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Abstract 

Phosphorus (P) is a limiting nutrient for crop growth and yield on more than 30% of the 

world’s arable land, and by some assessments, global resources of mineral P might be 

depleted by 2050. Additionally, P fertilizer application to soil is predominantly bound to 

Al+3 and Fe+2 in acidic soils or with Ca+2 in alkaline soils, thereby reducing its availability 

to agricultural crop. Therefore, P availability in soil rhizosphere and efficient utilization by 

agricultural crops is vital for economic and environmental reasons. Dairy manure (DM) is 

an important source of macro and micro nutrients, and organic matter which can affect 

minerals solubility and plant nutrients availability by improving soil physiochemical 

properties, enzymes activities and soil microbial communities. To further enhance our 

understanding about the effects of organic and inorganic P fertilizer sources on growth, 

forage yield and quality of silage corn, soil biochemical attributes and microbial 

communities, a field experiment was carried out at Pynn’s Brook Research Station (PBRS) 

for two years (2016 and 2017). Experimental treatments were four P sources: [P1: manure 

with high P conc.; P2: manure with low P conc.; P3: inorganic P and P0 (control)] and five 

silage corn genotypes laid out in Randomized Complete Block Design (RCBD). 

Agronomic performance (leaf area, chlorophyll contents, photosynthesis, shoot dry weight, 

root shoot ratio and dry matter yield), rhizosphere soil biochemical attributes (pH, 

phosphatase activity and soil available P), and microbial community composition and 

forage quality parameters [(minerals, protein, sugar, fibers, non-fibrous carbohydrates 

(NFC), total digestible nutrients (TDN) and energy] were measured. Yukon R and DKC26-

28RIB showed superior agronomic performance and produced higher dry matter yield 
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compared to other genotypes. High P manure application increased the dry matter yield by 

28% and 33%, acid phosphatase activity by 29% and 44%, soil available P by 60% and 

39% compared to control in 2016 and 2017 respectively. High P manure application 

significantly increased active Gram negative (G-) bacteria, active fungi, total active 

bacterial phospholipids fatty acids (PLFAs), and active soil microbial biomass (total 

amount of PLFAs) compared to inorganic P and control treatments. Yukon R and DKC26-

28RIB showed higher active fungal biomass, bacteria as well as total microbial activities 

in their root rhizospheres regardless of P sources compared to the other genotypes 

evaluated. Pearson correlation analysis demonstrated a positive and strong relationship 

between the active microbial community structure and the agronomic performance of the 

silage corn genotypes amended with P sources. The results indicate that DM application 

significantly enhanced agronomic performance, soil biochemical attributes and microbial 

communities compared to inorganic P fertilizer. Silage corn genotypes had significant 

effects on forage quality indices. Yukon-R and DKC26-28RIB showed superior agronomic 

performance and produced higher forage production of 16.43 and 15.47 Mg ha-1 

respectively. Contrarily, A4177G3RIB produced higher minerals, protein, total digestible 

nutrients (TDN), net energy for maintenance (NEM) and net energy for gain (NEG) 

compared to other genotypes, and proved high quality forage. However, it was statistically 

at par with DKC26-28RIB in producing minerals and ranked 2nd in protein synthesis. 

Yukon R was also statistically at par with A4177G3RIB genotype in few quality indices 

and produced similar TDN, NEM and NEG. Overall, Yukon‒R produced high forage and 

was either at par or ranked at 2nd position in most of the quality forage indicators. 
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Phosphorus sources had significant effects on crude protein (CP), available protein (AP), 

sugars, and non-fibrous carbohydrates (NFC) contents of silage corn but not significantly 

higher with each other. Inorganic P fertilizer source enhanced CP, AP, simple sugars and 

NFC contents but statistically at par either with manure with high or low P. Phosphorus 

sources had non-significant effects on energy parameters, which are important indicator of 

high forage quality, however NEL, NEM and NEG values were slightly higher with DM 

application compared to inorganic P and control. Dairy manure application significantly 

improve the agronomic performance, silage corn quality, soil physiochemical properties 

and soil microbial communities. Future studies needed to investigate the effects of organic 

and inorganic P amendments on soil phenolics and root exudates on P availability and 

microbial community structure. 
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Chapter 1 

1. General Introduction and Literature Review  

1.1. Corn  

Corn (Zea mays L.) is a member of Poaceae family and ranked third in cereal 

production after wheat and rice. It is a tropical crop but successfully grown in subtropical 

and temperate climatic zones (Tagne et al., 2008). It is widely grown as cereal production 

across the globe with approximately 10,000 million tons per year whereas, Canada 

produces 14.10 million tons (United State Department of Agriculture, 2018). Corn plant as 

a whole is important forage for dairy and beef animals. It is considered as the most suitable 

silage crop as compared to other cereals due to faster growth, higher yield potential, higher 

palatability, energy contents, protein contents, sugar and water soluble carbohydrate which 

are most important in the preservation of silage material (Amin, 2011; Keady et al., 2008). 

Good quality corn silage contains 28-32% dry matter yield, 28-32% starch and 7-9% crude 

protein (Keady et al., 2008; Kwabiah et al., 2003; Ullah et al., 2015) Addition of corn in 

silage based diets of dairy cows increases feed intake, yield and protein content of milk 

(Keady et al., 2008). As a result, significant acreage in silage corn across the world has 

been noticed over the past few decades. It has become a major feed component in the ration 

of dairy cows under most dietary regimes (Keady et al., 2008). Increasing demand of silage 

corn due to rapid expansion of dairy industry, it is important to determine the forage 

production potential and quality indices of silage corn under different nutrient management 

regimes.  
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Presently, Newfoundland and Labrador (NL), dairy and livestock industry faces 

challenges of insufficient silage/forage production and it has to depend on substantial 

imports from the mainland Canada and other countries. In 2011, area under silage corn was 

324.96 ha which decreased to 205.98 ha in 2016 (Statistics Canada, 2017). One of the 

reason for this decline is unique NL weather and soil conditions which limits crop growth 

and forage production (Kwabiah, 2003). For example, silage corn cultivation in NL is 

limited by low corn heating unit (CHU), and typically shallow, coarse-sandy texture and 

high acidic soil (pH 4 to 4.5) (Sauer et al., 2007).  Furthermore, macro and micronutrients 

availability significantly affect the dry matter yield of silage corn (Leytem et al., 2011), 

especially under podzol soils where low P availability due to metal complexation has been 

shown to be a major constraint under field conditions (Leytem et al., 2011).  

These challenges can be reduced by generating scientific based information about 

suitable short growing season silage corn hybrids, nutrient management practices and crop 

husbandry required to exploit the production potential of silage corn under cool climatic 

conditions of NL. Growing of tested silage/forage/fodder genotypes might bridge the gap 

between production and consumption. On the other hand, dairy farm operations across NL 

produce a large quantity of manure, which is an inexpensive and abundant source of plant 

nutrients. Silage corn has emerged as an important feed-stuff in the province. It is known 

as a high energy crop, with additional benefits such as the potential to improve the leg and 

hoof soundness and increase heat detection. Therefore, present study was conducted to 

elucidate the influence of organic and inorganic P source on agronomic performance, 

biochemical, and microbial community structure and quality indices of silage corn.  
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1.2. Phosphorus in Agricultural ecosystems  

 Phosphorus (P) is the 11th most abundant element in the earth crust and reach to 

1200 mg/kg in soil. However, most of the soils contains 200-800 mg/kg, while older soils 

contains less P relative to younger soils (Ijaz et al., 2017). Phosphorus limitations are much 

more severe in agricultural ecosystems, because it is removed from soil by harvesting crops 

and only small quantity of P returned back to ecosystem by incorporating crop residues, 

animal manures and chemical fertilizers. Consequently, extreme P deficiencies are quite 

common where no external source of P is applied to soil and such conditions are 

widespread all around the globe (Liu et al., 2013). Excessive or little P application led to 

severe and negative impacts on environment by causing by land degradation under P 

deficient conditions and eutrophication under excessive application (Shen et al., 2011).  

 

Figure 1.2.1: Global phosphorus retention map (USDA NRCS, 2012) 
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Figure 1.2.2: Global phosphorus availability map. The red and light-gray colors, showing 

suboptimal P availability for the plant growth, shows the importance of P availability as a 

most limiting nutrient to plant productivity in terrestrial environment (Jaramillo-

Velastegui, 2011). 

The global crop productivity has strong relationship with soil fertility and most of the world 

soils are P deficient hence leading to lower crop productivity, however P deficiency is more 

often found in old weathered soils (Jaramillo-Velastegui, 2011) (Figure 1.2.1 & 

Figure 1.2.2). Consequently, P deficient soils are supplemented with external P application 

through chemical fertilizers or other organic sources (compost, pig slurries, sludge, 

digestate, manures, and crop residues etc.). Phosphorus cycle is the biogeochemical cycle 

that describes the movement of P through land, water and living things (Shen et al., 2011) 

and major process involved the uptake of P by plants, recycling (the return of plant and 

animal residue), biological processes includes mineralization and fixation, and then 

solubilization of fixed P mediated by bacterial communities (Chen et al., 2006; Wei et al., 



5 

 

2017), enzymes (Waldrip et al., 2012), and arbuscular mycorrhizal fungi (Smith and Read, 

2008). 

1.3. Fate of organic and inorganic P in soil  

 Chemical forms of soil P include organic and inorganic P (IP), and these forms 

differ in their behaviour and fate in soil (Turner et al., 2007). Organic phosphorus (OP) 

generally accounts for 30-65% of total P in soils, and average concentration range between 

50-500 mg/kg of soil (Harrison, 1987). It is present in stabilized forms such as inositol 

phosphates, phosphonates, and active forms including orthophosphate diesters, labile 

orthophosphate monoesters, and organic polyphosphates (Turner et al., 2002). Organic 

phosphorus transformed into plant available P forms such as primary orthophosphate 

(H2PO4
-1) and secondary orthophosphate (HPO4

-2) by mineralization processes mediated 

by soil microorganisms and phosphatase enzyme released by plant roots (Waldrip et al., 

2012). Primary orthophosphate mostly dominant in acidic conditions and secondary 

orthophosphate in alkaline conditions, whereas at neutral pH both forms exists in equal 

amount (Shen et al., 2011). Mineralization process is highly influenced by soil 

physiochemical properties i.e. soil moisture, temperature, surface physiochemical 

properties, microorganisms and enzymes, i.e. soil moisture, temperature, surface 

physiochemical properties, pH and acid phosphatase activity (Shen et al., 2011). Organic 

P transformation has a great influence on the overall bioavailability of soil P (Turner et al., 

2007), and plant available P is very complex and needs to be systematically evaluated, 
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because it is highly related with P dynamics and transformation among various pools 

(Figure 1.4.1).  

 Inorganic P usually accounts for 35 – 70% of total P in soil (Harrison, 1987). 

Phosphorus exist in two mineral forms; Primary P minerals including apatites, strangite 

and variscite are very stable and available P is released by chemical weathering very slowly 

from these minerals to meet crop demands, while direct application of rock phosphate (i.e. 

apatite) has proved relatively efficient mineral P source for crop growth in acidic 

conditions. Whereas secondary P minerals include calcium (Ca+2), iron (Fe+2) and 

aluminum (Al+3) phosphates vary in dissolution depending upon size of mineral particles 

and soil pH (Oelkers and Valsami-jones, 2008). With increasing soil pH from acidic to 

neutral, solubility of iron and aluminum phosphates increases, but solubility of calcium 

phosphates decreases except for pH values above 8 (Hinsinger, 2001). Desorption reaction 

helps to release absorbed P from Al/Fe oxides and all these P forms are present in complex 

equilibria with each other,  from very stable, sparingly available, to plant available pools 

such as labile and solution P (Figure 1.4.1) (Shen et al., 2011). 

 Phosphorus availability to plants is mainly dependent upon soil pH, Al, Fe, Ca, 

decomposition of organic matter and activities of microorganisms (Arai and Sparks, 2007; 

Shen et al., 2011; Wei et al., 2017). In acidic soils, IP usually forms chelates with Al and 

Fe oxides and hydroxides, such as gibbsite, hematite, and goethite (Parfit, 1989). The non-

protonated and protonated ligands surface complexes may coexist at pH 4-9, while 

protonated ligand inner sphere complex is predominant under acidic conditions (Arai and 
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Sparks, 2007). In neutral to calcareous soils, precipitation reaction is dominated and P is 

adsorbed on the surface of calcium carbonate (Devau et al., 2010). Phosphate react with 

Ca and transformed into plant available phosphate form such as dicalcium phosphate 

(DCP), which can be changed to more stable forms such as octocalcium phosphate and 

hydroxyapatite (HAP) which are less available to plants at alkaline pH (Arai and Sparks, 

2007). 

1.4. Phosphorus transformation in soil following manure and inorganic P sources 

 Dairy farming is main agricultural sector in Canada with 945000 dairy cows present 

on 10951 farms across the Canada (Statistics Canada and Canadian Dairy Commission, 

2017). Dairy and poultry farming is a large segment of the NL economy, and a total of 510 

agricultural farms including 32 dairy farms, 5600 cows and 2200 heifers are present in the 

province (Statistics Canada, 2017; Statistics Canada and Canadian Dairy Commission, 

2017). Therefore, dairy manure (DM) available in bulk quantities and is applied to increase 

soil fertility status for growing crops. DM is historically known as a rich source of nitrogen 

(N), phosphorus (P), and potassium (K) and micronutrients for plant growth and also 

improves aggregation and soil structure for better aeration, supplies organic matter, 

improves soil quality and maintains or increase soil pH in acidic soils (Dong et al., 2012; 

Hirzel and Walter, 2008; Yan et al., 1996). DM application improve plant physiological 

characteristics and dry matter yield by improving PUE and nitrogen use efficiency (NUE) 

(Bernier et al., 2014). An efficient utilization of DM is important to improve the 

sustainability of animals and crop production systems. Crop growth and dry matter yield 
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is a measure of plant photosynthesis efficiency (Iqbal et al., 2014), which is mainly 

influenced by balance nutrient availability (Ibeawuchi et al., 2007) and environmental 

factors (Amin, 2011). 

 Dairy farmers, vegetable growers and organic growers across the NL use DM as a 

nutrient source for crop production, but excessive application of manure build up high 

amount of P in the soils and cause runoff during high rainfall periods which pollute water 

bodies by eutrophication (Carpenter, 2005). Therefore, management of land application of 

DM is important to maximize the nutrients use efficiency and organic matter, while 

minimizing its impact on the environment. Total P content in manure is variable and 

generally 70% of the total P in manure is labile (Shen et al., 2011). DM contains 50-90% 

of IP (Duo et al., 2000), and large amount of OP such as phospholipids and nucleic acids 

(Turner and Leytem, 2004), which can be mineralized to available P in soil. During the 

mineralization process organic acids produced from humic substances can dissolve calcium 

phosphate, and especially for citrate, which have ability to efficiently weaken the 

nanoparticle stability of hydroxyapatite (HAP), by controlling the free Ca availability and 

nucleation rate (Martins et al., 2008). Humic acids produced from manure mineralization 

contains large numbers of negative charges, carboxyl (COO-) and hydroxyl  (OH-) groups, 

which strongly compete with inorganic P for adsorption sites (Shen et al., 2011). 

 Modern terrestrial P cycle is dominated by agriculture and anthropogenic activities 

(Oelkers and Valsami-jones, 2008), and concentration of soil available P seldom increases 

10 µM (Bieleski, 1973), which is less than plant tissues concentration range (between 5 to 
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20 mM inorganic P (Raghothama, 1999). Due to low concentration and poor mobility of 

plant available P in soils, IP fertilizers application is required to obtain optimum growth 

and yield. Mono-calcium and mono-potassium phosphate are two major forms of inorganic 

phosphate fertilizers. Mono-calcium phosphate (MCP) fertilizer in soil undergoes a wetting 

process, produces large quantity of protons, phosphate, di-calcium phosphate (DCP), and 

eventually forms an IP saturated patch, this patch forms three reaction zones including 

direct reaction, precipitation reaction, and adsorption reaction zones (Benbi and Gilkes, 

1987). Direct reaction zone in soil is very acidic and pH ranges between 1.0-1.6, resulting 

in increased mobilization of metal ions, which react with high concentrations of IP in the 

zone, thus causing further IP precipitation. In alkaline soils, MCP and DCP forms new 

complexes and gradually transformed into more stable forms of Ca-phosphates such as 

octacalcium phosphate or apatite and P availability is significantly reduced (Shen et al., 

2011). Thus, to improve the nutrient utilization in cropping systems and avoiding P losses, 

a comprehensive understanding of the influences of organic and IP amendments on 

agronomic performance, enzymes, available P and microbial communities is necessary. 

1.5. Role of root architecture and morphological traits in P uptake  

 Root architecture refers to the spatial configuration of plant root systems, whereas 

root morphological traits includes i.e. root surface area, number of roots, root length and 

volume (Liu et al., 2018). Crops responds to P deficiency by modulating their root 

architecture including root morphology, topology and distribution patterns (Fernandez and 

Rubio, 2015). Phosphorus deficiency increase root/shoot ratio, root branching, elongation, 
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top foraging and cluster root hairs (Lynch and Brown, 2008). Phosphorus starvation causes 

reduction in primary root growth, increased length and density of lateral root hairs in corn 

and many other plant species (Lynch and Brown, 2008).  

 

Figure 1.4.1: Phosphorus dynamics in the soil/rhizosphere-plant continuum (Shen 

et al., 2011) 
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Under P starvation, adaptive changes in corn root architecture take place, like changes in 

carbohydrates distribution between roots and shoots (Wissuwa et al., 2005). Phosphorus 

deficiency in soil induced cluster root formation in white lupin (Vance et al., 2003) but 

cluster roots distribution shifted from the P deficient root zone to P rich or organic matter 

rich patches to increase the intensity of soil foraging (Shen et al., 2013; Vance et al., 2003). 

Inorganic P (IP) fertilizers application significantly improve root growth and stimulate root 

proliferation (Shen et al., 2013). Furthermore, IP fertilizers application at early growth 

stages is known to be an effective strategy for stimulating corn root development and 

establishment of good root architecture and increasing yields, particularly in the early crop 

growth period at low temperature (Shen et al., 2013). DM application significantly 

improved root length density compared to control (no P addition) (Zhihui et al., 2016). 

Corn genotypes exhibited significant difference in root architecture and morphological 

traits due to difference in genetic potential (Szoboszlay et al., 2015). A larger root system 

can be a beneficial trait to scavenge more water and nutrients under stress conditions.  

1.6. Role of root exudates in P uptake under different P sources 

 Plants roots exude organic compounds such as mucilage, organic acids, acid 

phosphatase and some specific signaling substances, which are key drivers of various 

rhizosphere processes (Shen et al., 2011). Low mobility and solubility of P in soil restricts 

its availability to plants (Shen et al., 2011). Root secretes mainly protons to acidify the 

rhizosphere, carboxylate exudation to mobilize sparingly available P by chelation and 

ligand exchange and secretion of phosphatase to mobilize organic P by hydrolysis (Zhang 
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et al., 2010). Roots decrease 2-3 units of pH in soil rhizosphere zone compared to bulk soil 

due to excessive uptake of cations over anions, led to produce protons by plant roots cause 

acidification, and exudation of citrate, malate and oxalate greatly increase P acquisition 

through chelation and ligand exchange (Shen et al., 2011). Changes in rhizosphere pH 

depends upon soil buffering capacity, microbial activities and plant genotypes (Li et al., 

2014). In acidic soils or near neutral soils manure can maintain or increase soil pH through 

liming effect because they contain some calcium carbonate, which originates in the animal 

diet (Moore and Edwards, 2007). Earlier studies also reported that manure application 

increased soil pH (Dong et al., 2012). 

 Corn crop under P deficient conditions secretes mainly primary metabolites in 

higher concentration such as GABA (Gamma aminobutyric acid), and several sugars such 

as inositol erythritol, ribitol, fructose, glucose and arabinose in comparison to nutrient 

replete maize plants (Carvalhais et al., 2013, 2011). GABA secretions by plants linked with 

signaling in a number of abiotic stressor response (Kinnersley and Turano, 2000), which 

may act as a signaling compound when maize is P starved. Bacterial communities showed 

chemotaxis response to sugars (Thoelke et al., 1990). Higher exudation of sugars under P 

starvation has been linked with a decrease in phospholipids levels and a high permeability 

of the cell membrane. Sugar secretions in the rhizosphere zone may stimulate germination 

and growth of mycorrhizal fungi, which are known to improve P acquisition (Graham et 

al., 1981). Phosphorus starved plants secrete less secondary metabolites that are toxic to 

bacteria compare to plants grown under optimum conditions. This may occur to attract 

specific bacterial communities that can improve acquisition of the specific deficient 
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nutrient. For instance Bacillus amyloliquefaciens promote the growth of P limited corn 

seedlings in the presence of phytate (Idriss et al., 2002).  

 Krebs cycle intermediates such as citric, malic, succinic fumaric, and aconitic acids 

are root exudates secreted by many plant species (Dakora and Phillips, 2002), these acids 

plays an important role in P acquisition. Phosphorus deficiency led to increase 82% 

increase in citrate exudation which may help to increase P availability by forming ligand 

exchange (Lipton et al., 1987). However, different plant species respond differently to P 

deficiency, rape typically release malic acid near its root tips or at sites in contact with 

insoluble rock phosphate, whereas mustard dose not secrete organic acids (Hoffland et al., 

1992), possibly due to problems associated with synthesis and transport across membranes. 

Barley showed non-significant difference in citrate exudation under low and sufficient P, 

whereas malic acid showed an increase in malic acid exudation under P deficient 

conditions. Different plant species and genotypes exude different types and quantity of 

organic acids under P starvation and sufficient conditions (Wang et al., 2015) 

 Approximately 80-90% of soil processes such as decomposition and transformation 

of nutrients from organic compounds occur through biochemical reactions mediated by 

enzymes (Acosta-Martinez and Waldrip, 2014). Phosphatase enzyme is an important 

component of P cycle and it is the most important indicator of soil quality and microbial 

activity. Phosphatase enzyme hydrolyze OP into plant available form such as (H2PO4 
–1 and 

H2PO4 
–2) (Waldrip et al., 2012). Plants can secrete acid phosphatase to hydrolyze OP and 

acid phosphatase activity can be greatly altered by the availability of substrate, soil 
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microorganisms, pH and soil physio-chemical properties (George et al., 2005). 

Phosphatase enzymes exist in five major groups in soils: (1) phosphoric monoester 

hydrolases (phosphomonoesterases), (2) phosphoric diester hydrolases 

(phosphodiesterases), (3) phosphoric triester hydrolases (4) polyphosphate hydrolases and 

(5) enzyme acting on P-N bonds (Waldrip and Acosta-Martinez, 2014). Organic P 

mineralization started by phosphodiesterase (PDE) hydrolyze phosphodiesters such as 

phospholipids and nucleic acids to form simpler phosphomonoesters and finally converted 

to plant available P (Figure 1.6.1) c. Phosphomonoesterase release free phosphate from 

phosphomonoesters such as inositol phosphate, β-glycerophosphate, phenylphosphate, 

sugar phosphates, adenosine phosphates, β-napthyl phosphate, and p-nitrophenyl 

phosphate (He et al., 2004). Among the phosphatase enzymes the most investigated soil 

phosphomonoesterases are classified according to soil pH such as acid phosphatase and 

alkaline phosphatase (Waldrip et al., 2012).  
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Figure 1.6.1: Conceptual model of the hydrolysis of organic P in to free phosphate 

mediated by PDE and phoshomonoesterse (Waldrip and Acosta-Martinez, 2014) 

 Bacteria, fungi and plant roots produce extracellular phosphatase enzyme. Plants 

can produce only acid phosphatase enzyme, therefore extracellular alkaline phosphatase is 

strongly linked to soil microorganisms (George et al., 2002). Earlier studies reported that 

plant species, genotypes, plant growth stages, soil pH, temperature, moisture, SOM and the 

presence of C, N, P and other nutrients required by microorganisms affect the process of 

organic P mineralization as well as phosphatase activity (Parham et al., 2002). Dairy 

manure and organic fertilizers application significantly increase soil phosphatase activity 

and plant available P in soil (Colvan et al., 2001; Waldrip et al., 2012). Inorganic P 

fertilizers application significantly reduced the acid phosphatase activity, because plants 
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and microorganisms easily draw the P form readily available sources and do not have to 

mineralize organic P (Spohn and Kuzyakov, 2013). 

1.7. Role of phosphorus in crop growth and development 

 Phosphorus (P) is an important macronutrient for plant growth, but uptake from soil 

can be difficult and limiting factor for optimum crop production (Smit et al., 2009). 

Phosphorus is a component of nucleic acids and cellular membranes, and important for 

several metabolic processes and signaling pathway of proteins (protein kinase) (Vance et 

al., 2003). It plays an important role in cell division being a constituent element of 

nucleoproteins which are involved in the cell reproduction processes and essential for 

vegetative and reproductive development (Azeem et al., 2018). It is also a component of 

nucleotides used in plant energy metabolism such as adenosine triphosphate (ATP), 

deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Phosphorus deficiency include 

stunted growth in young plants and a dark green coloration of the leaves, which may be 

malformed and contain small spots of dead tissues called necrotic spots (Chen et al., 2014).  

 Optimizing PUE in cereal crops is an important task for agricultural sustainability 

and global food security. Phosphorus deficiency can severely reduce leaf area and 

ultimately the amount of solar intercepted radiation and photosynthesis (Plenet et al., 

2000). Thus, reduction in leaf area and photosynthesis may contribute to the reduction in 

final biomass production and nutritional value. Dry matter yield is highly dependent on 

plant photosynthesis efficiency and sink capacity to accumulate photosynthates from the 

plant leaves (Warraich et al., 2002). The optimum supply of N, P, K and other 
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micronutrients increase dry matter production via increasing leaf area production and 

photosynthesis rate. Phosphorus deficiency in corn severely reduce leaf growth and 

ultimately the amount of solar intercepted radiation, photosynthesis and dry matter yield 

(Plenet et al., 2000). Phosphorus deficiency decrease 67 % mean leaf area, and 43 % leaf 

emergence (Fredeen et al., 1989). Decrease in leaf area under P deficiency occurs due to 

an insufficiency of phosphate for the expansion of epidermal cells. Because leaf epidermal 

cell expansion appears to be a critical process in the expansion of the leaf (Waldron and 

Terry, 1987) and phosphate concentrations in the upper epidermis are rapidly reduced with 

decrease in P supply to the leaf (Treeby et al., 1987).  

 Chlorophyll contents are important in energy harvesting reaction that can be used 

to assimilate carbon dioxide. Higher concentration of chlorophyll contents and ribulose 

1,5-bisphosphate (RuBP) had shown increased photosynthetic rate in plants (Reich et al., 

1994). Leaf phosphorus and chlorophyll contents showed positive relationship with each 

other (Ryser et al., 1997). Chlorophyll is the part of chloroplast, and it is predominantly 

consuming inorganic phosphate (Pi) (Giersch and Robinson, 1987). Deficiency of P supply 

to chloroplast inhibits the process of photosynthesis (Dietz and Foyer, 1986). DM and other 

organic fertilizers provide essential nutrients for plant growth and have a positive effect on 

the formation of chlorophyll and chloroplast. Organic acids play an important role in the 

supply of Mg which have an important role in the formation of the chlorophyll molecule 

(Hasan et al., 2014). 
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Biomass production is the outcome of interception of photosynthetically active 

radiation (PAR) by plant leaves and the ability of plants canopy architecture to transform 

the intercepted PAR in to biomass production (Plenet et al., 2000; Portes and Melo, 2014). 

