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Abstract

The calixarenes 2-4 are well-known and well-studied cyclic oligomers fonned by

the base-induced condensation of formaldehyde with p-Iert-butyiphenoi. They are

potentially a very versatile class of host molecules.

This thesis describes the syntheses and some properties of the calixnaphthalenes,

which are a new class of cyclic formaldehyde-naphthol tetramers which are analogous

with the calixarenes. These calixnaphthalenes were prepared by either one-pot or

convergent procedures.

Calixnaphthalenes offer some advantages over the calixarenes. For eltample.

since the naphthalene unit is larger than benzene the cavity of "cone conformations" of

the corresponding calixnaphthalenes should be deeper. Also. the presence of a B ring in

naphthalene provides a site for the addition of different functional groups. which allow

calixnaphthalenes to be modified. Furthermore. due to the low symmetry of I-naphthol

and 3-hydroxy-2-naphthoic acid, some calixnaphthalenes can be inherently chiral. They

therefore have potential applications as chiral hosts. or chiral ligands.

Calix(4]naphthalenes 10-12 were synthesized first by the direct condensation of 1­

naphthol and formaldehyde under basic conditions. Due to the difficulty in the separation

and purification of these compounds. a convergent approach was used to synthesize these

compounds as well as 13 in larger amounts for further investigations. The caJix(4]­

naphthalenes are conformationally flexible at room temperature even after their
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derivatization as te(raes(er derivatives.

In order to synthesize calixnaphthalenes which are closer to calixarenes in the

location of the hydroxyl groups within the lower rim of the calixnaphthalene basket. a

retrosynthetic analysis of compounds 57 and 62 showed that 3~hydroxy-2-naphthoic acid

(9) would be a suitable starring material. Syntheses of compounds 57 and 62 were

effected by self-condensation reactions ofJ-(hydroxymethyl)-2-naphthol and 6-ten-butyl­

3-(hydroxymethyl)-2-naphthol. respectively. using TiC1./dioxane conditions.

Variable temperature lH NMR analyses showed that compounds 57 and 62 are

conformationally flexible at room temperature. but the methylene protons are split intO

doublets at _10°C and the molecules are locked in the cone conformation as its preferred

conformation at ~20 0c. X-ray analysis showed that in the solid state 57 adopted a

"pinched-cone" conformation.

In order to modify calixnaphthalenes 57 and 62. they were converted into their

ester derivatives by reaction with ethyl bromoacetate. Calix(4]naphthalene 57 produced

two tetraester derivatives in the cone and partial-cone conformations, 70b and 70a,

respectively. CaIix[4]naphthalene 62 produced mono- and diester derivatives 628 and

62b, respectively. 'H NMR and molecular modeling analyses revealed that 62b exists

preferrentally in the 1,3-alternate confonnation.

Using a modified oxidation procedure, the hydroxyl groups of 57 and 62 were

oxidized to produce bis(spirodienone) derivatives. Compound 57 afforded only one
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isomer. 78. having C! symmetry as revealed by NOED experiments and confirmed by x·

ray analysis. Compound 62 produced two isomers. 81 and SO. having C, and C!

symmetries. respectively. Mild oxidation of 62 produced one monospirodienone isomer.

Dithiadihomocalix[4Jnaphthalenes 82 and 83 were synthesized from l-naphthol

and 3-hydroxy-2-naphthoic acid using procedures commonly employed in cyclophane

chemistry. These compounds are found to be conformationally flexible at room

temperature. Photolytic sulfur extrusion of 83 produced the corresponding

dihomocalix[4]naphthalene 8Ja while such conditions employed with 82 did not produce

the corresponding 8%a.

In order to enlarge the annulus of calix[4Jnaphthalenes derived from 3-hydroxy-2­

naphthoic acid. approaches to the tctrahomocalix[4]naphthalene isomers 85a and 91a-93a

were attempted. The synthetic approach employed was the base-mediated coupling of 97

and 98 to produce, in principle, tetrathianaphthalenophanes 91·94, which are potential

precursors of the corresponding tetrahomocalix.[4]naphthalenes after sulfur extrusion.

Instead, four isomeric dithianaphthalenophanes 99-102 were produced from the above

coupling reaction. Photolysis of these dimers produced two isomeric tetrahydrodibenzo­

pyrenes, 107 and 108. instead of [2.2](I,3)naphthalenophanes. 111 and 112. This type of

sulfur extrusion with concomitant transannular cyclization appears to be general one,

which could offer some advantages for the synthesis of tetrahydropyrenes and

tetrahydrodibenzopyrenes.
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Chapter 1

lntroduclion

1.1. Introduction.

Living cells utilize mechanisms in which particular ions may be taken up or

released. One of these mechanisms involves ion-transport with the help of molecular

vehicles such as ionophores. Although they vary in chemical composition and molecular

size. these ionophores all function using similar principles. They all bind the metal ion in

an internal cavity by vinue of polar ligating groups and create a lipid envelope around the

ion. which makes the resulting complex. soluble in lipid media. I

An examination of the receptor sites of biological molecules such as e.g. enzymes

("hosts") reveal them to have concave surfaces [0 which substrates ("guests") bind to

produce complexes as a result of electrostatic forces other than those of full covalent or

ionic bonds. These biochemical phenomena have provided inspiration for much of the

work in chemical molecular recognition, also often referred to as supramolecular

chemistry. For example, the early work of Pedersen on the crown ethers (hosts): for their

complexation and selectivity towards metal ions (guests) provided the chemists an entry

into the field ofhosl-guest complexation chemistry. Also, inspired by the enforced

concave surfaces of naturally-occurring biological compounds, Cram t!t.arJ were able to

design and synthesize organic molecules with enforced concave surfaces having active

binding sites such as spherands. cavitands. carcerands, and carceplexes.



A5 a result of Cram's extensive investigations.] and those of others~.j in the field of

host-guest complexation chemistry. it was found thar: for a carrier molecule or ligand to

behave as an ionophore it must meet the following requirements:'

a. It should contain both polar and non-polar groups.

b. [[ should be able to assume a stable conformation thar: provides a cavity. surrounded

by polar groups that are suitable for the uptake of ions. most often a cation. while the non­

polar groups form a lipophilic shell around the coordination sphere. These groups must

ensure sufficiently high lipid solubility for the ligand and complex.

Among the polar groups of the ligand sphere, there should be preferably 5 to 8. but

not more than 12 coordination sites. such as for example, oxygen atoms.

d. High selectivities are achieved by locking the coordination sites into rigid

arrangements around the cavity.

Notwithstanding requirement Cd). the ligand should be flexible enough to allow a

sufficiently fast ion exchange. This is possible only with a stepwise substitution of the

solvent molecules by the ligand groups. Thus, a compromise between stability (d) and

exchange rate has to be found.

Currently. many different types of supramolecular compound are under

investigation. One of these types of supramolecular compounds is the calixarenes.7.I

1.2. Synthesis of Calixarenes

Macrocyclic calixarenes can be obtained from the condensation of cenain para­

substiruted phenols and fonnaldehyde by one of the procedures outlined below.



1.2.1. One-pot procedure

The formation of macrocyclic calixarenes was first demonstrated by Zinke and

Ziegler in 1941.9 They treated p~alkyl phenols with formaldehyde in the presence of base

at high temperatures and obtained high melting point substances to which they assigned

cyclic tetrameric structures as shown in Scheme 1.1.

Scheme 1.1.

¢
R

+ CH,O

R =methyl, cyclohexyl, terr-butyl. phenyl. isobutyl, ...etc.

However. these products proved to be mixtures whose yields were not very

reproducible. Also. Zinke and Ziegler did not appreciate the conformational properties of

their products and their potential as candidates for molecular substances appropriate for

building enzyme mimics.

In the early 1970's. Gutsehe became interested in Zinke's cyclic tetramers as

potential candidates for enzyme mimics. which led him to re-investigate the one-pot

procedure in order to find a synthetically useful method. 1o



Scheme 1.2.

+ 4 f91H ?I0.045 equiv. NaOH , I CH~
CH20 +4 H20

d;pb••yl ...... ~n.. 0
50% Y 4

2

+ 6 CH20

+ 8 CH20

O.34equiv.KOH

xylene. reflux

85%

O.OJ equiv. NaOH

65%
[-¢1;'H'H

4

Changes involving solvents. bases. reactant ratios and other variables resulted in

recipes that now permit the cyclic tetramer. hexamer. and octamer to be prepared easily in

good yield. from p-tert·butylphenol. Some optimized conditions are shown in Scheme

1.2. 11



Gutsehe also perceived a similarity between the shape of a type of Greek vase

called a "Calix Crater" and a space·ftlling model of the non-planar fonn of me cyclic

teU'anler in which all of the aryl moieties are oriented. in the same din:ction. He assigned

the name caJix[n]arenes to these compounds (""arene". specifying the incorporar.ion of aryl

residues in the macrocyclic array and "n" indicating the number of aryl residues). These

caJixarenes have different positions that can be functionaJized: the phenolic oxygens at

the "lower" rim. and the aromatic para·positions at the "upper rim". With regard to the

para-substituent alkyl group of phenol, it was found that the l~n-butyl group is the best

alkyl group, giving the best yields and the most tractable products.

1.2.2. Stepwise procedure

The calixarenes obtained from a one-pot procedure necessarily have the same

substituent in all the para-positions. Calixarenes with different para-substituents can be

obtained by stepwise synthesis. Two strategies have been employed.

1.2.2.a. NOb.oCOllvergent stepwise syothesisl1

This type of synthesis starts from an o-bromo-p-aJkylphenol and uses a series of

alternating hydroxymethylation and condensation steps to build up a linear oligomer with

a hydroxymethyl group at one end. This can then be cyclized under high dilution

conditions after the other o-position has been de·blocked by dehalogenation. (Scheme

1.3). The yields obtained in the cyclization step are generally very good. but because of

the large number of steps. the synthesis is long. and the overall yield is low.



Scheme 1.3.
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1.2.2.b. Fragment condensation

The last step in the non-convergent approach involves the cyclization of a single

linear fragment molecule in a final intramolecular reaction step. Calix[4]arenes can also

be prepared from two (or more) fragmenlS. In this case the cyclization step is preceded by

an intennolecular condensation step. Bahmer's group has effected condensations using

[3+1],IW [2+2],1.:1 and [2x 1+2x IJ J6 processes using mostly TiCI/dioxane conditions to

synthesize of a wide range of calix[4]arenes having different substituenlS present in the p-

positions. (Scheme 1.4).



Scheme 1.4.
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1.3. The conformations of calixarenes

All of the caHxarenes containing free phenolic hydrox:yl groups are

conformationally mobile in solution at room temperature. That calix[4]arenes possess the

potential for conformational isomerism was recognized by Comforth and his coworkers.7

Gutsehe has designated these isomers as cone. partial-cone. 1,2-altemate and 1,3·altemate

(Figure 1.1). These confonnational isomers result from the free rotation of the a-bonds

of the methylene bridges.

Figure 1.1. Conformational isomersofcalix[4]arenes.

Cone

1,2·A1ternate

Partial-Cone

l,3-A1temate



All cryStal slrucrures of caJix[4]arenes having free hydroxyl groups which have so

fae been reported.·' including lhose of compounds containing different phenolic units.·1

have shown lhat lhe ca1ix(4]arenes adopt the cone conformation in the solid slate. In lhis

conformation lhere is stabilization by intramolecular hydrogen bonding between the

hydroxyl groups.

Calix[4]arenes also exist in the cone conformation in solution. as shown by IH

NMR spectroscopy. In the case of ten-butylcalix[4]arenes. singlets are expected fat the

hydroxyl. the aromatic and the fut-butyl groups. The two protons of each methylene

group, however. are nonequivalent in the cone conformation. and at temperatures at or

below 200C in a nonpolar solvent such as CDCl). a pair of doublets is indeed observed

with a coupling constant of 12-14 Hz. which is typical for non-equivalent geminal

protons. These signals become broader when the temperature is increased. but collapse to

form a sharp singlet at temperatures higher than 60 "C. This can best be explained in

terms of a rapid exchange (Figure 1.2) between the two opposite (but identical) cone

Fieure 1.2. A rapid uchange between the two opposite coDe cooformations

conformations. in which the hydroxyl groups pass through the interior of the macrocycle.
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the equatorial protons which were originally equatorial ~coming axial. and vic~ versa.

The IH NMR spectrUm therefore shows only an averaged signal.

It was shown that a substiruent in the p-position has a small effect on the barrier to

interconversion process. Thus. in COCIJ solution lhe free energy of activation for p-Ien­

burylcalix(4]arenes is 15.7 kcallmol and for p.lur-pentylcalix[4]arenes is 14.5 kcaVmol.

The energy barrier for interconversion, however. decreases when a nonpolar solvent such

as COCl) or benzene-dd is replaced by a more polar solvent. This is because

interconversion requires that the hydroxyl groups pass through the ring, so that the cyclic

arrangment of the hydrogen bonds is temporarily interrupted. Solvents which can break

hydrogen bonds will therefore lead to a decrease in the energy barrier. For example. the

inversion barrier for p-ten-butylcalix[4]arenes falls from 1$.7 kcallmol in COCIl to 13.4

kcallmol in pyridine. lt.JO

1.4. Synthesis of fundionalized calixarenes

One of the primary motives lhat chemists have for building molecular "baskets" is

lhe hope that such compounds will have enzyme-like properties and possess the ability to

catalyze reactions in specific ways. For this to be possible. it is necessary lhat lhe baskets

carry one or more functional groups lhat can take part in the chemical reactions required

for lhe catalytic process. Two main procedures have been used for introducing functional

groups into lhe caJixarene basket.

1.4.1. Lower rim fundionalization

The hydroxyl groups of lhe lower rim provide obvious sites for the attachment of



11

other functional groups. Useful synthetic methods involve reactions with excess (X-

haJocarbonyl re<..lgents to give tetraesters, amides. thioamides and ketones (Scheme [.5).

Scheme 1.5.

y

~~,lY L
'f

'(;r
0 /'

CH,

I
R

OR 0

OR 0

NHz OOf'S

NHR OarS

NR1 OorS

CH,O

A convenient method for introducing alkyl groups involves treatment of

calix.arenes with an alkyl halide in THF-DMF solution. in the presence of sodium hydride.

Methyl. ethyl. allyl and benzyl ethers have all been prepared in high yields.n A series of

polyalkolty ethers have been synthesized with the losylate of the aJkylating agent in the

presence of potassium ten.buloxideY

1.4.2. Upper rim functionalization

A variety of procedures has been employed for introducing groups into me p-

positions subsequent to removal of the rert-butyl groups by Lewis acid catalysis such as

AIel}. These procedures include electrophilic substitution (i.e., bromination,24

iodination,U nitration,26 sulfonation,n chlorosulfonation,2I acylation,29 diazo coupling,»

fonnylation ll ), the Claisen rearrangment of o·a1lyl to p·allyl,12 the Mannich reaction,ll



12

chloromethylation.).I and mercuration (Scheme 1.6).JS

Scheme 1.6.

R =8,. ~ 00,. NIl" CH,NRb CH,NH" N,Ar. CN. CH,CH,NII" CD,H, CH,CD,H
CH,CH,CD,H, CH,OH, at,SH, So,H. SO,O. ClIO. COOI,. ax;H,

These chemical modifications not only permit the synthesis of new host molecules

by the introduction of additional groups. but also permit the following:

1.4.8. Enhancement of the selectivity and efficiency of the complexation

properties of calix[n]arenes

Derivatives of calixarenes which contain esters. amides or ketones have been

studied in detail. and several general rules can be formulated: l
6-l1

Both ester and ketone derivatives complex alkali metal ions more strongly than

alkaline earth metal ions.

2. The ion selectivity depends on the conformation.

3. Tetraesters in the cone conformation are selective for Na+, while the other

conformations favour K'.

4. Fine tuning of selectivities is possible by varying the alko)(y groups.

5. Tetraamides bind alkali metal ions more strongly than do the corresponding esters.
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Also. in contrast to ester and ketone derivatives, amides are stronger complexing agents

for alkaline eanh metal ions.

1.4.b. Lower rim functionalizatioD control of calixarene conformers by

hindering conformational inversion

Since larger substituents (acetyl. propyl or larger) cannot pass through the

macrocycle (annulus), it is possible to fix all the conformations and to isolate them as

stable conformers. For example, acetylation of ren-butylcalix[4]arene yields tetraacetate

Sa (Scheme 1.7) that is frozen in the panial-cone conformation,U

Scheme 1.7.

5 a 1I "'OCOCH,
b ;I[ = OCHzCHCH1
C l(=OC~C~

d l( = OSi(CH,h
c:\=C~lH5

fit .. CH1CH:OR

Conversion of tert-butylcalix[4]arenes to the tetraallyl Sb, lctrabenzyl Sc. or

trimethylsilylether ScI locks the respective calixarene in the cone conformation. In

general. it appears that acetylation and alkylation with simple alkyl halides favor the

partial-cone conformation. Benzylation and trimethylsilylation favor the cone
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conformation. The formation of the cone conformation often appears to be favored by a

template effect of the metal ions present such as Na·, Thus, when terr-butylcalix[4}arenes

react with ethylbromoacetate in acetone in the presence of Na!CO). the cone isomer Se is

formed quantitatively.)6.-'O Ethers oftype Sf in the 1.3-aJtemate conformation were

obtained by alkylation with the corresponding losylates in DMF with CSzCOJ as a base

with selectivity up to 100% and isolated yields up to 75%.~2 whereas. in the presence of

NaH. the cone conformation was preferentially fonned.43

1.4.c. Enhancement of the solubility of calixarenes

Calixarenes are sparingly soluble in several organic solvents but are insoluble in

water. Lower rim functionalization with ester. alkyl or amide groups enhances meit

solubility in organic solvents, and upper rim functionalization with sulfonato groups

produces water soluble sulfonated calixarenes.:7

1.4.d. Synthesis of chiral calixarenes

Two general possibilities exist for the production of chiral calix(4]arenes:

t. Derivatives with chiral substiruents: CaJixarenes have been converted into chiral

derivatives by the introduction of a chiral substituent either at the phenolic OH

groups or at the p-positions {Scheme 1.8).~3
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Scheme 1.8.

2. Dissymmetric caHxarenes: A more interesting possibility is to make the calixarene

itself inherently chiral by introducing substiruents at meta positions in addition to the

para-position. CaIixarenes with C4 symmetry have been obtained with yields in the

cyclization step of up [0 30% (Scheme 1.9}.'"

Scheme 1.9.
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1.5. Calix[n)naphthalenes.

The calixMenes discussed to litis point have been confined 10 those comaining

only benzene rings. In the present work other common aromatic compounds. namely

naphthalenes such as I-naphthol (8) and 3-hydroxy-2-naphthoic acid (9). were considered

as building blocks for calixnaphthalenes. which are calixarene analogues.

o

~OH
~n..OH

3-hydroxy-2-naphthok acid

Since naphthalene is larger than benzene. the cavil}' ofcalixnaphthalenes should

be deeper. This deeper cavity in a calixnaphthalene. panicularly in a 1.3-a1ternate

conformation. can provide a potential rube-shaped n:·bond-based cavity. which might

enhance its complexation properties by eation-n: interaction phenomena.~s Not only do

the B rings of the naphthalenes increase the depth of me calixnaphthalene cavity but they

also provide sites for me addition of different functional groups, which allow

calixnaphlhalenes to be modified. As opposed to most calixarenes. many

calixnaphthalenes can be inherently chiral. They therefore have potential applications as

chiral hosls or chiral ligands.
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This thesis describes some synthetically useful convergent routes for synthesizing

all four isomeric caJix(4]naphthalenes that are derived from I-naphthol using either TiCI..­

orTFA·medialed coupling reactions (0 achieve the cyclization steps_ The synthesis of

inherently chiraI caJix[4]naphthalenes and their conformational propenies using variable

temperature (Vf) IH NMR is also described. Oxidation of these chiraJ calixnaphlhalenes

into their corresponding bis(spirodienones) is also presented. New routes for the

synthesis of precursors which CQuid easily be converted into pyrenes and dibenzopyrenes

is also presented.
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Chapter 2

Calix[4]naphtbalenes Derived Crom I-Naphthol

2.1. Introduction

The 1- and 2-naphthols are more reactive than phenols, and they resemble

resorcinol rather than phenol in many of their reactions..l6 The complex.ity of the reaction

of I-naphthol with fonnaldehyde is well known;H and it has been assumed that cross­

linked polymers are formed since reaction can occur at both C-2 and C-4. The acid- and

base-catalyzed reactions between I-naphthol and formaldehyde have been studied since

1892. Breslauer and Pictet obtained an amorphous product when they reacted I-naphthol

with formaldehyde and potassium carbonate and obtained a solid product whose

empirical fonnula was found to be CzJH I60).-lS When Abel heated I-naphthol in 50%

acetic acid with formaldehyde and a small quantity of hydrochloric acid. he obtained a

brown brittle resin that was a1ka1i-soluble.~9 Niether Abel nor Breslauer elucidated the

structures of the products of these reactions.

In 1993, Georghiou and Lj50 reponed the synthesis of three cyclic tetrameric

compounds from the base-induced reaction of formaldehyde with I-naphthol in DMF

solution (Scheme 2.1). These cyclic tetrameric compounds were the first members of a

new class of compounds, which were named calix[4]naphthalenes by analogy with the

calixarcnes.
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Scheme 2.1

+ CH20~
DMF,n:nux

11 (C·23,C.s) 12 rC44,CI) 13 (C·12,C2,)

For simplicity and using symmetry considerations, these compounds were

designated as ··C·ll'·, "C-12". "C-23" and "CM". These terms refer to the number of

carbon signals expected in the DC NMR spectra.. The C-12 is included as a possible

structure but was not obtained by Georghiou and Li from their base-catalyzed reaction.

The yields ofC·ll, C-23 and C-44 were relatively low. and the limited solubility

of the crude reaction mixture in the usual organic solvents required tedious separation and

purification of these compounds from the crude reaction product. Also. since no C-12

was fonned. a convergent symhetic approach was necessary to synthesize in larger

amounts all of the four isomeric calix(4)naphthalenes (10-13) derived from I-naphthol
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for funher investigations.

For purposes of synthetic considerations. the C-Il. C·12. C-23 and eM

compounds can be seen to be formed by subsequent condensation of formaldehyde with

various combinations of the following first condensation products, as depicted in Figure

2.1.

Figun 2.1. Three condensation products of I-naphthol with formaldehyde

OH

~
OH OH

~ '" o:Y'Oo~ I '" ~ I",
I

OH

" 15 ,.

In principle. the C-Il product can be seen to be fonned by condensation of two

molecules of formaldehyde between two molecules of 16 (Scheme 2.2).

Scheme 2.2.

,c&O:H ~
H H

OH

OH
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The C-12 product can in principle also be seen to be fonned by condensation of

twO molecules of fonnaldehyde between two molecules of 14. or two molecules of 15

(Scheme 2.3).

Scheme 2.3.

The product C-23 can be seen to be formed by condensation of two molecules of

formaldehyde between two molecules of 16. or between molecules of 14 and 15 (Scheme

2.4)

Scheme 2.4.
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Finally, the C-44 product can be seen to be fonned by condensation of two

molecules of fonnaldehyde between two molecules of 14 and 16. or 15 and 16 (Scheme

2.5).

Scheme 2.5.

0;5
oQ

OH '--1 ~OH ~ IrJ -",,_ "-
OR 14 + UJ~H-

~16
15 12

The complexity of the reaction of I-naphthol with formaldehyde is well known.H

since reaction can occur at both C~2 and C-4 positions. Thus. none of compounds 14-16

could be synthesized directly from I-naphthol and formaldehyde. In order to direct the

condensation of formaldehyde between two molecules of I-naphthol selectively. the

classical approach was ex:plored of using a blocking group which is added to pro(e<:t one

of the reactive sites. and then removed later on to reopen that site to reaction.

Initially. the lert-butyl group was chosen as the blocking group. [t had been

reported51 that the ZnCI~.-eatalyzed reaction of I-naphtllol with ten-butyl chloride afforded

a42% yield of 4-ten-butyl-l-naphthoL It had also been reported 52 that the H2S04-
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catalyzed reaction of I-naphthol and ten-butyl alcohol afforded an unspecified amount of

2,4-di-terr-butyl-l-naphthol and 20% of 2-ren-bulyl-l-naphthol. Employing these

alkylation reaction conditions did not afford any 2- or 4-tert-butyl-l-naphthols. Several

odler variations of ZnCI1- or H~SO~-catalyzedreactions were employed. but in no case

was any 2- or 4-ten-butyl-l-naphthol observed. The results of the re-investigation of ten·

butylation of I-naphthol using several ten-butylating agents and several acid catalysts

will be the subject of a forthcoming chapter. However. we found that 14 and 15 could be

synthesized via their corresponding dimethoxy derivatives using a convergent synthetic

approach.

2.2. Synthesis of calix[4]naphthalene C~12 isomer: [2+2] condensation

A convergent synthesis of calix[4}naphthalene 13 was achieved by the route

depicted in Scheme 2.6. It was reportedS3 that the dimethoxy derivative of 14, namely

bis(4-methoxy-l-naphthyl)methane (17), could be synthesized in good yield by an acid­

catalyzed reaction of paraformaldehyde with I-methoxynaphthalene. Employing these

reaction conditions with l·naphthol itself did not produce 14 and yielded only an

intractable resinous product. Under a variety of different conditions the direct

condensation of 17 with formaldehyde could not be effected. However, the

corresponding bis-bromomethyI18, namely bis(3-bromometbyl-4-methoxy-l­

naphthyl)metbane, could be obtained in 40% yield by reacting 17 with paraformaIdehyde

in HBr/AcOH. Using Bohmer'sl3-16 TiCI.-catalyzed coupling conditions in dry dioxane,
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Scheme 2.6.

(CH10)a. dioxane
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17 and 18 coupled to afford the elY symmetrical tetra-memoxycalix(4]naphthalene 20. in

23% yield. A more convenient alternative synthesis 0(20 was achieved by first

converting 18 to the corresponding bis-hydroxymethyl compound 19. and then coupling

19 with 17 using 5% trifluoroacetic acid (IFA) in chlorofonn.Sol The product. 20. which

was obtained in 28% yield. was easier to isolate from the crude reaction mixture lIlan

when TiCI.. was used. Demethylation of 20 using BBr) produced the elusive

caJix[4]naphlhalene 13 in 54% yield. The IH NMR and UC NMR spectra aided by 2-D

(HETCOR. APT) and NOED experiments were consistent for structures 13 and 20. which

possess C!~ symmetry. The HETCOR and APT IJC NMR spectra of 20 in CDCI, clearly

indicated five melhine aromatic carbon signals. two aliphatic melhylene carbon signals

and lhe methoxy carbon signal. Only four of the five quaternary aromatic carbon signals

were clearly resolved.

The 'H NMR spectnJm of20 (Figure 2.2) shows a relatively high field aromatic

signal as a four-proton singlet at 6.43 ppm due to the four intraannular naphthalene

protOI15 (H-4I. H-42. H-43, H-44). 'The methylene protons (on C-2, C-12. C-22. C-32)

appear as two singlets at 4.24 and 4.59 ppm with relative intensities in the ratio of I: I.

The IlC·NMR (DMSO..<f/l) spectnlm of the demethylated product 13 shows all

twelve carbon signals. consisting of five quaternary aromatic carbon signals. five methine

aromatic signals and two aliphatic methylene carbon signals clearly resolved. The IH_

NMR spectnlm of 13 (Figure 2.3) shows also a relatively high-field aromatic signal

which is a four-proton singlet at 6.64 ppm due to the four intraannular naphthalene
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protons. The methylene protons appear as two singlets at 4.0 I and 4.51 ppm. The

higher-field aromatic signals in 13 and 20 can be accounted for by ex:amination of

molecular models, which reveal that the intra-annular protons are situated in the shielding

region of the naphthalene ring. That the methylene protons appear as a singlet at ambient

temperature indicates that the compound has a flexible structure with interchanging sites.

As staled before, one of the methods to lock calixarenes into one of their four

conformations at ambient temperature is (0 replace the hydroxyl groups with larger

moieties, such as ester groups. Employing this strategy. calix.[4]naphthaJene 13 was

converted into its tetraester derivative 13a (Scheme 2.7).

Scheme 2.7.

o Nail. THF
BlCH~-C-OC!H,

..enux,Jh,34'llt

130

As shown in Figure 2.4, the simple tetraester derivative 13a is confonnationally

labile at ambient temperature as demonstrated by the fact that the methylene bridge

protons appear as a sharp singlets at 4.31 and 4.6 ppm, and not as an AB quanet.
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2.3. Synthesis of C·23 and C44 Tetramethoxycalix[4]naphthaJenes

2.3.3. [3+1] Condensation

A convergent synthesis oflhe C-23 and C-44 tetramethoxycalix[4]naphthalenes

2S and 26, respectively. was achieved by the route depicted in Scheme 2.8. Refluxing 1­

melhoxynaphthalene (21) for 6 h with paraformaldehyde in 30% sulfuric acid afforded a

mixture which contained linear oligomers including dimer 17 and trimer 24. The

structure of 24 was established on the basis of its spectroscopic properties. including 2-D

IH and DC NMR experiments and NOED correlations. When 24 was reacted with the

bis(hydroxymethyl)naphlhyl derivative 23 using TFA-catalyzed conditions, a 3: I mixture

of 26 and 2S was obtained in 8% overall yield. Compound 23 was synthesized from me

corresponding bis-bromomethyl precursor 22. which, in tum. was obtained from the

reaction of l·methoxynaphthalene with paraformaldehyde in HBr/AcOH.

The 'H·NMR spectrum of 2S (Figure 2.5) shows the higher field aromatic signals

as two (two-protons) singlets of equal intensity at 6.50 and 6.58 ppm for the intra-annular

protons. The methylene protons appear as three singlets. at 4.30. 4.40 and 4.51 ppm with

relative intensities in the ratio of 1:2: 1. Also. the two singlets at 3.90 and 3.91 ppm are

due to two sets of equivalent methoxy groups. This ambient temperature IH NMR

spectrum of 25 indicates confonnational mobility, since all signals including the

methylene protons are sharp and wetl·defined. Also. the two singlets due to two sets of

equivalent methoxyl groups and three singlets due to three sets of methylene protons
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indicate that the molecule has C. symmelric. The two possible C. symmetric

confonnations are 1.2~altemateand "crown". The lower field shift afme twO sets of

methoxy groups suggests that the molecule possesses a crown·like conformation in

solution.

The IH NMR spectrum of 26 (Figure 2.6) shows the intra-annular naphthalene

protons as four. four·proton singlets of equal intensity at 6.10, 6.15. 6.91 and 7.01 ppm.

The methylene protons appear as fOUf singlets at 4.27, 4.39. 4.44 and 4.67 ppm with

relative intensities in lhe ratio 1:1:1:1. The methoxy protons appear as four singlets of

equal intensities in the ralio I: I: I: 1 at 2.61. 2.85. 4.03 and 4.04 ppm. An unusual Feature

ofthelH NMR spectrum of26 is that the chemical shifls oflhe two methoxy methyl

groups at 2.61 and 2.85 ppm are siruated at relatively high fields. These clearly indicate

that lhese two methyl groups are shielded by the naphthalene rings. The two other

methoxy methyl groups have more typical chemical shifts. There appears to be a

dynamic equilibrium between two 1.3-altemate type of conformations (Figure 2.7). In

these conformations. the methoxy methyl groups situated on C4 and C24 are shielded by

the opposing naphthalene rings. The methoxy methyl groups at CI4 and C40 are not

similarly situated with respect to their opposing naphthalene rings and are therefore not

shielded. Rapid interconversion must be occurring at ambient temperature since all four

methylene protons appear as singlets and not as AD quartets.
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Figure 2.7. Dynamic equilibrium betweeD l,.3-aJtemate conformations or

calix(4}naphtbalene.26.

...

2.3.b. (2+2J Condensation

Since the yield ofZ5 by [3+1] condensation was low, [2+2) condensation was

used as shown in Scheme 2.9. The para position of (-naphthol was blocked using

bromine to give 4-bromo-t-naphthol (27). Anempts at the direct condensation of 27 with

fonnaldehyde were unsuccessful. but when 27 was first converted to its methoxy

derivative 28. the onho.onho methyJene-coupled. bis-bromonaphthyl 29 was obtained in

good yield. Removal of both bromine atoms with light-initiated reduction using tri-n­

buryltinhydride" gave a quantitative yield of JO, me dimethoxy derivative of 15.

Coupling of 30 with 18 using Tiel/dioxane conditions gave 25. the elY symmetrical

tctra-methoxycalix[4]naphthalene derivative of 11 in 11% yield. This compound could

also be synthesized more conveniently in 30% yield by the TFA-eatalyzed coupling of 30

with bis-hydroxymethyl compound 19. Demethylation of2S using BBr) produced the
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calix.(4]naphthalene 11 in 89% yield.

2.4. Synthesis of C-ll tetramethoxycalix[4]naphthalene: self-condensation of 2-

hydroxymethyl·l.methoxynaphthalene

Synthesis of 34 was achieved using me reaction depicted in Scheme 2.10.

Scheme2.tO

~OH~
~ NaOH

31

34(30'70)

JLAJ< THF
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The slatting material chosen for this sequence of reactions was l-hydroxy·2·

naphlhoic acid (JI), which was converted to 2-(hydroxymethyl)-l-methoxynaphthalene

(33) via LAH reduction of methyl l-melhoxy-2-naphthoate (32). When 33 was treated

with sulfuric acid as catalyst in TFA as solvem. teuamethoxycalix{4]naphthaJene 34 was

obtained in 30% yield.

The IlC NMR (CDCll ) spectrum of 34 shows twelve signals consisting of five

quaternary aromatic carbon signals. five methine aromatic carbon signals, a single

aliphatic methylene carbon signal and a single melhoxy carbon signal.

The IH NMR spectrum of 34 (Figure 2.8) includes a relatively high-field aromatic

signal, which is a four-prolon singlet at 6.69 ppm due to the fOUf intra-annular

naphthalene protons (H-41. H-42. H-43. H44). The methylene pro[Qns (on C-2. C-12. e­

22, C-32) appear as an eight-proton singlet at 4.21 ppm. The methoxyl protons appear as

a singlet at 3.37 ppm. These data are consistent for structure 34. which possesses CJ

symmeuy.

2.5. Experimental

General Methods: All reactions were performed under N1 or Ar. Organic solutions were

concentrated on a rotary evaporator. All of the compounds were purified by either nash

chromatography using Merck silica gel (230-400) mesh or preparative thin layer

chromatography (PLC) plates. which were made from Aldrich silica gel (TLC standard

grade. 2~25 J.1) with 14% calcium sulphate. Thin-layer chromatography (TLC) was
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performed on precoatcd silica gel 60 F~ plates (Merck. Darmstadt, FRG).

Materials: Chemical reagents and solvents were purchased from Aldrich or Auka.

Anhydrous CH2Clz and CHell were obtained by distillation of ACS grade

dichloromethane and chloroform from calcium hydride. Anhydrous THF was obtained

by drying ACS grade over Na and distilling it from purple sodium benzophenone under

N1. Dioxane was purified by first refluxing one litre of dioxane with 14 mL of

concentrated Hel and 100 ml water for 6-12 h. followed by treating the cold solution with

excess of solid KOH to remove the water. The decanted solvent was refluxcd over an

excess of sodium metal under N1 to afford anhydrous dioxane.

Instrumentation: Melting points (m.p.) were determined on a Fisher-Johns apparatus

and are uncorrected. Infrared (LR.) spectra were recorded on a Mattson Polaris Ff

instrument. Low resolution and high resolution mass (HRMS) spectral data were

obtained using a V.G. Micromass 7070HS instrument. MS data were presented as

follows: mil., intensity. Fast atom bombardment (FAB) MS were obtained with a KratOS

MS50TC spectrometer at the Department of Chemistry, V.N.B., Fredericton, N.B. using

the following operating conditions: Vacc =4.000 volts; FAB gun set at 7.0-7.5 Kv, using

xenon as FAB gas; resolution = 1500; accelerating voltage = 6 Kv. IH NMR spectra were

recorded on a GE GN·300NB spectrometer at 300.117 MHz. and chemical shifts are

relative to internal TMS. Data are presemed as follows: chemical shift, multiplicity (s =

singlet. d =doublet. dd =double doublet. t = triplet, q =quartet. m =multiplet), coupling

constant (J. Hz), integration and assignment (H#). The assignments are based on IH_IH
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COSY. IJC_IH HETCOR and NOED experimentS. Be NMR spectra were recorded at 75

MHz and were obtained from zero-filled 16K data tables (0 which a 1-2 Hz exponential

line broadening funclion had been applied. Chemical shifts for llC NMR spectra are

relative to the solvent (5 77.0 ppm forCDCI); 53.8 ppm for C02e!!; 128 forC6DJ. The

assignments are based on CH HETCOR and APT. The confonnation of products was

determined from NOE data obtained from a set of interleaved IH experiments (16K) of 8

transients cycled 16 to 32 times through the list of irradiated frequencies. The decoupler

was gated on continuous-wave mode for 4 seconds with sufficient attenuation to give a

70-90% reduction in intensity afthe irradiated signal. Frequency changes were preceded

by a 60 second delay. Four scans were used to equilibrate spins before data acquisition

but a relaxation was not applied between scans of the same frequency. Proton nuclear

Dverhauser effect difference (NDED) spectra were obtained from zero-filled 32K data

tables to which a 1-2 Hz ex.ponenlialline-broadening function had been applied. A set of

four dummy scans was employed to equilibrate the spins prior to data acquistion. No

relaxation delay was applied between successive scans of a given frequency. Data

collection for x.-ray structure was made on a Rigaku AFC6S diffractometer at 298 K.

