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SUMMARY

Mitotic segregation of chromosomes requires pre-
cise coordination of many factors, yet evidence is
lacking as to how genes encoding these elements
are transcriptionally controlled. Here, we found that
the Pygopus (Pygo)2 chromatin effector is indispens-
able for expression of the MYC-dependent genes
that regulate cancer cell division. Depletion of
Pygo2 arrested SKOV-3 cells at metaphase, which
resulted from the failure of chromosomes to capture
spindlemicrotubules, a critical step for chromosomal
biorientation and segregation. This observation was
consistent with global chromatin association find-
ings in HeLa S3 cells, revealing the enrichment of
Pygo2 and MYC at promoters of biorientation and
segmentation genes, at which Pygo2maintained his-
tone H3K27 acetylation. Immunoprecipitation and
proximity ligation assays demonstrated MYC and
Pygo2 interacting in nuclei, corroborated in a heterol-
ogous MYC-driven prostate cancer model that was
distinct from Wnt/b-catenin signaling. Our evidence
supports a role for Pygo2 as an essential component
of MYC oncogenic activity required for mitosis.

INTRODUCTION

Chromosomal biorientation, required for segregation, occurs

by a search-and-capture mechanism whereby spindle microtu-

bules emanating from the centrosomes attach to sister kineto-

chores (Foley and Kapoor, 2013; Tanaka, 2013, 2010; Tanen-

baum and Medema, 2010). This mechanism relies on the

Knl-1/MIS12/NDC80 (KMN) network, which facilitates physical

contacts between spindle microtubules and centromeric DNA

(Varma and Salmon, 2012). In addition to search and capture,

other mechanisms exist to efficiently drive biorientation. For

example, the kinetochore protein TPX2 associates with nucle-

ating microtubules that aid in spindle-kinetochore capture

(Katayama et al., 2008). Another major driver of microtubule-

kinetochore interaction and capture is the Regulator of Chromo-
1516 Cell Reports 23, 1516–1529, May 1, 2018 ª 2018 The Author(s)
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some Condensation 1 (RCC1)-mediated RanGTP concentration

gradient that exists around mitotic chromosomes to promote

microtubule nucleation (Kalab and Heald, 2008). Moreover,

several families of serine-threonine kinases, including the Aurora

Kinases (AurKs) and the Polo-like kinases (Plks), are required for

mitosis and have documented roles in cancer (Degenhardt and

Lampkin, 2010; Goldenson and Crispino, 2015). The AurKs and

Plks are associated with many key mitotic events, such as

mitotic entry, centrosome and kinetochore maturation, kineto-

chore-microtubule attachment, spindle assembly, and cytoki-

nesis (Archambault et al., 2015; Carmena et al., 2009, 2012).

How large sets of genes responsible for mitosis are transcrip-

tionally regulated is a question of biological importance for which

evidence is lacking. One key factor is MYC, a transcriptional mas-

ter regulator of stem cell fate (Fagnocchi and Zippo, 2017) and

cancer cell growth (Dang, 2012, 2013). MYC is a basic helix-

loop-helix leucine zipper protein that heterodimerizeswith its part-

ner MAX and associates with E-box elements in promoter regions

of genes leading to transcriptional activation (Blackwood and

Eisenman, 1991). MYC is associated with the enhancers/pro-

moters of most active genes in malignant cells, with the overall

outcome of aberrantMYC expression being transcriptional ampli-

fication that drives tumor growth (Lin et al., 2012; Nie et al., 2012).

MYCactivates the expressionof essentialmitotic genes, including

RCC1 and AurKA/B (den Hollander et al., 2010; Tsuneoka et al.,

1997), and plays multiple roles during mitosis to ensure cell

division and mitotic cell fate (Annibali et al., 2014; Topham et al.,

2015). Understanding MYC regulation and function, conse-

quently, has been a major focus in tumor biology research (Dang

et al., 2017; Meyer and Penn, 2008; Whitfield et al., 2017).

In this study, we present evidence supporting a requirement of

the Pygopus (Pygo) protein for MYC-dependent activation of

mitosis-related genes. Pygo was originally described as a dedi-

cated component of the Wnt/b-catenin transcription complex

(Kramps et al., 2002; Parker et al., 2002; Thompson et al.,

2002), with two Pygo orthologs in mammalian cells. Pygo1 is

dispensable for normal murine development (Schwab et al.,

2007), and its potential role in cancer is not yet identified.

Pygo2, on the other hand, is of interest, given its elevated expres-

sion and utilization for malignant growth in a number of different

cancers (Andrews et al., 2007; Liu et al., 2013; Popadiuk et al.,

2006; Zhang et al., 2015; Kao et al., 2017). At actively transcribing
.
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Figure 1. Pygo2 Depletion Disrupts Spindle-

Kinetochore Alignment in Early Metaphase

Cells

(A) Immunoblots demonstrate a reduction of Pygo2

protein in SKOV-3 cells that were treated with a

non-targeting siRNA (siNTC) or two Pygo2-specific

siRNAs (siPy2-1 and siPy2-2); b-actin was used to

as a loading control.

(B) Pygo2-depleted SKOV-3 cells co-stained with

a-tubulin and phospho-histone H3 (p-HH3).

Pygo2-depleted cells resulted in a significant

accumulation of cells in metaphase, consistent

with a mitotic delay (***p < 0.001; NS, not signifi-

cant).

(C) Top panel: confocal images of SKOV-3 cells

co-stained with a-tubulin and p-HH3 (scale bars,

5 mm). Bottom panel: quantification of observed

mitotic defects, showing an increased number of

defects inPygo2-depletedSKOV-3cells (**p<0.01).

