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ABSTRACT 

Biosurfactant enhanced soil washing and/or bioremediation have been proven as promising 

technologies for cleaning up petroleum hydrocarbon contaminants (PHCs)- and heavy metals- 

contaminated soil and groundwater. As environmentally friendly amphiphiles, biosurfactants 

display promising wetting, solubilization, and emulsification properties. Biosurfactant addition 

can enhance the mobility and bioavailability of entrapped PHCs in porous media, and finally 

improve their removal. Biosurfactants can also reduce the heavy metal toxicity and assist their 

removal through acting as metal complexing agents. The availability of economic biosurfactants, 

however, has become a major obstacle to their applications. In addition, little research has been 

conducted to investigate the role of biosurfactants, especially lipopeptides, in contaminated 

subsurface cleanup process and their impacts on oil degrading microbes. 

To fill the knowledge gaps, a number of methodologies and mechanisms aimed at 

economical biosurfactant production and advanced biosurfactant enhanced subsurface co-

contamination control have been investigated. Economical lipopeptide production by Bacillus 

Substilis N3-1P using fish waste as an unconventional medium was achieved. The lipopeptide 

production was further enhanced using immobilized robust biocatalysts on porous fly ash by 

Bacillus Substilis N3-1P, and the associated mechanisms were explored. The lipopeptide 

production by Bacillus Substilis N3-4P was optimized and its application for crude oil removal 

was examined. The impact of the generated biosurfactant on the biodegradation of PHCs in 
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presence of heavy metals was finally evaluated.  

The newly developed lipopeptide production methodologies and the associated mechanisms 

helped to break down the barriers impeding economical biosurfactant production. The research 

outcomes (e.g., fish-waste-based hydrolysate, fly ash (FA) - based robust biocatalyst and optimized 

growth medium) could contribute to a cost-efficient biosurfactant production through proper 

selection of waste materials, advanced bioreactor design and medium optimization. This 

dissertation research was also a first attempt to identify the role of lipopeptides in cell surface 

associated biodegradation mechanisms in a co-contaminated environment. This research could 

help implement effective soil and groundwater remediation practices and bring short/long-term 

benefits to the governments, industries and communities at regional, national and international 

levels.  
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1.1 Background and Challenges 

(1) Soil and Groundwater Contamination  

In the past decades, the oil and gas industry in Canada has been boosted due to a 

growing energy demand. Oil exploration and production activities have encouraged 

regional expansion with thousands of job opportunities opened and billions of tax 

revenues generated (Banat et al., 2010; Deloitte, 2013; Verma et al., 2013). Setting as 

one of the starting points for the marine transportation of crude oil and petroleum 

products in Canada, new refineries have been constructed in southern Newfoundland, 

and expansion of transportation pipelines from Alberta, and Saskatchewan to Atlantic 

region have been proposed (Provencher, 2008; TransCanada, 2016; Verma et al., 2013). 

The storage, refining and transportation of petroleum hydrocarbons (PHCs) will pose a 

potential risk of oil spill along the involved regions including Newfoundland and 

Labrador (NL). Problems associated with soil and groundwater contamination, owing 

to the release of PHCs have been highlighted. To date, among 22,000 contaminated or 

suspected contaminated sites currently listed on the Federal Contaminated Sites 

Inventory (FCSI), 11,986 sites are contaminated with PHCs (e.g., aliphatic, aromatic, 

BTEX (benzene, toluene, ethylbenzene, xylenes) and polycyclic aromatic hydrocarbons 

(PAHs)) in urban, rural and remote areas across Canada (Treasury Board of Canada 

Secretariat, 2017). This problem has been acquiring growing attention of the public, 

governments and industries.  
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Spill accidents in the northern region (e.g., NL) are more damaging as the 

ecosystem is generally more fragile and sensitive, and the system recovery requires 

longer time than in warmer climates (Yang et al., 2012). The restoration of those 

petroleum contaminated sites is much more expensive and time-consuming for local 

industries and governments given the remote access, high energy costs and 

environmental conditions (e.g., low temperatures, low nutrients and soil heterogeneity). 

Furthermore, the co-existence of appreciable amounts of heavy metals in PHCs 

contaminated sites during oil spill has been widely acknowledged (Hussain and Gondal, 

2008; Moreno et al., 2011), but very limited concerns have been expressed over the 

potential risk of co-existed carcinogenic metals in oils (Wise Jr et al., 2014). These 

contaminated sites adversely affect the human health and environmental compatibility, 

and lead to financial loss and reinvestment for local industries and governments. 

Selection of an effective remediation strategy at the contaminated sites is 

extremely challenging in the northern region. The solubility of PHCs, also recognized 

as the controlling removing mechanism, is very limited in subsurface systems due to 

the hydrophobic nature (Bisht et al., 2015). A reduced permeability has also been 

identified due to the low subsurface temperature. Therefore, limited PHCs availability 

to oxidative and reductive chemicals, and/or microorganisms when applied to in-situ 

and/or ex-situ remediation techniques could lead to a poor recovery rate. This situation 

has hindered the efforts to effectively protect environments of this region. Hence, there 
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has been a growing recognition for the urgent need of more efficient, environmentally 

friendly and thoroughly tested technologies suited to soil remediation in northern 

regions and beyond (Lee et al., 2015).  

(2) The importance of biosurfactants: advantages and applications 

Biosurfactants, surface-active biomolecules produced by microbes, have 

attracted an increasing attention as amphipathic surface-active compounds (Muthusamy 

et al., 2008). Biourfactant enhanced soil water remediation is an emerging technology 

for enhanced removal of organic contaminants from the subsurface (Deshpande et al., 

1999). Biosurfactants have diverse structures, and are capable of reducing the surface 

tension (ST) and interfacial tension (Singh and Cameotra, 2004). The addition of 

biosurfactants could allow well mixing of PHCs compounds and water, stimulate the 

entrapment of oil droplets into surfactant micelles, and enhance the apparent solubility 

and partitioning of PHCs compounds into water (Beal and Betts, 2000; Damrongsiri et 

al., 2013; Lanzon and Brown, 2013). Through prompting metal ion desorption from 

solid surfaces, forming metal-surfactant complexes, and reducing the interaction 

between heavy metals and microbes, biosurfactants could reduce the toxicity of heavy 

metals in contaminated sites (Gnanamani et al., 2010; Miller, 1995). Due to their 

distinctive surface activity character, biosurfactants have been widely used as detergents, 

emulsifiers, and foaming and dispersing agents in the fields of environmental, 

petroleum and pharmaceutical industries (Pacwa-Plociniczak et al., 2011). 
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Biosurfactants contain remarkably diverse chemical structures, such as glycolipids, 

lipopeptides, protein-polysaccharide complexes, phospholipids, and fatty acids. In 

comparison to the chemical counterparts, which are mostly synthesized from petroleum 

by-products, biosurfactants have high biodegradability, low toxicity, and a better 

foaming property and higher selectivity (Zhu et al., 2016). They are active even under 

harsh environmental conditions, such as extreme temperatures, pH and salinity. The 

development of biosurfactant-mediated remediation technique therefore needs to be 

greatly motivated (Bezza and Chirwa, 2016). 

Despite the enormous potential for environmental applications, the high 

production cost and low productivity are major barriers in the economic 

competitiveness of biosurfactant production (Gudina et al., 2015a). Continuous research 

efforts have been spared to bring down the production costs for a wider commercial use. 

Muthusamy et al. (2008) pointed out that raw materials accounted for 10-30% of the 

overall production cost. An adapted microbial growth substrate or feed stock for low 

cost is anticipated. Furthermore, the complex regulation system during fermentation and 

limited effective production cells have also been identified to impact biosurfactant 

production rate (Chen and Chang, 2006). Last but not least, proper tailoring of growth 

substrate and optimized fermentation conditions can generate the desirable 

biosurfactant products to suit different applications (Benincasa et al., 2010). 

Therefore, enhanced biosurfactant production can be achieved through the 
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development of efficient production bioprocesses, including the selection of the 

alternative waste substrates for economical biosurfactant production enhancement of 

cell density during fermentation, and optimization of cultural conditions (Makkar et al., 

2011; Zhu et al., 2016).  

(3) Biosurfactant enhanced soil and groundwater remediation: advantages and 

challenges 

Biosurfactant enhanced remediation technologies (e.g., bioremediation and soil 

washing) have been proven as effective and reliable alternatives through both 

experimental studies and field applications for cleaning up PHCs-contaminated soil and 

groundwater (Zhang et al., 2011). Bioremediation is the process of using living 

microbes, usually bacteria, yeast and fungi, to degrade and convert hazardous 

contaminants into less toxic or nontoxic compounds (Portier, 2013). Bioremediation has 

been proven to be an effective, reliable, cost-efficient and eco-friendly substitute to 

traditional technologies (Zhang et al., 2011). The presence of appropriate pollutant-

degrading microorganisms, proper environmental conditions, as well as the availability 

of PHCs are the key to a successful bioremediation (Khan et al., 2004; Sandrin and 

Hoffman, 2007). Biosurfactant addition could further enhance PHCs biodegradation 

through improved mobility and bioavailability. Soil washing has been another effective 

technology to remove contaminants from soil in recent years (Zhou et al., 2013). The 

integration of biosurfactants with washing solution could result in a more effective 
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washing solution. The washing solution can accelerate the desorption of contaminants 

from soil particles and enhance their solubilization into groundwater (Trellu et al., 2016).  

Although applications of biosurfactant enhanced bioremediation and soil washing 

as effective remediation tools have been widely acknowledged, they are still facing 

challenges when applied in co-contaminated sites. Till now, the underlying mechanisms 

of biosurfactants enhanced desorption and PHCs biodegradation with the existence of 

heavy metals remain unclear. Extensive work has been carried out to explain the heavy 

metal toxicities to microorganisms, and their negative impacts on PHCs bioavailability 

(Sandrin and Hoffman, 2007; Thavamani et al., 2015). The activity of oil degrading 

microbes could be greatly affected by the metal stress (i.e., the existence of heavy 

metals), as a result of metal-cell surface interaction (Sandrin and Hoffman, 2007). The 

role of biosurfactants in PHCs or heavy metals contaminated systems has been 

investigated (Das et al., 2009a; Singh and Cameotra, 2004; Zhu et al., 2016). However, 

in a co-contaminated system, biosurfactant induced oil degradation, cell surface 

modification, cell activity stimulation, and the resulting PHCs solubilization and 

degradation remains unclear (Liu et al., 2016; Smułek et al., 2015). Therefore, an in-

depth understanding of biosurfactant enhanced bioremediation and soil washing are 

highly required and would lead to a remarkable improvement of existing technologies. 

1.2 Research Objectives 

This dissertation research targeted the development of systematic experimental 
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approaches for the advancement of biosurfactants production and application in soil and 

groundwater. Environmentally friendly biosurfactant products were generated in an 

economically-efficient manner through using a waste-based substrate and an optimized 

fermentation process. Systematic experimental examination was conducted to develop 

technically feasible solutions for solving the challenging petroleum hydrocarbons 

(PHCs) and/or heavy metal contamination problems. 

This dissertation research entailed the following tasks: 1) to produce lipopeptide 

biosurfactants by marine bacterium Bacillus Substilis N3-1P using fish waste as an 

unconventional medium; 2) to enhance lipopeptide productivity through immobilizing 

robust biocatalysts on porous fly ash generated by Bacillus Substilis N3-1P; 3) to 

optimize biosurfactant production by Bacillus Substilis N3-4P and the application for 

crude oil removal; and 4) to investigate the effect of a lipopeptide biosurfactant 

generated by Bacillus Substilis N3-1P on the biodegradation of hydrocarbons in 

presence of heavy metals. 

1.3 Structure of the Thesis 

Chapter 2 presents a comprehensive literature review of PHCs and heavy metal 

co-contamination, biosurfactants and their production, as well as biosurfactant aided 

remediation technologies.  

Chapter 3 describes an enhanced biosurfactant production through using local 
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fishery waste streams as an alternative substrate. The enzymatic hydrolysis condition of 

fish waste was optimized using the response surface methodology (RSM). Enhanced 

biosurfactant production with fish-waste-based peptone was examined using marine 

originated five Bacillus strains.  

Chapter 4 investigates a cost-effective and highly efficient biosurfactant 

production bioprocess through using fly ash (FA) as a solid carrier. The effects of FA on 

the growth of the biosurfactant producer, Bacillus Substilis N3-1P, and its biosurfactant 

production were evaluated. The effects of FA dosage on biosurfactant production were 

examined using parameters including surface tension, emulsification activity, and 

solution dilution as responses. 

Chapter 5 further evaluates enhanced biosurfactant production by a Bacillus 

Substilis N3-4P strain through a manipulation of carbon and nitrogen sources. 

Biosurfactant productions with different media compositions was investigated. This lab 

generated biosurfactant product that was further tested as a washing agent for PHCs 

removal from soil. 

Chapter 6 investigates the effect of a lipopeptide biosurfactant (generated in 

Chapters 4) on PHCs (i.e., diesel oil) biodegradation by Rhodococcus erythropolis M-

25 under heavy metal stress. The interactions of lipopeptide biosurfactant with heavy 

metals and an oil degrading strain were observed. Performance of the lipopeptide on the 

distribution of diesel oil and its biodegradation were evaluated and their relationships 
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with cell surface properties were established.  

Chapter 7 concludes this thesis with summarized research findings, contributions 

to knowledge, and recommendations for further studies. 



 

30 

 

  

 

 

 

Figure 1-1 Schematic diagram of the thesis structure   
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2.1 Subsurface Contamination of PHCs and Heavy Metals 

There has been an increasing concern over the release of PHCs during industrial 

processes, such as oil exploration, drilling, refinement, transportation, oil processing 

and storage, stemming primarily from their complex structure and slow biodegradability. 

According to the International Tanker Owners Pollution Federation (ITOPF), 

approximately 5.73 million tonnes of oil have been released into the environment during 

1970 to 2016 as a result of tanker incidents (ITOPF, 2017). PHCs are one of the most 

widespread soils contaminants in Canada, too. PHCs account for around 60% of the 

identified contaminants among the contaminated sites in Canada (Government of 

Canada, 2017). These released PHCs left unaddressed, will accumulate in the 

environment, and create a set of serious and long-lasting problems. 

When released into soil and groundwater, the poorly soluble PHCs readily adsorb 

onto hydrophobic soil particles and soil organic matters, and significantly affect soil 

physical and chemical properties (Ren et al., 2018). The water and air diffusion in the 

soil pores are slowed and/or even blocked accordingly. Soil microbe activities and 

composition thus are affected (Williams et al., 2006). In addition, significant physical 

and chemical changes, such as PHCs composition, viscosity, and density, take place 

after spills (Annunciado et al., 2005, Lee et al., 2015). All these factors need to be 

accounted for in the cleanup strategy development.  

The potential contaminants associated with PHCs include inorganic materials 
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such as trace metals, and in some cases naturally occurring radioactive materials 

(Williams et al., 2006). The metals present in the crude oils are mostly cobalt (Co2+) and 

nickel (Ni2+) (Khuhawar et al., 2012). Other reported metal ions in PHC compounds 

include Cu, Pb, Fe, Mg, Na, Zn, Cd, Ti, Mn, Cl, Na, Co, Ur, Al, and As. (Khuhawar et 

al., 2012). Different from PHCs, heavy metals are generally immobile and 

nonbiodegradable over time and thus persist in the subsurface for a long term, leaving 

adverse impact of heavy metals on the microbe activities. The bioavailability of heavy 

metals can be affected by the physical (e.g., temperature, phase association, adsorption, 

and sequestration), chemical (e.g., octanol/water partition coefficients, complexation 

kinetics, and thermodynamic equilibrium), and biological (e.g., species characteristics, 

trophic interactions, and biochemical/physiological adaption) factors (Tchounwou et al., 

2012).  

Soil and groundwater contaminated by a complex mixture of PHCs and heavy 

metals has become one of the major environmental concerns (Dong et al., 2013). The 

existence of cytotoxic heavy metals, even at low concentrations, may damage 

indigenous oil degrading microbes and inhibit PHCs biodegradation (Ojuederie and 

Babalola, 2017; Ramadass et al., 2016). Therefore, remediation strategies aimed at 

reducing the heavy metal toxicity and improving the PHCs biodegradability are desired. 
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2.2 Advancement of Biosurfactant Production 

2.2.1 Surfactants and Biosurfactants 

A surfactant is the amphiphilic surface-active agent containing a hydrophilic head 

and a hydrophobic tail (Takata and Ohshima, 2016). The non-polar hydrocarbon portion 

(e.g., (CH2)n, (CF2)n, (SiR2-O-)n), also known as hydrophobic tail, interacts weakly with 

the water molecules. The hydrophilic portion (e.g., -COOH, -SO3H, -SO3H, -NR4
+, -

CH2-CH2-O-), formed by the polar or ionic groups, has a strong interaction with water 

molecules (Tadros, 2014).  

Surfactants are normally classified on the basis of their hydrophilic groups, 

namely anionic, cationic, amphoteric, and nonionic ones, as Figure 2-1 illustrates. 

Anionic surfactants are the most widely used in industrial applications due to their 

highly potent detergency and low cost of manufacture (Che et al., 2003). They possess 

anionic functional groups at their head, such as carboxylates, sulfonate, phosphate, 

sulfate and isethionates. The most prominent anionic surfactants are linear alkylbenzene 

sulfonates (LAS), alcohol ether sulfates (AES), and secondary alkane sulfonates (SAS) 

(Steber, 2007). Other anionic surfactants include dioctyl sodium sulfosuccinate (DOSS), 

perfluorooctanesulfonate (PFOS), linear alkylbenzene (LABs). They tend to have a 

better foaming ability compared with other classes of surfactants (Williams, 2007). 

Cationic surfactants have positively charged ionic groups at the hydrophilic heads. 

Instead of using as an effective detergent, a cationic surfactant can be used as 
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antimicrobials, and anti-fungals (Rhein, 2007; Vieira and Carmona-Ribeiro, 2006). 

They are generally stable to pH changes, either in the acidic or alkaline environment. 

The most common cationic surfactants are the quaternary ammonium compounds such 

as cetyl trimethylammonium bromide (CTAB) and cetyl trimethylammonium chloride 

(CTAC). Amphoteric surfactants are the ones that have both ionic groups attached to 

the same molecule. They respond to the environment, and act as the anionic or cationic 

surfactant based on the environment pH. Nonionic surfactants do not dissociate when 

dissolved into water as they do not have any charge groups in the heads. A wide variety 

of surfactants belong to nonionic surfactants, such as Spans (sorbitan esters) and Tweens 

(Polysorbates), Brij, polyglycerol alkyl ethers, and glucosyl dialkyl ethers (Sonia et al., 

2014). 

The amphiphilic structure of a surfactant can also be characterized and classified 

by the hydrophilic-lipophilic balance (HLB) value (Figure 2-1). Selection of the 

proper surfactant for an environmental application on the basis of the HLB has been 

considered as one of the best-known methods (Tadros, 2006). HLB is a numerical 

system used to describe the relationship between the water soluble and oil soluble parts 

of a surfactant, giving a result on a scale of 1 to 20 (Williams, 2007). A low HLB value 

indicates a low water solubility, and stabilizes a water in oil (w/o) emulsion, whereas a 

high HLB value gives a better water solubility, thus easily forms an oil in water (o/w) 

emulsion.  
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Figure 2-1 Introduction of commonly used chemical surfactants in the environmental field 
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Surfactants tend to adsorb at the interface between water and air or water and oil 

in an oriented fashion. By replacing the bulk molecules of higher energy, they can 

reduce the free energy of the system (Mulligan et al., 2001), thereby decreasing the 

surface and interfacial tension. The interfacial free energy, referred to as surface or 

interfacial tension , is given in mNm-1. As surfactant concentration increases, free 

surfactant monomers gradually accumulate and form spheroid or lamellar micelles. The 

surfactant concentration above which the micelle forms is named as the critical micelle 

concentration (CMC) (Rosen, 1978). It commonly used to express the efficiency of a 

surfactant, as micelle formation enables surface tension reduction, and organic 

contaminants solubility and bioavailability enhancement (Pacwa-Plociniczak et al., 

2011). Surfactants can effectively adsorb onto soil particles, and increase the solubility 

of petroleum components or lower the interfacial tension to enhance mobility of the 

petroleum. The lower the petroleum concentration, the less quantities of surfactants that 

need to be applied to the system. Surface activity makes surfactants excellent 

emulsifiers, foaming and dispersing agents that have been widely used in industrial 

applications (Mulligan et al., 2001). However, the toxicity of some chemical surfactants 

poses as a growing concern for the environment, limiting their further applications. 

Therefore, it is desired to produce an environmentally friendly and highly efficient 

alternative for industrial applications. 

Biosurfactants are surface-active compounds generated by microorganisms 
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during their growth (Banat et al., 2010). A biosurfactant usually consists of a hydrophilic 

tail formed by mono-, oligo- or polysaccharides, peptides or proteins; and a 

hydrophobic head formed by saturated, unsaturated, branched or hydroxylated fatty 

acids or fatty alcohols (Lovaglio et al., 2015; Pacwa-Plociniczak et al., 2011). This 

amphiphilic structure displays an affinity between two substances with different degrees 

of polarity, meanwhile, reduces the surface and interfacial tensions. Compared with 

chemical surfactants, they have higher biodegradability, less toxicity, better foaming 

properties and higher activity at extreme temperature, pH and salinity. The most active 

biosurfactants can lower the surface tension of water from 72 to 27 mN·m−1 and the 

interfacial tension between water and n-hexadecane from 40 to 1 mN·m−1 (Singh et al., 

2018).  

Bosurfactants are a group of diverse structural biomolecules produced by a 

variety of microorganisms. Compared with chemical surfactants, they have the 

following advantages: 

 Great structure diversity. To date, over 2,000 biosurfactants have been 

described in the literature (Kosaric and Sukan, 2014) They have diverse 

structures in hydrophobic moiety, varying from short simple to long complex 

fatty acids. Functions and physiochemical properties vary with structures 

(Soberón-Chávez and Maier, 2011). 

 Environmental Specificity. Being a complex organic molecule with diverse 
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specific functional groups and high selectivity, biosurfactants have been 

reported to have specific physico-chemical properties and to be active at 

extreme environmental conditions (e.g., temperature, pH and salinity) (De et 

al., 2015). They are reported to have better adaption to changes of the 

environment (Pacwa-Plociniczak et al., 2011). These properties therefore 

highlight their importance in contaminated sites cleanup, oil de-

emulsification and recoveries, and pharmaceutical and food applications 

(Pacwa-Plociniczak et al., 2011). 

 Low eco-toxicity. A study compared the acute toxicity of biosurfactants and 

synthetic surfactants used in oil spill remediation to two estuarine species, 

and a higher LC50 (lethal concentration, 50%) value of the chemical 

surfactant was reported (Edwards et al., 2003; Klosowska-Chomiczewska et 

al., 2011). 

 Complete biological degradability. Compared with chemical surfactants 

mostly produced from petroleum products, biosurfactants are more easily 

biodegradable. The biological feature of biosurfactants, on the other hand, 

offers them the inherent feature of relatively high biodegradability. Studies 

have proved a high biodegradation rate of sophorolipid, surfactin, and 

arthrofactin (Klosowska-Chomiczewska et al., 2011). 

The above-mentioned unique properties make the applications of biosurfactants 
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a very promising alternative for the application in the environmental industry. Both 

organic and inorganic contaminants can be removed through different processes 

(physical, chemical, and biological) in which biosurfactants are involved (Muthusamy 

et al., 2008). 

Biosurfactants have been extensively produced and studied within recent years. 

Unlike chemical surfactants that are classified by the polar groups, biosurfactants are 

usually classified on the basis of their biochemical nature. Table 2-1 illustrates the 

classification of biosurfactants products and their origins, and Figure 2-2 exhibits the 

chemical structures of the representative biosurfactants. Usually, low molecular weight 

biosurfactants include glycolipids, phospholipid and lipopeptides. Their molecular 

weights generally range from 500D to 1500D (Mulligan, 2009), and are efficient in 

lowering surface and interfacial tensions. High molecular weight biosurfactants cover 

amphipathic polysaccharides, lipopolysaccharides, lipoproteins or complex mixtures of 

these biopolymers. They are recognized for their emulsion-stabilizing capabilities 

(Soberón-Chávez et al., 2011). Emulsans (Table 2-1) are the best known high-

molecular-weight biosurfactants mainly produced by Acinetobacter sp. They are highly 

effective emulsifiers even in concentrations of 0.01-.0001% (Kosaric and Sukan, 2014). 

  



 

41 

Table 2-1 Classification of surfactants by chemical structure 

Chemical 

structure 

Biosurfactants Origins References 

Glycolipid 

Rhmnolipid Pseudomonas Chlororaphis., Pseudomonas. Plantarii., 

Pseudomonas Putida., Pseudomonas Fluorescens., etc. 

(KK and Rahman, 2014; Wittgens et al., 

2011) 

Sophorolipids Candida Bombicola., Candida Apicola., Candida. Batistae., 

Torulopsis. Bombicola., Candida. Lypolytica., 

Candida. Bombicola., Torulopsis.Apicola., 

Torulopsis.Petrophilum., Candida. Bogoriensis.  

(Van Bogaert et al., 2007) 

Cellobiolipids Ustilago Zeae., Ustilago Maydis. (Soberón-Chávez and Maier, 2011; 

Tran et al., 2014)  

Mannosylerythritol lipids Pseudozyma Antarctica. (yeast)., Candida Antartica., Ustilago 

Maydis. 

(Arutchelvi and Doble, 2011; Soberón-

Chávez and Maier, 2011) 

Trehalolipids Mycobacterium Tuberculosis., Rhodococcus Erythropolis., 

Arthrobacter Paraffineus., Nocardia Erythropolis., 

Corynebacterium Lepus. 

(Franzetti et al., 2010) 

Fatty acids, 

phospholipids and 

neutral lipids 

Corynomycolic acid Corynebacterium Lepus. (Kosaric and Sukan, 2014) 

Spiculisporic acid Penicillium Spiculisporum. (Ishigami et al., 1983) 

Phosphati-dylethanolamine Acinetobacter, Rhodococcus Erythropolis. (Hirata et al., 1978; Singer and 

Finnerty, 1990) 

Lipopeptides and 

lipoproteins 

Surfactin, Fengycin and Iturin Bacillus Substilis., Bacillus. Licheniformis., Bacillus. 

Vallismortis., Bacillus. Mojavensis., Bacillus. Sonorensis., 

Bacillus. Thuringiensis., etc. 

(Mnif and Ghribi, 2015; Roongsawang 

et al., 2010) 
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Viscosin, Massetolide and 

Pseudophomin 

Pseudomonas Corrugate., Pseudomonas Fiuorescens., 

Pseudomonas Putida., Pseudomonas Tolaassii., Pseudomonas 

Syringae., Pseudomonas Entomophila., etc. 

