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ABSTRACT 

 

 

Does calcitriol play any role in regulating mineral metabolism or skeletal development in 

utero? Studies of Boston and Leuven vitamin D receptor (VDR) ablation models reported 

that Vdr null fetuses have normal serum minerals, parathyroid hormone (PTH), skeletal 

morphology and mineralization. However, Vdr null fetuses also have increased serum 

calcitriol, placental calcium transport, and placental expression of Pthrp and Trpv6. In the 

present study, we examined Cyp27b1 null fetal mice, which do not make calcitriol, to 

determine if loss of calcitriol has the same consequences as loss of VDR. Cyp27b1 null 

and WT females were mated to Cyp27b1+/- males, which generated Cyp27b1 null and 

Cyp27b1+/- fetuses from Cyp27b1 null mothers, and Cyp27b1+/- and WT fetuses from WT 

mothers. We confirmed that calcitriol was undetectable in Cyp27b1 null fetuses; 

therefore, they truly lacked calcitriol and were a useful model to address the research 

question. Cyp27b1 null fetuses had normal serum calcium, serum phosphorus, PTH, 

skeletal ash weight, ash mineral content, tibial length and morphology. Placental calcium 

transport was normal in Cyp27b1 null fetuses, while qPCR of placental mRNA confirmed 

loss of Cyp27b1 expression but no change in expression of key genes involved in 

placental mineral transport, including transient receptor potential cation channel 

subfamily V member 6 (Trpv6) and parathyroid hormone related protein (Pthrp). In 

summary, loss of calcitriol in Cyp27b1 null fetuses borne of Cyp27b1 null mothers did 

not significantly alter any measured parameter of mineral or bone homeostasis. 
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I. INTRODUCTION 

 

1.0 Preamble  

 

The following thesis involves the study of fetal mice which are unable to synthesize 

calcitriol. In order to understand and place this thesis in context, I will begin with a 

background review of bone and mineral metabolism. This will be followed by a 

discussion of how fetal bone and mineral metabolism differs from that of the adult, as 

well as what is currently known about the role of calcitriol from studies of human and 

animal models.  

 

Throughout this thesis the term phosphorus is used for consistency and simplicity, and 

because that is what is measured. It is acknowledged that in serum phosphorus 

predominantly exists as inorganic phosphates (dihydrogen and monohydrogen 

phosphate), while in bone it is largely in the form of hydroxyapatite, and in soft tissues 

and extracellular fluid (ECF) there are an abundance of organic phosphates complexed 

with carbohydrates, lipids, and proteins. 

 

There are many references to genes and proteins throughout this thesis. Please note that 

the following nomenclature is used throughout this thesis: human genes are written in 

uppercase font, genes in reference to animal models are written in italics and proteins are 

written in font matching the standard text. In cases where both human and animal models 

are being referenced, genes are referenced using the human nomenclature.  
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1.1 Adult calcium and bone homeostasis   

1.1.1 Structure and function of bone  

Although often misconceived as an inert structure, the skeleton is actually one of the 

body’s most metabolically active organs. As the largest organ of the human body, the 

skeleton makes up 15 % of the body’s weight, and comprises the highly specialized 

internal framework of the body. Beyond providing the internal structure of the body, the 

skeleton plays a critical role in the protection of internal organs, providing an attachment 

for muscle, and hosting hematopoiesis of bone marrow.1 Furthermore, bone is key player 

in mineral homeostasis, as it functions as a supply of mineral that can be rapidly 

mobilized. 

 

The bone is made up of two osseous tissues: cortical (compact) bone and trabecular 

(cancellous) bone. The cortical bone comprises the hard, outer layer of bone1 which forms 

a protective layer around the internal bone cavity. Cortical bone makes up nearly 80% of 

skeletal mass and is critical in providing structural support and weight bearing ability 

because of its high resistance to bending and torsion.1 By contrast, trabecular bone 

contributes approximately 20% of the skeleton and is largely found at the ends of long 

bones, as well as in the pelvis, skull, ribs and vertebrae.1 Trabecular bone is comprised of 

a meshwork of rigid trabeculae, thereby reducing skeletal weight without compromising 

bone strength. As the bone remodeling process begins at the bone surface, trabecular 

bone is more metabolically active than cortical bone, but also more vulnerable to 

damage when net bone loss occurs.1 
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Figure 1: Cortical and Trabecular Bone.  Cortical bone comprises the hard, outer layer 

of bone which forms a protective layer around the internal bone cavity. Trabecular bone 

comprised of a meshwork of rigid trabeculae, thereby reducing skeletal weight without 

compromising bone strength. Used with permission from Dove Medical Press © 2015 

(Appendix A). 
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Unlike most other connective tissue matrices, bone is highly mineralized and has the 

unique ability to constantly regenerate itself through the process of bone turnover.2 There 

are three cell types in bone: the bone-forming osteoblasts, which when embedded in the 

mineral matrix become osteocytes, and the osteoclasts which are the bone resorbing 

cells.2  

 

1.1.1.1 Osteoblasts 

 

Osteoblasts are mononucleated cells that originate from mesenchymal stem cells (MSCs), 

and compromise 4-5 % of total cells in bone.3 Osteoblasts are critical in the creation and 

maintenance of the skeletal architecture, responsible for deposition of bone matrix and for 

osteoclast regulation. Osteoblasts initiate the process of bone formation by secreting 

osteoid, the unmineralized part of bone matrix that forms prior to maturation of bone 

tissue.1 Osteoblasts then deposit mineral, in the form of calcium, into the osteoid to 

mineralize the bone. As bone mineralizes, some osteoblasts become trapped within the 

matrix, becoming osteocytes.  

 

1.1.1.2 Osteocytes 

 

Some osteoblasts mature into osteocytes, which have deposited a mineralized matrix 

surrounding themselves, as opposed to remaining on the bone surface as functional 

osteoblasts.1  Osteoblasts mature into osteocytes through a process called 

osteocytogenesis, which involves a number of key osteogenic markers including osterix, 

bone sialoprotein, alkaline phosphatase, and steocalcin.4 In the adult skeleton, osteocytes 
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comprise 90-95% of all of the bone cells.4 These cells are evenly dispersed throughout the 

mineralized matrix and produce a dense network by connecting each other via gap 

junctions on their dendritic processes.4 Although historically osteocytes were believed to 

be passive cells, they are more recently understood to play a critical role in the normal 

function of the skeleton,3,5 particularly in targeted bone remodelling. Osteocytes are able 

to inhibit bone formation by way of sclerostin production. Conversely, when sclerostin 

production is inhibited, there is stimulation of bone formation.  Furthermore, osteocytes 

express osteoclast specific genes and proteins which allow them to demineralize their 

surroundings, through an active process called osteocytic osteolysis.  Later osteocytes act 

like osteoblasts again to restore mineral to their surroundings. 6-8  

1.1.1.3 Osteoclasts 

 

Normal physical activity can cause wear and microcracks within the bone known as 

microdamage. Bone remodelling, the process by which mature bone tissue is removed 

from the skeleton and new bone tissue is formed, is very important in the maintenance of 

the skeleton’s strength and ability to repair microdamage. This process is also important 

for the maintenance of blood mineral and alkali concentrations. In fact, when dietary 

absorption mineral is insufficient, the bone remodelling process accelerates in order to try 

to maintain sufficient mineral in the circulation.  Osteoclasts are largely responsible for 

the bone resorption process. Osteoclasts are large, multinucleated cells which belong to 

the monocyte-macrophage family. These cells make up only 1-2 % of bone cells and 

primarily function to resorb the bone matrix.9 Osteoclasts produce a number of enzymes, 

chiefly alkaline phosphatase, as well as acid, which break down collagen, calcium and 
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phosphorus in the bone. First, mineralized bone is broken down into fragments, then the 

osteoclasts engulf the fragments and digests them within cytoplasmic vacuoles. Calcium 

and phosphorus released from the bone during osteoclastic resorption of the bone are then 

released into the bloodstream to meet the body’s physiological requirements.  

1.1.2 Serum minerals  

1.1.2.1 Calcium  

 

Calcium is the most abundant mineral in the human body, with approximately 1000 g of 

calcium present in the adult. Nearly all of the body’s calcium (99 %) exists in the skeleton 

as hydroxyapatite crystal [(Ca10(PO4)6(OH)2],
10 which provides skeletal strength and 

provides a dynamic store to maintain intra- and extracellular calcium concentrations. The 

remaining 1 % of calcium can be found in the blood, ECF and soft tissues. Of the blood 

total calcium, 50 % is ionized (biologically active), 40 % is bound to albumin, and 10 % 

exists as a complex with either citrate (C6H5O7
3-) or phosphate (PO4

-) ions.11 As ionized 

calcium is the biologically active form, it can be used as a more precise measure of 

calcium normality.  A G-protein coupled receptor, called the calcium sensing receptor 

(CaSR), plays a critical role in calcium homeostasis through its ability to sense free 

ionized calcium.2 The CaSR is the principal mechanism for sensing calcium in the 

parathyroid cells, C cells, and several nephrons in the kidney, as well as in the bone and 

intestine.12  
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1.1.2.2 Phosphorus  

 

Phosphorus is the second most abundant essential mineral in human body after calcium. It 

not only plays a role in numerous biologic processes, including energy metabolism and 

bone mineralization, but also provides the structural framework for deoxyribonucleic 

(DNA) and ribonucleic acid (RNA). A large portion of phosphorus in the body (80-90 %) 

exists in bone and teeth in the form of hydroxyapatite crystal, with the remainder 

distributed in soft tissues and ECF.13 There are two forms of phosphorus in the ECF: 

organic phospholipids which are a major component of cell membranes, and inorganic 

phosphate, which is required for cellular function and skeletal mineralization.14 It is 

believed that there is a phosphorus sensor, which acts analogous to the CaSR to regulate 

serum phosphorus, however, the mechanism by which phosphorus is sensed is currently 

unknown.  