Phosphorus deficiency reduce the export of triose-P from the chloroplast to the cytosol via 

the Pi translocator, which may lead to buildup of starch and sucrose, and decrease the rate 

of photosynthesis (Giersch and Robinson, 1987). Phosphorus deficient plants shows 

reduction in photosynthesis due to diminishing of RuBP generation rather than due to 

limitations in the supply of ATP and NADPH (nicotinamide adenine dinucleotide 

phosphate oxide) to the Calvin cycle (Fredeen et al., 1989). Plants can sustain 

photosynthetic rate under low P supply by increasing synthesis of P – free carbon 

compounds, e.g. starch, sucrose and increased phosphatase activity and decreased levels of 

P containing molecules e.g. sugar phosphates and adenylate (Rao et al., 1989). By 

resupplying the phosphorus to moderate P deficient plants, it can restore the photosynthetic 

metabolism to control levels within a few hours, that sugar phosphate especially RuBP 

levels increase as starch and sucrose level decrease (Rao and Terry, 1995). 

1.8. Soil microbial communities 

 Soil microorganisms play an important role in stimulating soil organic matter 

decomposition, improves nutrient cycling, soil fertility, soil quality and mitigating soil 

pollution (Khalil et al., 2013). Soil microbial communities can influence soil 

physiochemical properties, climatic and biological factors and therefore are closely related 

to crop productivity (Zhang et al., 2015b). Soil and rhizosphere microorganisms such as P 
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solubilizing bacteria (PSB) and fungi (PSF) can increase the P availability by increasing P 

solubilization, and accounts for 1-50% in P solubilization potential (Chen et al., 2006). 

Manure and chemical fertilizer application is an important nutrient management practice 

that affects soil quality, health and sustainability of agricultural production systems (Wei 

et al., 2017). Excessive use of chemical fertilizers commonly reduce soil organic carbon 

(SOC) consequently decline soil quality, health and crop productivity. To maintain and 

improve SOC, management practices such as DM application, no tillage, crop rotation and 

crop residue incorporation have been very productive in improving soil quality and health 

in different cropping systems (Huang et al., 2015; Wei et al., 2017; Yan et al., 2013). 

Therefore, it can increase plant nutrients availability and enhance soil microbial biomass, 

activity and diversity (Wei et al., 2017). Different fertilization regimes affect soil microbial 

communities, as bacteria is mostly adapted to high available C and rich nutrient conditions, 

whereas fungi seems to be more capable to use recalcitrant C sources (Li et al., 2018; Liu 

et al., 2017). The appropriate utilization of organic and inorganic amendment, for instance, 

DM and other organic fertilizer application could be a useful approach in restoring SOC, 

soil fertility and sustainability (Sharpe et al., 2004), and therefore can increase plant 

nutrients availability and enhance soil microbial biomass, activity and diversity (Mandal et 

al., 2007; Wang et al., 2008). However, soil microbial communities benefiting from DM 

application differ with soil type and physiochemical properties, quantity and quality of 

manure, experimental duration and many other factors (Cederlund et al., 2014; Wei et al., 

2017). 
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Chemical fertilizers applications can produce positive or negative effect on soil 

microbial biomass and activity (Geisseler and Scow, 2014), while the effects on microbial 

community structure and diversity is still under debate (Zhang et al., 2015a). Most studies 

focused on the individual effects rather than combination effects of specific organic 

amendments on soil physicochemical properties. The biological properties of soils under 

different organic and inorganic fertilizer application have been the focus of recent studies 

(Chen et al., 2011; Chu et al., 2007; He et al., 2007; Jiang et al., 2014). Until present, our 

knowledge about the effects of different organic and inorganic P sources on soil microbial 

community and consequently their role in P mineralization and availability to crop plants 

in podzolic soils remains limited and needs to be investigated.      

Phospholipid fatty acids analysis (PLFAs) profiles reveals the structural 

characteristics of the microbial community and also provides estimate of the abundance 

and diversity about various microbial groups (Ai et al., 2012). The microbial community, 

size and activity showed by PLFAs vary with different fertilizer managements, and 

therefore affects soil fertility and productivity (Ai et al., 2012). Diversity and abundance 

in soil microbial community was significantly increased due to P rich environment resulted 

from long term P fertilization research trial, in comparison to control (Tan et al., 2013). 

Inorganic P fertilization not only influenced the soil microbial abundances but also altered 

bacterial composition (Liu et al., 2013). Wei et al. (2017) reported that Gram negative (G-

) bacteria proliferate and grow faster soon after the addition of organic materials, and then 

decrease and also facilitate the growth of other slow growing microorganisms such as Gram 

positive (G+) bacteria or fungi. Dairy manure application significantly increased G- 
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bacterial biomass relative to G+ bacterial biomass due to higher availability of soluble 

carbon over a long part of the year under DM than in the inorganic fertilization system 

(Peacock et al., 2001). Moreover, higher proportion of G- bacteria usually occurs following 

a shift from nutrient deficient to nutrient rich conditions, and this pattern was observed in 

soil amended with P fertilizers (Tan et al., 2013). 

Fungi play an important role in C and nutrient cycling in agricultural ecosystems 

and is sensitive to fertilizers application (Li et al., 2018). Manure application significantly 

increased fungal population due to increase in organic C contents which could  serve as 

major source of energy whereas, small increase in labile organic C under inorganic 

fertilization and control treatments reduced growth (Liu et al., 2013). Another possible 

reason of higher fungi population in manure treatment is the increased soil pH, as this was 

associated with increased fungal population in soil (Rousk et al., 2010). Increased 

fungi/bacteria ratio have been linked to increases in soil C and ecological buffering 

capacity (Bossio and Scow, 1998) as well as various organic amendments, such as DM 

(Wei et al., 2017), crop residue (Marschner et al., 2003), and green manure (Liu et al., 

2009). Under P starvation arbuscular mycorrhizal fungi (AMF) forms symbiotic 

association with plant roots and increases the P availability to plants by the formation of 

mycorrhizal hyphae. In return it takes carbon from plants for its own growth and survival 

(Smith and Read, 2008). P deficiency in soil also significantly decrease AMF growth in 

tropical forests, because AMF initially were nutrient limited and application of phosphorus 

fertilizer led to increased AMF growth. Inorganic phosphorus fertilizers application can 
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increase soil pH which is most often associated with increased AMF population (Liu et al., 

2013). 

Agricultural management practices such as DM application, crop rotations and 

cover crops can reportedly increase or maintain soil quality for long-term agricultural 

production, as organic amendment/crop residue may regulate bacterial communities 

(DeBruyn et al., 2011). Crop rotations, mono-cropping and cropping sequence diversity 

are also pivotal factors influencing bacterial community structure and species diversity 

(Sarrantonio and Gallandt, 2003). Continued demands for silage corn will likely result in 

increased continuous cropping acreage, as corn silage is palatable, has higher yields and 

energy content than many other forages (Staples, 2003), and offers relatively consistent 

quality, making it an attractive forage crop to livestock producers. However, limited 

knowledge exists on the short-term influence of silage corn cropping on soil microbial 

community composition under organic and inorganic P amendments. Consequently, the 

aim of this study was to determine the impact of organic and inorganic amendment on 

growth, forage yield, extracellular enzyme, soil microbiological community and quality of 

silage corn under cool climate conditions.  

1.9. Dry matter yield and quality of silage corn under organic and inorganic P 

sources 

 Plant nutrition is one of the main factor influencing silage corn production and 

quality, and it plays an important role in ensuring the agronomic performance of forages 

(Moreno-Resendez et al., 2017). In fact, nutrient management is one of the key strategy for 
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increasing forage yield and quality in silage corn. N, P and K have great significance in 

nutrient management process because they are the macro-nutrient with the highest 

transcendence in yield as well as in the quality parameters of silage corn and green forages 

(Iqbal et al., 2014; Moreno-Resendez et al., 2017).  

 Dry matter yield of crops is a function of numerous interacting factors (G x E x M) 

which includes, crop genotypes (G), environment (E) (temperature, rainfall, radiation, 

transpiration etc.) and management (M) practices (fertilizers application, sowing dates, 

cultural practices, seeding methods, weed control etc.) (Martin et al., 2014). Therefore, 

selection of suitable genotypes/hybrids and appropriate nutrient sources are important 

factors to determine the forage yield and quality of silage corn in different climate 

conditions. Combined application of poultry litter and cattle manure with inorganic 

fertilizer produced similar DMY to inorganic fertilizers, perhaps due to residual and soil 

amelioration effects (Eghball et al., 2004; Hirzel et al., 2007b). Silage corn DMY potential 

is not only associated with nutrient sources, physiochemical and biological properties of 

soil but also uptake efficiency of crops. Furthermore, P based poultry litter and cattle 

manure application is a beneficial amendment that helps to recycle nutrients, improve soil 

quality and produced similar dry matter yield of silage corn to inorganic P fertilizer (Nazli 

et al., 2014). Nitrogen (N) based poultry litter and cattle manure application significantly 

reduced dry matter yield of silage corn and this may be attributed to N deficiency caused 

by the lower N availability of poultry litter and cattle manure and absence of supplemental 

inorganic nitrogen (Hirzel et al., 2007a; Nazli et al., 2014). Furthermore, authors suggested 

that fulfillment of N requirements through organic materials produced unfavorable effects 
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on soil fertility and the environment due to the accumulation of soil phosphorus and metal 

ions (Codling et al., 2008).  Inorganic P fertilizer (Triple super phosphate) application had 

no effect on fresh and DMY of silage corn compared to control (no phosphorus application) 

(Ali et al., 2014), and this response might be due to fixation of applied P by calcium (Ca+2), 

iron (Fe+2) and aluminum (Al+3) which reduced the availability of P to plants (Shen et al., 

2011). 

 Leytem et al. (2011) conducted study under greenhouse conditions to determine the 

effects of three phosphorus sources mono-ammonium phosphate (MAP), compost and 

dairy manure) and four rates of P application (25, 50, 100 and 200 mg/kg) on nutrients 

uptakes in silage corn. Phosphorus uptake in silage corn increased with increasing P 

application rate, highest increase occurred with MAP application, while the manure and 

compost treatments showed non-significant difference. MAP application increased P 

uptake which could be attributed to enhanced P solubility and decrease in soil pH, both of 

which might have enhanced P uptake by plants (Mengel and Kirkby, 1987). Manure and 

compost contains iron which react with P and forms Fe phosphates thereby reducing P 

solubility, and Ca precipitated with orthophosphate to form insoluble Ca-P precipitates. 

Under low P soils potassium (K) uptake increased for all treatments (MAP, manure and 

compost), whereas compost exhibited the highest K uptake in silage corn. Potassium 

uptake increased with increasing P application rate for all treatments under high P soils 

(Leytem et al., 2011). 



25 

 

 On low P soil, calcium uptake increased under all treatments, while the highest Ca 

uptake was noticed in MAP, and it decreased significantly on high P soils with increasing 

rate of manure and compost. Reduction of Ca uptake in silage corn under manure and 

compost treatment could be related to cation competition with K and by the formation of 

Ca- P precipitates (Leytem et al., 2011). Magnesium uptake increased with increasing 

application rates of all treatments and highest uptake occurring in the MAP treatment. 

Under high P soil magnesium (Mg) uptake increased with increasing application rate of 

MAP and manure up to 100 mg/kg, above which leveled off for MAP and reduced for 

manure (Leytem et al., 2011). High K uptake may inhibit Mg uptake due to cation 

competition and balance between K, Ca and Mg uptake is a concern from an animal health 

prospective as forages with K:(Ca+Mg) ratios greater than 2.2:1 cause grass tetany in 

ruminant (Grunes et al., 1970). They found that ratio exceeds 2.2:1 for all treatments and 

rates, but it is important to keep in mind that silage corn harvested only after 3 weeks and 

therefore this may not represent the ratio in silage corn at maturity (Leytem et al., 2011) 

 Acid detergent fibers (ADF) represent the energetic values of silage corn (Moreno-

Resendez et al., 2017),because it is constituted from cellulose, lignin and proteins, and is 

the component that is most related to forage digestibility (Castillo-Jimenez et al., 2009), 

the more ADF contents, the less digestibility of the forages (Castillo-Jimenez et al., 2009; 

Moreno-Resendez et al., 2017), therefore, good quality forage crops must contains < 28% 

ADF contents (Gallegos-Ponce et al., 2012). Organic fertilizer source produced 35.9% 

ADF in silage corn compared to inorganic fertilization which produced 27.2% ADF 

(Moreno-Resendez et al., 2017). Neutral detergent fibers (NDF) in forage crops negatively 
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correlate with intake and digestibility (Oramas-Wenholz and Quila, 2007), so to obtain 

high energy silage it is necessary to ensure <50% NDF contents in silage corn (Gallegos-

Ponce et al., 2012). Organic fertilization produced 53.5% NDF in silage corn, whereas 

inorganic fertilizer produced 42.6% NDF (Moreno-Resendez et al., 2017). Nitrogen based 

organic fertilizer application (poultry liter and cattle manure) produced the highest ADF, 

NDF and lower crude protein (CP) compared to inorganic nitrogen treatment (Nazli et al., 

2014). This might be attributed to differences in N content among poultry litter and cattle 

manure treatments because that strongly influence fiber content as well (Johnson et al., 

2001). Combined application of inorganic P with poultry litter and cattle manure produced 

similar forage quality (ADF, NDF and CP) compared to inorganic P fertilization. Fiber 

contents significantly reduced with increasing rate of nitrogen fertilizers or nitrogen 

content in the plant tissue of silage corn (Nazli et al., 2014).  

 Carbohydrates compounds includes (free sugars, fructans, hemicellulose and 

cellulose) and classified as fibrous (structural) and non-fibrous (non-structural) 

carbohydrates (Martinez-Marin, 2008; Moreno-Resendez et al., 2017). Non-fibrous 

carbohydrates (NFC) were significantly increased by inorganic fertilization compared to 

organic fertilization. Reduction in silage corn digestibility was correlated with high values 

of NDF, not the NFC contents that was high in organic fertilizer treatments. (Moreno-

Resendez et al., 2017). NFC contents of silage corn were 32.5% lower with organic 

fertilizer application compared to inorganic fertilizer application (Moreno-Resendez et al., 

2017). Similarly, organic fertilization produced higher total digestible nutrients (TDN) 

(47%) compared to 46% with inorganic fertilization. It has been observed from the 
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literature reported above that organic and inorganic P sources influenced the quality indices 

of silage corn cultivated in different environments. 

1.10. Objectives 

Therefore, present study was conducted with following objectives; 

i. To determine the agronomic performance (leaf area, chlorophyll contents, 

photosynthesis rate and forage yield) of silage corn amended with organic and 

inorganic P sources in podzolic soils under cool climate conditions 

ii. To elucidate the effects of organic and inorganic P sources on soil available P, 

enzyme activities, and microbial communities. 

iii. To assess the relationship between agronomic performance, biochemical attributes 

and active microbial communities. 

iv. To investigate the effects of organic and inorganic P sources on forage quality of 

silage corn in cool climate. 
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Chapter 2 

2. Effects of organic and inorganic phosphorus amendments on the agronomic 

performance, biochemical and microbial characteristics of silage corn in podzolic soil 

2.1. Abstract 

Phosphorus (P) is the 2nd most important mineral and limiting nutrients for plant growth, 

development and productivity. Inorganic P fertilizer application to soil is predominantly 

bound to Al+3 and Fe+2 in acidic soils or with Ca+2 in alkaline soils, thereby reducing its 

availability to agricultural crops. Plants can improve phosphorus use efficiency (PUE) by 

modulating their root architecture including root morphology, topology and distribution 

patterns. Plant roots exude organic acids, acid phosphatase and some specific signaling 

substances, which are key drivers of P mobilization, solublization and acquisition in plants. 

Dairy manure application to agricultural soils can improve physiochemical properties of 

soil, and nutrients cycling by enhancing enzymes activities and soil microbial community 

structures leading to improved P availability in crops. This study aims to investigate the 

effects of organic and inorganic P sources on agronomic performance of silage corn 

genotypes, soil biochemical attributes and active microbial community composition in 

podzolic soils under cool climatic conditions. Experimental treatments were four P sources: 

[P0 (control); P1: dairy manure with high P conc.; P2: dairy manure with low P conc.; P3: 

inorganic P and five silage corn genotypes (Fusion RR, Yukon R, A4177G3RIB, DKC 23-

17RIB, DKC 26-28RIB) and laid out in randomized complete block design. Agronomic 

performance (leaf area, chlorophyll contents, photosynthesis, shoot dry weight, root shoot 
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ratio and dry matter yield), rhizosphere soil biochemical attributes (pH, phosphatase 

activity and soil available P), and microbial community composition were measured. 

Yukon R showed superior agronomic performance and produced 28% and 60% higher dry 

matter yield than A4177G3RIB in 2016 and DKC23-17RIB in 2017, respectively. High P 

manure application increased the dry matter yield by 28% and 33%, acid phosphatase 

activity (Ap-ase) by 29% and 44%, soil available P by 60% and 39% compared to control 

in 2016 and 2017 respectively. High P manure application significantly increased Gram 

negative (G-) bacteria, fungi, eukaryotes, ΣB-PLFAs and ΣPLFAs, compared to inorganic 

P and control. Yukon R and DKC 26-28RIB had higher active fungal biomass, bacteria as 

well total in their root rhizospheres regardless of P sources compared to the other genotypes 

evaluated. Pearson correlation analysis demonstrated a positive relationship between active 

microbial community structure and the agronomic performance of the silage corn.  

2.2. Introduction 

Fertilizer application is an important practice that affects soil quality, health, fertility and 

sustainability of agricultural production systems. Low inputs of organic materials and 

excessive use of mineral fertilizers generally reduced soil organic carbon (SOC) contents, 

with a consequent decline in soil quality, health, fertility and crop productivity (Zhang et 

al., 2015). To maintain and improve soil quality, management practices such as manure 

application, no tillage, crop rotation and crop residue incorporation have been very 

productive in different cropping systems (Huang et al., 2015; Wang et al., 2015; Yan et al., 

2013). Inorganic fertilization is not an option to improve SOC (Cai et al., 2014). Therefore, 
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enhancing the sustainability of cropping systems involves the integrated use of organic and 

inorganic inputs to promote the soil ecosystem function and interactions of the soil 

microbial community in providing nutrients for plant growth (Drinkwater and Snapp, 

2007). The appropriate utilization of organic and inorganic amendment, such as DM and 

inorganic fertilizer application for instance, could be a useful approach in restoring SOC, 

soil fertility and sustainability (Cai et al., 2014; Sharpe et al., 2004), and therefore can 

increase plant nutrients availability and enhance soil microbial biomass, activity and 

diversity (Mandal et al., 2007; Wang et al., 2008). 

Organic fertilizer amendment and management can substantially improve soil 

structure (Papadopoulos et al., 2014), help retain C in the surface soil, and increase crop 

yields in different cropping systems (Bhattacharyya et al., 2015). Applications of organic 

materials (e.g. green manure, dairy or livestock manure, and crop residue/straw) can reduce 

the required amounts of chemical fertilizers and compensate for soil C losses caused by 

land-use changes (Almagro and Martínez-Mena, 2014). Thus, amending soil with organic 

materials is a promising strategy to build-up C levels, improve soil quality, health and 

active microbial community structure in low fertility and shallow soils (Wang et al., 2015; 

Yuan et al., 2014). Dairy manure is historically known as a rich source of nitrogen (N), 

phosphorus (P), and potassium (K) and micronutrients (Hirzel and Walter, 2008). Dairy 

manure application increases soil microbial biomass being a rich source of organic matter 

and energy for microbes (Mikha and Rice, 2004). Soil microbes includes bacteria, archaeal, 

fungi and protozoa all known to produce phosphatases (George et al., 2002), which may 

increase the solubilization of organic P compounds and making them available to the 
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plants. Furthermore, DM application improve plant physiological characteristics and dry 

matter yield by improving phosphorus use efficiency (PUE) and nitrogen use efficiency 

(NUE) (Bernier et al., 2014). The biochemical parameters include variables that are directly 

related to microbial activity (microbial biomass carbon, soil respiration etc.) (Dinesh et al., 

2010), and extracellular enzymes involved in the carbon (C), nitrogen (N) and phosphorus 

(P) cycles in soil, play a major role in degradation of organic matter, mineralization and 

availability of plant nutrients (Gil-Sotres et al., 2005). Most organic manures added into 

soil contain monomeric and polymeric compounds (such as sugars, starches, amino acids, 

urea, ammonium salts, fats, oils, waxes, proteins, humus, hemicellulose, cellulose, lignin, 

minerals), and thus the decomposition of these organic matter depends on the microbial 

production of extracellular enzymes and their break down should occur before taking up 

of low molecular weight organic molecules by microbial cells (Allison and Jastrow, 2006; 

Nannipieri et al., 2012; Rashid et al., 2013).  

A variety of microbial activities can be considered as soil quality indicators such as 

the active microbial biomass and diversity in soil under normal conditions and in response 

to perturbations or stressors (Anderson, 2003; Bending et al., 2004; Kennedy and Smith, 

1995). Soil microbial communities are responsible for cycling nutrients, regulating gas 

exchange, inducing micro aggregation, and altering the biochemical soil environment 

(Mikha and Rice, 2004; White and Rice, 2009). All these microbial functions drive 

sustainable soil health and ultimately crop productivity. Consequently, soil biological 

diversity and richness is seen as a key tenet of soil health, particularly determinations of 

bacterial assemblages may be one such metric for assessing soil quality and improving soil 
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fertility in agricultural production systems (Ashworth et al., 2017). Most studies focused 

on individual effects rather than combining effects of specific organic amendments on soil 

physicochemical properties. Biological properties are the most sensitive indicators of 

changes in the soil quality in different cropping systems due to their rapid responses to 

environmental changes (Lima et al., 2013). Consequently, these biological properties might 

be particularly useful for characterizing soil fertility and quality changes in short-term 

experiments. Information about the agronomic performance, biochemical and microbial 

communities’ responses to organic and inorganic P fertilizer in podzolic soil under cool 

climatic region remains limited and needs to be investigated. 

Phospholipid fatty acids (PLFAs) obtained from the membrane of microorganisms 

living in the soil are useful biomarkers that can be used to assess or provide estimates of 

the active soil microbial community composition, biomass and diversity under normal 

conditions and in response to land use changes, different types of management systems or 

stressors (Stark et al., 2007; Helgason et al., 2010). The microbial community, size and 

activity was observed to vary with different fertilizer managements, and the effects on soil 

fertility and productivity have been demonstrated using soil microbial PLFAs (Ai et al., 

2012). Increases in the fungi/bacteria ratio have been linked to increases in soil C and 

ecological buffering capacity (Bossio and Scow, 1998; De Vries et al., 2012) in response 

to organic management (Bossio and Scow, 1998) as well as various organic amendments, 

such as livestock manure (Ling et al., 2014), crop residue (Marschner et al., 2003) and 

green manure (Liu et al., 2009). Agricultural management practices such as DM 

application, crop rotations and cover crops can reportedly increase or maintain soil quality 
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for long-term agricultural production, as organic amendment/crop residue may regulate 

bacterial communities (DeBruyn et al., 2011). The interacting factors of residue quality, 

quantity, and recalcitrance level associated with crop rotations can induce shifts in 

composition and frequency of archaeal and bacterial composition (White and Rice, 2009). 

Crop rotations, mono-cropping and cropping sequence diversity are also pivotal factors 

influencing bacterial assemblages and species diversity. High protein-containing biomass 

from soybeans and legume crops reportedly produce more labile residues than high C:N 

cereals such as corn (Sarrantonio and Gallandt, 2003). Continued demands for silage corn 

will likely result in increased continuous cropping acreage, as corn silage is palatable, has 

higher yields and energy content than many other forages (Staples, 2003). It also offers 

relatively consistent quality, making it an attractive forage crop to livestock and dairy 

industry. However, little information exists on the short-term influence of continuous silage 

corn cropping, on soil biochemical and microbial community composition under organic 

and inorganic P amendments. Consequently, the aim of this study was to determine the 

effects of organic and inorganic P fertilizer application on agronomic performance, 

extracellular enzyme activities and microbial composition and abundance in podzolic soils 

under northern agriculture production systems. We hypothesized that organic and 

inorganic P fertilizer amendments will improve enhance extracellular enzyme activities 

and create phylogenetically diverse active microbial communities in soil, thereby 

increasing phosphorus availability and improve agronomic performance of silage corn. 

Podzolic soils typically have a coarse-sandy texture and high acidity, with pH in 

the topsoil layer around 4 to 4.5 (Sauer et al., 2007). These conditions signal a poor nutrient 
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supply for agricultural crops. Moreover, prior studies have shown that nutrient availability 

in podzols may not conform to classical tenets of soil chemistry (Grand and Lavkulich, 

2013). As agricultural development is on fast track in the province, so there is a need to 

enhance our knowledge and understanding on nutrient availability, enzyme activities and 

soil microbiological composition and abundance in podzolic soils under organic and 

inorganic amendments, so that nutrient management practices may be adapted to allow an 

eco-environment friendly and economically sustainable agricultural production system. 

This study will investigate the changes in soil fertility under different organic and inorganic 

P amendments by measuring soil biochemical and microbiological properties and thus 

provide strong evidence for improving the soil quality and health and agronomic 

performance of silage corn in podzolic soil. Our objectives were to evaluate the effects of 

organic and inorganic P sources and genotypic response on (i) agronomic performance 

(leaf area, leaf chlorophyll contents, net photosynthesis and dry matter yield) of silage corn 

(ii) soil available P, enzyme activities, and microbial communities’ abundance (iii) 

relationship between agronomic performance, biochemical and active microbial 

communities. 

2.3. Material and Methods 

2.3.1. Experimental site and treatments 

A field research trial was conducted at Pynn’s Brook Research Station, Pasadena 

(49.087° N, 57.541° W), during 2016 and 2017 growing seasons. Before conducting the 

experiment, composite soil samples were collected from the experimental site and were 
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sent to the Soil, Plant and Feed Laboratory, Department of Fisheries, and Land Resources, 

St. John’s NL for complete nutrients analysis. Soil analyses report can be seen in Table 2.1. 

Soil texture was determined to be loamy sand with 82.0% sand, 11.6% silt, and clay 

particles were 6.4%. Weather data (maximum temperature, minimum temperature, average 

temperature, and precipitation) was obtained from a weather station located adjacent to the 

experimental site at Pynn’s Brook Research Station. Mean average temperature during 

2016 and 2017 growing season was 12.20 oC and 11.81 oC respectively. However, 2017 

growing season received only 496 mm rain and was much dryer compared to 2016, where 

704 mm rain was recorded (Figure 2.3.1, Table 2.2). The experimental treatments were 

four P sources and five silage corn genotypes and was laid out in randomized complete 

block design (RCBD) with three replications. Each experimental treatment plot was 4.8 × 

1.5 meters with row to row distance 0.76 m orientated in east-west directions. Silage corn 

genotypes were chosen on the basis of corn heating units (CHU) requirement as western 

Newfoundland falls in northern climate production systems, and needs low heating unit 

crops. Details about silage corn genotypic CHU, genetic traits and suppliers are given in 

Table 2.3. Two phosphorus manure sources used in this experiment were selected on the 

basis of P concentration in manure obtained from two dairy farms. Details about the P 

sources along with rate of application are given in Table 2.4. For determining the high and 

low P concentration in DM, well-agitated DM samples were collected from all ten dairy 

farms across western NL before the start of growing seasons to analyze their P 

concentrations. DM samples were sent to soil, plant and feed laboratory, Department of 

Fisheries, and Land Resources, St. John’s NL. Thereafter, two DM samples were selected 
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based on the high and low P concentration and were designated as P1 (high P) and P2 (low 

P), and were sourced from Larch Grove Farm and Rideout’s Dairy Farm respectively 

(Table 2.5). Details about P sources is given in Table 2.4, whereas, complete manure 

analysis report of both dairy farms is presented in Table 2.5. 

