phenotypes that have low penetrance.

5- Although image samples provide a number of benefits and details, analyzing

huge amounts of microscopy data is a challenging problem [32, 46]. Manual scoring

of complex patterns and phenotypes such as cell protein localizations is hard and

specialist cell biologists in various groups across the world score images manually,

but variability between experts decrease accuracy [9, 66]. Computational profiling or

classifying phenotypes is a substitute to manual evaluation, as was done by Chong et

al. [17](2015). Most high content screens have only used a handful of parameters from

each sample, not all parameters [17, 61, 62]. HCS needs experts to apply cutting-edge

machine learning algorithms to classify or cluster cellular phenotypes that can not be

assessed manually [1]. It is clear that a High Content Screening system involves large

quantities of image data which makes it really expensive for us to detect and recog-
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nize manually. The generalization ability of traditional methods is restricted when

they encounter images with different spatial information because they rely mostly on

previous knowledge. These algorithms are ineffective for Big Data since they involve

a massive number of operations for estimating the priors. Moreover, traditional clas-

sifiers are impractical for real-time applications since they are slow when used on Big

Data.

To summarize, the contribution of this study will be the provision of a High

Content Screening system by deep learning algorithms to analyze HCS images in

order to solve the aforementioned problems. The focus will be on the challenge of

using as much information content as possible, by considering a population of cells

and single cell information.
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1.3 The Structure of Thesis

The thesis is organized as follows. Chapter 2 outlines related works on machine

learning algorithms used in HCS, drug discovery, and cell biology. In chapter 3,

we review the methodologies. The experimental design and results are described in

chapter 4. Finally, a conclusion chapter is presented.
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Chapter 2

Related Work

High Content Screening (HCS) technologies are used in cell biology, drug discovery,

and biotechnology to recognize small molecules, RNAi, peptides, etc. [27, 65]. Recent

developments in automated fluorescence microscopy systems have opened more doors

to extract valuable phenotypic information from high content imaging screens [11,

20, 46]. The combination of automated fluorescence microscopy and high throughput

technologies has led to experiments designed to infer relationships between genetic

perturbations and cellular phenotypes.

In genomics screens, researchers tend to discover relations between genes by imag-

ing cells with different genetic perturbations such as RNA interference or a genetic

deletion [12, 32, 57]. High Content Screening of drug candidates using in vitro cell

assays has led to more informed drug discovery in pharmaceutical research [42, 51].

Research on drug response screens in mammalian cells [47, 49, 53], protein localiza-

tion in yeast [9, 17, 66], and cell morphology characterization [69, 70] are examples

that utilized these technologies.
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One of the promising works that highlights using imaging in comparison to lower

dimensional features was done by Vizeacoumar et al. [67] that combines High Content

Screening with synthetic genetic arrays to discover 122 additional genes involved in

spindle function that were not recognized previously in a colony fitness based genetic

interaction screen [68].

These High Content Analysis methods deal with screening thousands of cells which

can provide a number of parameters for each cell such as nuclear size, nuclear morphol-

ogy, DNA replication, etc. The success of these systems is dependent on automated

image analysis. Analyzing this high throughput high-dimensional problem requires

machine learning algorithms. Automatically classifying or profiling phenotypes, as

was done by Chong et al. [17](2015), are preferable alternatives to manual assess-

ment. Figure 2.1 shows a traditional work-flow for cellular classification. On the

other hand, learning millions of cells from thousands of images requires a model with

tremendous learning capacity.

In image-based profiling of cellular morphology, Ljosa et al. [47] compared five

profiling algorithms including Means, Kolmogorov-Smirnov (KS) statistic, Normal

Vector to Support-Vector Machine Hyperplanes, Gaussian Mixture Modeling, and

Factor Analysis using the same experimental configuration, which is also tested on

the BBBC021 dataset [10]. After segmenting these images, feature extraction was

performed using CellProfiler software. 453 features in total were extracted per cell

including size, intensity, shape, texture and neighborhood information. The profiles

produced were assessed by classifying each treatment condition into its MOA. The

term mechanism of action (MOA) refers to a sharing of similar phenotypic outcomes

among various compound treatments, rather than referring strictly to modulation of

8



a particular target or target class [47]. For assigning each treatment to an MOA, a K-

nearest neighbor classifier was applied. The Factor Analysis method was considered

as the best performing profiling algorithm with a mean accuracy of 94% on just a

small part of the dataset including 10% of all samples and not all the data [47]. Singh

et al.[60] focused on improving accuracy by illumination correction in the images.

Moreover, they realized that the Mean profiles are more robust than Factor Analysis

profiles.

Figure 2.1: A usual work-flow for cellular classification [39]

Recently, deep learning algorithms have overcome object recognition issues. Figure

2.2 shows a deep learning work-flow for cellular classification. Deep learning has

been applied to profiling cells for profile aggregation [72], MOA classification from

CellProfiler features [36] and MOA classification from raw images [39]. Zamparo et

al. used autoencoders for dimensionality reduction to improve the quality of profiles

[72]. Kandaswamy et al. used the 453 features of each cell through CellProfiler

software for a particular MOA class [36], similar to the work of Ljosa [47]. Kraus
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et al. [39] tested their model on raw images in the BBBC021 dataset as applied in

our study and got better results in comparison to traditional methods. This method

locates regions with cells and adds a segmentation step to classify MOAs.

Figure 2.2: Deep Learning work-flow for cellular classification [39]

2.1 Machine Learning

Researchers have to utilize automatic algorithms to classify or cluster cells that they

cannot evaluate manually [1] because HCS experiments deal with millions of cell

images [17, 62]. The two classes of machine learning algorithms applied are supervised

learning and unsupervised learning. In supervised learning a human expert interprets

a subset of cells that map cell features to the appropriate output while unsupervised

learning tries to extract patterns such as clusters of cells with similar phenotypes

10



from unlabeled cells.

2.1.1 Supervised Learning

Supervised learning methods typically try to learn a discriminative decision boundary

through a subset of data tagged manually into various classes. These algorithms learn

to categorize instances by improving their internal variables during the training step

to minimize the error between their predictions and the target labels. During the

testing step, another dataset of labeled data is applied to evaluate the ability of

algorithms to generalize when encountering data not seen during the training step

[6].

Research on protein localization [14, 17], drug profiling [47, 53], and changes in

cell morphology [3, 70] are examples of phenotypes that have been trained through

supervised learning algorithms. Support Vector Machines (SVM) [17, 24, 29, 49],

random forests [37], neural networks [7, 31], and adaptive boosting [35] are supervised

learning algorithms that have been applied to classify cellular phenotypes. Support

Vector Machines attempt to find an optimal hyper plane that classify data points

belonging to different categories [18]. Random forest [8] and adaptive boosting [22]

are ensemble learning algorithms that synthesize multiple weak machine learning

algorithms to provide a strong machine learning algorithm.

Neural networks are made of layers with artificial neurons that improve their

parameters during the training step [55]. Because of recent success in training multi-

layer neural networks, as deep learning algorithms, these algorithms currently reach

innovative performance on many domains.
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2.1.2 Unsupervised Learning

Sometimes a subset of labeled data is not accessible within a dataset, for example

in HCS cases, when phenotype classes are not known in advance or are too subtle

to accurately recognize manually. In such cases, unsupervised learning methods can

be applied to learn patterns within this kind of dataset [26]. These methods tend to

learn the structure of the dataset by finding clusters of data points that are similar.

These strategies try to minimize a distance criterion between data points within the

similar cluster and maximize the distance between data points belonging to various

clusters [6].