(D) Confocal images of Pygo2-depleted SKOV-3

cells at early metaphase co-stained with anti-

centromere antisera CREST (centromeres) and

a-tubulin (spindle) and g-tubulin (spindle poles)

(scale bar, 5 mm).

Bar graphs represent averages ± SEM. See also

Figure S1.
genes, Pygo2 binds specific histone marks of activation such as

H3K4me3,where it recruits histoneacetyltransferase (HAT) activ-

ity, which promotes an open euchromatic structure (Andrews

et al., 2009; Chen et al., 2010; Fiedler et al., 2008). In cancer,

Pygo2 participates in the expression of highly transcribed

RNAs essential for DNA replication and cell-cycle progression

(Andrews et al., 2013; Gu et al., 2012). These observations raised

the possibility that Pygo2 acts epigenetically as a transcriptional

‘‘euchromatic switch’’ in deregulated cell growth and division,

such as in mammary tumor initiation (Watanabe et al., 2014).

We identified an interaction between Pygo2 and MYC and,

through genome-wide analysis, discovered that they were

associated with a common subset of genes that facilitate

chromosome biorientation and segregation. While independent

of canonical Wnt signaling, the established function of Pygo2

as a critical chromatin effector was corroborated by its ability

to maintain acetylation of H3K27 at the enhancers/promoters

of key MYC-target genes that promote interactions between

chromosomes and spindle microtubules. Thus, in addition to

its role in Wnt/b-catenin signaling, Pygo2 acts as an epigenetic

accessory protein, utilized in a MYC-dependent transcriptional

program controlling genes critical for cell division.

RESULTS

Pygo2 Depletion Disrupts Spindle-Kinetochore
Recognition and Chromosome Biorientation
Deprivation of Pygo2 in the p53 null SKOV-3 epithelial ovarian

cancer cell line caused cell-cycle arrest (Popadiuk et al., 2006),

with an accumulation of cells in G2/M (Andrews et al., 2013).

Similar G2/M accumulations resulting from Pygo2 depletion
were found in several other p53 null cell lines, including PC3

prostate cancer cells (Figure S1A). To examine the possible

role of Pygo2 in cell division, we compared the mitotic profiles

of SKOV-3 cells treated with two small interfering RNAs (siRNAs)

targeting Pygo2 (siPy2-1 and siPy2-2; Figures 1A and S1B),

along with a non-targeting siRNA control (siNTC).

Immunofluorescent staining, using anti phospho-histone H3

(p-HH3) and a-tubulin antibodies to mark mitotic cells, revealed

that Pygo2 depletion significantly increased the proportion of

metaphase cells with a corresponding decrease of cells in pro-

phase (Figure 1B). Moreover, Pygo2-depleted cells displayed

defects in which mitotic spindles appeared abnormal and the

chromosomes failed to line up at metaphase plates (Figure 1C).

It appeared that the chromosomes were not efficiently captured

by spindle microtubules, resulting in chromosome biorientation

defects.

To exclude the possibility of defective mitotic spindle microtu-

bules, cells were stained for a- and g-tubulin, which are localized

at the centrosomes and are required for microtubule nucleation

(Kollman et al., 2011). In Pygo2-depleted cells, g-tubulin was

largely unaffected, compared to the control-treated cells. The

spindle microtubules, however, were abnormally long and coin-

cided with misaligned chromosomes (Figure S1C). While there

was no change in the centrosomal localization of AurKA or

active, phosphorylated AurKA (P-T288), an overall decrease in

staining intensity was observed in both AurKA and AurKA

P-T288 in Pygo2-depleted cells (Figure S1D).

To examine chromosome capture, we assessed the localiza-

tion of spindle microtubules with respect to centromeres using

a-tubulin and anti-centromere (CREST) antibodies (Figure 1D).

In Pygo2-depleted cells, spindle microtubules failed to align
Cell Reports 23, 1516–1529, May 1, 2018 1517



Figure 2. Pygo2 Is Essential for Mitotic Gene

Expression

(A) Genomic distribution of significant Pygo2 ChIP-

seq peaks.

(B) Average binding profile of Pygo2 at TSS (±3 kb).

(C) Functional enrichment analysis of biological

processes associated with Pygo2 ChIP-seq genes

(TSS ±2 kb). Note enrichment of genes involved in

cell cycle and mitosis (marked with an asterisk).

(D) Depletion of Pygo2 in HeLa S3 cells followed by

qRT-PCR validates RNA expression of Pygo2 and

15 candidate Pygo2 target genes with ascribed

function in chromosome biorientation and cell

division.

(E) HeLa S3 cells were treated with control siRNAs

(siNTC) or Pygo2 30 UTR-specific siRNAs (siPy2-1).

Co-transfected rescuing plasmids include empty

pCS2 plasmid (EV), pCS2-Pygo2WT coding region

(WT), or pCS2-Pygo2 Y327A (H3K4me3 binding

mutant; Y327A). Immunoblots were performed to

assess the relative expression of Pygo2 (exoge-

nous + endogenous); b-actin was used as a loading

control.

(F) qRT-PCR analysis was performed to assess the

relative rescuing ability of Pygo2 (WT) and Pygo2

Y327A (Y327A) on select cell division genes

(CDCA3, INCENP, OIP5, and RCC1). Relative

levels of endogenous Pygo2 mRNA (endo) were

detected using primers that amplify the 30 UTR of

Pygo2. The graph represents qRT-PCR values that

were normalized to both the control siRNA (siNTC)

and empty pCS2 plasmid (EV).