(Mnif and Ghribi, 2015; Roongsawang 

et al., 2010) 

Polymeric 

Lipoheteropolysaccharide 

(Emulsan) 

Acinetobacter Calcoaceticus., Acinetobacter Venetianus., 

Acinetobacter Lwoffii., etc. 

(Nakar and Gutnick, 2001; Panilaitis et 

al., 2007) 

Alasan Acinetobacter Calcoaceticus., Acinetobacter Radioresistens. (Navon-Venezia et al., 1995) 

Liposan Candida Lipolytica. (Cirigliano and Carman, 1985) 

Manno-protein Saccharomyces Cerevisiae. (Cameron et al., 1988) 

Heteropolysaccharide 

(Biodispersan) 

Acinetobacter Calcoaceticus. (Dehghan–Noudeh et al., 2007) 

Carbohydrate-protein Candida Petrophillum, Endomycopsis Lipolytica. (Hardatt and Prakash, 2013; Kaur et al., 

2010) 

Particulate 

Biosurfactants 

Membrane vesicles Acinetobacter Spp. (Käppeli and Finnerty, 1979) 

Fimbriae, whole cells Acinetobacter Calcoaceticus. (Kosaric and Sukan, 2014) 
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Figure 2-2 Chemical structures of some reported biosurfactant active 

compounds 

 

Surfactin 
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2.2.2 Lipopeptide Biosurfactants 

Lipopeptides are a distinguished class of biosurfactants produced by a wide range 

of microbes. Owing to their diverse structural and functional characteristics, they have 

extremely low CMCs with surfactant, antimicrobial, or cytotoxic activities (Mulligan et 

al., 1999). Therefore, they attract interest in environmental, food, agricultural, 

pharmaceutical, and cosmetic industrial fields (Pacwa-Plociniczak et al., 2011).  

The lipopeptide biosurfactant product was first produced from the Gram-positive 

strain Bacillus Substilis IAM1213 (Roongsawang et al., 2010). Since then, the 

discovery of novel lipopeptide compounds has been exponentially growing. Over 263 

lipopeptides have been produced by 11 different genera of bacteria and fungi with 

significant surface activities and/or anti-microbial activities (Coutte et al., 2017). 

Structurally, they are constituted by a fatty acid (saturated, unsaturated, or hydroxylated) 

in combination with a hydrophilic peptide moiety (peptides) and correspond to an 

isoform group that differs by the composition of the peptide moiety, the length of the 

fatty acid chain, and the link between the two parts. Several isoforms can be produced 

by the same strain (Mnif and Ghribi, 2015). Table 2-2 reviews and represents the 

structures of lipopeptides and their isoforms reported to date. Among the considered 

genera, Bacillus and Pseudomonas are the most studied, mainly due to a relatively 

higher productivity of natural strains (several hundred mg L-1) (Coutte et al., 2017). 
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As Table 2-2 illustrates, the hydrophobic head of the lipopeptide is composed of diverse 

types of fatty acid (FA) with a β-OH or β-NH2 group. The β-OH or β-NH2 group forms 

an ester or peptide bond with the carboxyl group of the C-terminal amino acid. Surfactin, 

iturin, fengycin and lichenysin are among the most documented lipopeptides produced 

by Bacillus isolates. Also, viscosin, tensin, arthrofactin, pseudofactin and syringomycin 

are widely described lipopeptides mainly produced by Pseudomonas isolates (Table 2-2) 

(Mnif and Ghribi, 2015). These antibiotics are either cyclopeptides (iturin) or 

macrolactones (fengycin and surfactin) characterized by the presence of L and D amino 

acids and variable hydrophobic tails (Wang et al., 2004). Surfactin has a cyclic lactone 

ring structure consisting of a C12-C16 β-hydroxy fatty acid attached to a heptapeptide 

with a variable amino acid at positions 2, 4 and 7 (Bonmatin et al., 2003). As a cyclic 

lipodecapeptides, fengycin contains a β-hydroxy fatty acid with a side chain length of 

16 to 19 carbon atoms. Four D-amino acids and ornithine (a nonproteinogenic residue) 

are in the peptide portion of fengycin (Koumoutsi et al., 2004). Fengycin A and fengycin 

B are the two variants with Val and Ala respectively, at position 6 (Vanittanakom et al., 

1986; Villegas-Escobar et al., 2013). Iturin has a C14-C17 β-amino fatty acid moiety 

linked to a cyclic heptapeptide moiety with Asp or Asn at position 1 (Bonmatin et al., 

2003).  
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Table 2-2 Structures of Lipopeptides family and their isoforms 

Name Structure Origins References 

Surfactin Family 

Surfactin FA-β-OH-l-Glu-l-Leu-d-Leu-l-Val-l-Asp-d-Leu-l-Leu Bacillus spp. 

(Cochrane and Vederas, 2016; 

Inès and Dhouha, 2015; 

Jacques, 2011) 

Lichenysin A/D FA-β-OH-l-Gln-l-Leu-d-Leu-l-Val-l-Asp-d-Leu-l-Ile Bacillus spp. 

Lichenysin B FA-β-OH-l-Glu-l-Leu-d-Leu-l-Val-l-Asp-d-Leu-l-Leu Bacillus spp. 

Lichenysin C FA-β-OH-l-Glu-l-Leu-d-Leu-l-Val-l-Asp-d-Leu-l-Ile Bacillus spp. 

Pumilacidin G FA-β-OH-l-Gln-l-[A2]-d-Leu-l-[A4]-l-Asp-d-Leu-l-[A7] 

A2 = Leu/Ile, A4 = Val/Ile, A7 = Ile/Val 

Bacillus spp. 

Pumilacidin FA-β-OH-l-Glu-l-Leu-d-Leu-l-Leu-l-Asp-d-Leu-l-[A7] 

A7 = Ile/Val 

Bacillus spp. 

Fengycin Family 

Fengycin FA-β-OH-l-Glu-d-Orn-d-Tyr-d-aThr-l-Glu-d-[A6]-l-Pro-l-Gln-l-

Tyr-l-Ile 

A6 = Ala/Val 

Bacillus spp. (Cochrane and Vederas, 2016) 

Plipastatin FA-β-OH-l-Glu-D-Orn-l-Tyr-D-aThr-l-Glu-D-[A6]-l-Pro-l-Gln-D-

Tyr-l-Ile 

A6 = Ala/Val 

Bacillus spp. (Roongsawang et al., 2010) 

Agrastatin1 N/A Bacillus spp. (Patel et al., 2011) 

Iturin Family 

Iturin A FA-β-NH2-l-Asn-d-Tyr-d-Asn-l-Gln-l-Pro-d-Asn-l-Ser Bacillus spp. (Inès and Dhouha, 2015) 

Iturin C FA-β-NH2-l-Asp-d-Tyr-d-Asn-l-Gln-l-Pro-d-Asn-l-Ser Bacillus spp. (Roongsawang et al., 2010) 

Bacillomycin L FA-β-NH2-l-Asn-d-Tyr-d-Asn-l-Ser-l-Glu-d-Ser-l-Thr Bacillus spp. (Cochrane and Vederas, 2016) 

Bacillomycin D FA-β-NH2-l-Asn-d-Tyr-d-Asn-l-Gln-l-Pro-d-Asn-l-Thr Bacillus spp. (Cochrane and Vederas, 2016) 
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Bacillomycin F FA-β-NH2-l-Asn-d-Tyr-d-Asn-l-Gln-l-Pro-d-Ser-l-Asn Bacillus spp. (Cochrane and Vederas, 2016) 

Mycosubtilin N/A Bacillus spp. (Cochrane and Vederas, 2016) 

Viscosin Family 

Viscosin FA-β-OH-l-Leu-d-Glu-d-aThr-d-Val-l-Leu-d-Ser-l-Leu-d-Ser-l-Ile Pseudomonas spp. (Roongsawang et al., 2010) 

Viscosinamide FA-β-OH-l-Leu-d-Gln-d-aThr-d-Val-l-Leu-d-Ser-l-Leu-d-Ser-l-Ile Pseudomonas spp. (Geudens et al., 2013) 

Massetolide A FA-β-OH-l-Leu-d-Glu-d-aThr-d-aIle-l-Leu-d-Ser-l-Leu-d-Ser-l-Ile Pseudomonas spp. (Rokni‐Zadeh et al., 2013) 

Pseudophomin A FA-β-OH-l-Leu-d-Glu-d-aThr-d-Ile-d-Leu-d-Ser-l-Leu-d-Ser-l-Ile Pseudomonas spp. (Dahiya, 2013) 

Pseudodesmin A FA-β-OH-l-Leu-d-Gln-d-aThr-d-Val-d-Leu-d-Ser-l-Leu-d-Ser-l-Ile Pseudomonas spp. (Geudens et al., 2013) 

Syringomycin Family 

Syringomycin A FA-β-OH-l-Ser-d-Ser-d-Dab-l-Dab-l-Arg-l-Phe-z-Dhb-l-Asp(3-OH)-l-

Thr(4-Cl) 

Pseudomonas spp. (Hamley, 2015) 

Syringostatin A FA-β-OH-l-Ser-d-Dab-l-Dab-d-Hse-l-Orn-l-aThr-z-Dhb-l-Asp(3-

OH)-l-Thr(4-Cl) 

Pseudomonas spp. (Kahlon, 2016) 

Syringotoxin B FA-β-OH-l-Ser-d-Dab-l-Gly-d-Hse-l-Orn-l-aThr-z-Dhb-l-Asp(3-OH)-

l-Thr(4-Cl) 

Pseudomonas spp. (Menestrina et al., 2013) 

Pseudomycin A FA-β-OH-l-Ser-d-Dab-l-Asp-d-Lys-l-Dab-l-aThr-z-Dhb-l-Asp(3-

OH)-l-Thr(4-Cl) 

Pseudomonas spp. (Menestrina et al., 2013) 

Cormycin A FA-β-OH-l-Ser-d-Orn-l-Asn-d-Hse-l-His-l-aThr-z-Dhb-l-Asp(3-OH)-

l-Thr(4-Cl) 

Pseudomonas spp. (Strano, 2014) 

Amphisin Family 

Anikasin N/A  (Götze et al., 2017) 

Arthrofactin FA-β-OH-d-Leu-d-Asp-d-aThr-d-Leu-d-Leu-d-Ser-l-Leu-d-Ser-l-

Ile-l-Ile-l-Asp 

Pseudomonas spp. (Lange et al., 2012) 

Amphisin FA-β-OH-d-Leu-d-Asp-d-aThr-d-Leu-d-Leu-d-Ser-l-Leu-d-Gln-l-

Leu-l-Ile-l-Asp 

Pseudomonas spp. (Hamley, 2015) 
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Lokisin FA-β-OH-d-Leu-d-Asp-d-aThr-d-Leu-d-Leu-d-Ser-l-Leu-d-Ser-l-

Leu-l-Ile-l-Asp 

Pseudomonas spp. (Schlusselhuber et al., 2018) 

Pholipeptin FA-β-OH-d-Leu-l-Asp-l-Thr-d-Leu-d-Leu-d-Ser-D-leu-d-Ser-d-

Leu-l-Ile-d-Asp 

Pseudomonas spp. (Schlusselhuber et al., 2018) 

Tensin FA-β-OH-d-Leu-d-Asp-d-aThr-d-Leu-d-Leu-d-Ser-l-Leu-d-Gln-l-

Leu-l-Ile-l-Glu 

Pseudomonas spp. (Schlusselhuber et al., 2018) 

Tolaasin Family 

Tolaasin I FA-β-OH-Dhb-Pro-Ser-Leu-Val-Ser-Leu-Val-Val-Gln-Leu----Val-

Dhb-aThr-Ile-Hse-Dab-Lys 

Pseudomonas spp. (Hamley, 2015) 

Fuscopeptin FA-β-OH-Dhb-Pro-Leu-Ala-Ala-Ala-Ala-Val-Gly-Ala-Val-Ala---

Val-Dhb-aThr-Ala-Dab-Dab-Phe 

Pseudomonas spp. (Grgurina, 2013) 

Corpeptin FA-β-OH-Dhb-Pro-Ala-Ala-Ala-Val-Val-Dhb-Hse-Val-aIle-Dhb-

Ala-Ala-Ala-Val-Dhb-aThr-Ala-Dab-Ser-Ile 

Pseudomonas spp. (Huang et al., 2015) 

Syringopeptin Family 

SP22 FA-β-OH-Dhb-Pro-Val-Val-Ala-Ala-Val---Val-Dhb-Ala-Val-Ala-

Ala-Dhb-aThr-Ser-Ala-Dhb-Ala-Dab-Dab-Tyr 

Pseudomonas spp. (Roongsawang et al., 2010) 

SP25 FA-β-OH-Dhb-Pro-Val-Ala-Ala-Val-Leu-Ala-Ala-Dhb-Val-Dhb-

Ala-Val-Ala-Ala-Dhb-aThr-Ser-Ala-Val-Ala-Dab-Dab-Tyr 

Pseudomonas spp. (Roongsawang et al., 2010) 

SP25[Phe25] FA-β-OH-Dhb-Pro-Val-Ala-Ala-Val-Leu-Ala-Ala-Dhb-Val-Dhb-

Ala-Val-Ala-Ala-Dhb-aThr-Ser-Ala-Val-Ala-Dab-Dab-Phe 

Pseudomonas spp. (Roongsawang et al., 2010) 

Others 

Antiadhesin FA-β-OH-l-Asp-l-Leu-l-Leu-l-Val-l-Val-l-Glu-l-Leu Bacillus spp. (Liu et al., 2007) 

Bamylocin A FA-β-OH-x-Glu-x-Leu-x-Met-x-Leu-x-Pro-x-Leu-x-Leu Bacillus spp. (Lee et al., 2007a) 

Circulocin 1 gFA-β-OH-x-Thr-x-Phe-x-Ile-x-Dba-x-Asp Bacillus spp. (He et al., 2001) 

Circulocin 3 gFA-β-OH-x-Thr-x-Leu-x-Ile-x-Thr-x-Asn-x-Ala Bacillus spp. (He et al., 2001) 
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Fusaricidin gFA-β-OH-l-Thr-d-Val-l-Tyr-d-aThr-d-Asn-d-Ala Bacillus spp. (Bionda et al., 2013) 

Kurstakins FA-x-Thr-x-Gly-x-Ala-x-Ser-x-His-x-Gln-x-Gln Bacillus spp. (Béchet et al., 2012) 

Entolysin FA-β-OH-d-Xle-d-Glu-d-Gln-d-Val-d-Xle-d-Gln-d-Val-d-Xle-d-

Gln-d-Ser-l-Val-l-Xle-d-Ser-x-Xle 

Pseudomonas spp. (Rokni‐Zadeh et al., 2013) 

Ofamide FA-β-OH-l-Leu-d-Glu-d-aThr-d-aIle-l-Leu-d-Ser-l-Leu-l-Leu-d-

Ser-l-Val 

Pseudomonas spp. (Inès and Dhouha, 2015) 

Pseudofactin CH3(CH)14CO-x-Gly-x-Ser-x-Thr-x-Leu-x-Leu-x-Ser-x-Leu-x-

Leu/Val 

Pseudomonas spp. (Janek et al., 2016) 

Syringafactin FA-β-OH-d-Leu-d-Leu-d-Gln-l-Leu-d-Thr-l-Val-d-Leu-l-Leu Pseudomonas spp. (Pauwelyn et al., 2013) 

Pontifactin Palmitic acid-Ser-Asp-Val-Ser-Ser Pontibacter korlensis (Balan et al., 2016)  

Mixirin 

 

 

FA-l-Asn-d-Tyr-d-Asn-l-Gln-l-Ser-d-Asn-l-Pro 

 

 

Bacillus subtilis and 

Bacillus 

amyloliquefaciens 

(Cochrane and Vederas, 2016) 
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2.2.3 Lipopeptide Synthesis and Genetic Regulation  

Lipopeptides belong to the subgroup of nonribosomally produced peptides 

(Schwarzer et al., 2003). Their synthesis is modularly controlled and carried out by a 

series of large sized multi-enzyme complexes called nonribosomal peptide synthetases 

(NRPS) (Martínez-Núñez and y López, 2016). In this modular organization, a section 

of the polypeptide chain in NRPS is regarded as a module and sometimes can be divided 

into domains. Each module incorporates one amino acid into the final group, and the 

domains in the modules are responsible for catalysis of individual peptides synthesis 

steps (Schwarzer et al., 2003).  

The gene clusters directing NRPS for lipopeptides synthesized by Bacillus sp. 

have been identified and characterized. Research findings have demonstrated the 

evolutionary lineages of this strain. The genetic regulation of the biosynthesis of 

lipopeptide by Bacillus has been reviewed by Roongsawang et al (2010). A summary 

of genetic machinery involved in the synthesis of surfactin, a widely used lipopeptide, 

is presented in Table 2-3. Surfactin synthesis involves NRPS with four open reading 

frames (ORFs) in the srfA operon, namely srfAA, srfAB, srfAC and srfAD (Lee et al., 

2007b; Nakano et al., 1991). Each frame is responsible for one amino acid addition. For 

instance, surfactin synthetase I and II are encoded by srfAA and srf B, respectively. The 

srfAA contains three amino acid activating domains for glutamate, leucine and D-

leucine, while srfAB contains the peptide synthesizing domain for activating valine, 
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aspartate, and D-leucine. In addition to activating leucine, their ORF SrfAC also 

encodes a thioesterase for peptide termination. Gene sfp, located downstream of the 

srfA operon, plays a significant regulatory role in lipopeptide synthesis (Das et al., 

2008). 

Those involved genes for lipopeptide synthesis are reported to be closely 

regulated by the quorum sensing (QS) system in response to cell density. This is a cell-

cell communication system for assisting collective behavior within a community 

(Fletcher and Mullins, 2010). In this system, signal molecules, also referred as auto-

inducers, are secreted to coordinately initiate complex dynamic behaviors. If properly 

regulated, strains are expected to outpace monocultures in performing complicated 

tasks (Scott and Hasty, 2016).  

Bacillus spp. represent a typical QS system of Gram-positive bacteria. Four 

proteins are involved in the system, namely the ComQ isoprenyl transferase, the ComX 

signal peptide, the ComP histidine kinase, and the ComA response regulator (Oslizlo et 

al., 2014). Like the acyl-HSL in Gram-negative bacteria, ComX serves as the QS 

regulatory signal molecule extracellularly secreted by Bacillus Substilis. This peptide is 

then processed and modified by the isoprenyl transferase ComQ. Once ComX is 

accumulated to a critical concentration, it is apperceived by the membrane bounded 

receptor ComP. A phosphate group can be donated to the response regulator ComA by 

the receptor ComP. The phosphorylated ComA (ComA-P) then activates the gene 
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expression of srfA operon for the nonribosomal synthesis of surfactin (reference). 

Oslizlo et al. (2014) evaluated the influence of additional exogenous ComX on surfactin 

production using a signal deficient mutant strain. Their study confirmed the contribution 

of specific ComX–ComP interaction to srfA expression, which led to an overproduction 

of surfactin. At the exponential growth stage, a low expression of srfA was identified. 

A constantly secrete of ComX increases the growth of Bacillus cells. When cells 

approach the stationary phase, srfA is found actively involved in surfactin synthesis 

(Schneider et al., 2002). The concentration of ComX pheromone therefore is important 

in determining the expression of quorum-responsive genes (srfA). On the other hand, 

the Rap-Phr quorum-sensing pairs exhibit inhabitation to the important response 

regulators (e.g., ComA, Spo0F, or DegU) on basis of the cell growth rate (Bendori et 

al., 2015). Similarly, the expression of the srfA operon is also directed by regulators, 

such as DegU, AbrB, and CodY, in the system. Therefore, a continuous surfactin 

synthesis is limited by the cell-dependent QS regulation system. 

In addition to the complex regulation system, poor surfactin production also 

contributed to limited effective Bacillus Substilis cells (approximately 10%) that was 

capable of sensing ComX pheromone for further surfactin production. Furthermore, 

studies recently indicated that surfactin could also serve as an extracellular signaling 

molecule that triggers the production of subpopulation of Bacillus cells (Zhi et al., 

2017a). This process led to a communication interruption between ComX and ComP. 
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Table 2-3 Genetic machinery involved in surfactin synthesis from Bacillus spp. 

Operon/Genes/Operator/ 

Promotear/Protein 

Function References 

Genetic regulation of NRPSs for lipopeptide synthesis 

SrfAA⁎, Srf AB Efficient sporulation Amino acid activating domain for Glu, Leu, D -Leu Expression of comS gene (Stachelhaus et al., 1999) 

SrfAC⁎ Encodes a thioesterase of a Type I motif responsible for peptide termination (Roongsawang et al., 2010) 

SrfAD Encodes for the thioesterase domain (TE domain), responsible for cyclization of linear surfactin (Pathak et al., 2014) 

sfp Surfactin production act in trans to promote surfactin production. (Nakano et al., 1992) 

sfp⁎ Activation of surfactin synthetase by post translational modification (Nakano et al., 1992) 

Involved quorum sensing system in regulating lipopeptide synthesis 

ComQ Modification of comX to form signal peptide ComX (González-Pastor, 2017) 

ComP (Membrane 

receptor) 

Sense ComX when critical concentration achieves, and autophosphorylates and activates the 

cognate response regulator ComA 

(Ohsawa et al., 2006; 

Roongsawang et al., 2010) 

ComA- Phosphorylated ComA bind to ComA boxes, acting as a positive regulator to initiate the 

transcription of surfactin synthetase 

(Lazazzera et al., 1997) 

ComX (Signal peptide) Controls expression of srfA and interaction with membrane bound histidine kinase ComP; respond 

regulator ComA 

(Satpute et al., 2010) 

SpoOK (Oligopeptide 

permease) RapC 

Transfer of Competence stimulating factor (CSF) through the cell membrane; Phosphotransferase 

activity 

(Das et al., 2008; Satpute et al., 

2010)  

ComR (Polynucleotide 

phosphorylase) 

Enhances srfA expression posttranscriptionally  (Fabret et al., 1995) 

SinR (Transcriptional 

regulator) 

Negatively controls srfA possibility by regulating comR (Jacques, 2011) 

⁎ Part of peptide synthetase; ⁑ Multifunctional subunit of surfactin synthetase 
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Instead of response to ComX, original surfactin production Bacillus cells commenced 

extracellular matrix production (López et al., 2009). Surfactin production was therefore 

reduced.   

Unveiling the surfactin synthetic processes could contribute to a better design of 

biosurfactant production methods for cost-effective production of lipopeptides. 

Surfactin synthesis, highly dependent on cell density, faced the challenging constant 

production and limited overall production rate under the regulation of QS system. 

Technology development in promoting effective biosurfactant production cells is highly 

desired.   

2.2.4 Economical Lipopeptide Production through Using Waste 

Substrates 

Comparing the expected global surfactant market of US$ 44.9 billion by the end 

of 2022, the biosurfactant market is estimated to be US$ 36 billion, at the end of 2017, 

with an annual production of 340,000 tons per year (Cision, 2018; Reuters, 2018). On 

the other hand, the focus on sustainable production and “green” product standards 

worldwide has led to an increasing demand for environmentally friendly biosurfactant 

products (Marchant and Banat, 2012). Till now, commercialization of lipopeptide 

biosurfactants remains to be a problem owning to the high production cost (Marin et al., 

2015). The expected breakthrough in terms of their applications as a substitution of 

chemical surfactants remains to be achieved. Continuous research efforts need to be 
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further devoted to proper medium manipulation through utilization of waste streams as 

substrates (Mukherjee et al., 2006).  

Raw materials generally account for 10% to 30% of the total production costs in 

most biotechnological processes (Mukherjee et al., 2006). Research attention has been 

directed to the utilization of cheaper and renewable substrates for biosurfactant 

production (Makkar et al., 2011). Millions of tons of hazardous and non-hazardous 

wastes are generated each year worldwide. The treatment and disposal of these wastes 

therefore, not only create financial burden to various industries but also lead to 

environmental concerns. Those wastes, such as the ones generated from vegetable 

processing industries (e.g., plant oil, corn steep liquor), dairy and sugar (e.g., sugars, 

molasses) wastes, starchy substances (e.g., potato, rice mill), and other food processing 

industries have been widely evaluated in terms of their applicability for biosurfactant 

production.  

A wide spectrum of carbon sources, ranging from petroleum derivatives (e.g., 

diesel, hexadecane, glycerol), to natural originated substrates (e.g., sucrose, glucose), 

have been evaluated for lipopeptide production. As cheaper substitutes, the effects of 

waste streams on lipopeptide production by Bacillus spp. have been reviewed in Table 

2-4. All these studies aimed to cut the lipopeptide production costs by using cheaper 

raw materials and have gained various successes.  

Vegetable processing wastes have attracted most of the attention as raw material 
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for lipopeptide production (Makkar et al., 2011). Plant derived wastes have shown 

promising application in effective lipopeptide production. For example, the toxic 

compounds in olive oil mill wastes, such as polyphenols, makes them unsuitable for 

human consumption, however, the nutrient compounds, such as sugars, organic acids, 

and free fatty acids in the raw material can serve as a carbon source for lipopeptide 

biosurfactant production (Maass et al., 2016). Nowadays, enzymatic hydrolysis has 

been increasingly examined and evaluated as a pretreatment methodology to obtain the 

bioavailable active compounds present in waste materials to promote biosurfactant 

production. Pre-hydrolysis of olive oil mill waste (Ramírez et al., 2016), lignocellulosic 

waste (Faria et al., 2014), peat (Sheppard and Mulligan, 1987), corncob (Chen et al., 

2017), wheat straw (Prabu et al., 2015), grape marc (Rivera et al., 2007), soybean hull 

(Marti et al., 2015), and sisal pulp (Marin et al., 2015) to release sugars present in the 

cellulose and hemicellulose fractions for biosurfactant production have been validated.   

Vegetable oil: Particularly, vegetable oils generated from the vegetable 

processing industry have served as the other carbon candidates for biosurfactant 

production. Palm oil (Khondee et al., 2015), sunflower oil (Hazra et al., 2015), and corn 

oil (Chander et al., 2012; Ghribi et al., 2012; Ghribi and Ellouze-Chaabouni, 2011) have 

all been tested as alternative carbon sources for biosurfactant production. It is worth 

being mentioned that, in addition to the application of palm oil as a substitute carbon 

source, Khondee et al. (2015) immobilized a biosurfactant producing strain onto a solid 
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material. A final biosurfactant production was screening to 10.9 g L-1. 