One of the most important branches of unsupervised learning is clustering algo-

rithms to include hierarchical clustering, K-means clustering, and Gaussian mixture

models (GMM) that are applied to assemble unlabeled cells. Hierarchical clustering

establishes a tree diagram by considering each data point as a cluster and unifying

clusters recursively through a distance criterion [25]. Hierarchical clustering was ap-

plied to recognize distinct clusters of mRNA localization patterns in a large-scale

fluorescence in situ hybridization (FISH) screen by Battich et al. [4]. Moreover,

affinity propagation is one of the popular clustering algorithms that has been widely

applied on gene expression [38, 45]. This method recognizes data points representa-

tive of clusters as perfect instances through looking at similarities amongst all pairs of

data points [23]. K-means and Gaussian mixture models (GMMs) update repeatedly

the cluster centers and the data points assigned to the nearest cluster center through

the EM (expectation-maximization) algorithm [19].

In drug profiling, Ljosa et al. [47] evaluated various profiling algorithms on a small

12



portion of the BBBC21 drug screen dataset [10] and realized that Factor Analysis

algorithm can achieve the best results. Young et al. [71] discovered that compounds

that produce the same phenotypic profiles have the same chemical structures by the

factor analysis method. PCA (Principal Component Analysis) was used to reduce

the feature space and eventually GMMs were applied to measure cellular phenotype

heterogeneity in cancer societies by Singh et al. [59]. Zhong et al. [73] evaluated

unsupervised methods such as Hidden Markov Models and GMMs for finding cell cycle

stages in human tissue culture cells indicating a fluorescent chromatin marker. Kurita

et al. [41] performed a combination of profiles extracted from High Content Screening

and untargeted metabolomics analysis to recognize modes of action of natural product

extracts.

Another useful application of unsupervised algorithms is visualizing or exploring

high dimensional datasets.
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Chapter 3

Methodology

This thesis focuses on the challenge of using information content that is as high as

possible, by considering cell populations and per-cell information to provide a system

for High Content Analysis.

Recently, deep learning methods have been applied with success in a variety of

applications [30, 5, 21, 54, 15, 16]. Moreover, deep learning algorithms can be fed with

raw data and find important representations automatically for detection or classifica-

tion. It has proven to be a very helpful tool for discovering complicated structures in

high-dimensional data and thus is helpful for various fields of science and business.

In this work, we developed five deep learning algorithms to predict MOAs based

on phenotypic screens of a population of cells in each image and single cells separately.

We demonstrated that our models can predict the MOA for a compendium of drugs

that modify cells without any segmentation and feature extraction steps. Previous

works have only used a small subset (15%) of the BBBC021 dataset as training and

test datasets. We believe that using this small volume dataset can lead to overfitting.
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Most of Object recognition tasks generally involve a single centered object per

image and current deep learning algorithms have not been applied to images with

multiple objects such as microscopy images with a number of cells. Moreover, cell

images have different characteristics; while objects seem in a constant scale and po-

sition, they are noisy and dimly lit. In this work, we provide five models inspired

from AlexNet [40], VGG [58], and GoogleNet [64] deep neural network algorithms

without using segmentation and feature extraction modules for single and multiple

object recognition in High Content Screening images as a case study. Moreover, the

proposed models predict the mechanism of actions for a compendium of drugs that al-

ter cells by using all features in DNA, F-actin, and B-tubulin channels. Furthermore,

these models predict the MOAs without a need for single cell identification.

Most of the current methods use CellProfiler software [11] for preprocessing and

segmenting cell images and rely on hand-tuned detection and feature extraction for

each cells image [39]. Our models can predict the MOA for a compendium of drugs

that alter cells without using CellProfiler software and any segmentation and feature

extraction steps, which is a significant improvement of traditional methods. These

models trained on a big High Content Screening dataset (MCF-7 breast cancer cells -

BBBC021), available from the Broad Bioimage Benchmark Collection [48], to predict

the mechanisms of action for a compendium of drugs and achieved the best results

ever reported on this dataset. Moreover, we found some hidden and unknown aspects

of this dataset. After visualizing the dataset through PCA and t-SNE algorithms,

we realized this dataset is imbalanced. In order to balance the BBBC021 dataset,

Random Undersampling, Random Oversampling, and SMOTE algorithms were used

[13] .
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We demonstrated that if the architecture and selection of parameters of the deep

learning models are configured properly, we do not need to use multiple instance

learning [39] for classifying cells or predicting MOAs. On the other hand, recent

research indicates that deep learning algorithms can learn features directly from the

data [28, 43, 63]. In this work, deep learning algorithms are applied to predict MOAs

from cell images directly. These models enable faster MOA prediction than the classi-

cal methods with image segmentation and feature extraction. Moreover, they perform

better without human handcrafted features in comparison to traditional methods.

Most of the profiling methods were evaluated on scales at the resolution of single

cells. The previous works usually did not work on a population of cells in a sample

and only worked on single cells separately in each sample. However, compound treat-

ments usually influence most cells in a sample (population of cells) and thus works

on single cells are inadequate to predict the MOAs in RNAi screens. Furthermore,

these models predict the MOAs without the need for single cell identification. This

work is presented as a strategy to evaluate the effect and safety of drug candidates

in complex biological systems. Our models are focused on morphology because there

is a wide diversity of subtle cellular responses in images as samples.
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3.1 Visualizing Data

Any data related challenge starts by exploring data itself. Our dataset has a high

number of dimensions. Therefore, visually exploring this dataset can help us see the

distributions of variables, classes, and correlations between them. Our work focuses

on applying two techniques for visualizing our data, namely, t-SNE (T-Distributed

Stochastic Neighbouring Entities) and a combination of PCA and t-SNE.

3.1.1 PCA (Principal Component Analysis)

PCA uses the correlation between some dimensions and provides a minimum number

of variables that keep the maximum amount of information [52, 34, 33, 56].

3.1.2 t-SNE(T-Distributed Stochastic Neighbouring Entities)

In this section, a short introduction to t-SNE [50] is described. t-SNE presents overall

similarities between data points in the high-dimensional space as a symmetric joint

probability distribution P . In addition a joint probability distribution Q is achieved

that defines the similarity in the low-dimensional space. t-SNE tries to find the best

representation Q in the low dimensional space that represents P . In order to find this

representation the positions in the low-dimensional space are optimized to minimize

the Kullback-Leibler(KL) divergence between the probability distribution P and Q

as a cost function C.

C(P,Q) = KL(P ||Q) =
N∑
i=1

N∑
j=1,j 6=i

pijln(
pij
qij

) (3.1)
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Maaten and Hinton [50] describe the working of t-SNE as: ”t-Distributed stochastic

neighbor embedding (t-SNE) minimizes the divergence between two distributions: a

distribution that measures pairwise similarities of the input objects and a distribution

that measures pairwise similarities of the corresponding low-dimensional points in the

embedding”.

3.2 Balancing Data

In most of the public datasets that are available the sample classes were balanced.

In other words, the number of samples of each class was approximately the same.

Researchers usually use cleaned up datasets in order to focus on specific algorithms

without considering other issues. Usually, samples are presented similar to Figure 3.1

in which points and colors of points indicate samples and their classes respectively.

The main goal of a supervised machine learning algorithm is to learn a separator

to recognize the two classes. You can see some decision boundaries using a variety of

machine learning algorithms as separators in Figure 3.2. Machine learning algorithms

are usually less sensitive to discovering the minority class and more sensitive to the

majority class thus our main goal is balancing the dataset before feeding them into

a machine learning algorithm. In many cases, if we do not balance the dataset, the

classifier output would be biased. When we visualize real datasets, one of the first

points we see is that they are imbalanced and noisier in comparison to more frequently

datasets. The distribution of real data usually looks like the Figure 3.3.