Table 2.1 Soil analysis report of experimental site in 2016 and 2017 

Soil Properties 2016 2017 

Soil pH 6.4 6.8 

Phosphorus  (mg/L) 81 74 

Potassium (mg/L) 38 49 

Calcium (mg/L) 1256 1120 

Magnesium (mg/L) 265 218 

Organic matter (%) 2.98 3.01 

Sulphur (mg/L) 14 15 

Zinc (mg/L) 0.6 1.3 

Copper (mg/L) 1.1 2.1 

Sodium (mg/L) 7 6 

Iron (mg/L) 150 130 

Boron (mg/L) 0.1 0.2 

Manganese (mg/L) 18 16 

Aluminum (mg/L) 1507 1409 

 

 
Figure 2.3.1: Weather conditions at Pynn’s Brook Research Station, Pasadena during 2017 

(a) and 2016 (b) growing season 
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Table 2.2 Weather conditions at Pynn’s Brook Research Station, Pasadena during 2016 

and 2017 growing seasons 

Growth period 

Mean maximum 

temperature 

(oC) 

Mean minimum 

temperature 

Mean 

average 

temperature 

Rainfall (mm) 

  2016 2017 2016 2017 2016 2017 2016 2017 

May 1-15 12.06 12.8 0.26 -1.46 6.16 5.66 36 11 

May 16-31 16.06 1306 2.86 0 9.37 6.53 47 47 

June 1-15 14.86 15.33 4.4 3.53 9.63 9.43 107 35 

June 16-30 23.26 21.46 7.73 8.4 15.5 14.93 41 45 

July 1-15 21 23.33 7.93 8.8 14.46 16.06 42 29 

July 16-31 24.81 24.18 10.93 8.31 17.87 16.25 40 12 

August 1-15 23.06 23.8 10.06 9.46 16.56 16.63 27 53 

August 16-31 21.75 21.75 10 6.87 15.87 14.5 112 32 

September 1-15 18.4 18.4 7.46 7.53 12.93 13.3 98 80 

September 16-30 14.2 14.2 3.26 2.86 8.73 9.1 36 76 

October 1-15 14.05 14.05 0.4 2.4 7.22 7.6 118 76 

              704 496 

 

Table 2.3 Basic information about silage corn genotypes used in the experiment 

Corn silage genotype Corn heat units Genetic trait Supplier 

Fusion RR 2200 RR2 Brett Young, Canada 

Yukon R 2150 RR2 Brett Young, Canada 

A4177G3RIB 2175 VT3P/RR Pride Seeds, Canada 

DKC23-17RIB 2075 VT2P DEKALB, Canada 

DKC26-28RIB 2150 VT2P DEKALB, Canada 

RIB = Refuge is in the bag; RR = Roundup Ready; VT2P = VT Double PRO® RIB 

Complete; VT3P= VT TriplePRO® RIB Complete insect protection; RR2 = Resistance 

gene to Roundup® and Factor 540® 

 

Table 2.4 Details about P sources used in the experiment   

P sources   

P0 Control  

P1 Manure with high P (0.6 kg P2O5 1000 L-1) @ 30000 L ha-1 

P2 Manure with low P (0.3 kg P2O5 1000 L-1) @ 30000 L ha-1 

P3 Inorganic P (Triple super phosphate) @ 110 kg ha-1 
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Table 2.5 Composition of diary manure sources used in the experiment 

  

Larch Grove Dairy Farm 

(High P Manure) 

Rideouts Dairy Farm  

(Low P manure) 

Manure Properties 2016 2017 2016 2017 

Dry matter (%) 9.33 10.9 3.57 1.7 

pH 6.8 6.8 7 7.1 

Nitrogen (kg/1000 L) 1.5 1.9 0.5 0.5 

Phosphorus (kg/1000 L) 0.6 1.7 0.3 0.3 

Potassium(kg/1000 L) 4.1 4.0 1.3 1.3 

Total Calcium (%) 0.164 0.19 0.059 0.042 

Total Magnesium (%) 0.069 0.077 0.026 0.018 

Total Iron (ppm) 49 68 19 7 

Total Manganese (ppm) 23 21 9 5 

Total Copper (ppm) 4.7 4.5 33 20 

Total Zinc (ppm) 17 21 8 5 

Total Boron (ppm) 3 3.4 1 0.5 

Total Sodium (ppm) 911 904 275 241 

2.3.2. Crop husbandry  

Silage corn genotypes were seeded on May 25th and May 23rd during 2016 and 

2017, using SAMCO systems (SAMCO 2200 Agricultural Manufacturing, Limerick, 

Ireland). SAMCO 2200 system has the ability to seed two corn rows and simultaneously 

cover the seeded plots with plastic sheet. The partially perforated plastic sheet provides 

cover over about 1 m width for two adjacent corn rows to enhance the CHU during early 

crop growth for better germination and seedling establishment. One week prior to seeding, 

land was disked and crop was seeded @ 90900 plants ha-1. In each growing season, fresh 

manure samples were sourced out from Larch Grove and Rideout’s Dairy Farms and 

applied to the respective DM treatment plots @ 30,000 L ha-1 according to the local dairy 

farmer’s practices. The applied DM was incorporated thoroughly in the top 15 cm soil layer 

a day before seeding. It is pertinent to mention that experimental plots were kept at the 

same locations during both years to avoid any treatment effects. The remaining crop 
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nutrient requirements were fulfilled through inorganic fertilizers keeping in view the soil 

nutrient status, DM analyses reports and regional recommendations for silage corn. 

Roundup WeatherMax® (Monsanto Canada Inc.) was applied according to the instructions 

given on label during both years to control the weeds, and crop was harvested at black layer 

stage on October 18 and 13 during 2016 and 2017, respectively. All agronomic 

performance parameters, plant and soil samples for biochemical and microbial community 

analysis were collected using standard procedures. 

2.3.3. Agronomic performance parameters 

Leaf area, chlorophyll contents, photosynthesis rate, root-shoot dry weight and 

root-shoot ratio were measured at six leaf, twelve leaf, tasseling and black layer stages of 

the silage corn. However, plant height and DMY were recorded at harvesting stage of the 

crop. A portable leaf area meter LI-3000 C system (LICOR Biosciences), was used to 

measure the leaf area on the basis of length and width of area. The final data set was 

downloaded using LI-3000C software (www.licor.com). Chlorophyll contents of fully 

expanded leaves from top were measured, using SPAD 502 Plus chlorophyll meter (Konica 

Minolta Europe) and measurements were taken between 8:30-14:00 h. Leaf photosynthetic 

rate was measured from the fully expanded leaves from the top between 8:30 and 14:00 h 

using LI-6400XT portable Photosynthesis system (LI-COR Biosciences, Lincoln, 

Nebraska). Photosynthetic system used blue light (475 nm) and red light emitting diodes 

(LED) (630 nm) as a light source mounted on a two square centimeter. The measurements 

were recorded when a steady state at approximately 2-4 minutes were obtained at 2000 
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µmol photon m-2 s-1 PAR and leaf cuvette temperature was set to 25 oC. The CO2 entering 

in the cuvette was maintained at 400 µmol mol-1 while the relative humidity varied between 

40–50%. The photosynthesis data was downloaded using LI-6400XT software (LICOR – 

6400XT instruction Manual, version 5, LI-COR Inc., Lincoln, Nebraska, USA). Three 

plants from each treatment were uprooted to measure root-shoot dry weight. After 

uprooting, the root and shoot were separated from each plant sample then stored in 

polythene bag and immediately transported to the laboratory, and adhered soil from the 

roots was removed gently using brush followed by washing with tap water. After washing 

shoots were chopped in to small pieces and dried in forced air oven (Shell Labs USA) at 

65 oC till a constant weight was obtained. The oven dry weight was recorded for estimating 

dry weight per plant. Root shoot ratio was calculated by using the following formula:  

Root shoot ratio = root dry weight (g) / shoot dry weight (g) 

Plant height was measured using a meter rod. Briefly, six plants from each 

treatment plot were chosen randomly for measuring plant height, and the mean values were 

calculated for each replicate. For measuring the DMY, crop was harvested manually from 

one square meter area of each treatment plot at black layer stage. The fresh biomass was 

recorded with weighing balance, and then samples were chopped into small pieces to dry 

in a forced air oven (Shell Labs USA) at 65 ○C until constant dry weight was attained. The 

dry matter yield % was determined as follows: 

Dry matter = (weight of samples after drying / weight of samples before drying) x 100  
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Dry matter yield = Fresh biomass x % Dry matter  

2.3.4. Soil sampling and analysis methods   

 Three plants from each treatment plot were uprooted, and the adherent soil was 

gently removed from all roots and mixed in to a composite sample. Soil samples were kept 

on ice in a cooler, immediately transported to the laboratory and sieved through 2 mm mesh 

to remove debris and other waste materials; then divided in to three subsamples. One sub-

sample was air dried at 25 oC for determining soil available P and pH, one sub-sample was 

stored at 4oC for biochemical analysis (enzymes) and the third sub-sample was stored at -

20 oC for PLFAs to determine the active microbial community composition and abundance 

(the soil was freeze-dried before the determination of PLFAs). 

2.3.5. Biochemical attributes 

Soil pH was measured by extracting 10 g air dried soil with 20 mL of 0.01 M CaCl2 

(calcium chloride) in 50 mL polypropylene tubes. The soil solution was then mixed for 30 

minutes on an orbital shaker (Innova™ 2300 Platform Shaker, New Brunswick Scientific, 

Canada) at 120 rpm, then allowed to stand for 1 hour and the pH was measured with a pH 

meter (METTLER TOLEDO, Canada) (Hendershot et al., 2006). 

The acid phosphatase activity (Ap-ase) was based on the determination of p-

nitrophenol phosphate (PNP) (Tabatabai and Bremner, 1969). Briefly, 1 g soil was 

extracted using 0.09 M 1 mL citrate buffer in 15 mL polypropylene tubes and centrifuged 

at 5000 rpm for ten minutes. A 50 µl aliquot of the supernatant was dispensed into a 96-
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well microplate where 50 µl p-nitrophenol phosphate substrate and 30 µl citrate buffer was 

added to all the samples. The samples were then incubated at 37 oC for 30 minutes. After 

incubation, 20 µl of NaOH (sodium hydroxide) was dispensed in all wells to stop further 

reaction and the absorbance of the mixture measured at 450 nm with BioTek Synergy 

CytationTM 3 imaging reader. The absorbance was used to calculate the acid phosphatase 

activity in the sample and the values expressed in µmole p-nitrophenol g-1 soil min-30. 

Soil available P (SAP) was analyzed using the Mehlich 3 extraction method 

(Mehlich, 1984) where 2 g of soil was extracted with 20 mL of Mehlich 3 solution in 50 

mL Erlenmeyer flask, The sample mixtures was shaken for 5 minutes on an orbital shaker 

at 120 rpm (Innova™ 2300 Platform Shaker, New Brunswick Scientific, Canada). After 

shaking the solution was filtered using Whatman 42 filter papers (Sigma Aldrich, ON. 

Canada). Aliquots of the filtrate was diluted 50 times and then analyzed with AA3 

Continuous Flow Analytical System (AA3HR, SEAL Analytical, USA) to determined soil 

available P, expressed in mg/kg as follow: 

Mehlich 3 extractable P (mg/kg) = [Concentration of P in Mehlich 3 extract, mg/L] x [0.020 

L extract / 0.002 kg soil] 

2.3.6. Phospholipids fatty acids analysis 

Phospholipids fatty acids (PLFAs) were determined according to the methods 

reported by Folch et al. (1957) and Gomez-brandon and Dominguez (2010). Total fatty 

acids were extracted from 4 g soil with 10 mL chloroform-methanol, 2:1 (v/v) in 20 ml 
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glass vials. The samples were homogenized with a sonicator for 5 minutes (amplitude 50; 

pulse on time: 5 seconds; and pulse off time; 10 seconds), and mixture was allowed to 

separate at room temperature for 24 hours. The supernatant was filtered and collected in 

glass vials, and then evaporated to dryness under a stream of oxygen free N2 gas. The total 

lipid extracts obtained were dissolved in 2 mL chloroform and fractionated into neutral 

lipids, glycolipids and phospholipids, with chloroform (2.5 mL), acetone (4 mL) and 

methanol (2.5 mL), by means of solid phase extraction (SPE) on silicic acid columns 

(Discovery R DSC- Si SPE tube, 50 µm, 70 Å, 100 mg/1mL). The separated phospholipids 

were evaporated to dryness under a stream of oxygen free N2 gas. Phospholipids extracts 

were dissolved in 500 µl of methyl tertiary-butyl ether.  Aliquots (100 µl aliquots) were 

taken from the 500 µl extracts and placed in a screw-cap vials with 50 µl of derivatization 

agent trimethyl sulfonium hydroxide (TMSH), vortex mixed for 30 s and allowed to react 

for 30 minutes. 10 µl of internal standard methyl nonadeconate (19:0 @ 160 ug/ml) were 

added to the extract of methylated PLFAs and the samples analyzed with Gas 

Chromatography-flame ionization detection (GC-FID). 

2.3.7. Phospholipid fatty acids (PLFAs) analysis with GC-FID 

PLFAs analysis was conducted on a Thermo Scientific Trace 1300 gas 

chromatography coupled to a flame ionization detector (Thermo Fisher Scientific, 

Waltham, MA, USA). The methylated fatty acids were separated with a DB-23 column (30 

m × 0.32 mm × 0.25 μm; Agilent Technologies, Canada) by supplying helium (He) as 

carrier gas at a continuous flow rate of 1 ml/min.  The GC injector was run in splitless 
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mode and 1 μl of each samples was applied to the injection system using a Tri-plus auto-

sampler. The initial oven temperature was 50 oC (1 min hold), then increased using a 

heating rate of 20 °C/min to 175 °C, kept at 175 °C for 1 min, and further increased at a 

rate of 4 °C/min to 230 oC (hold up to 5 min). To identify the methylated PLFAs, the 

retention times and mass spectra were compared with those obtained from commercial 

standards (NIST database) (Thermo Scientific, ON. Canada, Supelco 37 Component Fatty 

acid methyl ester (FAME) mix, and Bacterial acid methyl ester (BAME) Mix purchased 

from, Sigma Aldrich, ON, Canada). Methylated PLFAs were quantified using internal 

standards and the  results expressed in nmol g-1 soil. A total of 47 PLFAs were identified 

and 27 used to measure the total microbial biomass are mentioned in Table 2.6. 

2.3.8. Statistical analysis 

Data was analyzed using the statistical package Statistix 8.1 (Analytical software, 

Tallahassee FL 32317, USA) to determine the effects of phosphorus sources on agronomic 

performance of silage corn genotypes, soil pH, soil available P, acid phosphatase activity 

and soil microbial community structure. Least significance difference (LSD) method at the 

probability level of 0.05 was used to separate the mean differences of the treatments. 

Principal component analysis was done using a PAST (Paleontological Statistics 3.0) to 

determine the effects of genotypes and P sources on agronomic performance, soil 

biochemical parameters and the active soil microbial community, and its relationship 

among the variables. Sigma plot 14.0 (Systat Software Inc.) were used to make weather 

graph.  
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Table 2.6 PLFAs as microbial biomarkers 

Taxonomic group Biomarkers References 

Gram positive (G+)  C14_0 (Sheng et al., 2012) 

 i-C15_0 (Wang et al., 2016; Zhang et al., 2016) 

 a-C15_0 (Wang et al., 2016; Zhang et al., 2016) 

 C15_0 (Huygens et al., 2011; Papatheodorou et al., 2012) 

 i-C16_0 (Wang et al., 2016; Zhang et al., 2016) 

 C16_0 (Kujur and Patel, 2014; Wu et al., 2015)  

 C16_1n-7 (Brockett et al., 2012; (Wang et al., 2016) 

 i-C17_0 (Wang et al., 2016; Zhang et al., 2016) 

 C17_0 (Huygens et al., 2011; Papatheodorou et al., 2012) 

 C18_0 (Brockett et al., 2012; Wu et al., 2015) 

 C18_1n-9cis (Bsrockett et al., 2012; Zhang et al., 2016) 

Gram Negative (G-) 2OH_C10_0 (Lasater et al., 2017) 

 2OH_C12_0 (Lasater et al., 2017) 

 C16_0 (Kujur and Patel, 2014; Wu et al., 2015) 

 C16_1n-7 (Brockett et al., 2012; (Wang et al., 2016) 

 3OH_C12_0 (Kaur et al., 2005) 

 cycloC17_0 (Wang et al., 2016; Zhang et al., 2016) 

 C18_0 (Brockett et al., 2012; Wu et al., 2015) 

 C18_1n-9_trans (Moreno et al., 2017)  

 C18_1n-9cis (Brockett et al., 2012; Zhang et al., 2016) 

 3OH_C14_0 (Papatheodorou et al., 2012) 

 cycloC19_0 (Wang et al., 2016) 

 C14_1n_5 (Zhang et al., 2016) 

 C17_1n_7 (Gomez-brandon and Dominguez, 2010) 

Fungi C18_1n_9cis (Brockett et al., 2012; Zhang et al., 2016) 

 C18_2n_6cis (Joergensen and Potthoff, 2005; Zhang et al., 2016) 

 C18_3n_3 (Mckinley et al., 2005; Wu et al., 2015) 

 C20_1n_9 (Li et al., 2016; Mckinley et al., 2005) 

Protozoa C20_0 (Schindlbacher et al., 2011) 

 C20_3n_6 (Buyer and Sasser, 2012) 

 C20_4n_6 (Wu et al., 2013) 

Eukaryotes C18_2n_6cis (Joergensen and Potthoff, 2005; Zhang et al., 2016) 

  C21_0  (Zelles, 1999) 
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2.4. Results 

2.4.1. Agronomic performance parameters  

2.4.1.1. Leaf area (cm2 plant-1) 

Genotypes × phosphorus sources interaction had significantly (p<0.05) affected 

leaf area (LA) during 2016 (Table 2.7). Highest LA was recorded in Yukon R (3408 cm2 

plant-1) when high P concentration manure was applied compared to lowest LA (2046 cm2 

plant-1) was produced by A4177G3 RIB in control treatment (Table 2.9). Interaction 

between genotypes and P sources (G x P) on LA was non-significant in 2017 (Table 2.8), 

however, genotypes and P sources had significantly (p<0.01) influenced LA (Table 2.8). 

Individual comparison of treatments means showed that Yukon R produced significantly 

higher LA (3244 cm2) while the lowest LA (2040 cm2) was noticed in DKC 23-17RIB. 

Phosphorus sources also showed significant effects on LA, and highest LA (2884 cm2) was 

noted in high P concentration manure treatment. Lowest LA (2120 cm2) was recorded in 

P0 treatment (Table 2.9). High P manure increased 36% LA compared to control treatment. 

2.4.1.2. Chlorophyll contents (SPAD values) 

Chlorophyll contents were significantly (p<0.05) influenced with Genotypes × 

phosphorus sources interaction during 2016 (Table 2.7). Highest chlorophyll contents 

(48.66) were noted in Yukon R under P1 treatment, and the lowest were recorded in 

A4177G3RIB under control treatment (Table 2.10). In 2017, Genotypes × phosphorus 
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sources had significant (p<0.01) effects on chlorophyll contents. Pattern of highest and 

lowest chlorophyll contents were the same in 2016. 

2.4.1.3. Photosynthesis rate (µmol CO2 m-2 s-1 plant-1) 

Genotypes × phosphorus sources had significantly (p<0.05) affected net 

photosynthesis during 2016 (Table 2.7). Higher photosynthesis rate (34.43 µmol CO2 m
-2 

s-1 plant-1) was recorded in Yukon R when fertilized with high P manure compared to 

lowest photosynthesis (25. 67 µmol CO2 m-2 s-1 plant-1) was observed in A4177G3 in 

control treatment (Table 2.11). In 2017, genotypes × phosphorus sources showed non-

significant effects on photosynthesis rate. However, genotypes and P sources had 

significantly (p<0.001) influenced photosynthesis rate (Table 2.8). Individual comparison 

of treatment means showed that higher photosynthesis (29.28 µmol CO2 m
-2 s-1 plant-1) was 

noted in Yukon R, which was statistically at par with DKC26-28RIB and Fusion RR, 

compared to the lowest (25.20 µmol CO2 m-2 s-1 plant-1) exhibited by DKC23-17RIB 

(Table 2.11). High P manure showed greater photosynthesis (28.99 µmol CO2 m
-2 s-1 plant-

1) compared to control (26.78 µmol CO2 m
-2 s-1 plant-1). Surprisingly, inorganic P source 

and control treatment produced similar photosynthesis. 

2.4.1.4. Shoot dry weight (g plant-1) 

Statistical analyses demonstrated that Genotypes × Phosphorus sources had 

significantly (p<0.01) affected shoot dry weight during 2016 (Table 2.7). Yukon R 

produced higher shoot dry weight (169.17 g plant-1) when amended with high P manure 



70 

 

and A4177G3RIB genotype exhibited low shoot dry weight (98.67 g plant-1) in control 

treatment. Genotypes × Phosphorus sources interaction had non-significant effects on 

shoot dry weight during 2017. Genotypes and P sources as individual factor significantly 

(p<0.001) influenced shoot dry weight (Table 2.8). Individual comparison of treatment 

means for genotypes showed that Yukon R produced highest shoot dry weight followed by 

Fusion RR and lowest was exhibited by DKC23-17 RIB. However, Fusion RR, DKC 26-

28RIB and A4177G3 RIB were statistically at par with each other. Among P sources, high 

P manure produced higher shoot dry weight followed by low P manure compared to control 

treatment which produced lowest shoot dry weight. Shoot dry weight of silage corn was 

35% higher with high P manure compared to control. 

2.4.1.5. Root shoot ratio (plant-1)  

Root: shoot ratio was significantly influenced by Genotypes × Phosphorus sources 

interaction in 2016 & 2017 (Table 2.7 & Table 2.8). In both years highest root shoot ratio 

was recorded in control treatment. However, in 2016, highest root shoot ratio (0.96 plant-

1) was produced by A4177G3RIB followed by DKC 26-28RIB, and lowest was also 

produced by DKC26-28RIB with inorganic P source. In 2017, Fusion RR produced highest 

root-shoot ratio and lowest was observed in Yukon R with inorganic P source application 

(Table 2.13). 
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2.4.1.6. Plant height (cm) 

Genotypes × Phosphorus sources interaction significantly (p < 0.05) affected plant 

height during 2016, however, G × P sources interaction was non-significant in 2017 

(Table 2.7 & Table 2.8). Maximum plant height (236.33 cm) was attained by Yukon R in 

high P manure treatment, whereas minimum plant height (188.33 cm) was displayed by 

A4177G3RIB in control treatment (Table 2.14). During 2017, the interactive effect of G x 

P sources showed non-significant effects, however, genotypes and P sources as an 

individual factor had significant effects significant on plant height (Table 2.8). Individual 

comparison of genotype means showed that, Yukon R was the tallest and attained greatest 

plant height (194.87 cm) and A4177G3RIB produced lowest plant height (150.39 cm). 

Among P sources, high P manure treatment was the most effective treatment which 

produced tallest plants compared to shortest plant height was achieved in control treatment 

(Table 2.14).Both P manure treatments (high and low P manure) were statistically at par 

with each other.  

2.4.1.7. Dry matter yield (Mg ha-1) 

Genotypes, P sources and their interaction (G × P) had significantly (p<0.01) 

affected dry matter yield (DMY) during 2016 and non-significant interaction between G × 

P was noted in 2017 (Table 2.7 & Table 2.8). Manure with high P treatment led to produce 

high dry matter yield (21.94 Mg ha-1) of Yukon R, and lowest DMY (13.12 Mg ha-1) was 

recorded by A4177G3RIB in control treatment (Table 2.15). During 2017, among 

genotypes, Yukon R produced highest DMY of 14.99 Mg ha-1, followed by DKC 26-28RIB 
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which produced 12.97 Mg ha-1 whereas, DKC23-17RIB produced lowest DMY of 9.34 Mg 

ha-1. DKC 26-28RIB and Fusion RR were statistically at par in DMY production (12.97 

and 12.66 Mg ha-1). P sources showed highly significant (p<0.001) differences in DMY, 

and high P manure treatment produced higher DMY of 14.23 Mg ha-1 followed by low P 

manure application and lowest (10.67 Mg ha-1) was recorded in control treatment. High P 

manure produced 33.39% higher DMY compared to control treatment (Table 2.15). 

2.4.2. Biochemical attributes 

ANOVA (Analysis of variance) showed that Genotypes × phosphorus sources 

significantly (p<0.001) affected soil rhizosphere pH during 2016 (Table 2.16). High pH 

was found in the rhizosphere of Fusion RR when inorganic P was applied, compared to 

lowest soil pH observed in DKC26-28RIB genotype in the same P treatment (Table 2.18). 