Bar graphs represent averages ± SD. *p < 0.05;

**p < 0.01; ***p < 0.001; ****p < 0.0001; NS, not

significant. See also Figure S2 and Table S1. Error

bars represent SD.
with centromeres in the normal perpendicular orientation, which

was seen in cells transfected with the siNTC control. Similar

results were obtained upon examination of the inner centromere

protein (INCENP) (Figure S1E), which is essential for the capture

of the mitotic spindle by the kinetochore during mitosis (Car-

mena et al., 2012). Overall, these observations suggested that

depletion of Pygo2 caused inefficient chromosome capture.

Enrichment of Pygo2 at Transcriptional Start Sites of
Genes Required for Cell Division
Since Pygo2 is excluded from mitotic chromatin (Andrews et al.,

2013) and the expression of at least one candidate, AurKA, was
1518 Cell Reports 23, 1516–1529, May 1, 2018
affected by loss of Pygo2, we hypothe-

sized that mitotic gene transcription is

dependent on Pygo2. Chromatin immuno-

precipitation sequencing (ChIP-seq) was,

therefore, used to assess genome-wide

association of Pygo2 with chromatin in

HeLa S3 (S3) cells, since significant

ChIP-seq in silico data exist for S3 cells

from other chromatin studies. We found

that 19% of peaks representing the most

significant Pygo2 gene associations

were within 3 kb of transcriptional start
sites (TSSs), with Pygo2 enrichment occurring at promoter re-

gions approximately 70 bp upstream (Figures 2A and 2B).

Consistently, functional enrichment analysis of genes at TSSs

using DAVID (Huang et al., 2009), revealed significant biological

processes associated with cell cycle and mitosis (Figure 2C).

To corroborate the aforementioned in silico data, we depleted

Pygo2 from S3 cells and performed RNA sequencing (RNA-seq).

Comparison of differentially expressed genes using a control

siRNA and two Pygo2-targeting siRNAs identified 287 upregu-

lated and 92 downregulated genes (Figures S2A–S2D; Table

S1). Gene ontology (GO) analysis revealed that upregulated

genes were associated with cell proliferation and cell adhesion,
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while downregulated ones were associated with mitosis and cell

cycle (Figures S2E and S2F), consistent with ChIP-seq results.

Notably, many of the genes that promote attachment between

kinetochores and mitotic spindle microtubules (Katayama

et al., 2008; Moore et al., 2002; Varma and Salmon, 2012) were

sensitive to the loss of Pygo2 (Figure 2D), consistent with

observed chromosome biorientation defects (Figure 1).

To confirm siRNA targeting specificity, Pygo2 was depleted in

cells using an siRNA targeting the 30 UTR of pygo2 (siPy2-1) and

rescued using a plasmid containing the Pygo2 wild-type (WT)

coding region (Figure 2E). Expression of exogenous Pygo2 pro-

tein from this plasmid in the absence of endogenous Pygo2

mRNA resulted in the restoration of the expression of the mitotic

genes CDCA3, INCENP, OIP5, and RCC1 (Figure 2F). Thus,

exogenously expressed Pygo2mitigated the loss of endogenous

Pygo2, confirming RNAi specificity.

We also assessed the role of the association of Pygo2 with

H3K4me3 on Pygo2-responsive genes by co-expressing a

H3K4me3 binding mutant of Pygo2 with the 30 UTR targeting

siRNA (Figure 2E, Y327A; Gu et al., 2009). While expression of

most Pygo2-responsive genes could not be rescued with

Pygo2 Y327A (Figure 2F), a minor but significant rescue of

INCENP expression suggested that INCENP may not fully rely

on Pygo2-H3K4me3 binding. Thus, Pygo2-H3K4me3 binding is

important for expression of many, but not necessarily all,

Pygo2-responsive genes.

Pygo2 Interacts with MYC in Cancer Cells
Several of the Pygo2 responsive genes such as AurKA and

RCC1 (Figure 2D), are established MYC targets (den Hollander

et al., 2010; Tsuneoka et al., 1997); therefore, Pygo2 and MYC

may associate to regulate similar sets of genes. ChIP-seq

public-domain (encyclopedia of DNA elements [ENCODE])

data for MYC binding in S3 cells were compared with data

obtained for Pygo2 to ascertain an in silico association. We

identified an overlap of approximately 60% of Pygo2-enriched

TSSs that were co-occupied by MYC (Figure 3A). Furthermore,

motif enrichment analysis of chromatin-associated Pygo2

revealed the presence of MYC E-box binding motifs

(Figure 3B).

Evidence for a physical interaction between Pygo2 with MYC

was obtained by co-immunoprecipitation of exogenously ex-

pressed Pygo2 and MYC proteins in S3 cells (Figure 3C). This

finding was corroborated in HEK293 cells co-transfected with
Figure 3. Pygo2 Interacts with MYC in Cancer Cells

(A) Comparison of MYC and Pygo2 binding within ±2 kb of TSSS, revealing appr

(B) DREME motif analysis of Pygo2-associated genes revealed the presence of E

(C) Pygo2 andMYC interact in HeLa S3 cells. Cells were co-transfected with Pygo

sera or Pygo2 antisera. IgG, immunoglobulin G.

(D) Pygo2 and MYC interact in HEK293 cells that were co-transfected and immun

with myc and Pygo2 antibodies.

(E) GST-pull-down analysis indicating MYC interaction with the N-homology dom

proteins.