In real problems, datasets can be imbalanced more. Most fraud detection datasets

are strongly imbalanced. For example, around 2% of credit card accounts are scammed
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Figure 3.1: Balanced dataset.

Figure 3.2: Using some machine learning algorithms as separators.
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Figure 3.3: The classes are imbalanced.
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each year. Fault rates for factory products usually are about 0.1%. In these types of

problems, machine learning algorithms are applied to learn a large number of nega-

tive samples and a small number of positive samples. Traditional machine learning

algorithms usually are biased when encountering such problems because their loss

functions try to minimize error rate based on majority classes not minority classes.

Machine learning algorithms ignore minority samples in the worst situations. There

are some ways for balancing the dataset, such as oversampling the minority class, un-

dersampling the majority class, synthesizing new minority classes, SMOTE algorithm,

Removing minority samples, and switch to an Anomaly Detection frame.

3.2.1 Oversampling and Undersampling Methods

The easiest method for solving problems with imbalanced data is adjusting the dataset

until it is balanced. The Random Undersampling method removes some samples from

the majority class randomly. The random over sampling method replicates minority

samples to increase the number of samples in the minority class [13] (Figure 3.4).

Some machine learning scientists believe that Oversampling is better than Under-

sampling since it produces more data while Undersampling drops data. Repeating

data decreases the variance of variables in the dataset.
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Figure 3.4: Oversampling and Undersampling Methods
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3.2.2 SMOTE Algorithm

One of the best algorithms for Oversampling is the SMOTE (Synthetic Minority

Over-sampling Technique) method that, instead of repeating samples, produces new

samples through interpolations of the minority class and uses Undersampling on the

majority class [13]. Because of all of the abovementioned reasons in section 3.2.1, we

used the SMOTE algorithm that does not use re-sampling of samples but synthesizes

new ones. This method produces new minority samples by interpolating between

existing samples. Working by interpolating between minority samples is the main

limitation of the SMOTE algorithm because can not produce new exterior regions of

minority samples while it can only fill in the convex hull of minority samples in the

dataset (Figure 3.5).
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Figure 3.5: SMOTE Algorithm [13].
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3.3 Models

3.3.1 A model inspired by AlexNet

Our first model was inspired from AlexNet[40]. AlexNet was the first deep learning

model to win the Imagenet Challenge in 2012. The network has a very similar ar-

chitecture as LeNet [44] by Yann LeCun but the number of weights is much greater

and the shapes change from layer to layer because it is deeper with more filters per

layer and different convolutional layers (11*11, 5*5, 3*3 convolutions). We added

dropout in the input layer and two last convolutional layers before the final layer to

avoid overfitting. We converted the three last fully connected layers in the original

AlexNet to the convolutional layers before going to the output. The probability that

activations are kept in the dropout in the input layer and two last convolutional layers

before the final layer are supposed to be 0.8 and 0.5 respectively during training and

1.0 during testing. Our model has eight convolutional layers. There are 64 to 4096

filters within each convolutional layer and the filter size ranges from 1*1 to 11*11. A

single image (from the DNA or F-actin, or B-tubulin stain channels) is used as an

input in the input layer. ReLU activation functions are used after every convolutional

layer. Max pooling of 3*3 with stride 2 is applied to the outputs of layers 1, 2 and

5. In order to decrease computation, a stride of 4 is considered at the input layer of

the model. The original AlexNet used LRN in layers 1 and 2 before the max pooling.

LRN is not being used anymore as a favorite component in other convolutional neu-

ral networks thus the LRN layers are removed in our model and the initializers were

changed from random-normal-initializer to xavier-initializer. The basic architecture

is shown in Figure 3.6. The number of filters in the first convolution is 64 and the
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filter size 11*11 and the strides of the convolution along the height and width equals

4.

 

 

Input(224×224 grayscale image) 

Dropout on input layer 

conv1: number of filters=64, filter size=11×11, stride=4 

maxpool1:  filter size=3×3, stride=2 

conv2: number of filters=192, filter size=5×5 

maxpool2:  filter size=3×3, stride=2 

conv3: number of filters=384, filter size=3×3 

conv4: number of filters=384, filter size=3×3 

conv5: number of filters=256, filter size=3×3 

maxpool5:  filter size=3×3, stride=2 

conv6: number of filters=4096, filter size=5×5 

Dropout 

conv7: number of filters=4096, filter size=1×1 

Dropout 

conv8: number of filters=12(number of classes), filter size=1×1 

Flatten (We Flatten the output of previous layer while 
maintaining the batch size. A flattened tensor with shape 

[batch size, k].) 

output = soft-max 

Figure 3.6: Our model inspired by AlexNet
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3.3.2 Three models inspired by VGG

Our three other models were inspired from VGG-16 [58]. VGGNet was presented and

developed at the ILSVRC 2014 competition by Simonyan and Zisserman. VGGNet,

similar to AlexNet, only has 3*3 convolutions but lots of filters. Original VGG has two

different models: VGG-16 (described here) and VGG-19. In this work we developed

the modified versions of VGG, including VGG with 11 layers, VGG with 16 layers,

and VGG with 19 layers.

VGG is deeper in comparison to the previous model (AlexNet based model). The

larger filters (e.g. 5*5) are made from multiple smaller filters (e.g. 3*3), which have

fewer weights to reach the identical receptive fields for balancing out the cost of

moving deeper. Moreover, all the convolutional layers have the similar filter size of

3*3.

VGG is a modification of AlexNet that instead of having a lot of hyperparameters

has a simpler network. It focuses on having only these blocks:

convolutional layer = 3 * 3 filter, stride = 1, same

Max-Pool = 2 * 2 , stride = 2

Our architectures are shown in Figure 3.7. VGG-16 has around 138 million parameters

and most of the parameters are in the fully connected layers, which can be a bit

challenging to handle. It uses a total memory of 96MB per image for only forward

propagation. The VGG uses the most memory in the earlier layers. The number of

filters increases from 64 to 128 to 256 to 512. 512 was repeated twice. Pooling is

the only one component that is responsible for shrinking the dimensions. There is

another version of VGGNet called VGG-19 which is a bigger version.
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For decreasing the number of parameters we converted the fully connected layers

to convolutional layers. VGG does not use many hyper parameters therefore it is a

simpler model. It applies 3*3 filters with the stride of 1 in convolution layers and

SAME padding in pooling layers 2*2 with the stride of 2. The weight decay parameter

(L2 regularization coefficient) was supposed to be 0.0005.
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VGG-11 (Inspired by VGG-16) Inspired by VGG-16 Inspired by VGG-19 

Input(224×224 grayscale image from F-actin or β-tubulin or DNA channels) 