1.1.3 Calciotropic and phosphotropic hormones  

 

Normal calcium and bone homeostasis in the adult can almost entirely be explained by 

the interactions of several regulatory hormones, including parathyroid hormone (PTH), 

fibroblast growth factor-23 (FGF23), calcitriol, PTHrP, and the sex steroids (estradiol and 

testosterone). Loss of any one of these hormones can have significant consequences for 

the adult.  
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1.1.3.1 PTH  

 

 PTH is produced by the chief cells of the parathyroid glands as a pre-pro-peptide 

consisting of 115 amino acids. Following removal of the 25 amino acid pre-sequence and 

the 6 amino acid pro-sequence, the mature PTH peptide, 84 amino acids in length, is 

secreted.15 PTH is secreted in response to small decreases in blood ionized calcium levels, 

or increased phosphorus levels, in order to maintain calcium and phosphorus homeostasis 

in the blood. PTH aids in calcium homeostasis by promoting resorption of bone and 

thereby release of skeletal calcium, acting on the kidneys to reabsorb calcium, increasing 

renal phosphorus excretion, and enhancing intestinal calcium absorption by stimulating 

Cyp27b1, which encodes 1-alphahydroxylase (1αOHase), the enzyme necessary for the 

final hydroxylation step to form active calcitriol. High blood ionized calcium and 

calcitriol inhibit PTH release, while high serum phosphorus stimulates PTH. PTH is also 

regulated by FGF23, which promotes excretion of phosphorus into the urine, and also 

reduces circulating calcitriol levels, thereby decreasing intestinal calcium and phosphorus 

absorption.16  

 

Blood ionized calcium levels are sensed within a tight range by the CaSR on the surface 

of the parathyroid cell, which is abundantly produced by the plasma membrane of these 

cells.16 The CaSR becomes activated upon binding to calcium, which leads to inhibition 

of PTH synthesis and release.16 PTH binds to Parathyroid Hormone Recepor Type 1 

(PTH1R) on the osteoblast surface, thereby stimulating osteoblast activity in order to 

produce bone matrix.   
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Prolonged or higher amplitude stimulation by PTH causes a downregulation in 

osteoblastic bone-forming activity, and instead, triggers osteoblasts to produce Receptor 

Activator of Nuclear Factor kappa-B Ligand (RANKL). In turn, RANKL stimulates 

osteoclast formation, recruitment and activity.16 In this way, PTH couples osteoblast and 

osteoclast activity determining which process will predominate.  

 

1.1.3.2 FGF23 

 

FGF23 is a hormone produced by osteocytes and osteoblasts, which acts on distant tissues 

to regulate the supply of phosphorus at the bone surface.17 Study of disorders of 

phosphorus homeostasis has demonstrated that FGF23 plays a critical role in regulation of 

renal phosphorus and vitamin D metabolism. FGF23 has overlapping function with PTH 

to reduce phosphorus reabsorption in the kidneys; however, it has opposing effects on 

calcitriol homeostasis.  

 

FGF23 acts on two main transport proteins within kidney tubules, sodium-phosphate 

transporters NaPi2a and NaPi2c, in order to regulate renal phosphorus. Napi2a and 

Napi2c are expressed in the apical membrane of the proximal tubule where they are 

responsible for regulating renal phosphorus reabsorption. FGF23 downregulates Napi2a 

and Napi2c, thereby leading to increase renal phosphorus excretion.18 
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FGF23 acts to reduce calcitriol through two ways. The first is through a reduction in  

renal expression and activity of 1αOHase, also known as Cytochrome P450 family 27 

subfamily B member 1(Cyp27b1), which synthesizes calcitriol by hydroxylating 

25OHD.19 The second is through increased expression and activity of 24-hydroxylase 

(24OHase), through Cytochrome P450 family 24 subfamily A member 1 (Cyp24a1), 

which catabolizes calcitriol and 25OHD by adding a hydroxyl group in the 24 position.19 

Through its ability to reduce serum calcitriol, FGF23 acts indirectly to reduce intestinal 

phosphorus absorption. FGF23 may also act directly to decrease intestinal phosphorus 

absorption through interaction with intestinal sodium-phosphate transport protein NaPi2b, 

located on the villi of the small intestine. By way of FGF23’s direct and indirect actions 

on intestinal phosphorus absorption, total serum phosphorus is reduced. In contrast, loss 

of FGF23 leads to hyperphosphatemia, due to loss of renal phosphorus excretion, as well 

as markedly high levels of calcitriol which lead to increased intestinal absorption of 

phosphorus.19  

 

FGF23 also acts on the parathyroid glands to inhibit PTH, which contributes to lowering 

serum calcitriol.20 High serum phosphorus and calcitriol are potent stimuli for FGF23 

synthesis and release, whereas PTH modestly stimulates FGF23.20 

 

1.1.3.3 Vitamin D production and metabolism  

 

Calcitriol is the active, or hormonal, form of vitamin D, and plays numerous biologically 

important roles. Vitamin D is either formed in the skin from 7-dehydrocholesterol (7-
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DHC) in response to UV exposure, or ingested through the diet from both food and 

supplements in the form of Vitamin D3.
21 The conversion from biologically inactive 

Vitamin D3 to the active form calcitriol requires two hydroxylation reactions (Figure 1). 

Vitamin D3 is preferentially removed from the skin and transported into the circulation by 

the vitamin D binding protein (DBP).21 DBP shuttles vitamin D to fat and muscle for 

storage and to the liver, where the first hydroxylation reaction occurs.  Here vitamin D is 

metabolized to 25-hydroxyvitamin D (25OHD) via hepatic 25-hydroxylase (25OHase). 

DBP then transports 25OHD to the kidney where renal 1αOHase facilitates its conversion 

to 1,25-dihydroxyvitamin D (calcitriol). The production of calcitriol in the kidney is 

tightly controlled, being stimulated by PTH and inhibited by calcium, phosphate and 

FGF23. Furthermore, calcitriol is able to feedback to inhibit its formation and enhance its 

catabolism.21  

 

The availiablilty of substrate, amount of enzyme, cofactor availability and enzymatic 

activity of Cyp24a1 all play a role in the regulation of calcitriol through 1αOHase. 

Cyp24a1 encodes for the enzyme 24OHase which hydroxylates calcitriol into 1,24,25-

trihyroxyvitamin D (calcitroic acid) and 1,24,25-dihydroxy-26,23-lactone, which are 

thought to be inactive, and can be excreted from the body through bile and urine.21 
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Figure 2: Vitamin D Production and Conversion into Calcitriol. Vitamin D is 

produced in the skin via UV exposure and ingested through the diet via food and 

supplements. The conversion from biologically inactive vitamin D3 to calcitriol requires 

two hydroxylation reactions; the first in the liver by 25OHase and the second in the 

kidney by 1αOHase.  
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1.1.3.3.1 Calcitriol  

 

Calcitriol plays an important role in both the child and adult by increasing blood calcium 

and phosphorus levels. It increases the absorption of both in the intestines, increasing 

reabsorption of both by the kidneys, and aiding in the release of calcium and phosphorus 

from bone (Figure 2). Calcitriol may also play a role beyond bone and mineral 

homeostasis, as observational studies support an association between vitamin D and 

cardiovascular, immune, musculoskeletal and metabolic disorders.22 The focus of my 

thesis is on the role of calcitriol in fetal bone and mineral homeostasis.  

 

Studies of mice which lack the vitamin D receptor (Vdr null) have demonstrated that 

calcitriol’s main action is to increase intestinal absorption of calcium and phosphorus.23,24 

When the demand for calcium increases, such as during growth, pregnancy, or lactation, 

increased synthesis of calcitriol in turn increases the efficiency of intestinal calcium 

absorption.21 Calcium is absorbed in the intestines by an energy-dependent, transcellular 

(active) pathway, and also a paracellular (passive) pathway through tight-junctions 

(Figure 3).25 Calcitriol is the main stimulator of active intestinal calcium absorption 

through genomic actions. Calcium enters intestinal cells through the apical calcium 

channel, transient receptor potential vanilloid type 6 (TRPV6),26 and is translocated 

through the interior of the enterocyte, likely carried by calcium binding protein 

Calbindin-D9k (S100G).26 Calcium is then pumped out of the basal membrane of the cell 

via the intestinal plasma membrane pump Ca2+-ATPase (Figure 3). There is increasing 

evidence to also suggest that calcitriol can also enhance passive intestinal calcium 

absorption by regulating tight junction proteins.27 
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The kidneys also play an important role in calcium homeostasis. When there is a drop in 

calcium levels in the blood, PTH acts on the kidneys to retain calcium and excrete 

phosphorus.16,28 When PTH is bound to PTH1R, there is increased activity of 1αOHase 

leading to an increased calcitriol synthesis. In turn, the increase in calcitriol stimulates 

intestinal calcium absorption to increase calcium levels in the blood stream.  

The skeleton serves as major supply of calcium and phosphorus when intestinal 

absorption and renal handling are not enough to maintain normal mineral levels within 

the blood. There is some amount of calcium and phosphorus that are readily available to 

be mobilized from bone, but these stores are rapidly depleted. When greater or prolonged 

release of calcium from the bone is required, osteoclastic resorption must be activated in 

order to supply the blood with the mineral it needs. In periods of even greater demand for 

calcium, osteocytic osteolysis is also activated. 
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Figure 3: Classical actions of calcitriol.21 Calcitriol interacts with PTH and FGF23 to 

regulate calcium and phosphorus homeostasis. Production of calcitriol is stimulated by 

PTH and inhibited by FGF23 in the kidney. In turn, calcitriol acts to inhibit PTH 

synthesis and stimulate FGF23. Used with permission from John Wiley & Sons, INC,  

© 2013 (Appendix B). 
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Figure 4: Active and passive intestinal calcium absorption.  Calcium enters the 

intestine through the apical calcium channel, TRPV6, is translocated through the interior 

of the enterocyte, which is thought to occur with help of the calcium binding protein 

Calbindin-D9k. Calcium is then pumped out of the basal membrane of the cell via the 

intestinal plasma membrane pump Ca2+-ATPase. Reprinted by permission from 

MacMillan Publishers Limited ©2014 (Appendix C). 
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1.1.3.3.2 Vitamin D receptor  

 

Calcitriol is transported to target cells where it diffuses into the cytoplasm and binds to 

the VDR. VDR possesses a nuclear localization signal (NLS) and may enter the nucleus 

bound to calcitriol; alternatively, calcitriol may diffuse into the nucleus and bind to the 

unbound VDR that has translocated to the nucleus.29 Calcitriol binds stereospecifically to 

the VDR causing a conformational change into a transcriptionally active form.  Once 

transcriptionally active, VDR is able to form a heterodimer with the 9-cis-retenoic acid 

receptor (RXR).29 The VDR/RXR heterodimer recognizes a specific DNA sequence or 

vitamin D response element (VDRE) made up of two hexameric nucleotide half-sites 

separated by three base-pairs (Figure 4).30 These actions trigger the expression of 

networks of target genes whose functions combine to cause tissue-specific biological 

responses including: complex actions required for mineral homeostasis and control of 

growth, differentiation and activity of numerous cell types including those of the immune 

system, skin, the pancreas and bone as well as many other targets.31 
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Figure 5: VDR gene structure and regulation of vitamin D dependant target genes. 