Calix[4lnaphthalene (20). (a) TiCI••catalyzed conditions

To a solution of 17 (64 mg. 0.19 romol) and 18 (100 mg. 0.19 romol) in 5.0 mL of

dioxane was added TiCI4 (93 mg. 0.05 mL, 0.49 mmol) at n. The temperature was raised

to 70-80 DC, and the reaction mixture was maintained at this lemperature with stirring for

72 h. The solvent was removed under vacuum. The residue was dissolved in 5 mL of



42

,.
CH1Cl1and 2 g of silica gel was added to the solution. After evaporation of the CH1Cl1

on a rotary evaporator, the crude product-silica gel mixture was extracted overnight with

CH1CI1using a Soxhlet apparatus. The extract was concemrated to approximately 3 mL.

and it was chromacographed by PLC using CH1Cl1-petroleum ether (80:20) to give 30 mg

(23%) of the tetrametholtycompound 20. m.p. >300 °C dec.; IH NMR (COCl}) 5 =3.39

(5, 12H. 40CH), 4.24 (s, 4H. H-2. H-22), 4.59 (s. 4H. H-12, H·32). 6.43 (s, 4H. H41, H­

42, H-43. H-44). 7.37 (dt.I= 8.1, 0.6 Hz. 4H. H-8. H-16, H-2B. H-36), 7.46 (dt. J= 8.t.

0.6 Hz. 4H. H-7, H-17, H-27, H-37), 7.85 (dd.J= 8.1. 0.6 Hz, 4H, H-9, H-15, H-29, H­

35),8.06 (dd. J =8.1, 0.6 Hz, 4H, H-6, H-18, H-26, H-38): NOE (%): OCH," H-2(H­

22)(3), H-41 (H-42, H-43, H-44)(4), H-6(H-18, H-26, H-38)(9): H-2 (22)/H-OCH, (2),

H-41 (H-42, H-43, H-44)(6): H-12 (H-32)/H-41 (H-42, H-43, H-44)(ll), H-9 (H-15, H­

29, H-35)( 19): H41 (H-42, H-43, H-44)/ H-2 (H-22)(2), H-12 (H-32)(3): H-8 (H-16, H-

·The IH NMR signal afthe protons indicated in boldface type was saturated.
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26, H-36Y H-9 (H-15. H-29. H-35)(6); H-7(11-17, H-27, H-37)1H-6(H-18. H-26. H-38)

(7.86); H-9 (11-15, H-29, H-35)1 H-8 (H-16. H-28. H-36)(6.70). H-12 (H-32)(5.24); H-6

(11-18, H-26, H,38)/ H-7 (H-17, H-27, H-37)(7). OCH,(Ll3); "c NMR (COCl,) B=

27.9 (C-2. C·22). 35.1 (C-12. C·32), 61.4 (C-OCH), 122.5 (C-6. C-18. C-26. C·38).

124.3 (e-g. C-15. C-29. C-35). 125.6 and 125.7 (c·g. C-16. C-28. C-36 and C-7. C-17.

C-27. C-37). 127.8 (C-S. C-19. C-25. C-39 orC-IO. C·14. C-30. C-34), 128.9 (C-4I, C­

42. C-43. C-44), 131.9 (C-I, C-3, C-21, C-23), 132.1 (C-Il. C-Il. C-31. C-33). [52.9 (C­

4, C-20. C-24. C-40); MS mI, (%) 680 (M'. 100).665 (5). 650 (3). 619 (3). 649 (2).340

(35),326 (7). 171 (91), 141 (41); HRMS M'n 340.1483. calcd fOTC~H..oOj2 340.[464.

Calix[4}napbthakne (20). (b) Triftuoroacetic acid (TFAkatalyzed conditions

To a solution of 17 (85 mg. 0.26 nunol) and 19 (100 mg. 0.26 nuno!) in 5.0 mL of

CHel, was added 5.0 mL ora solution of 10% TFA in CHel"~ The mixture was

stirred at n for 48 h. Work-up was effected by evaporation or both the CHel, and the

TFA under vacuum. 1be residue was dissolved in 2 mLofCHCIJ and chromatographcd

by PLC using CH~CI!·petrOleumether (60:40) to afford SO mg (28%) of 20 as a

cryslalline product, m.p. >300 "C. with spectroscopic propenies are identical with those

described above.

Demethylation of 20 to live 13

To a suspension of 20 (160 mg. 0.231 mmol) in anhydrous benzene (20 mL) was

added BBr) (0.43 mL, 4.3 mmol) at rt. The reaction was left stirring at n for 24 h. The
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13

reaction was worked-up by adding 5 mL of HlO followed by saturated aqueous NaHeD).

The solution was extracted with 30 mL portions of diethyl ether. The combined organic

layers were dried over anhydrous MgSO~. filtered and evaporated. The crude product was

washed with diethyl ether to give 13 as a light brown solid (76 mg. 54%). m.p. >300 GC

dec,; LH NMR (DMSO-d6) B =4.01 (5, 4H. H-2. H-22), 4.51 (5. 4H. H-12, H-32), 6.64 (5.

4H, H-41. H-42. H-43, H-44), 7.43 (m. SR, H-7, H-8. H-16. H-17. H-27, H-28, H-36. H­

37).7.91 (dd. J= 7.8. 1.5 Hz. 4H, H-9, H-15. H-29. H·35), 8.17 (dd. J= 7.8. 1.5 Hz. 4H.

H-6, H-18, H-26, H-38): "c NMR (DMSO-d.): S - 29.9 (C-2, C-22), 33.2 (C-12, C-32),

120.9, 122.5 (C-6, C-t8, C-26, C-38), 123.6 (C-9, C-15, C-29, C-35), 124.6 (C-8, C-16,

C-28, C-36), 125.5 (C-7, C-17, C-27, C-37), 125.5, 127.7, 128.8 (C-4I, C-42, C-43, C­

44),131.2, 147.8 (C-4, C-20, C-24, C-40): MS mIz (%) 624 (M', 100),620 (10), 466 (I),

451 (3),450 (I), 437 (2), 312 (23), 311 (24), 310 (36), 309 (18), 300 (15), 298 (22), 296

(30), 295 (48), 282 (27), 281 (54), 265 (19), 252 (20), 239 (12), 172 (30), 171 (16):

HRMS M+ 624.2303. calcd for C.wH3104 624.2301.
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Tetraester Derivative ofC·12 Ca1ix[4]aren~(13a)

130

To a solution of 13 (230 mg. 0.37 rnmo!) in anhydrous THF (15 mL) was added

NaH (150 mg. 3.7 mmol) as one portion at rt. The reaction mixture was stirred at rt for

10 minutes. then an excess ofelhyl bromoacetate (0.41 mL. 3.7 mmol) was added. The

temperature was raised. and the mixture was refluxed for 4 h. The reaction mixture was

cooled to n then diluted with 50 mL of CHell followed by the addition ofcoled tap

water. The organic layer was separated and dried over anhydrous MgSO~. Evaporation

the solvent gave a crude product. which was washed with methanol to yield 13a as a

colorless solid (0.12 g. 34%). m.p. 243-245"C; LR. (CHel" em-i): 3069. 2981. 2935.

2908. 1756 (CO), 1599. 1524. 1443. 1386, 1208. 1105, 1052.764; IH NMR (CDCI) S=

1.39 (I, J=7.1 Hz, 12H, CH,), 3.94 (5, 8H, -CH,CO), 4.31 (5, 4H, H-2, H-22), 4.33 (q,J

= 7.1 Hz, 8H, OCH,CH,), 4.60 (5, 4H, H-12, H-32), 6.41 (5, 4H, H-41, H-42, H-43, H­

44),7.48 (m, 8H, H-7, H-8, H-16, H-17, H-27, H-28, H-36, H-37), 7.85 (d, J= 8.1 Hz,

4H. H-9, H-15, H-29, H-35), 8.10 (d,!= 8.1 Hz, 4H, H-<;, H-18, H-26, H-38); NOE (%)
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CH,COI H-2 (H-22)(I). H-41 (H-42. H-43. H-44)(3); OCH,CH/OCH,CH, (2). CH,CO

(1.4). H-41 (H-42. H-43. H-44)(4); 8-12 (H-32)/H-41 (H-42. H-43. H-44)(7). H-9 (H­

IS. H-29. H-35)(15); H-41 (H-42, H-43, H-44)/ H-12 (H-32)(2); H-7 (H-8, 8-16, H-17,

H-27, H-28, H-36, 8-37)1 H-9 (H-15. H-29, H-35)(4). H-6 (H-8. H-26. H-38)(7); H-9

(H-15, H.29, H-35)/H-7 (H-8. H-16. H-17. H-27. H-28. H-36. H-37)(3). H-12 (H-32)(4);

H-6 (H-8, H-26, H.38)/H-7 (H-8. H-16. H-17. H-27. H-28. H-36. H-37)(3). CH,CO

(1.3); "c NMR (CDCI,) 5 =124.2 (C-48. C-48" C-48". C-48"). 28.2 (C-2. C-22). 35.2

(C-12. C-32). 61.3 (C-47. C-47'. C-47". C-47"). 70.3 (C-46. C-46·. C-46". C-46"). 122.2

(C-6. C-18. C-26. C-3B). 124.2 (C-9.C-15. C-29. C-35). 126.3 and 126.4 (C-7. C-8. C-16.

C-17. C-27. C-28. C-36. C-37). 127.4. 127.7. 128.6 (C-4I.C-42. C-43. C-44). 132.0.

132.6. 151.0 (C-4. C-20. C-24. C-40). 168.7 (C-46. C-46·. C-46". C-46"); +FAB MS

(matrix: 3-nitrobenzylalcoho1): mil. (%) 991 (M"+Na", 4), 968 (M", 13), 902 (8), 880 (15),

879 (15). 791 (7).617 (11).601 (12).242 (82).

Calix[4]naphthalene (25). (a) TiCI.-eatalyzed c:onditions
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To a solution of 30 (64 mg.O.19 mmol) and 18 (0.10 g. 0.19 mmo!) in 5.0 mLaf

dioxane was added TiCI4 (93 mg. 0.05 mL. 0.49 roma!) at n. The reaction was conducted

and worked up exactly as described above for 20. The tetrarnethoxy 25. m.p. >300aC

dec. was obtained in 15 mg (11%) yield: lH NMR (CDCll) B=3.89 (5. 6H. 2OCH) at C­

4. C-40), 3.90 (5. 6H. 2OCH) at C-14, C·30), 4.29 (5. 2H. H-2), 4.40(5. 4H. H-IZ. H-32),

4.50 (5. 2H. H-22). 6.49 (5. 2H. H-42. H43). 6.59 (5, 2H. H-41. H-44). 7.30 (m, 4H. H-8.

H-18. H-26, H-36), 7.41 (rn. 4H. H-7. H-17. H-27, H-37), 7.70 (dd. J = 8.(, 0.6 Hz. H-19.

H-25), 7.78 (dd, J= 8.1, 0.6 Hz, H-9, H-35), 7.99 (dd, J= 8.1, 0.6 Hz, H-6, H-38), 8.04

(dd, J= 8.1, 0.6 Hz, H-16, H-28); NOE (%); H-42 (H-43V H-22 (3), H-12 (H-32)(1.2);

H-41 (H-44V H-12 (H-32X1.3); H-2 (2.64); H·18 (26)/H·19 (H-25)(5); H-8 (H·36)/ H­

9 (H-35)(5); H·7 (3701 H-6 (H-38)(8); H·17 (27)/ H·16 (H·28)(6); H-19 (H·25)1 H-18

(H·26)(2), H-22 (5); H·9 (H.35)/ H-8 (H-36)(5), H-12 (H·32)(3); H·6 (H-38)/ H·7 (H­

37)(4), OCH) (at C-4. C40)(2): H-16 (28)1 H-17 (H-27)(4), OCH) (at C-14. C-30)(2); 13C

NMR (CDCI) 5= 29.3 (C-2). 32.5 (C-12. C-32), 34.7 (C-22), 61.9 (OCH l at C-4 C-14,

C-30, C-40). 122.3 (C-6. C-38 orC-16. C-28), 123.9 (C-19. C-25). 124.1 (e·9. C·35),

125.5 (C-18. C-26 orC-8. C-36). 125.6 (C·7, C-37 orC·17, C·27). 127.5. 127.8. 128.6

(C-41, C-44), 129.3 (C-42, C-43), 132.0, 152.2 (C-14, C-30), 152.6 (C-4, C-40); MS m/z

(%) 680 (M', 25), 665 (0.5), 650 (0.6), 340 (10), 171 (14),84 (100); HRMS M"n

340.144, eaJed. for C4sH..o0i2 340.1464.
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Calixl4]oapbthaleoe (2S). (b) TFA-calalyzed conditions

To a solution of 30 (85 mg, 0.26 mmol) and 19 (100 mg. 0.26 romel) in 5.0 mL

CHell was added 5_0 mL of a solution of 10% TFA in CHell' The mixture was refluxed

for 72 h. After cooling to n. work-up was effected by evaporation both the CHel) and

TFA on a rotary evaporator. The residue was dissolved in 2 mLofCHCl l and

chromatographed by PLC using CH1CI1 to afford 51 mg (30%) of a solid product with

m.p. and spectroscopic properties identical with those of 2S described above.

Demetbylation of 25 to give 11

11

To a suspension of2S (168 mg. 0.25 mmol) in anhydrous benzene (25 mL) was

added BBr} (0.41 mL. 4.9 roma!) at n. The reaction was left stirring at n for 24 h. The

reaction was worked-up by adding 5 mL of "10 followed by saturated aqueous NaHCO).

The solution was extracted with 30 mL portions of dielhyl ether. The combined organic

layers were dried over anhydrous MgSO.!. filtered and evaporated. The crude product was

washed with diethy1 ether to give 11 as a light brown solid (137 mg, 89%), m.p. 260­

265 °C dec.; I.R. (KBr. em· I
): 3404 (br. Om, 1690. 1600. 1500. 1404; IH NMR (DMSQ..
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dd) S =4.08 (5. 2H. H-22), 4.29 (5. 4H. H-12. H-32), 4.40 (5. 2H, H-2). 6.72 (5. 2H, H-41.

H-44). 6.83 (5. 2H. H-42. H-43). 7.40 (m, 8H. H-7. H-8. H-17. H-i8, H-26. H-27, H-36,

H-37). 7.78 (d. 2H. H-7, H-35), 8.08 (m. 2H. H-19, H-25), 8.18 (m. 2H. H-16. H-28),

8.31 (d. J= 9.3 Hz 2H, H-6. H-38); lJC NMR (DMSO-dll) S = 31.6 (C-L2. C-32). 33.6 (e­

22).36.7 (C-2). 120.3 (C-I. C-3). 120.9 (C-13. C-31). 122.2 (C-16. C-28). 122.8 (C-6. C­

38). 123.7 (C-5. C-37). 123.9 (C-19. C-25). 124.6. 124.8 (C-7. CoS. C-36. C-37), 125.3.

125.4 (C-17. C-IS. C-26. C-27). 125.9 (C-15.C-29). 127.6 (C-5. C-39). 127.7 (C-20. C­

24).128.5 (C-4I. C-44). 128.7 (C-IO. C-34). 129.4 (C-42. C-43), 131.2 (C-21. C-23).

131.4 (C-II. C-33). 147.3 (C-14. C-30). 147.8 (C-4. C-40); MS mI, (%) 624 (M" 18).

606 (4). 480 (3). 468 (3). 313 (7). 312 (10). 311 (3),282 (10).281 (16). 144 (100).

Calix[4]naphthaJenes (25) and (26)

2.

To a solution of 24 (203 mg. 0.40 mmol) and 23 (89 mg. 0.41 mmol) in 5.0 mLof

CHell was added 5.0 mL of a solution of 10% TFA in CHeIJ' The mixlUre was stirred at

rt for 48 h. Work-up was effected as was done for 25. The residue was dissolved in
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CHell and chromatographed by PLC using CH~C1~-petroleumether (80:20) to afford. in

order of increasing polarity: 26 (16 mg) and 25 (5 mg). CaIix[4]naphthalene 26 is a solid,

m.p_ >300 '"C dec.; IH NMR (COCIJ 0 =2.61 (5. 3H. OCR) at C-24). 2.85 (5. 3H. OCH]

at C4). 4.03 (5. 3H. OCH) atC·14). 4.04 (5. 3H. OCR] at C-40), 4.27 (5. 2H. H-2). 4.44

(5. 2H. H-12). 4.67 (5. 2H. H-32), 6.07 (5, IH. H-43), 6.15 (so IH. H-41). 6.91 (5. IH. H­

44),7.01 (5. IH. H-42). 7.06(rn. IH), 7.21 (m. IH), 7.30(m.IH), 7.50(m. IH), 7.60(rn.

SR), 7.85 (m. IH), 7.87 (rn, IH). 8.13 (m. IH), 8.19 (m. IH), 8.23 (rn. 2H); uC NMR

(CDCI) 0 =27.9, 31.4, 33.0, 35.1. 61.4, 61.5. 122.3. 122.5. 122.6. 123.5. 123.6, 124.3.

125.2.125.3.125.4,125.6.125.7,125.9.126.0.126.5. 126.8, 127.3. 127.7, 128.1, 128.4.

128.6.130.9.131.1. 131.5. 131.6. 131.8.132.0.132.5.132.6.132.6,132.8.152.4,153.5;

MS mk (%), 681 (M·+I. 13).680 (M·. 25). 665 (1.5J. 650 (1.61.340 (8). 111 (IOJ. 86

(62),84 (lOO); HRMS M·n 340.1460. calcd forC..H.aoO,/2 340.1464.

Calix[4]napbthaJene (34)

To a solution of 33 (106 mg. 0.60 mmol) in 2.0 mLofTFA at rt, was added 4-6

drops of concentrated H:SO~. The mixture was stirred for 1 h and then worked-up by the

addition of 15 mL of water and solid NaHCOJ until the mixture became basic. The

mixture was then extracted with three 30 mL ofCH:CI:. The organic layers were

combined and worked·up in the usual manner to give a solid product which was washed

several times with diethyl ether to give calix[4]naphthalene 34, 30 mg (30%), m.p. 285­

290 "C dec.; IH NMR (CDCI]) cS =3.37 (s, 12H, 4OCH]), 4.21 (s, H-2, H·12, H-22, H-
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34

32).6.70 (s, 4H, H-4I. H-42. H-43. H-44), 7.35 (dt, J= 8.4. 0.6 Hz, 4H. H-8. H-18. H-28.

H-38). 7.40 (dl. J: 8.4. 0.6 Hz. 4H. H-7. H-17. H-27. H-37). 7.89 (dd. J= 8.4. 0.6 Hz.

4H. H-9. H-19. H-29. H-39), 8.01 (dd. J= 8,4. 0.6 Hz. 4H. H-6. H-16, H-26, H-36); lJC

NMR (CDCI,) S: 32.1 (C-2. C-12. C-22. C-32). 61.8 (C-4. C-14. C-24. C-34). 122.5 (C­

6. C-16. C-26. C-36). 124.3 (C-9. C-19. C-29. C-39). 125.8 (C-7. C-I7. C-27. C-37 0< C­

8. C-18. C-28. C-38). 127.2, 128.2. 128.7 (C-4I.C-42. C-43. C-44). 132.1. 132.5. 152.1

(C-4. C-14. C-24. C-34): NOE (%): OCH; H-2 (H-I2. H-22. H-32){1.2). H-4I{H-42. H­

43. H-44){2), H-6 (H-16. H-26, H-36)(9): H-2 (H-12, H-22, H-32)1 H-QCH, (2), H-41

(H-42. H-43. H-44)(l4), H-9 (H-19. H-29, H-39)(l8): H-41 {H-42, H-43, H-44)1 H­

OCH, (0.66), H-2 (H-12. H-22, H-32)(2): H-ll (H-18. H.28. H-38)1 H-9 (H-19, H-29, H·

39)(5); H-7 (H.17, H-27, H·37)1 H-6, (H-16, H-26, H-36){8); H-9 (H-19. H-29. H-39)/

H-8 (H-18, H-28, H-38)(7), H-2 (H·12, H-22, H-32)(2), H·OCH, (0.35); H-6 (H-16. H·

26. H·36)/ H-7{H·17, H-27, H-37)(6), H·OCH, (1.4); MS m/z (%): 680 (M', 100). 185
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(23). 171 (32). 141 (16), 128 (IS); HRMS M·12 340.1466. calcd forC~H..oOj2 340.1464.

Bis(4-methoxy·l.naphtbyl)methane (17)

17

To a solution of I-methoxynaphthalene (12.0 g. 75.9 mmol) and parafonn-

aldehyde (2.76 g. 92.0 mman in 80 mL of dioxane was added 15 mL of 30% H!SO..

dropwise at n. The mixrure was stirred at n. for 48 h. The resulting white precipitate

was fihered. washed with several portions of petroleum ether. and dried under vacuum (0

give 10.8 g (87%) of colorless solid 17. m.p. 149·150"<: (tiL m.p. 150.5-152 "C )"; IH

NMR (COCl}) S =3.97 (5. 6H. OCH). 4.71 (5. 2H. H-It>, 6.67 Cd. J = 7.8 Hz. 2H. H-3.

H-TJ, 6.97 (d,l= 7.8 Hz, 2H, H-2, H-2'), 7.49 (m, 4H, Ho{;, HO{;', H-7. H-T). 8.0 (m.

2H. H-5, H-5'). 8.34 (m. 2H, H-8, H~'J; "c NMR (CDCI,) 8= 34.8 (C-II), 55.4 (C-12).

IOS.4 (C-S. C-S'l, 122.5 (C-5, C-5'l,12S.8 (C-8, C-S'), 124.9 (CO{;, C-6' o,C-7. C-T J,

125.8 (C-9. 9-6' 0' C-IO, C-IO' l, 126.5 (C-7, C-T o'C-6, C-61, 126.8 (C-2, C-2'). 128.2

(C-I, C-I' 0,C-9, C-9'), ISS.O (C-9, C-9' o,C-I, C-I'), 154.3 (C-4. C-4').
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Bis(4-bydroxy·l·naphthyl)methane (14)

OH

••
To a solution of 17 (106 mg. 0.310 romol) in 4.0 mLofCH~CI!at -78 "C was

added 0.16 mL (1.75 mmol) ofBBr] dropwise, with stirring. After 2 h the temperature

was raised to -25°C. and the reaction was maintained at this temperature for 2 h. The

temperature was raised and then maintained at n for anolber 2h. The reaction was

quenched by the addition of aqueous saturated NaHCOJ until the solution became basic.

The mixture was extracted with 25 mL of CHzCl l • and the combined organic layers were

dried over anhydrous MgSO~. filtered and evaporated to dryness. The erode product was

chromalographed by PLC using ethyl acetate-peltoleum ether (30:70) [0 give 14 (40 mg.

43%), which crystallized from ethanol-water as a colorless solid m.p. 216-218 "C; 'H

NMR (acetone-dJ S= 4.68 (s. 2H. H-l\). 6.75 (d. J= 7.7 Hz. 2H. H-3. H-3' l. 6.88 (d. J

= 7.7 Hz. 2H. H-2. H-2·). 7.40 (m. 4H. H-6. H-6'. H-7. H-T l. 7.95 (m. 2H. H-S. H-S' l.

8.33 (m. 2H, H·8. H-S'), 8.36 (5, 2H, OR); uC NMR (acetone-d6) IS =35.2 (C·ll). 108.4,

108.5 (C-3). 123.7 (C-S. C-S'), \24.8 (C-8. C-8'). 125.2. and \27.\ (C-6. C-6·. C-7. C-T
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l, 12S.0 (C-4, C-4'): MS m/z (%): 300 (M'. 100), 157 (6S), 144 (46): HRMS M'

300.1153. calcd for C~IHI60~ 300.1149.

Bis[J.(bromomethyl)4-methoxy-l.naphthyl}methane (18)

'8

To a solution of17 (500 mg. 1.52 romol) and pacaformaldehyde (220 mg. 7.33

mmel) in 10 mL of glacial acetic acid was added 10 mL of a 15% solution of HBr in

glacial acetic acid. The mixture was stirred at It for 24 h. A colorless precipitate formed

which was filtered. washed several times with petroleum elher, and dried under vacuum.

The yield of crystalline 18 obtained was 300 rng (38%). m.p.138-140 °c: LH NMR

(CDCI,) S =4.09 (s, 6H, OCH,), 4.65 (s, 4H, H-13, H-Il' ),4.75 (s, 2H. H-II). 7.06 (s,

2H, H-2, H-2). 7.54(m. 4H. H-6. H-6', H-7, H-T), 7.98 (dd, J = 7.5. 1.4 Hz, 2H, H-5, H­

5'), S.20 (dd,J =7.5,1.4 Hz, 2H. H-S. H-S'): "c NMR (CDCI,) S= 2S.4 (C-13, C-13').

35.1 (C-Il). 62.6 (C-12. C-12'). 123.2 (C-S. CoS'). 124.4 (C-S. C-S). 125.9 (C-I. C-!'o,

C-3. C-J'), 126.2 (C-6, C-6' 0'C-7. C-7'), 127.0 (C-7. C-T 0' C-6. C-6'), 12S.1 (C-3, C-l'
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or C-I, C-l'), 128.9 (C-2. C-2'). 132.5 (C-IO. C-IO'orC-9. e-9'), 133.5 (e-9. e-9'or

C-IO. C-IO·). 153.4 (C-4. C-4'); MS m/,(%); 514 (M". 19).433 (81).183 (100). HRMS

M- 511.9967. calcd (orC:!SH:!2BrPl 511.9986.

Bis(3-hydroxymethyl-4-methoxy-l-naphthyl)methane (19)

I'

A solution of 18 (450 mg. 1.l6 nuno!) and CaCOJ (878 mg. 8.77 nuno!) in 14 mL

of aqueous dioxane (I: I) was refluxed for 6 h. The solution was cooled to rt and aqueous

5% Hel was added until the mixture became acidic. The ensuing precipitate was filtered

and washed with water. The product crystallized from ethanol-water to give 250 mg

(56%) of 19, m.p. 180-182 "C; IH NMR(acetone-d6) l)= 3.95 (5. 6H. OCH), 4.10 (t, J=

5.7 Hz. 2H. Oil). 4.75 (d.! = 5.7 Hz. 4H. H-13.H-13'), 4,84 (s, 2H, H-II), 7,33 (s, 2H,

H-2, H-2'), 7,53 (m, 4H. H-6. H-6', H-7, H-T), 8.10 (dd,J= 8.7, 1.2 Hz. 2H, H-5, H-5'),

8.IS (dd, J= 8.7. 1.2 Hz. 2H. H-8. H-S'); Be NMR (acetone-dJ 6= 35.7 (C-Il), 59.4

(C-13, C-13'), 62.9 (C-12, C-12'), 123.5 (C-5, C-5), 125.3 (C-8, C-8'), 126.5 (C-6, C-6' or



56

C-7. c-n 126.9 (C-7. CoT orC·6. C-6l. 128.8 (C-2. C-6·). 129.1 (C-3. C-Y orC-1. C-

n.IJO.7(C-l.C-l'orC-3.C-3').133.2 (C-IO.C·I0·orC-9.C-91.133.8(C-9.C-9'or

COlO. C-lOl. 152.9 (C-4. C-4'): MS mk (%): 388 (M-. 1(0).201 (30). 157 (12).115 (9):

HRMS M· 388.1649. caJcd for c;,H2-'O~ 388.167$.

2,4-Bis{bromomethyl)-l-metboxynapbthalene (22)

dr
,OCH'

9" I -...::::: 8r
6~ .0)

Br

Z2

To a stirred solution of l-methoxynaphthalcne (1.0 g. 6.3 mma!) in glacial acetic

acid (10 mL) was added a IS% solution of HBr in acetic acid (10 mL). dropwise at rt.

After stirring for 3 days. the ~action mixNre. which had formed a precipitate. was

filtered. The solid was washed with pelroleum ether to remove any acetic acid and then

dried under vacuum to give 18 ([02 mg), which was identical to that synthesized above.

The filtrate was diluted with water and extracted with [wo 2.5 mL of eHtCll _ The organic

layer was washed several times with water and saturated aqueous NaHCO) until the

washings were neutral. The crude product was chromatographed on a silica gel column

using CH2Cl1-petroleum ether (40:60) (0 give 22 (450 mg, 21%) as acrys[a1line solid,

m.p. 112-114 "C; lHNMR (CDCI}) 0=4.07 (5, 3H, OCHJ), 4.73 (5, 2H, H-12), 4.90 (5.

2H. H-13). 7.53 (so IH. H-3). 7.6 (m, 2H. H-6. H-7).8.11 (m. IH. H-5). 8.16{m. IH. H-
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8): tJCNMR(CDCI) 5= 27.7 (C-12), 31.2 (C-I3). 62.7 (C-I I). 123.3(C-8),124.3(C-

5), 125.9 (C-2 orC-4). 126.7 (C-6 orC-7), 127.4 (C-7 orC-6), 128.5 (C-4 orC-2), 129.8

(C-3). 130.1 (C-1O or e-9), 132.5 (e-9 or C-IO), 155.4 (C-l); MS m/z (%oJ: 346 (M". "Br.

I'Br. 6) 344 (M·, IIBr. '9Br. 12),342 (M"', ~r. ~r. 6), 265 (tOO). 263 (100), 185 (27).

183 (75), 170 (t2), 169 (19). 154 (29), 153 (25); HRMS M· 341.9244, cakd forCIJH I !

2,4-Bis(hydroxymethyl)-1-methoxynaphtbalene (23)

dr
,OCH'

:7 I '" OH
l::::::"" .& )

OH

To a solution of 22 (380 mg, 1.11 mmol) in aqueous 50% dioxane was added

CaCOJ (1.11 g, 11.1 mmol) with stirring and the mixrure was refIuxed for 3 h.. After

cooling [0 n, the mixture was acidified with aqueous 5% Hel. The mixture was extracted

with 25 mL of CH1Cl1• and the combined organic extracts were worked-up in the usual

manner to give a colorless solid (150 mg. 0.69 mmo!). Crystalization from chloroform

gave 2J as crystals having m.p. 121-123 °C; IH NMR (CDCI) IS = 3.96 (s. 3H. OCH]).

4.88 (s. 2HJ, 5.08 (s, 2Hl, 7.53 (m, 2H, H-6, H-7), 7.53 (s, lH, H-3).. 8.10 (m, IH, H-5),

8.15 (m, lH, H-8); "c NMR (CDCI,) ~ = 60.7 (C-12), 62.7 (C-II), 63.4 (C-13), 122.8
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(C-8). 124.1 (C-5). 126.1 (C-3). 126.4.126.6. 128.3. 128.4•• 132.5.132.9. 154.0 (C-I);

MS m/, (%); 218 (W. 100).201 (14). 187 (14). 171 (26). 159 (II). 157 (21). 145 (13).

144 (13); HRMS M+ 218.0953, calcd forC oH l40 l 218.0942.

1,,4-Bis[(4-methoxy-l-naphthyl)methyl]-1-methoxynapbtbalene (24)

"5'"
24

To a solution of I-melhoxynaphthalene (210 mg. 1.33 nuno!) and

parafonnaldehyde (184 mg. 6.0 mmo\) in 3 mL of diolt3ne at rt was added aqueous 30%

H~SO... The mixture was retluxed for 6 h. After cooling to n, the reaction mixture was

diluted with water and extracted with IS mL of CHell' The combined organic extracts

were washed with aqueous saturated NaHCO] and then with aqueous saturated NaCI.

The crude residue thus obtained was chromatographed by PLC using CH2Cl1-petroleum

ether (30:70) as solvent. Two fractions were isolated [0 give dimer 17 (62 mg. 28%) and

trimer 24 (54 mg. 24%). The trimer 24 was a colorless solid having m.p. 165-167°C; IH

NMR (CDCI,) 0 =3.37 (s. 3H, H-13), 3.45 (s, 3H, H-14), 3.68 (s, 3H, H-15), 4.28 (s, 2H,

H-1I1, 4.46 (s, 2H. H-121, 6.18 (d,J= 7.8 Hz, IH, H-2"), 6.34 (d, J= 8.1 Hz, IH. H-21,
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6.80 (d,1= 7.8 Hz. H-3"). 7.01 (s. IH. H-3). 7.0\ (d,1= 7.8 Hz. IH. H-3"). 7.20 (m. IH).

7.25 (m. IH). 7.26 (m,tH), 7.27 (m. IH), 7.36 (m. IH). 7.40 (m. IH), 7.71 (d. J= 8.4 Hz,

IH. H-5). 7.89 (dd. J= 8.1. 0.9 Hz. IH. H-5'·). 8.06 (dd.J= 7.5. 0.9 Hz. IH. H-5'). 8.38

(dd. J= 8.4. 0.9 Hz. IH. H-8). 8.54 (dd. J= 7.5. 0.9 Hz. H-8·). 8.57 (dd. J= 8.1. 0.9 Hz.

tH, H-8"); DC NMR (benzene-d,) S =32.4 (C·12), 35.3 (C-II), 54.8 and 54.9 (C-13 and

C-14), 61.8 (C-15), 103.4 (C-2'). 103.6 (C-2"). 122.9 (C-S', C-8"). 123.2 (C-8). 124.\ (C­

5). 124.4 (C-5'). 125.0 (C-5"), 125.2 (C-7), 126.0 (C-7"). \26.4, 126.6 (C-6'), 126.8 (C-

6-),126.9 (C-6). 121.0 (C-3"). 12S.9. 129.1. 130.3. 132.7. 133.2, 133.4. 133.5. 152.S.

152.8, 154.8; MS mtz (%), 498 (M·. 100).483 (2), 467 (4), 327 (II), 249 (13). \71 (58).

158 (13). lZ8 (12); HRMS M" 498.2193, calcd forC3SH300 l 498.2180.

4-Brom~1-naphthol (27)

27

To a solution of I-naphthol (l3.2g, 0.090 mol) in dioxane (40 mL) was added

dropwise, with stirring a solution ofdioxane-dibromide (23 g, 0.91 mol) in dioxane (160

mL). After the addition was complete. the reaction mixture was poured into ice-water

(200 mL). The reaction mixture was lhen extracted with three 50 mL of CH1Clz• and the

combined organic layers were washed with aqueous saturated NaC!. After drying over
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anhydrous MgSO.. and filtering, the CH~Cl! was removed using a rotary evaporator'. The

product was recrystallized from CHell to give light grey n~les. m.p. 129"<: (lit. m,p.

129 OC).*

4-Bromo-l·metboxynaphtha1ene (28)

To an ice-cooled solution or 27 (12 g. 0.05 mol) in aqueous 7% NaOH was added

dimethylsulphate (0.7 mL. 8 mmol) dropwise with stirring. The reaction mixture was

heated to 80 OC and maintained at this temperature for 2 h. After cooling. the reaction

mixture was diluted with CHel). and the organic solution washed with aqueous 10%

NaOH followed by water umil washings were neutral. After drying and work-up, the

product was vacuum distilled to give 28 as a golden-yellow oil (10.22 g. 80%). whose

spectral characteristics were consistent with 28.S6 An alternative. more convenient

synthesis of 28 was effected by direct bromination of I·methoxynaphthalene 21 using

dioxane-dibromide in the same way as described for 1:7 above.

B;'(4-bromo-l-methoxy·2·napbtbyl)metbane (29)

B' '"

29

To a solution of 28 (0.245 g. 1.03 nuno!) and parafonnaldehyde (0.13 g. 4.3
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mmol) in dioxane (1.6 mL) under N~ was added BF}.Etp (0.24 mL). The reaction

mixture was heated at 80-90 "C for 7-8 h and after cooling to room temperature was

extracted with 4O-mL portions of CH:!Cl1• The combined organic layers were washed

with aqueous 5% NaHCOJ • water. then dried over anhydrous MgS04• The crude product

was chromatographed by PlC using ethyl acetate-hexane (10:90) to give 29 as crystals

(0.231 g. 93%) with m.p. 145-146 "C: IH NMR (CDCI]) 0 = 3.94 (so 6H. OCHl ). 4.35 (s,

2H. H-ll). 7.53 (5, 2H. H-3, H-3), 7.57 (m. 4H. H-6. H-7, H-6', H-T), 8.14 (m, 2H, H-S.

H-S'), 8.18 (m. 2H, H-S. H-8'); llC NMR (CDCI) 0 =28.8 (C-Il). 62.2 (C-12. C-l2'),

117.9. 122.5 (C-8.C-S'), 126.9 and 127.1 (C-6andC-7).127.5(C-5},129.2, 129.4,131.8

(C-3. C-3'). 132.2. 153.5 (C-I. C-I'); MS mlz (%) 488 (M·, "8r. IlBr. 50). 486 (M". IIBr.

"B" 1(0), 484 (M', "B" "B" 49), 439 (II), 361 (19), 359 (19), 296 (13), 280 (13), 268

(10),252 (10), 250 (12), 239 (26), 237 (21), 235 (20), 221 (14),219 (15), 187 (16), 171

(50); HRMS M" 483.9668, calcd for CnHIIBrp~ 483.9674.

Bis(l-metboxy-2-naphthyl)methaoe (30)

30

A solution of 29 (300 mg. 0.62 mmol) and (n-C..Hg)3SnH (0.36 mL) in

cyclohexane (6.2 mL) was placed in a quartz tube. The tube was fitted to a condenser,
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and the solution was stirred and maintained under an argon atmosphere while being

irradiated with 254 nm lamps in a Rayonct photochemical reactor. After 4 h the reaction

was terminated by the addition ofexcess aqueous KF. 1be resulting white precipitate was

ftltered off. and the mc:llher liquor was extracted with diethyl ether. The crude: product

was chromatographed by flash chromatography using ethyl acetate-petroleum ether

(10:90) as solvent. The product 30 was obl:ained (200 mg. 98%) as a colorless solid. m.p.