Dairy and sugar industry wastes: Molasses, generated after a series of 

evaporation, crystallization and centrifugation of sugarcane juice, is a by-product of 

sugar production from cane and/or the sugar beet industry. This dark viscous fluid is 

rich in sugars, suspended colloids, amino acids, vitamins, metal ions, and salts. Whey, 

the liquid by-product of cheese production, contains high levels of lactose (75% of dry 

matter) and 12-14% protein. Besides, organic acids, minerals, and vitamins are 

presented inside it. Given that only half of the produced cheese whey can be recycled, 

the disposal of the rest becomes a major problem for the industry. The waste effluent 

from this industry, however, supports good microbial growth and thus can be used as a 

cheap raw material for lipopeptide production (Gomaa, 2013; Reis et al., 2004). 

Nitschke and Pastore (2004) used molasses, and milk whey wastewater for their initial 

production of biosurfactant. Compared to a synthetic medium, lactic whey wastes might 

be a better substrate for biosurfactant production. Furthermore, the use of dairy 

wastewaters shed light on a stratagem for the economical lipopeptide production and 

efficient dairy wastewater management. 

Starch rich substrates: Starchy waste materials are also potential alternatives 

for biosurfactant production. In addition to abundant carbohydrate, starch wastes mostly 

contain protein, fat, vitamins, inorganic minerals and trace metals too, which makes 

lipopeptide production applicable (Fox and Bala, 2000; Noah et al., 2005; Zhi et al.,  
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Table 2-4 Lipopeptide Biosurfactant production by Bacillus strains from waste/renewable substrates 

Waste/by-

Product 

Pre-

treatment 

Biosurfactant-Producing 

Microorganism 

Product Highest Reported 

Productivity  

References 

Vegetable processing by-products 

Olive oil mill 

waste 

Hydrolysis Bacillus Substilis Surfactin 0.0265 g L-1 (Ramírez et al., 2016) 

Olive oil mill 

waste 

N/A Bacillus Substilis Crude 

Lipopeptide/ 

Surfactin 

0.249/0.0077 g L-1 (Maass et al., 2016) 

Palm oil mill 

waste 

Filtration Bacillus Substilis Surfactin 0.03-0.035 g L-1 (Abas et al., 2013) 

Lignocellulosic 

waste 

Hydrolysis Pseudozyma antarctica Mannosylerythrito

l lipids 

2.5 g L-1 (Faria et al., 2014) 

Peat hydrolysate Hydrolysis Bacillus Substilis Surfactin N/A (Sheppard and Mulligan, 1987) 

Corncob Hydrolysis Bacillus Substilis Surfactin 0.523 g L-1 (Chen et al., 2017) 

Corn steep liquor N/A Bacillus Substilis Surfactin 1.3 g L-1 (Gudina et al., 2015a) 

Grape mac Hydrolysis Lactobacillus pentosus Surfactin 0.0048 g L-1 (Rivera et al., 2007) 

Soybean hull Hydrolysis Bacillus Substilis Surfactin 0.235-0.312 g L-1 (Marti et al., 2015) 

Soybean curd N/A Bacillus Substilis Iturin A 3.3 g kg-1 (Mizumoto et al., 2006) 

Sisal pulp Hydrolysis Bacillus Substilis Surfactin 0.136 g L-1 (Marin et al., 2015) 

Vegetable oils 

Sunflower oil N/A Bacillus clausii Surfactin 2.6 g L-1 (Hazra et al., 2015) 

Palm oil N/A Bacillus sp 

(immobilized) 

Crude lipopeptide 10.9 g L-1 (Khondee et al., 2015) 

Corn oil N/A Bacillus Substilis Lipopeptide N/A (Chander et al., 2012) 
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Corn oil + glucose N/A Bacillus Substilis Lipopeptide ~ 1 g L-1 (Ghribi and Ellouze-Chaabouni, 2011) 

Coconut oil 

+glucose 

N/A Bacillus Substilis Lipopeptide < 0.8 g L-1 (Ghribi and Ellouze-Chaabouni, 2011) 

Dairy and sugar industry wastes 

Cheese whey N/A Bacillus licheniformis lipopeptide 0.048 g L-1 (Gomaa, 2013) 

Whey distillery 

waste 

N/A Bacillus Substilis Surfactin N/A (Kiran et al., 2010) 

Sugarcane juice N/A Bacillus Substilis Lipopeptide N/A (Reis et al., 2004) 

Sugarcane 

bagasse + Okara 

N/A  

(solid state) 

Bacillus pumilus Surfactin 0.809 g L-1 (Slivinski et al., 2012) 

Brown sugar N/A Bacillus atrophaeus Lipopeptide 0.95 ± 0.071 g L-1 (Zhang et al., 2016a) 

Date molasses N/A Bacillus Substilis N/A 2.29 g L-1 (Al-Bahry et al., 2013) 

Molasses N/A Bacillus Substilis Surfactin 3.56 g L-1 (Saimmai et al., 2011) 

Starch rich substrates 

Potato waste Filtrate Bacillus Substilis Surfactin  2.7 g L-1 (Fox and Bala, 2000; Noah et al., 2005) 

Cassava 

wastewater 

Heat and 

centrifuge 

Bacillus Substilis Lipopeptide 3.0 g L-1 (Nitschke and Pastore, 2006) 

Distillers' grains N/A Co-cultures (Bacillus 

Substilis and B. 

amyloliquefaciens) 

Surfactin 3.4 g L-1 (Zhi et al., 2017b) 

Rice mill 

polishing residue 

Preheat Bacillus Substilis Surfactin 4.17 g kg-1 (Gurjar and Sengupta, 2015) 

Mixture of rice 

straw, starch and 

soybean flour 

Milled  

(Solid state) 

Bacillus amyloliquefaciens Lipopeptide 0.0499 g gds-1 * (Zhu et al., 2012) 

Other unconventional substrate sources 
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Soybean oil waste N/A Bacillus pseudomycoides Lipopeptide N/A (Li et al., 2016) 

Sunflower oil 

soapstock 

N/A Bacillus clausii Surfactin 2.6 g L-1 (Hazra et al., 2015) 

Frying oil  N/A Bacillus pumilu N/A 5.7 g L-1 (crude) (Oliveira and Garcia-Cruz, 2013; Shah et al., 2007) 

Vinasse Filtration Bacillus pumilu N/A 27.7 g L-1 (crude) (Oliveira and Garcia-Cruz, 2013) 

Orange peel  Bacillus licheniformis Lipopeptide 1.28 g L-1 (Kumar et al., 2016) 

Cashew apple Compress 

and filtration 

Bacillus Substilis Surfactin 0.319 g L-1 (de Oliveira et al., 2013) 

*gram of initial dry substrates (gds) 

N/A: data not available 
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2017b). Fox and Bala (2000) highlighted the feasibility of biosurfactant production 

from potato wastes. In their research, solid and liquid potato waste mediums were 

prepared for the growth of Bacillus Substilis ATCC 21332. Their biosurfactant 

production was compared with the ones generated from established mineral salt medium. 

The stimulated solid potato medium reported a highest cell concentration, with a fewer 

additional nutrients requirement for the biosurfactant production. Potato waste 

possessed a better lipopeptide production efficiency than the commercially available 

potato starch.  

Another attractive carbohydrate-rich waste substitute, cassava wastewater, is 

generated during the preparation of cassava flour in large amounts (Nitschke and 

Pastore, 2006). Lipopeptide biosurfactants were generated by Bacillus substilis, at a rate 

of 3.0 g L-1 using cassava wastewater. This biosurfactant was reported to have a high 

tolerance of elevated temperatures (100°C), high salinity (20% NaCl) and a wide range 

of pH. 

Biosurfactant with excellent surface activity could be produced by adding 

proposed waste substrates. Further research is needed to continuously explore the 

candidate and demonstrate their suitability in an industrial-level biosurfactant 

production process. The problem of proper waste control and management has surfaced 

for fishery industries worldwide. Substantial amounts (approximately 50 wt.% of 

harvest) of flesh, skin, bones, entrails or liquid stick water could be generated during 
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fishery and aquaculture activities. Those waste materials, on the other hand, generally 

have oily nature and are rich in nutrients (e.g., proteins) (Arvanitoyannis and Kassaveti, 

2008). Therefore, they can be used as a substrate for biosurfactant production and could 

add up to an enormous sum of economic and ecological benefit to the fishery industries 

worldwide. 

2.2.5 System Optimization for Production Enhancement 

Carbon and nitrogen sources, metal ions, selected biosurfactant producers, and 

culture conditions such as pH, temperature, agitation rate, and oxygen availability are 

the dominant factors in biosurfactant production. Biosurfactants can be produced 

through using both water soluble substrates (e.g., glycerol, glucose and ethanol) and 

water immiscible substrates (e.g., vegetable oils, diesel and hexadecane). Biosurfactant 

productivity is closely related with the type of biosurfactant producers and their 

preference metabolisms of carbon and nitrogen sources.  

Carbon sources: It should be noted that biosurfactant production kinetics, 

production rates and product structures among different strains vary significantly 

(Mulligan et al., 2014). The most widely used carbon sources for Bacillus spp. are 

glucose (Najafi et al., 2010), sucrose (Joshi et al., 2008a), glycerol (de Faria et al., 2011), 

and some water immiscible carbon sources such as alkanes (Joshi et al., 2008a) and 

food oils (Anjum et al., 2016). For some bacillus strains, the biosurfactant production 
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mechanism can only be triggered when oil is added. Other biosurfactant producers That 

belong to Bacillus spp, generally have a better performance in a water-soluble carbon 

source. Yeh et al. (2005) evaluated lipopeptide production on glucose by Bacillus 

Substilis ATCC 21332. The importance of glucose was highlighted. After the depletion 

of glucose, lipopeptide production was decreased. An oversupply of glucose, on the 

other hand, may lead to a pH reduction of growth medium, as carbohydrate stimulates 

the production of secondary acid metabolites, such as uronic acid (Zhu et al., 2016). 

Lipopeptide production thus might be hindered.  

Nitrogen sources: The type of nitrogen source is crucial to cell growth and 

biosurfactant production. Both inorganic and organic nitrogen sources have been 

studied in biosurfactant production, nevertheless, the most frequently used ones in terms 

of lipopeptide production have been nitrate salts and ammonia. In general, nitrate ions 

reported to have a better lipopeptide production. Abdel-Mawgoud et al. (2008) pointed 

out that the most favorable nitrogen source would be sodium nitrate. It was proposed 

that addition of nitrate, acting as a terminal electron acceptor under anaerobic conditions, 

could lead to a nitrogen limited environment, which promotes biosurfactant production. 

Nitrate utilization can be prolonged, followed by an increased lipopeptide production. 

Organic compounds such as urea and yeast extract were also determined as potential 

nutrient sources for biomass simulation. Zhu et al. (2016) highlighted the importance 

of organic nitrogen in biosurfactant production. In their study, Bacillus spp were unable 
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to synthesis lipopeptide without the existence of organic nitrogen. It was believed that 

the amine groups in the yeast extract either triggered the biosynthesis of peptide-

containing biosurfactants like lipopeptide or stimulated the growth of the enzymes 

regulating the biosynthesis of biosurfactants (Qazi et al., 2013).  

Other than carbon and nitrogen sources, trace elements such as iron and manganese, 

incubation temperature and the agitation are all important to lipopeptide production. 

Maximizing lipopeptide productivity or minimizing production costs demands the use 

of process-optimization strategies that involve multiple factors. One factor at a time 

(OFAT) is one of the classical methods to optimize the culture condition. However, its 

features like labor and time consuming, and missing of interaction effects urge the 

development of advanced optimization tools. Therefore, a statistical optimization 

strategy, such as response surface methodology (RSM) and taguchi methods could be 

increasingly used to optimize the culture conditions, and medium composition for 

lipopeptide production (Zhang et al., 2016b). Through the introduction of the 

optimization tools, the significant factors can be screened and, the interactions between 

different factors will be provided. Optimization process assists the industrial design for 

biosurfactant production, improvements such as an economical medium composition 

and favorable environmental conditions could be realized.  
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2.3 Biosurfactant Aided Contaminant Remediation  

2.3.1 Biosurfactant Enhanced Soil Washing 

Soil washing is an ex-situ soil treatment technique that removes hazardous 

contaminants from soil by scrubbing soil particles with a liquid (i.e., washing agent). 

When integrated with pumping activities, this technique can also be carried out to 

cleanup contaminants in the deeper subsurface. Chemicals are usually added to promote 

the release of contaminants with low solubility from soil. The use of surfactants to 

enhance the removal efficiency during soil washing is well documented (Mulligan et 

al., 2001; Zhou et al., 2013). Particularly, as an environmentally friendly alternative, 

biosurfactants have attracted increasing attention. It is believed that there are two 

mechanisms in biosurfactant enhanced soil washing, namely mobilization and 

solubilization. When the concentration of a biosurfactant is below its CMC value, it is 

in contact with the soil/oil system, and it reduce the surface and interfacial tension 

between air/water, oil/water, and soil/water systems. Consequently, the capillary force 

holding contaminants and soil can be reduced. In addition, the contact angle between 

soil and contaminants and the mobility of contaminants are both increased (Hernández-

Espriú et al., 2013). With the increase of the biosurfactant concentration in the washing 

solution, the monomers aggregate to form micelles. Released hydrocarbons are 

incorporated into the chamber formed by the hydrophobic end of biosurfactant when 

the hydrophobic molecules clustered together. The process, also known as solubilization, 
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enhances the solubility of PHCs. The linear relationship between the solubilization of 

contaminants, and the concentration of surfactant has been noted (Mulligan et al., 2001).  

Lai et al. (2009) compared the TPH removal efficiency in an oil refinery plant 

using biosurfactants (rhamnolipid, surfactin), and chemical surfactants (Tween 80 and 

Triton X-100). When adding 0.2% (w/w) of (bio)surfactant solution, biosurfactants 

exhibited remarkable removal rates from both slightly (3,000 mg kg-1), and highly 

(9,000 mg kg-1) TPH contaminated soils. Highly contaminated soil reported a better 

removal efficiency (63% with rhamnolipid), compared to that of slightly contaminated 

soil (23% with rhamnolipid). This result shed light on the potential industry application 

of biosurfactants as soil washing agents.  

Bezza and Nkhalambayausi-Chirwa (2015) assessed lipopeptide enhanced PAHs 

desorption from contaminated soils. The enhanced PAHs desorption was in proportion 

to the lipopeptide concentration. No significant PAHs desorption was observed at a 

lipopeptide concentration below to 150 mg L-1. It might due to the reduction of the 

effective micelle concentration as a result of biosurfactant sorption onto soil surface. 

Therefore, larger amounts of biosurfactants might be required in contaminated soil 

samples than in contaminated water samples. Generally, the removal of organic 

contaminants can be stimulated by the emulsification process, nevertheless, the 

contaminant volume is increased during this process as well. However, the soil washing 

process may be hindered once the emulsion is in a relatively immobile and highly 
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viscous form (Urum and Pekdemir, 2004).  

When applied into heavy metal contaminated soil samples, lipopeptides could 

reduce interfacial tensions between heavy metals and soil particles and form aqueous 

complexes and/or micelles to enhance the mobility of heavy metals, the removal rates 

of heavy metal therefore are also improved. Till now, glycolipid biosurfactants have 

been extensively evaluated as a washing agent in PHCs contaminated soil whereas there 

have been limited investigations into the performance of lipopeptide biosurfactants as a 

washing agent. 

2.3.2 Biosurfactant Enhanced Bioremediation 

Acting as electron donors and carbon sources, PHCs can be readily degraded by 

microorganisms under aerobic conditions (Meckenstock et al., 2014). Biodegradation 

is considered as the ultimate mechanism to cleanup PHCs in the environment, and is 

economical effectively and environmentally friendly (Atlas and Hazen, 2011; Prince, 

2005). Microbes can uptake PHCs through direct attachment. This process however, 

usually hindered by the low solubility and high hydrophobicity of hydrocarbons, and 

their strong sorption to soil (Zhu and Aitken, 2010). Biosurfactants, therefore, were 

produced by the microbes to overcome the diffusion-related mass transfer limitations 

and assist the biodegradation process (Szulc et al., 2014). Extensive research has been 

focused on the biosurfactant enhanced bioremediation. A positive response of oil 

degradation to an enhanced biosurfactant concentration has been reported. The role of 
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biosurfactants in enhanced biodegradation has been assessed. During the 

bioremediation process, biosurfactant addition facilitates the solubility and 

bioavailability of hydrocarbons through solubilization, mobilization, and emulsification. 

Furthermore, biosurfactants have been found to promote the accessibility of microbes 

to oil droplets owing to the enhanced cell surface hydrophobicity (Pacwa-Plociniczak 

et al., 2011). At the subcritical concentration, the mobilization mainly takes place 

through a surface and interfacial tension reduction between air/water and water/soil 

system. Consequently, the capillary force holding oil and soil was reduced, and the 

trapped oil droplets were released. At the supercritical concentration, the biosurfactant 

molecules rapidly formed micelles. The hydrophobic head formed micelle interior 

created an environment compatible for the hydrophobic organic contaminants. The 

solubilization of hydrocarbons thus was greatly stimulated (Urum et al., 2006). 

Furthermore, the HLB of surfactants is of great importance in the bioremediation 

process. Torres et al. (2005) indicated the beneficial effect of surfactants with low HLB 

value in enhanced bioremediation of an aged diesel contaminated soil. Biosurfactants, 

especially the ones with high molecular weight, primarily assist the solubilization oil 

into waters through effective emulsion formation. The small oil droplets stimulate the 

biodegradation process, and thus enhance the oil removal rate.  

Franzetti et al. (2010) proposed the role of a biosurfactant in the interaction 

between oil degrading microbes and hydrocarbon contaminants. High cell surface 
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hydrophobicity eases the direct oil degrading microbes-oil droplets contact whereas a 

low cell surface hydrophobicity allows the attachment between microbes and micelles 

or emulsified oils. Through the assistance of biosurfactants, the oil accession mode of 

the oil degrading strains could be adjusted during their growth.  

The study conducted by Cameotra and Singh (2009) further revealed the role of 

biosurfactants during the hexadecane uptake and its biodegradation by Pseudomonas 

species. The biosurfactant-assisted-dispersion of hexadecane increased the 

bioavailability to microbes. Under an electron microscope, the uptake of biosurfactant 

coated hydrocarbons was identified, similar to active pinocytosis. This “internalization” 

mechanism was firstly reported in this study.  

Shin et al. (2004) reported the effect of pH on the solubilization and 

biodegradation of phenanthrene with a rhamnolipid at a fixed concentration of 240 ppm. 

Within a tested pH range of 4-8, the optimum solubilization and biodegradation were 

achieved at pH 4.5-5.5.  

Kang et al. (2010) compared the biodegradation of a crude oil contaminated soil 

using sophorolipid and chemical surfactants (i.e., Tween 80, Tween20, Span 80, Span 

20). The addition of nutrients and mineral salts together with sophorolipid achieved a 

dramatical increase in the biodegradation rate (from 32.6% ± to 80.7% ± 1.14). Though 

very limited polar compounds were removed, sophorolipid biosurfactant and chemical 

surfactant all reported a promising biodegradation rate for aromatics and saturates. In 
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eight weeks. the highest biodegradation rates were achieved using sophorolipid. The 

removal rates for saturates and aromatics were 80.7% ± 1.14 and 71.7% ± 1.24, 

respectively.  

Bezza and Chirwa (2017b) investigated the pyrene biodegradation enhancement 

potential of lipopeptide in their study. Owning to the increased solubility, biosurfactant 

addition significantly increased the uptake of phenanthrene, pyrene and fluorene in all 

bacterial cultures. The growth of bacteria was stimulated by the addition of lipopeptide, 

till the optimum concentration was achieved at 600 mg L−1. The optimum 

biodegradation rate (83%) thus was reported at a biosurfactant concentration of 600 mg 

L−1. A further biosurfactant addition, nevertheless, exhibited an inhibitory effect to the 

bacteria growth and biodegradation rate.  

Sajna et al. (2015) shared a similar research finding, pointing out that the 

optimum bacterial growth (four times higher than the control) and oil biodegradation 

occurred at a biosurfactant concentration of 2.5 mg L-1. Thereafter, bacteria cells 

decreased rapidly with a further biosurfactant supplement. An average of 23.5% 

improvement in the degradation of C10- C24 alkanes was observed. Dodecane toped 

the biodegradation rate, while tetracosane and hexadecane were least degraded. The rate 

of degradation decreased with an increase in the chain length of hydrocarbon. The 

preferential pattern of hydrocarbon utilization by microbes when growing in a mixture 

of complex hydrocarbons suggested that lower chain molecules were utilized in the 
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initial stage and higher chain alkanes towards the later stage of growth. Nevertheless, 

the rate of hexadecane utilization was low even though it was not a higher chain length 

alkane such as hexadecane, which could possibly explain this observation.  

Metals, such as nickel, lead, cadmium, etc., are frequently found in oil 

contaminated sites. The toxic nature of heavy metals, even at trace concentrations, as 

well as their non-biodegradability, make them a long-term threat in the environment. 

Though bioremediation is still regarded as a viable solution to those co-contaminated 

sites, the stress of heavy metals to ingenious microbes has been well documented. 

Nevertheless, other than the substantial information concerning the mechanisms of 

metal toxicity, the effect of metals on organic pollutant biodegradation, especially their 

effect on the response of oil degrading microbes during biodegradation, are poorly 

characterized.  

Biosurfactants have been reported to be capable of selectively complexing 

cationic metal species, such as cadmium, lead, zinc and copper (Mulligan et al., 1999; 

Sandrin et al., 2000; Torrens et al., 1998). Ochoa-Loza et al. (2001) use an ion-exchange 

resin technique to identify the rhamnolipid complex selectivity of heavy metals in a 

contaminated soil system. The heavy metals, such as Cu (II), Pb (II), and Cd (II) had a 

higher affinity to complex compared with other ions. Besides the complexation, 

biosurfactants were able to reduce the toxicity of heavy metals by entrapping metal ions 

into their micelles. It was therefore believed that the tolerance and resistance of 
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indigenous microbes in a heavy metal contaminated soil system would be enhanced, 

and the bioavailability of organic contaminants to indigenous microbes was increased. 

Anionic biosurfactants, such as surfactin, rhamnolipid, and sophorolipids have all been 

reported to have a higher efficiency for the removal of copper and zinc from a 

hydrocarbon-contaminated soil (Singh and Cameotra, 2004).  

Gnanamani et al. (2010) evaluated the removal efficiency of chromium (VI) using 

a biosurfactant producer Bacillus sp. MTCC 5514. Their study demonstrated the 

production of biosurfactants and extracellular enzymes of Bacillus could reduce 10-

2000 mg L-1 of Cr (VI) to Cr (III) within 24-96 h. The extracellular enzyme produced 

by Bacillus helped to reduce highly toxic Cr (VI) to Cr (III). Cr (III) was quickly 

entrapped by biosurfactant micelles, and kept the activity of bacteria finally achieved a 

high removal rate. This research provided the possibility of clean up co-contaminated 

sites with biosurfactant enhanced bioremediation. 

Jalali and Mulligan (2007) investigated the biosurfactant enhanced 

bioremediation potential in an aged petroleum and heavy metal co-contaminated site. 

By the end of the 50-day experiment, a stimulation of microbe growth was identified. 

The removal of the total petroleum reached to 36%. The injection of biosurfactant 

solution increased the heavy metal and hydrocarbon concentration from 2.2% and 2.1% 

to 4.4% and 8.3%, respectively. This result shed light on the feasibility of using 

biosurfactant to enhance the bioremediation of co-contaminated soil.  
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Another batch experiment was conducted by Song et al. (2008) by using saponin 

to enhance the removal of phenanthrene and cadmium from contaminated soils. When 

the concentration of saponin reached 3,750 mg L-1, 87.7% and 76.2% of phenanthrene 

and cadmium could be removed, and this was greater than the use of Triton X100 and 

citric acid.  

Till now, though promising discoveries have been reported, the use of 

biosurfactant enhanced bioremediation on the biodegradation of PHCs revealed many 

contradictory reports (Cameotra and Singh, 2009). Biosurfactant enhanced 

solubilization does not always lead to enhanced biodegradation. The mass transfer of 

oil droplet from the micellar chamber to the water phase are likely to affect the 

biodegradation rate. The inhibitory effect of a biosurfactant at a high concentration has 

also been widely reported (Bezza and Chirwa, 2017b; Sajna et al., 2015). The pore 

forming abilities and membrane permeabilizing properties possessed by biosurfactants 

such as iturin, fengycin and lichenysin, can permit the formation mixed micelles with 

membrane lipids, which may trigger the impairment of membrane integrity, and finally 

lead to necrosis and lysis of microbe cells (Inès and Dhouha, 2015). Furthermore, the 

enhanced solubilization of contaminants into the water phase may also be attributed to 

the decreased microbial activity and biodegradation rate (Obayori et al., 2008; Silva et 

al., 2014).  

Biosurfactant enhanced bioremediation has the advantage of using indigenous 
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bacteria which can produce biosurfactants that take up hydrocarbons as substrates, and 

meanwhile remove the co-existing heavy metals. The injection of biosurfactants 

produced by organisms found to be already present at the contaminated site is another 

proposed strategy. It is more environmentally compatible and economically available 

than using modified clay complexes or metal chelators such as EDTA (Jalali and 

Mulligan, 2007).   

Although bioremediation is a promising technology, remediation of sites co-

contaminated with PHCs and metal pollutants is an intricate predicament, as two 

components needed to be treated differently. Research of biosurfactant applications in 

co-contaminated system are still in an early stage. The role of biosurfactants in this 

complex subsurface system needs to be identified, and their effects on microbes and 

contaminants needs to be further investigated.  
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3.1 Introduction 

Surface-active agents or surfactants are an important class of chemical 

compounds widely used in different areas, such as environmental, petroleum, 

pharmaceutical and cosmetics industries (Mulligan, 2009). Surfactants can reduce 

surface and interfacial tensions, and in the meantime, form water-in-oil or oil-in-water 

emulsions (Hsu and Nacu, 2003). With increasing environmental awareness and 

emphasis on a sustainable development, biosurfactants recently have received 

increasingly attention as an alternative to the chemical ones. Biosurfactants are natural 

surface-active products produced by microorganisms during their growth (Thavasi et 

al., 2011). They have some desirable properties such as low toxicity, high 

biodegradability, high specificity, and strong effectiveness at extreme temperature, 

salinity and pH conditions (Pacwa-Plociniczak et al., 2011). Nevertheless, only a few 

biosurfactants are commercialized due to their high production costs. Around 10-30% 

of the total biosurfactant production cost arises from the raw material (Mukherjee et al., 

2006). To decrease this cost and facilitate a wider commercial use, efforts have been 

devoted to the identification of proper waste medium.  

The seafood and marine products industry is one of the major exporters in NL. 