Calcitriol binds stereospecifically to the VDR causing a conformational change into a 

transcriptionally active form.  Once transcriptionally active, VDR forms a heterodimer 

with RXR. The VDR/RXR heterodimer recognizes a specific DNA sequence, VDRE, 

which triggers the expression of networks of target genes whose functions combine to 

cause tissue-specific biological responses. 
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1.1.4 PTHrP 

In the early 1940’s, studies of humoral hypercalcemia of malignancy (HHM), 

characterized by an abnormal elevation of serum calcium associated with malignant 

tumors, theorized a “PTH-like” hormone.32 Subsequent studies led to the biochemical 

characterization of HHM and the identification and characterization of PTHrP.33,34 Both 

PTHrP and PTH genes share high sequence homology at the amino-terminal portion, such 

that the genes share 8 of the first 13 amino acids and predicted secondary structure of the 

subsequent 21 amino acids.34-36 These similarities allow both peptides to bind and activate 

the same receptor, PTH1R.37  

 

In the adult, PTHrP is typically absent from the circulation with exception to a gradual 

increase during pregnancy, coming from the placenta and the breasts, and a more 

pronounced increase during lactation. Although PTHrP doesn’t normally have an 

endocrine function, it may have an autocrine, paracrine or intracrine function in tissues 

where it is locally produced.38 

 

As PTHrP is expressed in almost all tissues, it serves a variety of functions in the body, 

including in the skeleton, the cardiovascular system, the placenta and the breast. In the 

skeleton, PTHrP helps to synchronize chondrocyte differentiation in the growth plates of 

long bones, stimulating growth.39,40 Within the cardiovascular system, PTHrP is induced 

by vasoconstrictive agents and acts as a vasodilator in resistance vessels, suggesting that 

it may act as a local modifier of blood flow.41 Perhaps the most well-known functions of 

PTHrP are within the placenta and the breast. During pregnancy, PTHrP is critical in 
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active transport of calcium from the mother to the fetus.42 PTHrP remains critical into 

lactation where it is involved in the regulation of calcium metabolism and has been found 

to be highly expressed in the milk.43,44  

1.1.5 Gonadal steroid hormones 

Sex is an important determining factor in the size and shape of the skeleton, with the 

differences in skeletal shape between sexes reflecting the need of the female skeleton to 

accommodate gestation and delivery of offspring. Estradiol is essential for the bone 

changes that occur during puberty in both males and females. Females lacking aromatase, 

an enzyme in the steroid synthesis pathway necessary for synthesis of estradiol, and males 

lacking the estrogen receptor,  do not undergo a growth spurt and do not experience 

epiphyseal closure.45 During adulthood estradiol, and indirectly testosterone through 

conversion to estradiol, influences the growth and maintenance of the skeleton. 

Throughout all stages of life bone is periodically resorbed and replaced with new bone. 

Deficiency of estradiol causes bone loss that is associated with an unbalanced increase in 

the number and activity of osteoclasts and osteoblasts.46 Conversely, sufficiency of 

estradiol also acts to decrease bone resorption and maintain a balance between bone 

resorption and formation processes. As a result of the aging process, both men and 

women lose bone and are prone to osteoporosis in later years. Women are more likely to 

develop osteoporosis as they gain less bone during puberty and experience an abrupt loss 

of estrogens during menopause.45   
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1.1.6 Role of the intestines  

Although bone resorption can maintain serum mineral within the normal range, the only 

way that mineral stores in the bone can be replenished is through dietary intake. Once 

ingested, calcium and phosphorus are almost exclusively absorbed in the small intestine.  

Most of the active transport of calcium occurs in the duodenum and upper jejunum of the 

small intestine, while passive transport of calcium, and both active and passive absorption 

of phosphorus, can occur throughout the entire intestine.  

 

Calcium is absorbed through the intestinal epithelium through one of two routes: 1) 

between the cells (paracellular pathway) or 2) through the cell (transcellular pathway). 

When calcium concentrations within the lumen are high, the passive paracellular pathway 

is the prominent route of absorption. The paracellular pathway is driven by the 

electrochemical gradient of the lumen and the integrity of intracellular tight junctions.47 

During vitamin D deficiency, excess intake of dietary calcium can increase serum 

calcium concentrations through this pathway. The active transcellular pathway is 

regulated by calcitriol and is the less predominant pathway as the concentration of 

calcium is usually higher in the lumen than inside the cell. The transcellular pathway 

involves entry of calcium via the apical calcium channel TRPV6, transport of calcium 

through the cell by calbindin-D9k and extrusion of calcium through the basolateral 

membrane by Ca2+ATPase (Pmca1).27  

 

Phosphorus can also be absorbed through paracellular and transcellular pathways. Like 

paracellular absorption of calcium, paracellular phosphorus absorption is dependent on 
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the luminal electrochemical gradient and integrity of tight junctions. On the other hand, 

the transcellular phosphorus transport mechanism differs from that of transcellular 

calcium transport. Phosphorus is actively transported through the intestine via the sodium 

phosphate transporter NaPi2b, which is regulated by calcitriol,  phosphorus intake and 

FGF23.48  

1.1.7 Role of the kidneys  

In the human adult, the kidney filters about 10 g of calcium per day. However, only 100-

200 mg of this amount is excreted in the urine, meaning that approximately 98-99 % of 

the filtered calcium is reabsorbed into the circulation.49 The majority of filtered calcium is 

reabsorbed in the proximal tubule, while 20 % is reabsorbed in the loop of Henle, 10 % 

by the distal convoluted tubule and 5 % by the collecting duct (Figure 5).49
 Much like 

intestinal calcium absorption, renal reabsorption of calcium can occur through either 

paracellular or transcellular pathways. Paracellular renal calcium transport makes up the 

majority of calcium transport within the kidney.50 The mechanism of the active, 

transcellular pathway is proposed to be the same as the transcellular pathway in the 

intestine. Calcium enters the tubule via the apical calcium channel TRPV6,  calcium is 

transported through the cell by calbindin-D9k and calcium is secreted through the 

basolateral membrane by Ca2+ATPase (Figure 6).50 

 

Calcium handling in the kidney is regulated by a number of calciotropic hormones. The 

glomerular filtration rate and calcium reabsorption are increased by the actions of PTH 

and PTHrP.10 PTH stimulates Cyp27b1 in order to hydroxylate 25OHD to become 
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calcitriol. In turn, the produced calcitriol acts on the intestines to increase intestinal 

calcium absorption. Calcitriol, estradiol and calcium intake also play a role in renal 

handling of calcium by modulating the transcription of calcium transporters TRPV5 and 

TRPV6.51 

 

The kidneys also play a role in the regulation of phosphorus homeostasis. Maintenance of 

serum phosphorus levels is principally achieved by regulation of inorganic phosphate (Pi) 

reabsorption within the glomerular filtrate. A large portion of phosphorus absorption 

(approximately 85%) occurs in the proximal tubule. Within the tubule Pi transport is an 

energy dependent process that requires sodium.49 Sodium phosphate transporters, NaPi2a 

and NaPi2c, are located on the apical brush border membrane of cells of the renal 

proximal tubule, using energy created from sodium movement down its gradient, to move 

Pi from the filtrate into the cell.52 Phosphorus transport in the kidney is regulated by PTH, 

calcitriol and FGF23. Calcitriol acts to stimulate phosphorus reabsorption, while PTH and 

FGF23 inhibit phosphorus absorption in the renal proximal tubule and reduce the activity 

of NaPi2a and NaPi2c. 
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Figure 6: Renal calcium reabsorption. Calcium is filtered at the glomerulus, with the 

ultrafilterable portion of plasma calcium entering the proximal tubule. Within the 

proximal convoluted tubule, 60-70 % of filtered calcium is reabsorbed, while 10 % is 

reabsorbed in the distal convoluted tubule. The hoop of Henle reabsorbs about 20 %, with 

another 5 % of filtered calcium reabsorbed in the collecting duct. Adapted from the 

American Society of Nephrology © 2014 49(Appendix D).   
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Figure 7: Renal transcellular calcium transport.53 Calcium enters the tubule via the 

apical calcium channel TRPV6, calcium is transported through the cell by calbindin-D9k 

and calcium is secreted through the basolateral membrane by PMCA1b (Ca2+ ATPase). 

Used with permission from Springer Nature © 2005 (Appendix E).  
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1.1.8 Role of the skeleton  

Bone undergoes remodelling continuously due to the actions of osteoblasts and 

osteoclasts to build and breakdown bone respectively. During childhood, there is a 

positive bone balance, with more bone formation than resorption, in order to allow for 

bone growth and development. By adulthood, bone balance reaches equilibrium that is 

maintained through the reproductive years. However, bone resorption exceeds bone 

formation after menopause and in the elderly, causing a negative bone balance, which 

may lead to osteoporosis.  