However, Genotypes × phosphorus sources on soil rhizosphere pH was significant in 2017 

(Table 2.17).  Comparison of treatment means showed that soil pH was highest in the 

rhizosphere of A4177G3 RIB genotype under inorganic P, and lowest was found in 

DKC23-17RIB under same treatment. Manure with high P centration significantly 

(p<0.001) increased soil rhizosphere pH and lowest was noted in control treatment 

(Table 2.18).          
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Table 2.7 ANOVA for agronomic performance parameters during 2016 

 Agronomic Parameters Genotypes Phosphorus sources G x P Coefficient of variation% 

Leaf area *** *** * 3.93 

Chlorophyll contents *** *** * 3.15 

Photosynthesis rate *** *** * 2.88 

Shoot dry weight *** *** ** 4.52 

Root shoot ratio NS *** ** 8.14 

Plant height  *** *** * 2.16 

Dry matter yield *** *** ** 5.18 

(*** Significant at p < 0.001, ** Significant at p < 0.1, *Significant at p < 0.05, NS= Non-Significant) 

 

Table 2.8 ANOVA for agronomic performance parameters during 2017 

 Agronomic Parameters  Genotypes Phosphorus sources G x P Coefficient of variation% 

Leaf area *** *** NS 13.28 

Chlorophyll contents *** *** *** 5.73 

Photosynthesis rate *** *** NS 5.63 

Shoot dry weight *** *** NS 14.2 

Root shoot ratio *** ** * 19.54 

Plant height  *** *** NS 5.55 

Dry matter yield *** *** NS 14.26 

(*** Significant at p < 0.001, ** Significant at p < 0.1, *Significant at p < 0.05, NS= Non-Significant) 
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Table 2.9 Effects of phosphorus sources on leaf area (cm2) of silage corn genotypes at tasseling stage during 2016 and 2017 

  G x P Fusion RR Yukon R A4177G3RIB DKC 23-17RIB DKC26-28RIB Means 

2016 

P0 2281.6 j 2600.3 fgh 2046.2 k 2548.3 gh 2454.6 hij 2386 D 

P1 2700.8 efg 3408 a 2626.8 fgh 2991.2 bc 3164.6 b 2978 A 

P2 2547.2 gh 3162.2 b 2487.5 hi 2725.1 ef 2968.4 cd 2778 B 

P3 2349.7 ij 2810.8 de 2331.7 ij 2590.2 fgh 2833.6 cde 2583 C 

  Means 2469.8 D 2995.3 A 2373.1 E 2713.7 C 2855.3 B   

2017 

P0 1897 3026.6 1881.8 1655 2141.4 2120 C 

P1 2678.6 3683.8 2538.6 2578.7 2940.3 2884 A 

P2 2522.5 3306.3 2333.5 2246.2 2508.3 2583 B 

P3 2267.7 2962.5 1938 1682.6 2464.3 2263 C 

  Means 2341.5 BC 3244.8 A 2173 CD 2040.6 D 2513.6 B   

(Common letter means no significant difference at p < 5 %) 

 

Table 2.10 Effects of phosphorus sources on chlorophyll contents of silage corn genotypes at tasseling stage during 2016 and 

2017  

  G x P Fusion RR  Yukon R A4177G3RIB DKC 23-17RIB DKC26-28RIB Means 

2016 

P0 42 efgh 42.66 def 37 j 39.66 i 42.33 defg 40.73 D 

P1 45.33 b 48.66 a 45.33 b 44.33 bcd 45.66 b 45.86 A 

P2 45 bc 45.66 b 42.66 def 42.33 defg 44 bcde 43.93 B 

P3 40 hi 45.33 b 40.33 ghi 41.33 fghi 43 cdef 42 C 

  Means 43.08 B 45.58 A 41.33 C 41.91 C 43.75 B   

2017 

P0 41.84 e 44.22 abcde 42.56 bcde 34.3 f 42.34 cde 41.05 B 

P1 44.04 abcde 46.98 a 45 abcde 45.96 abcd 46.22 abc 45.64 A 

P2 42.08 de 46.6 ab 43.58 abcde 44.7 abcde 44.74 abcde 44.34 A 

P3 41.62 e 46.64 ab 43.68 abcde 31.86 f 42.27 cde 41.22 B 

  Means 42.4 B 46.11 A 43.71 B 39.20 C 43.89 B   

(Common letter means no significant difference at p < 5 %) 
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Table 2.11 Effects of phosphorus sources on photosynthesis rate (µmol CO2 m
-2 s-1 plant-1) of silage corn genotypes at 

tasseling stage during 2016 and 2017 

  G x P Fusion RR Yukon R A4177G3RIB DKC 23-17RIB DKC26-28RIB Means 

2016 

P0 27.35 k 30.42 efghi 25.67 l 29.27 hij 30.62 efgh 28.67 D 

P1 31.65 cde 34.43 a 31.61 cde 32.12 bcd 33.5 ab 32.66 A 

P2 29.91 fghij 33.02 abc 29.11 ij 30.32 efghi 31.23 def 30.72 B 

P3 29.57 ghij 32.39 bcd 27.47 k 28.49 jk 31 defg 29.78 C 

  Means 29.62 C 32.56 A 28.46 D 30.05 C 31.58 B   

2017 

P0 27.17 30.34 25.45 22.834 28.087 26.78 B 

P1 29.95 29.13 28 27.503 30.36 28.99 A 

P2 29.34 29.22 27.67 25.835 30.074 28.43 A 

P3 28.06 28.43 26.38 24.637 27.531 27.01 B 

  Means 28.63 A 29.28 A 26.88 B 25.20 C 29.01 A   

(Common letter means no significant difference at p < 5 %) 

 

Table 2.12 Effects of phosphorus sources on shoot dry weight (g plant-1) of silage corn genotypes at black layer stage during 2016 and 2017 

  G x P Fusion RR Yukon R A4177G3RIB DKC 23-17RIB DKC26-28RIB Means 

2016 

P0 112.5 k 133.7 fghij 98.67 l 126.33 j 129.67 ghij 120.17 D 

P1 146.67 bcde 169.17 a 130.67 ghij 147.17 bcd 151 b 148.93 A 

P2 145.7 bcde 149.33 bc 126.87 ij 130.33 ghij 143.67 bcdef 139.18 B 

P3 138.17 defgh 136.67 efghi 125.77 j 129.17 hij 139.37 cdefg 133.83 C 

  Means 135.76 C 147.22 A 120.49 D 133.25 C 140.93 B   

2017 

P0 92.44 117.56 89.11 72.33 89.11 92.11 C 

P1 130.44 138.56 115.67 88.22 147.22 124.02 A 

P2 127 136.11 108.22 85.22 103.33 111.98 B 

P3 107 129.22 94.44 80 95.11 101.16 BC 

  Means 114.22 B 130.36 A 101.86 B 81.44 C 108.69 B   

(Common letter means no significant difference at p < 5 %) 
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Table 2.13 Effects of phosphorus sources on root shoot ratio of silage corn genotypes at tasseling stage during 2016 and 2017 

  G x P Fusion RR  Yukon R A4177G3RIB DKC23-17RIB DKC26-28RIB Means 

2016 

P0 0.83 bcd 0.90 ab 0.96 a 0.92 ab 0.94 a 0.91 A 

P1 0.69 fghi 0.72 efg 0.66 fghij 0.58 jk 0.60 ijk 0.65 C 

P2 0.73 efgh 0.89 abc 0.75 defg 0.73 efgh 0.80 cde 0.78 B 

P3 0.76 def 0.61 ijk 0.64 hijk 0.65 ghij 0.55 k 0.64 C 

  Means 0.75 AB 0.78 A 0.75 AB 0.72 B 0.72 B   

2017 

P0 0.31 a 0.23 bcdef 0.24 abcd 0.23 bcdef 0.24 bcde 0.25 A 

P1 0.17 efg 0.16 fg 0.16 fg 0.22 bcdef 0.24 abcd 0.19 B 

P2 0.17 defg 0.17 efg 0.19 cdefg 0.28 ab 0.22 bcdef 0.21 B 

P3 0.18 defg 0.15 g 0.21 bcdefg 0.28 ab 0.26 abc 0.22 B 

  Means 0.21 BC 0.18 C 0.20 C 0.25 A 0.24 AB   

(Common letter means no significant difference at p < 5 %) 

 

Table 2.14 Effects of phosphorus sources on plant height (cm2) of silage corn genotypes at black layer stage during 2016 and 

2017 

  G x P Fusion RR Yukon R A4177G3RIB DKC 23-17RIB DKC26-28RIB Means 

2016 

P0 208 ij 218.67 gh 188.33 m 218.33 gh 227.4 bcdef 212.15 C 

P1 225.53 cdefg 236.33 a 204.37 jk 229.33 abcde 232.33 abc 225.58 A 

P2 222.67 defgh 233.67 ab 197 kl 222 efgh 223.26 defgh 219.72 B 

P3 221 fgh 228.66 abcdef 193.33 lm 215.8 hi 230.27 abcd 217.81 B 

  Means 219.3 B 229.33 A 195.76 C 221.37 B 228.31 A   

2017 

P0 161.61 184.61 148.61 154.11 171.89 164.17 C 

P1 187.06 206.17 152.78 171.67 197.5 183.03 A 

P2 179.06 196 150.22 166.67 188.06 176 AB 

P3 178.22 192.72 149.94 160.17 175.5 171.31 B 

  Means 176.49 B 194.87 A 150.39 D 163.15 C 183.24 B   

(Common letter means no significant difference at p < 5 %) 
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Table 2.15 Effects of phosphorus sources on dry matter yield (Mg ha-1) of silage corn genotypes at black layer stage during 2016 

and 2017 

  G x P Fusion RR Yukon R A4177G3RIB DKC 23-17RIB DKC26-28RIB Means 

2016 

P0 14.65 i 14.98 hi 13.12 j 15.07 ghi 16.24 efgh 14.81 D 

P1 19.17 c 21.94 a 17.37 de 17.31 de 19.13 c 18.98 A 

P2 16.45 efg 20.75 ab 15.67 fghi 16.07 efghi 18.53 cd 17.49 B 

P3 16.33 efgh 19.95 bc 14.66 i 15.77 fghi 16.61 ef 16.66 C 

  Means 16.65 C 19.40 A 15.21 D 16.06 C 17.63 B   

2017 

P0 10.1 13.77 10.09 7.54 11.84 10.67 C 

P1 15.46 16.87 12.29 11.14 15.4 14.23 A 

P2 12.88 15.57 11.47 10.46 13.01 12.68 B 

P3 12.19 13.76 10.23 8.23 11.64 11.21 C 

  Means 12.66 B 14.99 A 11.02 C 9.34 D 12.97 B   

 (Common letter means no significant difference at p < 5 %) 
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Acid phosphatase (Ap-ase) activity was significantly (p<0.001) influenced with interactive 

effects of G × P sources during 2016 (Table 2.16) and highest Ap-ase activity of 19.07 

µmole PNP g-1 min-30 was observed when Yukon R was amended with high P manure, 

followed by DKC23-17RIB and DKC26-28RIB under same treatment, whereas lowest AP-

ase activity was found in control treatment in the rhizosphere of Fusion RR (Table 2.19). 

In 2017, G x P interaction had non-significant effects on Ap-ase activity (Table 2.17). 

Individual comparison of treatments showed that high Ap-ase activity of 83.45 µmole PNP 

g-1 min-30 was observed in high P manure treatment, and lowest Ap-ase (58.08 µmole PNP 

g-1 min-30) was recorded in control treatment (Table 19). Genotypes had non-significant (p 

= 0.08) effects on Ap-ase activity (Table 2.17). 

Soil available phosphorus (SAP) was significantly (p<0.01) affected by G × P 

sources interaction during 2016 (Table 2.16). Higher SAP of 129.36 mg/kg was noted when 

high P manure was applied to Yukon R, and lowest SAP (49.67 mg/kg) was found in the 

rhizosphere of A4177G3RIB genotype in the control treatment. In 2017 growing season, 

G × P sources had non-significant effects on SAP (Table 2.17). Genotypes and P sources 

as individual factor had significantly affected SAP. Among genotypes Yukon R showed 

highest SAP (128.29 mg/kg) in soil rhizosphere while the lowest was found in the soil 

rhizosphere of DKC23-17RIB (Table 2.20). Among P sources, both manure sources either 

with high and low P concentration showed superior performance and provided higher SAP 

compared to control treatment which showed lowest SAP. Interestingly, IP and control 

treatments were statistically at par with each other and were similar in their response to 

SAP (Table 2.20). 
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2.4.3. Soil PLFA profiles 

 Analysis of variance showed that G × P sources interaction had non-significant 

effects on soil microbial community during 2016. Genotypes as individual factor had 

significantly affected the Gram positive (G+), Gram negative (G-) bacterial population, 

fungi, eukaryotes, total active bacterial PLFAs biomass (Ʃ B-PLFAS), total active PLFA 

biomass (Ʃ PLFAS) and G+:G- and non-significantly affected protozoa and fungi-bacteria 

ratio (F:B). Among genotypes, Yukon R had the maximum active soil microbial biomass 

in the root rhizospheres except G+: G- ratio. However, genotypes had non-significant effects 

on Protozoa and F:B. Yukon R and DKC26-28RIB were statistically at par in producing 

total active bacterial PLFAs biomass. P sources had significantly affected G-, fungi, Ʃ B-

PLFAS and Ʃ PLFAS and non-significant effects on G+, protozoa, eukaryotes, G+: G- and 

F:B. In 2017, Genotypes × P sources had also non-significantly affected PLFAs except 

fungi and F:B (Table 2.22). Fungi was significantly (p<0.01) influenced by G × P sources, 

and highest fungal PLFAs biomass was noted in the rhizosphere of Yukon R under high P 

manure application (Table 2.25). Genotypes had significantly affected all active microbial 

communities biomass except protozoa, eukaryotes, and G+: G-. Among genotypes, overall, 

high values of active bacterial PLFAs biomass and total PLFAs was exhibited by Yukon 

R (Table 2.23). However, protozoa and G+: G- ratio was statistically at par in all genotypes. 

P sources had significantly affected G-, fungi, total active bacterial PLFAs biomass and 

total PLFAs, and non-significant effects were observed for G+, protozoa, eukaryotes, G+: 

G- ratio and F:B ratio  during 2016 (Table 2.21). Higher G- bacterial population was noted 

when high P manure was applied and lowest was noted in inorganic P source. Similarly, 
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maximum active fungal PLFAs biomass was recorded in high P manure compared to 

minimum active fungal PLFAs biomass in control treatment. Higher eukaryotes, total 

active bacterial PLFAs biomass and total PLFAs were also observed in high P manure 

treatment. In 2017, P sources had significantly affected the active microbial composition 

except for the protozoa and G+/G- ratio. High P manure source produced maximum G+, G-

, fungi, eukaryotes, total active bacterial PLFA biomass, and total active microbial PLFA 

biomass followed by low P manure source (Table 2.24). It appears that manure with either 

high or low P source enhanced PLFAs compared to inorganic P source and control 

treatment. During both years (2016 & 2017), Yukon R genotype exhibited significantly 

higher G+ bacteria followed by DKC26-28RIB and Fusion RR, and lowest G+ bacteria was 

found in the rhizosphere of A4177G3RIB and DKC23-17RIB (Table 2.23). Manure 

application with high and low P concentration significantly increased G+ community as 

compared to inorganic P and control (Table 2.24). 

As shown in Table 2.21 & 2.22, silage corn genotypes and phosphorus sources significantly 

affected Gram negative bacteria, however, their interaction between genotypes and 

phosphorus sources were not significant. During 2016 and 2017, Yukon R had the higher 

G- bacteria in their rhizosphere followed by DKC26-28RIB, and the lowest was found in 

Fusion RR and DKC23-17RIB (Table 2.23). High P manure source significantly enhanced 

G- bacteria compared to inorganic P and control. High G- bacterial population was 22.94 

and 23.10 nmol g-1 during 2016 and 2017 (Table 2.24)
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Table 2.16 ANOVA for biochemical parameters at black layer stage during 2016 

Biochemical Parameters Genotypes Phosphorus sources G x P Coefficient of variation% 

Soil pH *** * * 0.90 

Acid phosphatase activity *** *** *** 2.72 

Soil available P *** *** ** 8.07 

 

Table 2.17 ANOVA for biochemical parameters at black layer stage during 2017 

Biochemical parameters Genotypes Phosphorus sources G x P Coefficient of variation% 

Soil pH *** ** ** 2.78 

Acid phosphatase activity NS *** NS 21.73 

Soil available P *** *** NS 21.37 

(*** Significant at p < 0.001, ** Significant at p < 0.1, *Significant at p < 0.05, NS= Non-Significant) 

 

Table 2.18 Effects of phosphorus sources on soil pH at black layer stage during 2016 and 2017 

  G x P Fusion RR Yukon R A4177G3RIB DKC 23-17RIB DKC26-28RIB Means 

2016 

P0 6.09 ab 6.09 ab 5.92 efg 5.98 cdef 5.98 cdef 6.01 A 

P1 6.006 bcde 6.06 abc 5.96 defg 5.95 defg 5.96 defg 5.99 AB 

P2 6.03 abcd 6.01 bcd 5.95 defg 5.89 fgh 5.98 cdef 5.97 AB 

P3 6.12 a 6.02 bcd 5.92 efg 5.88 gh 5.83 h 5.95 B 

  Means 6.06 A 6.04 A 5.94 B 5.92 B 5.94 B   

2017 

P0 6.18 abcde 6.05 bcdefg 5.91 efgh 5.58 i 5.73 hi 5.89 C 

P1 5.88 fgh 6.29 ab 6.28 abc 6.20 abcd 6.11 abcdef 6.15 A 

P2 6.10 abcdef 5.97 defgh 6.06 bcdef 5.82 ghi 5.93 defgh 5.97 BC 

P3 6.08 bcdefg 6.13 abcdef 6.38 a 5.57 i 6.00 cdefgh 6.03 AB 

  Means 6.06 AB 6.11 A 6.15 A 5.79 C 5.94 B   

(Common letter means no significant difference at p < 5 %) 
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Table 2.19 Effects of phosphorus sources on acid phosphatase activity (µmole PNP g-1 min-30) at black layer stage during 

2016 and 2017 

  G x P Fusion RR Yukon R A4177G3RIB DKC 23-17RIB DKC26-28RIB Means 

2016 

P0 14.55 hij 14.99 fgh 13.95 j 11.03 k 14.25 ij 13.75 C 

P1 17.15 cd 19.07 a 16.70 d 17.85 bc 17.91 b 17.73 A 

P2 15.54 ef 16.94 d 15.30 efg 15.68 ef 15.93 e 15.88 B 

P3 14.48 hij 14.83 ghi 14.70 ghi 18.21 b 15.84 e 15.61 B 

  Means 15.43 CD 16.46 A 15.16 D 15.69 BC 15.98 B  

2017 

P0 40.80 62.96 62.18 68.58 55.88 58.08 C 

P1 78.71 95.07 86.29 76.75 80.47 83.45 A 

P2 67.30 94.49 81.04 75.09 70.30 77.64 AB 

P3 67.75 69.54 74.71 69.36 62.97 68.86 BC 

  Means 63.64 B 80.51 A 76.05 AB 72.44 AB 67.40 B  

(Common letter means no significant difference at p < 5 %) 

 

Table 2.20 Effects of phosphorus sources on soil available P (mg/kg) at black layer stage during 2016 and 2017 

  G x P Fusion RR Yukon R A4177G3RIB DKC 23-17RIB DKC26-28RIB Means 

2016 

P0 63.9 hi 74.59 efg 49.67 j 56.59 ij 57.95 ij 60.54 D 

P1 93.65 cd 129.36 a 77.61 efg 83.26 de 100.78 bc 96.93 A 

P2 75.82 efg 107.79 b 69.66 fgh 78.31 efg 96.45 c 85.60 B 

P3 69.01 gh 93.67 cd 52.25 j 68.97 gh 80.03 ef 72.78 C 

  Means 75.59 C 101.35 A 62.3 D 71.78 C 83.8 B  

2017 

P0 73.12 119.59 66.62 49.86 67.34 75.3 B 

P1 112.92 139.75 88.17 67.05 116.9 104.96 A 

P2 100.34 132.7 78.22 74.72 114.26 100.05 A 

P3 81.99 121.1 72.61 55.09 57.08 77.57 B 

  Means 92.09 B 128.29 A 76.41 BC 61.68 C 88.89 B  

(Common letter means no significant difference at p < 5 %) 

 



83 

 

Table 2.21 ANOVA for soil microbial communities at black layer stage during 2016 

Soil microbial community Genotypes  Phosphorus sources  G x P Coefficient of variation% 

G+ * NS NS 13.65 

G- *** *** NS 6.97 

Fungi * * NS 14.02 

Protozoa NS NS NS 13.21 

Eukaryotes * NS NS 13.27 

Total Bacterial PLFAs *** * NS 8.47 

Total PLFAs *** ** NS 7.47 

G+:G- *** NS NS 13.97 

F:B NS NS NS 19.64 

(*** Significant at p < 0.001, ** Significant at p < 0.1, *Significant at p < 0.05, NS= Non-Significant) 

 

Table 2.22 ANOVA for soil microbial communities at black layer stage during 2017 

 Soil microbial community Genotypes (G) Phosphorus sources (P) G x P Coefficient of variation% 

G+ ** ** NS 5.22 

G- *** *** NS 4.67 

Fungi *** *** ** 12.2 

Protozoa NS NS NS 9.19 

Eukaryotes NS *** NS 30.47 

Total Bacterial PLFAs *** *** NS 3.94 

Total PLFAs *** *** NS 3.77 

G+:G- NS NS NS 5.79 

F:B * *** ** 13.2 

(*** Significant at p < 0.001, ** Significant at p < 0.1, *Significant at p < 0.05, NS= Non-Significant) 
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Table 2.23 Effects of silage corn genotypes on PLFAs (nmol g-1 soil) at black layer stage during 2016 and 2017  

  Genotypes G+ G- F P E Σ B-PLFAs Σ PLFAs -:G+G F:B 

2016 

Fusion RR 20.77 ab 19.00 d 3.56 bc 1.48 a 2.56 ab 39.77 b 47.39 c 1.09 a 0.09 a 

Yukon R 21.74 a 24.76 a 4.02 a 1.55 a 2.78 a 46.50 a 54.87 a 0.88 b 0.086 a 

A4177G3RIB 18.04 c 20.59 c 3.26 c 1.39 a 2.39 b 38.63 b 45.69 c 0.87 b 0.087 a 

DKC 23-17RIB 18.81 bc 21.19 c 3.63 abc 1.54 a 2.75 a 40.00 b 47.93 c 0.89 b 0.090 a 

DKC 26-28RIB 20.85 ab 22.89 b 3.74 ab 1.50 a 2.77 a 43.75 a 51.76 b 0.91 b 0.085 a 

2017 

Fusion RR 21.04 a 22.05 ab 3.34 bc 1.72 a 1.72 ab 43.09 ab 49.89 bc 0.95 a 0.077 ab 

Yukon R 21.43 a 22.85 a 3.69 a 1.79 a 1.91 a 44.29 a 51.69 a 0.93 a 0.083 a 

A4177G3RIB 20.98 a 21.60 bc 3.13 cd 1.81 a 1.48 b 42.58 b 49.00 c 0.97 a 0.073 b 

DKC 23-17RIB 19.74 b 20.84 c 2.86 d 1.79 a 1.45 b 40.58 c 46.71 d 0.95 a 0.070 b 

DKC 26-28RIB 21.25 a 22.64 a 3.46 ab 1.71 a 1.98 a 43.89 ab 51.06 ab 0.94 a 0.079 ab 

Note: Abbreviations: G+ = Gram positive, G- = Gram negative, F = Fungi, P = Protozoa, E = Eukaryotes, Σ B-PLFAs = 

Total Bacterial PLFAs, Σ PLFAs = Total PLFAs, G+: G- = Gram positive/Gram negative ratio, F: B = Fungi/Bacteria ratio. 

(Common letter means does not differ significantly at p < 5 %) 

 

Table 2.24 Effects of phosphorus sources on PLFAs (nmol g-1 soil) at black layer stage during 2016 and 2017 

  P sources G+ G- F P E Σ B-PLFAs Σ PLFAs G+:G- F:B 

2016 

P0 19.764 a 21.262 bc 3.390 b 1.421 a 2.471 b 41.026 ab 48.309 bc 0.938 a 0.082 a 

P1 20.365 a 22.942 a 3.975 a 1.509 a 2.812 a 43.307 a 51.605 a 0.883 a 0.094 a 

P2 20.795 a 22.024 ab 3.725 ab 1.545 a 2.720 ab 42.819 a 50.81 ab 0.954 a 0.087 a 

P3 19.259 a 20.533 c 3.487 b 1.515 a 2.617 ab 39.793 b 47.412 c 0.947 a 0.087 a 

2017 

P0 20.698 bc 21.555 b 2.691 c 1.809 a 1.394 c 42.253 bc 48.149 c 0.960 a 0.063 c 

P1 21.618 a 23.101 a 3.778 a 1.776 a 2.373 a 44.719 a 52.647 a 0.938 a 0.084 a 

P2 21.076 ab 22.003 b 3.700 a 1.730 a 1.952 b 43.079 b 50.462 b 0.958 a 0.086 a 

P3 20.182 c 21.335 b 3.025 b 1.763 a 1.127 c 41.517 c 47.434 c 0.948 a 0.072 b 

(Common letter means no significant difference at p < 5 %) 
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Table 2.25 Effects of phosphorus sources on fungal PLFAs (nmol g-1 soil) at black layer stage during 2016 and 2017 

  G x P Fusion RR Yukon R A4177G3RIB DKC 23-17RIB DKC26-28RIB Means 

2016 

P0 3.49 3.64 2.39 3.57 3.87 3.39 B 

P1 3.74 4.70 3.52 4.02 3.89 3.97 A 

P2 3.55 3.91 3.69 3.55 3.92 3.72 AB 

P3 3.50 3.83 3.44 3.39 3.28 3.48 B 

  Means 3.56 BC 4.02 A 3.26 C 3.63 ABC 3.74 AB  

2017 

P0 2.00 e 3.42 bc 2.07 e 2.61 de 3.34 c 2.69 C 

P1 4.07 ab 4.08 a 3.59 abc 3.46 abc 3.67 abc 3.77 A 

P2 4.06 ab 4.06 ab 3.59 abc 3.21 cd 3.56 abc 3.70 A 

P3 3.23 cd 3.17 cd 3.25 cd 2.18 e 3.27 cd 3.02 B 

  Means 3.34 BC 3.69 A 3.13 CD 2.86 D 3.46 AB  

(Common letter means no significant difference at p < 5 %) 

 

Table 2.26 Effects of phosphorus sources on Fungi: Bacteria (F: B) ratio at black layer stage during 2017 

G x P Fusion RR Yukon R A4177G3RIB DKC 23-17RIB DKC26-28RIB Means 

P0 0.047 e 0.078 abc 0.049 de 0.065 cd 0.078 abc 0.063 C 

P1 0.091 ab 0.089 ab 0.081 abc 0.081 abc 0.080 abc 0.084 A 

P2 0.094 a 0.091 ab 0.084 ab 0.078 abc 0.080 abc 0.086 A 

P3 0.077 bc 0.075 bc 0.078 abc 0.057 de 0.076 bc 0.072 B 

Means 0.077 AB 0.083 A 0.073 B 0.070 B 0.079 AB  

(Common letter means no significant difference at p < 5 %) 



2.4.3.1. Principal Component Analysis (PCA) 

Bi-plot showed the relationship between the PLFAs silage corn genotypes and P 

sources applied during both growing seasons (Figure 2.4.1 & 2.4.2). PC1 and PC2 

accounted for 40.81% and 26.31% of the total variation observed in the data. Biochemical 

attributes and PLFAs showed a significant separation of Yukon R and DKC26-28RIB from 

other genotypes (Figure 2.4.1a) and high and low P manure from other P sources 

(Figure 2.4.1b) in 2016. In 2017, PC1 and PC2 accounted for 40.92% and 18.37% of the 

total variation in the data. Yukon R and DKC26-28RIB showed clear separation with 

enzyme activity, available P and PLFAs compared to other genotypes (Figure 2.4.2a). Soil 

biochemical attributes and microbial communities also showed a significant separation 

with P1 and P2 and other P sources (Figure 2.4.2b). A clear separation was also found when 

comparing the soil biochemical parameters and microbial communities of P3 and P0 along 

the PC2 axis (Figure 2.4,2b). PCA indicates that manure applications with high and low P 

concentration significantly improved soil biochemical attributes and the active microbial 

biomass or diversity. A positive association between Yukon R, DKC26-28RIB, PLFA 

parameters and biochemical attributes was observed. Similarly, positive correlation was 

noted between P1 and P2 sources, PLFAs and soil biochemical attributes (Figure 2.4.1b 

& 2.4.2b). Further confirmation of these relationships was demonstrated by Pearson 

correlation analysis between biochemical attributes and PLFAs (Table 2.28). 
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Figure 2.4.1 Phosphorus sources and silage corn genotypes alter biochemical attributes and 

active microbial communities under field conditions. Bi-plot showing relationships 

between observed biochemical attributes, active microbial community composition and 

abundance in (a) silage corn genotypes (b) P sources during 2016.  

(a) 

(b) 
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Figure 2.4.2 Phosphorus sources and silage corn genotypes alter biochemical attributes and 

active microbial communities under field conditions. Bi-plot showing relationships 

between observed biochemical attributes, active microbial community composition and 

abundance in (a) silage corn genotypes (b) P sources during 2017.  

(b) 
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2.4.3.2. Pearson’s correlation between agronomic parameters, soil 

biochemical attributes and microbial community composition 

 During 2016 and 2017, the agronomic parameters (leaf area, chlorophyll contents, 

photosynthesis rate, plant height and shoot dry weight) showed significant relationships 

with dry matter yield (Table 2.27). Positive and very strong relationships was noticed 

between LA and DMY, photosynthesis rate (PR) and DMY. Pearson correlation analysis 

between biochemical parameters (Ap-ase, SAP and pH) and PLFAs are given in Table 2.28. 

In 2016, soil pH showed non-significant relationship with Ap-ase, SAP and soil microbial 

communities. Whereas during 2017, significant relationship of soil pH with SAP, G+, G-, 

total bacterial PLFAs and total PLFAs was observed. Positive and strong correlations were 

found between SAP, Ap-ase, fungi, bacterial PLFA and total PLFA abundance 

(Table 2.28). Microbial community was significantly correlated with Ap-ase in 2016, while 

bacterial and total PLFA abundance showed significant relationship with Ap-ase activity 

during 2017. 