109-112 GC: 'HNMR(CDClJ}8=3.97 (s. 6H. OCH), 4.43 (s. 2H. H-Il), 7.21 (d.l:

8.7 Hz. 2H. H-4, H-4'), 7.48 (m. 4H. H-6. H-7, H-6', H-7'), 7.50 (d. J= 8.7 Hz. 2H. H-3,

H-3'), 7.80 (d. J = 8.1 Hz. 2H, H-5. H-51. 8.14 (d, J =8.1 Hz. 2H. H-8. H-S'): Ile NMR

(CDCIJ ) 0 = 29.1 (C-ll). 61.9 (C-12. C-12'). 118.2. 122.0. 124.1. 125.6. 125.9. 128.0.

128.5, 129.0, 133.9; MS mk (%); 328 (M', 100),297 (26), 282 (11),281 (35),265 (10),

252 (12), 157 (32), 149 (12); HRMS M" 328.1464, caJcd forC...lH:!OO~ 328.1462. An

alternative, more convenient synthesis of 30 was affected by adding a THF solution of 29

{127 mg in 2.5 mI anhydrous THF} to a suspentteln of LAH (40 mg) in 2.5 mL anhydrous

THF at rt. The temperature was raised and the mixture was refluxed for 4-6 h. The

reaction mixture was worked-up in the usual manner. The crude product was purified by

PLC using ethyl acetate·petroleum ether (t0:90) to give 30 (65 mg. 76%) as a colorless

solid with spectroscopic properties were as above.
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2-Hydroxymethyl-l-me:thoxynapbthalene (33)

33

A solution of methyl l-melhoxy-2-naphthoate (1.0 g. 4.6 rnmol) in anhydrous

l1iF (5 mL). was added at rt to a suspension of LAH (0.17 g. 4.6 mmol) in anhydrous

THF (10 mL) over 10 minutes. The temperature was raised, and the mixture was refluxed

for 6 h. The reaction mi;l(ture was cooled to n and then quenched with aqueous 5% Hel.

The mixture was extracted with tWO 2S mL portions of CHlCll . The combined organic

layers were dried over anhydrous MgS04• filtered and evaporated. The crude product was

purified by column using ethyl acewe-petroleum ether (30:70) to give 33 as a light brown

solid (0.72 g. 83%), m.p. 68-69 OC; 'H NMR (CDCl) S = 3.97 (5. 3H. OCH), 4.89 (5.

2H. H-II). 7.50 (m. 3H. H-4. H-6. H-7). 7.62 (d.J= 8.4 Hz. IH. H-3). 7.83 (d.J=6.9

Hz. IH. H-5). 8.\0 (d. J = 6.8 Hz. IH. H-8); "c NMR (CDCI,) 5= 60.8 (C-II). 62.6 (C-

12). 122.0 (C-8). 124.4 (C-3). 126.1 (C-4). 126.1 and 126.6 (C-6 and C-7). 128.0 (C-5).

128.9. 133.7.138.3. 148.0 (C-I); MS m1z (%); 189 (M-+I. 13). 188 (M-. 100). 173(71).

172(8).171 (14). 159 (10).157 (12) 156 (26).155 (23).145 (19).144(11).129 (18).128

(39). 127 (54). 117 (13). 115 (31); HRMS M- 188.0831. calcd fo,C"H"O, 188.0837.
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Cbapter3

Regioseledivity in the Friedel·Crafts terl-Butylation of I-Naphthol

3.1. Introduction.

It was mentioned previously that the It'n-butyl group had been considered as a

suitable blocking group to produce the putative dimers 14.15 and 16. However, as we later

discovered. Friedel-Crafts tert-butylation of I-naphthol was not a trivial matter. On the

other hand. the Friedel-Crafts tert-butylation of2-naphthol has been extensively studied. In

1950. Buu-HoiS7 showed that 2-naphthol reacts with tert-butyl chloride and Aiel) to give a

mono-len-butyl derivative having m.p.120 GC. and adi-ren-butyl derivative having m.p_

13q ac. He proved that the mono-alkyl derivative was 6-ren-butyI-2-naphthol (35) and that

the di-ten-butyl derivative was derived from the mono derivative by funher alkylation

(Figure 3.1). The dialkyl derivative contained a hydroxyl group which was

sterically hindered, and. as a result. the compound was insoluble in aqueous sodium

hydroxide.

Arguing by analogy with the alkylation of 2-naphthol with smaller alkyl groups,

Buu-Hoi assigned the structure 36 to the di-Ien-butylated-2-naphthol product. This

structural assignment was supported by the failure of the compound to couple with

diazonium salts. but later proved to be incorrect. Brady el al.S' found that the autoxidation

of the di-terr-butylnaphthol was very slow, This would not expected for a such a hindered

I-aJkyl-2-naphthol.59 One of the products from this autoxidation was a red solid to which
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Figure 3.1.

35. RI=R2",R3=R.a=H;~"'tert.Bu

36. R2 =R)=R.a=H;R. =Rt;= tert-Bu
37. RI=R2=~:H;R3=~=ttr1-Bu
39. R)= ~=~=H;R[ =terr-Du; R2""CH3
40. R[ = Dr; ~=rert-Bu; R3:~=H: R2=CH3
41. R1 ""RJ=R.a=H; R.ti=tert-Bu;R2 ""CH3
42. R[ =Ro=H; RJ =~ =ten-Du; R2 =CH3

43. R[ = Dr; R) =R4 =H; R.s = ten-Du; R2 =CHJ

they assigned the structure 3.6-di-tt'n-butyl-1.2-naphthaquinone (38) on the basis ofU.V.

and lH NMR spectroscopic analysis. Also, oxidation of the di-ten-butyl-2-naphthol with

ferricyanide gave a dimer to which they assigned the structure 38a (Figure 3.2). On the

basis of these data they therefore assigned the structure 3.6-di-ten-butyl-2-naphthol (37) for

the di-tert-butyl product.

Brady et al. also fe-investigated the tert-butylation of 2-methoxynaphthalene. and 1-

bromo-2·methoxynaphthaIene. with tert-butyl chloride and Alel}< In contrast to Ferris and

Hamer's 60claim that the first substance gave 1~tert-butyl-2-methoxynaphthalene(39) and

the second gave 4-tert-butyl-l-bromo-2-methoxynaphthalene (40), Brady et at. found that

me first substrate gave a mixture of 6-tert-butyl-l-methoxynaphthaIene (41) and 3,6-di-tert-
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Figure 3.2.

~o
~

(CH31~ C(CH313

38

(CH3l:J:

(CHil~

38.

butyl-2-memoxynaphthalene (42) and the second gave &'tert-butyl-l-bromo-2-methoxy-

naphthalene (43). Based on their results. Brady er at. concluded that in the Friedel-Crafts

alkylation of 2-naphthol with small alkyl groups, electronic factors are more important than

sterle ones. but that in ten-butylalian the reverse is true. On electronic grounds the order of

reactivity of the position in 2-naphthol is (> 6> 3> 8, but on sterle grounds the order is 6>

3>8>1.

3.2. leTt-Bulylation of i-Naphthol.

The tert-burylalian of I-naphthol has not been as extensively studied. In 1976.

Miyata and Hirashima51 reported that the ZnCI2-cataIyzed reaction of I-naphthol with terr-

butyl chloride afforded a 42% yield of 4-ren-butyl-l-naphthoL (44). The same authors later

also reponed51 that the HzS0~-catalyzedreaction of I~naphtholand tert~butylalcohol

afforded an unspecified amount of 2.4-di·tert·butyl-I-naphthol (45) and 19.5% of 2~lert~

butyl~l~naphthol(46).
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Figure 3.3.

44. R2=R)=R,=H;~=ten-Bu
45. R)=R7=H;R2=~=ten-Bu
46. R) = ~ = R, = H; R2=ten·Bu
47. R2=~=R,=H;R3=ten·Bu
48. R2= R) = R. = H; R, = ten·Bu
49. R2= R.t= H: R)= R,=ten·Bu

so

o
~c(CH'"

~o

51

As stated before. syntheses of 44 and 46 (Figure 3.3) were of interest to us for the

preparation of me dimers 14-16 through the blocking-deblocking strategy. However. the

reaction of I-naphthol with ZnCl~-tert-butyl chloride using Miyata's conditions afforded

unreacted I-naphthol (38%) and three other products. Their NMR spectroscopic properties

(COSY. HETCOR. APT. and NOED) were consistent with their being 3-tert-butyl-l-

naphthol (47), 7-ten-butyl-l-naphthol (48), and 3,7-di-ten-butyl-l-naphthol (49) in 8%.

34% and 20% yields. respectively. There was no evidence for any 2- or 4-tert-buty[

substituted product being present in the crude reaction mixture. When the reaction was

conducted over a 48 h period at ambient temperature, no product fonnation was observed.

An increase in the amount of ten-butyl chloride and the reaction period (22 h versus 6 h)

resulted in the formation of 49 as the major product (80%) and a small amount (10%) of

bis{3.7-di·ten-butyl-l-naphthol)ether (SO, Figure 3.3). Several other variations of Miyata
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and Hirashima's conditions employing Zoell were employed (Table 1. run 1-7), but in no

case was any 44 or 46 observed. Other experiments were conducted in which terr-butyl

chloride was used with AIel). Heating at 60 °C only resulted in intractable mixtures being

fonned (Table I. run 9), but when the reaction was conducted at rOQm temperature (or 24 h.

a mixture was obtained which consisted of 47 (20%), 49 (35%) and starting material (45%)

(Table I, run 8). When Alel) was employed with terr-butyl alcohol, the reaction yielded 47

(20%),49 (28%) and unchanged I-napllthol (50%) (Table I, run 10).

Using Miyata's other conditions. which employed sulfuric acid in glacial acetic

acid. a labile. complex reaction mixture was obtained (Table I, run 12) from which 16% of

46 and 13-15% of a second product. which was shown to be 2-ten-butyl-I.4­

naphthoquinone (51) were isolated. The yield of 46 could nO[ be improved (Table I, run

II). On standing in air. 46 underwent oxidation to form 51. In another paper, Miyata and

Hirashima61 reported that 46 was twice as effective as BHT (2.6-di-ten-butyl-4­

methylphenol) as an antioxidant. These observations are similar to the findings of Brady et

at. which were stated before.sl

As mentioned previously, Brady et a1.51 have reported that 2-methoxynaphthalene

undergoes a similar ten-butylation substitution panem as does 2-naphthol itself. However.

no product formation was detected when I-methoxynaphthalene 52 was treated with

ZnC1t'ten-butyl chloride.

When 52 (Figure 3.4) was reacted with AlCI/ten-butyl chloride (Table 2. run 14). a

mixture was obtained which consisted of 3-ten-butyl-l-methoxynaphthalene (53) (31 %).
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3.7-di-ten-butyl-l-methoxynaphthaIene (54) (35%) and st:lI1ing material (34%). None of

Figure 3.4.

52. R)=R7 =H
53. R7 = H: R] ::::: ten-Bu
54. R7=RJ = ten-Du
55. RJ =H; R7 = ten-Su

the mono substituted 7-ten-butyl-l-methoxynaphthalene (55) was observed. The NMR

spectra of S3 and S4 were similar to those of 47 and 49, respectively. Reaction of 52 wilh

Aiel/ten-butyl alcohol (Table 2. run 15) afforded 28% 0£53. 53% 0(54, and 18% starting

material. Reacting 52 with sulfuric acidltert-butyl alcohol/acelic acid afforded staning

material (48%), 55 (39%), and 54 (12%). Longer reaction times served only to increase the

yield of 54. There was no evidence of any 2- or 4-substituled prodUCLS in the crude reaction

mixture.

The regioselectivity which was observed in the tert-butylation of I-naphthol and 1-

methoxynaphthalene is also consistent with the analysis of Brady et a1.sa Electronic effects

would have favored substitution at either the 2- or 4-positions, followed by the 5- or 7-

positions. Of these positions the 7-position is the most sterically favored. Thus. both

electronic and steric effects combined to favor tert-butylation at C-7 of I-naphthol with

ZnCI2-ttrr-butyl chloride and at C-7 of 52 with terr-butyl a1cohoVacid catalysis. For the
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second ten-butylation. the 3-position is slerically the most favored position. This

regioselectivity is reversed when either Aiel/ten-butyl chloride or AICl/tert-hutyl alcohol

is employed with either I-naphthol or 52. It is only with the sulfuric acid/acetic acid

reaction with I-naphthol that a small amount of the 2-substituted product rOnTIS, but it is

labile and easily oxidizes to 51. In comparison. when these same conditions were

employed with 52. the major products formed were once again controlled by sterle factors

that were operative in the ZnCI:lren-butyl chloride conditions. There is the possibility, that

44 could have been produced in these reactions but that, once fanned. the terr-butyl group

undergoes a rapid I.2-rnigration to give 47, but we did not verify this experimentally.

3.3. Experimental.

Typical conditions for the reaction of I-naphthol with (a) ZnCI/tel1'.butyl chloride

(Miyata and Hirashima conditions). To a solution of tert-butyl chloride (0.81 mL,7.6

mmo!) and I-naphthol (1.10 g. 7.60 mmol) in 35 mLof 1.1.2,2- tetrachloroethane was

added zinc chloride (1.04 g, 7.60 mmol). The mixture was stirred under Nl at 60 °C for 6 h.

The reaction was worked-up by the addition of 15 mL of CHlCI1 followed by washing three

times with the aqueous saturated NaHCOJ • The organic layer was separated and dried over

anhydrous MgSO,.. Removal of the solvent left dark. oily residue from which 200 mg was

removed and chromatographed by PLC using ethyl acetate-petroleum ether (15:85) to give.

in increasing order of polarity, 3,7-di-tert-butyl-l-naphthol (49) (32 mg), 3-tert-butyl-l­

naphthol (47) (13 mg). 7-tert-butyl-I-naphthol (48) (55 mg) and I-naphthol (62 mg). The

di-tert-butyl product 49 was crystalline, m.p. 141-142OC; IH NMR(CDCI)) 0 = 1.35 (s,
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9H. C~H" at C-3). 1.41 (5. 9H. C4~ at C-7). 5.26 (5. Oll). 6.88 (d, J= 1.8 Hz. IH. H-2).

7.33 (br. IH. H-4). 7.55 (dd.J= 1.8.8.7 Hz. IH. H-6). 7.72 (d. J =8.7 Hz. IH. H-5). 8.02

(d. J= 1.8 Hz. IH. H-8); MS mI, (Ib) 256 (M", 66), 241 (100), 213 (2), 185 (4),157 (4);

HRMS M" 256.1835. calcd for CI1H1..O 256.1827. The 3-tert-butylated product 41 is an oil

whose IH NMR and MS spectra reveal the presence of a small amount of 49 that CQuid not

be separated even after several chromatographic attempts. IH NMR (CDCl l ) is = ! .38 (5.

9H), 6.92 (d, J= 1.8 Hz, IH, H-2), 7.37 (br, IH. H-4), 7.48-7.39 (m, 2H, H-6, H-7), 7.76

(m, IH, H-5), 8.18 (m, IH, H-8); MS mlz (Ib) 200 (M", 60), 185 (100), 157 (13) 144 (II);

HRMS M" 200.121 t, calcd for HRMS M+ C I..H I60 200.1200. The 7-terr-butylatcd product

48 is an oil whose IH NMR spectrum reveals the presence of a small amount « 5%) of 47

that could not be separated even after several chromatographic attempts. 'H NMR (CDCI)

S = 1.43 (s, 9H), 6.79 (dd,J = 0.9, 7.5 Hz, IH, H-2), 7.24 (dd, J= 7.5, 8.4 Hz, IH, H-3),

7.39 (m, J= 8.4 Hz. IH, H-4), 7.56 (dd. J= 2.1. 8.7 Hz. IH, H·6), 7.76 (d, J =8.7 Hz. IH.

H-5), 8.10 (br, IH, H-8); MS mlz (Ib) 200 (M", 50), 185 (100), 157 (13), 144 (7); HRMS

M" 200.1201. caIcd for CI..H1P 200.1200.

When the quantity of tert-butyl chloride was doubled and the reaction was

maintained at 60°C for 22 h before work·up, as described above, bis(3,7·di·tert-butyl-l­

naphthyl)ether (SO) crystallized from a methanol solution of the crude product. On TLC

(ethyl acetate-petroleum ether 30:70) SO was the least polar of the lert·butylated products

obtained and had m.p. 275°C (dec.): IH NMR (CDCI]) l:i = 1.28 (s, 9H), 1.38 (s, 9H), 7.14

(d, J= 1.5 Hz, IH, H"2), 7.51 (br, IH, H-4), 7.62 (dd,J= 1.8,8.7 Hz, IH, H-6), 7.82 (d.J=
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8.7 Hz. IH. H-5l. 8.28 (b<. IH. H-8): "c NMR (CDCI,l S= 31.1 (CH,l. 31.3 (CH,l. 34.9

(C(CH,l,l. 35.0 (C(CH,l,l. 1Il.7 (C-2l. 116.6 (C-8l. 117.4 (C-4l. 124.8 (C-9l. 125.4 (C-6).

127.5 (C-5l. 132.9 (C-IO). 148.0: 148.3 (C-7: C-3l. 153.1 (C-I). MSm/z(%l494

(M·,IOO). 479 (16), 239 (to). 232 (36), 57 (41). HRMS M" 494.3536. caIcd forCj6H.l60

494.3549.

(b) Aiel/leTt-butyl thloride. To a solution of fen-butyl chloride (0.81 mL, 7.6 mmol) and

I-naphthol (1.1 g. 7.6 nuno!) in 3.5 mLof 1.1.2.2-tetrae:hloroethane. was added Alel) (1.04

g. 7.6 nunol). The mixture was stirred under N~ at room temperature for 24 h. The reaction

was worked-up by the addition of IS ml of CHlCl! and washing three times with aqueous

sarurated NaHCO). The organic layer was dried over MgSO,.. A dark oily residue was

obtained from which 150 mg was chromatographed by PLC using ethyl acetate-hexane

(15:85) to give. in increasing order of polarity, 49 (50 mg). 47 (30 mg). and '-naphthol (65

mg).

(e) HlSOjacetic acidlleri.butyl alcohol. To a solution of I-naphthol (1.4 g. 10 romol),

and len-butyl alcohol (0.94 mL. 10 mmol) in 10 mL of acetic acid was added 0.27 mL of

98% H2S04 • 1bc: mixture was stilTed under N 2 at room temperaNre for 17 h. The reaction

was workc:d-up by diluting it with 20 mL of water and extracting it with 20 mL of CHell.

The organic layer was washed with two 50-mL portions of water. The organic solution was

dried over anhydrous MgSO•. A dark oily residue was obtained from which 200 mg was

chromatographcd on a column of silica gel using CHClrpc:troleum cther (70:30) as solvent.

Two major fractions weft; collected and fwther purified by PLC using CHCI)-pc:lroleum
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ether (50:50) to give 2-tert-butyl-[-naphthol (32 mg) (46) and 2-ten-butyl-I.4­

naphthoquinone (51) (26 mg). The 2-tert-butylated product 46 was a solid. m.p. 45-47 °C.

which oxidized on standing in air; IH NMR (CDCI) 0 = 1.53 (5. 9H), 5.48 (5. OH). 7.41 (d.

J= 8.7 Hz. 1H, H-3), 7.48 (d. J= 8.7 Hz. IH, H-4). 7.50-7.40 (m, 2H, H--6. H-7). 7.79 (m.

IH. H-5), 8.02 (m. IH, H~g). The naphthoquinone 51 was a solid. m.p. 73-75 "C; lH NMR

(CDCI) 0 = 1.38 (5, 9R), 6.85 (5, IR, H-3), 7.64-7.67 (rr., 2H, H-6, H-7), 8.11-8.82 (m. 2H.

H-5, H-8); MS mlz (%) 214 (M', 100), 199 (41),171 (22), 159 (14),157 (11),128 (18).

Typical conditions for reaction of 1.methoxynaphthalene (52) with (a) AICI/ten·bulyl

alcohol. To a solution of rert-butyl alcohol (0.54 mL. 0.57 roma!) and 52 (0.79 g. 0.50

mmol) in 2.5 mLof 1.1,2.2-tertachloroethane, was added AIell (1.04 g, 4.9 mmol). The

mixture was stirred under N~ at room temperature for 24 h. The reaction was worked-up by

the addition of an aqueous saturated solution of NaHCO) until the mixture became basic.

The mixture was extracted with two 25 mL ponions of CHCll , and the combined organic

layers were washed three times with aqueous saturated NaHCO). The organic layer was

dried over anhydrous MgSO~. A dark oily residue was obtained from which 150 mg was

chromatographed by PLC using CHlCI:-petroleum ether (30:70) to give, in increasing order

of polarity, 3,7-di-ren-butyl-I-methoxynaphthalene (54) (70 mg), 3-ren-butyl-l­

methoxynaphthalene (53) (37 mg) and 52 (24 mg). The di-ren-butylated product 54 is a

solid, m.p. 109-1 10°C: lH NMR (CDCI3) 0 = 1.40 (s, 9H), 1.41 (s, 9R), 4.02 (OCHl ), 6.86

(d, J= 1.2 Hz, lH, H-2), 7.32 (b" IH, H-4), 7.54 (dd.J= 1.8,8.7 Hz, tH, H-6), 7.70 (d.J =

8.7 Hz, tH, H-5), 8.12 (d, J= 1.8 Hz, IH, H-8); MS mlz(%) 270 (M"60), 255 (100), t99
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(10).106 (15), 92 (II), 57 (33); HRMS MOO 270.1989. calcd forC•.HuO 270.1984. The 3­

tert-bmylated productS3 is an oil: IH NMR (CDCI) S:: 1.41 (5. 9H). 4.01 (5. 3H). 6.89 (d.

J= 1.5 Hz. IH. H-2), 7.36 (hr. 1M. H-4), 7.41 (m. 2H. H-6. H-7), 7.75 (m. IH. H-5). 8.18

(m, 1H. H-8); MS m/z. (%) 214 (M", 60).199 (IS), 106 (8); HRMS M"' 214.1358. calcd for

C1sH1.0214.1357.

(b) ":SO/acetic acid/lerro-butyl alcohol. To a solution of 52 (4.6 g. 29 mmol) and terr­

butyl alcohol (2.8 g. 38 mmol) in 13 mL{O.23 mol) of acetic acid. maintained at 0·2 °C.

was added dropwi~ 20 mL (0.39 mol) of 98% H1S0~. The mixture was allowed to wann

to 15°C. and then swirled and the temperature allowed to rise to 20-25 0c. The reaction

was worked-up by adding ice [0 the mixture and diluting it further with apprmdmately 25

mLofwatcr. The mixture was extracted with twO 25 mL portions ofCHCI). and the

combined organic layers were washed with 25 mL portions of sarurated aqueous NaHCOl _

The organic layer was dried over anhydrous MgSO.l, and a 200 mg portion of the oily

residue was chromalographed by PLC to give. 54 (24 mg). 7-urt-butyl-l-methoxy­

naphthalene (55) (80 mg). and 52 (96 mg). The 7-1ltrt-butylated product 5S was an oil; IH

NMR (CDCI,) 8= 1.42 (s. 9Hl. 4.20 (s. OCHJ. 6.79 (dd. J=0.9. 7.5 Hz. tH. H-2), 7.33

(dd, J= 8.4, 7.5 Hz. IH. H-3), 7.38 (d, J= 8.4 Hz. IH. H-4). 7.58 (dd.J= 8.7, 2.1 Hz. tH,

H-6), 7.74 (d. J= 8.7 Hz, 1H. H-5), 8.20 (d. J= 1.8 Hz. tH. H-8); MS mlz(%) 214 (M",

60), 199 (15). 106 (15). 92 (II). 57 (33); HRMS M+ 214.1367. calcd for C1sH110

214.1357.
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Table 3.1. Ralmoo or I-Naphthol in Cl1CHCRCI1 as Solveot Except As Noted

Run Reactants (mole ratio Conditions Products (yields ('M) based on total
based on I-naphthol) (temp·C; h) material isolated unless otherwise

specified)

u:n-BuC1JZnCI1 (I: I) 60;6 47 (8), 48 (34), 49(20), I-naphmol (38)

reTt-BuClfZnC11 (2: 1) 60; 22 47 (U"), 48 (5), 49 (80), SO (10)

rerr-BuClJZnCl1 (1: I) 60; 48 47 (tr). 48 (11), 49 (37), I-naphthol (27)

r.m-BuCIIZnCI1 (1: I) n.;48 no reaction

It'rt-BuClJZnCI! 60; 6 no reaction
(1;0,01)

ren-BuC1lZnCI! 60; 6 no reaction
(1;0.02)

wT-BuCIJZnCI! 60;6 no reaction
(1;0.1)

tert-BuCVAlCl) (1: I) n.: 24 47 (20), 48 (U"), 49 (351, I-naphmol (45)

un-BuCVAJCl) (1: I) 60; 24 intraCtable mixrure, products complex.
not identified

10 ten-BuOR/Alel) (I:t) rt: 24 47 (201, 48 (U"l, 49 (28), I-naphmol (50)

\I ren-BuOHJCH)C01Hl rt; 17 <U (16), SI (13)- yields based on
H,SO, (1.0;17.5;0.50) isolated product relative to starting

material

12 tert-BuOHICH)CO:HI 0-20; 10 min intractable mixture. products complex-
H,50, (13;7.8;13.50) not identified..
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Table 3.2. Reaction of 1.Methoxynapbthalene in CI:CHCHO: as Solvent Except As
Noted

RUD Reac:ta.Dts (mole ratio CooditiODS Products (yields (%) based on total
DO. based on 52) (temp·C; b) material isolated unless otherwise:

specified)

13 t~n-BuCllZnCll (I: I) 60;6 no reaction

14 rerr-Duel/Alel) (1:1) n;24 52 (34). 53 (31). 54 (35)

15 len-BuOH/Alel} rt; 24 52 (18). 53 (28). 54 (53)
(101)

16 ren-BuOHlCH)C01H It; 3 no reaction
1H1SO~

( 1.000.17500.005)

17 rert·BuOHlCHlC02H 60; 6 no reaction
1H1SO~

( 1.000.175;0.005)

18 ren·BuOHlCH,C01H 90;48 hydrolysis to form l·naphthol
!H2SO4

(1.0017.500.50)

19 ren-BuOHlCH]C01H 0-20. 10 min 52(48).54 (12). 5S (39)
IHzSO.. (1.3:7.8:13.5)
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Chapter 4

Synthesis of Inherently Chiral Calix[4]naphthalenes and Their Derivatives

4.1. Introduction.

There is a major difference between calix{4]arenes derived from p·ren-butylphenol

and the caIix(4]naphthaienes derived from I~naphthol which pertains to the location of the

hydroxyl groups. In the caIixarenes the hydroxyl groups are located at the smaller "lower"

rim of the basket. and are in close proximity to one another. This pro:timity allows for the

formation of intramolecalar hydrogen bonds which hold the conformation of calixarenes in

the cone conformation both in the solid state and in solution. as described in Chapter I.

This cone conformation serves as a "cap" for the cavity of calixarenes so that stable

inclusion complexes with guests can be formed. In the caIixnaphthalenes derived from 1_

naphthol (e.g. 13), the hydr01tyl groups are located oUlSide the cavity at the periphery of the

basket which inhibilS their complexation and conformation propenies (Scheme 4. I). In

order to place the hydroxyl groups within the [ower rim of the calixnaphthaIene basket. a

fetrosynthetic analysis (Scheme 4.1) shows that 3-hydroxymethyl-2-naphthol (56) would be

a suitable slatting material for compound 57.

Synthesis of chiral calix[4]arenes is possible by the attachment of chiral residues to

the calixarenes at the lower or upper rim. More interesting, however, is the possibility of

obtaining inherently chiral calixarenes. Dissymmetric calix(4]arenes may be prepared by
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Scheme 4.1 .

•••

the incorporation of a single meta-substitUled phenol unit.~ In present work. due to the

substitution pattern of 3-hydroxy-2-naphlhoic acid (9). the caJix(4]naphthaJenes 57 and 62

would be inherently chiraL
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4.2.a. Synthesis of Inherently Chiral CaJix[4]naphthaiene 57.

Calix(4]naphthalene 57 was first synthesized by Bohmer et al.c in 5% yield by self-

condensation of 3-(hydroxymethyl)-2-naphthol (56) in dioxane. using TiCl~ as a catalyst

(and probably as template) as shown in Scheme 4.2. Bohmer et at. however. did not fully

characterize their product although they did propose a cyclic structure like 57.

Scheme 4.2.

o

~OH
~OH

1- eH,OH. H1S0,
....lJux.lSh

Z-LAH,11IF,n.,11l

56('''%)

Tia..diOlUllJe/ !TFA.CHOJ
rdlux.J6b

57 (,.t1'l1)

Re-investigation of the self condensation of 56 using TFAlCHCI] showed that these
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conditions did not yield very consistent resuhs. ModifICation of the TiCljdioxane

conditions and the work-up gave improved yields of up to 10-11%. The calix(4I­

naphthalene thus formed was easily isolated and purified.. After removaJ of the dioxane by

vacuum distillation. the dark crode product was dissolved in excess CHell and was filtered

to remove insoluble resinous materials. The chlorofonn solution was then subjected

dirttdy [0 flash chromatography using CH1Cl1-petroleum ether (1: I) to give a light brown

solid. In principle. higher members of the calixnaphthalene could be formed also by

condensation of 3-(hydroxymethyl)-2-naphthol but 57. which was unambiguously

confirmed by mass spectrometry. was the only isolable cyclic compound. The mass

spectrum shows a molecular ion peak at m/z = 624. The C4 symmetrical structure was

demonstrated by IH NMR and He NMR spectra. The IH NMR spectrum shows singlets

for the hydroxy and methylene protons at 10.96 and 4.58 ppm. respectively (Figure. 4.1).

The Be NMR spectnJm revealed eleven carbon signals consisting of five quaternary

aromatic carbon signals. five: methine aromatic carbon signals and a single aliphatic

methylene carbon signaJ. The calix[4]naphthaJene is flexible at room temperature. as

demonstrated by the sharp methylene singlet at 4.58 ppm. This signal was broader at 0 "c.

and. was split into a doublet at ·10 "C with a coalescence temperature ofapproltimalely-S

"C. The conformation of the molecule could be fiXed at -20 "e into the cone conformalion

as revealed by the facl that the methylene protons appear as a pair of AB doublets (Figure.

4.2). A colorless single crystal was obtained from toluene solution. which was suitable for
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x-ray diffraction analysis. As shown in Figure 4.2a. lhe compound adoplS a "pinched-cone"

confonnation with C: symmetry in the solid stale. An interesting finding in the x-ray

analysis is that the unit cell contains two molecules. which are packed in such a way that a

naphthalene unit of one molecule is situated within the h.ydrophopic cavity of the second

molecule (Figure 4.2b). To our knowledge this behaviour has not been noted in the

calixarenes. Three toluene molecules surround the supramolecular dimer.

The intramolecular hydrogen bonds in 57 may be stronger than in the p-tert·

butylcalix[4]arene since the signal for the hydroxyl groups of 57 appears at lower field

(10.96 ppm). while in p-tt'rt-bulylcaIix[4]arene it appears at higher field (10.20 ppm).

4.2.b. Synthesis of Inherently Crural tert-Butylcalix[4]naphthalcnc (62).

As mentioned in Chapter I, a un-butyl group at the p-position of phenol is the aJkyl

group wtlictl gives the best yield and the most tractable caJix{4]arene product since the four

lo!Ft-butyl groups apprear to fill and cover the cavity created in the cone conformer.1

Inspired by this idea. functionaJization of ring B of 3-(hydroxymethyl}-2-naphthol (56) by a

teFt-butyl group. which could enhance the yield of its self-condensation product. was

explored.

The results of the re·investigation of tur-butylation of I-naphthol (Chapter 3).

suggested that it would be possible to ten-butylate the precursor of 56. melhyl 3-hydroxy-2­

naphthoate (58). using lo!Ft-butyl chloride. AICI) as cataJyst and 1.1.2.2-tetrachloroethane



Fig.4.18. X-Ray Crystal StRldure 01 Calix(4]naphlhllme 57.

C30

C7

(The numbering used in an X-ray slrudura reponed in Ihis thesis are not lhe same as Ihose used
in the Experimental section.)

11
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Scheme 4.3.

o () 0

oX:OCH
' d;::. O:X:OCH

'
58 "

J
rmobUIYldllOrldtoAICll
OPCHOJ.n,24h

~OCHl
...lVl.,lOH

NOED 60 (73%)

61 (90%)

61;(27-31%)

/nf_bUlykhlorld"

~OCH'
Vl.,lOH

60 (Sl'>il)

as solvent at room temperature. as shown in Scheme 4.3. Position 4 of 58 was first blocked

with a bromine atom using dioxane-dibromide to give 59. It was found that in addition to
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ren·butylation of 59 under the above Friedel-Crafts alkylation conditions, the bromine atom

was also removed to give methyl 7-ten-butyl-3-hydroxy-2-naphthoate (60) in 51 lib yield. It

was therefore not necessary to block position 4 of 58 prior to reaction. Indeed. direct

treatment of 58 with the above alkylation conditions produced 60. in 73% yield. which was

then reduced by LAH in anhydrous THF to give 6-terr-butyl-3-(hydroxymethyl)·2-naphthol

(61) in 90% yield. NOED experiments canfinned that the tert-butylation occurred at

position 6. Self-condensation of 61 was conducted, and the reaction was worked-up exactly

as described for 56. The tetra-lert-burylcalix(4]naphthaJene 62 was obtained in a yield of

27-31% .

The llC NMR (CDCIJ ) spectrum afmis pure product shows thineen clearly resolved

signals. These signals consist of five quaternary aromatic carbon signals. five methine

aromatic carbon signals, a single aliphatic methylene carbon signal. a single quaternary

aliphatic carbon signal, and a single methyl carbon signal due to the len-butyl group. The

'H NMR (CDCI)) spectrum at room temperature is a relatively simple. as shown in Figure.

4.3. The resonances from the ten-butyl protons, the methylene protons. and the hydroxyl

groups are singlets. These data are consistent for a structure possessing C~ symmetry. As

in the case of calix[4]naphthalene 57, the methylene singlet signal at 4.52 ppm became

broad at 0 DC. split into AB doublets at -10 OC and then freezes in the cone confonnation at ­

20 DC. as revealed by the appearance of a pair of AB doublets for the methylene protons

(Figure. 4.4). Also, as shown in Figure 4.3, the intramolecular hydrogen bonds in 62 appear
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to be stronger than in tt'n·butylcaJix[4]arene since the signal for the hydroxyl groups

appears at lower field (10.63 ppm) than in tt'n-butylcaJix(4]arene (10.20 ppm). but it is very

similar to the chemical shift observed for 3.4-dimethylcalix[4]arene (10.61 ppm)': although

lhis could be a concentration effect. In spite of lbe fact that 62 was chromatographically

pure. confirmed by its lH NMR spectrum, the FAB-MS spectrum (Figure 4.5) shows many

peaks higher than me molecular ion peak, which appears at mlz =848. These peaks could

be due to various unidentified inclusion complexes.

4.3. ChiraJ Resolution of Dissyrrunetric Calix(4]naphthalenes 57 and 62.

As stated before. several approaches have been used to design the syntllesis of chiral

calix[4]arencs because of great interest in using them as potential hosts forenantioselective

recognition of suitable guest molecules. -1l• .u In spite of the interest in chiral calix(4]arenes.

few resolutions of their enantiomers have been achieved.Q-66 The difficulty in resolving

calix(4Jarenes is because the rate of confonnational interconversion is comparable with that

of the NMR time scale. This confonnationally dynamic behavior causes a racemization by

rapid ring inversion. Resolution by chiraJ HPLC should be possible providing that ring

inversion is sufficiently inhibited. 6)-66

The inherently chiral calix(4]naphthalenes 57 and 62 are conformationally dynamic

and thus exist as rapidly equilibrating racemic mixtures. In order to inhibit the

conformational mobility of these calix[4]naphthalenes it is possible to use an approach that

was recently successfully employed by Swager'l for chiral resolution of inherently chiral
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calix(4]arenes by forming transition metal-containing complexes such as with tungsten.

This approach. or one similar to it could be also employed for the chieal resolution of

dissyrrunetric calix(4]naphthaJenes 57 and 62. as depicted in Scheme 4.4. This fIrst

requires that the caJix[4}naphrhalenes 57 and 62 be ftxed in their cone conformations by

complexation with the metal to form a non-interconvertible racemic mixture of

caIix[4]naphthalene complexes. Secondly, the introduction of a chira! auxiliary will

provide diastereomers. which, after separation and removal of the chiraI auxiliary, could

afford resolved enantiomers. To achieve this, reaction of the cbiraI calix[4]naphthaJene 57

with WC4, in benzene also could produce the dichlorotungsten (VI) complex 63 as a

racemic mixture. Reacting the racemic mixture of 63 with the chiral auxiliary (5,5)-(-)­

hydrobenzoin will provide a mixture of diastereomers 64 and 65, which could. in principle.

be separated by chromatographic methods. After separation of64 and 65. removaJ of the

chiral auxiliary using AlCl) in CHel, should give pure enantiomers of the

dichlorotungsten(VI) calix.[41naphthalene complexes 66 and 67. Also. treatment of 64 or

65 with trimethylsilyltriflate (TMSOTf) in toluene could produce enantiomers of

oxotungsten(Vl) calix.(4]naphthalene complexes 68 and 69.

4.4.a. Ester Derivative of Calix[4]arenes.