Dropout on input layer 

conv1: number of filters=64, filter size=3×3 conv1: number of filters=64, filter size=3×3 conv1: number of filters=64, filter size=3×3 

 conv2: number of filters=64, filter size=3×3 conv2: number of filters=64, filter size=3×3 

maxpool1:  filter size=2×2 maxpool2:  filter size=2×2 maxpool2:  filter size=2×2 

conv2: number of filters=128, filter size=3×3 conv3: number of filters=128, filter size=3×3 conv3: number of filters=128, filter 

size=3×3 

 conv4: number of filters=128, filter size=3×3 conv4: number of filters=128, filter 

size=3×3 

maxpool2:  filter size=2×2 maxpool4:  filter size=2×2 maxpool4:  filter size=2×2 

conv3: number of filters=256, filter size=3×3 conv5: number of filters=256, filter size=3×3 conv5: number of filters=256, filter 

size=3×3 

conv3: number of filters=256, filter size=3×3 conv6: number of filters=256, filter size=3×3 conv6: number of filters=256, filter 

size=3×3 

 conv7: number of filters=256, filter size=3×3 conv7: number of filters=256, filter 

size=3×3 

  conv8: number of filters=256, filter 

size=3×3 

maxpool4:  filter size=2×2 maxpool7:  filter size=2×2 maxpool8:  filter size=2×2 

conv5: number of filters=512, filter size=3×3 conv8: number of filters=512, filter size=3×3 conv9: number of filters=512, filter 

size=3×3 

conv5: number of filters=512, filter size=3×3 conv9: number of filters=512, filter size=3×3 conv10: number of filters=512, filter 

size=3×3 

 conv10: number of filters=512, filter 

size=3×3 

conv11: number of filters=512, filter 

size=3×3 

  conv12: number of filters=512, filter 

size=3×3 

maxpool6:  filter size=2×2 maxpool10:  filter size=2×2 maxpool12:  filter size=2×2 

conv7: number of filters=512, filter size=3×3 conv11: number of filters=512, filter 

size=3×3 

conv13: number of filters=512, filter 

size=3×3 

conv7: number of filters=512, filter size=3×3 conv12: number of filters=512, filter 

size=3×3 

conv14: number of filters=512, filter 

size=3×3 

 conv13: number of filters=512, filter 

size=3×3 

conv15: number of filters=512, filter 

size=3×3 

  conv16: number of filters=512, filter 

size=3×3 

maxpool8:  filter size=2×2 maxpool13:  filter size=2×2 maxpool16:  filter size=2×2 

conv9: number of filters=4096, filter 

size=7×7 

conv14: number of filters=4096, filter 

size=7×7 

conv17: number of filters=4096, filter 

size=7×7 

Dropout 

conv10: number of filters=4096, filter 

size=1×1 

conv15: number of filters=4096, filter 

size=1×1 

conv18: number of filters=4096, filter 

size=1×1 

Dropout 

conv11: number of filters=12(number of 

classes), filter size=1×1 

conv16: number of filters=12(number of 

classes), filter size=1×1 

conv19: number of filters=12(number of 

classes), filter size=1×1 

Flatten (We Flatten the output of previous layer while maintaining the batch size. A flattened tensor with shape [batch size, k].) 

output = soft-max 

Figure 3.7: Our new models inspired by original VGG-16: new VGG-11, new VGG-

16, new VGG-19.
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3.3.3 A model inspired by GoogleNet

GoogleNet (Inception V1) from Google was the winner of the ILSVRC 2014 competition[64].

GoogleNet is a deeper convolutional neural network with 22 layers (Figure 3.8). It

has an Inception module that is made of parallel connections (Figure 3.9).

Each parallel connection uses various filters sizes (1*1, 3*3, 5*5) and 3*3 max-

pooling and we concatenate their outputs eventually for the module output. GoogleNet

has the impact of processing the input at different scales and then collect them so

that the next level can get compressed features from various scales simultaneously

because of using multiple filter sizes. 1*1 filters were used as bottleneck layers because

of decreasing the number of channels and eventually the number of weights.

The 22 layers include three convolutional layers, 9 Inception layers (each of which

is two convolutional layers), and one final convolutional layer (Figure 3.8). The output

of the final layer was flattened while it produced a flattened tensor with shape [batch

size, k]. After that, a Softmax function was applied.

The Inception modules outputs are constrained to change because these modules

are stacked on top of each other thus their spatial concentration is decreased(Figure 3.9).

The architecture of this model consists of stacked Inception modules with max-pooling

layers with stride 2. Although the original paper did not use batch normalization we

found it beneficial. We used batch normalization in our model but we did not show

it in the diagram (Figure 3.8).
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Figure 3.8: GoogleNet overall view [64]. Batch normalization was not shown in this

diagram.
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Figure 3.9: Inception module with bottleneck layers [64].
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Chapter 4

Experimental design and results

Recent works on analyzing High Content Screening images are focused on using

gained features from CellProfiler software. Our models can predict the MOA for

a compendium of drugs that alter cells, without using CellProfiler software and any

segmentation and feature extraction steps which would imply a significant improve-

ment on traditional methods. These findings were tested on the most popular High

Content Screening big dataset, BBBC021 [10]. Deep learning algorithms have usually

been tested on high quality datasets such as Imagenet, Cifar, etc., and their perfor-

mance on challenging datasets, including low quality samples, is rarely tested (e.g.

High Content Screening images with low quality). In this work we tested our models

on a High Content Screening breast cancer big dataset (MFC-7) as a case study. This

study tests the ability of deep learning algorithms on samples with very low qualities.

It is shown that deep learning algorithms can produce incredible results for predicting

MOAs on low quality images without using any segmentation and feature extraction

phases if their architectures and parameters are configured appropriately.
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In this work, we investigate the effect of deep learning algorithms on the predic-

tion of MOAs. We proposed five models for the prediction of MOAs from the MFC-7

(BBBC021) dataset into 12 MOAs. All previous works focused on single cell identi-

fication. We believe that single cell recognition is not the most useful for predicting

MOAs because compound treatments usually impact most cells in a sample in a va-

riety of ways, not just a single cell. Therefore, we worked on a population of cells in

samples to predict MOAs in RNAi screens. We believe that not only can our models

predict a specific phenotype through a population of cells in a particular sample but

they also can predict specific phenomenon by the low proportion of cells in a sample.

We think there are some relations between cells in a channel image that have not

been considered. Object recognition tasks generally have a single centered object

per image. Current deep learning algorithms have not been applied to images that

include multiple specific complex objects such as microscopy images because there

are a number of objects (cells) in these images.

4.1 Data

We used dataset BBBC021 [10] concerning molecular cancer therapeutics (MCF-7

wild-type P53 breast cancer cells) available from the Broad Bioimage Benchmark

Collection [48]. A comprehensive study has not been performed on the BBBC021

dataset. The images were treated for 24 h with a collection of 113 molecules at eight

concentrations. The ground-truth data set includes the mechanisms of action of 103

compound-concentrations (38 compounds at 1-7 concentrations each) [48]. For all 103

treatments, some compounds were active at up to seven concentrations, and some at
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only one concentration, covering 12 mechanisms of action classes (Figure 4.1). All 103

treatments were classified into MOAs by assigning to the predicted class of each its

most similar MOA. The cells were imaged by fluorescent microscopy, and labeled for

DNA, F-actin, and B-tubulin. For example, DNA, F-actin, and B-tubulin channels

for DNA damage MOA are shown in Figures 4.2, 4.3, and 4.4, where the compound

is mitomycin C and the concentration is 0.3 at week 4. There are 39600 image files,

(13200 views in three channels), in TIFF format (16 bit). All the images have been

converted to grayscale images (8 bit images). The original images are all 1280 by

1024 pixels. These images were converted to 224 by 224 pixels grayscale images to

feed our machine learning models. Therefore each image has 224*224 dimensions,

and each one holds the gray level of one specific pixel.

On deep learning projects, usually the first crucial step is to engage with a large

amount of data or a large number of images (e.g. a couple of million images in

ImageNet). In such a case, it is inefficient to load every single image from the hard

disk separately, use image preprocessing, and pass the image to the deep learning

algorithm to train or test. Preprocessing requires time, and reading multiple images

from a hard disk is more time consuming than having them all in a single file and

reading them as a single bunch of data. Luckily, there are different useful data models

and libraries, and one that we are interested in using for this project is called HDF5.