(F) GST-pull-down demonstrating interaction of the Pygo2 NHD with the C-termi

(G) Pygo2 and MYC interact specifically in the nuclei of transformed cervical cells

Pygo2 rabbit monoclonal antibody (33F6) (**p < 0.0001; NS, not significant) reve

(H) Pygo2 and MYC interact specifically in the nuclei of transformed prostate cel

Scale bars, 5 mm. *p < 0.05; **p < 0.0001; NS; not significant. See also Figure S3
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Pygo2 and myc-tagged (MT) MYC, by performing forward and

reverse immunoprecipitations (Figure 3D). Similarly, in vitro

glutathione S-transferase (GST) pull-downs identified an interac-

tion between the N-terminal homology domain (NHD) of Pygo2

and the C-terminal half of MYC (Figures 3E and 3F), containing

the DNA binding and MAX dimerization domains (Blackwood

and Eisenman, 1991).

Sub-cellular localization of exogenous, as well as endoge-

nously expressed, proteins was visualized in the nuclei of S3

cells (Figures S3A–S3C). Elevation of MYC by overexpression

or proteasome inhibitors such as MG132 caused nucleolar

accumulation (Arabi et al., 2003). Similarly, MG132 increased

co-localization in the S3 cells of both MYC and Pygo2 to nucle-

olar regions (Figure S3B) as demonstrated previously (Andrews

et al., 2013; Arabi et al., 2005; Grandori et al., 2005), suggesting

the accumulation of MYC/Pygo2 complexes at sites of rRNA

transcription.

Pygo2 expression is essential for the growth of cervical

(Tzenov et al., 2013) and prostate (Kao et al., 2017) cancer cell

lines. Consistently, Pygo2 and MYC levels were elevated in

nuclei of cervical and prostate cancer cells, as compared to

that of normal epithelial cells (Figure S3C). Proximity ligation

assays (PLAs), which demonstrate in situ protein interactions

(Söderberg et al., 2006), identified a significant increase in

nuclear MYC/Pygo2 interactions in cervical cancer cells (Figures

3G and 3H; HEN16T and HeLa S3), as compared to normal

human endocervical (HEN) cells (Figure 3G). Similarly, we found

significantly more interactions in prostatic primary tumor

cells (22RV1) as compared to normal prostate epithelial cells

(PrECs), but fewer than in metastatic prostate tumor cells

(DU145 and PC3). The observations that Pygo2 and MYC

interact most frequently in metastatic cell lines suggested

that the MYC/Pygo2 interaction correlates with disease

aggressiveness.

The Pygo2/MYC Interaction Is Distinct from Canonical
Wnt Signaling
Many mitogenic pathways converge to amplify MYC expression

in cancer, including canonical Wnt signaling (Dang, 2012). Pygo2

is a component of the active Wnt/b-catenin complex, which also

activatesmyc transcription (Chen et al., 2010; Gu et al., 2012; Liu

et al., 2013; Talla and Brembeck, 2016; Zhou et al., 2016). It is

possible that in our Pygo2-depletion experiments, loss of

MYC-dependent cell division proteins was indirectly due to
oximately 60% overlap of genes associated with Pygo2 and MYC.

-box motifs.

2 andMYC, and immunoprecipitations were performed with either pre-immune

oprecipitated (IP) with MT-myc and Pygo2. Immunoblots (IB) were performed

ain (NHD) of Pygo2. Membranes were stained with Ponceau S to visualize GST

nal amino acids (aa) 221–430 of MYC.

(16T and S3) relative to primary (HEN) cells using Pygo2 antisera (S3I4) and a

aled by proximity ligation assay (PLA).

ls (22RV1, DU145 and PC3) relative to primary prostate epithelial (PrEC) cells.

.
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the attenuation of Wnt/b-catenin-mediated gene activation,

including myc itself, rather than the interaction between Pygo2

and MYC. To investigate this possibility, we assessed the effect

of Wnt signaling on mitotic gene expression and on the MYC/

Pygo2 interaction.

Analysis of Pygo2 ChIP-seq data with public datasets for

H3K4me1, H3K27Ac, H3K4me3, and RNA polymerase II

(Pol II) confirmed Pygo2 association with upstream enhancer

sequences of themyc gene in S3 cells, as expected (Figure 4A).

To determine the effect of Wnt signaling on mitotic gene

expression, we treated cells with LiCl (Klein and Melton, 1996)

or Wnt3a conditioned media (WCM; Willert et al., 2003). Both

LiCl and WCM resulted in a modest increase in MYC mRNA

and protein expression at early time points (0.5 to 2 hrs Figures

4B and 4C). A robust increase in AXIN2 mRNA was observed at

later time points (2 to 4 hr; Figures 4B and 4C), confirming the

ability of S3 cells to respond to Wnt signal transduction. The

expression levels of AURKA, BOD1, B23/NPM1, and RCC1 in

response to Wnt/b-catenin activation were unchanged or

modestly reduced (Figures 4B and 4C), indicating that MYC/

Pygo2-dependent gene activation is not concomitant with

Wnt signaling in S3 cells.

We next investigated the in situ association of Pygo2 with

b-catenin or MYC in response to Wnt using PLAs (Figures

4D and 4E). Few b-catenin/Pygo2 associations were detected

in the nuclei of both the unstimulated control NaCl or L-cell-

conditioned-media (LCM)-treated cells (Figures 4D–4G). In

the LiCl- and WCM-treated cells, there was a significant

increase in the number of b-catenin/Pygo2 interactions

detected at the early 1-hr and 0.5-hr time points, respectively

(Figures 4F and 4G; p < 0.0001). At the 4-hr time point, signif-

icantly more b-catenin/Pygo2 nuclear interactions were

detected in the WCM-treated cells (Figure 4G; p < 0.0001).