Table 2.27 Pearson’s correlation coefficients (r) showing the relationship between 

agronomic performance parameters and dry matter yield during 2016 and 2017 

 Years   LA Chl Pr PH SDW 

2016 

Chl 0.71***     

Pr 0.83*** 0.79***    

PH 0.72*** 0.56*** 0.72***   

SDW 0.81*** 0.69*** 0.79*** 0.76***  

DMY 0.80*** 0.77*** 0.85*** 0.66*** 0.79*** 

2017 

Chl 0.63***     

Pr 0.51*** 0.54***    

PH 0.72*** 0.43*** 0.51***   

SDW 0.67*** 0.49*** 0.52*** 0.60***  

DMY 0.75*** 0.58*** 0.67*** 0.67*** 0.64*** 
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Note: Abbreviations: LA = Leaf area, Chl = Chlorophyll contents, Pr = Photosynthesis rate, 

PH = Plant height, SDW = Shoot dry weight, DMY = Dry matter yield. 

(*** Significant at p < 0.001, ** Significant at p < 0.1, *Significant at p < 0.05, NS= Non-

Significant). 

 

Table 2.28 Pearson’s correlation coefficients (r) showing the relationship between soil 

biochemical parameters and active microbial communities during 2016 and 2017 

Years   Ap-ase SAP pH 

2016 

Ap-ase   0.68*** -0.09Ns 

SAP   0.19Ns 

G+ 0.17Ns 0.36** 0.12Ns 

G- 0.27* 0.57*** -0.00Ns 

F 0.35** 0.51*** 0.21Ns 

P 0.11Ns 0.21Ns 0.04Ns 

E 0.31* 0.40** 0.04Ns 

ΣB-PLFAs 0.26* 0.55*** 0.07Ns 

ΣPLFAs 0.30* 0.59*** 0.09Ns 

G+:G- -0.05Ns -0.09Ns 0.13Ns 

F:B 0.19Ns 0.11Ns 0.14Ns 

2017 

 

Ap-ase  0.30* 0.10Ns 

SAP   0.28* 

G+ -0.01Ns 0.39** 0.27* 

G- 0.08Ns 0.39** 0.30* 

F 0.48*** 0.48*** 0.15Ns 

P 0.10Ns -0.09Ns 0.03Ns 

E 0.44*** 0.39** 0.08Ns 

ΣB-PLFAs 0.04Ns 0.43*** 0.32* 

ΣPLFAs 0.25Ns 0.52*** 0.30* 

G+:G- -0.10Ns -0.04Ns -0.06Ns 

F:B 0.49*** 0.38** 0.08Ns 

Note: Abbreviations: Ap-ase = Acid phosphatase, SAP = Soil available P, G+ = Gram 

positive, G- = Gram negative, F = Fungi, P = Protozoa, E = Eukaryotes, Σ B-PLFAs = Total 

Bacterial PLFAs, Σ PLFAs = Total PLFAs, G+: G- = Gram positive/Gram negative ratio, 

F: B = Fungi/Bacteria ratio. 

(*** Significant at p < 0.001, ** Significant at p < 0.1, *Significant at p < 0.05, NS= Non-

Significant) 
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2.5. Discussion 

2.5.1. Agronomic performance parameters 

2.5.1.1. Leaf area  

Leaves play very important roles in photosynthesis and other physiological 

processes which leads to enhance dry biomass (Khan and Khalil, 2010; Man et al., 2015). 

DM with high and low P significantly increased LA of silage corn genotypes compared to 

control (Table 2.9). Phosphorus plays very exclusive role in cell division (Kavanova et al., 

2006) and cell elongation in crop plants (Radin and Eidenbock, 1984). Phosphate 

availability in leaves increased expansion of epidermal cells and consequently leaf blade 

(Waldron and Terry, 1987) and phosphate concentration in the upper epidermis cells 

rapidly decreased with decreased P supply to the leaf (Treeby et al., 1987). LA of corn 

significantly increased with DM application compared to control and this increment was 

attributed to optimum and consistent supply of N and P nutrients to the plant (Hariadi et 

al., 2016). In 2016, G × P sources interaction showed significant increase in LA of Yukon 

R under high P manure treatment. The observed increment in LA of Yukon R might be 

related to higher P-uptake genetic potential or high P manure treatment enhanced P 

availability which improved cell division and elongation process led to higher LA 

development in Yukon R compared to other genotypes. In dry season or in arid conditions, 

reduced soil moisture can reduce P uptake and availability in epidermal cells and 

consequently reduction in LA of silage corn. Previous study conducted by Song et al., 

(2018) reported that soil moisture deficit significantly limit vegetative growth, lead to 
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decline in LA of corn. Our results of 2017 growing season are in agreement with that of 

Song et al., (2018). 

2.5.1.2. Chlorophyll contents  

Chlorophyll contents in crop plants are important in energy harvesting reaction 

during photosynthesis process that help in CO2 fixation and maximization of carbohydrates 

for energy production (Slamet et al., 2017). Chlorophyll is part of the chloroplast, and 

predominantly used inorganic P (Pi) (Giesrsch and Robinson, 1987), and deficiency of P 

supply to chloroplast can inhibits photosynthesis (Dietz and Foyer, 1986). Light, 

carbohydrates, temperature, plant species and genetic potential, and nutrients availability 

to crop plants may affects the chlorophyll synthesis and photosynthesis rate (Hasan et al., 

2014). DM and other organic fertilizers provide essential nutrients for plant growth and 

have a positive effect on the formation of chlorophyll and chloroplast (Hasan et al., 2014). 

Organic acids either released by plant roots or produced during the decomposition and 

mineralization of manure/organic matter play an important role in gradual and consistent 

supply of Mg+2 which contribute to the formation of chlorophyll molecules compared to 

inorganic fertilizers (Hasan et al., 2014). Organic fertilizer sources increased the 

availability and absorption of essential elements, such as Fe2+, Mg2+ and NH4+, necessary 

for enzyme activation, chloroplast and chlorophyll formation (Elhindi, 2012). DM 

application significantly increased chlorophyll contents of maize compared to control 

(Efthimiadou et al., 2009). In present study, we found that DM application either with 

high/low P significantly increased chlorophyll contents of Yukon R and DKC26-28RIB 
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compared to control over the both growing season (Table 2.10). Increased chlorophyll 

contents with high/low manure P treatments, suggest that optimum supply of N, P and Mg+2 

to crop plants might have increased chlorophyll contents because both compounds are 

central component of chlorophyll molecules. Our results are in agreement with previous 

findings (Elhindi, 2012) who reported that manure application significantly improved 

chlorophyll contents of crop plants presumably by increasing availability of N and Mg2+ in 

soil. Chlorophyll contents also showed positive relationship with photosynthesis rate in 

crops. (Efthimiadou et al., 2009; Reich et al., 1994). 

2.5.1.3. Photosynthesis rate  

Photosynthesis is an important determinant of growth and yield of crops (Murchie 

et al., 2008). Phosphorus availability facilitate supply of triose-P from the chloroplast to 

the cytosol via the Pi translocator (Giersch and Robinson, 1987; Wissuwa et al., 2005). 

Phosphorus is an important element in compounds such as ATP, NADPH, nucleic acids, 

sugar phosphates, and phospholipids which involves in photosynthesis (Hammond and 

White, 2008). Photosynthesis is a process in which plants absorbed light energy and convert 

in to chemical energy (Hohmann-Marriott and Blankenship, 2011). P deficient plants 

showed reduction in photosynthesis that might be due to diminishing of ribulose 1-5, 

bisphosphate (RuBP) generation rather than due to limitations in the supply of ATP 

(adenosine triphosphate) and NADPH (Nicotinamide adenine dinucleotide phosphate 

oxidase) in the Calvin cycle (Fredeen et al., 1989). RuBP is formed by taking a phosphate 

coming from the splitting of ATP, and joining it with riblulose phosphate (RuP), changing 
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RuP into RuBP, which is then able to react with CO2 and form an unstable 6C (carbon) 

molecule which is the basis for the dark reaction. ATP is commonly known as energy 

currency of the cell because energy obtained through its metabolism is used for 

biomolecules synthesis, movement and cell division. ATP consists of the purine base 

adenine, pentose sugar ribose, and three phosphate groups, and anhydrous bonds of the 

three phosphate make ATP a high energy molecule. During the photosynthetic electron 

transfer reaction, H+ pumped across the thylakoid membrane, and the resulting 

electrochemical proton gradient derives the synthesis of ATP in the stroma (Alberts et al., 

2002). APT hydrolysis produces more free energy compounds such as ADP (adenosine 

diphosphate) and inorganic phosphate than that of other phosphate compounds and 

common phosphate ester (Alberts et al., 2002).  As the final step of electron transport chain, 

high energy electrons are loaded (together with H+) on to NADP+, converting it to NADPH, 

and all of these reactions are confined to chloroplast (Alberts et al., 2002). In carbon 

fixation process, three molecules of ATP and two molecules of NADPH are consumed for 

each molecule of carbon dioxide (CO2) converted in to carbohydrate. The net equation is: 

3C02 + 9ATP + 6NADPH + water → Glyceraldehyde 3 − phosphate + 8Pi +

9ADP + 6NADP+(Alberts et al., 2002).  Orthophosphate in the chloroplast stroma serve as 

a substrate for ATP synthesis (Carstensen et al., 2018).  

 Recent work exhibited that P deficiency reduces the orthophosphate concentration 

(Pi) in the chloroplast stroma which may led to inhibit the process of ATP synthesis 

(Carstensen et al., 2018; Karlsson et al., 2015), and protons start accumulated in the 

thylakoids and cause lumen acidification, which stop linear electron flow. Inadequate 
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plastoquinol (PQH2) oxidation retards electron transport to the cytochrome b6f complex. 

However, the electron transfer rate of PSI is increased under steady state growth light 

conditions and is limited under high light conditions. P deficiency increased electron 

transport through PSI increases the levels of NADPH, whereas ATP production remains 

limited and reduced CO2 assimilation. Changes in supply of Pi in the stroma reduced the 

ATP levels and consequently reduced, but no changes in the photosynthetic machinery 

composition were observed (Karlsson et al., 2015). P deficiency immediately affects CO2 

fixation, but does not appear to stop it, as P deficient plants typically remains green and do 

not develop leaf chlorosis. Phosphorus starvation significantly reduced NADP+ in to 

NADPH, indicating that a large fraction of NADP+ remains in the reduced form NADPH, 

because it cannot be utilized in the Calvin cycle due to ATP limitation, and because of 

higher PS1 activity (Carstensen et al., 2018). NADPH concentration was significantly 

higher under P deficient treatment as compared to P supply treatments.  

 DM application improved photosynthesis and plant growth due to slow release of 

nutrients (Salehi et al., 2017). Additionally, DM application significantly increased 

photosynthesis rate as compared to barley mulch, poultry manure and mineral fertilizes 

(Efthimiadou et al., 2009). Our results has demonstrated that, manure with high and low P 

concentration significantly increased the photosynthesis rate of Yukon R as compared to 

control during 2016 (Table 2.11). However, G × P interaction was non-significant in 2017 

and this might be due to variation in environmental condition i.e. less rain possibly reduced 

the P uptake and availability. Plant physiological processes, such as transpiration and 

photosynthesis response are dependent on the rapidity, severity, and duration of drought 
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stress (Zhang et al., 2012). Reduced soil moisture due to less rain closed the stomata to 

prevent desiccation (Yan et al., 2011) and consequently, affected photosynthesis rate due 

to decreased level of CO2 at chloroplast level (Long et al., 2006).  

2.5.1.4. Root shoot ratio 

Root morphological traits i.e. root length, volume and density significantly 

increased under P deficiency, whereas sufficient P supply increased growth and total root 

biomass (Hill et al., 2006). Previous studies found that plants grown under sufficient P 

conditions led to more accumulation of P in shoots than roots and indicated that shoots are 

strong source of P for photosynthesis processes (Rao et al., 1989). Reduction in 

photosynthesis under P deficiency caused negative effects on leaf expansion cells which is 

the consequence of carbohydrates deficiency (Louw-gaume et al., 2010; Rao et al., 1989). 

Roots are larger sink than leaves to allocate carbohydrates (Louw-gaume et al., 2010; Rao 

et al., 1989). As a result of reduction in photosynthesis process under P deficiency, triose 

export from chloroplast would be reduced and starch accumulate in leaf tissue, while the 

export of carbohydrates to roots decreased (Rao et al., 1989). Roots are generally 

considered as larger sinks than leaves under P deficiency, since the root shoot ratio usually 

increased (Wissuwa et al., 2005). In this study, similar results were observed where the root 

to shoot ratio of silage corn genotypes were significantly higher; whereas photosynthesis 

decreased  in the control led to export of P from shoots to root for adaptation to low P stress 

which may account for the increase root to shoot ratio. Our findings supported by that of 

earlier studies (Basirat et al., 2011; Li et al., 2009; Louw-gaume et al., 2010; Wissuwa et 
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al., 2005) suggest that P deficiency significantly increased root to shoot ratio of under P 

deficient conditions. 

2.5.1.5. Plant height (PH) 

Phosphorus plays an important role in plant growth rate by enhancing cell division 

(Kavanova et al., 2006) and cell elongation (Radin and Eidenbock, 1984) in several crops. 

Amujoyegbe et al., (2007) found that manure application significantly increased PH of corn 

through optimum supply of P which may lead to increased internode length and nodes 

formation of stems. In present studies, our (G × P) results indicated that Yukon R attained 

higher PH, when amended with high P manure, whereas, non-significant interaction was 

observed in 2017. This increment in PH occurred due to exclusive role of P in cell division 

and cell elongation. Additionally, P fertilizers application at early growth stages is known 

to be an effective strategy for stimulating corn root development and establishment of good 

root architecture and increasing yields (Shen et al., 2013). Efthimiadou et al., (2009) also 

found that manure application produced positive influence on PH of corn compared to 

inorganic fertilizers. Highest PH noted in Yukon R might be due to cultivar variability 

among the genotypes (Maryam et al., 2012). During 2017, decrease in PH of silage corn 

was observed compared to 2016, and this reduction in PH occurred due to less rainfall in 

month of July and August (Figure 2.3.1) which might hampered PH in silage corn in present 

study. Soil moisture deficit significantly affect the crop growth rate by decreasing the 

nutrients uptake and reduce LA, photosynthesis rate, cell division and elongation and 

finally PH in crops. Our results corroborate the findings of Maryam et al., (2012), who 
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reported that water stress significantly affect the process of cell division and elongation 

which can lead to decreased plant height. In another study conducted by Zhang et al.,  

(2012) observed that soil moisture deficit affects photosynthesis rate, and consequently 

reduction of stem internodes length led to decreased plant height (Abrokwah et al., 2017).  

2.5.1.6. Dry matter yield  

Environment (temperature, rain, radiation, transpiration etc.), genotypes or plant 

species and management practices (fertilizers application, sowing dates, cultural practices, 

seeding methods, weed control etc.) are the major drivers of DMY (Martin et al., 2014). 

Basically, DMY is the outcome of interception of PAR by plant leaves and the ability of 

plants canopy architecture to transform the intercepted PAR into biomass production 

(Portes and Melo, 2014). Results of our study demonstrated that high P manure treatment 

increased LA, chlorophyll contents and photosynthesis rate which consequently led to 

increased DMY (Table 2.15). In previous studies conducted by Amujoyegbe et al., (2007) 

and Efthimiadou et al., (2009), authors reported that manure application significantly 

improved LA, chlorophyll contents, photosynthesis and dry matter yield of silage corn as 

compared to inorganic fertilizer application. Manure application improved agronomic 

performance of silage corn genotypes, because nutrients are slowly released from DM and 

available for long time in soil compared to inorganic fertilizer.  Lowest DMY in control 

treatment could be attributed due to lower P availability that might have reduced LA, 

number of leaves, photosynthesis rate and finally DMY (Table 2.15). In another study 

conducted by Salehi et al., (2017) found that dry matter accumulation significantly 
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increased with manure application due to gradual release of nutrients which improved 

photosynthesis rate, plant growth and finally DMY.  

In 2017, due to low rain and consequently low moisture availability caused water 

and nutrient stress at pre-anthesis and anthesis stages of silage corn, which significantly 

reduced DMY compared to 2016. Moreover, LA, chlorophyll contents, photosynthesis, 

shoot dry weight and plant height of silage corn decreased, possibly due to reduced 

nutrients uptake, which may have led to reduced DMY. Plants cope with drought conditions 

by closing stomata to prevent water loss which may lead to decreased photosynthesis rate 

and finally DMY of silage corn. Previous studies also reported that drought stress reduced 

LA, chlorophyll contents, plant height, photosynthesis and DMY in several crops 

(Abrokwah et al., 2017; Bouazzama et al., 2012; Maryam et al., 2012; Yan et al., 2011).  

Pearson’s correlation analysis showed positive and strong correlation between 

DMY of silage corn genotypes and LA, chlorophyll contents, photosynthesis rate, shoot 

dry weight and plant height (Table 2.27). Feng et al. (2016) also reported positive 

correlation between leaf area index, chlorophyll contents, photosynthesis rate and DMY of 

cotton. Results of present study conclude that high P manure application significantly 

improved agronomic performance and dry matter yield of silage corn in western 

Newfoundland.  
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2.5.2. Biochemical attributes  

2.5.2.1. Soil rhizosphere pH 

Soil rhizosphere pH is an important factor that modify physiochemical properties and 

microbial community composition (Gregory and Hinsinger, 1999), and determine the 

availability of macro and micro nutrients (Hinsinger, 2001). Variation in soil rhizosphere 

pH under different nutrient regimes might be due to imbalance uptake of cations and anions 

by genotypes or species (Hinsinger, 2001; Li et al., 2008). Basically, DM or organic 

fertilizers have high pH and their application enhance soil pH and SOC than synthetic 

fertilizers (Dong et al., 2012; Lapa et al., 2011). In our study, the rhizosphere soil pH was 

slightly higher in manure treatments than control (Table 2.18), which suggest that manure 

either with low or high P application could alleviate soil acidification by increasing soil 

organic matter (SOM), improving the soil structure, and enhancing the soil base saturation 

percentage (Dong et al., 2012; Li et al., 2010; Zhang et al., 2009). Application of inorganic 

fertilizers (alkaline in nature) would return some alkaline substance to soils which may led 

to increase the soil pH (Dong et al., 2012). Manure application significantly increased soil 

pH than no manure applied soils which was attributed to buffering from bicarbonates anion 

and organic acids (Whalen et al., 2000). Manure decomposition process also increase the 

soil pH due to the decarboxylation reaction in which protons (H+) are consumed and CO2 

is released: R − CO − COO−  +  H+ →  R − CHO +  CO2 (Yan et al., 1996). Li et al., 

(2008) found that soil pH varied among rice genotypes and this difference occurred due to 

complex rhizosphere processes. Organic fertilizer sources or manure are able to stabilize 
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and increase the soil pH (Dong et al., 2012) and we found that DM application stabilize the 

pH during first year and significantly increased in 2017 (Table 2.18) 

2.5.2.2. Acid phosphatase activity   

Soil enzymes are instrumental in organic matter decomposition and nutrients 

turnover. Therefore, soil enzymes activities are indicators of soil health and early indicators 

of land use changes caused by agricultural practices (Paz-Ferreiro et al., 2007). Plants and 

soil microorganisms have developed several mechanisms to mobilize organic P and 

solubilize bound inorganic P through exudation of protons and organic ligands such as 

oxalate and citrate (Hinsinger, 2001). Extracellular acid phosphatase and other enzymes 

activities fluctuate rapidly due to fertilizers, complex rhizosphere processes, biological 

properties, soil physio-chemical properties and environmental conditions (Paz-Ferreiro et 

al., 2011). Manure contains organic P which is mineralized by phosphatases in to inorganic 

P before plants uptake; soil microbial and enzyme activities significantly affect the P 

hydrolysis (Waldrip et al., 2012). Organic P mineralization is controlled by three enzymes 

such as acid phosphatase, alkaline phosphatase and phosphodiesterase (Waldrip et al., 

2012). Both acid and alkaline phosphatase hydrolyze relatively nonspecific and a range of 

low molecular-weight P compounds, including mononucleotides, phytate, sugar 

phosphates, and polyphosphates, whereas phosphodiesterase catalyzes the hydrolysis of 

nucleic acids and phospholipids (Turner et al., 2002). Mineral P fertilizers application 

significantly decreased the acid phosphatase activity, because plants and microorganisms 

easily draw the P from readily available sources and do not have to mineralize organic P 
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(Spohn and Kuzyakov, 2013). High P manure significantly increased Ap-ase activities 

compared to inorganic P source in the present studies (Table 2.19), which might suggest 

that manure application may stimulate Ap-ase activity by providing microorganisms with 

organic sources of C, N and P (Li et al., 2016; Zhang et al., 2015). Silage corn genotypes 

also exhibited significant difference in rhizosphere Ap-ase activity, which might be due to 

difference in genotypes potential of roots respond to various P fertilizer sources which 

affect the Ap-ase activity in rhizosphere. Root exudates (protons, oxalate and citrate) 

potential varied among the silage corn genotypes which affect the solubilization of C, N 

and P, and shape the microbial community to decompose the manure by secretion of various 

enzymes. We conclude that high or low P manure application significantly increased Ap-

ase activity to mineralize the organic P by increasing soil microbial communities. Our 

results are in agreement with studies reported by earlier researchers (Colvan et al., 2001; 

Leytem et al., 2011; Waldrip et al., 2012).  

2.5.3. Soil PLFA profiles 

 Microbial community composition in the soil rhizosphere can be altered due to 

physio-chemical properties of soil, chemical nature of root exudates, fertilizer sources and 

their management practices, and plant growth stage (Li et al., 2014b, 2014a; Wang et al., 

2017). Soil microbial communities are sensitive to external application of N and P, and 

decreased in response to nitrogen application (Liu et al., 2013; Pan et al., 2014). P 

fertilization significantly increased diversity and abundance of microbial community in 

tropical forest, grasslands and pastures (Liu et al., 2013; Pan et al., 2014), specifically G- 
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bacteria, arbuscular mycorrhizal fungi (AMF), ΣBPLFAs and ΣPLFAs compared to 

control, whereas mean abundance of G+ bacteria did not differ among treatments (Liu et 

al., 2013). Apparently, P fertilization in tropical forest enhanced SOM transformation and 

increased C availability which may led to increased soil microbial biomass (Liu et al., 

2013). 

 Phospholipid fatty acids (PLFAs) are major component of membranes in all living 

cells, and several studies have documented that fertilizer management practices have 

altered the abundance and composition of microbial community in paddy and maize (Guo 

and Wang, 2009; Wei et al., 2017; Zhang et al., 2015). Significant differences were 

observed in microbial communities of two maize genotypes due to secretion of root 

exudates such as sugars, amino acids, organic acids and hormones which enhanced greater 

bacterial growth in soil rhizosphere and higher availability of C (Wang et al., 2017). 

Agricultural soils are generally C limited and application of manure stimulate the growth 

of various microbial groups by increasing SOC labile fractions, N and P pool in soil, which 

probably could serve as major energy sources for microorganisms (Demoling et al., 2007). 

In the present study, High and low P manure application might have provided readily 

available substrates for the microbial community, whereas small increase of labile organic 

C under inorganic fertilization might be not enough to support the substantial growth of 

microorganisms (Li et al., 2018). Diversity in soil microbial community and abundance 

was significantly increased due to P rich environment resulted from long term P fertilization 

research trial, in comparison to control (Tan et al., 2013). Bacterial community were most 

sensitive to fertilizers and environmental conditions in soil, as they have a much short 
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turnover time than fungi (Lazcano et al., 2013). Inorganic P fertilization not only influenced 

the soil microbial abundances but also altered bacterial composition (Liu et al., 2013).  

 Wei et al. (2017) reported that G- bacteria proliferate and grows faster soon after 

the addition of organic materials and then decrease and also facilitate the growth of other 

slow growing microorganisms such as G+ bacteria or fungi. It has been observed in a 

previous study that DM application significantly increased G- bacterial biomass relative to 

G+ bacterial biomass due to higher availability of soluble carbon over a long part of the 

year than inorganic fertilization (Peacock et al., 2001). Moreover, higher proportion of G- 

bacteria usually occurs following a shift from nutrient deficient (oligotrophic) condition to 

nutrient rich (copiotrophic) conditions, and this pattern was observed in soil amended with 

P fertilizers (Tan et al., 2013). In present study, we found that G+ and G- bacteria benefited 

from manure application, and there was a significant increase irrespective of low or high P 

manure treatments compared to inorganic P and control. However, G- bacterial PLFAs was 

predominantly higher in manure with high P source compared to inorganic P treatment in 

both years (Table 2.24). Our results are in line with that of Wei et al. (2017), where changes 

in G+ and G- bacterial community were strongly related to increase in soil organic C added 

by application of manure. In general, a lower G+/G- ratio is an indicator of better soil 

nutrition (Rajendran et al., 1997). In present studies, we found that G- bacteria significantly 

increased relative to G+ irrespective of low or high P source used (Table 2.24). This  

suggests that G- bacteria was sensitive to oligotrophic conditions (Tan et al., 2013), and 

often stimulated by adding organic matter resulting in lower G+/G- bacteria ratio. In another 
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study conducted by Zhang et al., (2015) supported that same argument that G+/G- bacteria 

ratio was significantly reduced in organic matter amended treatments. 

 Fungi play an important role in C and nutrient cycling in agricultural ecosystems 

and are sensitive to fertilizers application (Li et al., 2018). In general, lower fungal 

population relative to bacteria is common in agricultural ecosystems due to intensive 

physical disturbance (tillage) and changes in amount, type and source of fertilizers inputs 

as compared to undisturbed soils (zero tillage) (Mbuthia et al., 2015). Inorganic P 

application significantly increased bacterial PLFAs and relative abundance of fungi, which 

obtain C from their host plants (Liu et al., 2013). Our results showed that high P manure 

application significantly enhanced the active fungal biomass in both years compared to 

control and inorganic P source that might be due to additional C attained by manure 

application  and served as major source of energy for active fungi whereas, small increase 

of labile organic C under inorganic fertilization and control treatments reduced growth (Liu 

et al., 2013). Another possible reason of higher active fungi biomass in the high P manure 

application in our study could be due to DM increased the soil rhizosphere pH of silage 

corn genotypes, as this is often associated with increased fungal population in soil (Rousk 

et al., 2010). Higher F/B ratio reflect the relative abundance of microbial population which 

is an important indicator of a strong soil ecosystem buffering capacity and more sustainable 

land use (De Vries et al., 2006). In current study, inconsistency in F/B ratio among P 

sources during 2016 was noted, compared to 2017, where manure application enhanced 

F/B ratio compared to inorganic P and control (Table 2.24). This anomaly in F/B ratio might 

be due to higher organic matter contents (3.01%) in soil and furthermore, manure applied 
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in soil contains higher percentage of P, N and C in high P manure treatment during 2017 

relative to 2016 organic matter contents (2.98%) (Table 2.1 & 2.5), and fungi might have 

played a larger role in organic matter decomposition and C cycling (Buyer et al., 2010; De 

Vries et al., 2006; Liu et al., 2013). Earlier studies also reported that inorganic fertilizers 

reduced F/B ratio, while manure application increased fungi growth and thus increased F/B 

ratios (Buyer et al., 2010). 

 Different plant species and genotypes release secondary metabolites (organic acids, 

sugars, amino acids, lipids, enzymes and aromatic compounds) in their rhizosphere, which 

in turn stimulate the growth of dormant microbial species (Li et al., 2014b; Szoboszlay et 

al., 2015). In the present studies, we found that silage corn genotypes significantly altered 

microbial community composition in their rhizosphere, particularly in Yukon R root 

rhizosphere (Table 2.23), Yukon R presumably released more secondary metabolites or 

root exudates which in turn altered microbial composition and abundance. High P manure 

significantly increased G- bacteria, fungi, eukaryotes, ΣBPLFAs and ΣPLFAs (Table 2.24), 

that might be associated with higher organic C and extracellular enzyme activities involved 

in C, N and P mineralization compared to inorganic P and control (Table 2.19), indicating 

that P availability could be a limiting factor for soil bacterial growth (Liu et al., 2013; Wei 

et al., 2017). 