In this work, we saved a large number of images in a single HDF5 file and then loaded

them from the file as a single batch. It is not important how large the dataset, nor

whether it is larger than our memory size or not. HDF5 produces tools to manage,

manipulate, compress, and save the data.

The dataset includes 39600 images, including 13200 field-of-view images in three
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channels (DNA, F-actin, and B-tubulin channels). This is a large dataset, but some

samples are unlabeled and some are artificial (DMSO samples). The dominance of

positive bias in the mock-treatments (DMSO) suggests that the accuracy of the true

treatments may also be overestimated. Therefore, the unlabeled and DMSO samples

were removed from the dataset. The number of samples for all classes after removing

unlabeled and DMSO samples is 7584. We divided this dataset into two parts: first,

6444 samples of DNA, B-tubulin, and F-actin channels as training data, and second,

1140 samples of DNA, B-tubulin, and F-actin channels as testing data. Each image in

our dataset (DNA, actin filaments, or B-tubulin) has a corresponding label, a number

between 0 and 11, representing the MOA (Table 4.1).
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Figure 4.1: The ground-truth set [10].
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Table 4.1: Mechanism of actions

Mechanism of action Code of class

Actin disruptors 0

Aurora kinase inhibitors 1

Cholesterol-lowering 2

DNA damage 3

DNA replication 4

Eg5 inhibitors 5

Epithelial 6

Kinase inhibitors 7

Microtubule destabilizers 8

Microtubule stabilizers 9

Protein degradation 10

Protein synthesis 11
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Figure 4.2: DNA channel image for DNA damage MOA when the compound is mit-

omycin C and concentration is 0.3 in week 4 [10].
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Figure 4.3: B-Tubulin channel image for DNA damage MOA when the compound is

mitomycin C and concentration is 0.3 in week 4 [10].
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Figure 4.4: Actin channel image for DNA damage MOA when the compound is

mitomycin C and concentration is 0.3 in week 4 [10].

4.2 Visualizing the Data

Any data related challenge starts by exploring data itself. The BBBC021 dataset has

a large number of variables and a high number of dimensions. Therefore, visually

exploring this dataset can help us see the distributions of variables, classes, and

correlations between them. In this work, we focus on applying two techniques for

visualizing the data. We visualized the original imbalanced data and balanced data
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through two methods, namely, t-SNE and a combination of PCA and t-SNE. We want

to reduce the number of dimensions for visualizing the dataset while trying to keep

as much of the variation in the data as possible.

4.2.1 PCA

The PCA method is used for dimensionality reduction in the dataset while keeping

as much of the information as possible regarding how the data is distributed.

4.2.2 t-SNE

One of the most popular methods for dimensionality reduction and visualizing high

dimensional datasets is t-SNE (t-Distributed Stochastic Neighbor Embedding). In

comparison to PCA, this method is a probabilistic algorithm. This method looks at

the original data as an input to the algorithm and finds the representation of the data

with fewer dimensions using matching both distributions (original data and lower-

dimensional data). Moreover, this method compares the original data to the lower-

dimensional data and then finds the closest approximation of the lower-dimensional

data to the original data. The serious disadvantage of this method is that it is

computationally laborious. In cases of very high dimensional data, this limitation may

be addressed by using another dimensionality reduction algorithm before applying t-

SNE. For example, PCA can be used for dense data or Truncated SVD can be used

for sparse data. There is a significant improvement in comparison to the t-SNE

visualization we used previously, without PCA. As you can see in figure 4.6, the High

Content Screening samples are very clearly clustered in their own class. If we then
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use a clustering algorithm to identify the separate clusters, we could probably assign

new points to a label with a high degree of accuracy.

On the other hand, according to the notes before, the number of dimensions was

reduced by PCA before feeding the data into the t-SNE algorithm. Subjecting raw

data to the PCA algorithm produced a new dataset with 40 dimensions, and this

was fed into the t-SNE algorithm (Figure 4.6). A scatter-plot of the first to 40th

principal components that fed to t-SNE is created and the different types of classes

(MOAs) identified by colour are shown in Figure 4.6. It is obvious that, some types of

MOAs are clustered together in groups which means that the first to fortieth principal

components and t-SNE are enough to visualize the specific types of MOAs.
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Figure 4.5: The original dataset was visualized through t-SNE algorithm. The di-

mensions colored by the code of classes(MOAs).
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Figure 4.6: The original dataset was visualized through PCA + t-SNE algorithms.

The dimensions colored by the code of classes(MOAs).

4.3 Producing Balanced Dataset

After visualizing and looking at the dataset carefully, it is obvious that the BBBC021

labeled dataset is highly unbalanced (Figures 4.5 and 4.6). Visualizing the data

shows that there are a majority of samples in Microtubule stabilizers class (class

9) in comparison to the number of samples for other classes. We used three algo-

rithms to balance the dataset, namely, Undersampling, Oversampling, and SMOTE

[13]. Researchers have not considered the impact of imbalanced data on deep learn-
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ing algorithms. Therefore, in this work, we investigate the impact of data on the

performance of deep learning algorithms. A balanced dataset produced by the Un-

dersampling method was visualized through the t-SNE (Figure 4.7) and PCA+t-SNE

(Figure 4.8) algorithms.

Figure 4.7: The balanced dataset was visualized through t-SNE after balancing the

data by Undersampling. The dimensions are colored according to their class code

(MOA).
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Figure 4.8: The balanced dataset was visualized through PCA + t-SNE algorithms

after balancing data by Undersampling method. The dimensions colored by the code

of classes (MOAs).

After using the Undersampling method as a balancing the data method, the num-

ber of samples is 1440. We selected 85% of the samples (images) from 103 treatments

to train (1224 samples with one of the three channels namely, F-actin, B-tubulin,

and DNA) and 15% (216 samples) to test the models.From Figures 4.7 and 4.8, it is

clear that all the samples are positioned apart nicely and grouped together with their

specific class. The number of samples after using the Oversampling SMOTE method

is 51408 , 85% and 15% of these samples were taken from the training and testing
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datasets, respectively. Concerning the Oversampling method, we reused samples in

the minority class repeatedly, and then we feed them into our models. At this step,

there will be replication. Thus, the train and test sets include the same samples.

This can cause overfitting. They are made and shuffled by considering preserving the

percentage of samples for each class.

4.4 Models Testing

The proposed models require a fixed input of dimensionality. Thus, the images were

down-sampled to a constant resolution of 224*224 pixels. We only subtracted the

mean and divided by the standard deviation of each channel in our training set as

an image pre-processing step. Our models were trained on the raw gray level values

of the pixels from the DNA, F-actin, and B-tubulin channels for each mechanism of

action.

According to the results, our models can predict specific phenotypes through the

population of cells in a particular sample. Our best model (inspired by GoogleNet and

using SMOTE algorithm) achieved 86% accuracy on all samples with a population

of cells in the large BBBC021 dataset without requiring segmentation or a feature

extraction step. Moreover, in comparison to the previous works, our model reached

98% accuracy on a single cell for predicting MOAs. Our results show that five models,

inspired by GoogleNet, AlexNet, and VGG are capable of recognizing multiple objects

(cells) in images. These algorithms were tested three times and an accuracy average

over these three replications was calculated. We determined the accuracy, top-2

error, top-3 error, confusion matrix, and normalized confusion matrix as objective
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measures for estimating discriminatory ability. Moreover, our models can classify

those MOAs that are difficult to classify with the human visual system. With SMOTE

and GoogleNet, the prediction accuracy was 86% which is significantly better than

any of the other models that were tested (table 4.6).