 

Regulation of bone remodelling occurs both locally and systemically. As previously 

mentioned, PTH is a key systemic regulator of bone remodelling. With physiological 

pulses of PTH, or pharmacological administration of short-acting PTH analogs such as 

teriperatide (FORTEO®), osteoblasts are stimulated causing net bone formation. In 

contrast, during periods of prolonged stimulation, such as during hyperparathyroidism, 

this leads to stimulation of net bone resorption. 54 Calcitriol regulates bone remodelling 

indirectly by stimulating intestinal calcium absorption, as calcium is a growth factor for 

osteoblasts. Furthermore, high levels of calcitriol lead to an increase in osteoclast activity, 

likely through the RANKL pathway.55 

 

1.2 Human conditions of altered vitamin D metabolism  

1.2.1 Nutritional vitamin D deficiency  

Vitamin D deficiency is a global issue ranging from severe to moderate.56-58  Severe 

deficiency is characterized by 25OHD levels less than 50 nmol/L (10-12 ng/mL), while 
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moderate vitamin D insufficiency is characterized by levels of 25OHD between            

50-75 nmol/L ( 20-30 ng/mL).56,59-62 Based on these criteria it has been estimated that 20-

100 % of the elderly population in Canada, the United States and Europe are vitamin D 

deficient.56,59,63-65 However, the elderly are not the only population at risk. Children and 

teenagers are also at high risk for vitamin D deficiency and insufficiency, through 

avoidance of sunlight and low intake of food sources that contain vitamin D.66,67   

 

Calcitriol is chiefly responsible for ensuring that sufficient mineral is absorbed by the 

intestines to allow for skeletal growth in the child and to maintain a neutral calcium 

balance in the adult. Therefore, a major result of vitamin D deficiency is a reduction in 

intestinal calcium absorption below the level that is required to meet the demands of a 

growing child’s skeleton.56,59 As a consequence, mineral homeostasis is disrupted with an 

initial drop in ionized calcium levels and a resultant secondary hyperparathyroidism.56,59 

If the deficiency is not severe, it is possible for the elevated PTH levels to increase 

1αOHase activity enough to raise calcitriol levels and increase intestinal calcium 

absorption to achieve normocalcemia. However, if the deficiency worsens or persists, 

calcitriol levels fall and hypocalcemia, hypophosphatemia and rickets ensue. This 

hypophosphatemia occurs in part due to reduced intestinal absorption, but is likely mainly 

due to secondary hyperparathyroidism which causes renal phosphate wasting.65,68  

1.2.2 Pseudovitamin D deficiency  

 

Pseudovitamin D deficiency  (PDDR) is an autosomal recessive disorder caused by an 

inactivating mutation of the Cyp27b1 gene which encodes 1αOHase, responsible from the 
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conversion of 25OHD into calcitriol.69 Patients with PDDR are clinically normal at birth 

and most often come to medical attention at 1–2 years of age with poor growth, poor 

gross motor development, and generalized muscle weakness.70 Serum chemistries in 

patients with PDDR are similar to, but can be more severe than, patients with nutritional 

vitamin D deficiency, including: hypocalcemia, hypophosphatemia and secondary 

hyperparathyroidism. Unlike nutritional vitamin D deficiency, serum calcitriol 

concentrations are usually low, however, 25OHD concentrations tend to be normal.70  

Treatment of PDDR requires physiological doses of calcitriol or 1-alpha-hydroxyvitamin 

D which can undergo a hydroxylation reaction in the liver to become calcitriol. 

 

1.2.3 Hereditary vitamin D resistant rickets 

 

Hereditary vitamin D resistant  rickets (HVDRR) is a rare, autosomal recessive form of 

rickets characterized by resistance to calcitriol caused by a defect in the VDR gene.71 

Mutations in the VDR gene have been identified at both the calcitriol-binding and DNA-

binding domains. Thus, there is a spectrum of HVDDR severity ranging from impaired 

binding or impaired signalling to complete absence of functional receptors. Patients with 

HVDRR appear normal at birth and begin to present with symptoms of calcitriol 

deficiency within the first 2-8 months of life, including onset of rickets, hypocalcemia, 

hypophosphatemia, secondary hyperparathyroidism and very high circulating 

concentrations of calcitriol.72 Additionally,  some patients with HVDRR develop alopecia 

which may be total or incomplete between ages 2 and 12 months.72 Treatment 

effectiveness is dependent on the degree of hypocalcemia. If there is partial resistance to 
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calcitriol, treatment with pharmacologic doses of calcitriol can upregulate calcium 

absorption and heal the symptoms of rickets. However, if there is complete resistance to 

calcitriol, treatment with calcitriol is ineffective and infusion with calcium is necessary to 

compensate for intestinal mineral absorption.72 Treatment is generally unable to reverse 

alopecia, which suggests that the skin/follicle action of calcitriol or VDR is not related to 

calcium and/or phosphorus metabolism. Moreover, individuals with PDDR do not get 

alopecia, which suggests that alopecia is a function of VDR and not calcitriol, which 

implies that there is another ligand for VDR.72 

1.3 Animal models of altered vitamin D metabolism 

 

In order to better study disorders of vitamin D metabolism, numerous animal models have 

been established that either lack VDR or Cyp27b1. These models quite closely mimic the 

human counterparts of PDDR and HVDRR. 

1.3.1 Vdr null mice 

The Vdr knock out mouse model mimics HVDRR and has been used to study the 

pathophysiology of altered vitamin D metabolism. There are currently several different 

models of VDR knockout mice, which differ by removal of either the first or second zinc 

finger, responsible for DNA binding. All models of Vdr null mice are hypocalcemic, 

hypophosphatemic and a characterized by secondary hyperparathyroidism and a rachitic 

(rickets –like) phenotype.23,26 The rachitic phenotype of Vdr null mice is largely due to 

the indirect role of calcitriol on the skeleton through its actions to increase intestinal 

mineral absorption. In fact, Vdr null mice  can be genetically rescued (phenotypically 

normal) by selectively expressing VDR only within intestinal cells.73,74 On the other hand, 



 30 

when VDR is ablated solely from intestinal cells or when calcium is restricted in the diet, 

the rachitic phenotype ensues.74 Moreover, loss of Vdr from chondrocytes, osteocytes or 

osteoblasts of bone does not produce a rachitic phenotype, confirming that the phenotype 

is specific to disruption of intestinal calcium absorption.74-76 

In order to allow for normal fertility and prevention of skeletal abnormalities, Vdr null 

mice are often kept on a “rescue diet” that is both high in calcium and phosphorus.77  This 

type of diet is used in almost all studies of Vdr ablated mice.78 Vdr null mice also 

experience alopecia which is unable to be cured with the rescue diet.77 With these 

phenotypic similarities between Vdr null fetuses and babies with HVDRR, it is clear that 

Vdr null mouse is an excellent model for human HVDRR.  

1.3.2 Cyp27b1 null pigs 

PDDR can be studied in the Hannover pig strain, which lack 1αOHase activity due to a 

naturally occurring null mutation in Cyp27b1.79 In this animal model, the disease is 

passed on in an autosomal recessive manner. During fetal development, Cyp27b1 null  

piglets are phenotypically normal with normal serum calcium, phosphorus and skeletal 

mineralization.80 By 4-6 weeks post birth, however, Cyp27b1 null piglets begin to display 

a rachitic phenotype with hypocalcemia, hypophosphatemia, and low to non-detectable 

levels of calcitriol. It is at this stage that the pigs closely resemble the human PDDR 

condition.  
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1.3.3 Cyp27b1 null mice 

A mouse model of PDDR has also been generated to better study the disease. Mice 

lacking 1αOHase activity were generated by knocking out exon 8 of the Cyp27b1 gene in 

order to generate a null allele.81 Like the Cyp27b1 null pigs, homozygous mutants are 

phenotypically normal at birth. However, full progression of PDDR symptoms occurs 

postnatally. By weaning (21 days post birth) hypocalcemia, hypophosphatemia, 

hyperparathyroidism and rickets are evident, and osteomalacia is present by early 

adulthood.82  

 

1.4 Fetal bone and mineral metabolism  

 

The fetal development period is unique in that it is a period of rapid development in 

which specific needs must be met by the developing fetus.  Within the fetal development 

period, the fetus must meet several goals, including transport of mineral across the 

placenta, maintaining appropriate mineral concentrations within the circulation and 

adequately mineralizing the skeleton before birth. 

 

Unlike in the adult, the intestines, kidneys and skeleton are not dominant sources of 

mineral during fetal development. Instead, the placenta must supply the fetal mineral 

requirements by actively transporting calcium, phosphorus, and magnesium from the 

maternal circulation.  

 

The fetus must also maintain the appropriate amount of mineral in the circulation 

necessary for normal function of the fetal system. Among mammalian species, including 
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rhesus monkeys,83,84 lambs,85-88 calves,87,89 rodents,87,90 and pigs,80,91,92 it has been 

consistently shown that fetal calcium concentrations are higher than that of the maternal 

values. The biological relevance of this increase in fetal calcium remains unknown. 

However, it appears to be independent of the maternal calcium level, as fetal calcium 

levels have been shown to be unaltered during maternal normocalcemic, hypocalcemic 

and hypercalcemic states.93  

 

Fetal phosphorus levels also tend to be higher than maternal values, with fetal values in 

rodents,94-98 lambs,88,99,100 pigs,80,91 calves,87 and foals87 observed to be 0.5-1.0 mM higher 

than maternal values. Just as fetal calcium levels are set independently of the mother, 

when mothers are hyperphosphatemic, fetal phosphorus values remain normal.101,102 

However, a few studies disagree. Studies of both pregnant rats and sheep indicate that 

maternal hyperphosphatemia leads to increased fetal phosphorus levels.103,104 

 

Fetal serum magnesium values also appear to be set independently of maternal values; 

however, the data are more variable with respect to whether they are above or below 

maternal levels. Moderate increases in serum magnesium are observed in fetal mice and 

foals,87,105,106while fetal rats have a moderate increase to no change.87,107 Both slight 

increases 88,108,109 and decreases 87,99 in serum magnesium have been observed in fetal 

lambs.  

 

The fetus must also be able to meet the mineral demand necessary to successfully 

mineralize the fetal skeleton before birth.  The majority of this mineralization process 
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occurs rapidly within the latter part of pregnancy. In humans, 20-30 g of calcium are 

necessary to mineralize the fetal skeleton, 80 % of which is accreted in the third 

trimester.110 Similarly, in rats 95 % of the 12.5 g of calcium necessary for mineralization 

is accreted during the last 5 days of the 21-day gestation period.111 These intervals 

correspond with increased rates of calcium absorption.  