Although the parent p-tert-butylcalix[4]arenes form inclusion complexes with small.

neutral molecules," they have very little ionophoric activity for alkali metaJ ions. This is

shown by their inability to uanspon such ions from neutral aqueous solution through a
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chlorofonn membrane.6'l Only when the source pllase is the basic metal hydroxide is

transpon observed. phase transfer then being coupled to phenoxide ion formation. By

analogy with the fact mat biological receptors are rich in ester-type carbonyl groups. alkyl

acetate groups attached to the phenolic groups in p-ren-butylcalix.[4]arenes result in their

having a high degree of phase-transfer affinity for alkali metal cations.70 This is ascribed to

interactions between hard oxygen bases and haed alkali earth metal cations as observed with

the crown ethers. In principle. this esterification may fix any of the four possible

conformations. provided the residues are bulky enough to inhibit the oxygen-through-the­

annulus rotation. It is found that conversion into esters using ethyl bromoacetate in the

presence of sodium or potassium ions leads to tetraester derivatives in the cone

conformations.70 while lhe partial-cone conformation is fonned predominantly in the

presence of cesium ions.)9 The confonnational characteristics ofcalix.[4Jarenes and their

derivatives can be conveniently estimated by the splitting patten of the methylene protons in

their IH NMR spectra.' For tetraester derivatives of calix.[4]arenes formed by reacting

calix.[4Jarenes with ethyl bromoacetate. the methyl protons for the ethyl ester groups

(OCH1CHJ) in the cone conformation appear as one triplet. while in the partial-cone

conformation they appear as three sets of triplets in the ratio I :2: I. and in the pinched-cone

conformation they appear as two sets of triplets in the ratio of I; (.61. J9 This suggests that

this feature could be also used as an alternative method for establishing the nature of the

conformations oftetraester derivatives of calix.[4]naphthalenes.
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4.4.b. Synthesis of Tetrakis«etboxycarbonyl)methoxy)calix[4]naphtbalene (70)

57 70b 70.

Acetylation of calix(4]naphthalene 57 was carried out under the same conditions

employed for acetylation of calix(4]arcnes. Refluxing caIix[4]naphthalene 57 with ethyl

bromoacetate in THF using NaH as base, produced two products. which were more soluble

in CHell than the parent compound.

By analogy with the tctraester derivative of caJix[4}arenes. the tetraester derivative

of calix(4]naphthalene 70 can in principle adopt one or more conformations of the five

types of fixed confonnations: cone, partial-cone, 1,2-a1temate, 1.3-aItemate and pinched-

cone conformations.

If 70 adopts the cone conformation. the four bridge methylene groups should be

equivalent, but the two protons of each bridge methylene group are chemically non-

equivalent and would likely form an AB quartet in the IH NMR spectrum. The four

OCH1CO methylene groups are equivalent. but due to the inherent chirality of the molecule.
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each of the protons is diastereotopic and should also appear as an AB quanet. All of the

protons ofeach methylene and methyl group in the alkyl moiety of the emyl ester groups

(CH!CH}) ace equivalent. The~fore. they would appear as one quartet and one uiplet.

respectively, as is observed for other tetraester derivatives of inherently chiral calix[4)-

acenes.C

Examination of molecular models showed that the anticipated characteristics of the

lH NMR signals oftetraester derivative conformers of 70 would be as shown in Table 4.1

Table 4.1. Predicted characteristics of In NMR of conformers of tetraester derivatives

orS7.

Conform. eR! bridge OCH,CO OCHl eR] OCH!CH)

I pair doublets I pair doublets I quanet Ilriplet

partiaI-cone 4 pairs d (1:1:1:1) 4palrsd(I:I:l:l) 4quan.(l:I:I:I) 4 t(1:I:l:1)

1.2-altemate 2 pairsd(1:I) 2pai"d (1:ll 2quanets(l:I) 2((1:1)

13-a1lemate I pairdoublelS I pair doublets I quanet Ilriplet

pinched cone 1 pair doublets 2 pairs d (1:1) 2 quartets (1:1) 2lriplets I:)

d =doublet: t =triplet: q =quartet.

At room temperature the lH NMR spectrum (CDC),) of the most polar product is

relatively simple, as shown in Figure 4.6. It shows one triplet centered at 1.28 ppm (1 = 6.9

Hz). coupled to a quartet centered at 4.2 ppm. and two pairs of doublets. One pair of

doublets was centered at 4.12 and 5.31 ppm (J= 14.7 Hz) and the other pair of doublets
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was centered at 4.64 and S.ll ppm (1= 16.2 Hz). COSY and NOED experiments indicate

that the pair of doublelS at 4.1215.31 ppm having the larger chemical shift difference is due

[0 the bridge methylene protons. whereas the pair ofdoublelS at 4.6415.11 ppm is due [0 lhe

diastereolopic -OCH~Co- methylene protons. These data suggest either a cone. or 1.3­

allemate confonnalion. as shown from their expected splitting panerns summarized in

Table 4.1. However. it is more likely that the molecule adopts the cone confonnation since

the chemical shift difference between the pair of doublets of the methylene bridge is as

large as is observed for the cone confonnation of tetraester derivatives of p-tert­

butylca1ix(4]acenes.J9 The llC NMR spectrum shows only one carbonyl signal at 170.0

ppm, which confirms that all of the carbonyl groups are equivalent. The FAB-MS spectrum

shows a signal (7%) at m/z =986. which is compatable with the molecular mass of the

product plus a water molecule.

The ambient temperature IH NMR (CDCI) spectnlm (figure 4.6) shows well·

resolved sets of resonances arising from lhe methyl and methylene protons. Also present is

a broad. panially resolved set of resonances arising from the aromatic protons. which

correspond to sixteen protons. A new broad aromatic signal centered at 6.83 ppm stans to

appear as lhe temperature was increased to 40 DC which integrated for Four protons as

shown in Figure 4.7. When the solvent was changed to DMSO-d6 and the temperature

increased gradually to 140 DC. well-resolved aromatic signals were obtained. without any

major changes to the shapes of the methylene and methyl signals (figure 4.8). This
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(00

indicates that the initial conformation (cone confonnation) is retained under these

conditions. On the other hand. as the temperature was decreased [oO"C the lH NMR

(CDCI) spectnlrn (Figure 4.7) shows lhat me signals for the aromalic and the diastereotopic

methylene prOlOns flaltened out. Below O°C the signals become broader. particularly at

• 20°C which was therefore was assigned [0 be the approximate coalescence temperature.

At - 50 "C. the IH NMR specuum starts to show simple. partially resolved sets of

resonances arising from both the aromatic and methylene protons, also compatible with a

cone confonnation at low temperature (Figure 4.7), These observations (sharp signals at

high temperatures, very broad signals at moderate low temperatures and partially resolved

signals at very low temperatures) indicate that the molecule fluctuates between the cone and

flattened-cone conformations.

The IH NMR spectrum (CDCI)} of the second product displays four sets of triplets

in the ratio of I: 1:1:1. and a very complex splitting pattern in both the methylene (integrated

for 24 protons) and aromatic (integrated for 20 prOlons) regions. as shown in Figure 4.9.

Also. its DC NMR (CDCI)} spectrum shows 58 carbon signals. among them four different

carbon carbonyl signals at 168.8. 169.1. 169.2. and 169.9 ppm. These spectra are consistent

only with a structure of having C/ symmeU)'. i.e.• a structure in which all the protons and

the carbons of the naphthalene rings, methylene bridges and ester groups are different. On

the basis of these data it is most likely that this compound adopts a panial~one

confonnation. as can be further discerned from its splitting pattern as predicted from Table
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4.1. As in the case for the cone conformer. +FAB MS shows a signal at m/z =986 (20%).

which is compatible with the molecular mass of the molecule plus a water molecule.

4.4.c. Ester Derivatives of lert-Butylcalix(4]naphlhalene 62

Acetylation of tert-butylcaJix(4)naphthaiene 62 was carried out under the same

conditions as were used for acetylation of calix[4]naphthalene 57. Treatment of 62 with an

excess ofethyl bromoacetate and NaH in refluxing THF for 6 h also resulted in the

formation of two products. The less polar one, which formed as the minor product. is the

mono-ester derivative 618. Attachment of one residue to the phenolic oxygen leads to a

totally asymmetric molecule in which all the aromatic units are different. Indeed, the

ambient temperature 'H NMR (COCl) spectrum of 628. besides having three singlets for

the hydroxyl groups at 9.10. 9.34 and 9.51 ppm. also shows four singlets for the ten-butyl

groups at 1.19. 1.22 1.39 and 1.41 ppm, and one methyl group overlaping the later two ten·
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bUlyl groups. which integrate for twenty one protons.

The more polar product. formed as the major product. is the di-ester derivative 62b.

In its IH NMR speclJUm. the one set of methyl groups and the methylene region signals

integrate for six and sixteen protons. respectively. In principle. the di-ester derivative could

be either 1.2-substituted or 1.3-substituted. Also. by analogy with the tetraester derivatives.

these two di·substituted derivative. can each adopt one or more afthe five possible types of

conformations: cone, pinched-cone, partial-cone. 1,2-altemate. and 1.3-alternate. Due to

the inherent chirality of calix[4Inaphthalene 6Z. the two protons of me OCHzCO group are

diastereOlopic and thus appear as two doublets. Based on molecular models. the anticipated

splitting patterns for the ArCH!Ar and OCH1CO groups in 'H NMR are summarized in

Tables 4.2 and 4.3. respectively_

Table 4.2. Predicted splitting pattern of ArCH~rprotons of 62b

confonnation loJ-substituted l~-substituted

one pair of doublets three pairs of doublets

pinched-cone one pair of doublets three pairs of doublets

1.2-aItemate (symmetrical)- ----~_.._~-~-~~- three pairs of doublets
1.2-aItemate (unsyrrun.) two pairs of doublets three pairs of doublets

1.3-aItemate (symmetrical) two pairs of doublets
1.3-altemate (unsyrrun.) _.~~~._-.~-~-~.--~_.-~ three pairs of doublets

partial-cone fOUf pairs of doublets fOUf pairs of doublets

- symmemcal when the two substltuenLS attached to the phenolic oxygens are In the same

direction and vice-versa.
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Table 4.3. Predicted splitting pattern of OCH2CO protons of 62b

conformation l,3~substituted l,2-substituted

one pair of doublets one pair of doublets

pinched-cone one pair of doublets three pairs of doublets

1,2-alternate (symmetrical) .._-_.------_. two pairs of doublets
1.2-a1temate (unsymm.)· one pair of doublets two pairs of doublets

1.3-altemate (symmetrical) one pair of doublets
1,3-altemate (unsymm.) .-._..._..--------- one pair of doublets

partial-cone two pairs of doublets two pairs of doublets

The IH NMR (CJ>J spectrum aCthe diester derivative 62b shows a triplet centered

at 1.00 ppm (J = 6.9 Hz). a multiplet centered at 3.99 ppm and six doublets (three pairs) at

4.27 (1 =15.3 Hz), 4.37 (1 =14.7 Hz). 4.43 (1 =13.8 Hz), 4.75 (1 =15.3 Hz). 4.94 (1 =

13.2 Hz) and 5.27 ppm (J =t4.1 Hz). Based on these data and the splitting patterns of the

ArCH1Ac and OCH1CO protons summarized in Tables 4.2 and 4.3, the diester 62b is most

likely the 1,3-substilUted diester derivative. Furthermore, the number of signals for the terr-

butyl groups and the aromatic protons are double those observed with the parent compound

62. i.e.• two ten-butyl singlet signals, two singlet signals (H-lO, H-20, H-30, H40), two

doublets (J= 9.0 Hz, H-5, H-15, H-25, H-35), two doublets (1= 1.5 Hz. H-8. H~18, H-28.

H-38), two double doublets (J =9.0,1.5 Hz, H6. H-16. H-26. H-36). This observation is

consistent only with a stroclUre which is 1.3-substilUted. Examination ofTables 4.2 and 4.3

indicates that two possible conformations for a 1.3-substilUted derivative that are consistent
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with the observed 'H NMR specuum. one is 1.3-a1ternate and 1.2-a1temare. The methyl

shift of 1.00 ppm, which is typical for the methyl group of ethanol. suggeslS that they are

unshielded by the naphthalene rings. precluding a 1.2-altemate conformation. To confirm

mis. NOE enhancements afthe aromatic singlet signals at 7.45 and 7.95 ppm

(corresponding to H-IO. H-20. H-30. H4O) were observed when the aromatic doublets

centered at 8.04 and 8.40 ppm (corresponding to H-5. H-15. H-25. H-35) were saturated.

and vice.-versa. Examination of molecular models reveals that this NOE could not occur

unless lite molecule is in the l.3-a1ternate conformation.

Based on COSY and NOED experiments. the pair of doublets centered at 5.27 and

4.37 (J= 14.IHz); 4.94 and 4.43 (J= 13.2 Hz); and 4.75 and 4.27 (J =15.3 Hz) are clearly

coupled. The coupled doublets centered at 5.27 and 437. and 4.94 and 4.43 ppm

respectively were assigned to the methylene bridge protons. since NOE enhancements were

observed for the doublets centered at 4.37 and 4.43 ppm when the aromatic doublets

centered at 8.04 and 8.40 ppm (corresponding to H-5. H-15. H-25. H-3S) were saturated.

4.5. Bis(2-elhoxyetboxy)calix(4Jnapbtbalene (57.)

sr sr.
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As mentioned previously, the mobility of lhe calix[4]acene backbone can be blocked

by introducing four substituents that are bulkier than rne ethyl group at the lower rim

(phenolic oxygen), and the stereochemical outcome is determined by the reaction conditions

and the metal ion of the base used. The objective of locking the conformation of a

calix(4]arene in one of its conformers is to design receptors (hosts) having sterle and

electronic features that are complementary to those of the substrates (guests) to be bound.

On the basis of these requirements. a great variety of receptor molecules have been

designed for the selective recognition of ions and neutral molecules. For example.

calix(4]arene was converted into tctrakis(2-ethoxyethoxy)calix(4]arene in the cone

conformation upon treatment with CH3CH1OCH1CH2Br using NaH as base in DMF.Jl

Treatment of calix(4]naphthalene 57 with CH]CH2OCH2CH2Br under these conditions

resulted in the formation of only one product. This product was assigned as a dialkyl

derivative since in its IH NMR (C6DJ specuum the one set of methyl groups centered at 1.2

ppm corresponded to six protons. whereas the signals in the methylene region corresponded

to twenty protons assigned to the methylene prQ[ons of two alkyl groups (-CH2CH2OCH2-)

and four methylene bridges. Due to the inherent chirality ofcalix[4}naphthalene 57. the

methylene protons of the • OCH2CHp· group are diastereotopic and couple with each other

(geminal and vicinal coupling) to produce a complex splitting patterns. Indeed. the IH

NMR (CJ)6) spectrum at room temperature shows four multiplets centered at 3.54. 3.77.

3.94 and 4.12 ppm. Also. thespecUllffi shows two pairs of doublets corresponding to the
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methylene bridges cente~d at 4.28 (J =15.0 Hz). 4.34 (1 =13.5 Hz), 4.98 (1 =13.8 Hz) and

5.06 (J= 14.7 Hz). Futthennore. in the I~ NMR(CDCl1) spectrum. besides the two

carbon signals at 23.4 and 28.9 ppm corresponding to the two different types of methylene

bridges. there are 20 carbon signals corresponding to aromatic carbons. These spectra and

reasoning by analogy with the arguments presented above suggest that the product is the

1.3-disubstiwtcd alkyl derivative. Examination of Table 4.2 indicates lhat of me [wo

possible 1,3-substituted conformations that are consistent with the observed IH NMR

spectrum. one is 1.3-altematc and the other is 1.2-allemate. It is more likely the molecule

adoptS a 1.3-a1tematc conformation since the methyl group is not shielded by the opposing

naphthalene rings, hence prttluding the 1.2-a1tematc conformation. Based on a COSY

experiment and the coupling constants. the doublets al 4.28 and 5.06 ppm are coupled to

each other, as are the other doublets.
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4.6. Experimental.

MethyI3-hydroxy-2-napbtboate (58).

• , 0

~~HlY00H
58

To a solution of 3-hydroxy-2-naphthoic acid (9) (3.8 g. 0.02 mol) in 20 mL of

methanol was added concentrated sulfuric acid (0.82 ml) at room temperature. The

temperature was raised to reflux for 8 h. The reaction mixNre was cooled to n [0 ronn a

yellow solid which was filtered. washed with 10% aqueous NaHCO) and dried to give 3.93

g (97%) 0(58, m.p. 69-70 "C; lH NMR (C6D6) B= 3.31 (s, 3H. CHl)' 7.02 (t, J= 7.8 Hz.

IH, H-6 or H-7), 7.15 (br. IH. H-7 or H-6), 7.35 (d. J= 8.7 Hz. IH. H-5 or H-8), 7.41 (s.

tH, H-4), 7.S0 (d.J= 8.7 Hz, tH, H-8 o,H-S), 8.3t (s. tH, H-t), to.93 (s, tH, OR).

3.(hydroxymethyl)·2·napbthol (56),

, .
~OH
Y00H

56

A solution of methyl 3-hydroxy-2-naphthoate (58) (1.88 g. 9.31 mmol) in anhydrous
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THF(30 rnL) was added at It to a suspension ofLAH (0.71 g. 19 roma!) in dry THF (50

mL) over 30 min. and the mixture stirred at It for 3 h. The reaction was quenched by

pouring the suspension into cold, wet diethyl ether. then the mixture was treated with

aqueous 10% Hel at 0 0c. The ether layer was separated and the aqueous layer was

extracted with diethyl ether. The combined organic layers were dried over anhydrous

MgSO~. filtered and the solvent was evaporated to give a pale yellow solid. 1.52 g (94%)

which CQuid be crystallized for analysis from ethanol-water. m,p. '86·188 °C (lit. m.p. 185

°C)61; IH NMR (acetone-d6) 8=4.50 (t, J= 5.7 Hz. IR. CH10Hl. 4.88 (d. J =5.7 Hz. 2H.

H-9), 7.t8 (5. IH. H-I), 7.25 (rn. IH, H-6 or H-7), 7.33 (m. IH, H-7 or H-6), 7.65 (d.l=

8.1 Hz. 1H. H-5 or H-8), 7,77 (d. J= 8.1 Hz. 1R, H-5 or H-8). 7.83 (s. IH. H-4), 8.79 (s.

IH. OH); DC NMR (acetone-a'6) 5= 61.7 (C~9). 109.7, 123.9. 126.5. 126.7, 126,9, 128.4.

129.5, 131.7, 135.1, 154.6 (C-2): MS m/z (%) 174 (M', 28), 156 (39), 129 (12), 128 (100),

127(15),115(13),64(13),63(9),51 (9).

Methyl 7.tet1·butyl.3.hydroxy·2·naphthoate (60).

60

To a solution ofmethyI3-hydroxy-2-naphthoate (58) (307 mg. 1.52 mmol) in

1.1 ,2,2-tetrachloroethane (5 mL) at O°C. under At was added ten-butyl chloride (0.66 mL,
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6.1 mmol) followed by the addition of AIel] (410 mg. 3.04 mmel) in ponions over 15 min.

1be reaction solution was stirred at It for 24 h. Work-up was effected by the addition of

cold water at 0 OC and then extraction with 50 mL of CHell' The organic layer was dried

over anhydrous MgSO..l' filtered and lite solvent removed by vacuum distillation. The crude

product was purified by PLC using ethyl acetate-peu-oleum ether (10:90) to give 60 as a

light yellow solid (0.28 g. 73%). m.p_ 102-to3 "e: lH NMR (CDCl l ) B=1.39 (5. 9H. H-12).

4.02 (5, 3H. H-IO). 7.27 (5. H-4), 7.62 (m. 2H, H-7. H-8), 7.71 (5. IH. H-S). 8.46 (5. tH, H-

8).8.46(5, IH, H-I), 10.93 (s. IH. OH); DC NMR (C,D,) 5=31.5 (C-12), 35.0 (C-Il).

52.2 (C-IO). 112.3, 114.9. 124.6. 127.0. 127.3. 128.9. 133.0. 137.3. 146.8. 157.5 (C-2).

170.9 (C-9); MS mI, (%) 259 (M"+1. 12), 258 (M", 67), 243 (49), 227 (23), 226 (100),212

(15),211 (93), 183 (16), 155 (11), 139 (11), 115 (13), 92 (12), 83 (10), 78 (32), 76 (10), 71

(1 J). 69 (15). 57 (21), 55 (IS): HRMS W 258.1253 calcd for CIJlIIO} 258.12S6.

6-tert·Butyl.J.(hydroxymdhyl)-Z-naphtbol (61).

61

A solution ofmethyI7·ten-butyl-3-hydroxy-2·naphthoate (60) (1.1 g. 3.9 mmol) in

anhydrous THF (IS mL) was added at n to a suspension ofLAH (0.29 g. 7.8 mmol) in

anhydrous THF (20 mL) over 40 min. and the reaction mixture stirred at It for 2 h. The
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reaction was quenched by pouring the suspension into cold. wet diethyl etller followed by

addition of aqueous 10% HCI at 0 ~c. After the separation of the organic layer, the aqueous

layer was elttracted with 30 mL of diethyl ether. The combined ether layers were dried over

anhydrous MgSO.l' filtered and evaporated to give 61 as a light yellow solid (0.81 g.90%).

m.p. 174-176 ~C; IH NMR (acetone-dd) 1S= 1.38 (5, 9H. terr-Bu), 4.87 (d. J= 5.4 Hz, 2H,

H-9). 7.13 (5. IH. H-l). 7.50 (d. J= 8.7 Hz. IH. H-7). 7.61 (d. J= 8.7 Hz. IH. H-8), 7.73

(5. IH. H-5). 7.79 (5. IH. H-4). 8.68 (5. IH. OH): lJC NMR (acetone-d,) S =30.4. 62.2,

109.8.109.9.123.9.125.8.127.0.127.5.129.8.131.8. 131.4. 133.7. 146.8. 154.7: MS mil.

(%) 231 (M-+1. 8). 230 (48). 213 (20). 212 (100).198 (10). 197 (59). 184 (4\). 169 (32).

\52(10).14\ (10). 128 (13).115 (12). 77 (\0). 7\ (29). 57 (15).43 (59). 41 (14); NOE (%)

0111 H-4 (2). H-I (6.0); U-4I H-5 (7). H-9 (2); U·S! H-4 (4). H-12 (0.6); U-8I H-7 (11). H-

I (4.0): H·71 H-8 (0.3). H- 12 (0.3); H-ll H-8 (7). OH (2); HRMS W 230.1308 calcd for

ClsH1IO~ 230.13.07

Calix[4]naphtbalene (57).

To a solution of 3-(hydroltymethyl)-2-naphthol (56) (0.87 g. 5. I mmo!) in dioltane

(70 roL) was added TiCI. (0.61 mL, 5.5 romo!) dropwise at 60"C under N~. The mixture

was refluxed for 36 h. Work-Up of the reaction mixture was effected by first evaporating

the dioxane under vacuum. The crude product was dissolved in 30 mL of CHCI1• and the

resulting suspension was subjected to flash chromatography using CH2Cl2-petroleum etller

(1:1) to give 57 as a light brown solid (0.104 g. 13%). m.p. >300~C dec. (lit. m.p.384-386
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°C)62: I.R. (Nujol. em'I): 3406 (br, OH), 1256, 1182. 1091. 1048.844.747; IH NMR

(CDCIJ) [; =4.58 (5. 8R. H-2. H-Il, H-22. H-32), 7.23 (dd. J= 7.8. 0.9 Hz. 4H. H-6, H-16.

H-26. H-36), 7.51 (m. 4H, H-7. R-17. H-27, H-37), 7.61 (d.J=7.8 Hz, 4H. H-8, H-18. H­

28. H-38). 7.86 (5. 4H, H-IO. H-20, H-30. H-40), 8.38 (d. J = 8.7 Hz. 4H. H-5. H-15, H-25.

H-35), 10.96 (s, 4H, OR): llC NMR (DMSO-d6) [; = 25.6 (C-2. C-Il, C-21, C-32), 119.4,

122.8 (C-6, C-16, C-26. C-36 or C-7. C-17. C-27, C-37), 123.0 (C-S. C-15. C-25. C-35).

125.9 (C-7. C-I7. C-2?, C-3? or C-6. C-16. C-26, C-36), 128.1 (C-S, C-IS. C-l8. C-38).

128.4 (C-IO. ColO. C-30. C-40). 128.6. 129.3, 131.4, 149.7 (C-41, C42. C-43. C·M); MS

mI, (%) 626 (M'+2, 12),625 (M'+I,47), 624 (M', 100),607 (9), 606 (15),588 (7), 467

(10), 450 (8), 449 (II), 325 (8), 324 (8), 311 (21), 297 (7), 296 (8), 295 (23), 294 (11), 281

(15), 169 (38),157 (58), 141 (19),
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tert·Butylcalix[4]napbthale.oe (62).

To a solution of 6-tt'rt-butyl-3-{hydroxymethyl)-2-naphthol 61 (0.41 g. 1.8 nunol) in

dioxane (60 roL) was added TiCI. (0.21 mL. 1.8 mmol) dropwise at 60 °C under N~. The

mixture was refJuxed fot 24-30 h. Work-up of the reaction was effected by evaporating the

solvent under vacuum and then dissolving the crude product in 50 mL of eHCl]_ Insoluble

material was removed by filtration. TIle solution was concentrated to abem 10 mL and

subjected to flash chromatography using CH1C11-perroleum ether (I: I) [0 give 62 as a ligh(

brown solid (102 mg. 31%), m.p. 246-249OC dec.: I.R. (Nujol. em· I
): 3284 (br. om, 1305.

1232.1162.1097.899; IH NMR(CDCl j ) S = 1.32 (5, 36H. tt'rt-Bu).4.52 (5, 8H. H-2. H­

12, H-22, H-32J, 7.51 (d.!= 1.8 Hz, 4H, H-8, H-18, H-28, H-38), 7.58 (dd, J= 9.0, 1.8 Hz,

4H, H-6, H-16, H-26, H-36), 7.76 (s, 4H, H-IO, H-20, H-30, H-40J, 8.28 (c!. J=9.0 Hz, 4H,

H-5, H-15, H-25, H-35), 10.62 (s, 4H, OHl; "c NMR (CDCIJ 6= 26.0 (C-2, C-12, C-22.
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C-32). 31.2 (C(CH)h). 34.4 eCceH})}), 119.3. 122.6 (C-5. C-15. C-25. C-35), 123.7 (e-8.

C-18. C-28. C-38). 125.0 {C-6. C-16. C-26. C-36}, 128.2. 129.2. 129.7. 129.9 (C-IO. C-20.

C-30, C-40). 145.8, 147.6: +FAB-MS mI, (%) 848 (M", 17).847 (6), 829 (II). 813 (5). 811

(11).630 (4), 619 (5). 618 (5). 617 (8). 545 (3). 437 (16). 425 (7),423 (II), 407 (18). 406

(9).393 (13). 391 (12), 389 (7). 377 (II). 367 (10), 351 (11),289 (12), 265 (12). 253 (10),

252 (11),239 (16), 237 (9), 227 (16). 226 (20). 225 (73), 223 (10).215 (10). 214 (14), 213

(71),211 (15). 209 (14),

Tetrakis«ethoxycarbonyl)methoxy)calix[4]naphthalenes (70a) and (70b).

To a suspension ofcalix(4)naphthaJene 57 (88 mg. 0.14 nunol) in anhydrous THF

(16 mLl was added NaH (113 mg. 2.82 rrunol). The reaction mixture was stirred at room

temperature for 30 min and !:hen an excess of ethyl bromoacc:tate (0.17 mL, 1.4 nunol) was

added. The mixture was refluxed for 3 h. The work-up was effected by evaporating the

solvent [0 dryness. The crude product was then neutralized by adding 5 mL of water

followed by 5 mL of aqueous 10% HO. The mixture was extracted with 30 ml of CHel).

The organic layer was dried over anhydrous MgSO... filtered and evaporated to give the

crude product. which was purified by PLC using CHCll to give. in order of increasing

polarity: tetrakis«ethoxycarbonyl}metboxy}calix[4]naphthalene (708), as a colorless

solid (28 mg. 21%), m.p. 70-72 °C; I.R. (CHCIJ• em· I
): 1757 (br), 1735 (br), 1622, 1596.

1501, 1438, 1374. 1283 (br), 1236, 1179. 1107. 1063, 1032.946,881.850: 'H NMR

(CDCIJ) 0= 1.04, I.IS, 1.22, 1.36 (t each, 3H. CHJ), 3.28 and 3.44 (2d, J= 16.8 and 17.4
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70.

Hz. 2H). 4.03 (m. I5H). 4.44 and 4.57 (2d. J= 15.3 and 15.6 Hz. 4H), 4.76 (d. 1= 13.5 Hz.

IH). 4.88 and 4.92 (2d, J= 5.1 and 6.0 Hz. 2M), 6.07 (s, 1H), 6.56 (d. J= 8.4 Hz. 1H). 7.00

(m, 4H). 7.22 (d. J= 7.2 Hz, IH). 7.42 (m, 4H), 7.55 (d. J = 7.5 Hz.. 1H), 7.56 (5, IH). 7.87

(m. 3H). 8.12 (m. 2H), 8.24 (5. IH). 8.42 (d, J= 8.1 Hz. IH); uC NMR (CDCl}) S =14.1.

14.3, 24.1, 28.9. 29.5, 31.2. 59.6. 60.8. 61.0. 61.1. 67.6, 70.6. 71.0. 72.2. 76.6. 120.0. 123.0,

123.1,123.4.123.5.123.7,124.0.124.1,124.5.124.7. 125.4. 125.7. 126.7. 127.4. 127.5.

128.1,128.3.128.5.128.6,129.3,130.2.130.4.130.5. 130.7, 130.8,130.9.131.7.132.0.

132.4,132.5.133.5.134.0.135.5.153.6.154.1,154.3. 155.2, 168.8. 169.1. 169.2. 169.9;

+FAB,MS mh: (%) 986 (M"+H,O, 20), 968 (M', 1),967 (5), 966(16), 965 (35), 964 (42),

89. (11),789 (5), 626 (4), 614 (9); "'" tetrakis(ethoxyarbonyl)melhoxy)caIix[41-

naphthalene (70b) as aeo1orless solid (12 mg, 9%). m.p. 95-97 "C; I.R. (CHO), em"I):

3054.2980,2929,1757,1613,1502.1434.1376.1283,1201, [179,1106,1063.742; lH

NMR (COCl) S= 1.28 (t. J = 6.9 Hz. 12H. 4CHl ), 4.12 (d. J = 14.7 Hz. 4H, AICKIAr,

equ3loriaI). 4.21 (q. J= 6.9 Hz. 8H. 4COOCHJ. 4.64 (d, J= 16.5 Hz, 4H. OCHICO). S.I I
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70b

(d. J= 15.9 Hz, 4H. OCH2CO). 5,31 (d. J= 14.7 Hz. 4H. ArCH~Ar. axial), 7.13 and 7.82

(br. 20R aromatic): lH NMR (DMSO-d6 at 140°C) 8 = 1,25 (t,J= 6.9 Hz. 12H,

OCH~CH3)' 4.17 (d. J= 14.1 Hz. 4H. ArC0lAr. equatorial). 4.20 (q, J= 6.9 Hz, SH.

4COOCH1). 4,70 (d. J= 15.3 Hz, 4H, DeHICD). 5.03 (d, J= 15.6 Hz. 4H. DeHI CD). 5.15

(d. J= 14.1 Hz, 4H. AreOlAr. axial), 6.84 (s. 4H), 7.06 (m, 8H), 7.l7 (m. 4H), 7.91 (d, J=

8.7 Hz. 4H); DC NMR (CDel]) 8 = 14.2 (CH]), 60.6 (Ar-CH1-Ar and COOCH~). 71.6

(OCH2CO~). 123.3. 123.5. 124.7. 128.1. 128.7. 130.3. 131.6, 134.3. 154.4. 170.1 (DeOl ):

(8),964 (9), 902 (8), 901 (16),900 (17).

Ester Derivatives oftert-butylcaIix[4]naphthalene 62. To a stirred solution of62 (130

mg, 0.153 mmel) in anhydrous THF(IO mL) was added NaH (61 mg, 1.5 mmel) in one

portion at rt under N1. The reaction mixture was left to stir at room temperature for 15 min.

Excess ethyl bromoacetate (0.17 mL, 1.5 mmol) was added, and then the mixture was

refluxed for 6 h. Work-up of the reaction mixture was effected by evaporating the solvent
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and dissolving the residue in 20 mL arCHel!_ The organic solution was washed twice with

20 mL of aqueous 10% HCI. The combined organic layers were dried, filtered and

evaporated in the osual manner. The crude product was purified by PLC using CRel)-

pelroleum ether (90: 10) to give, in order of increased polarity: mono«ethoxycarbonyl).

methoxy)len.butylcalix[4Jnaphthalene (62a) as a pale yellow solid (9.0 mg, 6'70), m.p.

220-225 °C: IH NMR (COCl) 5 =1.19 (5 , 9H • ten-Bu), 1.22 (5. 9H. terr-Bu), 1.40 (5. 9H,

tert-Bu), 1.41(s. 9H. tat-Bu), 1.40 (br, 3H. CH]). 4.26 (dd, J= 14.3.6.9 Hz. lH). 4.74 (d, J

=15.3 Hz. tH, OCH!CO). 4.78 (d.l= 20.1 Hz, 2H). 4.98 (d, J= [5.3 Hz. tH. OCH!CO).

7.31 (d, J= 8.7 Hz. 2H), 7.45 (m, 2H), 7.60 (m. 6H), 7.83 (d.J=4.2. 2H), 8.24 (m. 4H).

9.10 (5, 1H. OH), 9.34 (s, IH. OH). 9.51 (s. IH, OH); bis«ethoxycarbonyl)-methoxy)tert-

butylcalix[4]naphthaJene (62b) as a pale yellow solid (27 mg. 19%). m.p. 213-216 °c;

62.
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'HNMR (C.oJ 8 =0.86 (s • 18H.I....-Bu). 1.00(1.1=7.5 Hz. 6H. OCH,CR,). 1.41 (s.

18H. lut-Bu), 3.92-4.07 (m. 4H. OCH:CH). 4.27 (d. J = 15.3 Hz. 2H. AtCH~Ar). 4.37 (d.

1 = 14_7 Hz. 20. OCH,CO). 4.43 (d.) = 13.8.20. AtCH,Ar). 4.75 (d. 1 = 15.3 Hz. 2H.

AreH,Ar). 4.94 (d.l= 13.2 Hz. 2H. AtCH,Ar). 5.27 (d, 1= 15.3 Hz. 2H. OCH,CO). 6.64

(d, 1= 1.5 Hz. 2Hl. 6.89 (dd. 1= 9.0. 1.5 Hz. 2Hl. 7.45 (s. 2Hl. 7.68 (dcl. 1=9.0. 1.5 Hz.

2Hl. 7.89 (d, 1= 1.8 Hz. 2Hl. 7.95 (s. 2Hl. 8.04 (d.J= 8.7 Hz. 2Hl. 8.42 (d, 1=9.0 Hz.

2Hl. 8.46 (s. 2H. OH); "c NMR (CDCI,) 8 = 14.2 (CH,). 23.9 (ArCH,Ar). 29.5

(ArCH,Ar). 31.0 (C(CH,),). 31.4 (C(CH,),). 34.4 (C(CH,),). 34.5 (C(CH,),). 61.5

(OCH,CH,). 72.7 (OCH,CO,). 121.3. 122.6. 123.3. 123.6. 124.1. 124.5. 124.9. 127.6.

128.2.128.7.129.5.129.6.130.6.131.6.133.3. 144.5./46.7. 150.9. 151.9. 168.6 (OCO,);

+FAB-MS mI, (%) 1043 (M"+Na, 3). 1020 (M", 2), 1018 (2). 1017 (7),1016 (15), 1015

(20), 1014 (6). 983 (3).982 (3). 966 (4). 943 (4).

Bis(2-etboxyelhoxy)calix(4]naphthaleae (S7a).

57.
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To a stirred solution of57 (50 mg. 0.08 mmol) in anhydrous DMF (5 mL) was

added NaH (32 mg, 0.80 romol) in one panioo at n under N~. The reaction mixture was

stirred at n for 15 min. Excess ethyl bromoacetate (0.11 mL, 0.81 mme!) was added. and

then the temperature was raised to 80°C for 10 h. The work·up of the reaction mixture was

effected by evaporating the solvent, and the residue was diluted by adding 20 mL of

CH!Cl!. The organic layer was washed twice with 20 mLaqueous 10% Hel. The organic

layer was dried. filtered and the solvent was evaporated in the usual manner. The crude

product was purified by PLC using CH2C12 to give S7a as a colourless solid (20 mg. 33%),

m.p. > 300°C dec. ; LR. (Nujol, em,I): 3395, 1239. l185. 1102, 1053.956: IH NMR {CJ)J

a =1.19 (t, J = 6.9 Hz, 3H. oeHleR), 3.49 (q . J = 6.9 Hz, 4 H. OCHtCH}), 3.54 (m. 2H.

OCH~CH~O). 3.77 (m. 2H. OCH~CHP). 3.94 (m. 2H. OCH~CHlO).4.12 (m. 2H.

OCH!CHP), 4.28 (d,) =15.0 Hz. 2H, ArCH1At). 4.34 (d.)= 13.5 Hz. 2H. ArCH~Ar).

5.00 (d,) = 13.8 Hz. 2H. ArCH!Ar), 5.06 (d.) = 14.7 Hz. 2H. ArCHlAt); IH NMR (CDCI)

5= 1.30 (t,)= 6.9 Hz, 6H. OCHleR), 3.79 (m. 4H. oeHlCR). 4.00 (m, 2H), 4.10 (m.