Keskar et al. [38] points out that having a very large batch size can reduce the

generalization ability of the machine learning algorithm thus we supposed the batch

size 16. Our models were tested on full images. We did not use any preprocessing

process except mean subtraction and division by the standard deviation. The full

images were resized to feed the models. We suppose each grayscale stain image is

related to one of the 12 MOAs. Moreover, each sample can be relevant to one of the

three channels including DNA, F-actin, and B-tubulin.

We trained our models with Stochastic Gradient Descent for 500 epochs with an

initial learning rate of 0.001. At first, we used a fixed learning rate (0.001) for all

layers, which we adjusted manually throughout training. Then Steepest Gradient

Descent optimizer was used with adaptive learning rate. The results with adap-

tive learning rate show improvement in comparison to fixed learning rate during the

training phase (Figures 4.9 and 4.10). We used the adaptive learning rate method as

follows.

• The initial learning rate is 0.001

• decay = learning rate / total steps

• learning rate = learning rate ∗1/(1 + decay ∗ i).

As shown in Figures 4.30, 4.32, 4.34, 4.36, 4.38, more than 95% of the error

on predicting MOAs comes from protein degradation and protein synthesis classes
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(SMOTE + our deep learning models is section 4.4.2). Average accuracy on all of

the batches for each epoch was obtained as reported in Figure 4.25. Predicted ac-

curacy was obtained by taking the average over three experimental replicates. Our

VGG-11, VGG-16, GoogleNet, AlexNet models combined with SMOTE algorithm

achieved 100% accuracy for predicting Actin disruptors, Aurora kinase inhibitors,

Cholesterol-lowering, DNA damage, DNA replication, Eg5 inhibitors, Epithelial, Ki-

nase inhibitors, Microtubule stabilizer, and Protein synthesis MOAs (normalized con-

fusion matrices in Figures 4.30, 4.32, 4.34, 4.36). It is notable that our models mainly

obtain their discriminatory capability from a combination of image features. The top-

3 and top-2 errors also achieved to describe the accuracy of our algorithms (Figures

4.13, 4.14, 4.27, 4.28, 4.41, 4.42).

The similarity level of MOAs are shown in normalized confusion matrices in sec-

tions 4.4.1, 4.4.2, and 4.4.3. The confusion matrix is applied to evaluate the quality of

the output of our models. The confusion matrix with and without normalization are

shown in Figures in sections 4.4.1, 4.4.2, and 4.4.3. The diagonal elements represent

the number of samples that predicted correctly in each class.

The under-sampled dataset could not provide satisfactory results because of the

low number of samples while the results for combining over-sampling SMOTE method

and deep learning algorithms are very satisfactory because it deals with many samples.

Moreover, the sensitivity of our models will be increased by Undersampling. As shown

in section 4.4.3 the results are very poor because our models were trained using a few

samples. On the other hand, using the Oversampling method before feeding the data

into classifier can produce overfitting problems.

Moreover, SMOTE algorithm effectively tries to solve the generalization problem
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for minority class. Results are very satisfactory now. Especially for GoogleNet, we

obtained accuracy 86% with the SMOTE algorithm (on all samples in the dataset).

By using SMOTE algorithm before our models, we obtained almost perfect accuracy.

As expected, more data solved the problem regardless of using SMOTE algorithm

as a smart Oversampling method. According to the results, SMOTE Oversampling

algorithm properly is much better than Undersampling, for this dataset.

Our GoogleNet, AlexNet, and VGG-11 models achieved very good top-3 error

(0.03) for all 12 MOA classes. Moreover, our VGG-16 and VGG-19 models reached

0.04 and 0.05 top-3 error respectively. Combination of SMOTE and our deep learning

models take 80 hours to train on two Nvidia GPUs with 16 cores and 128 Gigabytes

memory.
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4.4.1 Our Deep Learning algorithms on imbalanced data

Table 4.2 shows the number of samples in the imbalanced raw dataset, the train,

and test datasets. According to the results, many protein degradation and protein

synthesis are misclassified as microtubule stabilizers MOA when imbalanced data and

our deep learning algorithms including GoogleNet or VGG-11 are combined.

Many MOAs are misclassified as microtubule stabilizers when our models includ-

ing AlexNet, VGG-16, and VGG-19 are applied on imbalanced data directly because

the number of microtubule stabilizers samples is high in comparison to the other

MOAs in our dataset.
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Table 4.2: The number of samples in the imbalanced raw dataset is 7584. The number

of samples in the train dataset is 6446. The number of samples in the test dataset is

1138.

MOA (raw dataset) Code of class Number of samples

train dataset test dataset

Actin disruptors 0 153 27

Aurora kinase inhibitors 1 367 65

Cholesterol-lowering 2 184 32

DNA damage 3 275 49

DNA replication 4 245 43

Eg5 inhibitors 5 367 65

Epithelial 6 225 39

Kinase inhibitors 7 102 18

Microtubule destabilizers 8 428 76

Microtubule stabilizers 9 3641 643

Protein degradation 10 214 38

Protein synthesis 11 245 43

Table 4.3: The accuracy on the imbalanced test dataset.

Our models inspired by

GoogleNet AlexNet VGG-16 (VGG-11) VGG-16 VGG-19

Accuracy 74% 56% 66% 56% 56%
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Table 4.4: The top-2 and top-3 errors on the imbalanced test dataset.

Our models inspired by

GoogleNet AlexNet VGG-16 (VGG-11) VGG-16 VGG-19

Top-2 error 0.14 0.37 0.27 0.36 0.37

Top-3 error 0.07 0.29 0.21 0.31 0.29
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Figure 4.12: Training loss (our deep learning models on the imbalanced data)
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Figure 4.15: confusion matrix, our GoogleNet, imbalanced dataset.
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Figure 4.16: normalized confusion matrix, our GoogleNet, imbalanced dataset.
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Figure 4.17: confusion matrix, our AlexNet, imbalanced dataset
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Figure 4.18: normalized confusion matrix, our AlexNet, imbalanced dataset.

58



Act
in

 d
isr

upto
rs

Auro
ra

 k
in

ase
 in

hib
ito

rs

Chole
st

ero
l-l

owerin
g

DNA d
am

age

DNA re
plic

atio
n

Eg5 in
hib

ito
rs

Epith
elia

l

Kin
ase

 in
hib

ito
rs

M
ic

ro
tu

bule
 d

est
abili

ze
rs

M
ic

ro
tu

bule
 s

ta
bili

ze
rs

Pr
ote

in
 d

egra
datio

n

Pr
ote

in
 s

ynth
esis

Predicted label
accuracy=0.6602

Actin disruptors

Aurora kinase inhibitors

Cholesterol-lowering

DNA damage

DNA replication

Eg5 inhibitors

Epithelial

Kinase inhibitors

Microtubule destabilizers

Microtubule stabilizers

Protein degradation

Protein synthesis

Tr
u

e
 l

a
b

e
l

0 21 0 1 0 3 2 0 0 0 0 0

0 47 0 5 1 12 0 0 0 0 0 0

0 26 0 1 0 3 1 0 0 0 0 0

0 18 0 4 2 22 3 0 0 0 0 0

0 3 0 1 13 16 10 0 0 0 0 0

0 6 0 8 3 34 14 0 0 0 0 0

0 12 0 4 3 10 10 0 0 0 0 0

0 0 0 2 5 6 5 0 0 0 0 0

0 21 0 4 5 14 6 0 0 26 0 0

0 0 0 0 0 0 0 0 0 642 0 0

0 0 0 0 0 0 0 0 0 38 0 0

0 0 0 0 0 0 0 0 0 43 0 0

Confusion matrix without normalization

0

80

160

240

320

400

480

560

640

Figure 4.19: confusion matrix, our VGG-11, imbalanced dataset.
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Figure 4.20: normalized confusion matrix, our VGG-11, imbalanced dataset.
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Figure 4.21: confusion matrix, our VGG-16, imbalanced dataset
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Figure 4.22: normalized confusion matrix, our VGG-16, imbalanced dataset.
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Figure 4.23: confusion matrix, our VGG-19, imbalanced dataset
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Figure 4.24: normalized confusion matrix, our VGG-19, imbalanced dataset.
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4.4.2 Combination of our Deep Learning models and SMOTE

algorithm

Table 4.5 shows the number of samples in the balanced dataset, train dataset, and

test dataset by using SMOTE algorithm. Based on the results in Figures 4.25 to 4.38,