Our PCA results supports the finding that field scale changes in microbial 

community structure were observed based on the dairy manure applied and induced 

changes in soil biochemical attributes (pH, Ap-ase and SAP). Phosphorus addition in paddy 
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soil influenced both bacterial and fungal communities as compared to control (Guo and 

Wang, 2009). Previous studies found that SOC, N, P and pH are the main drivers of soil 

microbial community composition (Liu et al., 2013; Wei et al., 2017; Zhang et al., 2015). 

However, in our study we found that soil pH, Ap-ase and SAP under different P sources 

were all important factors in shaping the active soil microbial community (Figure 2.4.1b & 

Figure 2.4.2b). This is consistent with results of (Liu et al., 2013; Wei et al., 2017), who 

reported that soil pH, SOC and nutrients availability were the key determinants that affected 

the soil microbial community. 

 Pearson’s correlation analysis showed that Ap-ase and SAP were significantly and 

positively correlated with active fungal biomass, ΣBPLFAs biomass and ΣPLFAs in 2016. 

However, Ap-ase activity was not significantly correlated with ΣBPLFAs biomass and 

ΣPLFAs during 2017 (Table 2.28). Our results corroborate the findings of previous findings 

demonstrating that SAP and Ap-ase were strongly correlated with microbial communities 

(Wei et al., 2017; Zhang et al., 2015). In the present study, we found that organic and 

inorganic P sources had significant effects on agronomic performance, biochemical 

attributes and soil microbial community composition in silage corn. High P manure 

application increased overall active microbial composition and abundance which might 

have contributed to efficient cycling of N, P along with improved overall agronomic 

performance of silage corn and soil biochemical attributes and microbial community 

composition.   
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2.6. Conclusion 

 In two years field trial, we found that organic and inorganic P sources significantly 

influenced the agronomic performance, soil biochemical attributes, and microbial 

community composition and abundance of silage corn genotypes in podzolic soils of 

western Newfoundland. Results suggest that DM with high P (contains high N and SOC) 

significantly improved the LA, chlorophyll contents, photosynthesis rate, PH and DMY. 

SAP, Ap-ase, and active microbial community composition and abundance were also 

improved with high P manure compared to control. Yukon R and DKC 26-28RIB showed 

superior agronomic performance and produced higher DMY compared to other genotypes, 

suggesting that these two genotypes has the potential to be successfully cultivated in 

podzolic soils under cool climatic conditions of western NL. High P manure source also 

showed a positive and strong relationship with agronomic performance parameters and 

DMY, biochemical attributes and active soil microbial community, indicating that high P 

manure application could be a useful practice and strategy for producing higher DMY of 

silage corn in podzolic soils. The addition of DM increased bacterial PLFAs and soil P 

cycling and ecological buffering capacity, which resulted in higher proportion of G- and 

fungal population relative to the control. PCA analysis also supported the argument that 

Yukon R and DKC26-28RIB genotypes showed superior agronomic performance and 

produced higher biomass. Taking all together, we conclude that high P dairy manure 

application could be a rational strategy to sustain crop growth, dry matter yield, and soil 

health compared to inorganic P source. Further studies are required to understand how root 



109 

 

exudates affects soil microbial community composition and diversity, P cycling and related 

key soil functions in podzolic soils, to sustain biomass yield of silage corn. 
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Chapter 3 

3. Evaluating the forage production and quality of silage corn under organic and 

inorganic phosphorus sources  

3.1. Abstract 

The dairy industry is a major contributor to the food security and economy of 

Newfoundland and Labrador (NL). However, dairy sector faces acute shortage of quality 

forage production to meet the needs of dairy farmers. To address this challenge, a field 

experiment was conducted at Pynn’s Brook research station, Pasadena, to determine the 

forage production and quality of five silage corn genotypes following dairy manure and 

inorganic phosphorus applications. Experimental treatments were: dairy manure with high 

phosphorous (DM1), dairy manure with low P (DM2), inorganic P (IP) and control (no P 

applications) and five silage corn genotypes (Fusion-RR, Yukon-R, A4177G3-RIB, 

DKC23-17RIB, DKC26-28RIB). Results revealed that organic P source (DM1) had 

significant effects on forage production and NFC compared to control but non-significant 

effects on forage fiber contents (ADF, NDF) and energy parameters (NEM, NEG, NEL). 

However, DM1 was statistically at par with DM2 and IP treatments while comparing NFC 

contents. Significant genotypic difference in forage production and quality parameters were 

observed. For instance, DKC26-28RIB, and Yukon-R produced higher forage production, 

however, A4177G3‒RIB genotype produced superior quality forage. For instance, P, K, 

Mg, CP, AP, TDN, NEM and NEG was higher in A4177G3‒RIB compared to other 

genotypes.   
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3.2. Introduction 

Sustainable food production and security is the prime objective of agricultural production 

systems (Tilman et al. 2011). The global population is predicted to grow to 9.2 billion 

through 2050, necessitating enormous increases in food production, as well as, reductions 

in waste (Fedoroff 2015). It is estimated that annual cereal and meat production will need 

to rise to about 900 and 200 million tonnes respectively to feed the world (FAO 2009). To 

achieve this, more animal feed and raw materials will be needed to increase milk and meat 

production to meet the needs of the ever increasing world population (Ittersum 2011). 

Enhancing milk production and quality in response to the increasing global demands for 

dairy products requires more sustainable, productive, economically viable, and 

environmentally beneficial forage cropping systems (Martin et al. 2017). Historically, dairy 

farmers grow forages, pasture, grasses and purchase minimal protein, high energy feed 

stock, minerals, and vitamins to meet cattle nutrient requirements (Tauer and Mishra 2006; 

USDA-NASS 1989; 2014; Write 2009).  

 Corn (Zea mays L.) is one of the most important food and forage crops contributing 

to the global food security for human and animals (Ranum et al. 2014). Silage corn is a 

high-energy crop with multifaceted benefits compared to other forage species (Khan et al. 

2012; Khan et al. 2015; Phipps et al. 2010). Dairy farmers primarily grow corn for silage 

and grain in addition to alfalfa, soybeans, oats, wheat, barley, and sorghum (Gallo et al. 

2013). Interestingly, acreage under hay crops, grasses, and green chop has declined in the 

last two decades, whereas silage corn production is increased by 33%, and alfalfa hay 
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production decreased by 75% (USDA-NASS 2014). Increased silage corn production 

mirrors the growing reliance on silage corn, as a primary forage source for livestock and 

dairy sector (Khan et al. 2015; Robinson 2008). This increasing trend has allowed dairy 

farmers to increase herd size, and stocking rates to approximately 27% more cows per unit 

land area when silage corn replaces alfalfa silage in the cropping systems (Powell et al. 

2016). Silage corn is a preferred forage compared to alfalfa and other forages due to higher 

biomass production potential, energy content, more uniform quality and one cut forage 

harvest (Ericsson and Nilsson 2006; Kirkland et al. 2005; Phipps et al. 2016; Rankin 2014). 

Additionally, it is highly palatable, digestible and easy to ensile due to high soluble sugar 

contents (Karsten et al. 2003; Kwabiah et al. 2003). Owing to high energy contents of silage 

corn, milk production was significantly increased compared to other grasses as a sole source 

of energy (Fitzgerald and Murphy 1999). Consequently, dairy farmers need sustainable 

supply of quality forage production to meet forage security that could be achieved through 

adaptations of good agricultural practices that make use of local resources to enhance 

forage production, quality and diversify the forage production systems.  

 Dairy manure (DM) is historically known as a rich source of plant nutrients, and 

good soil amendment for plant growth and higher biomass production (Hart et al. 1997; 

Jarvis 1993; Newton et al. 2003a; Pain et al. 1989; Walsh et al. 2012). For instance, a single 

dairy cow produces about 10 to 30 kg of phosphorus (P), and 90 to 150 kg of total nitrogen 

each year (ASAE 2005), in addition to other macro and micro nutrients (Eghball et al. 2002; 

Kurt and Torsten 2012; Warman and Cooper 2000). Therefore, DM application could be a 

promising and sustainable P resource to enhance forage production and on-farm nutrient 
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recycling (Agriculture 2002; Leytem et al. 2014; Seleiman et al. 2012; Seleiman et al. 

2017). Phosphorus is one of the essential mineral nutrients required for plant growth and 

development (Glass et al. 1980; Richardson et al. 2009; Schachtman et al. 1998); however, 

at the same time it is one of the most immobile and inaccessible nutrients present in soils 

(Holford 1997; Lynch 2011). Therefore, P deficiency in crop plants may lead to stunted 

growth and reduced crop yields (Assuero et al. 2004; Barry and Miller 1989; Plénet et al. 

2000a; Plénet et al. 2000b; Plénet et al. 2000c). Depending on the soil pH, plant roots take 

up P either in the form of primary orthophosphate (H2PO4
-) or secondary orthophosphate 

(HPO4
2-) anions. However, H2PO4

- is the predominant form in acidic soils (Kulhánek et al. 

2007; Raghothama 1999b). The root morphology and architecture of crop plants play an 

important role in exploring the rhizosphere area, which are associated with soil rhizosphere 

microorganisms (actinomycetes, protozoans, bacteria, and fungi), release organic 

compounds (phosphatases and organic acids)  and inorganic P in the rhizosphere (Fageria 

et al. 2014; Kulhánek et al. 2007; Lynch 2011; Raghothama 1999a; Rausch and Bucher 

2002).  

 Generally, P fertilization cause rapid immobilization in soils due to its higher 

reaction capacities with organic matter or cations (Ca, K, Al, Fe) in alkaline and acidic soils 

causing unavailability of P for the plant uptake (Hinsinger 2001; Lynch 2011; Vance et al. 

2003). Due to such higher reactivity in acidic and alkaline/calcareous soils, approximately 

70 percent of global croplands have become P deficient making inorganic P fertilization an 

inevitable input in intensive agriculture. Furthermore, depleting rock phosphate resources 

in the next 50-100 years is also a growing concern for the agriculture production systems 
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(Cordell et al. 2009; Vance et al. 2003). Hence, using DM as a plant nutrient source can be 

a suitable alternative option for sustainable food and forage production, particularly in 

territories of expanding dairy industry (Newton et al. 2003a). This will further enhance the 

efficient utilization of abundantly available DM as a P source, while simultaneously reduce 

the dependency on non-renewable inorganic phosphate rocks source (Cordell et al. 2009; 

Vance and Chiou 2011; Vance et al. 2003). It has been reported that DM application 

enhanced on-farm nutrient use efficiency in silage corn compared to other forage grasses 

(Ketterings et al. 2007; Newton et al. 2003b; Roth and Heinrichs 2001). Moreover, DM 

application can enhance mineral uptake, milk and forage production (Cherney et al., 2015). 

Higher protein, acid detergent fiber (ADF), neutral detergent fiber (NDF), and total 

digestible nutrients (TDN) were also noted in forage obtained from silage corn following 

DM application compared to inorganic nutrient sources (Moreno-Reséndez et al. 2017).  

 Earlier researchers reported variations in P use efficiency in different crop 

genotypes, most probably due to their genetic makeup (Balemi and Schenk 2009a;b; 

Corrales et al. 2007; Ozturk et al. 2005). Similarly, different silage corn hybrids expressed 

variations in forage proteins, minerals, ADF, NDF, TDN and forage energies (Amodu et 

al. 2014; Faisal et al. 2013; Kwabiah 2005; Peña-Ramos et al. 2002; Schwab et al. 2003). 

Furthermore, different P application rates also displayed significant effects on biomass 

production and nutritional aspects of different forage species including corn (Amin 2011; 

Ayub et al. 1999; Eghball and Power 1999; Hazary et al. 2015; Hirzel et al. 2007a; Lentz 

and Ippolito 2012; Malhi et al. 1992; Mazza et al. 2012; Polat et al. 2007; Roy and 

Khandaker 2010; Toth et al. 2006); however, information given above does not provide 
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substantial knowledge to elucidate the effects of organic (DM with high and low P) and 

inorganic fertilizer P source on forage quality of silage corn genotypes. It is also important 

to assess the adaptability of these corn genotypes for optimum plant growth, and forage 

quality in cool climate production systems (low crop heating unit receiving areas). 

Therefore, we hypothesized that organic (DM) and inorganic fertilizer P source will 

improve forage minerals, protein, fiber contents and forage energies of silage corn 

genotypes in low corn heat unit (CHU) receiving areas. Hence, a field research trial was 

conducted for three years to investigate the effects of organic (DM) and inorganic P 

fertilizer source on forage quality of silage corn genotypes. 

3.3. Material and methods 

3.3.1.  Experimental location and treatments 

 A field research trial was carried out at Pynn’s Brook Research Station, Pasadena 

(49° 04' 20" N, 57° 33' 35" W), Newfoundland and Labrador (NL) for three years (2015 - 

2017). The soil, reddish brown to brown, has developed on gravelly sandy fluvial deposit 

of mixed lithology, with >100 cm depth to bedrock, and soil samples for the study site 

revealed a gravelly loamy sand soil [sand = 82.0% (±3.4); silt = 11.6% (±2.4); clay = 6.4% 

(±1.2], which is classified as orthic Humo-ferric podzol (Kirby 1988). Five Roundup® 

ready silage corn genotypes were selected based on their CHU requirements to assess the 

forage production potential and forage nutritional quality in cool climate production 

systems. The genotypes were obtained from three sources; Brett Young (Fusion-RR with 

2200 CHU; Yukon-R with 2150 CHU), Pride Seeds (A4177G3-RIB with 2175 CHU), and 
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DEKALB Canada (DKC23-17RIB with 2075 CHU and DKC26-28RIB with 2150 CHU). 

The four P sources used in this experiment were: two dairy manure (DM) sources collected 

from two dairy farms with either low or high P concentrations, triple superphosphate (0-

45-0) as inorganic P (IP) and control (no P applications) (Table 3.1). To assess the P 

concentration of the DM treatments, well-agitated DM samples were collected from 

western NL dairy farms and were sent to the Soil, Plant and Feed Laboratory, Department 

of Fisheries and Land resources, St. John’s, NL. DM sample with high and low P 

concentration were designated as DM1 and DM2, respectively (Table 3.1). During each 

growing season, well-agitated DM samples were collected from the same two selected dairy 

farms and were sent to the laboratory for complete nutrient analyses prior to field 

application. DM was applied to the respective treatment plots @ 30,000 L ha-1 according 

to the local dairy farmers practice and was thoroughly incorporated in the top 15-20 cm soil 

layer before crop seeding. The remaining crop nutrient (NPK) requirements were 

supplemented through inorganic fertilizers in all treatments except P in control P treatment 

based on the soil and manure analyses reports (Table 3.1 & Table 3.2), and regional 

recommendations for silage corn production. Briefly DM (DM1 or DM2) treated plots 

received P from dairy manure plus from inorganic P fertilizer to meet the crop P 

requirements. It is pertinent to mention here that location of experimental plots was not 

changed during all three growing seasons to minimize error within treatments.  
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Table 3.1 Composition of phosphorus sources used in the current research trial under cool 

climatic conditions.  

 

Table 3.2 Soil physiochemical properties of experimental site before seeding   

Treatments Nutrients 2015 2016 2017 

Control P (DM0)  
No P 

applications 
  

Manure with high 

nutrients (DM1) @ 

30,000 L ha-1 + 

remaining P 

requirements from 

inorganic fertilizer 

pH 7.0 6.8 6.8 

Dry matter (%) 9.6 9.33 10.9 

Total nitrogen (%) 0.328 0.37 0.44 

Total phosphorus 

(%) 
0.057 0.065 0.087 

Total potassium (%) 0.328 0.379 0.37 

Total calcium (%) 0.139 0.164 0.19 

Total magnesium 

(%) 
0.065 0.069 0.077 

Manure with low 

nutrients (DM2) @ 

30,000 L ha-1+ 

remaining P 

requirements from 

inorganic fertilizer 

pH 7.3 7.0 7.1 

Dry matter (%) 3.5 3.57 1.7 

Total nitrogen (%) 0.148 0.140 0.12 

Total phosphorus 

(%) 
0.031 0.028 0.017 

Total potassium (%) 0.134 0.119 0.12 

Total calcium (%) 0.074 0.059 0.042 

Total magnesium 

(%) 
0.032 0.026 0.018 

Inorganic P (IP) @ 

110 kg ha-1 

Triple 

superphosphate 

   

Soil parameters 2015 2016  2017 

pH 6.8 6.4 6.8 

Organic matter (%) 2.78 2.98 3.01 

Phosphorus (mg L-1) 80 81 74 

Potassium (mg L-1) 45 38 49 

Calcium (mg L-1) 1643 1256 1120 

Magnesium (mg L-1) 241 265 218 
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3.3.2.  Crop husbandry  

 Silage corn genotypes were seeded with SAMCO system (SAMCO 2200 

Agricultural Manufacturing, Limerick, Ireland) capable of seeding two corn rows, and 

simultaneously cover the seeded rows with plastic sheets. Biodegradable and partially 

perforated plastic sheets provide cover at 1m width for two adjacent rows to accumulate 

CHU during germination and early crop establishment. Plastic sheet provides sufficient 

CHU and is beneficial in cool climatic production systems (Kwabiah 2005), as the 

minimum temperature was lower than corn base temperature (10 °C) during germination 

and seedling establishment phase. Seeding was done @ 90900 plants per hectare on June 

4, May 25th and May 23rd, and harvested on October 13, 18, and 13 during 2015, 2016 and 

2017 growing seasons, respectively. Glyphosate (WeatherMax) herbicide was applied 

according to the instructions on the label (Monsanto Canada Inc.). One square meter (1 m2) 

area from the centre of each plot was hand-cut at ground level at the black layer stage (R6), 

which is considered as the best crop harvesting stage for optimum forage nutritional quality 

(Bal et al. 1997; Wiersma et al. 1993). The fresh forage biomass was recorded per square 

meter, and a subsample was chopped into small pieces with knife and dried in a forced air 

oven (Shell Labs USA) at 65 ○C until constant dry weight was attained. The dry matter 

content (g kg-1) was then calculated based on the total fresh and dry weights of the sample 

as described by Kwabiah (2005). Total forage production was converted from 1 m2 to per 

hectare on a dry matter basis (equations below), and was reported as Mg ha-1.  

% dry matter =  
Weight after drying

Weight before drying
 × 100 



142 

 

Dry matter yields = Fresh biomass production ×  % dry matter 

3.3.3. Forage quality analysis 

 Three plants from each experimental plot were selected randomly for forage quality 

analysis. Whole plants were chopped, pooled and dried at 65 ○C in a forced air oven (Shell 

Labs USA) until constant weight was obtained. The plant samples were then crushed to a 

powder form using a grinder mill (Wily Mill Standard Model-3, Arthur H. Thomas Co. 

Philadelphia, USA), and sieved through a 500 µM screen. Thereafter, sieved samples were 

sent to the Actlabs, (member laboratory of Dairy One Feed and Forage Analyses, Ithaca, 

New York USA) Ancaster, Ontario (ON) for forage quality analyses. Near infrared 

reflectance analysis (NIR) technique (Foss NIR System Model 6500 Win ISI II v1.5) was 

employed to determine forage minerals (phosphorus: P, potassium: K, calcium: Ca, 

magnesium: Mg), protein (crude protein: CP, available protein: AP), simple sugars (SS), 

fibers (acid detergent fiber: ADF, neutral detergent fiber: NDF) and non-fibrous 

carbohydrates (NFC). Total digestible nutrients (TDN) were assessed using summative 

equation based on forage quality components at maintenance level 1x (Weiss et al. 1992). 

Silage corn forage energy contents including net energy for lactation (NEL), net energy for 

maintenance (NEM), and net energy for gain (NEG) were calculated using National 

Research Council standard equations (2001) and Van Soest (Van Soest 1982) variable 

discount approach. 
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3.3.4. Statistical Analysis 

 The experiment was laid out in a factorial combination of five silage corn 

genotypes, four P sources, and managed in a randomized complete block design with three 

replications. The individual experimental plot was 4.8 × 1.5 meters with two rows 

orientated in east-west directions. The experimental treatments were maintained 

continuously for three years in the same plots to minimize error within treatments. Data 

were pooled and principal component analysis (PCA) was performed to determine the 

similarities or groupings of the genotypes, and P sources based on forage production and 

forage quality parameters. PCA analysis was conducted using XLStat (XLStat Premium 

2017, Version 19.5). Based on the quadrants, one-way or two way ANOVA was performed 

to evaluate observed variables in each quadrant by employing the Statistix-10 software 

package (Analytical Software, FL, USA). Where treatment effects were significant, the 

means were compared with Fisher’s least significant difference (LSD) test at α = 0.05. 

Figures were prepared using XLStat (XLStat Premium 2017, Version 19.5) and Sigma Plot 

13.0 (Systat Software Inc., San Jose, CA) software packages. 

3.4. Results 

3.4.1.  Mineral composition, net energy for maintenance and for gain in silage corn 

genotypes (Q1)  

 Principal component analysis showed the first (F1) and the second components (F2) 

explained 36.28% and 25.34% of the total variance in the data set, respectively 
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(Figure 3.4.1a & b). Significant differences (p<0.01) in forage minerals (P, K, Mg), net 

energy for maintenance (NEM), net energy for gain (NEG) and total digestible nutrients 

(TDN) among five silage corn genotypes were observed (Figure 3.4.2).  One‒way ANOVA 

showed that A4177G3‒RIB genotype showed higher forage minerals (P and Mg), energy 

(NEM and NEG) and TDN compared to other genotypes (Figure 3.4.2a-e). PCA also 

showed association of these qualitative traits with A4177G3‒RIB and therefore, clustered 

in the same quadrant (Q1) (Figure 3.4.1b). If we compare the mineral composition among 

five genotypes, then high P (2.75 g kg-1), and Mg (1.71 g kg-1) was observed in A4177G3‒

RIB and Fusion‒RR produced low minerals. Although, DKC26‒28RIB was statistically at 

par with A4177G3‒RIB and produced similar P. Significantly higher NEM (1.40 Mcal kg-

1) and NEG (0.82 Mcal kg-1) were also produced by A4177G3‒RIB, compared to low NEM 

and NEG were observed in DKC23‒17RIB genotype. However, Fusion‒RR and Yukon‒R 

were statistically at par with A4177G3‒RIB genotype and produced similar NEM and NEG 

(Figure 3.4.2 c & d). Higher TDN (639.17 g kg-1) was also produced by A4177G3‒RIB 

genotype, although statistically non-significant from Fusion‒RR and Yukon‒R 

(Figure 3.4.2e). Overall, A4177G3‒RIB genotype was superior in producing minerals, 

energy contents and total digestible nutrient compared to other genotypes (Figure 3.4.2a‒

e).  
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Figure 3.4.1 Principal component analysis of the first two components performed on the 

forage production and forage nutritional quality of five-silage corn genotypes affected by 

four phosphorus sources. (a) Observation plot showing segregation of silage corn 

genotypes and phosphorus sources based on the centroids on the F1 and F2 axis; and (b) 

Biplot showing relationship between different observations, forage production and 

nutritional quality in five silage corn genotypes treated with four P sources.  
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Figure 3.4.2 Quadrant 1 representing the quality matrix of silage corn genotypes 

(a)phosphorus, (b) magnesium, (c) net energy for maintenance, (d) net energy for gain, (e) 

total digestible nutrients  
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Figure 3.4.3 Quadrant 2 representing the quality matrix of silage corn genotypes (a) non-

fibrous carbohydrates, and (c) net energy for lactation; as well as, the effect of silage corn 

genotypes and phosphorus sources on (b) non-fibrous carbohydrates, and (d) net energy for 

lactation. 
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Figure 3.4.4 The quadrant 3 represnts (a) forage production potentials and (b) acid 

detergent fiber. 
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Figure 3.4.5 Quadrant 4 representing the effects of phosphorus sources on (a) crude 

proteins, (b) available proteins, (c) potassium, (d) calcium, (e) neutral detergent fiber and 

(f) simple sugars. 
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Figure 3.4.6 Pearson’s correlation showing the association between forage production and 

forage proteins contents in five silage corn genotypes. 
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Table 3.3 Effect of silage corn genotypes on forage production and forage quality grown under cool climate in western 

Newfoundland, Canada. 