2H), 4.22 (m, 2H), 4.40 (m. 6H). 4.78 (5, IH, ArCHlAr), 4.83 (br. 2H. ArCHlAr). 4.88 (s,

IH. ArCH1At), 7.05 (m, 2H), 7.29 (m. 6H), 7.44 (s, 2H), 753 (m. 2H), 7.80 (d, J= 8.1 Hz,

2Hj, 7.87 (s, 2H), 8.17 (d, J= 8.7 Hz, 2H), 8.36 (d,J= 8.7 Hz, 2H), 8.41 (s, 2H, OH): DC

NMR (CDC1,) 5 = 15.2 (OCH,CH,), 23.4 (NCH,Ar), 28.9 (ArCH,Ar). 67.0, 69.1, 75.7,

107.0.121.0,121.9,122.6.123.6,124.1.124.7,125.0. 125.7, 127.4, 128.2. 128.3. 128.6,

129.3,131.5,131.6,132.4,133.9, 151.0, 152.4: +FAB-MSmI,(%) 768 (M', 1),767(1).
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ChapterS

Bis(spirodienone) Derivatives of Calix[4]naphthalenes

5.1. Bis(spirodienone) Derivatives or Calixarenes

As discussed in Chapter I, upper rim and lower rim functionalizations both have

been used for modification of cali:w;:arenes. Additionally. there is a third suategy for

modification of calixarenes by total or partial replacement of the hydroxyl groups by

hydrogensn or aminon or SH groups.u In a different modification. the phenol rings of

calixacene derivatives have been oxidized to quinones.75 Related to this strategy. a novel

recent approach for the modification of calixarenes. in which the hydroxyl groups of p-tert­

butylcalix[4]arenes are oxidized into carbonyl and five-membered cyclic ether

functionalities. was reported.76 This was done by treatment of p-tert-butylcalix(4]arene with

2 equivalents ofphenyluimethylammonium tribromide (PTMATB) in a two-phase basic

system (CH1Cl1, 28% aqueous NaOH) at reflux temperature. This resulted in the foonation

of three main products (A. A'. B) from six possible isomers. as shown in Scheme 5.1.

These molecules contain two stereogenic centers and are named" bis(spirodienones)."

In contrast with the colorless starting material p-ten-butylcalix(4]arene. the three

products are yellow. in agreement with the presence of dienone moieties in each product.

No ring bromination was observed since positions ortho and para [0 the hydroxyl groups are

blocked by the methylene and ten·butyl groups. respectively. In the absence of base no
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reaction was observed. The fannation of the products was explained by first assuming

deprotonation of the hydroxyl groups to produce phenolate ions which can undergo

bromination to yield an o-bromocyclohexadienone derivative. The second step is the

replacement of the bromine atoms by the phenoxy groups of a neighboring ring resulting in

a five·membered-ring ether.76 Each of the spirodienones A, A'. and B display two tert·butyl

signals in their IH NMR spectra. The 'H NMR spectrum of the methylene region ofB

displays six doublets in a 1:1:1:1:2:2. ratio which is consistent with a molecule orc,

symmetry. as shown in Figure 5.1. Compounds A and A' display, in their lH NMR spectra.

similar patterns for the methylene region. Le. , four doublets in a ratio I: 1:1: I (Figure 5.1).

Since the lH NMR spectrum of A is similar to that of A' in the number of signals and the

splitting patterns, it was difficult to assign structures for these two products. Therefore. the

structures of A and A' were determined by x-ray analyses. The importance of these

compounds is the fact that they can be used to partially replace the hydroxyl groups of

calixarenes by hydrogen. halogen, amino and sulfonato groups,"" b which can affect the

rigidity. conformation and complexation properties of the resulting calixarenes. Also. since

these spirodienones are chiral. it is possible to convert calixarenes into chiral derivatives.
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5.2. Spirodienones Derived from Calix[41naphthalenes

5.208. Oxidation ofcalix[4]naphthalene (57)

When the naphthalene-ring containing compound bis (2-hydroxy-l-naphthyI)­

methane (71) was oxidized using either NaOCVbase or Br!AcOHINaOAc. a single product

was obtained (0 which a spirodienone structure 72 was assigned. as shown in Scheme 5.2.18

In our hands, spirodienone 72 was also produced as a single product in 83% yield from 71

using a two-phase basic system (CH~Cl~. 28% NaOH) in the presence of PTMATB.

Naphthol dimers bis( I-hydroxy-2-naphthyl)methane (15) and its derivatives. 73a and 73b

were evaluated. Our attempts to oxidize IS using one equivalent of PTMATE. as was used

with the other dimers 73a and 73b. failed, even after refluxing for up [0 48 h. When three

equivalents of PTMATB were used. spirodienone 74a was formed in 40% yield at room

temperature in just one !lour. When two equivalents ofPTATB were used. 74a was

produced. but in lower yield (20%). These observations suggest that one equivalent of

PTMATB was consumed in brominating the para-position of the naphthalene ring rather

than the orrha position to form the o-bromo-cyclohexadienone intermediate. This latter

intermediate would be required to form the tetrahydrofuran ring by intramolecular

nucleophilic substitution of the bromine atom by the phenoxy group of the neighboring

ring. Indeed. the spectral data indicate the presence of a bromine atom in the product

formed when one equivalent ofPTMATB was used. Therefore. when the para positions
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of IS blocked by bromine or chlorine atoms (733 and 73b), formation of the corresponding

spirodienones with one equivalent of PTMATB at room temperature in 1-2 h was observed.

On the other hand. when the above oxidation conditions were employed with 11 and 13.

which are calix(4)naphthalenes derived from I-naphthol. no formation of

bisCspirodienones) 75-77 was observed. The reactions yielded only intractable resinous

products. In order to account for the failure of 11 and 13 to produce the corresponding

spirodienones. inspection of Dreiding models suggested that the C-O bond would be

difficult to form since the oxygen atom afthe OH group is too remote from the carbon that

would become the stereocenter.

However. when calix[4]naphthalene 57, which more closely resembles

calix(4}arenes by the fact that the hydroxyl groups are located on the lower rim. was

subjected to the same Qltidation conditions. a single product was obtained in 30% yield. as

shown in Scheme 5.3. This product was yellow. consistent with the presence of dienone

moieties. I.R. spectroscopy revealed that the product contains a carbonyl group but no

hydroltyl group. In addition to the carbonyl signal at 195.4 ppm. in its 13C NMR (CDCI)

spectrum. there are 18 signals in the 112-154 ppm region corresponding to aromatic

carbons. The signal at 83.l ppm can be attributed to C-3 (C-23). Le.• the sp] carbon which

is attached to the ether oltygen. The two aliphatic carbon signals at 29.2 and 41.7 ppm

correspond to C-2 (C-22) and C-12 (C-32). respectively. In its IH NMR. spectrum (CDCI].

Figure 5.2) shows two aromatic singlets at 7.01 and 7.57 ppm (integrated for two protons
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each} corresponding to two cyclohexadienone protons (H-IO and H-30), and two aromatic

protons (H-20 and H-40). respectively. There are also four doublets between 3.40-4.53

ppm due to the methylene protons. The spectra are consistent only with a structure having

either C2 or C; syrrunetry. i.e.• a structure with altemating cyclohexadienone and aromatic

rings depicted as 78 or 7!1. respectively (Figure 5.6). In order to establish the solid-state

conformation and to assign unequivocally the correct symmetry (78 or 79) to the product.

single crystals suitable for x-ray analysis were obtained from CHel). X-ray diffraction

analysis (Figures 5.3 and 5.6) showed that the correct structure for this product which has

C! symmetry, corresponds to 78. The structure of78 shown in Figure 5.6 is the OS, 235)

enantiomer. This conformation also exists in solution as a racemic mixture. The agreement

between the solid and solution state structure was confirmed by NOED experiments, since

irradiation of the aromatic doublets centered at 5=7.91 (H-15, H-35) simultaneously

enhances the two methylene doublets at 3.73 (H,,-12, He-32) and 4.50 (H,-12, Ha-32)

(Figure 5.6). This NOE could not occur unless in solution the molecule adopts the same

conformational structure which was observed in the solid state. Based on the coupling

constant values and NOED experiments. the two doublets centered at 3.42/4.01 ppm are

coupled to each other. and the doublets at 3.73/4.50 ppm are coupled to each other.

Inspection of models reveals that the equatorial protons H-12 (H-32) are closer to the

cyclohexadienone protons H-I0 (H-30) than the axial ones. The doublet at 3.73 ppm was

assigned to the equatorial protons H-12 and H-32 since NOE enhancement occured for
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cyclohexadienone protons H-IO (H·30) at 7.01 ppm when this doublet was irradiated.

S~b. Oxidation or tert-Butylcalix[4]napbthalene (62)

Tert-butylcalix[4]naphthalene (62) was also oxidized to spirodienone derivatives

using similar reaction conditions. In mis oxidation. two products were obtained in 20%

yield for the less polar product 81 and in 30% yield for the remaining product SO. as shown

in Scheme 5.3. In contrast with 62. which is light brown. these two products are yellow,

which is consistent with the presence of dienone moieties in each. As judged by LR.

spectroscopy, the two species contain carbonyl groups (Ve-o stretching (Nujol), 81: 1712

em"l; 80: 1680 em-I) and no hydroxyl groups. The 13C NMR (CDCl J ) spectra of dienones

81 and SO display carbonyl signals at 194.4 and 195.5 ppm. respectively, 18 signals in the

111-154 ppm region corresponding to the aromatic carbons. signals at 85.1 and 82.9 ppm.

respectively, which are assigned to the spiro carbons C-3, C-23, and six aliphatic signals in

the region 20.0-34.0 ppm. In their IH NMR (COCl}) spectra. compounds 81 and 80 display

similar patterns for the methylene region. i.e.• four doublets in a ratio 1:1:1:1 and two t~rt­

bu(yl signals, as shown in Figures 5.4 and 5.5. respectively. Compound 80 displays two

t~rt-butyl signals, at 1.22 and 1.42 ppm. four doublets at 3.41 (J=16.5 Hz). 3.68 (J= 16.2

Hz), 3.98 (J= 16.5 Hz) and 4.49 ppm (J= 16.2 Hz). By COSY, the doublets at 3.41 and

3.98 ppm are coupled. and the doublets at 3.68 and 4.49 ppm are coupled. Compound 81

displays twO t~rt·butyl signaJs at 1.21 and 1.47 ppm, four doublets at 3.71 (J =17.1, Hz),
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3.73 (J= 15.6 Hz), 4.04 (J =15.6 Hz) and 4.38 ppm (J= 16.8 Hz). These spectra are

consistent only with structures 80 and 81 with C1 or Ci symmetry.

It is interesting to note that the geminal coupling constants for the methylene

protons in both bis(spirodienones) 78 and 80 are almost equal (16.5 Hz). This suggests

that bis(spirodienone) 80 could be in a confonnational structure that is similar to that of

bis(spirodienone) 78. as shown in Figure 5.6. To confirm this. an NOED experiment on 80

revealed that irradiation of the aromatic doublet centered at 7.87 ppm enhances

simuhaneously the coupled doublets at 3.68 and 4.49 ppm by 2% and 4%. respectively.

These methylene and aromatic doublecs muslcorrespond to H-12 (H-32) and H·15 (H-35),

respectively. Indeed. inspection of molecular models reveals that among several possible

conformations. the conformation ofbis(spirodienone) 78 (having the two carbonyl groups

pointing inward in order to relieve the stenc interaction between the two rerr-butyl groups)

is the only conformation in which the aromatic protons H-IS and H-35 are in close

proximity to the methylene protons on C-12 and C-32. with the CIs-HIs and CWHl , bonds

approx.imately bisecting the HI2a-CIZ·HIZc and Hl:!a~2-Hl2.bond angles. respectively. The

other methylene protons on C-2 and C-22. which are part of the five-membered rings. have

their corresponding H!cr.-c;-Hzp and H12..·Cll-H22P bond angles bisected by the C.ul-~ and

Cw-HM bonds. respectively. The remainder of the NOE data are in accordance with this

conclusion. Thus. irradiation of the aromatic singlet at 7.09 ppm resulted in enhancement

of one methylene doublet of H-12 (H-32) at 3.68 ppm indicating that these protons are in
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close proximity to onc another. Therefore. the doublet at 3.68 ppm is assigned to the

equatorial protons H-12 (H-32) and the aromatic singlet at 7.09 ppm [0 lhe

cyclohex.adienone prOlons H-tO (H-30).

The IH NMR (CDCI1) spectrum of compound 81 displays two tert·butyl signals at

1.21 and 1.47 ppm. four doublets centered at 3.71 (J=17.1 Hz), 3.73 (J= 15.6 Hz). 3.75 (}

= 15.6 Hz) and 4.38 ppm (1 = 16.8 Hz). A COSY experiment shows that the doublets

centered at 3.71 and 4.38 ppm are coupled to each other whereas the doublets centered at

3.73 and 4.04 ppm are coupled to each other. On the basis of the large coupling constant of

the methylene pair at 3.71 and 4.38 ppm. we assigned these signals to the methylene

protons which are part of the five-membered rings, as was also observed in the

bis(spirodienone) derived from calix(4]arenes.'6 In order to assign the conformational

structure for compound 81. a NOED experiment revealed that saturation of the aromatic

doublet (H-IS. H-35) centered at 8.03 ppm simultaneously enhances the methylene doublet

at 3.73 ppm CH.-12. H.-32) and the aromatic singlet signal at 6.83 ppm (H-IO. H-30) and

vice-versa. Also. saturation of the aromatic doublet at 7.26 ppm (H-5. H-25) enhances only

the methylene doublet at 3.71 ppm (H,-2. Ha.-22). Inspection of molecular models suggests

that. among several conformational possibilities. the one in which each pair ofcarbonyl and

ether oxygens are pointing in different directions (e, symmetry. Figure 5.6) is the only

conformation which is consistent with the NOE observations made above. Indeed. this

NOE prediction was confirmed later by the single-erystal x-ray analysis shown in Figure
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5.6a. The: structure of81 depicted is that of the (JR. 22S) enantiomer.

5.3. Partial Oxidation of It'rt.Butykalix[4]naphthalene (62).

Oxidation of caIix[4]naphthaienes 57 and 62 under relatively harsh conditions (28%

aqueous NaOH. reflux 2 h) results in lhe fannation ofbis(spirodienone) products in which

a1l afthe hydroxyl groups were converted to carbonyl and ether oxygen functionaIities. On

the other hand, when calix[4]naphthalene 62 was oxidized under milder conditions (weak

base; aqueous saturated NaHCO) at 0 OC) formation of mono(spirodienone) 81a as major

product (36%) in addition to bis(spirodienones) 81 and 80 in 18% and 26% yields.

respectively (Scheme 5.3) occurs. The 'H NMR (CDCI}) spectrum of spirodienone 81a

displays four signals for the ten-butyl groups (1.33. 1.39, 1.42 and 1.43 ppm) and eight

doublets for the methylene prQ[ons (3.54. 4.00. 4.06. 4.12. 4.36. 4.37. 4.54 and 4.61 ppm).

lR. spectroscopy shows that the product contains a carbonyl group (1.677 cm· l
) and a

hydroxyl group (3 368 cm· I
). The tlC NMR (CDCI]) spectrum shows signals at 85.1 and

194.3 ppm, corresponding to the spiro and carbonyl carbons. respectively.
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5.4. Experimental.

Bis(4-ch.lofo.-l.methoxy-2-naphthyl)melbane (73).

CI CI

73

Compound 73 was prepared following the procedure used to produce 29 to give a

colorless solid in 34% yield. m.p. 122.5-124°C; IH NMR (COCl) S = 3.95 (5. 6H. H-IO, H-

10'),4.35 (5. 2H. H-9), 7.31 (5. 2H. H-3. H-3'), 7.53 (m. 4H. H-6. H-6', H-7. H-71, 8.15 (m.

2H. H·S. H-S'). 8,22 (m. 2H. H·8, H·S1; "c NMR (CDCI,) B= 28,8 (C·9). 62,3 (C-IO. C­

HY). 122.5. 124.9. 126.8. 127.4. 128.1. 128.9. 129.1. 130.9. 152.8 (C-I,C-I'); MS mls(%)

401 (M" 11C! ncl. 3). 399 (M· ]lei )jel, 24), 397 (M·, "CI. !SCI. 24). 396 (100). 361 (20).

351 (22),349 (33), 345 (13); HRMS M· 396.0688. caJc. ForC..,.JH11CI!02 396.0684.

Bis(4-bromo-l-hydroxy-2--naphthyl)methaDe (73a).

To a solution ofbis(4-bromo-l-melhoxy-2-naphthyl)methane (29) (0.75 g, 1.6

mmol) in 25 mLof anhydrous CH2Cl~ maintained at -78 "C and underNz was added BBr)

(0.58 mL. 6.2 mmol) dropwise with stirring. The reaction was stirred at _78°C for 5 h; at­

20°C for I h, at 0 °C for I h and finally at room temperarure for 2 h. Aqueous saturated

NaHeO) was added dropwise until the mixture became basic. A precipitate formed. which
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OH OH

'"
.-<,

8, 8,

73.

was filtered and washed several times with aqueous saturated NaHCO) and then with water

to give 738 as a brown solid. 0.54 g (77%), m.p. 205-208°C dec.; 'H NMR (acetone-dd) 8

:=: 4.40 (s. 2H. H·9). 7.56 (rn. 4H. H-6. H-6', H-7, H.7'), 7.79 (5, 2H. H-3. H-3'), 8.08 (m.

2H, H-5, H-S'), 8.36 (rn. 2H, H-8. H-8'), 9.05 (5, 2H. OR): IlC NMR (acetone-d6) S:=: 30.8

(C-9),79.3, 113.5. 123.3,123.6,127.2.127.6.128.2. 132.5. 132.9; MS m/s{%)441 (1.4),

439 (4), 362 (I), 361 (6),359 (6). 281 (5),236 (17).234 (16). 224 (32), 222 (36), 144 (23),

128 (11),127 (23),126 (12),115 (100); HRMS M" 457.9345, calcd for~IHI~'IBr"i3rOz

457.9361.

Bis(4--ehloro.].hydroxy.l.naphthyI)methane (73b).

OH OH

CI CI

73.

To a solution of bis(4-chloro-l-methoxy-2-naphthyl)methane (73) (244 mg. 0.621
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mmal) in 55 mL of anhydrous benzene was added BBr) (0.58 mL. 6.2 mmol) dropwise,

with stirring under N2 at rt. The reaction was stirred at rt for 24 h. The reaction was

quenched by adding 5 mL of H20, followed by 20 mL aqueous of saturated NaHCO). The

mixture was extracted with fOUT portions of CHel) (100 ml). The combined organic layers

were dried over anhydrous MgSO~. fillered and the solvent was evaporated on rotary

evaporator to give 73b as a colorless solid (150 mg. 66%), m.p. 207-209°C dec.; IH NMR

(acetone-d6) 0 =2.80 (hr. OR). 4.39 (5, 2H. H-9), 7.59 (5, 2H. H-3, H-3'), 7.61 (m. 4H. H·6.

H-6', H-7, H~7'), 8,13 (m, 2H. H-5. A-5'). 8.36 (m. 2H. H-8. H-8'); 1JC NMR (acetone-d6 ) 0

=30.7 (e-9), 122.9. 123.2. 124.8. 127.1. 127.9. 129.3; MS m/s (%) 372 (M·, )7C1 l5Cl. I),

369 (M', "CI "Cl, 2), 368 (8), 351 (4),331 (2),268 (3), 250 (3), 239 (6), 180 (32), 179

(II). 178 (100).162 (4). 144 (10). 127 (9). 115 (17): HRMS H· 368.0368. calcd for

CzlHI4Cl:P~368.0371.

Bis(l-hydroxy-2-naphthyl)methane (15).

OH OH

\S

Compound IS was prepared from 30. following the procedure used (0 prepare 73b,

(0 give a light brown solid in 82% yield, m.p. 168-170°C; lH NMR (COCl) B= 4.28 (s.2H.

H-9), 6.73 (s.2H, 20R), 7,45 (m, 4H, HO{;, H-6', H-7, H-n 7.76 (d.J= 8,1 Hz, 2H, H-5,
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H-5'). 8.02 (d. J = 8.1 Hz, 2H, H-B, H-B'); lJC NMR (CDCI) S =31.4 (C·9). 120.4. 120.6.

12L2, 125.6. 125.7, 127.9. 128.3. 147.7 (el. C-l'); MS m/s (%) 301 {M·+ 1, I). 300 (M". 8).

296 (4). 282 (27). 281 (60), 157 (9), 156 (34), 145 (12), 144 (100), 141 (11), 128 (29),127

(10).126(11),116(12),115(29).

Oxidation of bis(4-bromo-l.hydroxy.2.naphthyl)methane (73a). General procedure:

B'

74.

To a solution of73a (175 mg, 0.391 romol) in CHzCl2 (10 mL) was added a solution

of phenyltrimethylammonium tribromide (PTMATB) (15 mg. 0.39 romol) in 2 mL of

CH2C12 at ft. An aqueous 28% solution of NaOH (6.5 g) was added dropwise at rt. The

reaction was left stirring at It for 1 h. The reaction mixture was diluted with 20 mL of

CH2CI!. The organic layer was separated and washed with 20 mL of brine followed by 20

mL of water. The organic layer was dried over anhydrous MgS04 • filtered and the solvent

removed on a rotary evaporator. The crude product was purified by PLC using CH~C1~­

petroleum ether (1:1) to give 74a as yellow erystals (62 mg. 36%). m.p. 185-188 "C dec. ;

LR_ (CHCll• em-I): l693. 1589. 1451. 1388, 1358. 1297, 1271. 1190. 1090,758; lH NMR

(CDCI,) S= 3.45 (d, J= 15.6 Hz, tH, H-II), 3.80 (eI, J= 15.6 Hz, IH, H-ll). 6.88 (5, IH),
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7.53 (m. 3H). 7.60 (s. IH). 7.76 (m. 2Hl. 7.96 (d.l = 8.1 Hz. IH). 8.07 (d.J= 7.8 Hz. IH).

8.18 (d.J= 8.4 Hz. IH): "c NMR(CDCI,) 8 = 40.8 (C-II). 87.6 (C-2). 113.8. 118.4.

121.4.122.1.122.4.126.1.126.4.127.3.127.5.128.0, 128.3. 128.6. 123.0. 132.0. 134.4.

135.3. 135.5. 194.4 (C-l); MS m/s (%) 458 (M" 'IBrtIBr. 7). 456 (M+uBr nsr. 14),4$4

(M' "B, "B,. 8). 442 (12). 441 (49).440 (25). 439 (100). 438 (13). 437 (52). 377 (17). 375

(17).296(11).222(5).188(9). 187(12).148(12).139(13). 134(36).126(8).120(45).

118 (12). 113 (7), t07 (13), 101 (lO); HRMS M· 453.9182 calcd forC2IH121~r;Pl

453.9204.

Oxidation orbis(2.bydroxy.l-napbthyl)methane (71).

Compound 71 was oxidized as above to give 72 as an ornnge crystals (83%), m.p.

168-170 DC; LR. (Nujol. em,I): 1683. 1631. 1239. 1205. 1023.808; IH NMR (CDCI) cS =

3.49 (d.J= 15.6 Hz. IH. H-II). 4.03 (d.l= 15.6 Hz. H-II). 6.22 (d. l= 10.2 Hz. IH). 7.22

(m. 5H). 7.42 (m. 4H). 7.78 (d.J=9.0 Hz. IH). 7.82 (d.J= 8.1 Hz. IH): "c NMR

(CDCI,) 8=42.8 (C-II). 89.3 (C-2). 111.8. 115.1. 122.4. 123.2. 123.6. 125.5. 126.9. 128.7.



145

128.8.129.5.129.7.129.8.130.6.130.8.143.4.144.9. 145.4. 157.7. 197.9 (C-I); MS m/z

(%) 298 (M·. 6). 282 (25). 281 (100).267 (7). 239 (13). 139 (5). 134 (6). 119 (16).

Oxidation of bis(4-cl1loro-l-hydroxy-2-naphthyl)methane (73b).

CI

74b

Compound 73b was oxidized as above to give 74b as yellow crystals (39%), m.p.

175-177"Cdec.:I.R.(CHCI).cm'I): 1693.1593. 1511, 1452,1391, 1362.1271.1191.

1091. 759; IH NMR (CDCI) 8 =3.43 (d. J = 15.5 Hz. IH. H-ll), 3,79 (d, J= 15.6 Hz. IH.

H-II). 6.61 (s. IH). 7.40 (s. IH). 7.53 (m. 3H). 7.77 (m. 2H). 7.95 (d. J =8.1. IH). 8.09 (d.

J= 8.7 Hz. IH), 8.20 (d,l =8.1 Hz. IH); llC NMR (CDCI)} 8 = 41.1 (C-ll), 86.8 (C-2),

[17.9.121.1,122.1.122.6.124.0.124.8,125.9,126.4, 127.1, 128.1, 128.2, 130.0, 130.1.

130.8.131.5. 134.7, 135.4. 153.1, 194.3 (C-I); MS m/s (%) 368 (9) 367 (M+ lSCI lSCI. 4),

366 (W, 16),353 (13), 352 (16), 351 (68),350 (24), 349 (100), 331 (16).239 (22), 237 (9),

202 (10), 166 (9), 134 (II), 120 (26).113 (5).

Oxidation of bis(1-hydroxy-2-naphthyl)methane (15).

a. Using one equivalent ofPTMATB at reflux temperature for 48 h produced a light brown

solid, m.p. 161-163 °C; lH NMR (acetone-d6) 8=4.37 (5, 2H), 7.41-7.51 (m. 4H), 7.58 (m.
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2H). 7.74 (5. IH). 7.82 (m. 1H). 8.06 (rn. IH), 8.31 (rn. 2H); Il(: NMR (acctOnc-d'd) 0=

I13.1. 121.6. 122.2. 122.3. 123.3. 123.8, 126.0. 126.2. 126.4. 126.5. 126.9. 127.4. 127.7,

128.0,128.7.129.5. 132.3. 132.9. 134.8; MS mlz ('iI) 380 (I), 378 (2), 300 (2), 281 (4),225

(5),224 (21), 223 (7). 222 (22): HRMS W 378.0276. caIcd forC~IHlJ·IBrO~378.0()78.

b. Using three equivaJenlS of PTMATB at room temperature ror 1.5 h produced after

purification by PLC using CHell-petroleum ether (50:50), yellow crystals whose m.p. and

SpeClrOscopic propenies were identical with those 0(74a.

Oxidation of calix[4]naphthalene (57). GeneraJ procedure:

78 (el)

To a solution of calix(4]naphthalene 57 (40 mg, 0.06 mmo!) in CH~CJ~ (7 mL) was

added PTMATB (48 mg. 0.12 mmol) in one portion. followed by aqueous 28% NaGH

(0.26 g) at rt under Nz- The reaction was refluxed for 2 h then the reaction mixture was

cooled to It and diluted with 15 mLofCHCl) and 10 mL of water. The organic layer was

separated and washed with 10 mL of brine followed by to mL water. The organic layer

was dried over anhydrous MgSO•• filtered and evaporated. The crude product was purified
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by PLC using CHel) to give 78 as yellow crystals (13 mg. 30%), m.p. 248-250°C dec. ;

I.R. (CHCll • em"): 3070, 3025, 2926. 1678. 1636. 1435. (384, 1261, (149. 1097.976.750;

IH NMR (CDCI) S =3.42 (d. J= 16.5 Hz, 2H, H",-2, H,.-22), 3.73 (d, J= 16.5 Hz. 2H, He­

12, H.-32), 4.01 (d. J= 16.5 Hz. 2H, HIJ-2. HlJ-22), 4.50(d, J= 16.2 Hz. 2H. fi,,-12, H,,-32),

6.81 (m. 2H. H-8. H-28), 7.01 (5, 2H. H-10. H-30), 7.05 (m. 4H. H-6. R-7. H-26. H-27),

7.19 (dd,J= 2.4. 6.5 Hz. 2H. H-5. H-25). 7.35 (t,J =7.2 Hz. 2H. H-17. H-37). 7.48 (t. J=

7.2 Hz. 2H. H-16. H-36), 7.57 (5. 2H. H-20, H-40). 7.75 (d, J= 8,1 Hz. 2H. H-18. H-38),

7.91 (d,J= 8.40 Hz. 2H. H-15. H-35); NOE (%) H.-2 (H.-22)/ 11,-2 (11,-22)(4.9). H-5 (H­

25)(3.3); 8.-12 (H.-32)/H,,-12 (H,,-32)(6). H-IO (H-30). H-15 (H-35)(2.8); H,-2 (H,-22V

H.-2 (H,,-22)(6.1); H,-12 <H,-32)/ H.-12 (H,-32)(5.9). H-15 (H-35)(2.9); H-8 (8.28)/H­

10 (H-30). H-7 (H-27. H-6. H-26); H·7 (H·27, H·6, H·26V H-5 (H-25X7). H-8 (H­

28)(6.2); H-S (H-25)/ H-6 (H-26); H·17 (H.37V H-16 (H-36)(5.5). H-18 (H-38)(8.1); H-16

(H·36)IH-17 (H-37)(6.7). H-15 (H-35)(6.2); H·20 <H-40V H-18 (H-38XI4.4); H·18 (H.

38)/H-20 (H-40)(1O.2). H-17 (H-37X8.8); H·lS (H.35)/H-16 (H-36)(9). H.-12 (H,,­

32)(3.6). H.-12 (H,-32)(2.9); "c NMR (CDCI,) S= 29.2 (C-12. C-32), 41.7 (C-2. C-22).

83.1 (C-3. C-B). 112.0. 121.8 (C-20. C-40). I22.4 (C-15. C-35). 123.2 (C-17. C-37). 125.8

(C-16. C-36). 126.9 (C-5. C-25). 128.0 (C-8. C-28). 128.3 (C-18. C-38). 128.6 and 128.7

(C-7. C-27. C-6. C-26). 129.7. 130.0. 130.8. 133.2. 134.3.140.0 (C-IO. C-30). 141.4. 154.3

(C-4I. C-43). 195.4 (C-42. C-44); MS mfs (%) 620 (M'. 51). 619 (100). 602 (25). 601 (35).

592 (10). 587 (II). 574 (17). 377 (8). 376 (10). 335 (12). 311 (19),310 (25). 309 (13). 297
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(II). 296 (14). 295 (29). 294 (20). 293 (15). 282 (11). 281 (39). 280 (II). 219 (10).

Oxidation of teorl-butylcalix[4]napbthaJene (62).

Compound 62 was oxidized as above. but the crude product was purified by PLC

using CH!Cl!-petroleum ether (50:50) to give two yellow products. Compound 81 was the

less polar of the two:

1. Spirodienone 81.

81 (CO

Spirodienone 81 was isolated as dark yellow crystals (19 mg. 20%), m.p. > 300 OC

dec.: I.R. (CHell' em"I); 2962. 2869, 1680. 1603. 1451. 1410. 1363. 1096,991; IH NMR

(CDCI]) 5= 1.21 (5. 18H. 2 tert·Bu), l.47 (s. 18H, 2 tert·Bu). 3.71 (d. J= 17.1 Hz. 2H, HII­

2. H,,-22). 3.13 (d. J= 15.6 Hz. 2H. H,,-12. H.-32). 4.04 (d, J= 15.6 Hz. 2H. H,,-12. H,,-32).
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4.38 (d. 1 = 16.8 Hz. 2H. H.-2. H,-22). 6.83 (d. l= 1.8 Hz. 2H. H-IO. H-30). 7.00 (d. J=

1.8 Hz. 2H. H-8. H-28). 7.16 (dd. l= 8.1. 1.8 Hz. 2H. H-6. H-26). 7.26 (d.l = 8.1 Hz. m.

H-5. H-25). 7.62 (dd.J= 9.0.1.8 Hz, 2H. H-16, H-36), 7.69 (s. 2H, H-20, H-40), 7.79 (d, J

= 1.8 Hz. 2H. H-18, H-38). 8.03 (d.J=9.0 Hz, 2H, H-15, H-25); "CNMR(CDCI,)o=

21.9 (C-2. C-12. C-22, C-32), 31.0 [C(CH,l,]. 31.4 [C(CH,l,J, 34.6 [C(CH,l,J, 34.9

[C(CH,),J, 85.1 (C-3. C-23), 114.9, 121.7 (C-20. C-40), 123.0 (C-15. C-35), 123.8 (C·18,

C-38l. 124.8 (C-16. C-36), 126.0 (C·6. C-26).126.7 (C-8, C-28), 127.0 (C-5, C-25), 129.7.

130.0. 131.0. 131.7. 135.5. 135.7. 141.7 (C·lO. C-30), 145.4. 152.7. 153.6. 194.4 (C-42. C­

44); FAS MS m/z. (%) 867 (M·+Na", 45), 844 (M+. 57), 843 (30), 842 (11), 841 (13), gIl

(31),799 (12), 783 (10). 771 (16),631 (11).617 (16). 615 (14). 603 (12). 589 (10), 587

(10),575 (10). 573 (1\), 423 (21), 407 (34), 377 (35), 265 (41). 213 (100);

2. Spirodienone 80

80 (ezj

Spirodienone 80 was isolated as light yellow crystals (29 mg. 30%), m.p. 270.272
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ac; r.R. (CHCl). em· I
); 2952. 2904.2869. 1680. 1504. 1447. 1426. 1363. 1269. 1099.979;

IH NMR (CDCll ) ~ = 1.22 (s. 18H, 2 tert·Bu at C-7, 27),1.42 (s, 18H. 2. tert-Bu at Col?, C­

37).3.41 (d. J= 16.5 Hz. 2H. H.-2. H.-22), 3.68 (d.J= 16.2 Hz. 2H. H,-12. H.-32). 3.98

(d.l= 16.5 Hz, 2H, HII-2. H,l-22), 4.49 (d, J= 16.2 Hz, 2H, H.-12. H,,-32), 6.98 (d. J= 1.8

Hz. 2H. H-8. H-28). 7.09 (5. 2H. H-IO. H-30). 7.10 (dd.J~ 8.1. 1.8 Hz, 2H. H-6. H-26).

7.17 (d.l= 8.1 Hz. 2H. H-5, H-25), 7.53 (5. 2H. H-20. H40), 7.57 (d. J= 1.8 Hz. 2H. H­

16. H-36), 7.69 (d. J = 1.8 Hz. 2H. H-18. H-38), 7.87 (d. J =9.0 Hz. 2H. H-15. H-35); NOE

(%) H-8 (H-28)/ H-lD (H-30)(5.4): H-IO (H-30)/ H-8 (H-28)(l3.3). H,-12 (H,-32)(3.6): H­

5 (H-25)/H-6 (H-26)(2.7). H.-2 (H.-22)(2.6): H-16 (H-36)I H-18 (H-38)(7.8). H-15 (H­

25)(3.2): H-18 (H-38)/ H-2D (H-40)(7.1): H-15 (H-3S)1H-16 (H-36)(3.3). H.-12 (H.­

32)(3.4). H.-12 (H,-32)(1.8): "c NMR(CDCI,) a= 30.3 (C-12. C-32). 31.1 (C(CH3)3 at

C-? and C·2?). 31.4 (C(eH3») at Col? and C-37), 31.5. 34.5. 41.9 (C-2, C-22), 82.9 (C-3,

C-23). 11 1.2,121.5 (C-20, C-40). 122.1 (C-15, C-35). 123.5 (C-18, C-38). 124.3 (C-16. C­

36). 124.8 (C-8, C-28), 125.7 (C-IO. C-30 o,C-6, C-26), 127.1 (C·5, C·25), 129.6, 129.9.

130.8. 131.2. 134.3, 138.7.140.3 (C-IO, C-30 orC-6. C-26), 145,5. 151.6. 154.1. 195.5 (C­

42. CM). FAB MS m/s (%) 882 (M-+K-. 18),868 (100),867 (M-+Na-. IS).

Partial oxidation of ca.Ux[4]naphtbaiene (62). To a solution of calix[4]naphthalene 62

(55 mg. 0.45 mmol) in CHICII (5 ml) was added PTMATB (24 mg. 0.45 nunol) at 0 OC

followed by the addition of5 mLofaqueous saturated NaHeO) at DOC. The reaction was

left to stir at 0 "C for 4 h. The reaction mixture was worked-up by diluting it with to mL of
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chlorofonn and 10 mL of water. The organic layer was separated and washed first twice

with 20 mL of brine and then with 10 mL of water. The crude product was purified by Ple

using benzene-hexane (50:50) to give according to their increasing polarity the following

three products:

1. Spirodienone 81, 10 mg (18%) whose melting point and spectroscopic properties ace

identical with those of 81 isolated above;

2. Spirodienone 81a as an orange solid (36%); m.p. 278-280 DC; l.R. (CHell' em'l); 3368

+
_.

, ;0 .
.. " ,.Q1I'I" "

81a

(br. 01I). 2870. 1677 (COl. 1607. 1506. 1450. 1364. 1231. 1097.998.923.818; 'H NMR

(CDCI]) s= 1.33 (5. 9H. ttn-Bu). 1.39 (5. 9H. ten-Bu), 1.42 (5. 9H. ten-Bu), 1.43 (5. 9H.

ten-Bu); 3.54 (d. J = 17.7 Hz. III). 4.00 (d.J = 15.9 Hz. III). 4.06 (d.J= 15.9 Hz. III).

4.12 (d. J= 18.0 Hz. III). 4.36 (d. J= 15.6 Hz. III). 4.37 (d. J= 14.7 Hz. III). 4.54 (d. J=

14.7 Hz. III). 4.61 (d,J= 14.7 Hz. III). 7.31 (s. IHl. 7.44 (s. III). 7.50 (s. III). 7.52 (s.
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IH). 7.55 (m. 2H). 7.61 (5. IH). 7.65 (m. 2H). 7.73 (d. J =6.0 Hz. 2H). 8.10 (d. J=9.0 Hz.

lH). 8.28 (hr. OR). 8.32 {d.J=9.3 Hz. tm. 8.37 (d. J= 9.3 Hz. IH): llC NMR (CDCI) 5

=24.91,25.5,28.6,31.1. 31.3, 34.4, 34.5, 34.8. 39.4, 85.1. 114.4, 119.7, 121.6, 121.8.

122.3.122.4, 122.8. 123.4. 123.9. 124.3, 124.9.125.0. 126.6. 126.7, 127.5. 127.8. 128.2.

128.3,129.5,129.9.130.2,130.8,135.1.136.7,143.6. 144.9. 145.2. 145.7. 146.1. 148.9.