Tables 4.6, and 4.7, many protein degradation and protein synthesis were misclassified

as microtubule stabilizers MOA when SMOTE and our models including GoogleNet

or VGG-11 or VGG-16 were combined. Moreover, many microtubule stabilizers and

protein degradation were still misclassified as protein synthesis when SMOTE and

AlexNet were combined. Many microtubule stabilizers and protein synthesis were

misclassified as protein degradation when SMOTE and VGG-19 were combined (Fig-

ure 4.38).
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Figure 4.25: Accuracy on the training and test datasets (combination of the deep

learning models and SMOTE algorithm on the imbalanced data)
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Table 4.5: The number of samples in the balanced dataset by SMOTE is 51408. The

number of samples in the train dataset is 43696. The number of samples in the test

dataset is 7712.

MOA (balanced dataset-SMOTE) Code of class Number of samples

train dataset test dataset

Actin disruptors 0 3641 643

Aurora kinase inhibitors 1 3641 643

Cholesterol-lowering 2 3642 642

DNA damage 3 3641 643

DNA replication 4 3642 642

Eg5 inhibitors 5 3641 643

Epithelial 6 3641 643

Kinase inhibitors 7 3642 642

Microtubule destabilizers 8 3641 643

Microtubule stabilizers 9 3641 643

Protein degradation 10 3642 642

Protein synthesis 11 3641 643

Table 4.6: The accuracy on the balanced test dataset by using SMOTE.

Our models inspired by

GoogleNet AlexNet VGG-16 (VGG-11) VGG-16 VGG-19

Accuracy 86% 79% 80% 78% 76%
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Table 4.7: The top-2 and top-3 errors on the balanced test dataset by using SMOTE.

Our models inspired by

GoogleNet AlexNet VGG-16 (VGG-11) VGG-16 VGG-19

Top-2 error 0.11 0.12 0.12 0.12 0.13

Top-3 error 0.03 0.03 0.03 0.04 0.05
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Figure 4.26: Training loss (combination of the deep learning models and SMOTE

algorithm on the imbalanced data)
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Figure 4.27: top-3 error on the balanced dataset by using SMOTE
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Figure 4.28: top-2 error by using SMOTE
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Figure 4.29: confusion matrix, our GoogleNet, SMOTE,balanced dataset.
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Figure 4.30: normalized confusion matrix, our GoogleNet,SMOTE,balanced dataset.
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Figure 4.31: confusion matrix, our AlexNet,SMOTE,balanced dataset.

Ac
tin
 d
isr
up
to
rs

Au
ro
ra
 k
in
as
e 
in
hi
bi
to
rs

Ch
ol
es
te
ro
l-l
ow
er
in
g

DN
A 
da
m
ag
e

DN
A 
re
pl
ic
at
io
n

Eg
5 
in
hi
bi
to
rs

Ep
ith
el
ia
l

Ki
na
se
 in
hi
bi
to
rs

M
ic
ro
tu
bu
le
 d
es
ta
bi
liz
er
s

M
ic
ro
tu
bu
le
 s
ta
bi
liz
er
s

Pr
ot
ei
n 
de
gr
ad
at
io
n

Pr
ot
ei
n 
sy
nt
he
sis

Predicted label
accuracy=0.7933

Actin disruptors

Aurora kinase inhibitors

Cholesterol-lowering

DNA damage

DNA replication

Eg5 inhibitors

Epithelial

Kinase inhibitors

Microtubule destabilizers

Microtubule stabilizers

Protein degradation

Protein synthesis

Tr
u
e
 l
a
b
e
l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.99 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.44

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Normalized confusion matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.32: normalized confusion matrix, our AlexNet,SMOTE,balanced dataset.

67



Ac
tin
 d
isr
up
to
rs

Au
ro
ra
 k
in
as
e 
in
hi
bi
to
rs

Ch
ol
es
te
ro
l-l
ow
er
in
g

DN
A 
da
m
ag
e

DN
A 
re
pl
ic
at
io
n

Eg
5 
in
hi
bi
to
rs

Ep
ith
el
ia
l

Ki
na
se
 in
hi
bi
to
rs

M
ic
ro
tu
bu
le
 d
es
ta
bi
liz
er
s

M
ic
ro
tu
bu
le
 s
ta
bi
liz
er
s

Pr
ot
ei
n 
de
gr
ad
at
io
n

Pr
ot
ei
n 
sy
nt
he
sis

Predicted label
accuracy=0.7942

Actin disruptors

Aurora kinase inhibitors

Cholesterol-lowering

DNA damage

DNA replication

Eg5 inhibitors

Epithelial

Kinase inhibitors

Microtubule destabilizers

Microtubule stabilizers

Protein degradation

Protein synthesis

Tr
u
e
 l
a
b
e
l

643 0 0 0 0 0 0 0 0 0 0 0

1 642 0 0 0 0 0 0 0 0 0 0

0 0 642 0 0 0 0 0 0 0 0 0

0 0 0 640 0 0 0 3 0 0 0 0

1 0 0 2 639 0 0 0 0 0 0 0

0 2 0 0 1 640 0 0 0 0 0 0

0 0 0 0 0 0 641 0 2 0 0 0

0 0 0 0 0 0 0 642 0 0 0 0

0 2 0 1 0 0 4 0 353 282 1 0

0 0 0 0 0 0 0 0 0 643 0 0

0 0 0 0 0 0 0 0 0 642 0 0

0 0 0 0 0 0 0 0 0 643 0 0

Confusion matrix without normalization

0

80

160

240

320

400

480

560

640

Figure 4.33: confusion matrix, our VGG-11,SMOTE,balanced dataset.
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Figure 4.34: normalized confusion matrix, our VGG-11,SMOTE,balanced dataset.
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Figure 4.35: confusion matrix, our VGG-16,SMOTE,balanced dataset.
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Figure 4.36: normalized confusion matrix, our VGG-16,SMOTE,balanced dataset.
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Figure 4.37: confusion matrix, our VGG-19,SMOTE,balanced dataset.
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Figure 4.38: normalized confusion matrix, our VGG-19,SMOTE,balanced dataset.
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4.4.3 Combination of our Deep Learning models and Under-

sampling algorithm

The results are shown in Figures 4.39 to 4.52, Tables 4.9, and 4.10. Table 4.8 shows

the number of samples for each MOA class and the number of samples as train and

test samples in the balanced dataset by using Undersampling method. Many mi-

crotubule stabilizers and protein synthesis were misclassified as protein degradation

when Undersampling and our models including AlexNet, VGG-11, and VGG-16 were

combined (Figures 4.45, 4.46, 4.47, 4.48, 4.49, 4.50). Protein degradation and pro-

tein synthesis were misclassified as microtubule stabilizers when Undersampling and

GoogleNet were combined (Figures 4.43, 4.44).