Thus, Pygo2 associated with b-catenin within 1 hr in LiCl-

and WCM-stimulated cells and for as much as 4 hr in

WCM-treated cells, confirming the responsiveness of S3 cells

to Wnt signaling.

MYC/Pygo2 interactions were largely equally abundant in all

treated cells (Figures 4D–4G). A minor reduction was observed

in the number of interactions at the early time points in both

LiCl- and WCM-treated cells (Figures 4F and 4G), correlating

with the reduction seen in MYC/Pygo2 target genes (Figures

4B and 4C). This observation suggested a transient shift in the

pool of Pygo2 proteins to b-catenin-associated complexes

from MYC complexes in response to Wnt signaling. Taken

together, the aforementioned findings suggested that MYC/

Pygo2 interactions and associated mitotic gene activity do not

result from, and are likely independent of, de novo Wnt-induced

Pygo2/b-catenin complexes.
Figure 4. MYC/Pygo2 Interaction Is Independent of Active Wnt/b-Cate

(A) IGV genomic view of Pygo2 enrichment at MYC upstream enhancer sequenc

(B and C) Expression of Wnt target genes and MYC/Pygo2 target genes in HeLa S

various time points (top panels) with representative immunoblots for b-catenin, M

(D and E) Representative images obtained from PLAs examining the interaction b

20 mM NaCl/LiCl (D) or L-conditioned medium (LCM)/WCM (E). Scale bars, 5 mm

(F and G) Quantification of PLA spots observed per nucleus in cells treated with

Bar graphs represent mean ± SD. **p < 0.01; ****p < 0.0001; NS, not significant.
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Pygo2 Depletion Attenuates MYC-Dependent
Transcription
Since Pygo2 was required for MYC expression (Figure 5A), we

generated S3 cells that stably overexpressed MYC (S3/MYC),

independent of endogenous myc expression, for Pygo2 loss-

of-function studies. Pygo2 depletion in the S3 control line

(S3/cont) reduced MYC expression but had no such effect on

S3/MYC cells (Figures 5A and 5B). Moreover, there was an

increase in p21 protein levels, which correlated with growth

arrest in both the S3/cont and S3/MYC cells, indicating that

MYC overexpression was not sufficient to rescue growth arrest

caused by loss of Pygo2.

We next performed qRT-PCR in S3/cont and S3/MYC cells to

examine the expression of common MYC target genes essential

for cell growth (47S, B23, CCNA1, and TERT; Figure 5B) and cell

division (AurKA, BOD1, CEP290, and RCC1; Figure 5B). Both

MYC and Pygo2 were enriched at enhancer and promoter

elements upstream of all the target genes analyzed (Figures

6A–6E; Figures S4B–S4D). Pygo2 knockdown attenuated the

transcription of these genes, while rescue experiments demon-

strated the specificity of siRNA knockdown and dependency

on H3K4me3 binding (Figure S4A).

To investigate the role of Pygo2 in MYC-dependent transcrip-

tion, we depleted Pygo2 in the S3/MYC cells (Figure 5C) and

examined the binding of MYC and Pygo2 to promoter elements

upstream of the AurKA, BOD1, and RCC1 genes (Figure 5D).

There was minimal change in the association of MYC with

DNA, orwith its E-box-specific binding partnerMAX (Figure S4E).

Conversely, depletion of MYC from S3 cells did not significantly

affect overall Pygo2 protein levels (Figure 5E), nor did it reduce

the association of Pygo2 with chromatin at BOD1, AurkA, and

RCC1 promoters (Figure 5F). Thus, Pygo2 and MYC associate

with chromatin independently of each other.

Reduction of H3K27 Acetylation by Loss of Pygo2 at
MYC-Associated Genes
Since Pygo2 and MYC bound independently to chromatin, the

interaction between Pygo2 and MYC may be necessary to

modify chromatin at promoters and/or enhancers for transcrip-

tion. Enrichment of MYC and Pygo2 at common target genes

strongly correlated with H3K27Ac enhancer/promoter peaks

(Figures 6A–6E; Figures S4B–S4D). Thus, MYC/Pygo2 com-

plexes promote or maintain H3K27Ac at actively transcribed

genes.

Initially, we found that Pygo2 depletion had little effect on

overall histone acetylation (Figure S5). A reduction of global

H3K4me3 was observed, consistent with previous observations

(Gu et al., 2009). When examined specifically at MYC/Pygo2-

associated mitotic genes, H3K4me3, H3K9Ac, and H3K14Ac
nin Signaling

es marked with H3K4me1 and H3K27Ac.

3 cells treated with 20 mM LiCl (B) or Wnt3a conditioned medium (WCM; C) at

YC, and Pygo2 (bottom panels).

etween b-catenin/Pygo2 and MYC/Pygo2 in HeLa S3 cells treated with either

.

NaCl/LiCl (F) or LCM/WCM (G).



Figure 5. MYC-Regulated Transcription Depends on Pygo2

(A) Pygo2-dependent cell-cycle arrest and increase in p21 expression in control (S3/cont) and MYC (S3/MYC) cells.

(B) Depletion of Pygo2 in S3/cont and S3/MYC cells and expression analysis (qRT-PCR) of MYC target genes involved in cell growth and cell division.

(C and D) Depletion of Pygo2 in S3/MYC cells followed by immunoblotting for Pygo2 andMYC (C) and ChIP-qPCR to assess the binding of Pygo2 andMYC to the

AurKA, BOD1, and RCC1 promoters (D).