1.4.1 Fetal bone development  

At the beginning of human fetal bone development, 8 weeks post-fertilization, the pattern 

of the skeleton has largely been determined. Ossification or mineralization is an important 

component of bone development and growth. Primary ossification centers form in the 

long bones and vertebrae between weeks 8 and 12 of embryo development. 112 There are 

two main ossification process that occur during fetal bone development: intramembranous 

and endochondral ossification. Intramembranous (also known as mesenchymal) 

ossification is the process in which mesenchymal cells in the embryonic or fibrous 

connective tissue become osteoblasts, in order to form the bone matrix. Conversely, 

endochondral ossification is the process by which cartilaginous scaffolds are created for 

most bones, which progressively lengthen and contribute to longitudinal growth, before 

being gradually replaced by bone.113 Osteoblast progenitors in the perichondrium 

differentiate into osteoblasts, and as primary ossification centers expand and secondary 

ossification centers form, this results in the formation of the epiphyseal growth plate 

(Figure 7).  
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Figure 8: Endochondral bone development in the fetus. The areas of the growth plate 

include the resting zone, proliferating zone, differentiating chondrocytes zone and a zone 

of hypertrophic chondrocytes. Blood vessels invade the hypertrophic area and osteoclasts 

resorb the ossified cartilaginous matrix and osteoblasts derived from the bone collar 

replace the matrix with bone. Adapted with permission from John Wiley & Sons Inc © 

2013. (Appendix F) 
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1.4.2 Calciotropic and phosphotropic hormones  

1.4.2.1 PTH 

 

PTH circulates at lower levels in the fetal circulation in comparison to maternal values in 

rodents, lambs, and calves.89,98,114-116 Intact PTH is not able cross the placenta from the 

mother to the fetus; consequently, PTH within the fetal circulation is of fetal origin. PTH 

synthesis and release in the fetal circulation is thought to be suppressed by the activation 

of the CaSR on the fetal parathyroids by the high levels of total and ionized calcium.90 

Furthermore, knockout of CaSR in fetal mice leads to increased PTH.117 Active placental 

transport of calcium may also contribute to the low levels of circulating fetal PTH by 

bringing calcium into the circulation through a route that does not require PTH.117 

Moreover, maternal hypercalcemia has been shown to increase the transfer of calcium to 

the fetus and further suppress the fetal PTH level, even if the fetal serum calcium does not 

change.90 Low circulating PTH is not exclusive to fetal animals. In fact, infants have low 

circulating PTH in comparison to maternal and adult values, with concentrations as low 

as <0.5 picomolar (pM) observed.118 This suppression of fetal PTH is apparent as early as 

19 weeks of gestation.119  

In mice, absence of fetal PTH causes fetal hypocalcemia, hypophosphatemia, low 

amniotic fluid mineral content, and reduced skeletal mineral content.98 This suggests that, 

despite its low circulating levels, PTH is still required to achieve normal mineralization of 

the skeleton prior to birth. Despite reduced skeletal mineral content, endochondral bone 

development is normal, suggesting that the role of PTH in bone homeostasis is through its 

ability to maintain serum calcium concentration and not through osteoblast physiology.  
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1.4.2.2 PTHrP 

 

Prior to the discovery of PTHrP, studies noted that infants have an increased PTH-like 

bioactivity and low or undetectable amounts of immunoreactive PTH in the cord blood in 

comparison to maternal values.118,120It was hypothesized that fetal blood contained a 

PTH-like factor that was contributing to the increased PTH-like bioactivity, which was 

later confirmed by the discovery of PTHrP. Human fetuses were found to have up to a 

fifteen-fold greater amount of PTHrP than PTH in the circulation.121 This phenomenon 

was also confirmed in studies of fetal pigs122 and sheep.123  

 

Most of what is known about the role of PTHrP in fetal bone metabolism comes from the 

study of Pthrp null fetal mice. These mice display hypocalcemia, hypophosphatemia, and 

increased PTH.124,125 Furthermore, Pthrp null fetal mice have abnormal skeletal features 

including: shortened limbs, domed skulls, shortened mandibles and accelerated 

mineralization of bone.126 The increase in PTH suggests that it increases to compensate 

for lack of PTHrP; however, compensation was not achieved because hypocalcemia 

ensued. Pth null fetuses and other fetuses that lack their parathyroid glands (Hoxa3 nulls 

and Gcm2 nulls)98 do not have a compensatory increase in PTHrP, despite being 

hypocalcemic.  Although there is partial compensation by PTH when PTHrP is lacking, 

PTHrP is unable to compensate for lack of PTH. This suggests that both PTH and PTHrP 

play a role in fetal bone and mineral homeostasis.  
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1.4.2.3 FGF23 

 

FGF23 is predominantly expressed in rat fetal osteoblasts, as well as in the thymus, liver 

and kidney. In mouse models, FGF23 is expressed as early as ED 12.5 in the heart and 

liver and appears later in the bone.127 Intact FGF23 levels in the fetus are similar to that of 

the maternal value during late pregnancy,102 which is increased from female pre-

pregnancy values by two fold.128 

 

Although there are no studies of radiolabeled FGF23, it appears that FGF23 does not 

cross the placenta because Fgf23 null fetuses have undetectable levels of FGF23, in 

comparison to their heterozygous mothers which have levels of circulating FGF23 

averaging 225 pg/mL.102 Further to this, WT fetuses borne of mothers that are 

heterozygous for phosphate regulating endopeptidase homolog x-linked ( Phex+/-,also 

known as Hyp+/-) mothers, which have an excess of FGF23, have normal levels of 

circulating FGF23 in comparison to WT fetuses borne of Ffg23+/- mothers, despite the 

excess in maternal FGF23.102  

 

Studies of absence or excess of fetal FGF23 have shown no differences in any measured 

parameters of bone and mineral homeostasis, including serum and amniotic fluid 

phosphorus, skeletal mineral content and morphology and placental phosphorus 

transport.102 This suggests that FGF23 is not an important regulator of fetal phosphorus 

homeostasis. Moreover, when WT mothers are challenged with a high phosphorus diet, 

fetuses maintain normal phosphorus and FGF23 levels, independent of their respective 

maternal values (unpublished).  
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There is currently little data on FGF23 in human fetuses. Based on the scant data 

available, FGF23 in the cord blood appears to be lower than maternal values, however, c-

terminal FGF23 values are increased.128 This may suggest that fetal FGF23 is plentiful in 

the fetal circulation, but is being rapidly cleaved which is producing elevated levels of 

non-functional c-terminal fragments in the circulation. Moreover, levels of Klotho, the 

co-receptor for FGF23 are increased by six-fold in the cord blood in comparison to adult 

or neonatal values.129 With little human data available, we must rely on what we know 

about the mouse model to help us understand FGF23’s role in the fetus.  

 

 

1.4.2.4 Calcitriol 

 

Although 25OHD readily crosses the placenta from mother to fetus, calcitriol typically 

circulates at less than 50 % of the maternal value in fetal rodents130-133 and pigs.80 The 

lower circulating calcitriol values in fetal mice compared to the maternal circulation may 

be explained by low levels of plasma PTH, high serum calcium and phosphorus, as well 

as increased 24OHase activity that are presented under normal fetal physiological 

conditions.93 

 

In spite of playing a critical role in bone and mineral metabolism in both the child and the 

adult, evidence from both animal models and human disorders indicate that the low levels 

of circulating fetal calcitriol are not detrimental to fetal mineral homeostasis and skeletal 

development.  Studies of severely vitamin D deficient rats 134-136, Cyp27b1 null pigs 80 

and Vdr null mice131,137 have consistently shown normal fetal serum calcium, phosphorus, 
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and PTH levels, as well as ash weight and skeletal mineral content. Cyp27b1 null mice 

are also normal at birth, but until now, there have been no studies in the literature of their 

serum chemistries and skeletal mineral content during fetal development.81,138  

 

The findings to date suggest that fetal calcium homeostasis and skeletal development and 

mineralization are independent of calcitriol and its receptor; however, the effect of 

absence of calcitriol still needs to be studied. The placenta provides calcium to the fetus 

without relying on calcitriol, and vitamin D deficient and Vdr null placentas express 

normal concentrations of the vitamin D dependent factors calbindin-D-9k and Ca2+-

ATPase, which are important for intestinal calcium absorption and calcium homeostasis 

in the adult. 131,139,140 

The effects of loss of Vdr on fetal bone and mineral homeostasis have been studied using 

two main Vdr knockout models; the Boston model and the Leuven model, both named 

after the cities in which they were developed. In the case of the Boston model, Vdr is 

disrupted by removal of exon 3, encoding the second zinc finger of the Vdr-binding 

domain.23 Studies of the Boston model, carried out in our lab, have shown that Vdr null 

offspring born of both Vdr+/- and Vdr null  mothers have normal serum calcium, 

phosphorus, PTH, ash weight, tibial morphology and mineral content.131 In the case of the 

Leuven model, exon 2 of the Vdr gene is removed, which encodes the first of two zinc 

fingers that are characteristic of nuclear receptors and required for DNA binding.141  The 

Leuven model results in a truncated VDR which is transcribed, translated and secreted 

and has abnormal signaling. Thus, the Leuven model is not a complete Vdr null. Studies 
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of this model looked at Vdr null fetuses borne of Vdr null mothers. Similar to the study of 

the Boston model, these fetuses also had normal parameters related to bone and mineral 

homeostasis.137 Thus, despite not being a true null, the Leuven model ultimately led to a 

similar phenotype as the Boston model which is a true null.   

 

Human data is consistent with the notion that calcitriol may not be necessary for normal 

fetal bone and mineral homeostasis. Circulating calcitriol levels in the human fetus mirror 

those of fetal rodents and pigs, with the fetal calcitriol levels being less than 50 % of the 

maternal values.142-146 Calcitriol synthesis in the fetus is thought to be suppressed by the 

high calcium, phosphorus and low PTH values within the cord blood.  Similar to 

observations from animal models of vitamin D deficiency, babies with severe vitamin D 

deficiency have normal serum calcium, phosphorus, PTH, and skeletal morphology and 

mineral content.93 This evidence from both animal models and human observations 

indicate that vitamin D, calcitriol or VDR are not required to maintain normal mineral 

homeostasis and skeletal development within the fetus.  

 

1.5 Renal mineral absorption and the amniotic fluid 

 

In the adult, the kidneys play a vital role in regulation of bone and mineral homeostasis 

through their ability to adjust the relative reabsorption and excretion of minerals in 

response to calciotropic and phosphotropic hormones, as well as being the main site of 

calcitriol synthesis.  It is likely that the kidneys play a lesser role in the fetus than the 

adult given: 1) the placenta plays a dominant role in the handling of mineral and calcitriol 
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synthesis, and 2) the excreted mineral is not being lost as it is in the adult.  Instead, the 

fetal urine makes up a large part of the amniotic fluid which is swallowed, absorbed and 

brought back into the fetal circulation.  Therefore, calcium and phosphorus filtered by the 

fetal kidneys can be partially reabsorbed into the circulation to maintain mineral 

concentrations in the blood. 