Table 4.8: The number of samples in the balanced dataset by Undersampling method

is 1440. The number of samples in the train dataset is 1224. The number of samples

in the test dataset is 216.

MOA (balanced dataset-Undersampling) Number of samples

train dataset test dataset

For each MOA class 102 18

Table 4.9: The accuracy on balanced test dataset by using Undersampling method.

Our models inspired by

GoogleNet AlexNet VGG-16 (VGG-11) VGG-16 VGG-19

Accuracy 45% 31% 26% 18% 22%
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Table 4.10: The top-2 and top-3 errors on the balanced test dataset by using Under-

sampling method.

Our models inspired by

GoogleNet AlexNet VGG-16 (VGG-11) VGG-16 VGG-19

Top-2 error 0.33 0.5 0.5 0.63 0.58

Top-3 error 0.17 0.30 0.30 0.42 0.41
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Figure 4.39: Accuracy on the training and test datasets (combination of the deep

learning models and Undersampling algorithm on the imbalanced data)
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Figure 4.40: Training loss (combination of the deep learning models and Undersam-

pling algorithm on the imbalanced data)
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Figure 4.41: top-3 error by using Undersampling.
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Figure 4.42: top-2 error by using Undersampling
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Figure 4.43: confusion matrix, our GoogleNet, Undersampling.
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Figure 4.44: normalized confusion matrix, our GoogleNet, Undersampling.
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Figure 4.45: confusion matrix, our AlexNet, Undersampling.
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Figure 4.46: normalized confusion matrix, our AlexNet, Undersampling.
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Figure 4.47: confusion matrix, our VGG-11, Undersampling.
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Figure 4.48: normalized confusion matrix, our VGG-11, Undersampling.

77



Act
in

 d
isr

upto
rs

Auro
ra

 k
in

ase
 in

hib
ito

rs

Chole
st

ero
l-l

owerin
g

DNA d
am

age

DNA re
plic

atio
n

Eg5 in
hib

ito
rs

Epith
elia

l

Kin
ase

 in
hib

ito
rs

M
ic

ro
tu

bule
 d

est
abili

ze
rs

M
ic

ro
tu

bule
 s

ta
bili

ze
rs

Pr
ote

in
 d

egra
datio

n

Pr
ote

in
 s

ynth
esis

Predicted label
accuracy=0.1683

Actin disruptors

Aurora kinase inhibitors

Cholesterol-lowering

DNA damage

DNA replication

Eg5 inhibitors

Epithelial

Kinase inhibitors

Microtubule destabilizers

Microtubule stabilizers

Protein degradation

Protein synthesis

Tr
u

e
 l

a
b

e
l

17 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 7 0

0 0 0 0 0 0 0 0 0 0 18 0

0 0 0 0 0 0 0 0 0 0 18 0

0 0 0 0 0 0 0 0 0 0 18 0

Confusion matrix without normalization

0

2

4

6

8

10

12

14

16

18

Figure 4.49: confusion matrix, our VGG-16, Undersampling.
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Figure 4.50: normalized confusion matrix, our VGG-16, Undersampling.
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Figure 4.51: confusion matrix, our VGG-19, Undersampling.
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Figure 4.52: normalized confusion matrix, our VGG-19, Undersampling.
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4.5 Comparison with the Previous Works

Although our models were performed on a population of cells for predicting mecha-

nism of actions in drug discovery, our models also were applied on single cell identifi-

cation because of comparing our methodologies performance with the results of Ljosa

et al. [47], Kandaswamy et al. [36], Kraus et al. [39], Ando et al. [2], and Singh et al.

[60]. The previous works did not test their methods on raw images(gray scale images)

directly in contrast to our approaches. Ljosa et al. [47] used 453 features obtained

from applying CellProfiler software. Kandaswamy et al. [36] used the 453 features of

each cell, similar to the work of Ljosa [47] through CellProfiler software for a particu-

lar MOA class. Kraus et al. [39] also used CellProfiler software to get the segmented

cell images. In addition, they proposed a method for localizing cells with Jacobian

maps for detecting cells in the image. Ando et al. [2] demonstrated that the small

total variation PCA dimensions are important for identifying cellular phenotypes,

while the large total variation PCA dimensions are actually more representative of

nuisance variation. Moreover, Ando et al. [2], Ljosa et. al. [47], and Kandaswamy et

al. [36] did not take advantage of the automatic feature extraction property as one of

the most important features in deep learning while this most important characteristic

was used perfectly in our models.

In contrast to previous methods, our models outperformed previously published

results for MCF-7 breast cancer cells without any pre or post processing modules

except normalizing the images by subtracting the mean and dividing by the standard

deviation of each channel in our training set. Our results indicated that subtracting

the mean and dividing by the standard deviation process does not provide significant

80



improvement in accuracy of our models.

In contrast to previous works, our models were tested on raw grayscale images

in the BBBC021 dataset. Previous works only used a small subset of the BBBC021

dataset as training and test datasets. Not only our models were tested on all true

labeled samples in BBBC021 dataset (as explained in previous sections), but also, in

order to compare with previous works, our models were tested on the same subset of

the BBBC021 dataset that Ljosa et al.[47], Kandaswamy et al.[36], Kraus et al.[39],

and Ando et al.[2] used. Thus we considered 15% of images from these 103 treat-

ments to train and validate our models. The similar proportion of the data reported

in previous works was applied to train our best model. We evaluated all the image

channels and reported the predicted accuracy across the treatments. According to

our experiments, we believe that using this small volume dataset without dropout can

lead to overfitting for all deep learning models. Thus, as noted in our methodology

section(chapter 3), dropout was the main element that we used in input and final lay-

ers for avoiding overfitting. In comparison to the previous works, our GoogleNet and

VGG-11 models combined with SMOTE method achieved better accuracy(99% ac-

curacy and 98% accuracy respectively in Table 4.11). The center of mass coordinates

of segmented cells were extracted and these coordinates were applied to crop single

cells from the full resolution images using CellProfiler. The crop size was supposed

to be 64*64 pixels.

Our model inspired by GoogleNet exceeds the newest accuracy with 99% NSC(Not-

Same-Compound) accuracy. The accuracy for 10 MOAs of the 12 MOAs is 100% with

the error in classifying protein degradation and protein synthesis MOAs (normalized

confusion matrices in Figures 4.30, 4.32, 4.34, 4.36).
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Table 4.11: Comparison with the previous works (Predicting MOAs based on a single

cell view.).

Method Accuracy

Ljosa et al. [47] (2013), traditional method 94%

Singh et al. [60] (2014), traditional method 90%

Kandaswamy et al.[36], (2016) 88%

Kraus et al.[39], (2016) 97%

Ando et al.[2], (2017) 96%

Our model (SMOTE + GoogleNet) 99%

Our model (SMOTE + VGG-11) 98%
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Chapter 5

Conclusions and Future Work

This work proposes a fully automated system using deep learning without human

interaction. We have shown that deep neural networks are capable of recognizing

MOAs from microscopy images if they were configured properly. The proposed mod-

els achieve higher accuracies than previous classical methods, requires less time and

expertise to recognize MOAs because image segmentation and feature extraction mod-

ules are eliminated. This work establishes the basis of High Content Screening systems

for future explorations.

This system does not need to use CellProfiler software for detecting and pre-

processing cell images. We actually deployed multi-object detection and recognition

automatically without using object detection, preprocessing and feature extraction

steps for predicting MOAs in drug discovery. Not only our deep learning models

worked on a population of cells very well for predicting MOAs but also they achieved

better accuracy in comparison to the previous works.
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