The cod production has reached $9.4 million in 2012 (Dave, 2014). The industrial fish 

processing operation, however, also generates large numbers of solid wastes, which has 

accounted for 30-80% of the body weight of processed fish. If not properly treated, the 
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wastes will pose significant environmental and health problems. On the other hand, 

those marine originated wastes can provide proteins with high nutritional properties and 

a good pattern of essential amino acids. Enzymatic hydrolysis has been recognized as 

an effective approach to add value to fish wastes. The enzyme method could generate 

protein hydrolsates with specified functional and nutritional properties without nutrient 

loss (Kristinsson and Rasco, 2000; Liaset et al., 2000). The high nutrient and 

hydrocarbon content, as well as the negligible cost make fish waste a good candidate 

for microbe growth. Therefore, attempts to explore the use of fish peptone as nutrient 

additives have been reported. Safari et al. (2012) proved that fish head generated 

peptones promoted the growth of lactic acid bacteria. The growth of lactic acid bacteria 

on fish viscera was also confirmed (Vázquez et al., 2008). It is therefore hypothesized 

that fish waste hydrolysate could be a potential candidate to support biosurfactant 

production.  

The identification and optimization of the hydrolysis conditions that affect the 

fish peptone production represent key points for the development of a cost-competitive 

biosurfactant production process. Fish wastes compounds, temperature, hydrolysis time, 

and the enzyme dose are of prime importance in controlling the hydrolysis processes 

(Bhaskar et al., 2008). The experiment based response surface methodology (RSM) has 

been widely used for experiment design and model setup by using statistical techniques 

(Kasiri et al., 2008). The factorial designs and regression analysis have been used to 
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evaluate multifactor interactions, and further define the desired optimized condition. 

Therefore, RSM could be employed to investigate the interaction among the controlling 

factors, and optimize the hydrolysis condition.  

Enzyme hydrolysis of fish waste was used prior to the fermentation process, 

aiming to offer a more bioavailable form of carbon/nitrogen for biosurfactant 

production. In this study, the hydrolysis condition of fish waste was optimized using 

RSM and the generated product was used as unconventional substrates for biosurfactant 

production using marine originated bacterium Bacillus Subtilis N3-1P. The production 

rate was evaluated using critical micelle dilution (CMD). The generated biosurfactant 

products were characterized using parameters including ST, CMC, emulsification 

activity, and stability. The chemical composition was examined with thin layer 

chromatography (TLC). The biosurfactant was further characterized using Fourier 

Transform Infrared (FTIR) spectroscopy. Additionally, generated biosurfactant products 

were further characterized using matrix assisted laser desorption/ionization time of 

flight- mass spectrometry (MALDI-TOF-MS). 

3.2 Materials and Methods 

3.2.1 Materials 

Cod livers and heads were provided by a local store in NL, Canada. Each of them 

was minced twice using a food processor at a medium speed for 120 seconds. Fresh 
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samples were taken for proximate composition analysis, and the results are illustrated 

in Table 3-1. The rest of the wastes were quickly stored in a refrigerator under -20°C 

for further analysis. Alcalase® 2.4L (endoproteinase from Bacillus licheniformis) 

(Sigma-Aldrich, Canada) was selected as the hydrolysis enzyme.  

3.2.2 Optimization of Enzymatic Hydrolysis 

Enzymatic hydrolysis conditions were optimized by employing the RSM with 

Central Composite design (CCD). Four independent variables (i.e., temperature (A,°C), 

hydrolysis time (B, hr), enzyme doze (C, %v/w) and different fish wastes (D)) were 

examined. The final response was defined as degree of hydrolysis (DH). Experiments 

were separated into three blocks to wave the effects from testing equipment. The 

parameters, levels and sequences of experimental treatments are summarized in Table 

3-2.  

The experimental procedures for enzymatic hydrolysis are illustrated in Figure 

3-1. In brief, 50 g of waste sample were added into a 125mL Erlenmeyer flask and 

mixed with equal volumes (50 mL) of distilled water (1:1 w/v). Before Alcalase addition, 

the flasks were heated in a water bath at 90°C for 10 min to deactivate the endogenous 

enzymes in the fish wastes. After reactions (as Table 3-2 illustrates), Alcalase was 

desaturated by heating at 95 °C in a water bath for 10 min. The reaction mixtures were 

then centrifuged at 6,000 rpm for 20 min. The supernatants were collected and subjected 

to DH measurement.   
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Table 3-1 Proximate composition of fish wastes 

Constituent Fish Liver Fish Head 

Moisture (%) 71.3 58.9 

Ashes (%) 4.45 10.05 

Protein (%) 16.51 13.47 
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Table 3-2 CCD experiment design of fish waste hydrolysis 

Block Time (hr) Enzyme dose 

(%v/w) 

T (°C) Fish waste Block Time (hr) Enzyme dose 

(%v/w) 

T (°C) Fish 

waste 

Block 3 3 2 45 Head Block 3 3 2 45 Liver 

Block 3 3 2 45 Head Block 3 3 2 45 Liver 

Block 1 2 1 50 Head Block 1 2 1 50 Liver 

Block 2 4 1 50 Head Block 2 4 1 50 Liver 

Block 2 2 3 50 Head Block 2 2 3 50 Liver 

Block 1 4 3 50 Head Block 1 4 3 50 Liver 

Block 3 3 0 55 Head Block 3 3 0 55 Liver 

Block 3 3 0 55 Head Block 3 3 0 55 Liver 

Block 3 1 2 55 Head Block 3 1 2 55 Liver 

Block 3 1 2 55 Head Block 3 1 2 55 Liver 

Block 1 3 2 55 Head Block 1 3 2 55 Liver 

Block 1 3 2 55 Head Block 1 3 2 55 Liver 

Block 2 3 2 55 Head Block 2 3 2 55 Liver 

Block 2 3 2 55 Head Block 2 3 2 55 Liver 

Block 3 3 2 55 Head Block 3 3 2 55 Liver 

Block 3 3 2 55 Head Block 3 3 2 55 Liver 

Block 3 5 2 55 Head Block 3 5 2 55 Liver 

Block 3 5 2 55 Head Block 3 5 2 55 Liver 

Block 3 3 4 55 Head Block 3 3 4 55 Liver 

Block 3 3 4 55 Head Block 3 3 4 55 Liver 

Block 2 2 1 60 Head Block 2 2 1 60 Liver 
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Block 1 4 1 60 Head Block 1 4 1 60 Liver 

Block 1 2 3 60 Head Block 1 2 3 60 Liver 

Block 2 4 3 60 Head Block 2 4 3 60 Liver 

Block 3 3 2 65 Head Block 3 3 2 65 Liver 

Block 3 3 2 65 Head Block 3 3 2 65 Liver 
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Figure 3-1 Flow chart of enzyme hydrolysis  

 



 

84 

3.2.3 Biosurfactant Producing Microorganisms 

The biosurfactant producers used in this study were screened in northern region 

persistent organic pollution control (NRPOP) lab from oily contaminated seawater 

samples (Cai et al., 2014). Bacillus strains are a group of well-known biosurfactant 

producers, whose products can effectively lower the water surface tension to below 

30mN/m. Among the screened Bacillus strains in the NRPOP lab, Bacillus Substilis N3-

1P, N3-4P, N2-6P were identified as promising and economic lipopeptide producers 

(Cai et al., 2014). The commercialized lipopeptide production strain Bacillus Substilis 

21332 was also selected in this research. The preparation of seed culture followed the 

method described by Zhu et al. (2016). 

3.2.4 Biosurfactant Production and Purification 

C/N source substitution: The feasibility of using fish waste generated head and 

liver peptones as carbon and/or nitrogen sources for biosurfactant production was 

evaluated. Glycerol (10 g L-1) and NH4SO4 (10 g L-1) were used as the carbon and 

nitrogen sources in control samples. They were replaced with fish head or liver peptones 

respectively at a concentration of 10 g L-1. The concentrations of the supplemented 

mineral salts were (g L-1): NaCl (15); FeSO4·7H2O (2.8×10-4); KH2PO4 (3.4); 

K2HPO4·3H2O (4.4); and MgSO4·7H2O (1.02). The composition of the trace element 

solution was as follows (g L-1): ZnSO4 (0.29); CaCl2 (0.24); CuSO4 (0.25); and MnSO4 
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(0.17). The two portions were sterilized separately. Trace element solution was prepared 

and added at 0.5 ml L-1 of distilled water. To evaluate the feasibility of the fish-waste-

based growth medium, the strains selected in this study (Section 3.2.3) were inoculated 

at a ratio of 2%. After incubated in a shaking incubator (200 rpm) at 30 °C for seven 

days, and each culture broth was centrifuged at 6,000 g for 15 minutes. The cell-free 

culture broth was then collected. Biosurfactant production was evaluated with ST, 

emulsification index (EI24) and CMD values.  

Alternative comprehensive medium: Biosurfactant productions using fish head 

and liver peptones as comprehensive growth medium were further investigated. The 

Bacillus Substilis strains able to use fish peptones as carbon and nitrogen sources were 

selected in this study. Fish head and liver peptones were added into distilled water at a 

series of concentrations (g L-1): 10, 20, 30, 40 and 60. Key supplement minerals were 

added as follows (g L-1): FeSO4·7H2O (2.8×10-4), and MnSO4 (0.17). After incubation 

in a shaking incubator (200 rpm) at 30 °C for seven days, each culture broth was 

centrifuged at 6,000 g for 15 minutes. The cell-free culture broth was then collected. 

Biosurfactant production was evaluated with ST, EI24 and CMD values. Biosurfactant 

products with the highest productivity using lab strains were further characterized. 

3.2.5 Characterization of Generated Biosurfactants 

Biosurfactant purification: The culture broths were centrifuged at 12,000×g for 
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10 min. The cell free supernatant was then adjusted to pH 2.0 with HCl and stored 

overnight at 4 °C. The sediments were then harvested by centrifuging at 12,000×g for 

10 minutes. Acidified biosurfactant pellets were dissolved into 100 mL distilled water 

again. Sodium hydroxide was added to adjust the pH value to 7. Biosurfactant products 

were recovered with organic solvent extraction. An equal volume of chloroform–

methanol (2:1 v/v) were used separately to extract the target biosurfactant products 

separately. The organic solvents were removed by rotary evaporation. 

Characterization: The purified fish waste generated biosurfactants (i.e., liver- 

and head- based) from section 3.2.5 were subjected to physical-chemical properties 

characterization. Their water ST reductions and CMC values were examined. The 

stability of produced biosurfactants was evaluated. The chemical compositions were 

characterized with TLC. Their structures were determined using FTIR spectroscopy and 

MALDI-TOF-MS.  

3.2.6 Sample Analysis 

Proximate composition of fish peptone: Ash content was determined by AOAC 

942.05 (AOAC, 2005). Crude protein was measured by AOAC 2001.11 (AOAC, 2005).  

𝐚𝐬𝐡%(𝒘 𝒘⁄ ) =
𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒂𝒔𝒉

𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒔𝒂𝒎𝒑𝒍𝒆,𝒈
 × 𝟏𝟎𝟎% (3-1) 

Degree of hydrolysis (DH): DH was estimated using trichloroacetic acid (TCA) 

method (Holy et al., 1994). Generally, 50mL hydrolysate sample was mixed with 50 mL 
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20% TCA to create 10% TCA-soluble and TCA-insoluble fractions. The mixtures were 

centrifuged at 10,000 rpm and the supernatants were analyzed for nitrogen by the 

macro-Kjcldahl method (AOAC, 1980). The degree of hydrolysis (DH) was calculated 

as: 

𝑫𝑯 =
𝟏𝟎% 𝑻𝑪𝑨−𝒔𝒐𝒍𝒖𝒃𝒍𝒆 𝑵 𝒊𝒏 𝒔𝒂𝒎𝒑𝒍𝒆

𝑻𝒐𝒕𝒂𝒍 𝑵 𝒊𝒏 𝒔𝒂𝒎𝒑𝒍𝒆
× 𝟏𝟎𝟎% (3-2) 

ST: The surface tension (ST) was measured by the ring method using a Du Nouy 

Tensiometer (CSC Scientific). Fifteen milliliter liquid was subjected to the 

determination of ST in a petri dish. To ensure the reliability of tested results, the average 

of three independent measurements was taken.  

CMC and CMD: CMC is defined as the surfactant concentration necessary to 

initiate micelle formation. The CMC of generated biosurfactants was determined by 

plotting the surface tensions as a function of biosurfactant concentration and it was 

found from the intercept of two straight lines extrapolated from the concentration-

dependent and concentration-independent sections (Figure 3-2) (de Oliveira et al., 2013; 

Sheppard and Mulligan, 1987). CMD indicates the concentration of biosurfactant in the 

medium. It corresponds to the dilution this medium required to reach its CMC 

(Shavandi et al., 2011). It was determined following the method described by Cai et al. 

(2015). 
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Figure 3-2 Methodology for CMC determination 
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EI24: The emulsification activity of the culture broth was determined by addition 

of 2 mL culture aliquot to 2 mL hexadecane and vortexed for 2 min to create an optimum 

emulsion. Tests were performed in duplicate for quality assurance purposes and the 

results were expressed using the average of two measurements.  

𝐄𝐈𝟐𝟒 =
𝐭𝐡𝐞 𝐡𝐞𝐢𝐠𝐡𝐭 𝐨𝐟 𝐭𝐡𝐞 𝐞𝐦𝐮𝐥𝐬𝐢𝐟𝐢𝐞𝐝 𝐥𝐚𝐲𝐞𝐫

𝐭𝐡𝐞 𝐡𝐞𝐢𝐠𝐡𝐭 𝐨𝐟 𝐭𝐡𝐞 𝐭𝐨𝐭𝐚𝐥 𝐥𝐢𝐪𝐮𝐢𝐝 𝐩𝐡𝐚𝐬𝐞
× 𝟏𝟎𝟎%  (3-3) 

By repeating the reading after 24 hours, an indication of the stability of the 

emulsions is obtained. EI24= 0 indicates no emulsification and El24 = l means 100% 

emulsification. 

Biosurfactant composition: Fish wastes generated biosurfactants were further 

analyzed for its chemical constitution with TLC. The biosurfactant sample was 

dissolved in 1mL of methanol and analyzed on TLC silica gel plates (Sigma Aldrich). 

The developing solvent used for the chromatography was chloroform:methanol:acetic 

acid (60:25:5, v/v). The spots were visualized with standard spray reagent as follows: 

1) The TLC plate was sprayed with ninhydrin reagent and then heated at 105 for 5 min. 

The amino acid content will be visualized as a dark purple color with ninhydrin reagent. 

2) The plate was sprayed with phenol-sulfuchromic acid and heated at 105 ºC for 5 min. 

The sugar content on the plate could be spotted with a dark orange or brown color. 3) 

Insert the plate into an iodine chamber for the characterization of lipid containing spots 

(purple color). 
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Stability of biosurfactant: The effect of several environmental parameters on the 

surface activity of the biosurfactant was determined. NaCl at different concentrations 

was mixed with the cell free broth for the determination of stability of salinity at 1, 2, 

3, and 4%. The pH effect was determined by adjusting the pH value of the cell free broth 

to different values of 2, 4, 6, 8, and 10 using 1 N NaOH or 1 N HCl. To determine the 

heat stability of the surface-active compounds, the cell free broth was incubated for 0, 

4, 25, 50, 75, and 100 °C for 120 min. 

FTIR analysis: Both FA particles and biosurfactant products were examined with 

FTIR (Bruker Tensor). FA particles were characterized with the KBr-pellet method. 

Spectral measurements were performed in the transmittance mode. Crude biosurfactant 

products were directly characterized with Fourier transform infrared-attenuated total 

reflection (FTIR-ATR) spectroscopy. IR was traced over the range of 400–4000 cm−1. 

All data were corrected for background spectrum. 

MALDI-TOF-MS analysis: The chemical structure of FL and FH based 

biosufactant products were examined with MALDI-TOF mass spectra by a SCIEX 

MALDI TOF/TOF System. Each purified biosurfactant sample was dissolved into 10 

mL distilled water and then passed through 0.2 μm filter before test. For mass 

spectrometric analysis of isolated lipopeptide biosurfactants, 2 μL portion of 

biosurfactant solution was mixed with an equal volume of matrix medium (a saturated 

solution of α-cyano-4-hydroxycinnamic acid in 50% aqueous acetonitrile containing 0.1% 
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(v/v) trifluoroacetic acid). The positive-ion detection and the reflector mode were used. 

The acceleration and reflector voltages were 20 and 23.4 kV in the pulsed ion extraction 

mode. Postsource decay mass spectra were obtained with the same sample. 

3.2.7 Statistical Analysis 

Optimizations of the enzymatic hydrolysis were designed and analyzed using 

Design-Expert® 8.0.6. Design at center points in each factorial block, axial point, and 

axial (star) points were performed in duplicate (as Table 3-2illustrates). Each enzymatic 

sample was determined in triplicate for DH. Biosurfactant production experiments were 

performed in triplicate and analyzed using OriginPro® 9.  

3.3 Results and Discussion 

3.3.1 Optimization of Fish Waste Hydrolysis 

The influences of hydrolysis time (factor A), enzyme-to-substrate ratio (factor B), 

temperature (factor C) and waste material (factor D) on the enzymatic hydrolysis were 

determined using RSM. Among the four independent variables, the enzyme-to-substrate 

ratio (B) (p < 0.0001) and hydrolysis temperature (C) (p < 0.0001) had a higher impact 

on the hydrolysis result. The effect of hydrolysis time (A) (p = 0.0132), though less than 

factors B and C, was also considered to be significant (p<0.05). The impact of waste 

composition to the final DH results was little (p = 0.6450). The interactions among the 
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different variables were also limited (p > 0.05).  

The response surface graphs for DH listed in Figure 3-3 (A)-(C) proved the 

ANOVA analysis result. Alcalase was employed in previous fish hydrolysis studies 

because of its high degrees of hydrolysis. Hydrolyzation can be achieved in a relatively 

short time under moderate conditions (Benhabiles et al., 2012). In this study, Alcalase 

was found to possess broad specificity to achieve a high DH. The DH of both waste 

materials (i.e., head and liver) has a positive response to enzyme-to-substrate. The 

optimized enzyme-to-substrate ratios were estimated at 2.72% for fish liver and 2.92% 

for fish head, respectively (Table 3-3). A continuous increase of enzyme dose could 

further improve the DH of fish waste, however, at a slower rate. The Catla (Catla catla) 

hydrolysis study conducted by Bhaskar and Mahendrakar (2008) drew the same 

conclusion. The growth of DH rate slowed down with an increase of Alcalase dose.  

The optimized temperature for two wastes was estimated at 52.51°C and 54.07°C 

for liver peptone and head peptone, respectively (Table 3-3). The DH was then gradually 

reduced at a continuous temperature increase. It was believed that the Alcalase slowly 

become thermally denatured above 55°C. This result was in accordance with the 

conclusion drew by Ovissipour et al. (2009). Though hydrolysis time has less 

significance than the enzyme dose and hydrolysis temperature, an increase of this factor 

could also contribute to a higher DH, as observed in Figure 3-3. Similar to an increase 

of enzyme dosage, the prolonged hydrolysis time could further improve DH, though at 
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a slower increase rate.  

Following the optimized enzymatic hydrolysis conditions, the verification results 

are illustrated in Table 3-3. The experiment varication results showed a good agreement 

between the experimental results and the RSM models.  

The characterization of hydrolyzed peptones is listed in Table 3-4. As observed, 

the nitrogen content was 98.14 and 128.92 mg g-1 for fish liver and fish peptones, 

respectively. These results are in accordance to the values found for the widely used 

commercial peptones (Table 3-4). Similarly, the C/N ratios for both peptones fell into 

the range of commercial peptones. Fish head peptone had a relatively higher C/N ratio 

than the liver peptones. As observed, both peptones possessed high concentrations of 

TC, TN and C/N contents and thus could be used as good substitutes for traditional 

biosurfactant production mediums.  

3.3.2 Production of Biosurfactants Using Fish Peptones 

The feasibility of using fish peptones to support bacteria growth and biosurfactant 

production as carbon and/or nitrogen sources was investigated. The results are listed in 

Figure 3-4. As predicated, both peptones could be used as nitrogen sources for all the 

examined biosurfactant producers. Surface tension reductions were observed in all the 

samples (i.e., FH (N) and FL (N)). It has been proven that organic nitrogen (e.g., yeast 

extract or protein hydrolysates) is required as an inducer to stimulate biosurfactant   
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Figure 3-3 Response surface graphs for DH as a function of (a) time and 

enzyme dose; (b) temperature and time; (c) temperature and enzyme dose 
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Table 3-3 Optimization of fish waste hydrolysis 

Fish Waste Time 

(hr) 

Alc 

(%) 

Temperature (°C) Estimated DH (%) Validated DH 

(%) 

Liver 4 2.72 52.51 53.39 51.61 

Head 4 2.92 54.07 52.35 49.37 
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Table 3-4 Characterization of fish waste generated peptones  

Peptones Total carbon 

(mg g-1) 

Total organic 

carbon (mg g-1) 

Total nitrogen 

(mg g-1) 

Ash (%) C/N Ref 

Fish head 405.06 73.35 98.14 5.8 4.12  

Fish liver 399.89 66.24 128.92 6.3 3.1  

Tryptone N/A N/A 133 6.6 3.4 (Aspmo et al., 2005) 

Soytone N/A N/A 94 12.0 4.4 (Aspmo et al., 2005) 

Yeast extract N/A N/A 114 13.1 3.9 (Aspmo et al., 2005) 
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production (Zhu et al., 2016). The developed fish-waste-based peptones (i.e. fish 

liver and fish head) in this study could be used as a cheap nitrogen alternative for 

biosurfactant production. However, the Bacillus strains have a different response to fish 

peptones as carbon sources. Biosurfactant productions, as reflected from surface tension 

reduction, were only observed in Bacillus Subtilis N3-1P and Bacillus Subtilis 21332 

samples (Figure 3-4).  

This study proved that Bacillus strains could effectively metabolize the hydrolyzed 

peptones for biosurfactant production. The highest biosurfactant production rate (20 

CMD) was reported by Bacillus Subtilis N3-1P using fish liver peptone as the nitrogen 

source. Among the tested strains, Bacillus Subtilis N3-1P and 21332 had a better 

response to fish peptone than the others. Higher biosurfactant production rates were 

observed in fish-liver-based samples than fish-head-based medium (both as carbon and 

nitrogen sources). Lipopeptide synthesis was directly regulated by NRPS, that can 

directly incorporate some amino acid to the final lipopeptide product (Schwarzer et al., 

2003). Therefore, the hydrolyzed amino acids in fish liver samples might be more 

suitable for biosurfactant production. Interestingly, the cell-free culture mediums were 

not able to form emulsions as the control medium did (data not shown). It was assumed 

that the hydrolyzed medium might inhibit the emulsification formation.  
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Figure 3-4 Feasibility of biosurfactant production using fish head (FH) and 

fish liver (FL) peptones.  
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Fish waste peptones were further investigated as comprehensive mediums for 

biosurfactant production using Bacillus Subtilis N3-1P and Bacillus Subtilis 21332. The 

results are presented in Figure 3-5. Both strains shared a similar biosurfactant 

production trend. Higher biosurfactant production rates were obtained when using fish-

liver-based peptone as the sole medium. The highest biosurfactant production rates were 

54.72 and 59.33 CMD for Bacillus Subtilis N3-1P and Bacillus Subtilis 21332, 

respectively. The productivities were 47.59 and 49.24 CMD for Bacillus Subtilis N3-1P 

and Bacillus Subtilis 21332 using fish-head-based growth medium.  

The different amino acid composition in two peptones may contribute to the varied final 

productivity. For example, higher concentrations of valine and lysine could dramatically 

increase biosurfactant production whereas alanine and arginine could inhibit the 

production process (Makkar and Cameotra, 2002). Nevertheless, at a high fish peptone 

concentration (over 30 g L-1), the biosurfactant production was inhibited. The medium 

composition is a key factor affecting the structural diversity and productivity of 

biosurfactants. Insufficient nitrogen environment could facilitate biosurfactant 

production (Reis et al., 2013). Under a nitrogen limiting condition, continuous cell 

growth and dividing was inhibited. A microbial metabolism favoring production of 

secondary metabolites was then promoted and the expression of biosurfactant 

production gene was then stimulated (Nurfarahin et al., 2018). It was believed that the 

hydrolysis pretreatment greatly increased the bioavailable carbon and nitrogen  
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Figure 3-5 Feasibility of biosurfactant production using fish head (FH) and fish liver (FL) peptones as raw medium. (A) 

Bacillus Substilis N3-1P; (B) Bacillus Substilis 21332
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concentration, thus stimulating biosurfactant production by Bacillus Substilis. 

The growth of Bacillus spp on waste substrates and the biosurfactant production 

has been previously reported. Serving as an alternative for a carbon source, agro-wastes 

such as brewery effluents, molasses, fruit, and vegetable decoctions have been 

confirmed as biosurfactant producing substrates (de Oliveira et al., 2013; Gomaa, 2013; 

Płaza et al., 2011). Waste oil such as frying oil (Oliveira and Garcia-Cruz, 2013; Yañez-

Ocampo et al., 2017), and olive oil mill waste (Ramírez et al., 2015) were also evaluated. 

The recognition of proper nitrogen substitutes is desired. This was the first of a few 

investigations to identify cheap nutrient replacements for biosurfactant production. 

3.3.3 Physic-Chemical Characterization of Generated 

Biosurfactants 

The physic-chemical properties of a biosurfactant generated by Bacillus Substilis 

N3-1P were determined. The CMC values were 0.18 g L-1 and 0.3 g L-1 respectively for 

the crude biosurfactant generated from fish liver and fish-head-based peptones (Figure 

3-6). This value is compatible with the biosurfactant products generated by other 

Bacillus Substilis strains (Cavalcante Barros et al., 2008; Das and Mukherjee, 2007). 

Purified biosurfactant products were able to form a stable emulsion with diesel oil (EI24 

of 65%). The emulsification process could be inhibited by the fish-based culture 

medium. The TLC analysis revealed that the biosurfactant product produced by bacillus 
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is primarily consisting of lipid and protein. 