1.6 Role of the fetal intestines  

 

The contrast in the physiological role of calcitriol after birth compared to during fetal 

development may be due to the trivial role of the fetal intestines during gestation. Unlike 

in the adult, where the intestines play a considerable role in mineral metabolism, the fetus 

receives its mineral through active transport of calcium, phosphorus and magnesium 

across the placenta from the maternal circulation.93 The fetal intestines cannot be studied 

directly. However, pre-term babies (and animals) are the functional equivalent of fetuses, 

and they show passive absorption of mineral that is not calcitriol-responsive, and low 

expression of VDR.93  

 

1.7 Placental mineral transport 

Beyond the intestines, kidneys and skeleton which play prominent roles in the regulation 

of mineral homeostasis in the adult, the fetus has a unique organ, the placenta, which has 

a vital role in fetal mineral homeostasis. The placenta assumes many functions that are 

carried out by other organs in the adult, including acting like the fetal lungs, disposing of 

fetal waste, hormone production as well as other functions. The placenta is responsible 

for the transport of calcium and other minerals from the mother to the fetus.121,147,148 
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Placental mineral transport may occur via simple diffusion, paracellular transport, 

vesicular transport or active transport.121   

Calcium transport across the placenta is thought to be similar to the passage of calcium 

across intestinal cells. TRPV6 channels open on the maternal-facing basement membrane 

of the placenta to allow calcium entry into placental cells, calcium shuttles across to the 

opposite basement membrane via Calbindin-D9k and is extruded into the fetal circulation 

by Ca2+ ATPase.93  The roles of these proteins in placental calcium transport are 

supported by data from fetal animal studies. Fetuses lacking either TRPV6 or PTHrP have 

reduced placental calcium transport, as well as a decrease in Calbindin-D9k, within the 

placental yolk sac.149,150However, it is not known whether the reduced placental calcium 

transport is directly or indirectly caused by the decrease in expression of Calbindin-D9k.  

Ca2+ ATPase has also proven to be important in placental calcium transport, as its 

knockdown leads to reduced calcium transport within the rat placenta.151,152 

Less is known about phosphorus transport across the placenta. But, it is known that the 

placenta expresses many phosphorus regulating genes including sodium phosphate 

transporters Napi2a, Napi2b, Napi2c, as well as low expression of Fgf23.102  

 

 

1.8 Role of calcitriol in placental function  

 

The role of calcitriol in placental function remains unclear. While the expression of Vdr, 

Cyp27b1 and calcitriol dependent calcium-transporting factors Pmca1,  S100G, and Trpv6 

in placental trophoblasts suggest calcitriol may play a role in placental function, studies in 
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vitamin D deficient fetal rats139 observed normal placental calcium transport. 

Interestingly, however, when fetal mice are exposed to pharmacological doses of 

calcitriol, placental calcium transport is increased.93 

 

Both the Boston and Leuven Vdr knockout models have shown high levels of circulating 

calcitriol in the Vdr null fetuses. 131,137 Interestingly, studies of the Boston model have 

shown that both Vdr null fetuses borne of Vdr+/- and of Vdr null mothers display a non-

significant trend towards increased placental calcium transport that became significant 

when results from these studies were pooled.131 Vdr null fetuses from Vdr+/- mothers were 

also shown to have increased expression of placental Trpv6 and increased expression of 

Pthrp as demonstrated through both immunohistochemistry and gene expression studies. 

Similarly, in studies of the Leuven model, Vdr null fetuses were shown to have 

significantly increased placental calcium transport and placental expression of Trpv6 in 

comparison to their Vdr+/- littermates, although no differences in placental expression of 

Pthrp were evident.  

 

The higher rate of placental calcium transport in Vdr null fetuses of both the Boston and 

Leuven models may indicate that if calcitriol does have a role, it may be to reduce 

placental calcium transfer, such that in the absence of VDR, calcium transport increases 

due to loss of calcitriol’s “brake” on the transport of mineral from the maternal to fetal 

circulation. Alternatively, since Vdr null fetuses have higher than normal concentrations 

of calcitriol,153,154 and since pharmacological treatment with calcitriol stimulated placental 

calcium transport in other studies,93 it is conceivable that calcitriol acts through non-
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classical receptors to upregulate placental calcium transport despite the absence of VDR. 

Therefore, the Vdr models do not definitively address the action of calcitriol.  

 

1.9 Rationale, hypothesis and objectives   

 

It is well known that calcitriol plays a significant role in bone and mineral homeostasis in 

the adult. However, less is known about the role of calcitriol in fetal bone and mineral 

homeostasis. Studies from Vdr null fetuses suggest that calcitriol is not required, but the 

high levels of circulating calcitriol and upregulated placental function in these fetuses left 

uncertainties that may be answered by studying fetuses that cannot synthesize calcitriol. 

 

There are three parts to our hypothesis: 

(1) Calcitriol is not required to maintain bone and mineral homeostasis in the fetus.  

(2) The upregulation of placental function in the Vdr null fetuses may be due to calcitriol 

having physiological effects to reduce placental calcium transfer, such that when 

calcitriol has no receptor to signal through, calcium transport increases due to loss of 

calcitriol’s normal effects as a “brake” on the forward flow.   

(3) Alternatively, since Vdr null fetuses have higher than normal concentrations of 

calcitriol, it is conceivable that such high levels of calcitriol act through non-classical 

receptors to upregulate placental calcium transport despite the absence of VDR. Such 

an action might not be physiological but only brought about with high concentrations 

of calcitriol, and this would explain why both Vdr null fetal mice and fetal sheep 

treated with pharmacological doses of calcitriol had increased placental calcium 

transport. 
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Hypotheses were tested using a Cyp27b1 mouse knock out model, which lack the enzyme 

necessary to synthesize calcitriol. Cyp27b1 null and WT sisters were mated to Cyp27b1+/- 

males in order to study null and Cyp27b1+/- fetuses borne of null mothers, as well as WT 

and Cyp27b1+/- fetuses borne of WT mothers.  

 

The objectives of this research were to determine whether loss of calcitriol in Cyp27b1 

null fetuses of null mothers when compared to their siblings and to fetuses of related WT 

mothers: 

1. Alters serum minerals, calciotropic hormones, or amniotic fluid mineral content. 

2.  Alters skeletal morphology, ash weight, or skeletal mineral content. 

3.  Alters the rate of placental 45Ca transport from mother to fetuses. 

4.  Alters expression of relevant genes within placenta and kidneys. 
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II. Materials and Methods 

 

2.1 Animal husbandry  

2.1.1 Murine model 

Cyp27b1 null mice were provided by Dr. René St-Arnaud of McGill University in 

Montreal, Quebec.  The 1αOHase enzyme was inactivated by Cre-mediated excision of 

the gene in embryonic stem cells. Homologous recombination with the 1αOHase locus 

and wild-type locus generated a targeted allele in which exon 8, encoding the heme-

binding domain, was deleted, effectively generated a null allele.81 The mice were 

maintained in the C57BL/6 parent strain, through heterozygous matings, resulting in the 

generation of offspring of three genotypes: wild type (WT) with both normal Cyp27b1 

alleles (Cyp27b1+/+), heterozygous (Cyp27b1+/-) with one normal Cyp27b1 allele and one 

Cyp27b1 allele ablated, and Cyp27b1 null with both Cyp27b1 alleles ablated (Cyp27b1-/-).  

 

In a previous study in our lab, a traditional breeding approach was used in which 

Cyp27b1+/- males and females were mated so that WT, Cyp27b1+/- and Cyp27b1 null 

fetuses were generated in each litter. However, surprisingly, the Cyp27b1 null fetuses had 

detectable levels of circulating calcitriol. 

 

Therefore, in order to obtain truly calcitriol-deleted fetuses, Cyp27b1 null and WT 

mothers, first degree relatives of each other, were mated to the same Cyp27b1+/- males. 

This resulted in Cyp27b1 null and Cyp27b1+/- fetuses from Cyp27b1 null mothers, and 

Cyp27b1+/- and WT fetuses from WT mothers (Figure 9). Comparison of Cyp27b1 null 
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and WT fetuses conceivably revealed any effects of calcitriol deficiency, whereas 

comparison of Cyp27b1+/- fetuses from two different maternal backgrounds enabled 

detection of any maternal influence on the fetal phenotype. 
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Figure 9: Mating Scheme. The traditional mating scheme of mating Cyp27b1+/- males to 

Cyp27b1+/- females could not be used as null fetuses obtain calcitriol from their HET 

mother.  Therefore, Cyp27b1+/- males were mated to either WT or Cyp27b1 null females 

in order to produce litters containing WT and Cyp27b1+/-or Cyp27b1 null and Cyp27b1+/- 

fetuses respectively.   
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2.1.2 Rescue diet   

 

Both WT and Cyp27b1 null female mice were placed on a rescue diet (TekLad 

TD.94112; Harlan TekLad, Madison, WI) consisting of 2% calcium, 1.25% phosphorus, 

and 20% lactose.155 The diet’s high lactose content increases paracellular calcium 

absorption138 and it has been used in prior studies of Cyp27b1 null and Vdr null mice to 

normalize fertility.156 The diet was provided ad libitum at weaning to allow for normal 

bone phenotype and fertility in the null mice.  

 

2.1.3 Timed mating 

 

Virgin first-degree relative pairs of WT and Cyp27b1 null females were mated with 

Cyp27b1+/- males at approximately 16:00 hours on Thursday evenings. At approximately 

9:00 hours the following morning, mice were checked for the presence of a vaginal 

mucus plug. The presence of a vaginal plug was indicative that the mouse had mated and 

may have conceived; if so, this was embryonic day (ED) 0.5. However, a plug was not 

always evident due to the plug being too small or the plug having fallen out. Mice were 

returned to their original cages and continually mated on Thursday evenings until 

pregnancy was visually confirmed. The normal gestational period for these mice was 18.5 

days.  

2.1.4 Animal housing  

Animals were housed in a facility operated by Animal Care Services of Memorial 

University of Newfoundland. Animals were housed in individually ventilated rodent 
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cages with 501 cm2 floor area (GM500, Techniplast Canada) and Bed-O-Cobs corn cob 

absorbent bedding (The Andersons, Maumee, OH, USA). This is in accordance with the 

Canadian Council on Animal Care (CCAC). The regular light and dark cycle was used 

with light from 8:00 hours to 20:00 hours.  

  

2.1.5 Animal care approval  

All experimental procedures were approved by the Institutional Animal Care Committee 

(IACC) of Memorial University of Newfoundland. 

 

 

2.2 Genotyping  

2.2.1 Animal identification  

At 21 days of age (the time of weaning), experimental mice were weaned from their 

mothers and separated into cages based on sex, with a maximum of 4 mice per cage. Mice 

were briefly anesthetized with Isoflurane (Baxter, Deerfield, IL), and their right ear was 

crimped with a tag for identification purposes. 

 

2.2.2 Tail sample collection  

While still under anaesthesia from the ear tagging procedure, a 0.5cm section of tail was 

clipped from each mouse with a sterile razor blade and placed into a labelled 1.5 mL 

Eppendorf tube. To digest tail clippings, 300 µl of cell lysis solution and 1.5 µl of 

proteinase K (Invitrogen, Carlsbad, CA) was added to each tube and tubes were placed in 
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an incubator (Thermo Fisher Scientific, Burlington, ON) for 18-24 h at 55 ˚C. Following 

this incubation period, tails were fully digested and ready for DNA extraction.  