150.1. 152.4. 153.3. 194.3; +FAB MS m/z (%) 846 (M'. 10).830 (12). 829 (21). 828 (16).

813 (14).8\2 (23). 811 (34).614 (II). 423 (13).407 (24). 406 (\4). 405 (12);

3. Spirodienone 80.14 mg (26%) whose melting point and spectroscopic properties are

idenlicaJ with those of 80, isolated above.



153

Chapter 6

Synthesis of Dihomo- and Tetrahomocalix[4]naphthalenes

6.1. [ntroduction.

CaHx[4]arenes. I-naphthol-derived caJix(4]naphthaJenes (10-13) and

calix[4]naphthalenes derived from 3-hydroxy-2-naphthoic acid (57 and 62) can be

considered to be compounds possessing [1.1.1.1 ]rnetacyclophane structures. The

substitution by ethylene bridges of either two or all of the methylene bridges of

caIix[4]naphthalenes derived from 3-hydroxy-2-naphthoic acid or I-naphlhol. produces

new classes of calix[4]naphthalenes known as dihomo- (SZ8-84a) or

tetrahomocalix[4]naphthaJenes 85a. as shown in Figure 6.1.

Figure 6.1.

St.R,.~ .. H.R!.R."OClt).X",C~.Y.. CH:.
U. R1-R."H,R,-R,,_OCH!.XaClilSCHI.Y"'C"':
1-1. Rj .. a. .. H.Rr.~.OCH,.X.CH:SCH:.Y.CH,.
as. R, .. a. .. H.R,"R:.t-OCff).X"CHtOt!.Y"CltzSCH:

I:za. Ro.R,z .. H.Rr.R.o.QCH,.x .. ctilOI~.Y.Ctl:l.
l:lo. R:.t .. R,.H.R,,,R,,.octi). x.. CH,Ot:, Y .. CH:!.
..... R,.R,.H.Ro·R:.t·OCH,.X·~Cliz.Y.~.
15.0. Ro .. R,. .. H.~"R:"OOfJ.X.. Y"Ql,CH1

These homologues (dihomo- and tetrahomocalix[4]naphthalenes) are examples of

[1.2.1.2}(l ,3)- and [2.2.2.2]( I ,3)naphthalenophanes, respectively. This substitution

increases the size of the annulus of the macrocyclic compounds: the resulting increased
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conformational mobility is reflected in their temperarure-dependent <VD lH NMR

spectra. The procedures employed to synthesize 82a-85a were methods commonly

employed in cyclophane chemistry. The precursor dithia compounds 82-85 were

synthesized by base-mediated nucleophilic coupling of the appropriate

bis(mercaptomethyI) with bis(bromomethyl) compounds under high dilution conditions.

as shown in Schemes 6.1. 6.2. and 6.4.

Calix(4]naphthalenes 83a-85a were obtained by a final photolytic sulfur extrusion

step in [rimethyl or triethylphosphite. Such reactions have also been used by others to

synthesize cycJophanes.19
•

1O Among many sulfur extrusion approaches available," the

direct photochemical reaction is lhe most anractive one since it has the fewest number of

steps and occurs at room temperature under neutral conditions. lO•n

6.2. Synthesis of Dihomocalix[4]naphthalenes.

Scheme 6.1 outlines the procedures used to synthesize 83. Condensation of 3­

hydroxy-2-naphthoic acid (!J) with parafonnaldeltyde in diox.ane and 30% aqueous H2S0~

as catalyst, gave dimer 86 in high yield. Using a two-phase basic system (CH1CI!. 10%

aqueous NaOH) in the presence ofdimethylsulphate and a phase-transfer catalyst

(AdojenR
) convened 86 [0 the biester 87. Bis(bromomethyl) 89 was fanned from the

corresponding bis(hydroxymethyl) 88. which in tum was obtained by LiA1~ reduction of

the bisester 87. Bis(bromomethyl) 18 was convened into the corresponding

bis(mercaptomethyl) 90 under very mild conditions in high yield. The precursor
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Scheme 6.1.
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dithiacalix.(4]naphthalene 83 was synt:hesized by base-mediated coupling of the

corresponding bis(mercaptomethyl) 90 with bis(bromomethyl) 89 in 85% yield.

Photochemical irradiation of83 in triethylphosphite afforded 83a in 15% yield.

The ambient temperature lH NMR spectrum (Figure 6.2) of the dithia compound

83 indicates conformational mobiIil)' since all sigr.a.ls including all the methylene protons

which appear as singletS are sharp and well defined. The molecule has C!~ symmetry as

evidenced by, among other features, the two singlets due to twO sets of equivalent

metho,,"yl groups at 3.94 ppm (C-6 and C-21) and 3.34 ppm (at C-45 and C-46). and two

sets of methylene protons at 4.84 and 4.58 ppm. Examination of molecular models

indicates that of two possible C!~-symmetryconfonnations one is crown-like and the other

is 1,2-aJtemate-likc. Since one set of the methoxyl signals appears at high field (3.34

ppm) this suggests that they are shielded by the opposite rings. thus precluding a crown­

like confonnation in solution. Funher evidence for the assignment of the higher field

signals to the intra·annular methoxyl groups derives from the following complexation

experiment conducted with 83. When a THF solution of 83 was treated with a silver

nitrate solution"l a crystalline product. 83b was obtained. Its IH NMR spectrum (Figure

6.3) reveals that complexation has occurred since the higher field methoxyls appear as a

very broad signal centered at 3.39 ppm. whereas the lower field methoxyl signal at 4.03

ppm is much sharper. Of the two methylene signals. it is the higher field one at 4.64 ppm

which has broadened. These findings are in agreement with a complex fonned between

the silver ion and one half of the molecule. possibly with the methoxyls at C-45 and C46
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arme sulfur atoms. The signals at 1.35 and 3.75 ppm indicate the presence ofTHf which

could be present as an inclusion molecule. The ambient temperature lH NMR spectrum

(Figure 6.4) of dihomocaIixnaphtllalene 83. also indicates conformational mobility since

the ethylene and methylene protons appear as broad signals ar: 3.04 and 2.85 ppm.

respectively.

The precursordithiacalix[4}naphlhalene 82, which was also synthesized in 81 %

yield by reacting bis(rnercaptomethyl) 90 with bis(bromomethyl) 18 (Scheme 6.2), is

soluble in warm DMSO. but insoluble in most of the common organic solvents that were

tried.

Scbeme6.2.

Attempts to produce 828 by a photolytic sulfur extrusion approach failed. A silver
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ion complex 82b can also be produced from 82. Interestingly,82b is much more soluble

than its precursor, but when a suspension of 82b was irradiated in triethyl- phosphite. the

only change was reversion back to 82. Oxidation of 82 to its corresponding sulfone

followed by pyrolysis has been investigated but with no success.

6.3. Synthesis of Tetrahomocalix(4]napbtbalene (85a).

6.3.8. One-pot procedure: In order to enlarge the annulus of calix[4]naphthalenes

derived from 3-hydroxy-2-naphthoic acid, we were interested in synthesizing

tetrahomocalix[4Jnaphthalene 85a and its structural isomers (91a-938. Figure 6.5).

Figure 6.5.
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The synthetic approacb employed was the base-mediated coupling of 1.3-

bis(bromomethyl)-2-methoxynaphthalene (97) with its corresponding bis(mercapto-

methyl) derivative 98 (Scheme 6.3) to produce several isomers oftetrathia{3.3.3.3](1.3)-

naphthaIenophanes (91-94, Figure 6.6). These are potential precursors to tetrahomo-

caIix(4]naphthalenes (85a. 91a-93a) after sulfur ex.lnlSion. Attempts to produce these

tetramia-precursors gave after TLC separation. four isomeric 11.22-dimethoxy-2.13-

dithia{3.3](l.3)naphthaIenophanes (99-102. Figure 6.7). However, when each oflhe

compounds (99-102) was pholOlyzed in triethyl~or trimethylphosphite. two isomeric

tetrahydrodibenzopyrenes were obtained instead of the expected corresponding [2.2]( 1.3)·

naphthalenophanes. These findings will be the subject of Chapter 7.

Figure 6.6.
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In addition to the four dithia[3.3J( 1,3)naphthaJenophanes isolated by PLC. a fifth

fraction which was the most polar one was also isolated in 17% yield. Its specual

propenies were distinctly different from those of any of compounds 99·102. This fraction

which was homogeneous to TLC. appears [0 be an inseparable mixture of possibly all four

isomeric tetrathia[3.3.3.3]{I.3)naphthalenophanes 91-94. To confinn this. a +FAB~MS

spectrum (Figure 6.8) shows two peaks at m/e =864 and 902. which correspond to the

molecular mass of the tetrathia isomers and (molecular mass-l)+K', respectively. The

presence of the K" ion could be evidence of it being present as an inclusion ion. The IH

NMR (CDCl) spectrum of this fifth fraction (Figure 6.9) shows additional. wel1~defined

signals in the methylene and methoxyl group region. which are not present for any of the

tetrathiacalix{4}naphthalenes 91-94. To test whether these signals are a result of rigid or

locked confonnation of possibly one of the tetrathianaphthalenophanes, the solvent was

changed to toluene and the temperature was raised gradually to 100 °C. as shown in

Figure 6.10. These spectra clearly show that there is no collapse in any of these signals

upon heating and that tllerefore they are due to components of the mixture.

6.3.b. Convergent Procedure.

Since we were unable to isolate and identify any of the tetratlliacalix[4]­

naphthalenes 91-94. which are potential precursors for tetrahomocaIix{4]naphthaIenes

from the one pot procedure, a convergent procedure was used to syntllesize one of the

!etrahomocalix[4]naphtllalenes. 8Sa. as shown in Scheme 6.4. Starting from 3-hydroxy­

2-naphthoic acid 9, sequential methylation. reduction and bromination gave 3-
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bromomethyl-2-methoxynaphthalene 103 in 80% yield. Wunz coupling of 103 using n-

Bill at - 78 "C gave bis{2-memoxy-3--naphthyl)ethane 104 in 92% yield.

Bromomelhylation of 104 using (CH!O). and HBr in acetic acid gave bis[ 1-

(bromomethyl)-2-melhoxy-3-naphthyl]ethane lOS in 84%. Reaction of 165 with thiourea

formed the bis(isothiouronium) salt, which was subsequently hydrolyzed to (onn bis(l-

(mercaptomethyl)-2-methoxy-3-naphthyl]ethane 106 in 70% yield. Base-mediated

Scheme 6.4.

..

~
SH SH

'06

~ a-8uLl.THF

V-Jl-_., ----
OCH) -18 oc

103

1.tJoiooIna, DMSO. "
!.le",NaOH."

1.IO'loHo."

~
OCH,

'04

j (CHI0ID,HBr
AeOH."

~
'" '"105

105 + 106

KOH,PbH,EIOH

85

hv

85.
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nucleophilic coupling of lOS with 106 under high dilution conditions afforded

dithiatetrahomocalix[4]naphthalene 85 in 56% yield. Photochemical irradiation of 85 in

triethylphosphitt gave 8Sa in 26% yield.

Based on NOED experiments on compound 8Sa. lhe signal at 2.69 ppm was

assigned [0 the ethano-bridges at C-2. C-3/C-24. C-2S while the signal at 3.52 ppm was

assigned to the other ethanc>-bridges C-13. C-14/C-35. C-36. An unusual feature afthe IH

NMR spectnlm (Figure 6.11) of &Sa is that the chemical shift of the signal due to ethana­

bridges is situated at relatively high field 2.69 ppm. This clearly indicates that these

ethano-bridges are shielded by the two opposite naphthalene rings. Examination of

molecular models suggests that the molecule is rapidly intcrconverting between two 1.2­

alternate types of orientation of the naphthalene rings. The ambient temperature IH NMR

specnum (Figure 6.11) indicates that it is confonnationally flexible since aU signals

including those due to the ethano bridges which appear as singlets are sharp and well­

defined. Using variable·temperaru.re (VT) IH NMR. it can be seen (Figure 6.12) that the

signal due to the ethano bridges at 3.52 ppm becomes broader at 0 "C and splits into twO

broad signals at -15 "C. lberefore. -10 "C was assigned as an approximate coalescence

temperature for 8Sa. The conformational mobili[)' of the molecule is frozen completely at

- 40 "C as revealed by the appearence of an AB system due to one of the ethano bridges.

The signal due to the other ethano bridge which appears at 2.69 ppm by contrast, does nO[

broaden significantly or even split on cooling down to a temperature of - 60 °c.
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6.4. Synthesis of Dihomooxacalix[4]naphthalenes.

Figure 6.13.

x y z

In 1983, Dhawan and Gutsehe found that refluxing suitable bis(hydroxymethyl)

precursors in xylene afforded oxaca.lixarenes X~Z.'" It was believed that the fonnation of

these products occurs by an intra~ and intennolecular dehydration process. The

importance of these compounds. particularly Z. is that the ether ring oxygens may act

cooperatively with phenolic oxygen upon binding of metal ions.""" Therefore. to enhance

the complexation properties of ca.lixnaphtha.lenes. ether linkages at the bridges of

ca.lixnaphthalenes derived from 3~hydroxy·2-naphthoicacid and I-naphthol were

introduced. A convergent approach to synthesize ether-ring containing

ca.lix[4]naphthalene compounds 107 and 108 (Scheme 6.5) was employed.
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Scheme 6.5.

6£ :~ ~",p.
88 89 107

t<t ~~ :1

""" """ """ ""'"
" I. 108

The precursors 19, 18.88 and 89 were synthesized previously as shown in

Schemes 2.6 and 6.1. Once again. the ambient temperature IH NMR spectra of 107 and

108 indicate that they Itt confonnationally flexible since ail methylene signals appear as

singlets. Using variablc-temperature (V1) IH NMR. it can be seen lhat the signaJs due (0

compound 108 do not broaden or split even on cooling to a temperature of - 60 °c

indicating that it is still conformationally flexible at that lemperanue (Figure 6.14). The

VT tH NMR spectrum for compound 107. bycontnst, shows that the signal due [0 the
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ether bridges which appears at 4.67 ppm becomes very broad at - 60°C (Figure 6.15),

This indicates that the conformational mobilil)' of this compound is more restricted than

the conformational mobility ofcompound 108 since the methoxyl groups are located

intra-annularly.

6.5. Experimental.

4,4'-Methylenebis(3.hydro"y-2-naphthoic acid) (86).

To a solution of3-hydroxy-2-naphthoic acid (9) (1.9 g, 10 mme!) and

paraformaldehyde (0.345 g, 12 roma!) in 20 mL of dioxane was added 4 mL of 30%

aqueous H~SO~ at room temperature. The temperature was raised to 80-90 °C for 3 h. A

yellow precipitate fonned. Arter the reaction mixture was cooled to room temperature.

the yellow precipitate was fillered and washed with excess water followed by ethanol and

finally with petroleum ether to give a 100% yield of4,4'-methylenebis(3-hydroxy·2­

naphthoic acid) (86) as a yellow solid. m.p. > 300 "C dec. (lit. m.p. Aldrich. 220-223°C);

'H NMR (DMSO-dG) S= 3.5 (hr. OH). 4.80 (s. 2H. H-ll). 7.26 (t. J= 7.5 Hz. 2H. H·6.

H-6'), 7.39 (I, J = 7.S Hz, 2H, H-7, H-T), 7.90 (d.J= S.1 Hz, 2H, H-S, H-S' o,H-S, H-S'),
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8.12 (d. J = 8.7 Hz. 2H, H-8. H-8' or H-5. H-S'), 8.50 (5. 2H. H-1. H-1'), 12.08 (br. OH);

IlC NMR (DMSO-d,> S =19.9 (C-ll). 114.0. 120.6. 123.3. 123.4. 126.8. 128.9. 130.2.

131.6, 136.2, 153.4 (C-3, C-J1, 172.0 (C-I2, C-I2'): MS m!> (%) 388 (W, 9), 370 (3),

324 (8), 200 (15). ISS (51), 171 (14). l10 (100).

4.4'-Metbylenebis(methyl-3-methoxy-2-napbthoate) (87).

o

To a suspension of 86 (12g, 31 mmel) in CH!CI: (150 mL) were added water (100

mL). phase-transfer catalyst (AdogenR.. 2.0 mL) and dimethylsulphate (23.5 mL). To the

stirred mixture at room temperature was added 100 mL of aqueous 10% NaOH dropwise

over a period of 20 min. The mixture was stirred at room temperature for an additional 5

h. After separation of the two layers. lhe aqueous layer was extracted with 50 mL of

CH!C12• The solvent was removed on a rotary evaporator. The crude product was treated

with 30 mLofdiethyl ether. A precipitate formed, which was filtered and washed with 10

mL of cooled diethyl ether to give 87 as a colorless solid (12.3 g, 90%); m.p. 130·131 ac

(Iit.u rn.p. 133 aC); IHNMR(CDCI1) 5=3.81 (s, 6H. H-12. H-12'),4.01 (s.6H, H-14, H·

141,5.02 (s, 2H, H-II), 7.30-7.48 (m, 4H, H-6, H-7, H-6', H-7'), 7.76 (d, J= 7.8 Hz, 2H,
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H-B. H-S'), 8.17 (d. J = 8.4 Hz. 2H. H-5. H-5'). 8.26 (s. 2H. H-I, H-I '); llC NMR (CDCI)

8 =22.6 (C-II). 52.3 (C-14. C-14'). 62.7 (C-12. C-I2'). 123.8 (C". C"'). 124.7 (C-8. C­

8'), 125.2 (C-7. C-T). 128.3 (C-6. C-6·). 129.3 (C-5. C-S'). 129.8 (C-2. C-l'). 130.1 (C-9.

C-9'). 132.3 (C-I. C-l·). 135.2 (C-IO. C-IO·). 153.6 (C-3. C-3'), 166.9 (C-<3. C-l3'l: MS

m/z (%) 445 (W+1. 20). 444 (M', 70). 413 (34). 412 (67). 398 (32). 397 (100). 354 (14):

HRMS M· 444. t578, calcd for Cr,H~06 444.1573.

Bis(3·hydroxymethyl-2-metboxy.l.naphthyl)methane (88).

..
To a suspension of LAM (260 mg. 6.84 mmol) in dry THF (10 mL) under N1 at It

was added dropwise a solution of 87 (1.52 g. 3.42 mmal) in dry THF (15 mI.) over 20

min. The reaction mixture was stirred at rt for 3 h. and the reaction mixture, was worked­

up by adding the mixture to wet diethyl ether at 0 °C. followed by the addition of aqueous

10% Hei. The organic layer was separated. and the aqueous layer was extracted twice

with 5()..ml portions of diethyl ether. The combined organic layers were dried over

anhydrous MgS04 • filtered and the solvent evaporated on a rotary evaporator to give 88 as

a cream-eolored solid (l.2 g. 90%). The sample was crystallized from ethanol-water for

analysis. m.p. 73-75 ·C; IH NMR(CDCl) S =2.51 (br. 2H. OH). 3.81 (s. 6H. H-12. H-
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12'),4,89 (5. 4H. H-13, H-13). 4,91 (s.2H. H-II), 7.25 (m. 4H. H-6. H-6', H-7, H-T),

7.64 em. 2H. H-5. H·S1. 7.67 (5. 2M. H4. H-4'), 8.10 (m. 2M. H-S. H-81; Uc NMR

(CDCI,) ~ = 22.5 (C-II). 61.3 (C-12. C-12'), 62.1 (C-I3, C-13), 124.3 (C-8, C-S'), 124.6

(C-6, C-6), 125.8 (C-7. Con. 127.0 (C4. C4), 128 I (C-5. C-5). 128.5 (C-1. C-I').

130.9 (C-3, C-3'). 132.9 (C-IO, C-IO). 133.1 (C-9. C-9'). 153.7 (C-2. C-2): MS mk (%)

389 (M'.', 25), 388 (W, 100).353 (14). 352 (46), 351 (18).335 (1), 325 (24), 324 (21),

310 (14), 309 (52). 295 (17); HRMS M" 388.1667, calcd for C.JH!-IO~ 388.1673.

Bis(J-bromomethyl-2·metboxy·l.naphtbyl)mdhane (89).

'~''''''7 12~

, '" ""'"
• I '"..

To a solution of 88 (2.89 g. 7.45 nuno!) in CH2CI1 (170 roLl was added PBr) (2.31

mL. 5.78 mmol) dropwise at n under N!. The solution was stirred at room temperature

for 5 h. Work-up of the reaction was effected by adding cold water. The organic layer

was separated and washed with water. After the organic layer was dried over anhydrous

MgSO.. and filtered. the solvent was evaporated on a rotary evaporator. The crude

product was washed with diethyl ether to give 89 as a colorless solid (2.56 g. 67%), m.p.

182-184'C; 'H NMR (CDCI,) ~~4.06(s, 6H. H-12, H-12). 4.81 (5. 4H. H-13. H-13'),
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4.95 (5. 2H. H·II), 7.27 (m. 4H. H-6, H-6', H-7, H-7'), 7.64 (m. 2H. H-5. H-5'), 7.75 (5.

2H. H-4. H-4'), 8.10 (m. 2H, H-8. H-8'); °c NMR (CDCl) S = 23.0 (C-ll), 29.5 (C-13.

C-I3'). 62.9 (C-12. C-t2'). 124.7 (e-8. e-8'), 125.0 (C-6. C-6'). 126.7 (C-7. C-7'). 128.2

(C-S, C-S'), 129.2 (C-I, C-!'), 130.4 (C-4, C-4'), 130.5 (C-3, C-3'), 130.9 (C-IO. C-lO'),

133.7 (C-9, e-9'), 153.6 (C-Z. C-2'); MS mlz (%) 516 (M" 'IBr·IBr. 25), 514 (M" slBr

"8,,47),512 (M' "8r''8" 24), 435 (12), 433 (12), 308 (15), 265 (56); HRMS M'

511.9994. calcd rorC.~HnBr~O~ 511.9986.

Bis(3-mercaptomethyl-4·methoxy-l-naphthyl)methane (90).

SH

To a solution or18 (540 mg. \.06 mmol) in DMSO (25 mL) was added thiourea

(200 mg, 2.65 romo!) under Nt. and the solution was stirred at n for 5 h. The reaction was

quenched by pouring the solution into a cold aqueous 10% solution afNaOH (25 mL).

and the resulting solution was left to stir at n for 2 h. The mixture was neutralized at 0 "C

by adding aqueous 10% HC!. The precipitate was filtered. washed repeatedly with water,

and air-dried to give 90 (391 mg, 88%), m.p. 75-71"C; IH NMR (CDCI) l)= 1.76 (t.l=

7.5 Hz, 2H, Sm, 3.82 (d,!= 7.5 Hz, 4H, H-13, H-13'), 4.02 (s, 6H, H-12, H-12'), 4.75 (s,
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2H. H-lI). 7.02 (s,2H. H-2. H-2'), 7.51 (m,4H. H-6. H-7, H-6', H-7'). 7.98 (d. J = 8.1 Hz.

2H. H-8. H-S'). 8.17 (d. J = 8.1 Hz. 2H, H-5. H-5'); lJC NMR (COCl]) IS =23.1 (C-II),

35.1 (C-13.C-13'),62.7(C-12.C-lZ'). 122.9. 124.4, 126.0.126.2. 128.3.128.5.129.1.

132.5.132.8. 152.0 (C-4. C-4'); MS mI, (%) 420 (M-. 66). 387 (45). 183 (100); HRMS

Dithiadibomoea1ix[4]napbthalene (83).

A solution consisting of 89 (1.96 g. 3.83 mmol) and 90 (1.61 g. 3.83 romo!) was

prepared in benzene (200 mL). This solution was added dropwise, over a 15 h period.

into a solution ofethanolic KOH (2.51 g. in 500 mL of95% ethanol) underN2• The

mixture was stirred vigorously during the addition. and it was stirred for an additional 24

h after the addition was completed. A colorless precipitate fonned. which was filtered by

suction filtration, washed with water. and air-dried. The product was flash

chromalographed (CHzClz lpetroleum ether 80:20) to give 83 (350 mg). The filtrate was

concentrated to 50 mL, and the colorless crystals which separated were filtered and

washed with aqueous 10% HCl, cold water, ethanol and finally with petroleum ether to
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give 83 (2.15 g) whose melting point was identical with that of the first crop obtained

from the first filtration. The total yield of 83 was 2.50 g (85%), m.p. 173·175 GC: IH

NMR (CDCI]) 0= 3.34 (5. 6H. H·51. H-52), 3.81 (s, 4H. H-2. H-26 or H4, H-24), 3.82

(s,4H. H-2. H-26 or H-4. H-24), 3.94 (5. 6H. H-49. H-50), 4.58 (5. 2H. H-36), 4.84 (5. 2H.

H-14), 6.87 (5. 2H. H-47. H-48). 7.34(m, 4H). 7.41 {m, 2m, 7.51 (m, 2H), 7.69 (5, 2H,

H-30. H-44). 7.72 (m. 2Hl. 7.88 (d.J= 8.1 Hz. 2H). 8.01 (m. 2Hl. 8.12 (d.l= 8.1 Hz.

2H); DC NMR (CDCI) S= 23.9.30.8,32.0.34.9.61.6,62.7.122,9. 123.7. 124.3, 124.5.

125.8,126.0.126.1.128.2,128.4,128.6,128.8.129.9. 130.8. 131.2, 132.2. 132.7, IS3.I.

155.25: MS m/z (%) 707 (3). 692 (2). 601 (5). 587 (3). 570 (3). 555 (8). 537 (4). 524 (6).

387 (48); HRMS M+ 772.2658, caIcd forCsoH4oI04Sl 772.2681.

DihomocaUx(4]naphtbalene (83a).

A solution of 83 (96 mg. 0.13 mmol) in triethylphosphite (5.0 mL) under AI in a

quartz tube was irradiated at 254 nm with stirring for 22 n. The solvent was removed by

vacuum distillation. and the residue was dissolved in CHCll and purified by PLC using

CHCll-petroleum ether (50:50) to give 8Ja (13 mg, 15%), m.p. 153-155 0(:; IH NMR
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(CDCI,) 6 = 2.85 lbr s, 4H), 3.04 (br s, 4H), 3.16 (br s, 6H, H-49, H-50), 3.84 (s, 6H, H­

47. H-48), 4.43 (s. 2H, H-34), 4.84 (s, 2H, H-13), 6.77 (s, 2H, H-45, H-46), 7.21 (m,4H),

7.38 (m, 4H), 7.51 (s, 2H, H-28, H-40), 7.61 (d,/ = 8.0 Hz, 2H), 7.74 (d,J= 7.5 Hz, 2H),

7.87 (d,J= 8.1 Hz, 2H), 8.05 (dd,J= 8.4, 0.9 Hz, 2H); "c NMR (CDCI,) 6= 23.9,30.5,

31.1.34.7.60.7.61.1.61.9.122.5.123.4.124.0.124.1.124.9.125.2.126.9.128.0.128.3.

128.3, 129.8, 130.6, 130.8, 131.9, 132.0, 134.9, 152.4, 155.8; MS m/s (%)709 (2\), 707

(100),676 (5), 354 (17); HRMS M· 708.3230, calcd for CJ{,...D4 708.3240.

Silver ion complex (83b). A solution or 83 (t 10 mg. 0.151 mrnol) in 2.5 mLofTIiF was

added dropwise to a solution of AgNO] (25 mg. 0.15 romo!)) in TIfF (5.0 mL). The

mixture was protected from light and stirred at rt for 24 h under Ar. The grey precipitate

was filtered and vacuum-dried to afford 83b (52 mg), m.p. 135·138 OC dec. ; 'H NMR

(CDCI,) 6 =1.61 (s, H,o), 1.85 (m, THFl, 3.40 (br, 6H), 3.75 (m, THFl, 4.03 (s, 81l),

4.10 (brs, 6H), 4.64 (br, 2H), 4.85 (s, 2H), 6.93 (br, 2Ill, 7.41 (m, 6H), 7.54 (m, 4H), 7.69

(m. 2Hl, 8.13 (m. 6H); +FAB MS (matrix: 3-nitrobenzyl alcohol) mil. (%) 880 (M,.

Dithiadihomoc:alix[4]oapbtbaJeue (82).

A solution consisting of 18 (0.34 g. 0.67 romo!) and 90 (028 g. 0.67 romal) was

prepared in benzene (40 mL). This solution was added dropwise. over a 10 h. period. into

a solution of ethanolic KOH (0.23 g. in 110 mL 95% ethanol) under N1. The mixrure was

stirred vigorously during the addition. and it was stirred for an additional 18 h after the

addition was completed. A colorless precipitate formed, which was filtered by suction

filtration. washed successively with aqueous 10% Hel. water, ethanol and finally air-dried
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to give 0.42 g of82 (81%), m.p. 285-290°C; IH NMR (CDCI) B=3.76 (5. SR. H-2, H-4,

H-24, H-26), 3.85 (5. 12H. 4OCH1), 4.61 (br. 4H. H-14, H-36), 6.70 (5. 4H. H-45. H-46.

H-47. H-48), 7.46 (m, 8R. H-9. H-1O. H-19, H-31, H-32. H-40, H-41), 7.94 (m. 4H. H-8.

H-20. H-30, H-42). 8.10 (m, 4H. H-ll. H-17. H-33, H-39); llC NMR (CDCl l ) S =31.3

(C-14, C-36). 34.5 (C-2. C-4, C-24. C-26), 63.0 (OCH), 122.8. 124.2. 124.4. 125.7,

126.I,128.2,128.3,129.5,l3l.8,132.8;MSm/t(%)772(M',5), 731 (6),679(6),601

(16),529 (10), 387 (20), 386 (22); HRMS M+ 772.2695. calcd forCsoHw0~Sl772.2681.

Silver ion complex (82b). To a solution of82 (121 mg. 0.157 mmol) in 6.0 mL ofTHF

was added AgNO) (26 mg. 0.16 mmol) in THF (5.0 rnL). The mixture was protected

from light and stirred at n for 24 h under Ar. The grey precipitate was filtered and

vacuum-dried to afford82b (98 mg). m.p. 220-224°C dec.; IH NMR(CDCI3) IS= 1.58 (s.

HP), 1.85 (m, THF), 3.75 (m, THF), 3.98 (s, 12Hl, 4.25 (s, 8Hl, 4.72 (s, 4Hl, 7.15 (s,

4H). 7.56 (m. 4H). 8.13 (m. 4H); +FAB MS (matrix: 3-nitrobenzyl alcohol) m/z(9'o) 880

(M').
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Methyl 3·methoxy·2·naphthoate (95).

~O%
~o~

95

To aSllspension of9 (14 g. 72 romel) in CH1C11(360 mL) were added water (215

mLl. phase-transfer catalyst (AdogenR
, 5 mL) and dimethylsulphate (52 mL). To the

vigorously stirred milt(ure at room temperarure was added aqueous 10% NaOH (180 ml.)

dropwise over a period of 30 min. The mixture was stirred at n for an additional 2 h.

Aflerthe separation afthe two layers. the aqueous layer was extracted with 100 mL of

CH1Cl1, The combined organic layers were dried over anhydrous MgSO... filtered and the

solvent evaporated on a fOlary evaporaler. The crude product was purified by vacuum

distillation to produce a golden oily compound 9S (11.3 g. 52.3 mmel, 73%). 'H NMR

(CDCll ) S =3.96 (5, 3H. H-12). 4,00 (5, 3H. H-13), 7.21 (5. IH, H-4). 7.52 (m, 2H, H-6,

H-7), 7.74 (d. J= 8.4 Hz, 1H. H-5 or H-8), 7.82 (d. J= 7.8 Hz. IH. H-5 or H-8). 8.31 (s.

IH. H-I); llC NMR (CDCl) 0 =52.0 (OCR3), 55.7 (COCH). 106.5. 121.5. 124.2. 126.2.

128.2,128.4, 132.9, 155.5 (C-2), 166.5 (CaCH,); MS m/z (%) 216 (M·, 100), 185 (83),

183 (31),155 (23),142 (\8),128 (\3), 127 (53),115 (12),114 (25).

3-Hydroxymethyl.2-methoxynaphthalene (96).

To a suspension of LAH (2.83 g. 74.5 mmol) in dryTIIF (100 mL) under N2 at 0

OC was added dropwise a solution of9S (11.3 g. 52.3 mmol) in dryTIIF (60 mL) over 30
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min. The reaction was stirred at room temperature for an additional 2 h. The reaction

mixture was worked-up by adding the mixture to wet diethyl ether at 0 DC followed by

aqueous 10% HCI. The organic layer was separated, and the aqueous layer was extracted

twice with 1000ml portions of diethyl ether. 1be combined organic layers were dried over

anhydrous MgSO... filtered and the solvent evaporated on a rotary evaporator. The crude

product was purified by nash chromatography using ethyl acelate-hexane ether (30:70) to

give colorless solid 96 (8.30 g, 84%); m.p. 68-69 OC (lit. m.p_ 71-72 "e)"; IR (NujoJ. em'

I) 3602, (br. om. 1650 (5), 1640. 1550. 1500 (s): IH NMR (CDCI,) 0 =2.39 (t, J= 6.0

Hz. IH. H-12). 3.98 (s. 3H. H-13). 4.83 (d, J= 6.0 Hz. 2H, H-II), 7.13 (s, IH. H-I), 7.35

(rn. lH. H-6 or H-7), 7.44 (m. IH. H-7 or H-6). 7.75 (m. 3H. H-4. H-5. H-8); llC NMR

(CDCI,) S= 55.4 (C-13), 62.5 (C-II), 105.2. 123.9, 126.3,126.4. 121,5. 121.6, 128.6,

130.5,134.1,155.9; MSm/z(%) 188 (M-. 100). 112 (10),159 (52), 15S (13),144(22),

128 (23), 121 (36). 115 (30).

To a solution of96 (8.31 g. 0.044 romol) in CH:Clz(400 mL) was added PBr) (6.7

mL. l7 mmol) dropwise at n under N1 over a period 30 min. The solution was stirred for

an additional 3 n. Work.-up of me reaction waseffccled, by adding 10 mLofcold water in
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small portions. The organic layer was separated and washed twice with 60 mL of water.

After the organic layer was dried over anhydrous MgSOl and filtered. the solvent was

removed on a rotary evaporator. The crode product was purified by flash chromatography

using CH1Cl1-petroleum ether (30:70) [0 give 103 as a colorless solid (9.50 g. 86%); m.p.

142-144°C; lHNMR(CDCl) 5=4.01 (5. 3R, H-IO).4.71 (5. 2H. H-9), 7.13 (5. tH. H-

1),7.34 (m, tH, H-6 or H·7), 7.44 (m. IH, H-7 or H·6). 7.73 (t, 2H. H-g and H·5), 7.81

(5, IH. H-4); "c NMR (CDCI,) S ~ 29.3 (C-9), 55.6 (C-IO), 105.8, 124.0, 126.5, 126.9,

127.7. DO.3; MS mlz (%) 252 (M· IIBr. (7).250 (M" "Br. 17), 172 (14), 171 (100), 142

(10),141 (83), 129 (5), 128 (34), 127 (10),115 (15), 86 (IS).

1,2-Bis(2-methoxy-J..naphthyl)ethane (104).

'04

To a solution of 103 (0.94 g. 3.7 nuno!) i.n dryTIIF was addedn-BuLi (1.50 rnL.

1.9 nunol) under At at • 78°C. The reaction was stirred at - 78 °C for an additional 2 h.

The reaction was quenched by adding 50 mL of CHell followed by 20 mL of water. The
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organic layer was separated. dried over anhydrous MgSO~. filtered and then evaporated [0

give 104 as a colorless solid (0.59 g. 92%). m.p. 184-185.5 °c: IH NMR (COCl) S =3.13

IS,4H, H-9, H-9'), 3.93 (s, 6H, H-IO, H-IO'), 7.14 (s, 2H. H-I, H-I'), 7.34 (m, 4H, H-6, H­

6', H-7, H-T), 7.59 (s, 2H, H-4, H-4'), 7.70 (I, H-5, H-5', H-8, H-8'); "c NMR (CDCI,) Ii

= 30.9 (C-9, C~9·). 55.3 (C-IO, C-IO'). 104.7, 123.4. 125.4, 126.3. 127.1. 128.1. 128.8.

132.5,133.4,144.9, 156.6(C-2,C-2'); MS mIz(%) 342 (M', 31), 172(15), 171 (100),

143 (13), 142 (9), 141 (65), 128 (22), 115 (23).

1,2-8is(1-bromomethyl.2.methoxy.3-naphtbyl)ethane (105).

• ' i 4

'~"'I"", •
II' l' KtCO 1 8

Sr 10 Br 11

To a solution of 104 (0.33 g. 0.96 mmol), paraformaldehyde (0.116 g, 3.84 romol)

in acetic acid (6 mL) was added a solution or 15% HBr in acetic acid (6 roL) dropwise

under N1 at It. The reaction mixture was stirred at It for an additional 48 h. A precipitate

fonned. which was filtered and washed several times with petroleum ether to give lOS as

a colorless solid (0.43 g. 84%); m.p. 177-179°C; lH NMR (CDCI) 6= 3.18 (s, 4H, H-9.

H-9'), 4.04 (s, 6H, H-IO, H-lO), 5.12 (s, 4H, H-II, H-IlJ, 7.45 (m, 2H, H-6, H-6' 0< H-7,

H-T), 7.58 (m, 2H, H-7, H-T 0< H-6, H-6'), 7.75 (s, 2H, H-4, H-4'), 7.78 Idd,J= 8.1, 0.6

Hz, 2H, H-8, H-8' 0< H-5, H-5'), 8.08 (d, J = 8.4 Hz, 2H, H-5, H-5' 0< H-8, H-8'); "c
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NMR (CDCI,) 8= 25.3 (C-9. C-9'). 31.7 (C-II. C-II·). 61.6 (C-IO. C-IO·). 123.4. 124.7.

125.4. 126.3. 128.1, tJO.4, 131.2. 131.2. 134.6. 155.7 (C-2. C-2'); MS mit. (%) 530 (M'

"Br nar. 5). 528 (M" '"Br "sr. 9). 450(29), 449 (100). 447 (93), 370(10), 369 (25), 354

(10).353 (32).