The stability of biosurfactant products generated from fish wastes (i.e., liver and 

head) was assessed under a wide range of environmental conditions (i.e., temperature, 

salinity and pH). As Figure 3-7 illustrates, the surface activities of generated 

biosurfactants were positively correlated with temperature. The surface tension 

remained in a narrow window of 35.2 – 27.3 mN/m from 0˚C to 100˚C. The results 

proved that the generated biosurfactants had Kraft temperatures (also known as the 

critical micelle temperatures) below 0˚C. This Kraft point is closely related with their 

structure and ionic character (Lee et al., 2013). The thermostable natures of produced 

biosurfactants were confirmed by other studies. Biosurfactant products produced by 

four different Bacilli isolates could be kept stable for nine days at 80°C (Joshi et al., 

2008a). Salinity also had a limited effect on the stability of generated biosurfactants 

(Figure 3-7). This behavior may be predicable, since high salt concentrations can 

considerably reduce the size and shape of the micelle, thus affecting the functional 

properties of a biosurfactant (Al-Bahry et al., 2013). These results highlighted the 

applicability of the crude biosurfactant produced by Bacillus Substilis N3-1P in a cold   
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Figure 3-6 CMC values of fish-waste-based biosurfactants generated by 

Bacillus Substilis N3-1P  
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Figure 3-7 Stability of generated fish waste biosurfactants 
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coastal environment. It has been reported that the structure and size of the micelles in a 

water–oil system could be affected by the environmental pH (Das et al., 2009b). The 

environmental behaviors of the biosurfactants would then be affected. The surface 

activities of fish waste generated biosurfactants were inhibited at low pH (i.e., pH = 2) 

(Figure 3-7) due to the formation of precipitates. The precipitated and structurally 

distorted biosurfactants lost their capabilities of reducing surface tension. Also, the 

presence of negatively charged groups at the end of the biosurfactant molecule in an 

acid environment might also lead to such an instability (Gudina et al., 2010). The 

surface tensions of fish waste generated biosurfactants remained almost constant at a 

pH range from 4 to 10.  

3.3.4 Structure Characterization of Generated Biosurfactants 

The FTIR spectrums were examined to obtain the information on the functional 

groups of generated biosurfactant products, and the results are illustrated in Figure 3-8 

(A). Two biosurfactants (i.e., fish liver and fish-head-based biosurfactants) showed an 

apparent similarity with stretched intense peaks in the region of 500 - 4500 cm−1. The 

stretching absorption between 1050 – 1150 cm−1 may denote a C-O stretch, and could 

be primary, secondary or tertiary alcohol. The absorbance peaks at 1350 – 1650 cm−1 

evidenced the presence of amide groups. Another broad stretched peaks between 2850-

3050 could be contributed by the -CH3, -CH2 or -CH groups. The presence of a board 

O-H band (3300 to 2600 cm-1) and the strong C=O stretching (1600-1700 cm-1)   
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Figure 3-8 Characterization of biosurfactants generated by FL (fish liver) 

and FH (fish head) peptones. (A) FTIR analysis; (B)MALDI-TOF analysis 
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evidenced the existence of carboxylic acid groups. The FTIR spectrums suggested that 

the biosurfactant products were lipopeptides. 

Figure 3-8 (B) presents the structure of generated biosurfactants analyzed by 

MALDI-TOF. This result clearly indicates that the two products have very similar 

composition. Two groups of lipopeptides, namely surfactin (m/z 1016, 1030, 1044, 

1058, and 1060) and itruin (1026, 1043, 1065, 1079) were identified in both fish waste 

generated biousrfactants. 

3.4 Summary 

The application of RSM identified the individual and interactive effects of the 

hydrolysis condition on fish waste peptone yields. The validity of the model was 

confirmed by the close agreement between the experimental and predicted values. Fish 

waste hydrolysates (i.e., fish liver and fish head) could serve as carbon and nitrogen 

sources to support biosurfactant production. They achieved a higher production rate 

than the control medium. A maximum biosurfactant productivity could reach 54.72 

CMD for Bacillus Subtilis N3-1P when using fish liver peptone as the only substrate. 

The CMC values were 0.18 g L-1 and 0.3 g L-1 respectively for crude biosurfactant 

generated from fish liver and fish-head-based peptones. The FTIR and MALDI-TOF 

results proved the final products belonged to lipopeptides. 
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4.1 Introduction 

Surfactants are a group of amphiphilic substances that can reduce the surface or 

interfacial tension of a liquid. The surface active agents, such as lipopeptides, 

glycolipids, phospholipids, fatty acids, and neutral lipids, if produced by 

microorganisms during their growth, are named as biosurfactants (Shekhar et al., 2015). 

Biosurfactants, produced by microorganisms during their growth, exhibit high surface 

activities and low CMC and are, therefore, attracted much attention in recent years (Cai 

et al., 2014; Zhu et al., 2016). Compared to synthetic surfactants, biosurfactants offer 

the advantages of keeping a stable and effective performance even under extreme 

environment conditions, in the meantime; possess little or no environmental impact due 

to the low toxicity and high biodegradability (Pacwa-Plociniczak et al., 2011). 

Therefore, their applications acting as detergents, emulsifiers, and foaming, wetting, 

and dispersing agents in the fields of environmental, oil and pharmacy industries are 

highly expected (Mulligan et al., 2001). Despite their environmentally favorable 

characteristics, the economic feasibility of biosurfactants remains to be problematic 

owning to the poor production rate, arising primarily from the complex regulation 

system during fermentation and limited effective production cells (Chen and Chang, 

2006). Zhi et al. (2017a) indicated that biosurfactant producers such as Bacillus Substilis 

can generate surfactin, a lipopeptide, through biosynthetic regulation of a quorum 

sensing system. In this system, surfactin synthesis, competence development and 
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sporulation are cross-linked within a complex network of pheromones and pleiotropic 

regulators. As a consequence of quorum sensing, surfactin synthesis is dependent on 

cell density, preventing constant production and limiting overall yields. Therefore, 

methodologies for increasing cell density, thus enhancing biosurfactant productivity 

need to be further studied. 

Compared with suspended cell cultures, whole cell immobilization in the form of 

biofilm has been suggested as an effective approach due to higher cell density, shorter 

fermentation time, and less chance of contamination (Todhanakasem, 2017; Zhou et al., 

2008). Biofilm is an assemblage of microorganisms embedded in a self-produced matrix 

of extracellular polymeric substances (Kokare et al., 2009). They can self-immobilize 

and self-regenerate on all kinds of interfaces with well-organized metabolism and, in 

the meantime, accelerate the fermentation process (Karande et al., 2016; Todhanakasem, 

2017). Biofilm hence are regarded as promising biocatalysts for organic synthesis, due 

to their robust and long-lasting feature, as well as the accelerated fermentation process 

with their existence (Halan et al., 2012; Liu and Li, 2007). A proper selection of a solid 

carrier can greatly improve the growth rate of biofilm, and thereby effectively increase 

the density of cells and stimulate the production of target metabolites (El-Fattah et al., 

2013). Recent findings indicated that the harness of porous solid carriers with larger 

surface areas such as activated carbon and expanded clay could promote gas exchange, 

and provide a larger cell attachment and more immobilization sites for microbes (Chen 
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and Chang, 2006; Rebah et al., 2002). The solid carriers could also provide a larger 

buffer capacity under extreme culturing conditions and hence protect the microbes from 

biotic and abiotic stresses (Chen and Chang, 2006; El-Fattah et al., 2013). Fly ash (FA) 

is a municipal solid waste produced worldwide due to the combustion of coal at high 

temperature. Owing to the concentrated toxic heavy metal in the ash, FA is regarded as 

a hazardous waste. Research has been centered on the treatment of FA through 

detoxification and potential resource recovery. For example, the treated FA can be 

beneficially used as a natural absorbent after proper treatment given its porous structure. 

However, no attempt has ever been made to use FA as a solid carrier for microbial 

growth.  

Therefore, in this work, the FA was tried to serve as the solid carrier for 

facilitating cost-effective and highly efficient biosurfactant production for the first time. 

Two hypotheses were examined: (1) the porous structure of FA could provide a larger 

surface area for the attachment of biocatalyst, thereby greatly stimulating biosurfactant 

production and (2) the immobilized bacterial biofilm may have a positive effect on the 

detoxification of FA by means of a bioleaching process. The biosurfactant producing 

microorganism applied was Bacillus Substilis N3-1P, which was isolated from the 

Atlantic Ocean. The performance of FA on cell growth and biosurfactant production 

was investigated. The effect of FA dosage on biosurfactant production was examined 

using parameters including ST, emulsification activity, and solution dilution as 
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responses. The generated biosurfactant product was characterized through determining 

ST and CMC. Its structure was further characterized using FTIR spectroscopy and 

MALDI-TOF-MS. 

4.2 Material and Methods 

4.2.1 FA as Solid Carrier 

FA to be used as a platform for biosurfactant production was obtained from 

Corner Brook Pulp and Paper (CBPP) plant, Newfoundland and Labrador, Canada. 

Bunker C oil had been mixed with wasted pulpwood as a burning fuel during the thermal 

mechanical pulp process. Generated fly ash was then collected from the power boiler 

and subjected to air drying. The properties of fly ash are listed in Table 4-1. FA was 

characterized before and after incubation with FTIR by the KBr pellet method and 

scanning electron microscopy (SEM). 

4.2.2 Biosurfactant Producing Microorganisms 

Bacillus. subtilis is a motile, Gram-positive, rod shaped endospore-forming 

bacteria widely studied in biofilm formation. They are famous for producing 

biosurfactants, especially effective lipopeptide biosurfactants. The bacterium used in 

this study, Bacillus. subtilis N3-1P, was screened from oily contaminated seawater 

samples (Cai et al., 2014). This strain was identified as a promising and economic 

biosurfactant producer among the screened bacteria, whose product possessed strong 
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Table 4-1 Characteristics of CBPP FA 

Property  

pH 12 

Density (g cm-3) 0.45  

Moisture content (%) 0.89  

Surface area (m2 g-1) 249.4  

C/N ratio 572.95 

Element content in solid (Unit: mg Kg-1) 

Mg 511.65 

Al 947.03 

Fe 784.20 

P 114.33 

Cl 11634 

Zn 11.72 

Cu 7.28 

Pb 2.25 

V 15.46 

Cr 4.73 

Ni 15.96 

Ca 2656.36 
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surface activity and high emulsification capacity.  

The composition of the culture medium for Bacillus Substilis N3-1P was as 

follows: BD Difco™ Marine Broth (Fisher Scientific, Canada) 37.4 g in 1L of distilled 

water. A loopful of a bacteria colony was transferred into a 125 mL Erlenmeyer flask 

containing 50 mL inoculum broth. This seeded culture medium was initially grown on 

a rotary incubator shaker (VWR, Canada) at 200 rpm for 24 h under room temperature 

to reach its exponential growth phase. The biosurfactant production medium was 

comprised of sucrose (30), NH4NO3 (10), NaCl (15), KH2PO4 (3.4), K2HPO4‧3H2O 

(4.4), MgSO4‧7H2O (1.02), and yeast extract (0.5) (g L-1). 

4.2.3 Biosurfactant Production with FA 

Effect of FA on biocatalyst immobilization: FA was added into the production 

medium (section 4.2.2) at a 1% level to assist the attachment of the biofilm-based 

biocatalyst and the one without FA was used as a control. A seeded culture medium 

(section 4.2.2) was used as inoculum at 1% (v/v) level. Samples were collected every 

six hours for a total of 24 hours. FA particles in the culture broth were removed through 

a filtration process. The filtrate containing culture broth was centrifuged at 12,000 rpm 

for 10 min to remove the remaining cells. Filtrated FA particles were gently washed 

three times with Phosphate-buffered saline (PBS) buffer solution and then subjected to 

zeta potential measurement. The growth behavior of the biofilm-based biocatalyst was 

quantified by the variation of zeta potential. The immobilized biocatalyst on FA 
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particles was further characterized with FTIR and SEM. All the samples were collected 

and analyzed in triplicate. The cell-free filtrate was analyzed for biosurfactant 

productivity using CMD as an indicator. 

Effect of FA dosage on biosurfactant production: FA particles were added into 

biosurfactant production medium (section 4.2.2) at a level of 0.5%, 1% and 2% (w/v), 

respectively. Medium without FA particles was used as control. The seeded culture 

medium (section 4.2.2) was used as inoculum at 1% (v/v) level. Samples were collected 

at six-hour intervals for the first day and then every 24 hours for next 6 days. Each 

sample was subjected to filtration to remove the FA particles and then centrifuged at 

12,000 rpm for 10 min to remove the remaining cells. The fermentation process was 

monitored by measuring parameters such as ST, pH, and CMD. The FA particles were 

collected and further examined to determine the effect of biosurfactant adsorption on 

the final productivity. The residue FA particles were treated to separate the adsorbed 

biosurfactant following the method described by Dubey et al. (2005). The optimum FA 

level and incubation time obtained from the above tests were selected for batch scale 

biosurfactant production. All the analysis in this study was performed in triplicate. 

4.2.4  Characterization of Generated Biosurfactant Product 

The optimum FA addition level and incubation time derived from section 4.2.2 

was selected during batch scale biosurfactant production. Biosurfactants in the FA 

particles were collected using the method described in section 4.2.2. The FA free culture 
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broth was centrifuged at 12,000 rpm for 10 min to remove the remaining cells. Cell-free 

culture broth was extracted using an equal volume of chloroform–methanol (1:2 v/v) 

solvent. The solvent was removed by rotary evaporation. Combined biosurfactant 

products extracted from the FA particles and culture medium, and subjected to ST and 

CMC measurement. Its structure was further characterized using FTIR spectroscopy 

and MALDI-TOF-MS. All the characterization results were compared with the ones 

generated by the control. 

4.2.5  Bioleaching of Heavy Metals from FA 

Metal leachability from the FA particles during biosurfactant production process 

was estimated. Cell-free culture mediums at a FA concentration of 1% and 2% 

collected from section 4.2.3 were further examined for the bioleaching behavior. 

Samples were collected and analyzed in duplicate, and a triplicate analysis was 

performed when the deviation was greater than 5%. The concentrations of leached 

heavy metals were examined using inductively coupled plasma mass spectrometry 

(ICP-MS). The differences of FA based medium and control samples were recorded. 

4.2.6 Sample Analysis 

pH and moisture content: The pH of FA from CBPP was measured following 

ASTM D1512-15b, and the moisture content was determined by American Society for 

Testing and Materials (ASTM) D1512−05 (2012).  

ST: The determination of ST was followed by the method described in section 
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3.2.6. 

CMC and CMD: The determination of CMC and CMD was followed by the 

method described in section 3.2.6. 

Zeta potential analysis: The determination of the FA zeta potential was modified 

from the methods described by Akgün (2005) and Li et al. (2011). FA samples collected 

from incubation samples during the first 24 hours were gently washed three times with 

10 mM PBS buffer solution (pH 7.4) and then dissolved into this PBS buffer solution 

to reach a final concentration of 1 mg mL-1. Each sample was gently shaken for 12 hours 

before measuring with a Malvern Zetasizer.   

Trace metals: The trace metals in the FA samples were analyzed by the modified 

Environmental Protection Agency (EPA) method 3050 using inductively coupled 

plasma mass spectrometry (ICP-MS, PerkinElmer ELAN DRCII, USA). A 100 ± 10 mg 

of FA sample was weighed in a 15 mL Teflon vial with a screw cap. Then 3 mL of 8N 

HNO3 was added and heated on a hot plate at 70°C for two days. The sample was then 

cooled again.; Afterwards, 1 mL of HNO3 and 1 mL of H2O2 were added and the sample 

was heated at 70°C for two days to remove organic matters. The sample was then dried 

and cooled. An additional 2 mL of 8N HNO3 and one mL HF were added to the sample 

and heated at 70°C for two days. After drying and cooling, 3mL of aqua regia (VHCl: 

VHNO3= 3:1) was added to the sample and heated at 70°C for one day. The sample was 

eventually dried, cooled, and dissolved in 2% HNO3. The solution was then diluted and 

analyzed by ICP-MS. 
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FTIR analysis: Both FA particles and biosurfactant products were examined with 

FTIR (Bruker Tensor). FA particles were characterized with the KBr-pellet method. 

Spectral measurements were performed in the transmittance mode. Crude biosurfactant 

products were directly characterized with Attenuated Total Reflection -FTIR 

spectroscopy in the absorbance mode. IR was traced over the range of 400–4000 cm−1. 

All data were corrected for background spectrum. 

MALDI-TOF-MS analysis: Biosufactant product analysis in filtrate, FA, and 

blank samples were examined with MALDI-TOF mass spectra by a SCIEX MALDI 

TOF/TOF System as section 3.2.7 described. 

4.3 Results and Discussion 

4.3.1 Effect of Biocatalyst Immobilization on Microbe Growth 

Previous studies have proved the cell growth stimulation and product promotion 

through certain types of porous carrier, such as â-cyclodextrin, filter paper, and silica 

gel (Yeh et al., 2005). The mechanism of FA enhanced biosurfactant production through 

the self-produced biocatalyst is presented in Figure 4-1(A). Biofilms, also act as a 

biocatalyst in this study, and are microbial communities encased in a layer of self-

produced matrix extracellular polymeric substances and they adhered to various 

surfaces. Those free-floating biosurfactant producers started to flow into the channels 

of FA particles and initially attached to their surface within the first few hours. Those 

pioneers then quickly anchored themselves to the matrix via the production of pili, 
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fimbriae, and exopolysaccharides (Rendueles and Ghigo, 2012). Following initial 

attachment, proliferation and building of microcolonies on FA surface spontaneously 

occurred through the production of an extracellular matrix. It is believed that 

bisurfactant production was stimulated through a quorum sensing system at this stage, 

not only to enhance the swarming motility of biosurfactant producer, but also to alter 

the wettability and potential of the platform surface to facility their residence (Gélis-

Jeanvoine et al., 2016; Ribeiro et al., 2012; Yeh et al., 2005). The role of lipopeptide 

biosurfactant as the signaling molecules triggering robust biofilm formation for bacillus 

strains under laboratory conditions has been identified (Zeriouh et al., 2014). 

Additionally, recent researches confirmed that microbes tend to reside in biofilms, 

rather than the free-floating forms (Frederick et al., 2011). Biofilm was able to provide 

biosurfactant producers a stable environment under external stress (e.g., disinfectants 

and antibiotics) by reducing the diffusion of those compounds (Berlanga and Guerrero, 

2016), and thereby promoting their growth rate, and the follow-up biosurfactant 

production.  

Previous studies recognized that the pore structure and surface charge of FA were 

major contributors to the adsorption process (Rendueles and Ghigo, 2012). Visual, 

elemental and spectroscopic analyses (i.e., with SEM and FTIR) were carried out to 

provide multiple disciplines of evidence on the microstructure and surface chemistry of 

FA before and after incubation. The results are presented in Figure 4-1(B). The SEM 

image of raw CBPP FA demonstrated its highly porous, platelet and fiber shaped 
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structure. Its Energy Dispersion X-ray spectroscopy analysis revealed a dominant 

amount of carbon (C) on the surface. Surface properties play an important role in initial 

cell attachment (Goller and Romeo, 2008). The rough surface of FA as Figure 4-1(B) 

presented, has been considered as an excellent solid carrier to promote cell settlement 

and biofilm growth, owing to the enhanced cell-surface interactions and strengthened 

protection from shear force (Li et al., 2007). Additionally, the sorbent properties of FA 

offered the biosurfactant producer a better access to the localized nutrients, providing a 

higher metabolic activity with those free-living ones. After incubation, a layer of biofilm 

was identified on the FA surface from the SEM image. According to the Dispersion X-

ray spectroscopy result, the composition and abundance change of dominant 

components on the surface of the FA further proved the growth of biofilm on the FA 

surface. 

The FTIR spectra (Figure 4-1(b)) provided qualitative characterization about the 

surface of FA, primarily through providing the information of functional groups. The 

major peaks acquired from raw FA material was in accordance with the one reported by 

Martins et al. (2007). Carbonate (870-1400 cm−1) group was recognized in this study. 

Its presence in wood-based FA was widely acknowledged, as the combustion process 

mineralized the organic compounds, and transformed the basic cations to their oxide 

forms. They are lately hydrated and subsequently convert to the forms of carbonates 

and phosphates (Demeyer et al., 2001). The alkane C-H bond stretch (2700-3000 cm−1) 

and carboxylic and/or hydroxyl groups (3200-3600 cm−1) were identified from the FTIR 
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analysis (Weber et al., 2006). The presence of Al and Fe as oxygen functional groups 

within Al-OH and Fe-OH (800-900 cm−1) can be confirmed from Putra et al. (2009). 

The FTIR spectrum of FA samples after the incubation process was also presented in 

Figure 4-1(b). This result presented an increased intensity of carboxylic and/or hydroxyl 

groups in 3200-3600 cm−1 and 800-1000 cm−1 and a new N-H bond stretch at 1700-

1800 cm−1, verifying the existence of biofilm on its surface. It was recognized that 

biofilm was composed of 90% of water, and 10% of polysaccharide, protein, and DNA, 

etc. The abundant carboxylic group in FA and biofilm surface may form a chemical 

bond structure with carbonate groups on FA surface, and thus led to the disappearance 

of stretching bond at 1450 cm−1. 

Figure 4-1(c) provided biosurfactant productivity with the addition of FA. This 

result further proved the enhanced production mechanism described in Figure 4-1(a). 

Acting as a signal molecular, biosurfactant was initially secreted to simulate EPS 

production and biofilm formation at a relatively slow rate (Zeriouh et al., 2014). A 

rocketing biosurfactant production rate was observed after incubation for 18 hours. The 

assembled biocatalyst on FA particles accelerated the reaction by well over ten-fold. 

Biosurfactant concentration was increased from 9 CMD in control sample to 100 CMD 

in FA sample after incubation for 24 hours. The intercellular communications within a 

biofilm further stimulated the up-and-down regulation of gene expression, enabling 

temporal adaptation such as phenotypic variation and the ability to survive in nutrient 

deficient conditions (Garrett et al., 2008), and thereby promote the biosurfactant 
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 Figure 4-1 A) Mechanism of immobilized biocatalyst enhanced 

biosurfactant production on FA particles; B) Characterization of FA with SEM 

and FTIR; and C) Biosurfactant production with and w/o the existence of FA 

based platform
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production. This study demonstrated a successful application of FA as a platform to 

stimulate the biosynthesis of lipopeptide through biofilm encased cells and the findings 

in this study was similar to the one generated by Wigneswaran et al. (2016). 

It is acknowledged that cell attachment and biofilm formation will alter the 

physiochemical properties of porous medium. The surface electrostatic charge of porous 

medium will be affected by the attached biosurfactant production cells and the EPS 

matrix accordingly. Zeta potential measurement has been widely used to characterize 

the solid-liquid interface, obtaining the nature and charge information of solid surface, 

and exhibiting the electrokinetic behavior of solid-liquid interface. Therefore, the zeta 

potential variation was investigated to shed light on the attachment of microbes and 

growth of biofilm on FA surface. Their results are listed in Table 4-2. Zeta potentials of 

all FA particles were below zero in the provided neutral buffer solution. The ones with 

2% FA dosage had the lowest starting zeta potential value, followed by 1% and then 

0.5%. This negative zeta potential might be due to the initial conditioning process, 

resulting from the attraction of mineral groups in the growth medium such as PO4
3-, and 

SO4
2- (Julien et al., 1998). A sharp decrease of zeta potential was identified during the 

first six hours, confirming the strong attachment of negatively charged biosurfactant 

producer to FA surface. Hydrophobic FA surface tended to enhance bacterial attachment 

onto its surface through removing those adsorbed surface water, and attracting bacteria 

with hydrophobic properties (Van Loosdrecht et al., 1987). Microbes were then 

embedded into self-produced extracellular matrix. When biofilm was gradually  
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Table 4-2 Zeta Potential of FA as a function of incubation time at different dosage 

Time 

(h) 

0.5% FA 1% FA 2% FA 

Zeta Potential (ξ) SD (%) Zeta Potential (ξ) SD (%) Zeta Potential (ξ) SD (%) 

0 -3.45 6 -9.54 6 -10.89 2 

6 -13.78 5 -15.05 5 -13.43 5 

12 -14.48 4 -15.05 3 -14.08 3 

18 -17.17 3 -15.08 6 -14.48 6 

24 -19.13 1 -16.52 1 -14.77 5 
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produced, its majority component, namely neutral polysaccharide, shielded and/or 

neutralized the negatively charged surface functional groups, such as DNA and protein, 

and thereby slowed the decrease of zeta potential (Liu and Li, 2007). This explained the 

relative stable zeta potential during next few hours. The higher the concentration of FA 

particles, the longer the biosurfactant producer took to finish biofilm assembling. After 

that, a continuous decrease of zeta potential was observed due to the production and 

adsorption of produced biosurfactants on FA particles. At pH 7.4, most functional 

groups at the hydrophilic moiety of the produced anionic lipopeptide molecule were 

protonated or compensated by a counter ion, leaving limited acidic residues (e.g., Glu 

and Asp) that worked as effective negatively-charged carriers (Fan et al., 2014). The 

continuous accumulation of those produced anionic lipopeptide biosurfactant thus 

decreased the zeta potential of FA surface. 

4.3.2 Effect of FA Dosage on Biosurfactant Production 

Effect of FA supplement as a platform for stimulating the growth of biocatalyst 

upon the enhancement of biosurfactant production was assessed. The medium was 

supplemented by a fixed amount (0.5%，1% and 2%, respectively) of FA carrier. 

Biosurfactant production rate was obtained using the selected Bacillus strain, and the 

correlation between FA dosage and biosurfactant production rate was evaluated as 

shown in Figure 4-2. The results clearly demonstrated the remarkable advantage of 

using FA to promote biosurfactant production. As Figure 4-2 (A) shows, the lag phase 

of biosurfactant production was clearly affected by FA dosage. Production acceleration 
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was firstly taken place in incubation samples with 0.5% FA dosage and last found in the 

samples with 2% dosage. The biosurfactant production was accelerated with CMD 

increased from 9 to 110, 100 and 70 after 24 hours, respectively. Afterwards, a reduction 

of biosurfactant production was recognized, accompanied by a pH reduction (Figure 

4-2 (B)), which was due to the generation of secondary acid metabolites such as uronic 

acid when using sugar as the carbon source (Zhu et al., 2016). Biosurfactant was 

produced and led to the surface tension reduction (Figure 4-2 (C)).  

A biosurfactant production reduction (i.e., Figure 4-2) in culture media was also 

observed after using activated carbon as solid carrier (Yeh et al., 2005). A possible 

explanation to this observation is the depletion of carbon source in culture media, and 

an assimilation of biosurfactant as alternative carbon source for cell growth occurred. 

On the other hand, the adsorption of biosurfactant onto solid carrier could be another 

reason to biosurfactant concentration drop in culture media (Dubey et al., 2005). The 

underlying mechanism is trying to be identified in this study. The biosurfactant content 

in culture media and FA carrier were examined separately following the method 

described in Figure 4-2 (D). The biosurfactant concentration in culture broth (0.5% L, 

1% L, 2% L) and in FA particles (0.5% D, 1%D, 2%D) were shown in Figure 4-2 (E). 