(E and F) Depletion of MYC in HeLa S3 cells, followed by immunoblotting for Pygo2 andMYC (E) and ChIP-qPCR to assess the relative binding of Pygo2 andMYC

to the AurKA, BOD1, and RCC1 promoters (F).

Bar graphs represent averages ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S4.
were unaffected, while H3K27Ac was significantly reduced (Fig-

ures 6F–6J), consistent with reductions in MYC target gene

expression (Figures 2D and 5B). Thus, both Pygo2 and MYC

may serve to maintain H3K27Ac at genes required for cell

division.

Pygo2 in MYC-Driven Prostate Cancer Cells
In prostate cancer, myc rearrangements and deregulation of

MYC mRNA and protein expression are important observations

associated with tumor aggressiveness (Hawksworth et al.,

2010). Similarly, elevated levels of Pygo2 in prostatectomy

cancer specimens were associated with, or portended poorer

prognosis (Kao et al., 2017). To assess the role of Pygo2 in

MYC-driven cancer, we utilized the Myc-Cap cell line, derived

from an advanced prostatic carcinoma of a mouse harboring a
human c-myc transgene driven by an androgen-induced pros-

tate epithelial-specific probasin promoter (ARR2PB-myc;

Ellwood-Yen et al., 2003; Watson et al., 2005).

BothMYC and Pygo2 proteins were elevated inmouse embry-

onic fibroblasts (MEFs) immortalized by simian virus 40 (SV-40),

as compared to primary MEFs (Figure 7A). In Myc-Cap cells,

both the myc transgene and mPygo2 were both highly

expressed (Figure 7A). Interaction of both endogenous mPygo2

and MYC protein in these cells was demonstrated, by immuno-

precipitating mPygo2 from DNase-treated chromatin-bound

fractions of Myc-Cap cells (Figure 7B), and by performing

in situ PLAs (Figure 7C).

As in S3 cells, depletion of mPygo2 from Myc-Cap cells by

RNAi did not affect MYC expression (Figures 7D and 7E) but

reduced AurKA and NPM1/B23 (Figure 7E) mRNA levels and
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Figure 6. Pygo2 and MYC Are Co-enriched at Active Enhancers/Promoters Where Pygo2 Is Required for H3K27 Acetylation

(A–E) IGV genomic views of relative Pygo2, MYC, and H3K27Ac enrichment at sequences upstream of the mitotic target genes: BOD1 (A), RCC1 (B), INCENP (C),

CEP290 (D), and AurkA (E).

(F–J) Examination of the relative enrichment of Pygo2, H3K4me3, H3K9Ac, H3K14Ac, and H3K27Ac in Pygo2-depleted HeLa S3 cells at the BOD1 (F), RCC1 (G),

INCENP (H), CEP290 (I), and AurKA (J) promoters.

Bar graphs represent averages ± SEM. *p < 0.05; NS, not significant. See also Figure S5.
attenuated growth and colony formation (Figures 7F and 7G) af-

ter 72 hr. These results indicated that Pygo2 interacts with MYC

and plays an essential role in MYC-driven transcription and cell

growth in a heterologous system.

DISCUSSION

Our findings suggest that a MYC/Pygo2-dependent transcrip-

tional program is critical for microtubule-kinetochore interac-
1524 Cell Reports 23, 1516–1529, May 1, 2018
tions to facilitate chromosome biorientation during mitosis. For

example, Pygo2 was required to maintain the expression and

H3K27Ac levels within the vicinity of AurKA, TPX2, RCC1,

BOD1, CEP290, and INCENP genes, which are needed for

proper chromosome segregation and cell division. The chromo-

some alignment anomalies we found are similar to those found in

cells deficient in Biorientation of Chromosomes in Division 1

(BOD1), a kinetochore protein required for the detection of syn-

telic attachments by the mitotic spindle (Porter et al., 2007). Our



Figure 7. Pygo2 Interacts with MYC and Is Essential for Growth of a MYC-Driven Prostate Tumor Cell Model

(A) Immunoblot analysis of MYC and Pygo2 in primary and SV-40 immortalized MEFs and Myc-Cap cells.

(B) Immunoprecipitation of endogenous proteins using either preimmune serum (pre) or Pygo2 antiserum from chromatin bound fractions of Myc-Cap cells.

(C) Proximity ligation assays demonstrate in situ interaction between MYC and Pygo2 in nuclei of Myc-Cap cells. MYC antibodies and MYC/acetyl-lysine (AcK)

were used as negative and positive controls, respectively. Scale bar, 5 mm.

(D) Knockdown of mPygo2 by RNAi in Myc-Cap cells followed by immunoblotting for Pygo2 and MYC. b-actin was used as a loading control.

(E) qRT-PCR analysis of Pygo2 along with MYC/Pygo2 target genes AurKA and NPM1/B23 in mPygo2-depleted Myc-Cap cells. Bar graphs represent

means ± SD.

(F) Cell growth assay demonstrating reduction in cell numbers after 72 hr of siRNA treatment.

(G) Colony formation assay demonstrating reduction in colony number of cells treated with the mouse-specific Pygo2 siRNA.

(H) Proposed mechanism of the transcriptional control of cell division by Pygo2 and MYC in cancer cells. E-box bound MYC complexes and H3K4me3 bound

Pygo2 complexes are suggested to promulgate H3K27 acetylation at enhancers/promoters of MYC target genes involved in oncogenic mitosis. MYC/Pygo2

complex formation may promote communication between DNA and histones (i) and/or interactions that encourage enhancer-promoter looping (ii), necessary for

H3K27Ac.