 

2.2.3 DNA extraction  

DNA extraction was completed as per the Qiagen Purgene® Core A Kit (Qiagen, 

Toronto, ON). A protein precipitation solution (100 ul) was added to each digested tail 

sample and each sample was then vortexed for 20 sec at high speed. Samples were then 

centrifuged at 16,000 x g for 3 min in an IEC Micromax centrifuge (Thermo Fisher 

Scientific, Burlington, ON). Following centrifugation, each tube was checked for the 

presence of a white protein pellet and 300 µl of supernatant from each sample was 

pipetted into fresh 1.5 mL microcentrifuge tubes containing 300 µl of isopropanol. Tubes 

were gently inverted 50 times to precipitate the DNA, and then centrifuged for 1 min at 

16,000 x g to obtain the DNA in a small white pellet at the bottom of each tube. 

Following centrifugation, the supernatant was decanted and 300 µl of 70 % ethanol was 

added to each sample. Tubes were then inverted several times in order to wash the DNA 

pellet, following which they were centrifuges for 1 min at 16,000 x g. The supernatant 

was again decanted and excess ethanol was removed with a pipette. Tubes were left to air 

dry for 5 minutes to further allow the ethanol to evaporate off. Finally, 200µl of DNA 

hydration solution was added to each sample, samples were vortexed for 5 seconds and 

incubated at 65 degrees Celsius (ºC) for 1 hour in order to dissolve the DNA. 
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2.2.4 Polymerase chain reaction (PCR) 

PCR was carried out on the extracted DNA. In order to distinguish Cyp27b1 null, 

Cyp27b1+/- and WT mice, a 3-primer system was used:  

         Cyp27-1 (forward): 5’ - AAT TCC CGT CCA GAC AGA GAC ATC C – 3’ 

         Cyp27-2 (reverse): 5’ – GGT CAT GGG CTT GAT AGG AGC ACC – 3’ 

         Cyp27-3 (reverse): 5’ – GGG TGG GGA ATG TGA AGA AGA GGA TCT G – 3’ 

 

The PCR master mix was made with 10x PCR reaction buffer, deoxyribose nucleotide tri-

phosphates (dNTPS - dATP, dTTP, dCTP, dGTP), primers (Cyp27-1, Cyp27-2, Cyp27-3), 

50 mM MgCl2, Platinum Taq DNA polymerase, and distilled water (Invitrogen, Carlsbad, 

CA). The PCR master mix was aliquoted into fresh 0.2 mL PCR tubes (Thermo Fisher 

Scientific, Burlington, ON) with 19.5 µl in each. Next, 2 µl of DNA sample was then 

added into the solution in each tube. PCR tubes were then placed into Bio-Rad C1000 

Thermal Cycler (Bio-Rad Laboratories, Hercules, California). 

 

The PCR running program consisted of 7 steps, described as follows: Step 1: 94 °C for 5 

min for initial denaturation, Step 2: 94 °C for 30 sec to denature the DNA, Step 3: 58 °C 

for 30 sec for annealing, Step 4: 72 °C for 30 sec for elongation of complementary strand, 

Step 5: return to step 2 and repeat for 35 cycles for continued amplification, Step 6: 72 °C 

for 10 min to elongate any remaining strands and Step 7: 4 °C infinitely for storage of 

reaction.  
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2.2.5 Gel electrophoresis  

Gel electrophoresis was completed in order to separate and display PCR products. A     

1.2 % agarose gel was made using 10 mL TAE buffer (0.12 M EDTA, 0.40 M Tris, 11.5 

% Glacial Acetic Acid, pH 8), 90 mL deionized water, 1.2 g agarose (Invitrogen, 

Carlsbad, CA) and 10 µl of SYBR Safe DNA Gel Stain (Invitrogen, Carlsbad, CA). 

Agarose powder was added into the TAE buffer solution and then melted by microwaving 

in two separate 1 min intervals. Next, SYPBR safe gel stain was added to the solution and 

gently swirled. The solution was poured into the gel casting tray, containing 2 gel comb 

inserts, and allowed to solidify. While the gel was solidifying, 4 µl of gel loading dye 

[1mL Tris, 0.03 g bromophenol blue, 0.03 g xylene cyanol FF, 60 mL glycerol, 12 mL of 

0.5 M EDTA, 27 mL deionized water (dH20)] was added to each PCR tube.  

 

Once the gel had solidified, gel running buffer [90 mL 10x TAE and 810 mL dH20] was 

added to the gel electrophoresis chamber and gel comb inserts were carefully removed. 

Fifteen µl of PCR product and gel dye mixture was injected into each well of the gel. The 

samples were run at 200 V for 20 min.  

 

Following electrophoresis, the bands were visualized under UV light using the Kodak Gel 

Doc System (Bio-Rad, Hercules, CA). The results were analyzed using Bio-Rad Image 

lab software (Bio-Rad, Hercules, CA). A single 250 bp band indicated WT mice, a single 

350 bp band indicated null mice and bands at both 250 bp and 350 bp indicated HET 

mice (Figure 10).  
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Figure 10: Genotyping by Polymerase Chain Reaction and Gel Electrophoresis. 

Sample PCR products run on a 1.2 % agarose gel. The presence of a single band at 250 bp 

indicates a WT mouse, presence of both 250 bp and 350 bp bands indicates a Cyp27b1+/- 

mouse, and the presence of a single 350 bp band indicates a Cyp27b1 null mouse.  
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2.3 Sample collection and storage 

 

2.3.1 Serum collection 

On ED 18.5, maternal blood serum samples were collected by bleeding the tail vein.  A 

small clipping of tail was cut with a sterile razor blade and the blood was massaged out 

into a 0.6 mL micro centrifuge tube (Thermo Fisher Scientific, Burlington, ON). Under 

brief anesthesia using Isoflurane (Baxter, Deerfield, IL), mothers were then euthanized 

via cervical dislocation. Fetuses were removed via Caesarean section (C-section) and 

were detached from their placentas by severing their umbilical cords. Fetal blood was 

collected by making a small incision in the carotid artery and jugular vein using a sterile 

razor blade and blood was collected into a Micro-Hematocrit Capillary Tube (Fisher 

Scientific, Burlington, ON). Following fetal blood collection, fetuses were immediately 

euthanized by decapitation. Blood samples were subsequently spun on a microcentrifuge 

for 5 min at 16,000 x g to separate out serum from clotted blood. Serum was stored at        

-20 °C for future analysis.  

2.3.2 Amniotic fluid collection  

On ED 17.5, mothers were sacrificed by cervical dislocation and pups were removed by 

C-section. Each amniotic sac was lanced using a 20G needle (BD PrecisionGlide™) and 

the fluid was collected in 60 µl micro-hematocrit capillary tubes (Thermo Fisher 

Scientific, Burlington, ON). Samples were then transferred to 0.6 ml microcentrifuge 

tubes (Fisher Scientific, Burlington, ON) and stored at – 20 °C until analysis.  
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2.3.3 Collection of placenta and fetal kidneys 

On ED 18.5, following detachment of the fetus from the placenta, placentas were 

individually placed into 1.5 mL Eppendorf tubes and were flash frozen in liquid nitrogen. 

Serum was then collected and fetuses were euthanized. Following euthanasia, fetuses 

were laid in a supine position and a small incision was made from the pelvic bone to the 

sternum. Both kidneys were then removed from each fetus, placed into a 1.5mL 

Eppendorf tube and flash frozen in liquid nitrogen. Tissues were stored at -70 ºC for 

future analysis.  

2.3.4 Collection of whole bodies 

On ED. 18.5, following removal of fetal kidneys, fetal bodies were placed in labelled 

scintillation vials containing 10 % buffered formalin (1x PBS, 4 % Formaldehyde, dH2O) 

and stored at room temperature. Once all samples had been collected, fetuses were 

removed from vials, the right hind limb was removed and placed back into the buffered 

formalin for embedding in paraffin.  

 

2.4 Analysis of serum and amniotic fluid mineral content 

2.4.1 Serum and amniotic fluid total calcium measurement  

Serum (ED 18.5) and amniotic fluid (ED 17.5) total calcium were measured using a 

calcium assay (Sekisui Diagnostics, Charlottetown, PEI). The assay is based on the 

principle that Arsenazo III reacts with calcium to form a complex that is blue-purple in 

color with a maximum absorbance of 650 nm. Therefore, results read at this wavelength 

are directly proportional to the total calcium concentration in the sample. The reportable 



 57 

range for this kit was 0.01 mmol/L to 3.75mmol/L. Serum and amniotic fluid samples 

were measured undiluted and following kit protocol. A spectrophotometer (Ultraspec 

2000; Pharmacia Biotech, Piscataway, NJ) was used to measure samples at an absorbance 

of 650 nm. Deionized water was used as a blank.  

2.4.2 Serum and amniotic fluid inorganic phosphate measurement  

Serum (ED 18.5) and amniotic fluid (ED 17.5) inorganic phosphate were measured using 

a Phosphorus-SL assay (Sekisui Diagnostics, Charlottetown, PEI). The assay is based on 

the principle that inorganic phosphorus reacts with ammonium molybdate in the presence 

of sulfuric acid to produce an unreduced phosphomolybdate complex. The concentration 

of inorganic phosphorus in the sample is directly proportional to the absorbance at 320 

nm.  The reportable range of the kit was 0.03 mmol/L to 6.46 mmol/L. Serum and 

amniotic fluid samples were measured undiluted and following kit protocol. A 

spectrophotometer (Ultraspec 2000; Pharmacia Biotech, Piscataway, NJ) was used to 

measure samples at an absorbance of 320 nm. Deionized water was used as a blank. 

2.5 Hormone physiology  

2.5.1 Serum calcitriol  

Serum calcitriol was measured using a 1,25-dihydroxy vitamin D enzyme-immunoassay 

(EIA) Kit (Immunodiagnostic Systems, Maryland, USA). The detection limit for the 

assay in human serum was 6 pmol/L. The manufacturer has not published the detection 

limit in mice. The assay was carried out over a two-day period. The calcitriol in the 

samples was first purified by immunoextraction then quantified by EIA. The principle of 
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the assay was based on competitive binding of either free calcitriol or calcitriol linked to 

biotin for a limited amount of highly specific sheep anti-calcitriol antibody binding sites. 