Study result proved that production reduction was mainly owning to the adsorption 

process. The adsorption of biosurfactant on FA particles was gradually increased until 

the maximum adsorption capacity of FA was filled at fifth day. The addition of 2% of 

FA gave the highest final biosurfactant yield, namely 305 CMD. The yield with the  
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Figure 4-2 Biosurfactant production with FA based platform. A) Productivity of growth medium; B) pH of growth medium; 

C) ST of growth medium, D) Flow chart of biosurfactant production process and E) Biosurfactant production in culture broth 

(0.5% L, 1% L, 2% L) and in FA particles (0.5%D, 1%D, 2%D) 
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addition of 1% FA and 0.5% FA were 255 CMD and 170 CMD, respectively. A positive 

relationship between FA dosage and biosurfactant production yield was observed. The 

higher dosage of FA provided a larger surface area of the biocatalyst. Through serving 

as a cell growth booster for the growth of Bacillus Substilis in the media, a higher 

biosurfactant production yield was achieved. In addition, a higher FA dosage increased 

the iron content (Table 4-1), which also contributed to the increase of the biosurfactant 

production yield (Wei et al., 2004).  

4.3.3 Characterization of Produced Biosurfactant 

The surface activity properties of generated biosurfactant product were 

characterized in this study through measuring ST and CMC values. Results indicated 

that both biosurfactant products generated by FA based medium and control sample 

could reduce the ST of water from 75 to 27.8 mN/m. The CMC value of the FA based 

medium was 0.407 g L-1, lower than the one generated by control (0.524 g L-1). It was 

assumed that the attachment of biosurfactant production cells on the FA surface eased 

the purification process. Biosurfactant was more easily desorbed from FA particles than 

other impurities. Its purity therefore was enhanced (Dubey et al., 2005). 

FTIR was further examined in this study to acquire the chemical bond (functional 

groups) information of generated biosurfactant product. Figure 4-3 presented the FTIR 

spectra of biosurfactant products generated by FA based medium and control samples 

in the region of 400-4500 cm−1. Both products had similar spectrum, indicating they 
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shared same functional groups. The characteristic absorbance peaks at 700-950 cm−1 

(peaks 1, 2, and 3) revealed the presence of long-chain aliphatic fatty acid. The 

stretching mode identified from the band range 1000-1250 cm–1 evidenced the presence 

of carbonyl (peak 6) and amide groups (amide I band) (peaks 4 and 5). The peaks 

corresponded to the linkage group between the amine and carboxylic groups of amino 

acids and to the carboxylic group of the fatty acid (Gordillo and Maldonado, 2012). 

FTIR results displayed absorbance in the range of 1,600 to 1,700 cm–1 (peaks 9 and 10), 

due to the deformation mode of the N-H bond combined with C-N stretching mode, 

indicating the existence of amide II band. A typical CH stretching vibration in the alkyl 

chain was identified from band range 2700-2900 cm–1 (peaks 11 and 12). The bands to 

indicate the presence of C=O stretching was not identified in this figure. The 

biosurfactant products were characterized after acid precipitation. Through exerting an 

effect on the acyl chains at the peptide terminus (e.g. the formation of hydrogen bond) 

the secondary structure of the lipopeptide could be affected by such an acidic 

environment. Therefore, the band might have some shrift and was covered by other 

strong bond in the diagnosis fingerprinting area. FTIR results confirmed that the 

biosurfactant was lipopeptide in nature. 

The structure of the lipopeptide biosurfactant was elucidated based on MALDI-

TOF spectral analysis and the results (Figure 4-4) were in accordance with the one 

generated by Yang et al. (2005). This study compared the biosurfactant products 

generated in a FA based culture medium with and without the desorption process, and  
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Figure 4-3 FTIR analysis of biosurfactant produced by Bacillus strains with FA based platform
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Figure 4-4 Characterization of biosurfactant with MALDI-TOF
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the one generated in the control sample using FA free growth medium. The results were 

in accordance with CMD result generated in Chapter 4.3.2. Comparing the low intensity 

and limited identified biosurfactant product in FA free culture broth, the FA based 

medium showed a higher productivity. The productivity of biosurfactant product was 

increased almost 100 times after the desorption process. This result clearly indicated the 

existence of two groups of lipopeptide biosurfactants, namely surfactin (m/z 1008, 1016, 

1030, 1044, 1058, and 1060) and itruin (1026, 1043, 1065, 1079, 1093). 

4.3.4 Bioleaching of Heavy Metals from Fly Ash 

Leachability of heavy metals from FA by biosurfactant producer was illustrated 

in Figure 4-5 A-C), and the principal component analyses of the behaviors of FA 

contained elements were illustrated in Figure 4-5 D). The behaviors in culture medium 

can be attributed into two groups. One group was bacterial growth-related elements, 

such as Cl, P, Mg, Ca, and Al, while the other was the heavy metals such as Cr, Pb and  

Zn. The increased leachability was identified from all three heavy metals (Cr, Pb and 

Zn). Previous research revealed that Zn extraction process was faster than the others 

(Xin et al., 2012). This trend was also proved in this study. A higher concentration of 

Zn was reported in the sample of Day 4. This increase is likely due to the heterogeneous 

heavy metal distribution in the fly ash particles (Provis et al., 2009). The slow extraction 

process for Pb and Cr might be due to the relatively high pH value in growth medium, 

as a bio-acidic dissolution was preferred in the bioleaching process. The bioleaching 
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Figure 4-5 Bioleaching of heavy metal from FA surface. A)-C) Bioleaching 

of Cr, Pb and Zn into medium; D) Principal component analysis of leachate 

metals
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attempt in this study indicated that FA could be detoxicated after several runs of the 

incubation process and thus ease its disposal and treatment process (Zeng et al., 2015). 

4.4 Summary 

This study examined an environmental-friendly and cost-effective way to 

produce biosurfactant through applying self-produced biocatalyst immobilized on FA 

surface. Results indicated that the addition of FA particles at 2% w/v ratio triggered the 

growth of biofilm thus remarkably increased the biosurfactant production rate. The 

application of FA further enhanced biosurfactant purity, resulting in a lower CMC value. 

The FTIR and MALDI-TOF characterized the product as a lipopeptide. The findings 

improved the understanding of cultivation setups and shed light on the application of 

fixed bed biofilm reactor for catalyzing bioproduct generation. 
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5.1 Introduction 

Biosurfactants are a group of surface active molecules synthesized by 

microorganisms (Cai et al., 2015). They have amphipathic molecules that tend to 

accumulate at the interfaces between fluid phases with different polarities (e.g., oil-

water or air-water), thus they are capable of reducing surface tension (ST) and 

interfacial tensions (Ghribi et al., 2012) between individual molecules. In addition, they 

are able to form emulsions where hydrocarbons can solubilize in water or where water 

can solubilize in hydrocarbons (Desai and Banat, 1997; Joshi et al., 2008b). In recent 

years, much attention has been directed towards biosurfactants due to their advantages 

such as lower toxicity, higher biodegradability, better environmental compatibility, 

stronger foaming ability and greater selectivity than chemical surfactants (Pacwa-

Plociniczak et al., 2011). They exhibit stable performance even at extreme temperatures, 

pH and salinity, and have the ability to be synthesized from renewable feed stocks (Ilori 

et al., 2005). Furthermore, biosurfactants have high surface-activities together with low 

CMC, in some cases even lower than most of the traditional chemical surfactants 

(Mulligan, 2005). The aforementioned advantages allow their use and possible 

replacement of chemically synthesized surfactants in environmental and petro-chemical 

industries, and as antimicrobial agents in health care and food processing industries 

(Banat et al., 2000; Gudina et al., 2015a). In recent years, the application of 

biosurfactants has been regarded as a cost-effective and eco-friendly approach in 
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environmental remediation such as soil washing (Mulligan et al., 2001; Silva and 

Sarubbo, 2015; Urum et al., 2003). Though soil washing has been widely applied to 

remediate soil contaminated with crude oil, only a few studies focused on the removal 

of crude oil from contaminated soil through a soil washing process with biosurfactants 

(Uhmann and Aspray, 2012; Urum and Pekdemir, 2004).  

Biosurfactants display a wide variety of chemical structures including small 

molecular weight biosurfactants such as glycolipids, phospholipids and lipopeptides; 

and high molecular weight biosurfactants such as amphipathics, polysaccharides, 

proteins, lipopolysaccharides, and lipoproteins (Pacwa-Plociniczak et al., 2011). 

Surfactin is a lipopeptide biosurfactant produced by Bacillus Substilis strains. Kuyukina 

et al. (2005) examined the enhanced crude oil desorption and dispersion through in a 

soil system with the injection of biosurfactant solution. Gudina et al. (2015b) and 

Pereira et al. (2013) reported the enhanced solubilization of crude oil from soil with the 

injection of biosurfactant, and the reduction of ST to 27 mN/m. Surfactin also shows a 

high emulsifying activity and high antimicrobial, antiviral, and antitumor activities 

(Gudina et al., 2013). However, the biosurfactants produced by Bacillus Substilis strains 

were not well commercialized mainly due to the high production cost (Marin et al., 

2015). The expected breakthrough in terms of their applications remains to be achieved. 

Research has indicated that proper selection of culture conditions for biosurfactant 

production, especially the carbon and nitrogen sources, can promote its production rate 
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thus reduce its production costs (Fonseca et al., 2007). Aiming at production cost 

reduction and effectiveness improvement, selection of nutrient sources was suggested 

to be further explored (Daverey and Pakshirajan, 2009; Reis et al., 2004; Saikia et al., 

2014). 

In this study, biosurfactant production by a Bacillus Substilis strain previously 

isolated from the Atlantic Ocean (Cai et al., 2014) was studied through a proper 

manipulation of carbon and nitrogen sources. Biosurfactant productions with different 

media compositions were investigated using parameters including ST, emulsification 

activity, and solution dilution. Biosurfactants generated by the selected growth media 

were characterized for the composition with thin layer chromatography (TLC). The 

ionic charge of generated biosurfactants and their stability were further studied. Finally, 

the effectiveness and applicability of the biosurfactant product in enhanced oil removal 

was evaluated. 

5.2 Materials and Methods 

5.2.1 Biosurfactants Producing Microorganism 

The bacterium used in this study were screened in the NRPOP lab from oily 

contaminated seawater samples, named as Bacillus Substilis N3-4P (Cai et al., 2014). 

Bacillus strains are a group of well recognized biosurfactant producers, which can lower 

the water ST below 27 mN/m. Among screened bacillus strains in the NRPOP lab, 
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Bacillus Substilis N3-4P was identified as a promising and economic biosurfactant 

producer whose products possessed strong surface activity and high emulsification 

capacity. Bacillus Substilis 21332 is a well-known commercialized biosurfactant 

producer for the product of surfactin. It was obtained from the American Type Culture 

Collection (ATCC) as a performance comparison with lab generated bacteria. 

5.2.2 Media and Cultivation Conditions 

The composition of the inoculum broth used was as follows: BD Difco™ Nutrient 

Broth 23400 (Fisher Scientific Company, Ottawa, Canada) 8.0 g and NaCl 5.0 g in 1L 

of distilled water. A loopful of a bacteria colony was transferred to a 125 mL Erlenmeyer 

flask containing 50 ml inoculum broth. The culture was initially grown on a BUCHI® 

R-215 rotary incubator shaker at 200 rpm for 24 h under room temperature. This seeded 

culture media was used as inoculum at the 1% (v/v) level. For biosurfactant production, 

a mineral salt medium modified from Cai et al. (2014) was listed as follows (g L-1): 

hexadecane (1%), glucose (0.5) and sucrose (0.5), (NH4)2SO4 (10), NaCl (15), FeSO4‧

7H2O (2.8×10-4), KH2PO4 (3.4), K2HPO4‧3H2O (4.4); MgSO4‧7H2O (1.02); yeast 

extract (0.5) and trace element solution, 0.5 ml L-1 of distilled water.  The trace element 

solution contained (in g L-1) ZnSO4 (0.29); CaCl2 (0.24); CuSO4 (0.25); MnSO4 (0.17) 

g L-1 of distilled water and was sterilized separately.  

Carbon and nitrogen sources were added separately. In order to study the effect 
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of carbon source on biosurfactant production, the carbon source in this growth media 

was replaced by sodium acetate (SA), sodium citrate (SC), glycerol (GLY), glucose 

(GLU), sucrose (SUC), starch (STA), n-hexadecane (HEX), and diesel (DIE) separately 

at a concentration of 10 g L-1, or 1% (v/v). Similarly, while exploring the nitrogen effect 

on biosurfactant production, the nitrogen sources in original recipe ((NH4)2SO4 and 

yeast extract) were replaced by ammonium sulfate (AS), yeast extract (YE), and sodium 

nitrate (SN) at a concentration of 10 g L-1 separately. 

The effect of different carbon and nitrogen sources on the production of 

biosurfactants was evaluated using ST, emulsification index (EI), and series dilution as 

productivity, respectively. Medium without bacteria was used as the abiotic control. The 

selected carbon and nitrogen sources were further used for biosurfactant production by 

lab screened bacteria Bacillus Substilis N3-4P. The biosurfactant product was purified 

and freeze dried for characterization. The characterizations of biosurfactants include 

composition content using TLC and its chemical composition content, and ionic 

character. Lab generated biosurfactants were further validated for their application in 

the soil washing system to clean up crude oil contaminated soils. 

5.2.3 Biosurfactant Production and Purification  

Selected biosurfactant production medium are listed as follows (g L-1) based on 

the results from section 5.2.2: Selected carbon source glycerol (10), nitrogen source 
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(NH4)2SO4 (10), NaCl (15), FeSO4‧7H2O (2.8×10-4), KH2PO4 (3.4), K2HPO4‧3H2O 

(4.4), MgSO4‧7H2O (1.02), and yeast extract (0.5) as additive and trace element 

solution, 0.5 ml L-1 of distilled water. The trace element solution, as described in section 

5.2.2 was sterilized separately. Fermentation was performed in 1L flasks containing 600 

mL production medium. The medium was incubated in a shaking incubator at 200 rpm 

for five days. The culture broth was centrifuged at 12,000 rpm for 10 min to remove all 

cells. Afterwards, biosurfactant solution was further purified through solvent extraction 

with an equal volume of chloroform–methanol (1:2 v/v) solvent. The solvent was 

removed by rotary evaporation and then freeze dried. 

5.2.4 Biosurfactant Enhanced Soil Washing 

Lab scale biosurfactant enhanced soil washing experiments were carried out in a 

bench-scale column as Figure 5-1 illustrated. The soil was air dried, homogenized and 

kept in an oven overnight at 105°C. Physical and chemical characterization of the soil 

was performed in accordance with methods of soil analysis (Page, 1982). The results 

presented in Table 5-1 suggested that the soil is a fine silty loam. Five grams of crude 

oil was spiked into 1 kg of soil and well mixed before use. Five hundred gram of crude 

oil contaminated soil sample was layered into a cylindrical column with a diameter of 

3.8 cm and height of 30 cm. To prevent soil from being washed from the column the 

bottom was covered with a layer of fiberglass. Additionally, a layer of glass beads with 

a 6 mm diameter were laid at the bottom and top of the soil column. Soil washing 
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experiments were conducted with lab generated biosurfactant solutions at two different 

concentrations of 4 g L-1 and 8 g L-1. A control experiment was run in parallel where the 

soil was treated with distilled water. The biosurfactant solution or water was 

continuously pumped through the column for 8.5 hours. The washing effluent from the 

column was collected and analyzed for flushed crude oil concentration. Soil samples 

were collected before and after the experiment for the removal rate. 

5.2.5 Sample Analysis 

ST and CMC:  The determination of ST and CMC was followed by the method 

described in section 3.2.6. 

Dilution of biosurfactant solution: The biosurfactant concentration was 

estimated by measuring the ST for varying dilutions (2, 5 and 10-fold) of the sample. 

The dilution at which the ST began to increase indicated the effective biosurfactant 

concentration exceeded the CMC (Ghurye et al., 1994). A higher ST indicated a lower 

concentration of the biosurfactant solution. 

EI24: The determination of EI24 was followed by the method described in 

Chapter 3.2.6. 
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Figure 5-1 Bench scale soil washing system 
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Table 5-1 Physical properties of soil  

SOIL PROPERTIES VALUE 

PARTICLE SIZE DISTRIBUTION (%) 

SILT (<0.06 MM) 43 

SAND (0.06-2 MM) 52 

GRAVEL (>2 MM) 5 

MASS OF CRUDE OIL PER GRAM OF SOIL (MG) 4.8 

BULK DENSITY (G·CM-3) 1.53 

POROSITY (%) 36.5 

PH 7.43 
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TLC: A 0.01 g of purified biosurfactant sample was dissolved in 1 mL methanol 

and was subjected to TLC analysis. Ten microliter sample was applied to a silica gel 

TLC plate (Sigma Aldrich). Carbohydrate and lipid were developed in a chloroform: 

methanol: acetate acid (95:15:2) solvent system and protein was developed in an n-

butanol: acetic acid: water (4:3:0.5) solvent system. The spots were revealed with colour 

reagents. For detection of amino acids, the dry plates were sprayed with a solution of 

0.5 g ninhydrin in 100 mL acetone and kept at 105 ºC for 5 min. Lipid content was 

visualized by iodine chamber. Carbohydrates were visualized by spraying phenol-

sulfuchromic acid and heating at 105 ºC for 5 min. 

Composition analysis: The chemical composition of biosurfactant was 

determined at a concentration of 10mg mL-1. The protein content was determined by 

the method of Bradford (1976). Total carbohydrate content was estimated using the 

phenol–sulfuric acid method by Dubois et al. (1956). Lipid content was determined 

based on the method described by Pande et al. (1963). 

Stability characterization:  The stability of generated biosurfactants was 

determined at different temperature, pH, and salinity following Abouseoud et al. (2008). 

Generally, 1 CMC of biosurfactant solution was prepared and maintained at a constant 

temperature of 0, 25, 50, 75, and 100 °C for 120 min and cooled at room temperature. 

Similarly, pH stability was determined by adjusting the pH value of biosurfactant 

solution to 2, 4, 6, 8, 10, and 12 using HCl or NaOH. The effect of salinity on the 
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stability of the biosurfactant was investigated by adding NaCl at a concentration of 1, 

2, 3, and 4% (w/v). Stability was determined by the change of ST values in duplicate.  

Ionic charge determination:  The ionic charge of generated biosurfactants 

was characterized using the agar double diffusion tests (Meylheuc et al., 2001). This 

test was based on the passive diffusion of two compounds bearing the same or opposite 

type charges in an agar plate. A low hardness agar plate (1%) was prepared with two 

regularly-spaced rows of wells. The bottom hole was filled with lab generated 

biosurfactant solution, and the upper well was filled with selected pure compound with 

known ionic charge. The appearance of precipitation lines with known compounds 

indicated the ionic character of lab generated biosurfactants. The selected anionic 

compounds, sodium dodecyl sulphate (SDS) (Sigma-Aldrich) was prepared at a 

concentration of 20 mmol L−1. The cationic compounds barium chloride (Sigma-

Aldrich) and cetyltrimethylammonium bromide (CTAB) (Sigma-Aldrich) were 

prepared at 50 mmol L−1 and 20 mmol L−1 respectively following Meylheuc et al. (2001). 

Chemical analysis of crude oil in soil:  Soil samples were collected 

before and after the soil washing process to test the crude oil concentration. Generally, 

soil samples were taken from three spots in the reactor, and mixed well before the 

test. The concentration of crude oil in collected soil was determined using the method 

adapted from Urum and Pekdemir (2004) and Han et al. (2009). Generally, 10 mL of 

hexane was mixed with 5g of collected soil sample. The mixture was shaken laterally 
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for 5 min, and all the n-hexane/crude oil extract was removed by centrifugation for 

10 min at 3,000 rpm. The extraction process was repeated for four times until the 

final extract had the same absorbance as that of the pure n-hexane. All four times the 

extract was collected into a volumetric flask and made up to 50 mL with n-hexane. 

Concentration of crude oil was determined by measuring the absorbance of extract at 

the wavelength of 229 nm at room temperature with a Sigma spectrophotometer. The 

test was performed in duplicate. The concentration of crude oil in the soil system was 

determined using Equation 5-2 as follows:       

𝐎 = 𝟐. 𝟐𝟓𝐀/𝐦 (𝐦𝐠 ∙ 𝒈−𝟏)  (5-1) 

where O is the concentration of crude oil in soil (mg∙g-1 dry soil);  

A is the absorbance of the diluted crude oil/n-hexane solution at 229 nm; and 

m is the weight of soil collected (g). 

The crude oil removal efficiency was determined using the Equation 5-3 as 

follows: 

𝐑𝐞𝐦𝐨𝐯𝐚𝐥 (%) =  
𝑶𝒊− 𝑶𝒓

𝑶𝒊
 × 𝟏𝟎𝟎% (5-2) 

where Oi is the initial crude oil concentration in the crude oil contaminated soil 

(mg∙g-1 dry soil) before washing and Or is the residual crude oil concentration in the soil 

(mg∙g-1 dry soil) after washing. 
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Chemical analysis of crude oil in washing solution:  A 10 mL of soil 

washing solution was collected every 30 min and analyzed for flushed crude oil 

concentration. Ten milliliters of n-hexane were added into the washing solution and 

were shaken laterally for 30 min. Samples were then centrifuged at 3,000 rpm for 10 

min. The centrifuged supernatant was analyzed for crude oil content using a 

spectrophotometer at 229 nm. The concentration of crude oil was then determined 

following the method mentioned previously in section 5.2.5. 

5.2.6 Statistical Analysis 

All the tests were performed in duplicated to ensure the reliability of results, and 

the results were expressed as the average of two measurements. Biosurfactant 

production and its performance were analyzed using OriginalPro® 9.0 with paired t-

tests for the statistical evaluation of differences between treated groups and the control. 

A P-value of less than 0.05 indicated a significant difference between the tested groups.  

5.3 Results and Discussion 

5.3.1 Effects of Carbon and Nitrogen Sources on Biosurfactant 

Production 

Different water miscible and immiscible carbon substrates were investigated for 

their capacity to support bacteria growth and biosurfactant production by lab screened 

marine origin bacteria Bacillus Substilis N3-4P and one commercial bacterium Bacillus 
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Substilis 21332 in this work. Hexadecane and diesel were employed as water-insoluble 

carbon sources, and glucose, sucrose, starch and glycerol were selected as water-soluble 

carbon sources. An important indication for the production of biosurfactant is the 

reduction of surface tension of growth medium (Youssef et al., 2004). The surface 

tension reduction ability of generated biosurfactants is illustrated in Figure 5-2. From 

the figure it can be found that no biosurfactant production was detected by Bacillus 

Substilis 21332 in the medium using diesel and hexadecane as carbon sources. Instead, 

water soluble carbon sources, such as glucose, sucrose, starch, and glycerol were more 

preferred for biosurfactant production. The surface tension of starch-based growth 

media could be reduced to as low as 28 mN/m. Biosurfactants produced by Bacillus 

Substilis 21332 mostly displayed a good EI value, and the one generated by glucose 

could reach to a value of 55.2%. For lab screened strain Bacillus Substilis N3-4P, the 

addition of glycerol, hexadecane and diesel were found to promote the production of 

biosurfactants. The lowest surface tension of glycerol-based cell free culture broth that 

could be achieved was 27.8 mN/m, with an EI of 38.3%.  

The effect of nitrogen sources on biosurfactant production rate was also 

investigated in the study, and the results are listed in Figure 5-2. The studied nitrogen 

sources were classified into organic (yeast extract) and inorganic (sodium nitrate and 

ammonium sulfate) sources. From this figure it can be found that the role of nitrogen 

source in influencing biosurfactant production is quite evident. The organic nitrogen  
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Figure 5-2 Effect of carbon sources (CA, SC, SUR, ST, Gly, Hex, Die) and 

nitrogen sources (AS, SN, Yeast) on surface tension reduction and emulsification 

index of lipopeptide biosurfactant generated by B.Substilis N3-4P and B.Substilis 

21332 
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source yeast extract was a promising nitrogen source for both bacteria. A decrease in 

surface tension of the culture broth was observed for Bacillus Substilis 21332 using AN 

and SN based growth media. However, neither of them assisted biosurfactant 

production by Bacillus Substilis N3-4P. In addition, comparing the biosurfactant 

production by Bacillus Substilis N3-4P using different carbon and nitrogen sources, it 

was found that a biosurfactant production was observed in GLY, HEX, DIE based media 

using AN and yeast extract as the nitrogen source, and Yeast based media using 

hexadecane as the carbon source, yet AN as a sole nitrogen source and hexadecane 

resulted in a poor biosurfactant production. Therefore, it can be concluded that a mixture 

of both organic and inorganic nitrogen sources can greatly promote the biosurfactant 

production. 

The selection of proper carbon sources is highly related with biosurfactant 

production rate and the final products (Panilaitis et al., 2007). Therefore, cell free 

growth media was further diluted 2, 5, and 10 times and examined for surface tension 

reduction as an indirect measurement of the relative biosurfactant concentration in the 

growth media. The recorded results are illustrated in Figure 5-3. From the figure it can 

be found that the effect of carbon source on biosurfactant production by Bacillus 

Substilis N3-4P was as follows: glycerol > hexadecane > diesel. After 10 times dilution, 

the concentration of biosurfactant in the solution was able to reduce its surface tension 

to lower than 40 mN/m. Sucrose, starch and glycerol can serve as promising carbon 
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sources for Bacillus Substilis 21332. Those carbon source-based cell free growth media 

were able to reduce surface tension to lower than 35 mN/m after 10 times dilution. The 

most effective carbon source for Bacillus Substilis 21332 was sucrose, whose surface 

tension remained unchanged even after 10 times dilution. Yeast was identified as a 

favorable nitrogen source for both bacillus strains.  