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; NS, not significant.
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results are also consistent with overexpression of a mutant form

of RCC1 (Moore et al., 2002). Pygo2-dependent RCC1 expres-

sionmight, therefore, maintain a RanGTP concentration gradient

necessary for microtubule nucleation and kinetochore recogni-

tion (Kalab and Heald, 2008). TPX2 and AurKA are key to the

formation of kinetochore-derived microtubule nucleation that

aids spindle-kinetochore interactions (Katayama et al., 2008).

While we could not detect AurKA at kinetochores, the overall

reduction of activated AurKA at centrosomes in Pygo2-deficient

cells would account for decreased spindle-kinetochore interac-

tions. Furthermore, CASC5/Knl-1, HAUS8, OIP5, and CKAP5 are

all major constituents of the KMN network, required for the

physical interaction between centromeric DNA and the spindle

microtubules (Varma and Salmon, 2012).

In canonicalWnt signaling, Pygo2 binds via its plant homeodo-

main (PHD) to H3K4me3 in cooperation with Bcl9 (Fiedler et al.,

2008), but whether this role is universal has been challenged

(Cantù et al., 2013). In cancer cells, Pygo2-H3K4me3 binding

is important for growth and expansion (Gu et al., 2009), and in

the present study, most of the MYC/Pygo2 target genes were

not activated by Pygo2 (Y327A) mutants (Figures 2F and S4A),

substantiating the requirement for Pygo2-H3K4me3 binding.

These observations support the idea that interactions between

Pygo2 and MYC are consistent with the recruitment of HATs

shared in common by both proteins, including: TRRAP, GCN5/

PCAF, and CBP/p300, which are required for nucleosome

remodeling. Thus, the MYC/Pygo2 interaction could be impli-

cated in histone-DNA communication (Figure 7Hi) or enhancer-

promoter looping (Figure 7Hii), resulting in acetylation to

H3K27 at upstream sequences of active target genes.

Active T-cell factor (TCF)/b-catenin complexes potentiate

transcription of critical genes required to drive cell-cycle

progression and growth, including cyclin D1 and myc (He

et al., 1998; Shtutman et al., 1999). While Pygo2 is a component

of b-catenin complexes that promote cell-cycle entry, it appears

to be recruited to MYC in complexes distinct from b-catenin

once cells are committed to mitosis. In cancer, since MYC activ-

ity responds to multiple mitogenic pathways (Dang, 2012), the

formation of MYC/Pygo2 complexes might also occur by

alternate pathway activation apart from Wnt signaling. Thus,

our results suggest that Pygo2 is an essential core component

of the oncogenic MYC transcription complex.

EXPERIMENTAL PROCEDURES

Cell Lines and Antibodies

SKOV-3, HeLa S3 (S3), HEK293, 22RV1, DU145, PC3, and MYC-Cap cells

were obtained from the American Type Tissue Collection (ATCC); primary

HEN cells and transformed endocervical (HEN16T) cells (Tsutsumi et al.,

1992) were provided by A. Pater. Primary PrECs (Lonza) were cultured in

PrEBM medium by adding PrEGM single aliquots (Lonza), and primary

HEN cells were cultured in DMEM supplemented with 2.1 mL/mL bovine

pituitary extract and 0.06 mL/mL epidermal growth factor (EGF) (GIBCO).

22RV1 cells were cultured in RPMI 1640 media supplemented with 10% fetal

bovine serum (FBS). All other cell lines were cultured in DMEM with 10% FBS.

Stable clones expressing empty plasmid (S3/cont) or MYC (S3/MYC) were

generated by transfecting pIRES-EGFP or pIRES2-EGFP-MYC into S3 cells.

Isolated colonies were maintained in DMEM with 10% FBS and 200 mg/mL

Geneticin (Invitrogen). Primary MEFs from E13.5 pygo2f/f embryos were

immortalized by transfecting with pCMV-SV40 large T antigen (de Chasseval
1526 Cell Reports 23, 1516–1529, May 1, 2018
and de Villartay, 1992), selected by serial passaging and cultured in DMEM

with 10% FBS.

Pygo2 rabbit monoclonal antibodies (33F6) were raised against amino acids

91–119 of Pygo2 (Immunoprecise). All other antibodies/antisera used are listed

in the Supplemental Experimental Procedures.

RNAi, Plasmids, and Transfections

Non-targeting (siNTC) and Pygo2 (siPy2) siRNAs (for sequences, see the Sup-

plemental Experimental Procedures) were used as described previously

(Andrews et al., 2013). Control, MYC, and mouse-specific Pygo2 siRNA pools

(Dharmacon) were transfected using Lipofectamine RNAiMAX (Invitrogen) at a

final concentration of 5 nM. For rescue experiments, 5 nM siRNAwas co-trans-

fected with 500 ng of plasmids; protein and RNAwere collected after 72 hr. For

cell growth assays, 1,000 Myc-Cap cells were treated with siRNAs in 96-well

plates. Cell number was determined using CellTiter 96 MTS Reagent

(Promega). For colony formation assays, 500 Myc-Cap cells were treated

with siRNAs for 72 hr in 6-well plates. Colonies were fixed in 10% neutral buff-

ered formalin, stained with crystal violet, and counted. Results were obtained

from 3 experiments performed in triplicate.