Forage production and forage quality Fusion RR Yukon R A4177G3RIB DKC23-17RIB DKC26-28RIB 

Forage 
Forage production (Mg ha-1) 14.29 ± 2.61b 16.43 ± 2.38a 12.76 ± 2.77c 13.21 ± 3.29bc 15.47 ± 2.66a 

Minerals 

Phosphorus (g kg-1) 2.48 ± 0.36b 2.60 ± 0.38ab 2.75 ± 0.31a 2.63 ± 0.29ab 2.75 ± 0.32a 

Calcium (g kg-1) 1.38 ± 0.49 1.18 ± 0.39 1.55 ± 1.11 1.48 ± 0.53 1.43 ± 0.48 

Potassium (g kg-1) 12.46 ± 1.77b 12.66 ± 2.46b 14.20 ± 1.69a 12.56 ± 1.82b 13.76 ± 2.59a 

Magnesium (g kg-1) 1.26 ± 0.44c 1.27 ± 0.43c 1.71 ± 0.56a 1.46 ± 0.33b 1.35 ± 0.40bc 

Proteins 
Crude protein (g kg-1) 103.11 ± 11.75b 97.74 ± 12.29c 111.51 ± 10.74a 102.86 ± 11.02bc 99.98 ± 10.12bc 

Available protein (g kg-1) 95.53 ± 11.75b 90.01 ± 11.33c 103.75 ± 11.75a 94.56 ± 11.14bc 91.86 ± 9.36bc 

Sugar Simple sugars (g kg-1) 6.60 ± 1.11a 5.43 ± 1.00b 5.64 ± 0.98b 5.31 ± 0.86b 6.32 ± 1.24a 

Fiber 
Acid detergent fiber (g kg-1) 315.78 ± 29.63a 

305.39 ± 

28.48ab 
298.44 ± 30.48b 293.03 ± 32.78bc 280.58 ± 32.12c 

Neutral detergent fiber (g kg-1) 561.33 ± 38.34a 528.33 ± 48.75b 539.00 ± 39.51b 524.28 ± 37.17b 496.03 ± 43.89c 

NFC Non fibrous carbohydrate (g kg-1) 262.03 ± 37.81c 306.47 ± 47.24b 280.50 ± 30.92c 308.83 ± 38.24b 345.22 ± 44.86a 

TDN 
Total digestible nutrients (g kg-1) 636.11 ± 29.21a 

629.72 ± 

18.28ab 
639.17 ± 26.01a 617.22 ± 18.30c 621.11 ± 19.97bc 

Energy 

Net energy for lactation (Mcal kg-1) 1.38 ± 0.12 1.42 ± 0.11 1.41 ± 0.11 1.38 ± 0.08 1.41 ± 0.08 

Net energy for maintenance (Mcal kg-

1) 
1.39 ± 0.12a 1.37 ± 0.08a 1.40 ± 0.11a 1.32 ± 0.07b 1.33 ± 0.07b 

Net energy for gain (Mcal kg-1) 0.81 ± 0.11a 0.79 ± 0.07a 0.82 ± 0.09a 0.75 ± 0.07b 0.75 ± 0.07b 

Values are means of three replications ± standard error. Mean values sharing different superscript in each row show significant 

differences among silage corn genotypes at alpha 0.05.  
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Table 3.4 Effect of phosphorus sources on forage production and forage quality in silage corn grown under cool climate in 

western Newfoundland, Canada 

Forage production and forage quality Control DM1 DM2 IP 

Forage Forage production (Mg ha-1) 12.73 ± 2.51b 16.11 ± 3.29a 14.83 ± 3.03ab 14.51 ± 3.18ab 

Minerals 

Phosphorus (g kg-1) 2.60 ± 0.36 2.58 ± 0.35 2.68 ± 0.35 2.70 ± 0.32 

Calcium (g kg-1) 1.42 ± 0.62 1.43 ± 0.98 1.35 ± 0.39 1.42 ± 0.51 

Potassium (g kg-1) 13.41 ± 2.72 13.00 ± 2.06 12.75 ± 1.97 13.36 ± 1.96 

Magnesium (g kg-1) 1.47 ± 0.43 1.37 ± 0.52 1.41 ± 0.47 1.39 ± 0.43 

Proteins 
Crude protein (g kg-1) 104.61 ± 12.97a 99.92 ± 13.03b 102.07 ± 11.74ab 105.57 ± 9.60a 

Available protein (g kg-1) 97.83 ± 13.19a 92.27 ± 12.94b 93.62 ± 11.43ab 96.84 ± 9.41a 

Sugar Simple sugars (g kg-1) 5.98 ± 1.21ab 5.78 ± 1.19ab 5.59 ± 0.91b 6.10 ± 1.26a 

Fiber 
Acid detergent fiber (g kg-1) 303.31 ± 21.86 296.91 ± 34.48 295.89 ± 38.10 298.47 ± 25.28 

Neutral detergent fiber (g kg-1) 535.51 ± 45.84 526.73 ± 49.74 528.36 ± 53.88 528.58 ± 35.34 

NFC Non fibrous carbohydrate (g kg-1) 291.67 ± 50.96b 309.62 ± 51.71a 300.29 ± 53.82ab 300.89 ± 36.95ab 

TDN Total digestible nutrients (g kg-1) 628.22 ± 25.78 629.11 ± 23.72 630.67 ± 23.49 626.67 ± 23.84 

Energy 

Net energy for lactation (Mcal kg-1) 1.39 ± 0.11 1.41 ± 0.10 1.41 ± 0.11 1.39 ± 0.08 

Net energy for maintenance (Mcal kg-1) 1.36 ± 0.10 1.37 ± 0.09 1.37 ± 0.10 1.35 ± 0.09 

Net energy for gain (Mcal kg-1) 0.78 ± 0.09 0.79 ± 0.08 0.79 ± 0.09 0.79 ± 0.08 

Values are means of three replications ± standard error. Mean values sharing different superscript in each row show significant 

differences among phosphorus sources at alpha 0.05.
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3.4.2 Dairy manure amendment altered non-fibrous carbohydrates and net energy 

for lactation in silage corn (Q2) 

 PCA showed clear segregation of two silage corn genotypes (Yukon‒R and 

DKC26‒28RIB) and two P sources (DM1 and DM2) in quadrant‒2 (Fig. 3.4.3). Biplot 

showed the relationship between non‒fibrous carbohydrates (NFC), net energy for 

lactation (NEL) with Yukon‒R, DKC26‒28RIB, DM1 and DM2 (Fig. 3.4.1b). ANOVA 

showed that both genotypes (Yukon‒R and DKC26‒28RIB) expressed significant 

differences for NFC (Fig. 3.4.3a) and non-significant effects on NEL (Fig. 3.4.3c). NFC 

contents were significantly higher (348.22 g kg-1) in DKC26‒28RIB than Yukon‒R 

(Fig. 3.4.3a). Keeping in view the grouping of manure sources and (DM1 and DM2), and 

both genotypes (DKC26‒28RIB and Yukon‒R) in the same quadrant (Q2), ANOVA was 

performed to determine the interactive effects of DM1, DM2 sources and control treatment 

with the two high biomass producing genotypes (Yukon‒R as G2 and DKC26‒28RIB as 

G5) on NFC and NEL parameters. The results showed non‒significant effects of P sources 

and genotypes on NFC (p = 0.16 and p = 0.47; Fig. 3.4.3b) and NEL (p = 0.84 and p = 

0.25; Figure 3.4.3d), although NFC contents were higher in G5 × DM2, compared to 

control and the other treatment combinations (Figure 3.4.3bd).  

3.4.3 Forage production and ADF contents in silage corn genotypes (Q3) 

 Fusion‒RR, DKC23‒17RIB genotypes, forage production (FP) and acid detergent 

fiber (ADF) has been clustered the same quadrant‒3 according to PCA (Figure 3.4.1ab). 

Keeping in view the relationship of DKC23‒17RIB and Fusion‒RR with ADF and FP in 
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the same quadrant, ANOVA was performed which showed that silage corn genotypes had 

significant (p <0.01) effects on forage production and ADF contents (Fig. 3.4.4ab). It is 

evident that forage production was significantly (p < 0.01) higher in Yukon‒R (16.43 Mg 

ha-1) and DKC26‒28RIB (15.47 Mg ha-1), whereas the lowest was observed in A4177G3‒

RIB (12.76 Mg ha-1). It also appeared that Fusion‒RR (14.29 Mg ha-1) and DKC23‒17RIB 

(13.21 Mg ha-1) produced forage in the intermediate range and therefore, were grouped in 

quadrant‒3 (Figure 3.4.1a). Fusion‒RR produced significantly (p < 0.01) higher ADF 

contents (315.78 g kg-1), compared to lowest produced by DKC26-28RIB. However, 

Fusion‒RR was statistically at par with Yukon‒R (305.39 g kg-1) and produced statistically 

similar ADF contents (Fig. 3.4.4b). 

3.4.4 Effect of P sources on protein, minerals, fiber, and sugar contents in silage 

corn (Q4) 

 Protein (crude and available), minerals (Ca and K), simple sugars (SS), neutral 

detergent fiber (NDF) and IP source and control were clustered in Q4 (Fig. 3.4.1a &b). 

One‒way ANOVA results revealed that IP and control treatments had non-significantly 

affected crude protein (p = 0.69), available protein (p = 0.68), K (p = 0.93), Ca (p = 0.97), 

NDF (p = 0.42), SS (p = 0.63) (Fig. 3.4.5a-f), and therefore, probably grouped in the same 

quadrant (Q‒4).  
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3.5. Discussion  

3.5.1.  Mineral composition, net energy for maintenance and net energy for gain in 

silage corn genotypes (Q1) 

 Minerals play an important role in the maintenance, milk production, and energy 

provision processes in animals (Holtenius et al. 2008; Kronqvist 2011; Minson 1990; 

Spears 1994; Swift et al. 2007). Mg and P minerals are found in abundant in lactating cows 

(Kronquvist 2011; Plaizier et al. 2004), and are important part of bodily proteins, lipids and 

skeleton formation (McDowell 2003; Ravaglioli et al. 1996). Animals obtain most of the 

Mg and P from forages (Spears 1994; Suttle 2010). For example, Roth and Heinrichs 

(2001) observed 0.18% Mg and 0.23% P in silage corn forage; however, in the present 

study, we observed 0.13% ‒ 0.17% Mg and 0.25% ‒ 0.28% P in silage corn genotypes 

(Fig. 3.4.2). Our results also demonstrated higher Mg and P than reported by earlier 

researchers (Amodu et al. 2014; Roth and Heinrichs 2001; Suttle 2010). Littledike and Goff 

(1987) concluded that higher K concentrations in forage could result in lower Mg, whereas 

higher intakes of Ca and P in feed could result in suppressed Mg absorption in animals. 

However, we have observed Mg and P values in high quality forage range (Jacobson et al. 

1972; Suttle 2010). Net energy for maintenance (NEM) and net energy for gain (NEG) 

represent the quality of forage species (Tine et al. 2001), and are calculated based on 

National Research Council (NRC) equations (2001) using summative approach of different 

quality parameters (Conrad et al. 1984; Schwab et al. 2003). Forage NEM keep the animals 

at a stable weight, whereas, NEG represents the energy for body weight gain required for 
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maintenance (Schwab et al. 2003). NEM (1.32 ‒ 1.40 Mcal kg-1) and NEG (0.75 ‒ 0.82 

Mcal kg-1) observed in silage corn genotypes used in the present study were slightly lower 

than what observed by Ballard et al., (2001), who reported 1.46 ‒ 1.68 Mcal kg-1 NEM and 

0.88 ‒ 1.06 Mcal kg-1 NEG of dry matter. This slight decrease in NEM and NEG might be 

due to crop harvesting stage where forage energy can be reduced due to increased forage 

fiber contents and slightly lower total digestible nutrients (TDN) (Di Marco et al. 2002; 

Peña-Ramos et al. 2002). Corn silage dry matter digestibility is an indication of energy 

contents or TDN, higher range of digestibility depends on hybrid, planting date, 

environmental growing conditions, and maturity at harvest (Guyader et al., 2018). Olagure-

Ramirez et al., (2006) observed that good quality forage must contain TDN equal or greater 

than 65%; however, we observed slightly lower TDN (62% ‒ 64%) among five genotypes 

(Table 3.3). This variation in TDN values could be due to crop harvest stage as reported by 

Kim et al., (2001), who observed higher TDN values in corn hybrids when harvested at 

106‒111 days after sowing (DAS) compared to 119‒125 DAS due to increased forage fiber 

contents, whereas, in the present study, we harvested crop 130 DAS over three growing 

seasons. Manitoba Corn Committee conducted a varietal trials in 2017 and found that 

Yukon R and Fusion RR contains 68 and 66.1%. In present study, we found slightly lower 

values in Yukon and Fusion RR. 
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3.5.2. Dairy manure amendment altered non-fibrous carbohydrates and net energy 

for lactation in silage corn (Q2) 

 Non‒fibrous carbohydrates (NFC), also referred as non-structural carbohydrates. 

NFC contents are more digestible than fiber, and a significant source of instant source of 

energy for rumen microbes (DePeters et al. 2000; Schwab et al. 2003). For example, during 

NFC fermentation process, volatile fatty acids are produced which are assimilated by the 

rumens and utilized as a source of energy for maintenance, synthesis of milk and body 

tissues (Harris 1993). NFC are calculated based on forage proteins, NDF, fats and minerals 

following equation suggested by NRC (2001). Observed NFC contents in our experiment 

were 34.5% in DKC26-28RIB and 30.6% in Yukon-R which were significantly higher 

(Fig. 3.4.3a & Table 3.3) than reported in the literature (Moreno-Reséndez et al. 2017). 

Higher NFC contents in our experiment explained the superior forage quality of silage corn 

genotypes cultivated in cool climate conditions. Moreno-Reséndez et al., (2017) reported 

higher NFC contents (31%) with inorganic fertilizer source compared to lower (21%) with 

organic source in forage maize. However, in our study DM application enhanced NFC 

content and were significantly higher with DM1 application compared to control 

(Table 3.4). Slightly higher NFC contents in DKC26-28RIB × DM2 interaction could be 

due to consistent P supply compared to control treatment, although interaction of Yukon-

R, DKC26-28RIB with DM1, DM2 and control treatments were non-significant (Fig. 

3.4.3b).  
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 NEL is an important forage quality parameter estimated using TDN, CP, NDF and 

other forage quality parameters (Weiss et al. 1992). NEL is used for maintenance as well 

as milk production during lactation period (Schwab et al. 2003) and varied between 1.3 ‒ 

1.5 Mcal kg-1 of dry matter in silage corn (de la Cruz-Lázaro et al. 2007; Núñez-Hernández 

et al. 2004; Peña-Ramos et al. 2002). In present experiment, NEL in Yukon‒R and 

DKC26‒28RIB genotypes were 1.42 Mcal kg-1 and 1.41 Mcal kg-1 (Figure 3.4.3c). 

Moreno-Reséndez et al. (2017) observed, that inorganic nutrient sources resulted in 

significantly higher NEL (1.05 Mcal kg-1 of dry matter) than organic nutrient sources (0.98 

Mcal kg-1 of dry matter). However, we observed non-significant interactive effects of two 

high forage yielding genotypes with DM and control on NEL (Fig. 3.4.3d).  

3.5.3. Forage production and ADF contents in silage corn genotypes (Q3) 

 Yukon-R and DKC26-28RIB showed superior agronomic performance and 

produced 29% and 21% higher forage yield compared to the lowest produced by 

A4177G3‒RIB (Figure 3.4.4a). Interestingly, Yukon‒R and DKC26‒28RIB required same 

CHU (2150) to reach the physiological maturity that might have stimulated better growth, 

development and final forage production compared to other genotypes with different CHU 

requirements (2075 vs. 2200). Kwabiah (2005) observed significant differences in biomass 

production (9-13 Mg ha-1) among three silage corn genotypes while conducting field 

studies in similar soil and environment conditions whereas, forage yield in present three 

years’ field experiment varied from 12.76 Mg ha-1 to16.43 Mg ha-1 which was significantly 

higher than reported above. Variation in forage production apparently under similar 
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weather and soil conditions could be due to better resilience, adaptation and genetic make-

up of silage corn genotypes used in the present experiment.  

P sources had significant effects on forage production of silage corn (Table 3.4). For 

example,  DM1 treatment produced significantly higher forage production compared to 

control, however, DM1 treatment was statistically at par with IP and therefore, gave similar 

forage yield despite lower nutrient supply in the readily available form resulting from slow 

release from DM, may be due to the soil amelioration effects of DM on physicochemical 

and biological properties of soil associated with better nutrient uptake efficiencies and 

optimum plant growth as suggested by Adeli et al., (2007), Hirzel et al., (2007b) and Nazli 

et al., (2016). Furthermore, DM/organic materials also stimulate root growth directly or 

indirectly or through their effect on soil bacteria that can suppress root pathogens and 

produce plant growth hormones (Marschner, 1995; Palm et al., 1997). 

 ADF is comprised of cellulose and lignin (Moreno-Reséndez et al. 2017) and is 

indicator of good forage quality. Increased ADF result in low forage digestibility, energy 

contents and intake potential (Castillo-Jiménez et al. 2009; Gallegos-Ponce et al. 2012; 

Oramas-Wenholz and Vivas-Quila 2007; Pinkerton and Cross, 1992). Forage is considered 

of optimum quality if ADF contents are lower than 30% (Gallegos-Ponce et al. 2012). 

Significant variations in ADF (24.70% ‒ 30.80%) were observed in two silage corn hybrids 

when harvested 119 DAS (Amodu et al. 2014), and 23.20% ‒ 26.00% were observed when 

harvested 131 DAS (Ballard et al. 2001). The observed ADF contents in the present study 

varied between 28.06% - 31.58%, and were higher in Fusion-RR and lower in DKC26-

28RIB (Fig. 3.4.4b & Table 3.3), and can be considered as superior quality forage 
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(Gallegos-Ponce et al., 2012). In a varietal research trial conducted by Manitoba Corn 

Committee during 2017 and evaluated the quality of various hybrids, and found that Yukon 

R  and Fusion RR contains 27 and 30.5% ADF contents (Manitoba Corn Committe, 2017). 

Significant differences in ADF contents were observed when amended with organic or 

inorganic nutrient sources (Moreno-Reséndez et al. 2017; Nazli et al. 2016). The N-based 

organic material application gave the highest ADF contents, whereas, P based organic 

treatments gave similar ADF contents to inorganic treatment. This could be attributed to 

differences in N contents among these treatments because they strongly influence fiber 

content as well (Keeney et al., 1968; Cherney and Cox, 1992; Johnson et al., 2001). In the 

present study, we have also observed non-significant effects of DM and IP sources on ADF 

contents (Table 3.4). Consistent with our findings, non-significant effects of P based cattle 

manure, poultry litter and inorganic fertilizer on ADF were observed (Nazli et al., 2016).  

3.5.4. Effects of P sources on protein, minerals, fiber, and sugar contents in silage 

corn (Q4) 

 Proteins are organic compounds and are important animal feed component. RNA 

(ribonucleic acid) play very vital role in protein synthesis, for example, messenger RNA 

(mRNA), ribosomal RNA (rRNA), and trafner RNA (tRNA) are involved in protein 

synthesis in the cytosol, chloroplasts and mitochondria (Raven, 2013). Phosphorus is a 

component of the complex nucleic acid structure of plants, which regulates protein 

synthesis. Phosphorus is, therefore, important in cell division and development of new 

tissues  (Raven, 2013). 
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 To qualify a good forage, crude protein (CP) must be higher than 7% to guarantee 

adequate supply of nitrogen (N) for effective rumen microbial fermentation (Costa et al. 

2006; Garibay et al. 1997; Oramas-Wenholz and Vivas-Quila 2007). Previous researchers 

found significant variations in protein contents in silage corn, for instance, 7.10% – 7.50% 

(Baron et al., 2006), 5.20% - 6.50% (Amodu et al., 2014), 6.60% - 6.80% (Ballard et al., 

2001) and 6.60% - 7.25% (Millner et al., 2005). However, observed CP contents in the 

present study were 9.77% ‒ 11.15% in silage corn genotypes (Table 3.3), and were 36% 

higher than reported in the literature (Ballard et al. 2001; Baron et al. 2006; Darby and 

Lauer 2002; Garibay et al. 1997; Moreno-Reséndez et al. 2017). A strong negative 

correlation between forage production and available protein (AP) (r = -0.87), and CP (r = 

-0.85) was noted in the present study (Figure 3.4.6ab), which suggest some possible N 

dilution effects in high yielding silage corn genotypes (Bélanger and Gastal 2000; Fletcher 

and Chakwizira 2012).  

 Few studies reported inorganic P fertilizers enhanced forage protein in silage corn 

compared to organic source or dairy digestate (Faisal et al., 2013; Seleiman et al., 2017). 

This could be explained by lower nutrient supply in the readily available form to plants 

resulting from slow release of mineral nutrients from DM. In present study, inorganic P 

fertilizer source produced higher CP contents than DM1 but statistically at par with DM2 

and control (Table 3.4). Interestingly, we have observed non-significant effects of IP and 

control treatment on CP and available protein (AP) that could be explained due to high 

initial P status in control, therefore, IP and control produced statistically similar protein 

contents.  
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 The performance of dairy animals is dependent on adequate supply of forage 

minerals which may vary due to soil fertility, fertilization strategies and crop maturity 

(Holtenius et al. 2008; Swift et al. 2007). Calcium (Ca) is an integral part of animal body 

and play essential role in bones formation, normal muscle contractions and nerves 

functioning (Goff, 2008; Kronqvist, 2011). Calcium react with P and forms Ca-

hydroxyapatite, which are an important part of skeleton in animals body (Kronqvist, 2011). 

K is principal intercellular cation of body tissues and plays key role in many biological 

processes (Bannink et al., 1999). Corn forage is generally low in Ca (1.4 g kg-1 ‒ 3.0 g kg-

1), whereas, K ranged up to 1.23% on dry weight basis (Suttle, 2010). Minimum Ca and K 

requirements for lactating cows vary from 0.29% to 0.51% and 0.60% to 0.80% 

respectively, on a dry weight basis (Suttle, 2010). In present three years study, we found 

that Ca range between 1.18 – 1.55 g kg-1 in silage corn genotypes (Fig. 3.4.5d). In a 

greenhouse study, it was reported that among P sources (mono-ammonium phosphate 

(MAP), compost and dairy manure), Ca uptake in silage corn increased with inorganic P 

source (mono-ammonium phosphate-MAP) application, while the manure and compost 

treatments showed non-significant difference. Reduction of Ca uptake in silage corn under 

manure and compost treatment could be related to cation competition with K (Leytem et 

al., 2011). In the present studies, DM and inorganic P sources had non-significant effects 

on forage Ca in silage corn (Table 3.4), even IP treatment and control produced similar Ca 

in silage corn (Figure 3.4.5d), might be due to accumulation of P over the time which raised 

initial soil P status in control. 
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 NDF comprised of hemicellulose, cellulose and lignin representing the fibrous bulk 

of the forages, and these three components provide rigidity to plants cells. NDF in forage 

crops are negatively correlated with intake and digestibility (Oramas-Wenholz and Quila, 

2007), so silage corn hybrids  less than 50% NDF are needed (Gallegos-Ponce et al., 2012). 

Fiber concentration of corn silage typically decreased with maturity stage due to dilution 

effects of increasing starch concentration (Hunt et al., 1992; Russell, 1986). NDF and 

starch contents usually showed negative relationship with each other. Late planting date 

may increase NDF digestibility, as plants are less mature at harvest. Late sowing in short 

season areas limits corn heating unit (CHU) accumulation, and hence limits dry matter 

yield, starch content and dry matter digestibility (Darby and Lauer, 2002). Few researchers 

reported that N-based organic material applications gave the highest NDF contents, 

whereas, P based poultry and cattle manure treatments gave similar NDF contents to IP. 

This could be attributed to differences in nitrogen content among these treatments because 

that strongly influences fiber content as well (Keeney et al., 1968; Cherney and Cox, 1992; 

Johnson et al., 2001). In the present study, non-significant effects of DM and IP sources, 

and IP and control on NDF contents were reported (Fig. 3.4.5e) which are inconsistent with 

the studies reported above. Same NDF contents in IP vs. control treatment could be 

explained due to higher initial soil P status in analysis report and therefore, response to 

NDF contents was non-significant. 
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3.6. Conclusion 

 Sustainable agricultural production practices such as use of organic fertilizer source 

includes DM to produce high forage biomass with optimum nutritional quality is important 

under depleting inorganic P resources worldwide. High production and high forage quality 

is of prime importance for high gain and ample milk production in the dairy industry. Silage 

corn is one of the most important forage crop grown for higher forage production 

potentials, high energy content, palatability and digestibility compared to other forage 

species. We used DM and IP fertilizer to determine the production potential and forage 

quality of five silage corn genotypes in cool climate production systems. Silage corn 

genotypes were grouped in three quadrants (Q1, Q2, and Q3) and P sources in two 

quadrants (Q2 and Q4) (Fig. 1a). Yukon-R and DKC26-28RIB showed superior agronomic 

performance and produced significantly higher forage production of 16.43 and 15.47 Mg 

ha-1 respectively. Additionally, P, K, simple sugars, and NFC were high and ADF and NDF 

contents were low in Yukon‒R and DKC26‒28RIB compared to the other genotypes, and 

are indicators of high forage quality. A4177G3‒RIB genotype produced minimum (12.76 

Mg ha-1) forage and was statistically similar with DKC23‒17RIB. However, this genotype 

produced forage with superior nutritional quality. For instance, P, K, Mg, CP, AP, TDN, 

NEM and NEG was significantly higher in A4177G3‒RIB compared to the rest of 

genotypes. Yukon‒R also produced high forage quality and was closest to that produced 

by A4177G3‒RIB genotype. Dairy manure with high P concentration (DM1) significantly 

enhanced agronomic performance and produced higher forage biomass compared to 

control. Forage quality characteristics, for example, protein and sugar contents were higher 
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in IP treatment compared to the control and DM2 treatment; but at par or very close to 

DM1 treatment which suggest that dairy manure application could be a sustainable 

agricultural practices or P nutrient source. Taking all together, it can be concluded that 

Yukon‒R and DM1 can be a good option to attain high forage production and forage 

quality to meet the forage needs of growing dairy industry in northern climates.  
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4. Chapter 4 

4.1. General Discussion and Conclusion  

Our objectives were to evaluate the effects of organic and inorganic P sources and 

genotypic response on; 

i. Agronomic performance (leaf area, leaf chlorophyll contents, net photosynthesis 

and dry matter yield) of silage corn. 

ii. Soil available P, enzyme activities, and microbial communities’ abundance. 

iii. Relationship between agronomic performance, biochemical attributes and active 

microbial communities. 

iv. To investigate the effects of phosphorus sources on production potential and quality 

of silage corn genotypes. 

 These objectives were achieved through two main experimental works as described 

in Chapter 2 and 3. Effects of phosphorus sources on agronomic performance of silage corn 

genotypes, soil biochemical attributes and soil microbial phospholipid fatty acids have 

been described in chapter 2. Whereas, effects of P sources on production potential and 

quality of silage corn genotypes were discussed in chapter 3.  
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4.2. Effects of organic and inorganic phosphorus sources on agronomic 

performance of silage corn  

4.2.1. Leaf area  

 Leaves play very important role in the photosynthesis and other physiological 

processes which may increase dry matter production (Khan and Khalil, 2010; Man et al., 

2015). Phosphorus deficiency results in stunted growth in young plants and a dark green 

coloration of leaves (Chen et al., 2014). It reduce 67 % mean leaf area, and 43 % leaf 

emergence, and significant reduction in intercepted solar radiation, photosynthesis and dry 

biomass production (Fredeen et al., 1989; Plenet et al., 2000). In 2016, leaf area of Yukon 

R corn genotype significantly increased with DM application as compared to control 

treatment and this increment was attributed to optimum supply of nitrogen (N) and P to the 

plants  (Hariadi et al., 2016). Whereas, during 2017, non-significant trends observed for G 

x P interaction, that might be due to less rainfall (Table 2.2). Our results of 2017 growing 

season are quite in line with that of Song et al., (2018) who reported that soil moisture 

deficit at vegetative stage significantly limit crop growth and leaf area of corn.  

4.2.2. Chlorophyll contents  

 Chlorophyll is a green pigment and involves in energy harvesting reaction that can 

be used to assimilate carbon dioxide and convert absorbed light into chemical energy for 

photosynthesis. Decomposition and mineralization of organic matter content present in 

DM release organic acids which play an important role in the supply of Fe2+, Mg2+ and 
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NH4+, which are necessary for enzyme activation, chloroplast and chlorophyll formation 

(Elhindi, 2012; Hasan et al., 2014). DM application significantly increased chlorophyll 

contents of maize as compared to control (Efthimiadou et al., 2009). Results of present 

study also report that DM application either with high or low P and or N concentration 

significantly increased chlorophyll contents of Yukon R and DKC26-28RIB compared to 

control during both years (2016 and 2017 growing seasons). This increase could attributed 

to optimum supply of N and Mg+2 from DM (Table 2.5) that might have played an 

important role in chlorophyll synthesis, as both compounds are central component of 

chlorophyll molecules. Manure application improved optimum supply of N and Mg+2 to 

crop plants which may have led to increase chlorophyll contents of plants because both 

compounds are central component of chlorophyll molecules. Our results are in line with 

previous findings (Elhindi, 2012) which reported that manure application significantly 

improved chlorophyll contents of crop plants presumably by increasing availability of N 

and Mg2+ in soil. 

4.2.3. Photosynthesis rate  

 Phosphorus is an important element in compounds such as ATP, NADPH, nucleic 

acids, sugar phosphates, and phospholipids which are involved in photosynthesis 

(Hammond and White, 2008). Photosynthesis is a process in which plants absorbs light 

energy and convert in to chemical energy (Hohmann-Marriott and Blankenship, 2011). P 

deficient plants showed reduction in photosynthesis that might be due to diminishing of 

ribulose 1-5, bisphosphate (RuBP) generation rather than due to limitations in the supply 
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of ATP (adenosine triphosphate) and NADPH (Nicotinamide adenine dinucleotide 

phosphate oxidase) in the Calvin cycle (Fredeen et al., 1989). RuBP is formed by taking a 

phosphate coming from the splitting of ATP, and joining it with riblulose phosphate (RuP), 

changing RuP into RuBP, which is then able to react with CO2 and form an unstable 6C 

(carbon) molecule which is the basis for the dark reaction. ATP is commonly known as 

energy currency of the cell because energy obtained through its metabolism is used for 

biomolecules synthesis, movement and cell division. ATP consists of the purine base 

adenine, pentose sugar ribose, and three phosphate groups, and anhydrous bonds of the 

three phosphate make ATP a high energy molecule. During the photosynthetic electron 

transfer reaction H+ pumped across the thylakoid membrane, and the resulting 

electrochemical proton gradient derives the synthesis of ATP in the stroma (Alberts et al., 

2002). APT hydrolysis produces more free energy compounds such as ADP (adenosine 

diphosphate) and inorganic phosphate than that of other phosphate compounds and 

common phosphate ester (Alberts et al., 2002). As the final step of electron transport chain, 

high energy electrons are loaded (together with H+) on to NADP+, converting it to NADPH, 

and all of these reactions are confined to chloroplast (Alberts et al., 2002). In carbon 

fixation process, three molecules of ATP and two molecules of NADPH are consumed for 

each molecule of carbon dioxide (CO2) converted in to carbohydrate. The net equation is: 

3C02 + 9ATP + 6NADPH + water → Glyceraldehyde 3 − phosphate + 8Pi +

9ADP + 6NADP+(Alberts et al., 2002).  Orthophosphate in the chloroplast stroma serve as 

a substrate for ATP synthesis (Carstensen et al., 2018).  