The mechanisms of carbon source utilization for biosurfactant production are 

closely related with selected bacteria. This study indicated that for strain Bacillus 

Substilis N3-4P, biosurfactant production rate is much higher when using glycerol or 

hydrocarbon as carbon sources. Healy et al. (1996) reported that the addition of 

carbohydrate was capable of stimulating the production of secondary acid metabolites 

such as uronic acid, which hindered the synthesis of biosurfactants. This may explain 

the inhibition of biosurfactant production by Bacillus Substilis N3-4P using 

carbohydrate carbon source such as starch and sucrose in this study. On the other hand, 

bacteria Bacillus Substilis 21332 was found to have an opposite preference on the 

selected carbon source. A poor biosurfactant production was discovered using 

hydrocarbon as their carbon sources yet this rate was much higher on water soluble 

carbon substrate. The ability of using water soluble carbon sources for the production 

of biosurfactants was reported by previous studies (Fox and Bala, 2000; Patel and Desai, 

1997). Research conducted by Abdel-Mawgoud et al. (2008) and Das et al. (2009b) 

reported an inhibitory effect on the use of hydrocarbons (including n-hexadecane and  
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Figure 5-3 Effect of carbon source (Gly, Hex, Die) and nitrogen source (AS, 

SN, Yeast) on lipopeptide biosurfactant production generated by B.Substilis N3-

4P and B.Substilis 21332 
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diesel) for bacterial growth and biosurfactant production. In their study, glucose and 

sucrose-based growth media had a better bioisurfactant production rate. Similarly, the 

uses of hydrocarbons as the sole carbon source resulting in no biosurfactant production 

was also proved by Joshi et al. (2008b). Das and Mukherjee (2007) utilized potato as 

substrate, and the production rate can reach high up to 80.0 ± 9 mg gds-1 (per g of dry 

substrate). Though the generation of biosurfactants with hydrocarbons as the substrate 

was also being reported (Gudina et al., 2013), they are mainly used for in-situ 

remediation purposes instead of for direct biosurfactant production. Besides that, 

addition of minerals is also important for biosurfactant production, and the addition of 

nutrients such as yeast extract will stimulate the production of biosurfactant even with 

the presence of hydrocarbons (Cai et al., 2014). In conclusion, various cheaper carbon 

sources can be used as an alternative to support the growth of lab screened bacillus 

strains for biosurfactant production. They can even be identified as an industry waste. 

For instance, glycerol is a by-product of the biodiesel industry, starch and glucose can 

be widely found in agro-industrial waste, and sucrose is commonly existing in sugar 

processing industry waste (Das et al., 2009b). A proper selection of corresponding 

industrial waste can further reduce the production cost.  

Research has indicated that the conditions of nitrogen metabolism have played an 

important role in surfactin production (Davis et al., 1999). Many different sources of 

nitrogen had been investigated for biosurfactant production, and the most frequently 
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used substrates were nitrate salts and ammonia. Among the inorganic salts tested, nitrate 

ions supported maximum biosurfactant production in Bacillus Substilis (Makkar and 

Cameotra, 1998). A recent research conducted by Abdel-Mawgoud et al. (2008) 

indicated that sodium nitrate was the best nitrogen source for surfactin production while 

other tested nitrogen sources decreased surfactin production with different degrees. This 

conclusion was verified in this study as well. Utilization of NaNO3 as a nitrogen source 

presented the best reduction of surface tension by Bacillus Substilis 21332. In contrast 

to the carbon source used in biotechnological processes, complex or less well-defined 

sources of nitrogen (e.g., yeast extract or protein hydrolysates) are relatively less 

researched, yet have proved to have promising productivity. The utilization of protein 

hydrolysates as an alternative nitrogen source is attractive for biosurfactant production. 

5.3.2  Characterization of Generated Biosurfactant Product 

Lab screened bacteria Bacillus Substilis N3-4P was further characterized for its 

chemical composition and stability using glycerol as the selected carbon source, and 

(NH4)2SO4 and yeast extract as nitrogen sources. The biosurfactant product was able to 

reduce the surface tension of distilled water from 72 mN/m to 27 mN/m. The CMC 

value of the product was determined by separately measuring the surface tension of 

different concentrations of the product, and the value was 0.507 g L-1.  

A TLC analysis indicated the biosurfactant product was a mixture of carbohydrate, 
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lipid and protein. This mixture contained 21% (w/w) of protein, a 35% (w/w) of lipid 

and 18% of carbohydrate (w/w). This result indicated that the product was very likely 

to be a mixture of lipopeptide and glycolipid biosurfactant. No precipitation lines were 

observed between lab generated biosurfactants and selected chemical compounds 

(barium chloride, CTAB, SDS). Therefore, lab generated biosurfactant product was 

proved have non-ionic character. Mulligan (2005) and Cameotra and Makkar (1998) 

also proved that most of the biosurfactants were either with neutral or anionic character.  

Biosurfactant stability with different environmental conditions, such as variation 

temperatures, pHs and salinities are highly related with its applicability in the fields. 

Therefore, the stability of biosurfactant product generated by Bacillus Substilis N3-4P 

was tested over a wide range of temperature, pH value and salinity (Figure 5-4). 

Enhanced surface tension reduction ability during the heating process was observed in 

this study. An enhanced surface activity of biosurfactant product was observed as the 

temperature increased. A lab generated biosurfactant solution achieved the lowest 

surface tension when the temperature reached 100 °C, yet it still had a remarkable 

surface tension reduction capacity even at 0°C. Therefore, it can be concluded that this 

product maintains its surface properties unaffected in the range of temperatures between 

0 and 100 °C. Similarly, the surface tension of generated biosurfactants decreased as 

the pH increased, indicating that they had a better stability under a relatively high pH 

condition. The unchanged surface tension of biosurfactant solution under various 
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Figure 5-4 Stability of the biosurfactant product produced by B.Substilis 

N3-4P under various temperature, pH and salinity conditions 
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salinities demonstrated the generated biosurfactant had a stable performance between 

salinity of 1%-4%. 

5.3.3 Biosurfactant Enhanced Soil Washing for Crude Oil 

Removal 

Figure 5-5 illustrates the effect of biosurfactant concentration on enhanced crude 

oil removal in soil washing systems. From this figure it can be found that both 

biosurfactant solutions significantly enhanced the removal rate of crude oil as compared 

to a control column using distilled water as a washing agent. Biosurfactant 

concentration with 4g L-1 had a lower crude oil removal rate and a longer washing time 

than the one with 8g L-1. It can also be found that biosurfactant- enhanced aqueous 

systems were much faster to reach saturation than the control. As the biosurfactant 

concentration was increased, an improved percentage of crude oil removal was 

observed. With the application of 4g L-1 and 8g L-1 crude biosurfactant solution, a 58% 

and 65.2% of crude oil could be removed from the soil systems respectively, while the 

control system (water only) could only cleanup 36.9% crude oil in the contaminated 

soil.  

Given that the crude oil was complex in nature and composition with over 50-80% 

aliphatic hydrocarbons, the cleanup of crude oil contaminated soils requires more 

efforts compared with other petroleum contaminated soils (NRC, 1985). The result 
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 Figure 5-5 Effect of biosurfactant concentration on enhanced crude oil 

removal in soil washing systems 
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obtained in this study was expected, and in accordance with previous studies where Lai 

et al. (2009) examined biosurfactant enhanced TPH removal from low TPH 

contaminated soil (3 mg g-1) and high TPH contaminated (HTC) soil (9 mg g-1). Their 

result indicated that biosurfactant product had a better performance when treating high 

TPH contaminated soil. Addition of rhamnolipid and surfactin solution could increase 

the removal rate from 20.4% to over 60% from HTC soil. This study suggested that lab 

generated biosurfactants could be used as an effective washing agent to cleanup crude 

oil in a soil system. Urum et al. (2006) provided some insight on the removal of crude 

oil from soil systems. Their research indicated the preference for crude oil removal 

highly depended on the selected surfactant. A significant amount of oil compounds 

could be removed from the systems; however, high molecular weight aromatic 

hydrocarbons such as dibenzothiophenes, an organic compound occurring widely in 

heavier fractions of petroleum, can hardly be removed by the studied surfactants. A 

similar conclusion was confirmed by Zhang (2015) as well. This study helped to explain 

the relationship between residue oil in the soil column and limited oil concentration in 

the eluent in this study.  

In this study, compared with using distilled water as washing agent, crude oil 

removal rate was significantly increased using biosurfactant based washing solution. 

The mechanism of biosurfactant enhanced crude oil removal is closely related with its 

concentration. When the concentration of biosurfactant solution was below its CMC 
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value, the mechanism of biosurfactant enhanced crude oil removal mainly relied on the 

reduced surface and interfacial tension at the water-air and crude oil-water interface due 

to its amphiphilic structure (Abdul et al., 1990). The lowered interfacial tension thus led 

to an increased contact angle and reduced capillary force holding the crude oil and soil 

particles and consequently enhanced the mobility of crude oil (Kavitha et al., 2014; 

Pacwa-Plociniczak et al., 2011). This is also known as the mobilization mechanism 

(Pacwa-Plociniczak et al., 2011). When the concentration of biosurfactant is above its 

CMC value, the formation of biosurfactant micelle can greatly increase the 

solubilization process, and help to solubilize the residue oil compounds left in the soil 

system and enhance the removal of organic contaminants (Urum and Pekdemir, 2004). 

Moreover, a recent research conducted by Zhang et al. (2014) indicated that 

biosurfactant enhanced solubilization and structural disjoining pressure in the wedge 

film is another reason for the oil droplet detachment from the soil surface. The extent 

of this pressure is correlated with the micelle size, particle size, and surface charge of 

particles (Zhang et al., 2014). Therefore, it can be concluded that the enhanced 

solubilization and the structural disjoining pressure was the major reason for crude oil 

removal in this study. The increased concentration of biosurfactant would accelerate the 

formation of micelles in system, and those micelles could replace the biosurfactant 

monomers adsorbed to the soil, and increase the effective biosurfactant concentration 

in the system. In this study, compared with using 4g L-1 of biosurfactant solution as 
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washing agent, a higher crude oil removal rate was reported using the biosurfactant 

solution at 8g L-1.  

Last but not least, the removal of hydrocarbon from soil system was reported to 

be closely related with soil texture and mineralogy (Lee et al., 2002). The reported 

removal rate in this study was lower than the ones treated with sandy soils. Researches 

also proved that biosurfactants had a better performance in sandy soils (Lee et al., 2001). 

The effectiveness of surfactant-based remediation can be limited by adsorption of 

surfactants to clay, silt, and organic soil contents (Lee et al., 2001). Furthermore, given 

that most of the soil surface was negatively charged; the adsorption process was even 

worse for the cationic surfactants. They tended to a higher affinity on the soil particles, 

thus affect its removal efficiency. Lab generated non-ionic biosurfactant by B. Substilis 

N3-4P were proved to have a non-ionic character, thus they were believed to have a 

better performance. This result was proved by other studies. Kavitha et al. (2014) and 

Zhang (2015) found that the solubility of crude oil was proved to be proportional to the 

concentration of biosurfactants with a non-ionic nature, such as rhamnolipid. Urum and 

Pekdemir (2004) found that with the injection of rhamnolipid at 25 CMC, the removal 

rate of crude rate could reach up to 80%. In this study, a 58% and 65.2% of crude oil 

was removed from soil system using biosurfactant solutions at 4g L-1 and 8g L-1 

respectively. Considering that the lab generated biosurfactant is a non-ionic lipopeptide 

complex, a higher removal rate is expected when a higher concentration of biosurfactant 
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solution is adopted as a washing agent.  

5.4 Summary 

The enhanced biosurfactant production by marine originated bacteria Bacillus 

Substilis under different carbon and nitrogen sources was studied by comparing the ST, 

EI and CMD. The results proved the capability of marine bacteria Bacillus Substilis N3-

4P in producing biosurfactants, which were a mixture of lipopeptide and glycolipid. The 

production rate and emulsion capacity were compatible with those generated by 

commercial strains Bacillus Substilis 21332. The highest production rate was achieved 

when using glycerol as the carbon source, and yeast extract and sodium nitrate as 

nitrogen sources. The biosurfactant solution could reduce the surface tension of distilled 

water to as low as 27 mN/m, with a CMC value of 500 mg L-1. Even after dilution of 

10 times, a surface tension of 36.4 mN/m was still observed. The biosurfactant product 

was found to have non-ionic character, and had a stable performance with a duration up 

to 24 hours at various temperatures (0-100 °C), pH (2-8) and salinity (1-4%) values.  

This study further evaluated the effectiveness and applicability of the generated 

biosurfactants in crude oil soil washing. The results showed that the removal rates 

reached 58% and 65.2% by introducing the generated biosurfactants with the 

concentrations of 4g L-1 and 8g L-1, respectively. In comparison, only 36.9% of crude 

oil was washed out with water only. Given the adsorption of anionic surfactant onto 
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negatively charged soil particles, the injection of non-ionic bacillus biosurfactant was 

consider as more suitable as a soil washing agent since it was less likely to be adsorbed 

to the soil and thus was mobile and effective. Overall, the results demonstrated the 

potential of bacillus biosurfactants for applications in petroleum contaminated site 

remediation. Ongoing studies are being carried out analyzing soil samples and effluent 

for residue components to better understand the removal mechanism by using 

biosurfactants as a soil washing agent.  
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6.1 Introduction 

Industrial development and human activities have led to an increasingly concern 

over groundwater and soil contamination as a result of unexpected release of PHCs and 

associated pollutants (e.g., heavy metals) from petroleum and/or the refining products 

in recent decades (Chandra et al., 2013). Employing microbial processes (also known 

as bioremediation) to cleanup contaminants has proven to be effective and reliable due 

to the high ecological significance and cost-efficiency features. However, the low 

bioavailability of PHCs due to the hydrophobic nature (low water solubility) has 

hindered their biodegradation (Liu et al., 2017). The co-occurrence of toxic heavy 

metals such as nickel (Ni), cadmium (Cd) and lead (Pb) could further change and/or 

inhibit the metabolic activity and physiological processes of oil-degrading microbes, 

posing another major obstacle to PHCs biodegradation (Olaniran et al., 2013). 

Biosurfactants have attracted increasing attention as amphipathic surface-active 

compounds. They have high biodegradability, low toxicity, and specific activity at 

extreme environmental conditions (Mulligan et al., 2014). They can reduce the surface 

tension of water, and interfacial tension between two liquids (e.g., water and oil). The 

formation of surfactant micelles promotes the partitioning of PHCs into the aqueous 

phase (Beal and Betts, 2000; Damrongsiri et al., 2013; Lanzon and Brown, 2013). In 

the meantime, less soluble metal salts including phosphate and sulfide precipitates are 

formed through the metal-surfactant complexation process (Mosa et al., 2016). Cell 
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interactions with cations are reduced accordingly, and the heavy metal toxicity can be 

decreased in the co-contamination system (Gnanamani et al., 2010).  

To date, the underlying mechanism of biosurfactants enhanced biodegradation 

(e.g., biosurfactant micellization behaviors, PHCs solubilization modifications and oil-

microbe attachment) have been documented (Bai et al., 2017; Ivshina et al., 2016; Liu 

et al., 2016). Application of biosurfactants has demonstrated the capacity to overcome 

the diffusion-related mass transfer limitations of hydrocarbons; and biosurfactant-

enhanced bioremediation technique have thus been developed (Bezza and Chirwa, 2016; 

Liu et al., 2016). Biosurfactant induced cell surface modifications have been spotted 

(Kuyukina et al., 2016; Sun et al., 2016). Cell surface properties (e.g., the cell surface 

hydrophobicity (CSH), cell surface permeability and zeta potential), have been reported 

to be of significant importance during a biodegradation process. Yet, they can be 

changed through biosurfactant induced removal of lipopolysaccharide from the cell 

surface, and/or the adsorption of biosurfactants onto the cell surface (Zhong et al., 2015). 

In addition, the membrane transportation of PHCs, also known as a key process in 

governing the PHCs biodegradation rate (Zhang et al., 2013), can be affected by 

biosurfactant-cell wall lipid bilayer interaction (Zeng et al., 2018). However, few 

studies regarding the cell surface associated mechanism of biosurfactant enhanced 

PHCs degradation in a co-contaminated environment have been reported (Liu et al., 

2016; Smułek et al., 2015).  
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Therefore, the present study attempted to investigate the effect of a biosurfactant 

on the biodegradation of a PHC (i.e., diesel) in the presence of the heavy metal (i.e., Ni) 

with various concentrations within an acute (24hr) and long (14 day) term, respectively. 

The lipopeptides biosurfactant product generated in Chapter 4, with demonstrated high 

surface activities and extremely low CMCs, was selected in this study. It is hypothesized 

that in a co-contaminated environment, lipopeptide biosurfactant addition could not 

only reduce the toxicity of heavy metals, but also affect cell wall-associated PHCs 

degradation mechanism (e.g., biosorption and biodegradation). Rhodococcus 

erythropolis, a well-known PHCs degrader was selected in this study. The effects of the 

lipopeptide biosurfactant on the cell surface properties, including bacterial CSH, 

membrane permeability, cell zeta potential, and cell size distribution in the oil-metal co-

contaminated environment were examined. Performance of the lipopeptide 

biosurfactant on diesel oil partitioning and biodegradation was evaluated. This study 

would provide a detailed insight into the mechanisms of lipopeptide aided PHCs 

biodegradation in a co-contaminated system through the interactions among lipopeptide, 

target contaminants (i.e., PHCs and Ni), and oil degrading microbes (i.e., Rhodococcus 

erythropolis). 
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6.2 Materials and Methods 

6.2.1 Oil Degrading Microorganism and Growth Media 

Oil biodegrading bacteria Rhodococcus erythropolis was isolated from the oily 

contaminated sea water and sediment samples from the coastal line (N43.9° to N47.8°) 

of Newfoundland, Canada (Cai et al., 2014). A loopful of a bacteria colony was 

transferred from agar plate into a 125 mL an Erlenmeyer flask containing 50 mL of 

inoculum medium. The inoculum medium was composed of 8.0 g L-1 BD Difco™ 

Nutrient Broth 23400 (Fisher Scientific Company, Ottawa, Canada) and 5.0 g L-1 NaCl. 

It was used as a seeded culture after 24h at an inoculation concentration of 2% (v/v).  

The mineral salt media (MSM) used in the bacterial biodegradation assay was 

modified as described by Yu et al. (2007). The modified MSM recipe was as follows 

(mg L-1): NaH2PO4 (500), KH2PO4 (850), K2HPO4 (1656), NH4Cl (1000), 

MgSO4·7H2O (1.0), FeSO4·7H2O (1.0), MnSO4·H2O (0.36), ZnSO4·7H2O (0.3), 

CoCl2·6H2O (0.1), CaCl2·2H2O (1.0) and marine nutrient broth (3.74). Diesel oil (Irving, 

NL, Canada) was added at 2% (v/v). NiCl2 was added into the system to reach a final 

concentration of 25 ppm and 250 ppm respectively.  

The lipopeptide biosurfactant used in this study was generated as described in 

Chapter 4. The CMC of the generated biosurfactant was 0.407 g L-1. The lipopeptide 

biosurfactant was prepared at five levels (i.e., 0.5 CMC, 1 CMC. 2 CMC, 4 CMC, and 
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8 CMC). They were autoclaved and added into MSM medium separately.  

6.2.2 The Effect of Biosurfactant on Microbe Activity in the Co-

Contamination System 

Effects of lipopeptide on the microbial activity in a co-contaminated system were 

examined in 50 mL Erlenmeyer flasks. Each system was prepared in triplicate, and 

incubated at 30 °C in an orbital shaker (150 rpm). The ones without lipopeptide were 

used as control systems. The reactions were terminated at 24 hours and 14 days 

respectively to evaluate the biosurfactant enhanced acute and long-term microbial effect. 

After centrifuging the samples at 6,000 rpm for 15 min, cell pellets were re-suspended 

into PBS buffer solution. The cell surface properties of each cell sample, namely 

bacterial CSH, membrane permeability, and cell zeta potential were determined.  

6.2.3 The Effect of Biosurfactant on Ni2+ behaviour in the Co-

Contamination System 

The cell-free liquid samples collected form Task 6.2.2 were further analyzed for 

the effects of lipopeptide on the behavior of Ni2+. The particle size, as an indicator of 

micellar behavior were evaluated. In the meantime, the heavy metal (Ni2+) 

concentration in each sample was evaluated to reflect biosurfactant enhanced 

immobilization.  
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6.2.4 Distribution and Biodegradation of PHC 

The distribution and biodegradation of the PHC (i.e., diesel) by Rhodococcus 

erythropolis were carried out in 125 mL Erlenmeyer flasks with 20 MSMs (section 6.2.1) 

in triplicate. Lipopeptide biosurfactant was added at a concentration of 0.5, 1, 2, 4, and 

8 CMC, respectively. The flasks were incubated at 30 °C in an orbital shaker (150 rpm) 

for14 days. After treatment, the samples were collected and treated with the procedures 

illustrated in Figure 6-1. Each sample was passed through a filter paper (2 μm) to 

separate oil degrading cells and the culture medium. The filter paper was further washed 

with 2 mL MSM broth to collect the residue PHC on it. Two filtrate portions (L1 and 

L2) were collected to determine the PHC concentration in the aqueous phase. Oil 

degrading cells on the filter paper were re-suspended in 2.0 mL MSM and lysed by 

sonication. PHC in the cell debris (L3) was extracted with methanol following the 

method described by Li and Zhu (2014). The sorption ratio, defined as the ratio of the 

PHC amount on cell surface to total amount of PHC in the system, was introduced to 

evaluate the extent of PHC sorption in each system (Zhang and Zhu, 2012).  

Biosurfactant enhanced PHC biodegradation was carried out in 125 Erlenmeyer 

flasks containing 20 mL of MSM contaminated with 2% (v/v) diesel oil. The 

concentrations of lipopeptide biosurfactant were used as follows: 0.5, 1, 2, 4, and 8 

CMC. After incubation on a rotary shaker (150 rpm) at 30 ºC for 14 days, samples were 

collected. PHC in each sample was extracted with hexane. Five milliliters of hexane 
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were added into each sample and it was shaken at 200 rpm for 5 minutes to collect the 

organic phase. This procedure was repeated for three times and the final solution was 

added to 20 mL with hexane. The distribution and biodegradation of PHC in each 

sample, represented by the concentrations of alkanes, was measured by GC-MS.  

6.2.5 Sample Analysis 

Inner membrane permeability: Bacteria can produce a hydrolytic enzyme, 

named β-galactosidase, after being activated by lactose. Located in the cell membrane, 

β-galactosidase will be released into the culture medium when the cell membrane 

permeability increases. The o-Nitrophenyl-β-D-Galactopyranoside (ONPG) will be 

hydrolyzed into galactose and o-nitrophenol (ONP) (yellow in color). The optical 

density (OD) of the culture medium thus will be increased (Lehrer et al., 1989). 

Therefore, effects of lipopeptide biousrfactant on the membrane permeability of 

Rhodococcus erythropolis were determined by measuring the release of β-galactosidase 

as described by Zhang et al., (2013). 

Each cell pellet was washed three times with 0.01 M PBS (pH 7.2) solution, and 

then re-suspended in to the MSM medium to reach an absorbance of 0.8 at OD600. The 

bacterial suspension (5 mL) was mixed with 5 mL PBS buffer solution and 0.5 mL 

ONPG (30 mM). Samples without biosurfactant and contaminants were used as the 

blank control. After incubation at 30 °C for 2 h, samples were centrifuged (8,000×g) for   
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Figure 6-1 The analysis of diesel partition on oil degrading strain cells 
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10 min and the production of o-nitrophenol (ONP) was measured by UV-

spectrophotometer at 415 nm. The release of β-galactosidase was evaluated based on 

the productivity  

The absorbance of reaction and blank control system were represented by A415,i , 

and A415,0, respectively. The release of β-galactosidase was evaluated based on the 

productivity of o-nitrophenol (ONP) and calculated using the Equation 6-1 as follows: 

𝜼𝑶𝑵𝑷 =
𝑨𝟒𝟏𝟓×𝛎

𝛎𝟎×𝐝×𝐭×𝛏
 (6-1) 

 where A415 (A415=A415, i−A415,0) is the absorbance caused by the biosurfactant; ξ is 

the extinction coefficient (4.86 cm/mM) of ONP; ν,ν0 and t are the sample volume (mL) 

and reaction time (h), respectively; d is the optical path of cuvette (cm). 

Cell surface hydrophobicity: Bacterial adherence to hydrocarbons (BATH) 

method was used to determine the changes of bacterial cell surface hydrophobicity 

(Sokolovská et al., 2003). After harvest, the Rhodococcus erythropolis were washed 

with PUM buffer solution (22.2 g K2HPO43H2O, 7.26 g KH2PO4, 1.8 g urea, 0.2 g 

MgSO4•7H2O in 1000 mL distilled water, pH 7.1) two times to remove residue 

hydrocarbons and biosurfactants.  

The cells were then resuspended in PUM buffer to an initial absorbance (O.D.400 

nm) of between 1.4 and 1.6. Each cell suspension (1.2 ml) was dispensed into a round-

bottom acid-washed test tube (i.d. 10 mm) and 0.2 ml sterile n-hexadecane added. 
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Following preincubation at 30°C for 10 min, the test tubes were uniformly vortexed for 

120 s. After allowing 15 min for the phases to separate, the lower aqueous phase was 

carefully removed with a Pasteur pipette and its turbidity at 400 nm measured. 

Hydrophobicity was expressed as the percentage of adherence to n-hexadecane that was 

calculated as follows: 100 × (1 – O.D. of the aqueous phase/O.D. of the initial cell 

suspension). For a given sample, three independent determinations were made. 

Heavy metal concentration: Each cell-free supernatant sample was digested to 

release the trapped Ni2+ in the lipopeptide-Ni complex. The concentrations of the target 

metals in each sample were measured by a Perkin–Elmer atomic absorption analyst 100 

spectrophotometer. All tests were in triplicate and error bars based on the standard 

deviation were plotted. 

Zeta potential analysis: The determination of cell zeta potential was modified 

from the methods described by Akgün (2005) and Li et al. (2011). Bacterial cells were 

gently washed three times with 10 mM PBS buffer solution (pH 7.4) and then dissolved 

into this PBS buffer solution (OD600 = 0.8). Each sample was then analyzed with 

Malvern NanoZetasier ZS.  

GC–MS: GC–MS analysis was conducted on an Agilent 7890A gas 

chromatograph equipped with a DB-5MS column fused silica capillary column 

(30 m × 0.32 mm × 0.25 μm). The GC oven temperature was held isothermally for 5 

min at 60 °C, programmed to sequentially step from 60 to 300 °C at 3 °C min−1, and 
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then held isothermally for 45 min at 300 °C. Helium was used as carrier gas at a flow 

rate of 1.0 mL min−1. The transfer line temperature was 250 °C and the ion source 

temperature was 200 °C. The ion source was operated in the electron ionization (EI) 

mode at 70 eV. Full scanning was used to identify the biomarker compounds and 

calculate molecular parameters. The scanning range was from m/z 50–580. 

6.2.6 Statistical Analysis  

The experiment was arranged in a completely randomized design. All data 

reported were averaged values of three independent replicates. Statistical analysis of the 

data was carried out using OrigniPro®. Differences were considered statistically 

significant at p < 0.05.  