MYC sequences were amplified from primary HEN cells and inserted into

pCS2+, pCS4-myc tag (MT), and pIRES2-EGFP. pCS2-Pygo2 Y327A was

generated using the QuikChange Site-Directed Mutagenesis Kit (Agilent

Technologies). pCS2+-Pygo2, GST-NHD, GST-DNHDDPHD, and GST-PHD

are described elsewhere (Andrews et al., 2009). Plasmids were transfected

using Lipofectamine 2000 (Invitrogen).

Immunoblotting, Immunofluorescence, and PLAs

Immunoblotting and immunofluorescence (IF) were performed exactly as

described previously (Andrews et al., 2013). IF was imaged under confocal

microscopy (Olympus). Cell-counting assays were performed in triplicate for

mitotic cells from 5 random fields per treatment and classified according to

the observed mitotic profiles. PLAs were carried out on 4% paraformaldehyde

(pH 7)-fixed cells using the Duolink PLA Kit (Sigma-Aldrich) and quantified

either manually or by using BlobFinder software (Allalou and Wählby, 2009).

Immunoprecipitations and GST Pull-Downs

Cells were extracted in RIPA buffer (1.1% Triton X-100, 0.01% SDS, 1.2 mM

EDTA, 16.7 mM Tris [pH 8.1], and 167 mM NaCl) supplemented with protease

inhibitors (PIs) and PMSF. Immunoprecipitations and GST-pull-downs were

performed using either HEK293 or S3 transfected cell extracts as previously

described (Andrews et al., 2009). For chromatin-bound protein fractions, cells

were lysed in RIPA buffer and sonicated for 1 min (10-s pulses with 30-s rests).

MgCl2 was added to a final concentration of 3 mM, and lysates were treated

with 50 U of DNase I for 20 min at room temperature and cleared by centrifu-

gation at 20,000 3 g at 4�C before immunoprecipitation.

qRT-PCR and ChIP-qPCR

Total RNA, extracted using an RNeasy Kit (QIAGEN), was reverse transcribed

using M-MLV Reverse Transcriptase (Invitrogen), as per the manufacturer.

qRT-PCR analysis was performed using RT2 SYBRGreen Master Mix

(QIAGEN) and oligonucleotide primers (for sequences, see the Supplemental

Experimental Procedures). Relative values were calculated using the 2�DDCt

method, normalized relative to b-actin expression. Chromatin DNA for ChIP

was collected from formaldehyde-crosslinked cells by nuclear extraction in

RIPA buffer supplemented with PIs and PMSF and sheared using a Sonic

Dismembrator 100 (Fisher) to 300–500 bp. 1 mg chromatin was immunopre-

cipitated using 3 mg antibody and incubated with preblocked protein A beads

(Millipore) to capture antibody-protein-DNA complexes. Beads were washed

33 in low-salt buffer (1.0% Triton X-100, 0.1% SDS, 2 mM EDTA, 20 mM

Tris [pH 8.1], 150 mM NaCl), followed by 13 in high-salt buffer (1.0% Triton

X-100, 0.1% SDS, 2 mM EDTA, 20 mM Tris [pH 8.1], 500 mM NaCl), followed

by Tris-EDTA buffer. Complexes were eluted in elution buffer (1.0% SDS and

100 mM NaHCO3); crosslinks were reversed at 65�C overnight. Samples were

RNase A and proteinase K treated before purifying the DNA using the QIAquick

PCR Purification Kit (QIAGEN). qPCR was performed using primers described

in Table S1. Valueswere calculated relative to input controls. Results represent

averages ± SEM from at least two independent experiments.



ChIP-Seq and Bioinformatics

ChIPs were performed as described earlier using Pygo2 S3I4 antisera (Tzenov

et al., 2016) and 108 S3 cells. 20 ng of DNA was sequenced on an Illumina

HiSeq 2500 sequencer (McGill University Genome Quebec Innovation Center).

Reads were aligned to Hg19 using Burrows-Wheeler aligner-MEM (BWA-

MEM). Downloaded ChIP-seq datasets performed in S3 cells from ENCODE

included: input for MYC (ENCCFF390CZH), MYC (ENCHH000XCI), H3K4me1

(ENCSR000APW), H3K4me3 (ENCSR000AOF), RNA Pol II (ENCSR000EZL),

and H3K27Ac (ENCSR000AOC). High confidence peaks were normalized

against input and calculated using the Model-based Analysis for ChIP-Seq

(MACS) peak caller (p value cutoff = 10�5), with a false discovery rate < 1.2%

(Zhang et al., 2008). Peaks with over 20-fold enrichment were used in down-

stream analyses. Motif enrichment analysis was performed using Discriminative

Regular ExpressionMotif Elicitation (DREME;Machanick and Bailey, 2011), and

annotationofpeaks relative togenomic regionwasperformedusing thecis-Reg-

ulatory Element Annotation System (CEAS; Shin et al., 2009). Functional enrich-

ment analysis and comparison of MYC/Pygo2 association with TSSs were

performedusing theGenomicRegionsEnrichmentofAnnotationsTool (GREAT),

v3.0.0 (McLeanet al., 2010), andgeneontologyofPygo2at TSSswasperformed

using the Database for Annotation, Visualization and Integrated Discovery

(DAVID; Dennis et al., 2003). Pygo2 ChIP-seq analysis was independently

confirmed using the ChIPseeker R/Bioconductor package (Yu et al., 2015).

Statistical Analysis

GraphPad Prism software was used to perform all statistical analyses,

including one-way ANOVA along with Tukey’s multiple comparison test to

compare multiple treatment groups and Student’s t test to compare two

groups (a = 0.05). Experimental data (except for boxplots) were expressed

as means ± SD or means ± SEM.
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The accession number for the aligned and normalized Pygo2 ChIP-seq data
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