1,2·8is(1-mercaplomethyl-2-methoxy-J..naphtbyl)ethaDe (106)•

. .
r~ •

.. " ~o 1 I •
'0 11

SH HS

To a solution of 105 (1.61 g. 3.06 romo!) in DMSO (80 mL) was added thiourea

(0.59 g. 7.7 romol) under N~. The solution was stirred at rt for 5 h. lbe reaction was

quenched by pouring the solution into cold aqueous 10% NaOH (15 mL). and the

resulting solution was stirred at room temperature for 2 h. The mixture was neutralized at

O"C by the addition of aqueous 10% HeL The precipitate was flltered. washed repeatedly

with water and air-dried. The crude product was purified by flash chromatography using

CH1Cl:-petroleum elher (70:30) to give 106 as a colorless solid (0.922 g. 70%); m.p. 141-

143'C; 'H NMR (CDClJ 8 = 2.00 ("1=6.9 Hz. 2H. SHl. 3.2 (s. 4H. H-9. H-9·). 3.99 (s.

6H. H-IO. H-IO·). 4.29 (d. 1= 7.2 Hz. 4H. H-II. H-II). 7.43 (m. 2H. H-6. H-6' or H-7.

H-7'), 7.53 (m. 2H, H-7. H-7' or H-6. H-61, 7.69 (5. 2H, H-4. H-4'). 7.78 (d. J= 7.8 Hz.

2H. H-5, H-5'or H-7. H-7').8.00(d.J=8.1 Hz. 2H. H-7.H-7' orR-5. H-S'); 1JCNMR

(CDCI,) 8= 19.4 (C-9. C-9). 31.8 (C-II. C-II). 62.1 (C-IO. C-IO). 123.3. 125.0. 126.0.
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128.0, 128.3. 128.6. 130.7, 131.4, 134.9. 144.9. 154.4 (C-2. C·2'); MS mlz (%) 436

(M'+2. 7). 435 (M'+I. 17).434 (M'. 52). 403 (13). 402 (45). 401 (100).400 (33). 370

(16).369 (45). 355 (9). 354 (\6). 353 (50). 337 (7). 224 (8). 215 (41). 210 (12).209 (12).

201 (16).200 (8). 197 (18). 185 (65). 184 (84). 183 (18).

Ditbiatetrahomocalix[4]naphthalene (8S).

85

A solution of lOS (0.26 g. 0.49 nunc!) and 106 (0.21 g. 0.49 romel) was prepared

in benzene (45 mL). This solution was added dropwise, over 5 h period into a solution of

ethanolic KOH (0.321 g in 105 mL) under Nz. The mix.ture was stirred overnight. The

solvent was evaporated on a rotary evaporator. The residue was dissolved in 50 mL of

CHell and washed with aqueous lO% RCI. The organic layer was dried over anhydrous

MgS04• filtered and evaporated. The crude product was purified by PLC using CH1CI!-

petroleum ether (60:40) to give 85 as a colorless solid (220 mg. 56%), m.p. 271-273 "C: IH

NMR (CDCI,) 3 = 3.21 (s. 8H. H-2. H-3. H-25. H,26). 3.38 (s. t2H. OCH,). 4.23 (s. 8H.

H-13. H-t5. H,36. H,38). 7.25 (m. 8H. H-8. H,9. H,19. H,20. H,31. H,32. H-42. H-43).

7.67(br. 8R. H·7, H-LO, H-18, H-21.H-30, H-33, H-41.H-44); lJC NMR(CDCl)0=
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27.0 (C-2. C-3. C-25. C-26). 30.0 (C-l3. C-15. C-36. C-38). 61.1 (C-51. C-S2. C-53. C­

54),123.9.124.7.125.3,127.7,131.0,131.6,134.3. 155.1 (C-47.C-48,C-49,C·50):

+FAB MS m/z (%) 799.4 (I). 398 (I). 378 (I). 306 (24). 289 (6). 288 (19). 272 (10).

Tetrahomocalix[4]oapbthalene (85a).

85a

A solution of 85 (80 mg. 0.11 nuno!) in triethylphosphite (4 mL) under Ar in a

quartz tube was irradiated at 254 nm with stirring for 3 days. The solvent was removed by

vacuum distillation. and the residue was purified by PLC using CH~CI2-pe[r()leum ether

(40;60) to give 8Sa as a colorless solid (19 mg. 26%). m.p. 293-295 °C; IH NMR (CDCl])

6 =2.69 (5, 8H. H-2. H-3, H-24. H·25), 3.15 (5, 12H, OCHl ), 3.52 (5, 8H, R·13, H-\4, H­

35. H-36). 7.37 (br. 8H. H-8. H-9. H-18. H-19. H-30. H-31. H-40. H-4I). 7.40 (s. 4H. H-5.

H-22. H-27. H-44). 7.67 (d,J= 7.8 Hz.4H. H-7. H-20. H-29. H-42). 8.0 (br. 4H. H-IO. H­

17. H-32. H-39); NOE (%) H·IO (H-17. H.32. H-39)1 H-13 (H-14. H-3S. H-36)(4.4); H-7

(H·20. H·29. H-42)1 H-S (lI-22. H-27. H-42)(3.8); H·5 (H.2l, H·27. H-44)IH-7 (H-20. H­

29. H-42)(19). H-2 (H-3. H-24. H-25)(2.2); H·13 (H.14. H-35. H-36)1 H-1O (H-17. H-32.

H-39)(23.3); H·2 (H·3. H·24. H·25)IOCH, (1.8). H-5 (H-22. H-27. H-44)(6.1); "c NMR



192

(CDCI l ) 5= 25.7 (C-13, C-14. C-35, C-36). 29.5 (C-Z. C-3. C-24. C-25). 60.8 (OCH]).

123.4 (C-IO, C-17. C-32, C-39). 123.8 and 124.7 (e-8. e-9, C-18. C-t9. C-30, C-31. C-40.

C-41). 126.3 (C-S. C-22. C-27. C-44). 128.1 (C-7. C-20. C-29, C-42). 131.0. 132.3, 134.7.

155.4 (C-OCH): +FAB MS (matrix.: 3-nitrobenzyl alcohol)m1z (%) 736 (M", 1), 734 (2),

617 (2). 474 (I). 422 (I). 399 (2). 328 (5). 307 (5). 306 (18).294 (3). 288 (18).

Dihomooxacafu(4]naphthalene (107).

107

To a solution of NaH (96 mg. 2,3 mmol) in dry toluene (30 mL) was added a

solution consisting of 88 (0.301 g. 0.776 mmol) and 89 (0.396 g. 0.776 mmol) in dryTHF

(15 roL) by syringe over a period of 3 h under Ar at reflux temperature. The reaction was

stirred at reflux temperature overnight. The reaction mixture was cooled to room

temperature and 20 mL of aqueous 10% Hel were added. The reaction mixture was

extracted twice with 100 mL of CHCll. The combined organic layers were dried over

anhydrous MgS04 • filtered and evaporated. The crude product was crystallized from

CHCIJ to give pale yellow crystals of 107 (0.195 g. 34%). m.p. > 300"<: dec.; 'H NMR

(COCl,) B=3.10(s. 12H. OCH,). 4.66 (s. 8H. H-2. H-4. H-24. H-26l. 4.80 (s. 4H. H-14.

H-36). 7.36 (m. 8H. H-9. H-IO. H-18. H-19. H-31. H-32. H-40. H-4I). 7.77 (m. 4H. H-8.
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H-20, H-30, H-42), 7.81 (s,4H, H-6, H-22, H-28, H-44), 8.07 (m,4H, H-II, H-17, H-33,

H-39); "c NMR (COCl,) a= 23.7 (C-14, C-36), 61.8 (C-49, C-50, C-5!, C-52), 67.3 (C-2,

C-4.C-24.C-26), 123.8, 124.3, 126.1.128.6, 129.3,130.7.131.0, 133.3. 155.6(C-45,C~

46. C-47, C-48).

Dibomooxacalix[4]napbtbalene (108).

~
~ ~.p.,I 0 •

015 011 10

~ "
Of! .7:0-- 11

I ~ 1 .,
M ..

~ oc::a
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To a solution ofNaH (100 mg, 2.34 mmol) in dryTIIF (35 roL) was added a solution

consisting of 19 (0.31 g, 0,79 roma)) and 18 (0.398 g. 0.786 mmol) in dry THF (50 mL) by

syringe over a period 5 h under Ar at rt. The reaction was stirred at reflux temperature for

an additional 24 h. The reaction mixture was cooled to rt. and 20 mL of aqueous 10% Hel

was added. A precipitate was formed. which was fillered and washed with CHICl! to give

108 as a colorless solid (0.14 g. 23%). m.p. > 300 °C dec.; IH NMR (COCIl ) 5 = 3.57 (5,

12H, OCH,), 4.67 (5, 8H, H-2, H-4, H-24, H-26),4.70 (s, 4H, H-14, H-36), 7.03 (5, 4H, H­

45, H-46, H-47, H-48), 7.49 (m, 8H, H-9, H-10, H-18, H-19, H-31, H-32, H-40, H-4I),

7.95 (d, J= 8.1 Hz, 4H, H-8, H-20, H-30, H-42), 8.12 (d,J= 7.8 Hz, 4H, H-II, H-I7, H-
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33. H-39); "c NMR (CDCi,) 5 = 3S.0 (C-". C-36). 62.7 (C-49. CoSO. C-SI. C-S2). 68.0

(C-2.C-4.C-24.C-26),122.8. 124.2,125.6, 126.0.126.1.128.0, 128.5. 131.8. 133.0,

133.'. IS3.I (C-49.C-SO.C-SI.C-S2).
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Synthesis of dibenzopyrenes and pyrenes

As previously mentioned in Chapter 6. we were interested in the synthesis of the

tetrahomocaJix(4)naphthaiene 85a and its structural isomers 91a-93a (Figure 6.5). The

synthetic approach which was employed was a base-mediated coupling of 1,3­

bis(bromomethyl)..2-methoxynaphthalene (97) with its corresponding bis(mercaptomethyl)

derivalive 98 (Scheme 6.3). In principle. this reaction should produce several isomers of

terrathia[3.3.3.3J(1,3)naphthalenophane, 91-94 (Figure 6.6). These are potential precursors

to tetrahomoca.lix[4]naphthalenes 85a and 91a·93a after sulfur eXlrUsion. Attempts to

produce these tetrathia precursors resulted in fonnation of four isomeric 1I,22-dimethoxy­

2.13-dithia[3.3J(l,3)naphthalenophanes, 99·102 in 18%, 19%, 10% and 34% yields.

respectively after TI..C separation of the crude product (Scheme 7.1). Isomer 101 was the

least polar, followed by 99. 102 and 100 in order of increasing polarity. These products are

analogous to the corresponding 1I,22·dimethyl- and 11,22-unsubstituted-2,13­

dithia[3.31(I,3)naphthalenophanes (103-106) reported by Mitchell et at. II However, when

each of the compounds 99·102 was photolyzed in triethylphosphite, 5.6,12,13-tetrahydro­

dibenzo[b.defJchrysene (107), or 6,7,13,14-tetrahydrobenzo[rst]pentaphene (108) were

obtained (Scheme 7.2). Oxidation of these telrahydro compounds was facile and produced

dibenzopyrenes, 109 and 110, respectively (Scheme 7.2). This type of sulfur extrusion with

concomitant transannular cyclization appears to be general and could offer s.-,me advantages
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for the synthesis of dibenzopyrenes and pyrenes. The mechanism shown in Scheme 7.3 for

one of the four isomers. i.e., 102 is proposed to account for the observed results.

The 'H NMR spectrum of101 has well~resolvedsignals with simple splitting patterns

(as do. to varying degrees. the spectra ofeach oflhe other isomers 99, 100 and 102) that are

consistent with a transoid-anti structure.II Support for lile NMR assignments (of this. and

the other isomers. Figure 7.1) is based upon 2-D and NOED experiments and by comparison

with arguments presented by Mitchell et al." for their closely related compounds 103.106.

The methoxyl groups of 101 at 6 =2.93, are shielded by 0.64 ppm relative to those of its syn

isomer 102 (Figures 7.2 and 7.5). respectively. The bridging methylene protons of 101 are

diastereotopic and appear as two sets of AB quancts. one which is poorly resolved and is

centred at 6:: 3.26. Since H-5 (H-16) is the only naphthalene-ring singlet. it was used as the

reference signal together with NOE determinations to assign unequivocally the remaining

naphthalene-ring protons H-6 to H-9 (H-16 to H-20) and also the remainder of the protons.

The AB quartet at 6 =3.26 is attributed [Q the H-3 (and H-14) protons since irradiation of

this system produces a 5.6 % NOE enhancement of the H-5 (and H-16) singlet and also a

2.4 % NOE enhancement of the doublet at 6:: 8.18. which is due to H-20 (and H-9).

Molecular models indicate that H-20 and H-9 can only be close to H-3:< and H-14:<..

respectively, when the intraannular 12-membered dithia ring is in a conformation with 5-2

pointing down and 5-13 pointing up, as indicated in Figure 7.1. This is in agreement with

the conformation proposed by Mitchell et al." for the analogous compound Qnti-106. The

other AB quartet has two clearly defined doublets; one centred at 6 = 4.00
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Figure 7.1. Selected IH li Values and Preferred Conformations of Compounds 99·102

101 tnuuaid-Mli

99cisoUl__ti
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(1= 11.7 Hz: H-Iy and H-12y;pseudo-equatorian. which isenhanced by 6.2 % when H-9

is irr.Kiiatedand the ather at 6 =4.33 (J= 11.7 Hz: H-Ix and H-12x:pseudo-axiaJ). which

is not A singJe CT)'StaJ x-ray diffraction analysis on 101 (Figure 7.3) confirms the structuraJ

assignments and indicates that the preferred conformation in the solid state is the same as

which appears to be the case in solution. Molecular modeling calculations using geometry

optimizations were perlbrmed at the AMI semiempirical level" using SPARTAN '10 are

also consistent with the conformational assignment depicted in Figure 7.1.

Unequivocal chemical proof of the transoid stnlcntre of 101 (and of 102. and also of

the cisoid Stn.lctures of isomers 99 and 100 -see below) was obtained unexpectedly from its

photolysis in triethylphosphite.c which produced instead of the anticipated naphthalenophane

111. a product whose NMR. spectra showed it to be highly symmetrical and lacking the

methoxyl groups. Mass spectral data indicated. and single crystal x-ray crystallography

(Figure 7.4) confirmed it to be 5.6.12.t3-tetrahydrodibenzo[b.deflchrysene (107). DDQ

oxidation easily converted 107 to dibenzo[b,dej)chrysene (109).'·

The methoxyl groups in the 'H NMR spectrum (Figure 7.5) ofthe.syn isomer 102 are

at 6 = 3.57. which is more typical for an unshielded 2·naphthyl methoxyl group (6 = 3.92 in

2·methoxynaphthalene and 6 = 3.86 in bis(2-methoxy-l-naphthyl)methane). The bridging

methylene protons are diaslereotopic and appear as twO sets of AB quartets. each having

• "Pseudo-axial" protons refer to bridging methylene group protons which are in. or are
directed towards the planes of the naphthalene rings: "pst'udo-equatorial" protons refer to
bridging methylene group protons which are out of • or are directed OUt of the planes of
the rings.
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a pair of clearly defined doublets. One AB quartet has a doublet centred at 6 =4.84 (1= 135

Hz) assigned (0 H-Ix and H-12x. which is coupled to the doublet centred at 6 =3.84.

assigned to hydrogens H-Iy and H-12y. The olher AB quartet., assigned to the H-3)(

(and H-14x) protons. has adoubletceD~atis =4.59(1= 16.4 Hz), which is coupled to the

doublet al6 =3...5t (H-3y; H-14y). The transoid hydrogens H-5 and H-16 are eclipsed by the

opposing naphthalene rings and appear as a singlet at is = 6.96. which is shielded by 1.16

ppm compared to the corresponding signal in 101. The confonnational assignment shown

is further supported by NOE detenninations and molecular modeling calculations. For

example. there is an enhancememofH-lx (H-12x) on saturation of H-3:< (H-14x), and viCf!-

Photolysis of 102 under the conditions employed for 101 also produced 101.

1be IH NMR specuum of99 (Figure 7.6) is consistent with itS cisoid-anri structure.

The methoxyl groups of99 are al6 = 2.92. indicating shielding by 0.64 ppm relative to those

of its cisoid-syn isomer 100. TIle bridging methylene protons appear as [wo overlapping sets

of AB quartets. whose respective pairs of coupled doublets are centred al 6 = 4.05 (J = 13.8

Hz; H-Ilx. H-14x) and 6 = 3.88 (H-12y. H·14y); and al6 = 3.89 (J= 13.8 Hz. H-Ix. H-3xl

and 6 =3.62 (H-Iy. H-3y). The singlet al 0 =7.88. due to thecisoid hydrogens H-5 and H­

20. is deshielded relative to lhe corresponding signal (at 6 = 7.46) for 100. NOED

experiments wilh 99 reveal that. irradiation of eithu H-3x (H-Ix) orH-3y (H-Iy) enhances

H-5 (H-20) by 1.4% and 1.9%, respectively. However. irradiation of only H-12y(H-14y)

enhances H·9 (H· 16) by 7.7%. Irradiation ofH-12x (H-14x) does not enhance H-9 (H-16).

To account for these NMR observations, the preferred confonnation appears to be one in
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which there is. on average. a skewing afthe C-I-S-2-C-3 bridge. which would place the S­

2-C-3-C-4 bonds in a nearly coplanar arrangement with the C-4-C-11 naphthalene ring (in

dynamic equilibrium with the conformation which places S-2--C-I-C~21 bonds in a nearly

coplanar arrangement with the C-21-C-22 naphthalene ring). Since only H-9 (H-16) is

enhanced when H-12y (H-14y) is irradiated. the other (C-12-S-13-C-14) bridge cannot be

similarly skewed. lb.is is also in general agreement wilh the interpretations made wilhout any

such. NOE data by Mitchell et at. for the IH_ NMR spectra of their analogous anti-l04.

The line shapes and chemical shifts for the bridging methylene protons in the cisoid­

.syn compoulld 100 (Figure 7.7) are similar (0 those observed in the transoid-syn isomer 102.

In 100, one AB quartet has a doublet eenu-ed at 6 = 5.00 (J= 14.7 Hz) assigned to H-12x

(and H-14x.), which is coupled to lhe doublet centred at 6 = 3.83 (H-12y. H-14y). The other

AB quartet due to the protons on C-l (and C-3) has a doublet centred at 6 =4.54 (J= 15.0

Hz) assigned to H-lx. (and H-3x.). and its coupled doublet at 6 = 3.60 assigned to H-Iy (and

H-3y). Mitchell et aI. assigned a preferred confonnation to the analogous compound syn­

104 for which lhey postulated lhat. in order to minimize the peri interactions between the

methylene bridge protons and the protons on the A-rings (H-5 andH-20 in 100). the C-I-S­

2--C-3 bridge should be pointing up and the C-12-S-13-C-14 bridge pointing down in a

boat-chair type of conformation. NOE determinations did not permit distinguishing

unequivocally between such a boat-chair type of confonnation and one in which both

bridges are pointing down in a chair-chair type of conformation. Molecular modelingS9. 90

calculations however clearly indicate that the latter is energetically favoured (by 6.35
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kcallmol}. Also. the optimized geomeuies of the two conformations reveal that the distance

between H-3y and H-5 (the pui interaction referred to above) is only 2.40 A in the boat·

chair. but 2.71 A in the chQJr·citair cOllfo.-r.14ttion.

PhOlolysis ofeither 99 or 100. under the same conditions employed for 101 and 102.

produced only 1.2.6.7·tctrahydro-3.4.9.1G-dibenzopyrene (l08). DDQ oxidation of 168

afforded 3.4.9.IQ-dibenzopyrene (110). Both afme isomeric benzopyrenes 109 and 110 had

identical physical properties with those previously reponed.91

We are unaware of any other reports of similar one-pot sulphur extrusion!

transannular cyclizations from 2.13-dithia[3.3]naphthalenophanes. or 2.1 [·dithia­

[3.31cyclophanes leading to eimer tctrahydrodibenzopyrenes or tctrahydropyrenes.

respectively. Boekelheide et al. C first reported the photochemical transfonnation in

trimethylphosphite. of 6-methyl- and 9-methyl-2.11-dithia[3.3]cyclophane to the

correspooding [2.2)metaeyclophanes but did not report the fonnation of any of the

corresponding pyrenes. Earlier. Mitchell and Boekelheide'P-19 had reponed the

transfonnarion of 9.18-dimethyl-2.11-dithia[3.3]metaeyclophanes into the corresponding

I5. I6-dimethyldihydropyrene. but the sequence involved several steps including a Stevens

rearrangement and elimination step. On the other hand. there are many examples that have

been reponed in which halogen.induced9Ut
." and photolytically-induced96 transannular

cyc1ization of various [2.2]metacyclophanes produce the corresponding tetrahydropyrenes.

However. all of these instances involve prior fonnation of the cyclophanes from the

prttursor dithiaphanes, a process which usually requires two separate steps involving
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oxidation orlhe disulphides [0 the bissulphones. followed by a vacuum pyrolysis.

In order 10 ascertain whether the photolysis products of compounds 99-102 were

ge~ra1, the reoclions leading to the dithia{3.3)metacyclophane precursors. 120-124. of the

tetrahydropyrenes 127-130. respectively were examined. as summarized in Scheme 7.4.

Boekelheide et al. C had not observed any cyclization during the photolytic sulfur

elimination reaction of dithiacyclophane 125 in which only hydrogen atoms are presenl at

both the 9- and IS-positions. or when 126 in which a methyl group and a hydrogen atom are

present at the 9- and IS-positions. respectively. The reactions of dithia[3.3)metacyclophanes

12()"124, in which at least one methoxyl group was present at these intraannular positions,

were therefore examined. Intermediale compounds 114-11' were all synthesized and coupled

by sland:1rd procedures to give the corresponding dithiacyclophanes 120-124 in good yields.

Photolytic sulfur eliminationlinuaannularcyclization occurred in all cases. except with 124.

to produce the tetrahydropyrenes 127-129. At least one intraannular methoxyl group

therefore appears to be necessary to allow for the in situ transannular cycliution step. The

presence of an electron-withdrawing group at the 6- or IS-positions. e.g. bromine in the case

of 124. however. appears lO inhibit the sulphur eliminalionlinuannularcyclization. [t can be

noted that Yamato and coworkers'" have reported lhe cyclization of various substituted 8­

methoxy[2.2]-metacyclophanes themselves to the corresponding tetrahydropyrenes using

benzyltrimethyl ammonium tribromide (BTMA Br)}. However. in agreement with results

reponed in this work for 124, they too were unable to effect cyclizatjon when a bromine
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atom or other electron-withdrawing groups were present in the para-positions (R! or R~. in

Scheme 7.4). DDQ oltidation easily converted 127-U9 into the corresponding pyrenes.

To funher suppon these findings. dithia{3.31( l.3)naphthaienophanes 132 and 133

with methoxyl groups at the S- and 16- positions. and the 5- and 20-positions. respectively.

were synthesized and subjected to the same photolytic conditions. Synthesis of 132 and 133

was achieved by the base-mediated coupling of 22 and 131 (Scheme 7.5). It was possible

by repeated PLC separation to obtain smail amounts of the less polar transoid-anti­

dithianaphthalenophane 132 in a pure enough fonn to enable it to be unambiguously

characterized. Cisoid-anti- 133. however. was aJways contaminated with small amounts of

132. That 132 and 133 are conformationaJly more mobile than 99~102 is evident by the fact

that the bridging methylene protons appear as sharp singlets in their respective ambient

temperature IH NMR spectra. Photolysis of PLC purified fractions. which contained a

mixture of 132 and 133. afforded two easily separable products whose spectral propenies are

consistent with the novel transoid-anti and cisoid-anri-[2.2]( 1.3)naphthalenophane structures

134 and 135. respectively. These are the first [2.2](l.3)naphthalenophanes to be reponed.

In light of the previous discussions. 132 is most likely the precursor of 134, and 133 the

precursor of 135. That both compounds are anti is evident by the fact that the inlraannular

protons appear upfield at 6 =4.5 l in both cases. Although the chemical shifts for the ethano

bridge protons in both compounds are almost the same, their line shapes are dramatically

different. In 135. they appear as two distinct AX systems, centred at 6 = 3.97 and 2.01 (J=
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10.1 Hz).andat6=3.72and2.16(1=9.0 Hz) whe~as in 134 they appeac as two multiplets.

one set of signals consisting of a doublet of triplets centred at 6 = 3.95. which is coupled to

a triplet ofdoublets centred at 6 = 2.24; and the second set consisting of a doublet of triplets

cenlRd at 6 = 3.72. which is coupled to a triplet of doublets centred at 6 = 2.00. No

transannular cyclized products we~ detected from the photolyses.

The mechanism depicted in Scheme 7.3 is consistent with the ~sults found for a

typical example in which photolytic sulfur eliminationlintrannular cyclization reaction did

occur. Thus. when the photolysis of 102 was interrupted after 7 h. three new products in

addition to 107 were isolated and characterized. These were. in order of increasing polarity.

107. and the three intermediate compounds anri-dimethoxy[2.2}(l.3)naphthalenophane.

IlIa. mono-thiacompound 113 and the syn-dimethoxy [2.2](1.3)naphthalenophane. Illb

which convert. to 107 upon funher photolysis.

As can be seen from Scheme 7.3. the fonnation of tetrahydropyrenes and

tetrahydrodibenzopyrenes occurred via photolytic sulfur extrusion and intramolecular cross­

coupling of the dithia[3.3)metacyclophanes and dithia[3.3](I,3)naphthaJenophanes.

respectively. To shed light on whether or not this process is due to both elecaonic and steric

effects oftbe methoxyl groups or due to an electronic effect only. we tried to prepare various

11.22-dihydroxy-2.13-dithia[3.3](1.3)naphthaJenophane isomers which. could then be

subjected to the photolytic sulfur extrusion reaction. The same conditions that were used

previously to prepare 97 were chosen to transfonn 3-(hydroxymethyl)-Z·naphthol (56) into

bis[I,3-(hydroxymethyl)]-2-naphthol (136) as shown in Scheme 7.6. However. treaunent of
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56 with a 15% acetic acid solution of Emr and parafonnaldehyde in acetic acid as solvent

produced. after column chromatographic purification. a yellow cryslalline solid in 20% yield.

The spectral properties of this product were distinctly different from those expected

of 136. The 'H NMR (CDCI]) spectrum (Figure 7.8) shows complex patterns of signals

centered at S =2.18. 2.62. 2.87 and 3.17 ppm. Also. the lJC NMR (CDCI]) spectrum

revealed four signals at 18.4, 27.7. 30.1 and 33. t ppm, instead of twO signals, which would

have been expected for compound 136. Funhennore, the LR. spectrum indicated the

presence of a carbonyl group having a stretching frequency at 1693 cm·l
• but no hydroxyl

group. 1be MS spectrum revealed signals at mil = 496. 498 and 500. which are consistent

with the presence of two bromine atoms. On the basis of these data and in light of previous

work, a Diels·Alder adduct formed by an intermolecular hetero-Diels-Alder reaction of 56

can be predicted. Indeed. this prediction was confirmed later by x-ray diffraction analysis.

which gave the structure 138 as shown in Figure 7.9. A proposed mechanism for the

fonnation of 138 is shown in Scheme 7.7.

In conclusion. we have observed that the photolysis in uimethyl- or triethylphosphite

solution of various substituted dithiacyclophanes which possess either one. or two

intraannular methoxyl groups can produce. in a single step. the corresponding

tetrahydropyrenes. Similarly. the photolysis of similar intraannularly·substituted methoxy

dithia[3.3](1.3)naphthalenophanes produced in a single step. the corresponding

tetrahydrodibenzopyrenes. Photolysis of 5,I6-dimethoxy and 5,2o-dimethoxy-2.13·

dithia[3.3)(I,3)naphthalenophanes. 132 and 133. afforded the anticipated 4.I4-dimethoxy-
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and 4,18-dimethoxy(2.2]naphalenophanes 134 and 135. respectively.

Experimental

l~·Bis(bromomethyl)..z.mdhoxyoaphthalene(97). To a solution of2·hydroxymemyl·

3-methoxynaphthalene (14.1 g. 11.1 nuno!) and parafonnaldebyde (4.54 g. 150 mmol) in

200 mL of glacial acetic acid was added a 10% solution (200 mL) of HBr in glacial acetic

acid. After stirring for 36 h at It. a p~ipitale formed. which was filtered and washed

several times with petroleum emerto afford 7.44 gofa colorless powder. The filtrate was

diluted with CH2CI! (200 mL) and washed several times with water and finally with

aqueous saturated NaHCO) solution until the washes were neutral. The organic layer was

dried over MgS04 and the solvent evaporated on a rotary evaporator. The residue was

washed with several portions of diethyl ether to give anolber 5.18 g of the erode product.

The combined product (12.6 g. 49%), m.p. 114-116 ·C. was used directly in subsequent

steps. wilham futtherpurification; 'H NMR (CDCI) ~ =4.14 (5. 3R), 4.72 (5. 2H). 5.05

(5. 2m. 7.49 (m. Iii). 7.63 (m. IH), 7.82 (d, J= 7.8 Hz. IH). 7.94 (5. IH). 8.08 (d. J= 8.4

Hz. IA): "c NMR (CDCIJ 6 = 24.7, 282. 62.4. 123.5. 125.3. 12S.8. 127.6. 127.7, 128.6,

130.9,132.4.132.7.154.7: MS nVz (%): 344 (16). 342 (9). 266 (14). 265 (100). 264 (IS),

263 (97). 235 (13). 233 (is), 183 (13).169 (18).156 (24). ISS (90),154 (20), 153 (20),

152 (13). 14l (32); fiRMS M· =34l.9250. calcd forC uH ,1Br10 341.9255.

1,3-Bis(mcrcaptomelbyl)-Z-melhoxynaphtbaJene (98). A solution of rn (0.41 g. 1.2

mmol) and thiourea (0.22 g. 2.9 mmo!) in 25 mL of DMSO was stirred at rt under AI for

5 h. The mixture was poured into 50 mL of aqueous 10% NaGH. which was cooled in an
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ice-bath. The reaction mixture was stirred for an additional 2 h at rt under Ar. then cooled

in an ice-bath and aqueous 4 N HCI added unti! the solution become acidic. The reaction

mixture was extracted twice with 3Q-mL portions of CHzCl l . The combined organic layer

was washed with two 20-mL portions of HzO and then wilh three 20-mL portions of

aqueous saturated NaC!. After drying over anhydrous MgSO~, filtering and evaporating

the solvent, the crude product was flash chromatographed using CH!C1z-petroleum ether

(50:50) to give 0.2i g (0.84 nunol. 70%) of 98 as an oil; IH NMR (CDCI)) 0 =1.97 (t.1 =

7.8 Hz, IHl, 1.99 «,J= 6.9 Hz, IH), 3.89 (d, J= 7.8 Hz, 2f!), 3.99 (s, 3H), 4.22 (d, J=

6.9 Hz, 2H), 7.46 (m, 2H), 7.73 (s, IH), 7.76 (d.J= 7.8Hz IHl, 7.96 (d.J =8.4 Hz If!):

13CNMR(CDCI])6= 19.2.24.1,62.6.123.3.125.6, 126.6.128.4,128.5,128.8,131.3.

134.2: MS m/z (%) 250 (M", 75), 218 (16), 217 (100), 172(19), 171 (99), 143 (17.5),

141 (23); HRMS: M ·250.0467, calcd for CIJH1~OSZ 250.0485.

Base-mediated coupling of 97 with 98. To a solution ofelhanolic KOH (481 mg in 170

mLof95% ethanol) was added a solution of97 (397 mg, 1.16 mmol) and 98 (290 mg,

1.16 mmol) in 70 ml of benzene. dropwise over 24 h under Ar at rt. The reaction was

stirred for an additional 24 h after which the reaction solvent was evaporated on a rotary

evaporator. The residue was dissolved in CHZCI! (50 mL). and the organic solution was

washed with portions of aqueous 10% HCI until the aqueous layers become acidic. The

organic layer was dried over anhydrous MgS0ol• filtered. and the solvent evaporated on a

rotary evaporator. A portion of the crude product (250 mg) was chromatographed by Ptc

using CH1Clz-petroleum ether (60:40) to give five fractions in the following order of
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increasing polarity:

transoid-anli.ll.22.dimethoxy.2.13~ithia·(3.3](1,3)Dapbthalenopha De (101) was

obtained as a colorless crystalline compound (from CHCI), chlorobenzene. or toluene)

(25 mg), m.p. 268-270 DC; IH_NMR (COCl l ) 0 =2.93 (s. 6H), 3.26 (m. 4H). 4.0 (d, J =

11.7 Hz. 2H). 4.33 (d,J=I 1.7 Hz. 2H). 7.44 (m. 2H). 7.54 (m. 2H). 7.86 (d. J= 7.8 Hz.

2H). 8.12 (s. 2H). 8.18 (d.J= 8.4 Hz. 2H); "C-NMR (CDCI,) 6 = 22.9 (C-I. C-l2). 25.9

(C-3. C-I4). 61.1 (OCH,). 119.8. 123.1 (C-9. C-20). 124.4 (C-7. C-20). 126.1 (C-8. C­

19).128.3 (C-6. C-I7). 131.1. 131.3. 131.5 (C-5. C-I6). 132.5. 156.7 (C-II. C-22); MS

mI, (%); 432 (M-. 6).368 (1 I). 218 (10). 217 (17). 216 (14). 215 (12). 186 (45). 185

(100). 183 (14), 171 (19). 155 (54); HRMS M· 432.1 193.calcd for~Jf=-,O~S~ 432.1216:

dsoid-anli·ll.22.cJimethoxy·2,IJ..dithia[J.J](I,3)naphthaieDophane (99) was

obtained as a colorless powder (37 mg). m.p. 123-125°C; IH NMR(CDCI) 0 = 2.93 (s,

6H). 3.62 (d,J = 13.8 Hz. 2H). 3.88 (d,J = 13.8 Hz. 2H). 3.89 (d,J = 13.8 Hz. 2H). 4.05

(d. J= 13.8 Hz. 2H). 7.43 (m. 2H). 7.53 (m. 2H). 7.81 (d,J= 7.8 Hz. 2H). 7.88 (s. 2H).

8.31 (d.J = 8.4 Hz. 2H); "c NMR (CDCI,) 6 = 24.1 (C-I2. C-I4). 26.7 (C-I. C-3). 61.2

(OCH,). 122.0. 123.9 (C-9. C-I6). 124.3 (C-7. C-18). 125.6 (C-8. C-I7). 128.0 (C-6. C­

19).129.0. I31.6(C-5. C-20). 133.0. 156.4 (C-I1. C-22); MS mit (%); 432 (M'. 100).

247 (29). 217 (18). 216 (61). 215 (58). 214 (39).201 (17). 186 (28). 185 (47). 184 (17).

183 (17). 171 (20). 167 (22). 155 (37); HRMS M' 432.1213. c,"cd forc,.l{",O,S,

432. 1216: transoid·syn -1l,22-dimethoxy·2,13-dithia[3.J](I,.3)naphthaJenophane

(102) was obtained as a colorless crystalline powder. (52 mg), m.p. 208 - 209°C; IH
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NMR(CDCI,) 6 = 3.51 (d. 1= 16.4 Hz, 211), 3.57 (s, 611), 3.84 (d. 1 = 13.5 Hz. 211), 4.59

(d. 1= 16.4 Hz, 2H), 4,84 (d, 1= 13.5 Hz. 2H), 6.75 (d, 1 = 7.8 Hz, 2H), 6,96 (s, 2H),

7.(}4 (m. 2H), 7.37 (m, 2H), 7.85 (d. 1 =8.4 Hz, 2H); "c NMR (CDCI,) 6 = 27.6 (C·I, C·

12), 28.9 (C·3, C·14), 62.0 (OCHJ, 122.0, 123.3 (C·9, C·20), 124.1 (C-7, C-18), 124.90,

127.9 (C-6, C-17), 128.8 (C-5, C-16), 130.4. 130.5, 130.9, 155.3 (C· I 1, C-22); MS m/z

(%); 432 (M', 46), 247 (II), 217 (10), 215 (20), 186 (10), 185 (36), 184 (22),183 (16),

169 (20). 155 (14); +FAB MS (matrix: 3-nitrobenzyl alcohol) m/z (%): 433 (M'·+I. 19).

432 (M', 41), 431 (6), 307 (10), 289 (10), 217 (14), 215 (44),185 (61), 171 (26), 169

(30).155 (43). IS4 (100); HRMS M· 432.1231. calcd for C,..JiU01S1432.1216;

c:isoid-.fyn.ll.22-dimethoxy·2.1~ithia[3.Jl(1,3)naphthaienophane(l00) was

obtained as a colorless crystalline powder (48 mg). m.p. 238 - 240°C; IH NMR (COCl)

6 = 3.56 (s, 6H), 3.60 (d, 1= 15.0 Hz, 211), 3.83 (d. 1= 14,7 Hz, 2H), 4.54 (d.I= 15,0

Hz, 2H), 5.00 (d. 1= 14.7 Hz, 2H). 6.94 (m, 4H), 7.22 (d, 1=8.1 Hz, 2H), 7.46 (s. 2H),

7.84 (d, J= 7.8 Hz. 2H); Uc NMR (COCl) 6 = 27.4 (C-12. C-14). 30.4 (C·I. C-3), 62.4

(OCHJ, 122.5, 124,0 (C-9, C·16), 124.25 and 124.34 (C·8, C-17 and C-7, C-18), 127.1

(C-6, C-19), 130.3 (C-5, C-20), 130.5, 130.7, 130.8, 155.1 (C-II, C-22); MS m/z (%);

432 (M', 88), 247 (44), 211 (28), 216 (58), 215 (100), 202 (10), 201 (32),200 (18),199

(5), 187 (13), 186 (52), 185 (10), 184 (87), 113 (10), 112 (18), 171 (35), 110 (IS), 169

(35); HRMS M· 432.1185, calcd for~6H2.02S~ 432.1216.