6.3 Results and Discussion 

6.3.1 Effect of Biosurfactants on Effect of Cell Surface 

Properties  

- Cell surface hydrophobicity  

Playing a key role in regulating the bacteria, PHCs and solid surface interactions, 

microbial CSH could provide valuable evidence for evaluating the ability of bacteria in 

up taking and biodegrading hydrocarbons (Bezza and Chirwa, 2017a). In general, high 

CSH allows better attachment of oil degrading strains to PHCs in a long run. 
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 Figure 6-2 Analysis of the surface hydrophobicity of oil degrading cell at various Ni2+ (25 ppm and 250 ppm) and 

biosurfactant concentrations (blank, 0.5 CMC, 1CMC, 2CMC, 4CMC, 8CMC) in short (24h) and long (14 day) period
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Biosurfactant addition could enable an increase of cell surface hydrophobicity, 

thus improve oil degrading microbe-PHCs droplet interaction. Concentration-

dependent CHS changes of Rhodococcus erythropolis, after the exposure to a co-

contaminant in a short (24hr) and long period (14 day), are presented in Figure 6-2. As 

shown in this figure, a decrease of bacteria CSH was observed after 24 hours at a 

relatively low CMC value (i.e., 0.5 and 1 CMC) under both heavy metal concentrations 

(i.e., 25 ppm and 250 ppm). In the same set, bacterial CSH was significantly increased 

as lipopeptide concentrations increased from 1 CMC to 8 CMC. The 14-day CSH value 

was found to be much higher than the ones in 24 hours. Lipopeptide addition exhibited 

a positive effect on strain CSH under both heavy metal concentrations (i.e., 25 ppm and 

250 ppm). 

- Membrane permeability 

Acting as a barrier against PHCs and metal ions uptake, an understanding about 

biosurfactant effect on the membrane permeability is important. To reveal possible 

lipopeptide induced changes of cell wall permeability in a co-contaminated system, the 

release of cytoplasmic β-galactosidase, a hydrolytic enzyme in the cell membrane, was 

evaluated and the results are presented in Figure 6-3.  
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Figure 6-3 Analysis of the membrane permeability of oil degrading cell at 

various Ni2+ (25 ppm and 250 ppm) and biosurfactant concentrations (blank, 

0.5CMC, 1CMC, 2CMC, 4CMC, 8CMC) in short (24h) and long (14 day) period
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After 24h exposure to the co-contaminated environment, an increased cell 

membrane permeability was observed in low Ni2+ co-contaminated systems (25 ppm). 

However, in 250 ppm Ni2+ co-contaminated environments, the high Ni2+ stress and their 

biosorption on to cell surfaces significantly inhibited the cell membrane permeability. 

Though lipopeptide addition at a concentration above its CMC was able to reduce the 

adverse effect, the release of β-galactosidase was still less than the control sample (and 

showed as negative value). Generally, the cell surface permeabilities were promoted at 

a biosurfactant concentration over its CMC. The 14-day exposure experiment shared a 

similar result. When the lipopeptide concentration was above its CMC, the cell 

membrane permeability was notably promoted.  

Lipopeptide induced permeability modification was believed to be a dynamic and 

slow process. However, after a 14-day exposure, there was not much difference on cell 

membrane permeability between two contamination sets (i.e., 25 ppm and 250 ppm Ni2+ 

co-contaminated environment, respectively). At a lipopeptide addition of 8 CMC, the 

highest β-galactosidase release were achieved at 0.0897 μM ONP/h/mL in 25 ppm Ni2+ 

co-contaminated environment and 0.0812 μM ONP/h/mL in 250 ppm Ni2+ co-

contaminated environment, respectively. 

- Cell zeta potential 

The electrostatic charge plays a primary role in sustaining cell activities and 

behaviors through influencing the overall cell polarity and maintaining the degree of 
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Figure 6-4 Analysis of the zeta potential (ζ) of oil degrading cell at various Ni2+ (25 ppm and 250 ppm) and biosurfactant 

concentrations (blank, 0.5 CMC, 1CMC, 2CMC, 4CMC, 8CMC) in short (1day) and long (14 day) period 
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surface hydrophilicity (Wilson et al., 2001). Zeta potential, the electrical potential of the 

interfacial region between the bacterial surface and the aqueous environment, has been 

widely used to assess the net cell surface charge (Wilson et al., 2001). Dissipation of 

zeta potential of Rhodococcus erythropolis biomasses were assessed and the results are 

presented in Figure 6-4. The results revealed a reduced absolute value of the negative 

cell surface zeta potential at a biosurfactant concentration below its CMC value in 24h. 

An increased biosurfactant concentration from 1 CMC to 8 CMC significantly increased 

the stability of oil degrading strain Rhodococcus erythropolis, as the absolute value of 

the negative cell surface zeta potential increased in both co-contaminated environments.  

There was a significant linear correlation between surface zeta potential and the 

cell surface hydrophobicity. In the case of long-term exposure to a co-contaminated 

system, positive cell surface zeta potentials (0.031 mV and 15.7 mV for 25 ppm and 

250 ppm, respectively) were observed in biosurfactant free systems. It is thus believed 

that a biosorption of Ni2+ occurred, and the cell wall was destabilized. The negative 

functional molecular groups on the cell surface served as a binding site and, Ni2+ 

therefore was adsorbed onto the cell surface. Interestingly, such changes in potential 

(within a co-contaminated system) can be correlated with the increased membrane 

permeability (Figure 6-3). This correlation further proved the adsorption of Ni2+ ions 

onto the cell surface. The cell surface charge was neutralized, and membrane 

permeability was altered accordingly. Lipopeptide addition exerted a positive impact on 
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the cell surface zeta potential of Rhodococcus erythropolis, as the zeta potential was 

gradually shifted towards neutrality and finally dropped to negative in both co-

contaminated systems. It promoted the desorption of Ni2+ from the cell surface. For a 

low14-day Ni2+ co-contaminated system (25 ppm), lipopeptide concentration had no 

significant effects on zeta potential. The system achieved a stable status at a lipopeptide 

concentration of 0.5 CMC and above. It was assumed that the maximum amount of 

desorbed Ni2+ already was achieved at a lipopeptide concentration of 0.5 CMC. In a 

high 14-day Ni2+ co-contaminated system (250 ppm), cell surface zeta potential rapidly 

dropped with a lipopeptide concentration increase, till the most stable system (i.e., with 

the highest absolute zeta potential values) (-22.1 mv) was achieved at a lipopeptide 

concentration of 2 CMC.  

It was believed that biosurfactant could facilitate the solubility enhancement of 

PHCs in the liquid phase, and further improve their biodegradation through the 

modification of cell surface properties (De et al., 2015). Figure 6-5 proposes a schematic 

diagram of the lipopeptide enhanced PHCs bioremediation of Rhodococcus erythropolis 

in a co-contaminated environment. The heavy metal (i.e., Ni2+) in the environment 

quickly attached and adsorbed onto the cell surface of oil degrading strain Rhodococcus 

erythropolis (Figure 6-5-I). The increased cell surface zeta potential (Figure 6-4) and 

cell droplet size (Figure 6-6) shed light on this proposed assumption.  

Lipopeptide addition was able to modify the cell surface properties of tested oil 
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degrading strain R.erythropoli through the adsorption process (Figure 6-5-II). These 

changes have been verified in other studies, especially with the application of 

rhamnolipid. Two mechanisms of rhamnolipid induced CSH variation have been 

reported: rhamnolipid adsorption onto cell surface (Zhong et al., 2007) and rhamnolipid 

induced cell surface composition changes (Owsianiak et al., 2009). Hou et al. (2017) 

evaluated the effect of rhamnolipids on CSH modification and believed that 

rhamnolipids resided on cell surface in an oriented manner, through the interaction 

between carboxyl or rhamnosyl groups and polar structures of cell surface by hydrogen 

bonding, dipolar, electrostatic, or short-term forces. The cell surface therefore become 

more hydrophobic. In general, the hydrophobic moiety of monomer rhamnolipids 

tended to contact strains with relatively high CSH, exposing the opposite to the 

environment (Zhong et al., 2015). The CSH therefore was changed. The hydrophobic 

surface of tested oil degrading strain R.erythropoli in this study (as shown in Figure 6-2, 

blank samples) made adsorption of lipopeptide on cell surface with its hydrophobic tail, 

occur. This helped to explain the decrease of CSH at a concentration below lipopeptide 

CMC at an early stage (i.e., 24h).  

Other than biosurfactant adsorption, biosurfactant addition could further change 

the cell surface compositions (Shao et al., 2017; Xin et al., 2012). The changes on Gram 

negative bacteria, such as Pseudomonas aeruginosa strains have been widely reported. 

Their outer membrane components (e.g., proteins, polysaccharides and even trace 
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elements) could interact with rhamnolipids through a micellar capture, and lead to a 

removal of target cell surface components (Tang et al., 2016). Not only cell surface 

hydrophobicity could be changed, the cell surface permeability and their fluidity, as 

well as cell surface zeta potential could also be altered (Bhattacharjee et al., 2016; Zeng 

et al., 2018). However, the mechanisms responsible for the cell surface properties 

change of gram negative strains (e.g., the R.erythropoli in this study) by biosurfactants 

have not been studied yet. Distinguishing themselves from Gram-negative bacteria, 

Gram-positive bacteria have a larger fraction of negatively charged 

phosphatidylglycerol, as shown in Figure 6-5 instead of a layer of outer membrane. 

Therefore, nutrients and minerals may have a higher chance to go through this 

phosphatidylglycerol layer and contact with the inner cytoplasmic membrane (Lambert, 

2002). The cell permeability investigation was conducted in this study (Figure 6-3). It 

was also suggested an increased cell membrane permeabilities at the lipopeptide 

concentration above its CMC values, especially after a long-term exposure to the co-

contaminated environment (i.e., 14 days). This were probably due to the release of 

heavy metal originally adsorbed on the cell surface. This phenomenon tended to occur 

at a biosurfactant concentration above its CMC values (Sotirova et al., 2009). 
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Figure 6-5 Schematic diagram describing the lipopeptide enhanced PHCs bioremediation in a co-contaminated environment: 

(Ⅰ) Biosorption/bioaccumulation of Ni2+ onto cell surface; (Ⅱ)Adsorption of lipopeptide onto cell surface with modified cell surface 

hydrophobicity; (Ⅲ) Interaction with cell surface compounds (e.g., teichoic acid and protein compounds) to destabilize cell wall; 

(Ⅳ) enhanced mass transfer of micellar PHCs into cell; (Ⅴ)interaction with Ni2+ to form lipopeptide- Ni complex and reduce its 

toxicity. 
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Lipopeptide then reduced heavy metal toxicity and enhanced PHCs 

biodegradation as shown in Figure 6-5 (IV and V). The formation of micelles on the 

bacterial cell surface have a strong influence on the surfactant enhanced metal 

desorption (da Rocha Junior et al., 2018; Mulligan, 2009) and PHCs bioavailability 

(Bezza and Chirwa, 2016). Particularly, hemi-micelle formation and its cell surface 

adsorption is a necessary requirement for biosurfactant enhanced PHCs biodegradation 

(Lin et al., 2017). This assumption was proven by the results listed in Figure 6-6 and 

Figure 6-7 (discussed below). 

6.3.2 Effect of Biosurfactants on Ni2+ Behavior in the Co-

contaminated System  

It was believed that the heavy metal ions (i.e., Ni2+) have a stronger affinity to 

lipopeptide than the cell surface in a form of lipopeptide-Ni complex. Lipopeptide 

biosurfactant could enhance Ni2+ desorption from Rhodococcus erythropolis cell 

surface (referred to Figure 6-5, mechanism III). To investigate the short and long-term 

(i.e., 24hr and 14 days) effect of lipopeptide on Ni2+ behavior, the metal ion 

concentrations in the MSM were determined with the result illustrated in Figure 6-6 (A) 

and (B). In 24hr-25 ppm-Ni contaminated systems, the highest Ni2+ concentration was 

reported in blank sample (15.78 ppm). Lipopeptide addition reduced the heavy metal 

concentration in the MSM medium. The effects of lipopeptide on 24hr-250 ppm-Ni 

contaminated systems were more complicated. The highest Ni concentration was 
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Figure 6-6 Effect of lipopeptide on Ni behavior in co-contaminated environment: A) Short-term lipopeptide effect on Ni 2+ ion 

content in a co-contaminated system; B) Long-term lipopeptide effect on Ni 2+ ion content in a co-contaminated system; c) Droplet 

size distribution of microbe cells and cell-free medium
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reported in the sample with 1 CMC lipopeptide addition (159.95 ppm) It was 

believed that the initial Ni2+ biosorption process contributed to the decrease of metal 

ion, as can be verified from zeta potential result (Figure 6-4). An enhanced lipopeptide 

concentration, especially over the CMC value, somehow improved this sorption process. 

The lowest Ni2+ ion concentration in the medium was reported at 9.48 ppm (8 CMC) 

and 140.49 ppm (4 CMC) in low and high heavy metal co-contaminated systems, 

respectively. After a long-term exposure, however, a reverse trend was reported: the 

highest Ni2+ ion concentrations (22.58 ppm and 224.1 ppm) in the medium were 

recognized at the system with highest lipopeptide addition (8 CMC). Most of the 

adsorbed Ni2+ ions were released back into the growth medium again.  

The droplet size distribution of cells and cell-free solution was examined to shed 

light on the behaviors of Ni2+ ion in the environment. The results are illustrated in Figure 

6-6 (C). The sorption of biosurfactant monomers, micelles, and Ni2+ ions onto the cell 

surface was expected. The size distribution of R.erythropoli were mostly ranged 

between 2000-4000 nm, much larger than the reported regular droplet size (1000-2 000 

nm). After 14 days, two peaks were identified in some 250 ppm Ni2+ co-contaminated 

samples (i.e., both cell and liquid samples with 2 CMC, 4 CMC and 8 CMC lipopeptide 

biosurfactant addition). This might be due to the formation of large sized Ni-lipopeptide 

micellar complex onto cell surface and its desorption from cell surface to the medium 

solution thereafter. In a short period (24 h), the droplet size distributions of cell-free  
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Figure 6-7 Effect of lipopeptide on PHCs biodegradation: (A) Partitioning 

of PHCs on cell surface in 25 ppm and 250 ppm Ni2+ co-contaminated 

environments; (B) Effect of lipopeptide on PHCs biodegradation in 25 ppm and 

250 ppm Ni2+ co-contaminated environments  
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medium mostly ranged from 0-1000 nm, yet this distribution in controlled 

samples ranged from 0-100 nm. Particularly, in 250 ppm Ni2+ co-contaminated samples, 

two distribution peaks (0-100 nm and 100-1000 nm) were identified. These results again 

evidenced the formation of Ni-lipopeptide complex. 

6.3.3 Distribution and Biodegradation of PHC in the Presence 

of Lipopeptide 

The distributions of PHCs by Rhodococcus.erythropolis cells were shown in 

Figure 6-7(A) by presenting the total amount of alkanes absorbed by the cells and the 

solubilized portion in the medium solution. PHCs were believed to be easily 

accumulated on the cell surface, a primary barrier inhibited the further PHCs transfer. 

This transfer could be further inhibited by a high heavy metal stress. The high Ni2+ stress 

(i.e., 250ppm) control sample had a much lower total alkanes sorption (0.77 mg) and 

the sorption ratio (8.5%) than the low Ni2+ stressed (i.e., 25ppm) one (1.35 mg alkanes 

sorption and 18.3% sorption ratio). Lipopeptide dramatically influenced the alkanes 

sorption by Rhodococcus.erythropolis cells. Lipopeptide addition led to a rapid decrease 

of total alkanes in the aqueous phase in both Ni2+ co-contaminated systems (Figure 

6-7(A)). The sorption ratio was also correspondingly increased with an enhanced 

lipopeptide concentration. The highest sorption ratios (59.45% and 73.89% for 25 ppm 

and 250 ppm Ni2+co-contaminated systems, respectively) were achieved at a lipopeptide 

concentration of 8 CMC. Lipopeptide induced reduction of surface and interfacial 
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tension in aqueous phase greatly enhanced the solubilization of diesel, and diesel-cell 

surface interaction (Liu et al., 2017). The bioavailability of diesel in the medium 

therefore was increased. The change of alkanes distribution on cell surface was in 

accordance with the result of cell surface permeabilities (Figure 6-3).  

The total alkanes on Rhodococcus. erythropolis cells was higher at 250 ppm- Ni2+ 

stress than the lower (i.e., 25 ppm) ones. Therefore, it was assumed that the 

accumulation and biosorption of heavy metals may alter the cell membrane structure, 

thus led to an enhanced PHC permeability. With the lipopeptide (from 0 to 8 CMC) 

enhanced PHC sorption and intermembrane transfer, their biodegradation rates were 

increased simultaneously (Figure 6-7(B)). When the CMC of lipopeptide was added at 

8 CMC. the highest biodegradation rate was achieved at 92.7% and 96% for 5 ppm and 

250 ppm Ni2+co-contaminated systems, respectively.  

The relationships between membrane properties and the PHC partitioning would 

enhance the understanding of lipopeptide-aided transmembrane transport behavior. The 

surfactant accumulated on the cell surface and started to form surfactant-lipid mixed 

micelles once the surfactant concentration rose beyond the lytic concentration level 

(Zhang et al., 2013). Therefore, chemical surfactant (i.e., Tween 80) concentration 

played a key role in PHCs transmembrane process. The research result in this study 

agreed well with previous conclusions that transmembrane transport of PHCs was a 

limiting step during the biodegradation process, which could be greatly improved by 
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surfactant addition (Liu et al., 2012; Ren et al., 2018; Zeng et al., 2018). The addition 

of lipopeptide, namely surfactin and fengycin from Bacillus Substilis A21, could 

effectively remove high concentrations of petroleum hydrocarbons (64.5% with an 

initial concentration of 1,886 mg kg-1) and metals (cadmium, cobalt, lead, nickel, copper, 

and zinc), and soil phytotoxicity was reduced, too (Singh and Niven, 2013). However, 

this research was attempted to further unveil the underlying mechanism of lipopeptide 

enhanced PHCs bioremediation in a co-contaminated environment. The effects of 

lipopeptide on the PHCs mass transfer, even with the existence, showed a concentration-

dependent pattern. It was believed the addition of lipopeptide enhanced the dissolution, 

sorption and biodegradation ratio of diesel oil by reducing the toxicity of heavy metal 

and modifying cell membrane permeability to enhance the sorption properties. 

6.4 Summary 

Although the effects of biosurfactant-influenced bioavailability and 

biodegradation of PHCs on cell debris have been widely reported, rhamnolipid mostly 

remains to the target biosurfactant. Little information is available regarding lipopeptide-

enhanced PHCs distribution and biodegradation in a co-contaminated environment. In 

this study, the impact of lipopeptides on PHCs (i.e., diesel) biosorption and 

biodegradation in co-existence of heavy metal (i.e., Ni2+) was evaluated. The cell 

properties of Gram-positive strain (i.e., Rhodococcus) was firstly investigated. In 

contrast to most Gram-negative bacteria, a higher concentration of lipopeptide, 
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especially above its CMC, assisted the cell microstructures modification, enhancing the 

cell membrane permeability and CSH. The PHCs biosorption by strain Rhodococcus 

thus is favored. Lipopeptide addition, could significantly improve the biosorption of 

PHCs on cell surface, and results in a higher degrade rate consequently. These findings 

advance the mechanistic understanding of lipopeptide-regulated biosorption and 

biodegradation of PHCs. This is the first time that the underlying mechanism of 

lipopeptide modified cell surface properties and the correlation to PHCs biodegradation 

was evaluated with the co-existence of heavy metal. Lipopeptide, as an effective 

biosurfactant, can be utilized as a novel additive to improve the microbial 

biodegradation of PHCs in the heavy metal co-contaminated environments.  
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7.1 Conclusions 

This dissertation research targeted on the development of economical feasible 

biosurfactant production methodologies and advanced biosurfactant based remediation 

technologies. Lipopeptide biosurfactant products were generated and characterized. The 

biosurfactant production process was optimized and the associated fermentation 

mechanisms were explored. Finally, the mechanisms responsible for biosurfactant-

enhanced PHCs biodegradation and heavy metal complexation were investigated. The 

key research activities and findings were summarized and stated below: 

The economical biosurfactant production was achieved using the marine 

originated bacteria Bacillus Substilis N3-1P and a waste stream from local fishery 

industry as the substrate. Protein hydrolysate was prepared from cod waste proteins. 

Hydrolysis conditions (i.e., time, temperature, pH and enzyme to substrate level) for 

preparing protein hydrolysates from the fish waste proteins were optimized by RSM 

using a factorial design. An optimized DH of 51.61% was achieved after enzymatic 

treatment of fish liver waste for four hours. Biosurfactant production was studied by 

Bacillus Substilis N3-1P using generated fish protein hydrolysate as nutrient source. 

The biosurfactant product reduced the surface tension of water from 72 to 27 mN/m. 

The CMC value for generated biosurfactants was 0.2 g L-1. Biosurfactant product 

exhibited a stable performance under extreme environmental conditions (pH, salinity 

and temperature).  
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The biosurfactant production process by marine originated bacteria Bacillus 

Substilis N3-1P was enhanced using immobilized biofilm on porous fly ash as the 

carrier. Enhanced biosurfactant production was examined by the addition of FA 

generated from local pulp mill. FA served as a solid platform for the immobilization of 

biofilm. The highest biosurfactant yield was boosted over ten times with the addition of 

0.5% FA (concentration increased from 9 CMD to 110 CMD within 24 hours). Final 

concentration of biosurfactant collected from FA particles and growth medium reached 

305 CMD, at a 2% FA dosage. Results of FTIR spectroscopy and MALDI-TOF analysis 

demonstrated that the final biosurfactant product belonged to lipopeptides.  

The biosurfactant production by marine originated bacteria Bacillus 

Substilis N3-4P was optimized through manipulation of carbon and nitrogen 

sources, and the product was further applied for crude oil removal. The economic 

production medium using different carbon (i.e., n-hexadecane, diesel oil, glycerol, 

glucose, starch and sucrose) and nitrogen sources (i.e., NaNO3, (NH4)2SO4 and yeast 

extract) were studied. The best performance of biosurfactant production was achieved 

when using glycerol as carbon source, and sodium nitrate and yeast extract as the 

substrate. The production rate was enhanced five times compared with the original 

screening recipe. The CMC value of the product is 0.507 g L-1. A thin layer 

chromatography (TLC) analysis indicated that the purified product is a mixture of 

protein, lipid and carbohydrate. The microbially produced biosurfactant product was 
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further examined as a soil washing agent to enhance crude oil removal in a soil column 

system. The removal rates of 58% and 65% was achieved using the biosurfactant 

solution with concentrations of 4 g L-1 and 8 g L-1, respectively.  

The role of the newly generated lipopeptide biosurfactant by Bacillus 

Substilis N3-1P on PHC (i.e., diesel) biodegradation in presence of the heavy metal 

(i.e., Ni) was evaluated. Effects of the biosurfactant product on the sorption and 

biodegradation of diesel, as well as its interactions with bacterial cell surface under 

heavy metal stress were investigated. Results proved that the lipopeptide biosurfactant 

product enhanced diesel biodegradation through forming complexation with Ni and 

exerting effects on the sorption of diesel onto bacterial cell. A positive correlation of 

liquid droplet size and Ni concentration in culture medium indicated the formation of 

Ni-lipopeptide complexation. A relatively high positive correlation was observed 

between biosurfactant enhanced biodegradation and enhancement of cell surface 

hydrophobicity for diesel in the presence of Ni. A continuous decreased cell surface zeta 

potential, and enhanced cell membrane permeability proved a biosurfactant induced 

microbe activity restoration. The final PHC removal rates were 92.7% and 96% for 5 

ppm and 250 ppm Ni2+co-contaminated systems, respectively. 

7.2 Research Contributions 

(1) This is the first attempt of using fish waste as substrate for biosurfactant 
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production. A standardized DOE-based enzymatic hydrolyzation methodology was 

developed and expected to provide a new trash-to-treasure solution across multiple 

industrials. The obtained hydrolysates could serve as low-cost substrate for microbe 

growth to biosynthesis high-added value fermentative products including biosurfactants.  

(2) Biofilm acting as robust biocatalysts immobilized on waste fly ash surface has 

been firstly applied for enhanced biosurfactant production. A biocatalytic enhanced 

biosurfactant biosynthesis mechanism was proposed. The application of fly ash as the 

solid carrier could attribute to a cost-efficient fermentation process (i.e., higher 

productivity, less fermentation time and less undesirable by-products). The proposed 

mechanism of this biocatalytic process could advance the understanding of cultivation 

setup and be promisingly used for future bioreactor design to improve the biosurfactant 

productivity. 

(3) This research is the first investigation regarding the optimum carbon and 

nitrogen sources for the potential lipopeptide production bacterium Bacillus Substilis 

N3-4P screened from Atlantic Ocean. The effects of carbon and nitrogen sources on the 

lipopeptide production were investigated. The results could contribute to an economical 

lipopeptide production in terms of medium optimization and raw material cost reduction.  

(4) The thesis has filled the knowledge gap in lipopeptide enhanced PHCs 

biodegradation with the existence of heavy metals from the perspective of cell surface 

associated activates. A lipopeptides enhanced biodegradation mechanism for Gram-
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positive bacterium (i.e., Rhodococcus.erythropolis) was firstly evaluated. The research 

outcomes advanced the mechanistic understanding of biosurfactant induced cell surface 

modification and biodegradation enhancement, thus contributed to the knowledge of 

biosurfactant enhanced biodegradation in a PHC and heavy metal co-contaminated 

environment.  

7.3 Recommendations 

Based on the research presented in this dissertation, further studies are suggested 

in the following areas: 

(1) Innovative enhanced remediation technologies can be further developed to 

extend biosurfactant applications in harsh environments. Biosurfactant based 

nanoemulsion (Bio-NE) solution can result in a higher surface area and lower interfacial 

tension than a biosurfactant solution. The development of the Bio-NE solutions using 

biosurfactants produced in this thesis and their integrated with the existing 

flushing/washing system may lead to promising soil remediation methods.  

(2) Only limited PHCs and heavy metals were evaluated regarding the 

biosurfactant induced cell surface modification and biodegradation enhancement. An 

in-depth understanding of the interaction among the lipopeptide, other PHCs 

compounds and heavy metals (especially multiple heavy metals in one system) needs 

to be further advanced.  
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(3) Multi-scale demonstrations of biosurfactant enhanced soil and groundwater 

remediation are important before filed trails. Therefore, the scale-up of the developed 

biosurfactant aided remediation methodologies/technologies is highly expected. 

7.4 Selected Publications 

Manuscript under preparation 

Zhu, Z. W., Cai, Q., Zhang, B., Chen, B., Lee, K., and Lin, W. (2018). Effect of a 
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characteristics and microbe performance. Environmental Pollution. (to be 

submitted) 

Zhu, Z. W., Cai, Q., Zhang, B., Chen, B., and Lin, W. (2018). Advances in lipopeptide 

production and environmental application. Biotechnology and Bioengineering. (to 

be submitted) 

Zhu, Z. W., Cai, Q., Zhang, B., Chen, B. (2018) Microbial communities and their 
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