 Recent work exhibited that P deficiency reduces the orthophosphate concentration 
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(Pi) in the chloroplast stroma which might have led to inhibit the process of ATP synthesis 

(Carstensen et al., 2018; Karlsson et al., 2015), and protons start accumulating in the 

thylakoids and cause lumen acidification, which stops linear electron flow. Inadequate 

plastoquinol (PQH2) oxidation retards electron transport to the cytochrome b6f complex. 

However, the electron transfer rate of PSI is increased under steady state growth light 

conditions and is limited under high light conditions. P deficiency increased electron 

transport through PSI increases the levels of NADPH, whereas ATP production remains 

limited and reduced CO2 assimilation. Changes in supply of Pi in the stroma reduced the 

ATP levels and consequently reduced, but no changes in the photosynthetic machinery 

composition were observed (Karlsson et al., 2015). P deficiency immediately affects CO2 

fixation, but does not appear to stop it, as P deficient plants typically remains green and do 

not develop leaf chlorosis. Phosphorus starvation significantly reduced NADP+ in to 

NADPH, indicating that a large fraction of NADP+ remains in the reduced form NADPH, 

because it cannot be utilized in the Calvin cycle due to ATP limitation, and because of 

higher PS1 activity (Carstensen et al., 2018). NADPH concentration was significantly 

higher under P deficient treatment as compared to P supply treatments.  

 DM application significantly improved photosynthesis rate and plant growth 

compared to barley mulch, poultry manure and mineral fertilizers was attributed to 

optimum and slow release of nutrients (Efthimiadou et al., 2009; Salehi et al., 2017). In the 

present study, results described that manure with high and low P concentration significantly 

increased the photosynthesis rate of Yukon R and DKC26-28RIIB compared to control 

during 2016. Genotypes x Phosphorus sources interaction was non-significant in 2017 that 
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might be due to less rainfall possibly caused the reduction in macro and micro nutrients 

uptake. In 2017 vs 2016, drought stress due to insufficient water supply and rainfall led to 

closure of plants stomata to prevent the water loss by transpiration (Yan et al., 2011; Zhang 

et al., 2012) and consequently, affected photosynthesis rate due to decreased level of CO2 

assimilation and phosphorus uptake at chloroplast level (Carstensen et al., 2018; Long et 

al., 2006).  

4.2.4. Root shoot ratio 

 Plant species has shown adaptations under P deficient conditions; one by increasing 

length and density of lateral root hairs in corn and many other plant species which would 

improve P uptake through expansion of root surface area at minimal cost (Lynch and 

Brown, 2008). Another adaption to P deficiency includes increase in root/shoot ratio, root 

branching, elongation, top foraging and cluster root hairs possibly due to assimilates 

distribution (Lynch and Brown, 2008; Wissuwa et al., 2005). P starvation caused changes 

in carbohydrates distribution between roots and shoots (Wissuwa et al., 2005). A larger 

root system has been recognized as an important adaptation in plants to cope water and 

nutrient stress (Wissuwa et al., 2005). In present study, we found that root to shoot ratio of 

silage corn genotypes were significantly higher under control, and this increased might be 

due to distribution of carbohydrates and P from shoots to roots may helpful for plants to 

adapt low P stress condition which may account for increase in root to shoot ratio. Our 

findings are in agreement with the earlier studies (Basirat et al., 2011; Li et al., 2009; Louw-

gaume et al., 2010; Wissuwa et al., 2005) where authors suggested that P deficiency 
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significantly increased root to shoot ratio of crops. Corn cultivars exhibited significant 

difference in root length due to variation in cultivar variability (Szoboszlay et al., 2015). 

4.2.5. Plant height  

 Short plant height in control (without fertilizers/manure application) might be due 

to leaching/depletion of nutrients over the time, hence plants height was reduced due to 

insufficient nutrients supply.  DM application significantly increased plant height of corn 

through optimum supply of P and other nutrients which might increase nodes and internode 

length formation (Amujoyegbe et al., 2007; Efthimiadou et al., 2009). Increase in Yukon 

R plant height with application of manure compared to control was attributed to optimum 

supply of nutrients through manure. Our results supported by (Efthimiadou et al., 2009), 

who found that manure application produced positive influence on plant height of corn 

compared to other inorganic fertilizers. Highest plant height noted in Yukon R might be 

due to cultivar variability among the genotypes (Maryam et al., 2012), and slow release of 

nutrients with DM application throughout the growing season. Reduction in plant height 

during 2017 growing season might be due to less rain caused water stress which might lead 

to stunted growth by ceasing cell division and elongation processes (Maryam et al., 2012). 

4.2.6. Dry matter yield  

 Dry matter accumulation by crops depends upon interception of photosynthetically 

active radiation and efficiency of leaves to convert intercepted light in to dry matter yield 

(Portes and Melo, 2014). Results of present study explained that DM with high P 
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application significantly increased leaf area, chlorophyll contents, photosynthesis rate and 

plant height which consequently led to increased dry matter yield compared to control. 

Higher dry matter yield and yield components in DM amended treatment could be 

attributed to optimum supply of N, P and other macro and micro-nutrients which improved 

the crop growth and dry matter yield throughout growing season. Our results are in line 

with the findings of (Amujoyegbe et al., 2007; Efthimiadou et al., 2009), who reported that  

manure application significantly improved leaf area, chlorophyll contents photosynthesis 

and dry matter yield of silage corn as compared to inorganic fertilizer. Salehi et al. (2017) 

found that dry matter yield was significantly increased with manure application due to 

gradual release of nutrients that improved photosynthesis rate and plant growth.  Less 

rainfall during 2017 (Table 2.2), caused significant reduction in leaf area, chlorophyll 

contents, plant height, photosynthesis and dry matter yield of silage corn (Abrokwah et al., 

2017; Bouazzama et al., 2012; Maryam et al., 2012; Yan et al., 2011). 

4.3. Effects of P sources on soil biochemical attributes 

4.3.1.1. Soil rhizosphere pH 

 Rhizosphere soil pH is an important factor that affects the soil biochemical 

properties (Gregory and Hinsinger, 1999), and determine the availability of macro and 

micro nutrients (Hinsinger, 2001). Manure and organic fertilizers application enhance soil 

pH and soil organic carbon (SOC) than synthetic fertilizers (Dong et al., 2012; Lapa et al., 

2011). In present study, we found that soil rhizosphere pH was slightly higher in DM 

amended treatments and inorganic P treatments than control (Table 2.18). Earlier studies 
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also reported that manure application stabilize or increased soil pH (Dong et al., 2012; 

Whalen et al., 2000). Difference in soil rhizosphere pH of genotypes reported in present 

study might be due protons secreted by roots in response to uptake of cations and anions 

by plant species  (Hinsinger, 2001; Li et al., 2008). 

4.3.1.2. Acid phosphatase activity  

Soil enzymes activities are important indicator of soil health, and play important 

role in organic matter decomposition and nutrients turnover (Paz-Ferreiro et al., 2007). 

Enzymes activities may fluctuate rapidly due to fertilizer sources, complex rhizosphere 

processes, biological properties, soil physio-chemical properties and environmental 

conditions (Paz-Ferreiro et al., 2011). Organic P present in manure is mineralized by acid 

and alkaline phosphatase enzyme into plant available P forms (Waldrip et al., 2012). 

Inorganic P fertilizers application significantly decreased the phosphatase activity, because 

plants and microorganisms easily obtain P from readily available sources (Spohn and 

Kuzyakov, 2013). Our results have demonstrated that DM application significantly 

increased acid phosphatase activity compared to inorganic P fertilizer.  Higher amount of 

C, N and P along with trace elements in DM increased microbial activity which 

consequently increased enzymes activities (Li et al., 2016; Zhang et al., 2015). Silage corn 

genotypes exhibited difference in acid phosphatase activity in their rhizosphere, which 

might be due to cultivar variability of roots to secrete acid phosphatase. Our findings are 

in line with earlier researchers results (Colvan et al., 2001; Leytem et al., 2011; Waldrip et 
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al., 2012) who reported that manure application significantly increase acid phosphatase 

activity, whereas inorganic P application reduced acid phosphatase activity.  

4.4. Soil microbial phospholipids fatty acids (PLFAs) profile 

 PLFAs are widely used as soil microbial biomarkers and indicate viable 

components of soil microbial biomass, and provide more detailed information about 

‘active’ soil microbial community compared to culture method (Liang et al., 2008; Yao et 

al., 2000). In agroecosystems, organic and inorganic fertilizers are applied to enhance 

nutrients availability to crops but they also affect the soil microbial communities (Guo and 

Wang, 2009; Wei et al., 2017; Zhang et al., 2015). External P fertilization significantly 

increased soil microbial diversity and abundance in forest, grassland and pastures  (Liu et 

al., 2013; Pan et al., 2014), specifically Gram negative (G-) bacteria, arbuscular 

mycorrhizal fungi (AMF), total bacterial and  total amount of soil PLFAs compared to 

control, whereas mean abundance of gram positive (G+) bacteria did not differ among 

treatments (Liu et al., 2013). Significant changes were observed in microbial communities 

of two maize genotypes rhizosphere most likely due to secretion of root exudates such as 

sugars, amino acids, organic acids and hormones that might have enhanced bacterial 

growth in soil rhizosphere and higher availability of C in manure amended treatment 

(Wang et al., 2017). Agricultural soils are generally carbon limited and DM amendment  

stimulate soil microbial communities by increasing SOC  labile fractions, N and P pool in 

soil, which probably could serve as major energy sources for microorganisms (Demoling 

et al., 2007). In current study, we found that DM application significantly increased active 
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G- bacteria, bacterial PLFAs, microbial biomass (total amount of PLFAs), and fungal 

PLFAs compared to control. Wei et al. (2017) reported that manure application 

significantly increased active G-, G+ bacteria, active fungal PLFAs, and microbial biomass 

(total amount of PLFAs). Our findings of G+/G- ratio are in line with Wei et al. (2017), 

who reported that changes in G+ and G- bacterial community were strongly related to 

increase in soil organic C added by application of manure. In general a lower G+/G- ratio 

is an indicator of better soil nutrition (Rajendran et al., 1997). 

 Fungi involves in C and nutrients turnover in agroecosystem and are sensitive to 

external fertilizers application (Li et al., 2018). In present study, we found that DM with 

high P concentration significantly increased active fungal PLFAs compared to control, 

which could be  attributed to additional SOC attained by DM  application  and served as 

major source of energy for active fungi whereas, small increase in  labile organic C under 

inorganic fertilization and control treatments reduced growth (Liu et al., 2013). Higher F/B 

ratio can reflect the relative abundance of microbial population which is an important 

indicator of a strong soil ecosystem buffering capacity and more sustainable land use (De 

Vries et al., 2006). Our results showed that F/B ratio significantly increased by manure 

application in 2017 compared to 2016. This difference in F/B ratio might be due to higher 

organic matter contents (3.01%) in soil and furthermore manure applied in soil contains 

higher percentage of P, N and C in P1 manure treatment during 2017 relative to 2016 

organic matter contents (2.98%) (Table 2.1 and 2.5), and fungi may play a larger role in 

organic matter decomposition and C cycling (Buyer et al., 2010; De Vries et al., 2006; Liu 

et al., 2013). 
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 Various plant species and genotypes roots generally release organic acids, sugars, 

amino acids, lipids, enzymes and aromatic compounds which in turn stimulate the growth 

of dormant microbial species (Li et al., 2014; Szoboszlay et al., 2015). In present study, 

Yukon R exhibited higher bacterial PLFAs, microbial biomass (total amount of PLFAs) 

and active fungal PLFAs, which might suggest that Yukon R presumably released more 

diverse and abundant secondary metabolites which in turn enhanced microbial population. 

4.5. Effects of P sources on quality indices of silage corn   

Corn growing for silage is considered to be the most suitable crop as compared to 

other cereals due to fast growth, higher yield potential, higher palatability, energy contents, 

protein contents, sugar and water soluble carbohydrate which are most important in the 

preservation of silage material (Amin, 2011; Keady et al., 2008). Good quality silage corn  

contains 28-32% dry matter yield, 28-32% starch and 7-9% crude protein, and addition of  

silage corn based diets of dairy cows increases feed intake, milk yield and milk protein 

content (Keady et al., 2008; Kwabiah et al., 2003; Ullah et al., 2015). As a result silage 

corn becomes the major feed component in the ration of dairy cows under most dietary 

regimes (Keady et al., 2008). Dairy industry is heavily relying on silage corn for dairy 

animals, therefore, it is important to assess the nutritional quality of silage corn in cool 

climate amended with organic and inorganic P sources.  
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4.5.1. Mineral composition  

Minerals play an important role in milk production, reproduction and energy 

provision in animals (Holtenius et al., 2008; Kronqvist, 2011), essential role in skeleton 

formation, protein and lipids synthesis (Kronqvist, 2011; Plaizier et al., 2004), and fulfill 

through forage feed (Suttle, 2010). For example, Mg and P concentration in forages vary 

between 1.8 – 3.6 g kg-1 and 1.8 – 3.3 g kg-1 of dry matter respectively, and significantly 

affected by forage type, growth conditions, harvesting stage, P source and rate of P 

application (Kronqvist, 2011; Leytem et al., 2011; Suttle, 2010). Silage corn contains 

0.18% Mg and 0.23% P (Roth and Heinrichs, 2001). Leytem et al. (2011) conducted a 

greenhouse study to determine the effects of phosphorus sources (mono-ammonium 

phosphate (MAP), compost and dairy manure) and rates on nutrients uptake in silage corn. 

P, Ca uptake in silage corn increased with inorganic P source (mono-ammonium 

phosphate-MAP) application, while the manure and compost treatments showed non-

significant difference. Manure and compost contains iron which might have reacted with 

P and forms Fe phosphates thereby reducing P solubility. Reduction of Ca uptake in silage 

corn under manure and compost treatment could be related to cation competition with K 

(Leytem et al., 2011). Magnesium uptake increased under MAP treatment and reduced for 

manure (Leytem et al., 2011). High K uptake might have inhibited Mg uptake due to cation 

competition and balance between K, Ca and Mg uptake could be a concern from an animal 

health prospective as forages with K:(Ca+Mg) ratios greater than 2.2:1 cause grass tetany 

in ruminant (Grunes et al., 1970). In current study, we found that Mg ranges between 0.13 
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- 0.17% and P (0.25 – 0.28%) in silage corn genotypes (Table 3.3), and was slightly higher 

than earlier studies (Amodu et al., 2014; Roth and Heinrichs, 2001; Suttle, 2010). 

 Calcium (Ca) is an integral part of animal body and play essential role in bones 

formation, normal muscle contractions and nerves functioning (Goff, 2008; Kronqvist, 

2011). Calcium react with P and forms Ca-hydroxyapatite, which are an important part of 

skeleton in animals (Kronqvist, 2011). K is a principal intercellular cation of body tissues 

and plays key role in many biological processes (Bannink et al., 1999). Corn forage is 

generally low in Ca (1.4 g kg-1 ‒ 3.0 g kg-1), whereas, K ranged up to 1.23% on dry weight 

basis (Suttle, 2010). Minimum Ca requirements for lactating cows ranged from 0.29% to 

0.51% whereas K ranged from 0.60% to 0.80% on a dry weight basis (Suttle, 2010). In 

present three years study, we found that Ca range between 1.18 – 1.55 g kg-1 in silage corn 

genotypes, whereas organic and inorganic P sources exhibited non-significant difference 

in Ca uptake in silage corn.  

4.5.2. Crude and available protein 

 Proteins are organic compounds, composed of amino acids and are important 

animal feed component. RNA (ribonucleic acid) is a polymer molecule, consisted of ribose 

sugar, nucleotide bases and phosphate group. RNA play very vital role in protein synthesis, 

for example, messenger RNA (mRNA), ribosomal RNA (rRNA), and trafner RNA (tRNA) 

involve in protein synthesis in the cytosol, chloroplasts and mitochondria, with 70S 

ribosomes in the organelles and 80S ribosomes in the cytosol (Raven, 2013).  Phosphorus 

is a component of the complex nucleic acid structure of plants, which regulates protein 
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synthesis. Phosphorus is, therefore, important in cell division and development of new 

tissue. Organic fertilizers are good source of N, P and micro-nutrients but generally they 

are slowly available to plants, whereas macro and micro-nutrients are readily available to 

the plants by inorganic fertilizer application which may affect the composition of forage 

quality. Conversely, Moreno-Resendez et al. (2017) reported increased protein in forage 

treated with organic source compared to inorganic fertilizer application. In present study, 

we found that organic and inorganic P fertilizer application produced similar protein 

contents in silage corn, which suggest that DM application could be a sustainable approach 

for obtaining optimum CP contents in silage corn and may reduce dependence on inorganic 

P fertilizers. 

 Protein contents in silage corn vary between 7.10% – 7.50% (Baron et al., (2006), 

5.20 - 6.50% (Amodu et al., 2014), and 6.60 - 7.25% (Millner et al., 2005). However, in 

good quality forage, crude protein (CP) should be more than 7% (Garibay et al., 1997; 

Oramas-Wenholz and Quila, 2007). CP contents in the present study were > 7% (Table 

3.3), and 36% higher than reported in the literature (Ballard et al., 2001; Baron et al., 2006; 

Garibay et al., 1997; Moreno-Resendez et al., 2017) and therefore, can be considered as 

high quality forage (Garibay et al., 1997; Oramas-Wenholz and Quila, 2007). Furthermore, 

a strong negative correlation between forage production and available protein (AP) (r = -

0.87), and CP (r = -0.85) was noted, which suggest that there may be N dilution effects due 

to enhanced forage biomass (Belanger and Gastal, 2000; Fletcher and Chakwizira, 2012) 

in high yielding silage corn genotypes (Figure 3.4.6a &3.4.6b) 
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4.5.3. Acid detergent fiber (ADF) 

 Acid detergent fibers (ADF) represent the energetic values of silage corn and 

comprised of cellulose, lignin and protein, and it is most related to forage digestibility,  

higher ADF contents, the less digestibility of the forage (Castillo-Jimenez et al., 2009; 

Moreno-Resendez et al., 2017). Good quality forage crops contains ADF less than 28%, 

and forage consider to be optimum if ADF contents are less than 30% (Castillo-Jimenez et 

al., 2009; Gallegos-Ponce et al., 2012; Moreno-Resendez et al., 2017). Manitoba corn 

committee conducted corn performance trials and evaluate the quality of various hybrids, 

and found that Yukon R contains 28.7% ADF and Fusion RR 30.5% (Manitoba Corn 

Committe, 2017). In present study, we found slightly higher ADF in Yukon R 30.5% and 

31.5% in Fusion RR. Organic and inorganic fertilization produced 35.9% and 27.2% ADF 

respectively, in silage corn (Moreno-Resendez et al., 2017). However, DM application 

produced 28% ADF contents in corn hybrids (Salazar-Sosa et al., 2007). The observed 

ADF contents in our study varied between 28.06% and 31.58%, (Figure 3.4.4 & Table 3.3), 

and were in the range as reported by Gallegos-Ponce et al. (2012). P based organic fertilizer 

applications (e.g., poultry litter and cattle manure) and inorganic P fertilizer produced 

similar ADF (Nazli et al., 2014). We have also observed similar trend in present study 

where DM and inorganic P fertilizer had non-significant effects on ADF production in 

silage corn.  
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4.5.4. Neutral detergent fiber (NDF) 

 NDF comprised of hemicellulose, cellulose and lignin representing the fibrous bulk 

of the forage, and these three components are classified as cell wall or structural 

carbohydrates and provide the rigidity to plants. NDF in forage crops are negatively 

correlated with intake and digestibility (Oramas-Wenholz and Quila, 2007), so high energy 

silage corn hybrids less than 50% NDF are needed (Gallegos-Ponce et al., 2012). Organic 

fertilization produced 53.5%, whereas inorganic fertilizer produced 42.6% NDF in silage 

corn forage (Moreno-Resendez et al., 2017). However, combination of inorganic P with 

poultry litter and cattle manure produce similar forage quality (ADF, NDF and CP) 

compared to inorganic P fertilization. It appears that NDF contents were significantly 

reduced with increasing rate of nitrogen fertilizers or nitrogen content in the plant tissue of 

silage corn (Nazli et al., 2014), which was also reported by Moreno-Resendez et al., (2017). 

Significant differences in NDF have been observed among the five-tested silage corn 

genotypes in the present study, for instance, DKC26-28RIB genotype produced 49.60% 

NDF, which were < 50% and can be considered to be of high quality (Baron et al., 2006; 

Gallegos-Ponce et al., 2012; Moreno-Resendez et al., 2017). Our results are consistent with 

the findings reported in the literature (Amodu et al., 2014; Ballard et al., 2001; Baron et 

al., 2006).   

4.5.5. Total digestible nutrients (TDN) 

TDN is a measure of feed or forage energy contents, as well as, the forage 

digestibility in the animals (Posada et al., 2012). Good quality silage contains TDN > 65% 
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(Castillo-Jimenez et al., 2009; Moreno-Resendez et al., 2017; Ramirez et al., 2006). Crop 

maturity stage significantly influenced the TDN and higher TDN were observed in corn 

hybrids when harvested at 106‒111 days after sowing (DAS) compared to 119‒125 DAS 

(Kim et al., 2001). Manitoba corn committee conducted corn performance trials and 

evaluated the quality of various hybrids, and found that Yukon R contains 68% TDN and 

Fusion RR 66.1% (Manitoba Corn Committe, 2017). In present study, we found that Yukon 

R contains 63% TDN and Fusion RR showed 63.6% TDN. Organic and inorganic 

fertilizers produced 46% and 47 % TDN respectively in silage corn (Moreno-Resendez et 

al., 2017). In present study, we found that TDN were slightly higher in manure compared 

to inorganic P treatment but statistically at par with other P sources, might be due to the 

initial soil nutrient status, which helped plants to uptake nutrients for growth and TDN 

(Table 3.4). 

4.5.6. Net energy for maintenance (NEM) and Net energy for gain (NEG) 

Net energy for maintenance (NEM) and net energy for gain (NEG) indicates the 

quality of forage species (Tine et al., 2001). NEM keep the animals at a stable weight, 

whereas NEG represents the energy for body weight gain required for maintenance 

(Schwab et al., 2003). Ballard et al., (2001) reported 1.46 ‒ 1.68 Mcal kg-1 NEM and 0.88 

‒ 1.06 Mcal kg-1 NEG of dry matter in silage corn hybrids. Manitoba corn committee 

reported 0.99 NEG Mcal kg-1 in Yukon R and 0.94 NEG Mcal kg-1 in Fusion RR (Manitoba 

Corn Committe, 2017). However, in this study, Yukon R contains 0.79 NEG Mcal kg-1 and 

Fusion RR showed 0.81 NEG Mcal kg-1.In present study, we found NEM and NEG of 
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silage corn genotypes between 1.32 ‒ 1.40 Mcal kg-1 and 0.75 ‒ 0.82 Mcal kg-1 

respectively. This slight decrease in NEM and NEG might be due to harvesting stage, 

forage fiber contents and lower TDN (Ballard et al., 2001; Di Marco et al., 2002). However, 

organic and inorganic P sources had non-significant effects on NEM and NEG in silage 

corn in present study.  

4.5.7. Net energy for lactation (NEL) 

 Energy requirements for maintenance and milk production are expressed as NEL 

(Moreno-Resendez et al., 2017). NEL is an important energy forage quality parameter 

estimated using TDN, CP, NDF and other forage quality parameters (Weiss et al., 1992). 

NEL of silage corn range between 1.3 ‒ 1.5 Mcal kg-1 of dry matter as reported in earlier 

studies (de la Cruz-Lazaro et al., 2007; Nunez-Hernandez et al., 2010; Pena-Ramos et al., 

2006). Manitoba corn committee reported that Yukon R contains 1.55 NEL Mcal kg-1, and 

Fusion RR showed 1.50 NEL Mcal kg-1 (Manitoba Corn Committe, 2017). Whereas, in 

present study, we found that Yukon R showed highest NEL 1.42 Mcal kg-1 followed by 

DKC26-28RIB that produced 1.41 Mcal Kg-1 and Fusion RR 1.38 NEL Mcal kg-1 (Figure 

3.4.3c). Inorganic nutrient source produced significantly higher NEL 1.05 Mcal kg-1 

compared to organic nutrient source that produced 0.98 Mcal kg-1 of NEL (Moreno-

Resendez et al., 2017). In present study, NEL were slightly higher under DM with low and 

high P concentration but statistically at par with inorganic P and control, which might be 

due to soil ameliorating effects on physiochemical properties of soil (Adeli et al., 2007; 

Eghball et al., 2004, 2002).  
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4.5.8. Non-Fibrous Carbohydrates (NFC) 

 Carbohydrates are classified as fibrous (structural) and non-fibrous (non-

structural), as well as the digestibility of fiber affects forage energy (Martinez-Marin, 2008; 

Moreno-Resendez et al., 2017) The observed NFC in silage corn tested in our experiment 

were 30.6% – 34.5%, which were quite higher compared to 21% – 31% reported by 

Moreno-Resendez et al. (2017). Higher NFC contents in silage corn genotypes showed 

good quality forage. Generally, DM application enhanced NFC contents and in present 

study, we found higher NFC contents in DM with high P concentration compared to the 

control (Table 3.4), suggest that DM application could be a sustainable approach to produce 

forage biomass with higher NFC contents, not only to improve nutrient recycling through 

DM, but also to minimize the dependency on inorganic fertilizer P due to depleting nature 

of P reserves (Cordell et al., 2009). 

4.6. Conclusion  

 Results in this study showed that P1 (dairy manure with high P) significantly 

improved agronomic performance of silage corn genotypes, soil available P, acid 

phosphatase activity, soil pH, and microbial communities compared to inorganic P and 

control. Soil microbial activities were closely linked with organic carbon added through 

manure application in podzolic soils. Dairy manure (DM) application increased bacterial 

PLFAs, soil microbial biomass (total amount of PLFAs) and ecological buffering capacity, 

resulted in higher active G- bacterial and fungal population relative to control. Pearson 

correlation also demonstrated a positive and strong relationship between the agronomic 
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performance parameters of the silage corn genotypes, soil biochemical attributes and active 

microbial community structure, following DM application with high P. Among the silage 

corn genotypes evaluated, Yukon R and DKC 26-28RIB showed superior agronomic 

performance and produced higher DMY compared to other genotypes, whereas, 

A4177G3RIB produced higher minerals, CP, TDN, NEM, and NEG compared to other 

genotypes. However, it was statistically at par with DKC26-28RIB in producing minerals 

and ranked 2nd in protein synthesis. Yukon R was also statistically at par with A4177G3RIB 

genotype in few other quality indices and produced similar TDN, NEM and NEG. Overall, 

Yukon‒R produced high DMY and was either at par or ranked 2nd in most of the quality 

forage parameters. Among P sources, inorganic P fertilizer source enhanced CP, simple 

sugars and NFC contents but statistically at par either with manure with high or low P. 

Phosphorus sources had non-significant effects on energy parameters, however NEL, NEM 

and NEG values were slightly higher with DM application compared to inorganic P and 

control. Taking all together into consideration, it can be concluded that Yukon‒R has the 

potential to be successfully cultivated for attaining higher DMY and high quality forage 

with DM amendment as P source in podzolic soils under cool climatic conditions of 

western NL. Considering, additional benefits of DM amendment in enhancing SOC, 

biochemical attributes and microbial communities suggest DM application can be 

considered as sustainable agricultural practice and may reduce dependence on inorganic P 

fertilizers on agricultural lands in future. 
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