A fifth fraction. which was the most polar one. was also isolated as an amorphous

solid (42 mg). which decomposed at 138-140°C. NMR spectral properties indicated this
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product to ~ a mixrure. which could not be resolved by TLC. +FAB MS revealed the

presen~ of several pseudomolecular ions suggestive of tetrameric species such as 91

and/or its isort:!5 92-94.

5,6,l2,1J..Tetrahydrodibenzo{b,deJ]chrysene (101) from 102; (a) lmuliationlor 24 h.

A solution of 102 (141 mg. 0.326 mmol) in 10 mL oftrimethylphosphite under Ar in a

quartz rube was irradiated al 254 nm with stirring for 24 h. The triethylphosphite was

removed by vacuum distillation. and the yellow residue was dried under vacuum.

Ch.romatograph.y by PLC using CH2C12-hexane (40:60) gave 107 (33 mg. 33%) as

yellow crystals. m.p. 250~252°C; 'H NMR (COCl) {) = 3.18 and 3.21 (dd. J= 9.0. 7.5

Hz, 4H). 3.32 and 3.35 (dd.J= 9.3.7.8 Hz. 4H). 7.46 (m. 4H). 7.62 (5. 2H). 7.80 (m,

2H), 8.11 (m. 2H). uC NMR (CDC10 () = 23.8, 29.3. 123.5.124.1. 125.3. t25.6. 128.0.

129.2.130.9.131.7.133.1. 134.2: MS mIz(%), 306 (M'. 1(0).305 (33). 303 (15). 302

(18).289 (12).153 (13). 151 (17). 145 (22); HRMS M· 306.1413. calcd for~H"

306.1409; (b) lmuJiDtionlor 7 h: When a solution of 102 (100 mg. 0.231 mmol) in 6.0

mL of trimethylphosphite under AI in a quartz robe was irradiated at 254 nm with stirring

for 7 h and worked-up as before, chromatography by PLC using CH~Cll-hexane (40:60)

afforded in the following order of increasing polari£)': 107 (6 mg, 9%);

transoid.anti-lO,20-dimethoxy-[U](I,3)napbthalenophane (lila). (13 mg. 15%) as

a colorless solid, m.p. >300 °C; IH NMR (CDCI) () = 2.67 (s. 6H), 2.75 (m, 2H), 2.82

(m. 2Hl. 2.98 (m. 2Hl. 3.58 (m. 2Hl. 7.38 (m. 2Hl. 7.45 (m. 2Hl. 7.69 (s, 2Hl, 7.81 (dd, J

= 8.1: 1.2 Hz, 2Hl, 8.10 (dd. J = 8.1,1.2 liz, 2Hl: "c NMR (CDCI,l ~ = 26.9, 31.4, 57.4,
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117.6,119.6,120.6.121.6,124.7,125.3,129.6.130.7, 131.4. 154.1; MS m/z(%): 368

(M·. 59). 337 (23). 306 (100). 305 (20), 293 (3), 289 (4), 279 (4), 265 (4),183 (13).169

(7), 155 (12); HRMS M" 368.1703, calcd for ~H:!.P:! 368.1776;

transoid-anli-l1,21-dimethoxy-2-thia-[3.21(1,3)naphthaJenophane (113) as a colorless

solid (6 mg, 6%). m.p. 188-190 °C: IH NMR (COCl) 6 = 2.64 (s. 3H), 2.94 (s. 3H), 2.94

(m. 3H). 3.54 (m. 2H). 3.63 (d. J= 13.2 Hz, IH). 3.76 (d. J= 12.9 Hz. I H), 4.22 (d.

J=13.2 Hz, IH). 7.44 (m, 4H). 7.72 (s. IH), 7.78 (d, J= 8.1 Hz. IH), 7.83 (d, J = 8.1 Hz.

IH). 7.94 (s. IH). 8.05 (d. J= 8.7 Hz. IH). 8.17 (d,} = 8.7 Hz. IH); I)C NMR (CDCI]) 6

=23.3.26.7.28.1,31.9.60.3.60.8.120.9.122.4.123.7. 123.8. 124.0. 125.1. 125.2.

125.7.128.0.128.3.128.9.129.5.130.2.131.5.132.0. 132.5. 133.4. 134.2. L56.8, 156.9:

MS mlz (%), 400 (M', 94). 216 (13),215 (89). 201 (7),200 (6), 198 (7), 197 (8). 185

(100). 183 (24). 170 (14), 168 (57): HRMS M+ 400.1493, calcd for~6H:!oI0:!S, 400.1497:

transoid-syn-l0,20-dimethoxy-[2.2](l,3)naphthaJenophane (lllb). as a colorless

solid. (7 mg. 8%). mp. 195-197 °C; IH NMR(CDCI]) 6 = 2.74 (m. 2H). 3.4 (m 4H).

3.65 (s, 6H), 3.89 (m, 2H). 5.91 (s, 2H), 6.88 (d, J= 8.1 Hz. 2H), 6.99 (m, 2H), 7.25 (m.

2H), 7.63 (d. J= 8.1 Hz,2H); DC NMR (CDCI) a= 23.9.33.3.62.2. [22.7. 123.1,

124.4.124.8,127.3,127.4,130.3,131.8.133.6.158.5; MS mlz(%), 368 (M" 40). 337

(22),306 (100), 305 (18), 293 (4), 289 (4), 279 (4), 265 (4),183 (14),169 (8),155 (11);

HRMS M+ 368.1746. calcd for CuH2.O! 368.1776.

5,6,12,13-Tetrahydrodibenzo[b,deJ]chrysene (107) from 101. Irradiation of 101 under

identical conditions as were used with 102 afforded a product whose spectral and physical
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properties were identical with those of 107.

Dibenzo[b,dej]chrysrene (109) from 107. A solution of 107 (20 mg. 0.065 mmol) and

DDQ (4! mg. 0.16 mmo!) in 8 mL of benzene was refluxed for 4 h. The solution was

cooled to rt and then filtered through a short Florisil column eluted with benzene.

Evaporation of the solvent afforded 109 (12 mg. 61%) which was crystallized from

benzene to give pale orange crystals. mp 310-312°C (lit. m.p. 308 °C).91

6,7.13,14-Tetrahydrobenzo[rs/]pentaphene (108) from 99. A solution of 99 (84 mg.

0.19 mmo!) in 6 mL of trimethylphosphite was irradiated for 24 h at 254 nm as described

for 102. After removal of the trimethylphosphite by vacuum distillation. the crude

product was dried under vacuum and then chromatographed by PLC using CH~CI~­

hexane (20:80) to give 108 as a pale yellow solid (18 mg. 30%), m.p. 175.177°C: IH

NMR (CDCI) I') = 3.10 (s. 4H), 3.40 (s, 4H). 7.45 (m. 4H). 7.59 (s, 2H). 7.77 (m. 2H),

8.14 and 8.! I (dd. J= 8.7, 1.2 Hz, 2H); llC NMR (CDCI) I') =23.3. 29.9, 121.7, 122.9.

123.6,124.4.125.3.125.5,125.8,126.5.127.9, 128.0. 129.3. 130.5, 131.0, 133.2. 134.7;

MS m/, (%), 306 (M" 100),305 (37), 304 (18), 304 (18), 303 (20), 302 (24), 290 (11),

289 (15), 153 (25). ISO (24).145 (23), 138 (15); HRMS M· 306.1411.calcd'for ~~Hla

306.1409.

Benzo[rs/)pentapbene (1l0) from 108. A solution of 108 (22 mg. 0.072 mmol) and

DDQ (41 mg. 0.16 mmol) in 8 mL of benzene was refluxed for 4 h. The solution was

cooled to rt. filtered through a short Florisil column eluted with benzene. Evaporation of

the solvent afforded 110.17 mg (85%) which was crystallized from benzene to give



227

yellow leafy crystals. mp 28 I_282°C (iii. m.p. 280°C).91

2,6.8is(bromomethyl)4-terl-butylanisolf: (114). To a solution of4.95 g (0.033 mol) of

p-tert-butylanisole. and 3.96 g (0.132 mol) of paraformaJdehyde in 25 mL of acetic acid.

was added 25 mL of a solution of 15% hydrogen bromide in acetic acid dropwise over 10

min at n under N~. The reaction temperature was raised to 9O-95°C and after 2 days. the

reaction mixture was cooled to rt. and then diluted with 50 mL of CHCI). The solution

was washed several times with water and then with saturated aqueous NaHCOJ • The

organic layer was separated and dried over anhydrous MgSO~. filtered and the solvent

evaporated. The oily product was purified by column chromatography on SiO~ using

CHCll-petroleum ether (20:80) to give 4.66 g (40%) of a colorless solid. m.p. 95-96 °C:

LH NMR (CDCI,) 6 = 1.31 (s. 9H). 4.01 (s. 3H). 4.56 (s. 4H) and 7.36 (s. 2H); UC NMR

6 = 28.1. 31.3. 34.4, 62.1.129.3,131.0, 147.9. 154.3: MS mk (%): 352 (M·tlBr"Br.

10).350 (M. IlBr l'tJir. 18),348 (M·"Br "Br, 10).337 (6). 335 (12l. 333 (6), 272 (14),

271 (100). 269 (99). 241 (16).

2,6-Bis(bromomethyl)anisole (115). To a solution of 1.17 g (8.57 mmol) of 2.6­

dimethylanisole in refluxing CCI.l (100 mL ) under N1• was added N·bromosuccinimide

3.66 g (20.6 romol) and 0.275 g of benzoyl peroXide" in portions. over I hour. The

reaction mixture was refluxed with stirring for an additional 24 h. The solUlion was

cooled to n and filtered. The filtrate was washed with aqueous saturated NaHSO). After

drying and filtering, the solvent was evaporated on a rotary evaporator, and the residue

was chromatographed on Si01 using CHClrpetroleum ether (20:80) to give 115 as a
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colorless solid. (0.98 g. 40%). m.p. 83-8S·C (lit. m.p. 7S·C)· : IH NMR (CDCI}) 6 =

4.0S (s. 3H). 4.S7 (s. 4H). 7.12 (q. 1m. and 7.38 (d. 2H); UC NMR (COCl}) 6 =27.5.

62.3.125.1. 131.9. 132.2 and 156.6: MS mIz. (%): 296 (M- stBr·IBr. 6). 294 (M+·1Br

"Be, 12),292 (MONBe "Be, 6), 215 (81), 213 (84), 185 (21) 183 (20), 119 (10), 106 (27).

105 (100), 104 (22). 103 (16),79 (6), 77 (121, 65 (26), 63 (12), 51 (14),39 (19).

1.Bromo--3,5-bis(bromomelhyl)benzene (117). The procedure described above for 115

was employed to prepare 117 from l-bromo-3.5-dimethylbenzene (2.58 g.13.9 mmol).

The crude product was chromatographed on SiO: using CH~C1:-petroJeumether (10;90)

and crystallized from hexane to give 117. (1.37 g. 29%); mp 97.5-99.0·C (lit. m.p. 95­

98·C}.'"

S4ert-butyl.l.3.Bis(mercaptomethyl).2.methoxybenzene (118). To a solution of 114

(1.25 g, 3.60 mmol) in 50 mL of OMSO. was added thiourea (0.66 g, 8.6 mmol), with

stirring under N:. After S hat n the reaction was quenched by pouring the mixture into a

cold aqueous 10% solution of NaOH (50 mL). The mixture was sLim:d at n for 2 h. after

which it was cooled to 0 "C and neuualized by addiLion of aqueous 3M HCL The ensuing

precipitate was filtered. washed with water. and air-dried. The colorless solid was purified

by nash chromatography on SiO: using CHell,petroleum ether (70:30) to give 118 as a

colorless solid. (0.82 g. 89%). m.p. So-81·C (lit. m.p. 81-82 GC),"; IH NMR(CDCI]) 6 =

1.31 (s,9H), 1.90 (t, J = 7.5 Hz, 2H), 3.77 (d, J = 7.5 Hz, 4H), 3.88 (5, 3H), 7.23 (5, 2H);

I}C NMR (CDCll) 6 =23.S. 31.4. 34.5, 62.2.126.2. 133.8. 147.6, 153.1; MS mlz (%):

258 (7), 257 (12), 256 (MO
, 72), 243 (5),242(7),241 (47),223 (48),178 (13), 177 (100),
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165 (17), \6\ (II).

2,6-Bis(mercaptomethyl)anisole (119). The procedure described above for 118 was

employed to prepare 119 from 115. Rash chromatography on sial using CHCl l ­

petroleum ether (60:40) gave 119 as a colorless solid (0.24 g. 65%). mp 28-29 ·C: 'H

NMR (COCl) li = 1.89 (t. J= 7.8 Hz. 2H). 3.78 (d. J= 7.8 Hz. 4H). 3.90 (5. 3H). 7.24

(m. 3H): llC NMR (COCl) 6 = 23.2. 62.3. 124.9. 129.2. 134.8. 155.4.

Preparation of dithia[3.3]metacyclopbanes: 6.15-di-tert-butyl-9.18-dirne.thoxy-2.11­

dithia(3.3]metacyclophane (120). Typical procedure. A solution of 118 (0.54 g. 2.1

mmo!) and 114 (0.72 g. 2.1 mmol) in 55 mL of benzene was addeddropwise over 10 h

with stirring, to a solution of 0.35 g ofKOH in 250 mLofethanol under Nl . After the

addition was complete the reaction was stirred for additionaJ 6 h. The mixture was then

concentrated on a rotary evaporator. and the residue was dissolved in 50 mL of CHCI).

The: organic layer was washed with two 25-ml ponions of aqueous 10% HCI. dried over

MgSO~ and filtered. The solvent was evaporated on a rotary evaporalor, and the residue

was nash chromotographed on SiDl using CHCIJ-petroleum ether (80:20) 10 give 120 as

a colorless solid (0.38 g. 38%). m.p. 253 _255°C (lit. m.p.257-258 oct' ; IH NMR

(COCl,) 6 = 1.36 (s, 18H), 3.21 (s, 6H), 3.39 (d,J= 13.5 Hz, 4H), 3.79 (d,J= 13.5 Hz,

4H). 7.29 (s, 4H): I)C NMR (CDCI) 6 = 27.0. 31.4, 34.3. 60.7, 127.6, 127.7. 145.9.

156.4: MS mI, (%): 444 (M', 61),4.29 (4), 387 (3), 267 (3), 253 (33), 223 (29), 222 (12),

22\ (38),220(\3),192(33),191 (71), 189(16), 177(18), \76(13), 175(87),165(18).

Compounds 121.122 and 123 were obtained in the same manner as described
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above.

Anti-. and syn.6.tert·butyl.9.18-dimetboxy-2,ll-dithia[3.3]metacydophane (121a

and 12tb). A solution of 115 (0.69 g) and 118 (0.60 g) in 50 mL of benzene was added

to ethanolic KOH (0.32 g in 250 mL) over 16 h. Chromatographic separation on Si01

using CHell-petroleum ether (70:30) gave two compounds in order of increasing polarity:

121a. and 12tb. Anli-6-lert-butyl-9,18-dimethoxy.2,1l-d.ithia[J.3]metacyciophane

(121a) was a colorless solid (0.075 g). m.p. 163-165°C; IH NMR (COCl) 6 = 1.37 (5.

9H). 3.20 (s. 3Hl. 3.27 (s. 3Hl, 3.39 (d, J= 13.5 Hz. 2Hl, 3.42 (d. J = 13.5 Hz. 2Hl, 3.77

(d. J = 13.5 Hz. 2Hl, 3.80 (d.! = 13.5 Hz. 2H). 7.01 «.!= 7.5 Hz. 1H). 7.29 (d.!= 7.5

Hz. 2m, 7.30 (5. 2H); lJC NMR (CDCI]) 6 = 26.3. 27.5. 29.7, 31.4, 34.3. 60.9. 123.7,

127.3. 127.9. 129.0. 130.5. 145.9. 156.6, 158.4: MS mlz (%): 388 (M" 59). 373 (4), 331

(3).253 (13).223 (13),221 (25),220 (11), 207 (13), 192 (13), 191 (43), 175 (74); 1IRM5

M' 388.1520, caJcd for CU H2a0 1S2 388.1529. Syn-6-1ert-butyl-9.18-dimethoxy.2,ll.

dithia(3.3]metacydophane (l2lb) was a colorless. glassy oil which solidified after

refrigeration to give a colorless solid (0.35 g). m.p_ 107·108 DC; lH NMR (CDCI) 6 =

1.19 (s. 9H), 3.35 (d.!= 14.7 Hz. 2H). 3.51 (s, 3H), 3.52 (s, 3H), 4.41 (d.!= 14.7 Hz.

2H), 6.64 (t. J =7.5 Hz, 1H), 6.95 (d, J =7.5 Hz, 2H), 6.97 (s, 2H); "c NMR (CDCI,) 0

= 14.2.30.1,30.5,31.2,34.2,62.2.124.5, 126.5, 129.2, 129.5, 130.7, 145.6, 155.0.

157.0; MS mI, (%) 388 (M-, 79),373 (5), 331 (4),253 (16). 223 (17). 221 (29),220 (16),

207 (15),197 (13),192 (19),191(60),177 (13),176(13),175 (83); IIRMS M-388.1515,

calcd for c,.,2H2I0 2S1 388.1529.
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Anti-, and syn-9,l8-dimethoxy-2,l1-dithia(J.3Jmetacyciopbane (122&, 122b). A

solution of 115 (0.33 g) and 119 (0.23 g) in 60 mL of benzene was added toethanolic

KOH (0.73 g in 150 roL) over 8 h, and the reaction was stirredovemight. PLC separation

using CHCIJ gave two compounds in order of increasing polarity: 122a and 122b. Anti­

9,18--dimethoxy.2.11-dithia[3.3]metacyclopbane (122a) was a colorless solid (36 mg.

10%). m.p. 248-250 °C; IH NMR (CDCI) a=3.26 (s. 6H), 3.43 (d. J =13.5 Hz. 4m.

3.80 (d, J =13.5 Hz, 41i), 7.04 (t, J =7.5 Hz, 21i), 7.30 (d, J =7.5 Hz, 41i): "c NMR

(CDCIJ) a=26.9. 61.2. 123.8, 128.8, l30.7. 158.7; MS rnlz:(%): 332 (M" 43), 197 (19).

167 ('6),165 (25),15' (15), 136 (12),135 (40),134 (27),12' (29), 119 (27) 105 (44):

HRMS M'" 332.0903. calcd for CIIH2002SZ 332.0905. Syn.9,lS-dimetboxy-2,ll­

dithia(3.Jlmetacyciophane (l22b) was a colorless solid (136 mg, 36%). m.p. 220-223

°c: IH NMR(CDCI) 6 =3.37 (d, J= 14.7 Hz, 4H), 3.52 (s. 6H). 4.42 (d. J= 14.7 Hz.

4H), 6.64 (t, J= 7.8 Hz, 2H). 6.97 (d. J = 7.8 Hz, 4H); HC NMR (CDCl l ) a=30.2. 62.2.

'24.2,129.6, '30.6, 157.0: MS mI, (%): 332 (M', 1(0),298 (3), 198 (5),197 (48),167

(35), .66 (16), 165 (47), .64 (28), .51 (20), 136 (32),135 (79), .34 (52), 133 (56), .21

(42). 119 (36). HRMS M'" 332.0896. calcd for CIIH200ZSZ 332.0905.

6-tert-Butyl-9-methoxy-2,ll..clithia[3.3]metacyclopbane (123). A solution of 116 (0.63

g. 2.5 mmol) and 11S (0.65 g. 2.5 mmol) in 50 mL of benzene was added to ethanolic

KOH (300 rnL) over 6 h. The reaction mixture was stirred for an additional 2 h before

work-up. The crude product was flash chromatographed on SiOz using CHCI)-petroleum

ether (80:20) [0 give 123 as a colorless solid (0.66 g), wnich could be crystallized from
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hexane-benzene (10:1) to give needles (0.45 g. 51%), m.p. 177-178 ·C (lit. m.p. 182.5­

183 GOllD: IH NMR (CDCI3) 6 =1.12 (5. 9H). 3.47 (d. J= 14.1 Hz. 2H). 3.67 (d. J =

14.7 Hz. 2M), 3.69 (5. 3H). 3.77 (d.J= 14.7 Hz. 2H). 4.23 (d.l= 14.4 Hz. 2H), 6.88 (m.

21{), 6.94 (5. 2H). 7.03 (br, II{); IlC NMR (CDCl) 6 = 31.1. 31.3. 34.1. 37.9. 62.1. 126.4.

126.6.128.6. 129.3. 130.1. 137.8. 146.4. 154.1.

15-Brom0-6-tert-butyl-9-melboxy-2,11-dithia[3.3]metacyclopbane (124). A solution

of 117 (1.44 g. 4.26 mman and 118 (L09 g. 4.26 mmal) in 230 mLofbenzene was added

dropwise to an ethanoljc KOH solution (510 mL) over 16 h. The crude product was

chromatographed on SiD! using CHCldJetroleum ether (80:20) to give 124 as a colorless

solid (0.61 g. 58%), which was crystallized from hexanelbenune (1:1), m.p. 212-214 DC

(lit. m.p. 218-219 °0100
•

2.7-Di-lerl-butyI4,5,g,10-tetrahydropyrene (127). Typical Procedure. A solution or

120 (97 mg. 0.22 mmo!) in 4.5 mLoftriethylphosphile in a quartz tube was irradiated al

254 nm wilh stirring under AI for Ig n. llle triethylphosphiu: was removed by vacuum

distillation. me crude prodUCl dried under vacuum and then cnromalographed by PLC

using CHCldlt;lrOleum emer(I:9) to give 127 as a colorless solid (39 mg. 56%), m.p.

232-233 ·C (Iil. m.p. 234-235 .C)IOI; IH NMR (CDC!) <') =1.34 (5. 18H). 2.87 (5, 8H),

7.07 (5. 4H); UC NMR (CDCI) <') = 28.7, 31.5, 34.5. 122.8. 128.1. 134.6, 149.6; MS mlz

(%),318 (M', 79), 304 (26), 303 (100), 273 (8), 205 (8), 203 (8), 202 (7), 144 (28).

2-lerl-ButyI4,5.9.10-tetrahydropyrene (128). A solution of 121 (0.16 g. 0.44 mmol)

in 4.5 mLof lrielhylphosphite was photolyzed as above for 18 h. After work-up, the crude
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product was chromatographed by PLC using CHCI~-petroleumether (20:80) to give 128

as a colorless solid (26 mg. 22%). m.p. 94-95°C (lit. m.p. 108_109.5°C)IOI: DC NMR

(CDCI) &= 28.4, 28.6. 31.4. 34.6. 122.9, 125.6, 125.8. 126.6. 128.1. 130.6. 134.9. 135.1,

150.1.

Alternatively. 128 (25 mg. 34%) was also obtained from the photolysis of 123

(110 mg, 0.284 mmol) in 4.0 mL oftriethylphosphite.

4,S,9,IO-Tetrahydropyrene (129), A solution of 122 (0.15 g, 0.35 mmol) in 4.5 mL

triethylphosphite was photolyzed as above for 18 h. After work-up. the crude product was

purified by PLC using CHCI)-petroleum ether (20:80) to give 129 as a colorless solid (15

mg. 33%). m.p. = 132-134 °C (lit. m.p. 136-138 °C)IOI; IH NMR (CDCl l ) is =2.88 (s.

8H) and 7.53 (m. 6H): llC NMR (CDCl l ) &= 28.3. 125.9. 127.0. 130.6. 135.4: MS m/z

(%), 206 (M., 100).

Photolysis of (124). A solution of 124 (0.15 g. 0.35 mmol) in 5.0 ml of triethylphosphite

was photolyzed as above for 6 h. After work-up. the crude product was chromatographed

by PLC using CHell-petroleum ether (20:80) to give three fractions in increasing order of

polarity in the following amounts: 2 mg. 6 mg and 20 mg. None of the spectra!

characteristics of these products was consistent with those anticipated for 2-bromo-7-ten­

butyl-4.5.9,ID-tetrahydropyrene. These products were not funhercharacterized.

Oxidation of 127 with DDQ. Typical procedure. A solution of 127 (65 mg. 0.20

mmol) and 116 mg ofDDQ in 25 mL of benzene was refluxed for 8 h. After cooling, the

reaction mixture was filtered through a shon Aorisil column eluted with benzene. The
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solvent was evaporated to dryness on a rotary evaporator to give 62 mg (97%) of2,7-di­

terl-butylpyrene. which. after crystallization from hexane. afforded pale yellow crystals

mp 204-206 .,c (lit. m.p. 210-212 0C)lDl. In a similar manner. 2-tert_butylpyreneIOI

and pyrene were obtained from 128 and 129. respectively.

2,4.Bis(mercaptomethyl)-I·methoxynaphthalene (131). To a solution of 0.85 g (2.5

mmol) of 2,4-bis(bromomemyl)-I-metholl:ynaphthalene (22) in 50 mL of DMSOwas

added 0.47 g (0.21 mmol) of thiourea. with stirring. under N!. After 6 h at n. the reaction

was quenched by pouring the mixture into a cold aqueous 10% solution of NaOH (50

mL). The mixture was stirred at rt for 2 h. after which it was cooled to 0 °c and acidified

by addition of aqueous 4M He!. The reaction mixture was extracted twice with two 30­

mL portions of CH!CI!. The organic layers were combined and washed with two 20-mL

portions of water. The organic layers were combined and dried over anhydrous MgSO~

and filtered. and the solvent was evaporated on a rotary evaporator. The crude product

was flash chromatographed on SiO! using CHzClz-petroleum ether (40:60) to give 0.45 g

(1.8 mmol. 73%) of 131 as an oil; 'H NMR (CDCI) 6 =1.89 (t, J =6.9 Hz, IH). 1.92 (t,

J=7.5 Hz. \H). 3.92 (d.J=7.5 Hz. 2H).3.99 (s. 3H).4.15 (d. J=6.9 Hz. 2H). 7.42 (s.

IH), 7.55 (m. 2H), 8.03 (m. IH). 8.13 (m, IH); DC NMR (CDCI) 6 =23.0. 26.4, 62.7.

\23.1.124.\.\26.2,126.4. \27.7. 128.6.\29.0.131.4,133.5.152.8: MS mI,(%): 25\

(M"+\. 5), 250(M" 35). 218 (15). 217 (100). \84 (10). \83 (32).17\ (10), 154(10). [41

(18).115 (15); HRMS: M· 250.0486. caJcd for CI)HI~OS! 250.0485.

Base-mediated coupling of 22 with 131. To a solution of ethanolic KOH (398 mg in 250
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mL of95% ethanol) was added a solution of 22 (610 mg. 1.78 mmal) and 131 (445 mg.

1.78 mma!) in 110 mLofbenzene. dropwise over 12h under Ar at It.. The reaction was

stirred for an additiona124 h. after which the reaction solvent was evaporated on a rotary

evaporator. The residue was dissolved in SO mL of CH1CI!. and the organic solution was

washed with twO 25·mL portions of aqueous 10% Hel. The organic layers were

combined and dried over anhydrous MgSO.l and filtered. and the solvent was evaporated

on a rotary evaporator. The crude product was flash chromatographed on SiOl using

CHzCl1-petroleum ether (40:60) to give 0.711 g (1.65 rnmol, 91 %) of a mixture of isomers

132 and 133. A small amount of S,16.-dimethoxy-Z,13-ditbia[3.3](l.J)·

naphtbalenophane (132) was obtained in a pure enough state from repeated PLC

separation using (CH1Cl2-peuoleum elher 40:60) to be characterized. m.p. 191-193°C: IH

NMR (CDCIJ 6 = 3.82 (s. 611). 4.02 (s, 411), 4.18 (s, 41{), 7.21 (s, 2H), 7.26 (m. 41{),

7.80 (m. 2H). 7.99 (m. 2M); IlC NMR. (CDCIJ 6 =3l.6. 35.9, 62.2.122.1,124.3. 124.5,

125.2,125.4, 127.7, 13l.0, 131.2, 152.8;MS mk('I»; 433 (M·+I, 16), 432 (M·, 48), 247

(111,216 (111, 215 (35), 201 (10), 186 (17), 185 (100),183 (14), 172 (7), 171 (23), 170

(25), 154 (11),153 (13), 141 (25), 139 (11),129 (II), 128 (II).

The mixture consisting of 132 and 133 could not be funher separated using either

flash chromatography or PLC and was used as a mixrure directly in the subsequent

photolytic step.

Transoid.oGnti-4.14.dimethoxy~{2.2](I,3)Daphtbalenopbane (134) and Cisoid.anli­

4.18~thoxy~{2.2](l,3)Daphthalenophane(135). A solution of the mixrure of 137
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and 138 (ISO mg, 0.35 mmol) obtained as described above. in 3.5 mL of

trimethylphosphite in a quanz tube was irradiated at 254 nm with stirring and under Ar

for 24 h. The trimethylphospltite was removed by vacuum distillation. the yellow residue

dried under vacuum and then chromatographed by PLC (CH!Cl~-hexane 45:55) to give

two fractions. in order of increasing polarity: 134 and 135. Transoid-anti-4.14­

dimethoxy[2.2](1,J)naphthaJenophane (134) was obtained as a colorless solid (21 mg.

15%). m.p. 230-233 DC: 'H NMR (CDCIJ) 6 = 2.00 (m, 2H), 2.24 (m. 2m. 3.72 (m. 2H).

3.95 (m. 2H), 4.10 (s, 6H). 4.51 (s. 2H). 7.52-7.55 (m. 4H), 8.15 (rn. 4H), 8.23 (m. 2H):

lJC NMR (CDCI) a =33.1, 35.2. 63.0. 123.0. 123.7, 125.2. 125.4. 128.7. 129.5. 131.9.

[36.3. [52.5; MS mlz (%),369 (M·+I. 2[). 368 (M'. 53). 367 (26). 354 (16). 353 ([2).

352 (55).339 (16).336 (28). 335 ([8). 32[ ([2).307 (7).184 (20).183 (100). 169 (17).

155 (28). 141 (58). 115 (57): HRMS M" 368.1777, calcd for Cu,HHO! 368.1775. Cisoid­

anti-4,18-d.imethoxy[2.2](1,J)naphthalenophane (135) was obtained as a colorless

solid. which was further purified by PLC using ethyl acetate-petroleum ether (I :9) to

give 28 mg (22%) of 135. m.p. 189-191 DC: 'H NMR (CDCI]) cS =2.01 (d. J = 10.0 Hz.

2H). 2.16 (d. 1=9.0 Hz. 2H). 3.72 (d. 1 =9.0 Hz. 2H). 3.97 (d.l= 10.0 Hz. 2H). 4.08 (s.

6H), 4.45 (5, 2H), 7.52-7.55 (m. 4H), 8.20 (m, 2H); lJC NMR (CDCI)) cS =33.6. 34.7,

63.0. 123.0. 123.5. 125.3. 125.4. 127.4. 128.7. 130.7. 132.0. 136.2. 152.3; MS mlz (%),

368 (M·. 86). 353 (56), 340 (17),339 (17), 338 (24). 337 (17). 337 (63), 322 (8), 321 (9).

306 (12), 184 (44), 183 (99), 169 (26). 155 (22),154 (52), 153 (34), 152 (34), 144 (10),

141 (62); HRMS M" 368.1765. calcd for Cu.H2.02 368.1775.
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Bromomethylatioo and iotumolecu1ar Diets-Alder reaction of 3-{bydroxymethyl)...2.

naphthol. To a solution of 56 (1.17 g. 6.72 mmol) and pacaformaJdehyde (0.41 g. 13

mmol) in acetic acid (20 mL) was added a solution of 15% IiBr in acetic acid (20 mL)

dropwise at rt under At. The reaction mixture was stirred at rt for 24 h. The reaction

mixture was worked-up by adding 70 mL of CH1Cl l • and the mixture was washed several

times with Hp and finally with SO mL of saturated aqueous NaHCO)o The organic layer

was separated and dried over anhydrous MgSO.., filtered and the salven[ was evaporated

on a rotary evaporator. The crode product was purified by column chromatography using

CH1Clz-petroleum ether (50:50) to give 138 as a yellow crystalline solid (0.60 g. 20%

yield). A sample was crystallized from CHeI J • m.p.175-180 dec.; LR. (CHCI). em-I):

1693.1626.1507.1449,1401. 1246, 1210: IH NMR(CDCIJ lS = 2.18 (m, 1m, 2.62 (m.

IHl.2.87(m.IHl.3.17(m.IHl.4.04(d.J=9.9Hz.IHl.4.S6(<l.J=9.9Hz.IHl.4.62

(<l.J=9.6 Hz. IHl. 4.96 (d. J= 9.6 Hz. IHl. 7.39 (m. 3Hl. 7.46 (s. IHl. 7.49 (m. 2H).

7.76 (s. 2H), 7.95 (d.J= 7.5 Hz, IH); IlC NMR(COC1) l) = 18.4.27.7.30.1. 33.1. 83.0.

113.1.121.9.123.8,126.3. l26.6. 126.9. 128.3. 128.4. 128.5. 128.6. 128.9. 129.7, 131.0.

131.6.132.8.141.7. 142.3. 145.2. 198.1; MS m/z ('il) 500 (M•• IOr'IOr• I). 498 (M· .IOr

"Br. 3). 496 (W "Dr "Br. 1).336 (I). 250(18). 249 (38).248 (3). 170(9). 169 (63). 142

(5). 141 (32). 139 (12).115 (17), 78 (100).
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Appendix A

IH NMR SpeClra of Compounds
(in order of compound number)
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Appendix 8

X-Ray Data of compounds
(in order of compound number)
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X·Ray Data For Calix[4]naphthaJene (57). C.wHllO~, triclinic, space group pol (#2), a

=12.688(2) A. b =14.108(4) A. c = 11.955(2) A,. =98.15(2)°, P= 105.56(2)°, Y =

100.80(2)°, Z = 2. D<ak" = 1.278 g/cm3
• Intensity data were measured at 296 K on a

Rigaku AFC6S diffractometer with graphite monochromated Cu-Ka: (J.. =J.54178 A) to

Z6o= (deg) 120.2°; a final R =0.064 for 4487 reflections with 1>2.000(0: R,.. =: 0.063. gar

=4.78.

X·Ray Data For Bis(spirodienone) (78). C-l-lHl&O~. monoclinic. space group P2/n

(#14), a = 13.744(3) A. b = 11.839(5) A. c = 18.438(4) A,. P=94.12(2)°, Z=4. Dale =:

[.378 g/cmJ
• Intensity data were measured at 296 K on a Rigaku AFC6S diffractometer

with graphite monochromated Cu-Ka: (,1. =0.71069 A) to 28mu (deg) 50.1°; a final R =

0.101 for 2061 reflections with 1>2.000(1); R.w =0.088. gof= 3.38.

X·Ray Data For Bis(spirodienone) (Sl). CJf600~.2CHlCN.2CHCI),triclioic, space

group P-! (#2), a= (2.455(4) A, b = 13.527(3) A, c = 9.6046(19) A. II = IOO.216(19t. P

:: 102.082(2)°, y :: 85.77(3)°, Z =1, Dcalc =1.244 g/cml . Intensity data were measured at

296 K 00 a Rigaku AFC6S diffractometer with graphite monochromated CU-Kll O. ::

L54178 A) to 28m.u (deg) 60.08°; refinement on f2, R l = 0.0983 for 3036 reflections with

1>2.00o(n: R2... = 0.3418, gof= 1.328 for all reflections.

X-Ray Data For Transoid-anti-U.22-dimethoxy-2,13-dithia(3.3J(l,3)naphthaJeno..

Phane (101). ~6Hl402S2' triclinic, space group PI (#2), a =8.599(2) A, b = 9.192(2) A,

c = 8.273(2) A, • = 108.68(21", P= 112.54(2)', Y=103.00(2)', Z = I, Da, =1.368 glcm',
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crystal size =0.400 x 0.350 x 0.250 mm. Intensity data were measured at 299 K on a

Rigaku AFC6S diffractometer with graphite monochromated Mo-Ka (). = 0.71069..4..) to

28rnu (deg) = 50.1°; 1853 unique reflections converged to a final R =0.034 for [587

reflections with 1>2.000(I); R.",. = 0.036, gaf =2.62.

X-Ray Data Fo.- S,6.12.13-tetrahydrodibenzo[b,dej]chrysene (lO7). C1~HII' triclinic.

space group P21 (#4). a = 11.229(5) A. b = 15.31(1) A. c =14.338(4) A. P= 105.08(3)°.

z= 6. Oak =1.283 g/ern}, crystal size = 0.400 x 0.400 x O.tOO mm. Intensity data were

measured at 299 K on a Rigaku AFC6S diffractometer with graphite monochromated

Mo-Ko: (A =0.71069 A) to 28..- (deg) =50.1°; 4394 unique reflections converged to a

final R = 0.046 for 2123 reflections with 1>2.000(0; R... =0.030, gof= 1.18.

X-Ray Data For (138). ~HII01Brl' monoclinic. space group P2 1/0 (#14). a = 9.529(4)

A. b = 17.524(8) A. c =12.147(5) A. P=98.82(4t. Z =4. 0<:U< =1.651 g/cmJ
• crystal

size = 0.400 x 0.300 x 0.120 mm. Intensity data were measured at 299 K on a Rigaku

AFC6S diffractometer with graphite monochromated Mo-Ka: (A = 0.71069 A) to 28......

(deg) = 50. 1°; 3913 unique reflections converged to a final R = 0.04-7 for 1946 reflections

with 1>2.ooocn; R... = 0.032. gof = 1.65.
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