The amount of complexed biotin bound to the anti-sheep antibody was inversely 

proportional to the concentration of free calcitriol. Due to the amount of fetal serum 

needed for each sample, the assay was carried out using a 1:2 dilution of serum in PBS 

supplemented with 1% BSA. Maternal and fetal serum samples were measured. The 

remaining assay procedure followed kit protocol for “alternative sample preparation” and 

remaining immunoextraction assay procedure. Any values that were below the assay 

sensitivity were reset to values that equaled the assay’s detection limit. 

 

2.5.2 25-Hydroxyvitamin D and 24,25-dihydroxyvitamin D 

Maternal and fetal serum were sent to Dr. Glenville Jones at Queen’s University in 

Kingston Ontario for the measurement of 25-OHD3 and 24,25-dihydroxyvitamin D3. 

Samples were measured using liquid chromatography tandem mass spectrometry. The 

assay methods, details and procedure have been previously published. 157 

 

2.5.2 Serum parathyroid hormone (PTH) 

Serum PTH was measured using a Mouse Intact PTH ELISA Kit (Immunotopics Inc., 

San Clement, CA). The detection limit of the assay was 4 pg/mL. The assay principle is a 

two-site enzyme-linked immunosorbent assay (ELISA) . Samples were incubated 

simultaneously with a biotinylated capture antibody and a horseradish peroxidase (HRP) 
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conjugated antibody in a streptavidin coated microtiter well. Intact PTH contained in the 

sample is immunologically bound by the capture antibody and the detection antibody to 

form a sandwich complex. The enzymatic activity of the antibody complex bound to the 

well is directly proportional to the amount of PTH in the sample.  Samples were measured 

using an Epoch Microplate Spectrophotometer (Biotek) at an absorbance of 450 nm. 

Maternal and fetal serum collected on ED 18.5 were measured and experiments were 

completed as per kit protocol. Any values that appeared to be below the assay sensitivity 

were reset to values that equaled the assay’s detection limit. 

2.5.3 Serum fibroblast growth factor 23 (FGF23) 

Serum FGF23 was measured using a FGF23 ELISA Kit (Kainos Laboratories, INC., 

Tokyo, Japan) designed for measurement of mouse serum. The detection limit of the 

assay is 3 pg/mL. The assay principle is a two-step enzyme-linked immunosorbent assay. 

In the first reaction, samples are incubated with the immobilized antibody in a microtiter 

well, allowing the FGF23 in the samples to be captured by the antibody. In the second 

reaction, the immobilized FGF23 is incubated with HRP labelled antibody to form a 

sandwich complex. The enzymatic activity of the antibody complex bound to the well is 

directly proportional to the amount of FGF23 in the sample. Samples were measured 

using an Epoch Microplate Spectrophotometer (Biotek, Winooski, VT). Maternal and 

fetal serum collected on ED 18.5 were measured and experiments were completed as per 

kit protocol. Any values that appeared to be below the assay sensitivity were reset to 

values that equaled the assay’s detection limit. 
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2.6 Histomorphometry  

 

Undecalcified, paraffin embedded hind limbs, collected from WT and Cyp27b1 null 

fetuses, were sectioned into 5 μm sections with a Leica RM2135 rotary microtome (Leica 

Microsystems, Wetzlar, Germany). Tibia sections were placed on a slide warmer (Fisher) 

for 30 min and samples were then deparafinized and rehydrated using the following 

protocol: Step 1: Xylene for 2 min (2x), Step 2: 100 % Ethanol (EtOH) for 2 min (2x), 

Step 3: 95 % EtOH for 2 min, Step 5: 70 % EtOH for 2 min, Step 6: 50 % EtOH for 2 min 

and Step 7: distilled water for 1 min.  Sections were then stained with methyl green 

(Sigma, Kawasaki, Japan) for 15 min. Excess dye was blotted from the slides, washed in 

1-butanol (Fisher Scientific, Burlington, ON) for 10 sec (2x), and then washed in xylene 

for 10 sec (2x). Cover slips were then mounted on each slide using Permount (Fisher 

Scientific, Burlington, ON). Stained tibial sections were viewed using a Leica DM500 

LED Optical Microscope at 10x magnification (Leica, Wetzler, Germany). Images were 

taken using a Sony DXC-S500 color digital camera (Sony, Tokyo, Japan).  

 

 

2.7 Fetal ash and mineral content  

 

Individual fetuses were weighed, placed in crucibles and reduced to ash in a furnace at 

500 °C for 24 h. Following cremation, the ash was removed from the crucibles using a 

fine paintbrush and weighed.  The ash weight reflects the amount of total mineral present 

in the fetal skeleton. Ash samples were then transferred into acid washed 20mL glass 

scintillation vials and stored at room temperature until samples were prepared for 

analysis. Before analysis, 253 µl of nitric acid was added to each scintillation vial 
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containing fetal ash and samples were left at room temperature for 5 days to dissolve. 

Following dissolution of the ash, 9.75 mL of deionized water was added to each vial. 

Skeletal calcium and magnesium content were measured using the 2380 Atomic 

Absorption Spectrophotometer (Perkin –Elmer, Waltham, MA). Appropriate dilutions 

were used to allow the reading to be within the proper calibration range. Skeletal 

phosphorus content was measured using a Phosphorus-SL assay (Sekisui Diagnostics, 

Charlottetown, PEI) as per kit protocol.  

 

2.8 Gene expression  

2.8.1 RNA extraction  

RNA was extracted from placentas and fetal kidneys using the RNeasy® Lipid Tissue Kit 

(QIAGEN, Toronto, ON).  Tissues were homogenized in bead tubes containing 10 beads 

and QIAzol Lysis Reagent (QIAGEN, Toronto, ON) using Precellys® Tissue 

Homogenizer. Following homogenization, chloroform was added to each sample, and 

samples were centrifuged to separate homogenate into aqueous and organic phases. The 

upper, aqueous phase was then collected, and 70 % ethanol was added to provide 

appropriate binding conditions. The sample was then applied to an RNeasy spin column, 

where total RNA binds to the membrane, and phenol and other contaminants are removed 

through washing with buffer RW1, and with buffer RPE (2x). RNA was then eluted in 

RNase-free water. The RNeasy® Lipid Midi Tissue Kit (QIAGEN, Toronto, ON) was 

used for extraction of RNA from placentas (≤250 mg of tissue), while the RNeasy® Lipid 

Mini Tissue Kit was used for extraction of kidney RNA (≤ 30 mg of tissue). 
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2.8.2 Synthesis of complementary DNA (cDNA)  

cDNA was synthesized using a High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Burlington, ON) using 2 µg of mouse placental or fetal kidney mRNA. 

Experimental procedure followed kit protocol.  

 

The synthesis program conditions were as follows: Step 1: 25 °C for 10 min; Step 2:      

37 °C for 120 min; Step 3: 85 °C for 5 min; Step 4: hold at 4 °C for infinity. Synthesis 

program was carried out using a Bio-Rad C1000 Touch Thermal Cycler (Bio-Rad 

laboratories, Hercules, California). 

2.8.3 Real –time quantitative reverse transcriptase-PCR (RT qPCR) 

RT qPCR was completed using the following Taqman® Gene Expression Assays 

(ThermoFisher Scientific, Burlington, ON): Cyp27b1, Cyp24a1, Pmca1, VDR, S100G, 

Pthrp, Trpv6, and NaPi 2a, NaPi 2b and NaPi 2c. These assays are pre-designed and pre-

optimized with a fluorogenic probe with a FAM™ dye label on the 5' end and a non-

fluorescent quencher on the 3' end. When targeted cDNA was amplified, the MGB probe 

was digested by DNA polymerase and the FAM reporter dye was released. Fluorescence 

from free FAM reporter dye was detected by the real-time PCR system. The intensity of 

fluorescence was directed to the concentration of targeted cDNA within proper range. 

The thermal cycler protocol consisted of the following steps: Step 1: 50 °C for 2 min for 

Uracil-N-Glycosylase (UNG) incubation; Step 2: 95 °C for 20 sec for polymerase 

activation; Step 3: 95 °C for 1 sec to denature; Step 4: 60 °C for 20 sec for annealing; 

Step 5: Return to step 3 and repeat 40 times.  Multiplex qPCR reactions (gene of interest 

multiplexed with reference gene) were run in triplicate on the ViiA™ 7 Real-Time PCR 
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System (Fisher Scientific, Carlsbad, CA). Technical replicates (triplicate) of each sample 

were used with a reaction volume of 20 µl. Relative expression was determined from the 

threshold cycle (CT) normalized to the reference gene (Gapdh). Gapdh was labelled with 

Vic reporter dye, and was measured using a Taqman® Gene Expression Assay. 

 

 

2.9 Placental calcium transport  

 

On ED 17.5, mothers were briefly anesthetized with Isoflurane and received an 

intracardiac injection of 100 µl of 45Ca and 51Cr-EDTA cocktail. EDTA is passively 

transferred and serves as a blood diffusional marker. The cocktail was made up of 1.85 

megabecquerels (MBq) of 45Ca, 1.85 MBq of 51Cr and the remaining volume of saline. 

After 5 min, mothers were sacrificed by cervical dislocation and fetuses were removed 

via C-section. Tails from each fetus were collected for genotyping. Fetuses were 

sacrificed by pithing the skulls and were placed in plastic tubes for measurement of 

radioactivity. The 51Cr activity was measured using a 1480 WIZARD 3 automatic gamma 

counter (Perkin Elmer, Waltham, MA). Fetuses were then transferred into scintillation 

vials containing 10 mL of Scintigest and placed in an incubator at 55 ˚C for 24-48 h to 

solubilize. Following the incubation period, 10 mL of scintillation fluid and 5 drops of 

glacial acetic acid were added to each vial and vials were covered in aluminum foil and 

placed in the dark for 24 h to prevent bioluminescence.125 The activity of 45Ca was 

measured with a LS 6500 Multi-Purpose Scintillation Counter (Beckman Coulter, Brea, 

CA). Placental calcium transport was expressed as a ratio of 45Ca/51Cr in each fetus, 

normalized to the mean value of heterozygous fetuses within each litter. 
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2.10 Statistical analysis  

 

Data were analyzed using StatPlus: Mac Professional 2009, Build 6.0.3 (AnalystSoft Inc., 

Vancouver, BC).  ANOVA (analysis of variance) was used for analysis of biochemical, 

transport, and ash data, with Tukey-Kramer post-hoc to determine which pairs of means 

differed significantly.  qPCR data was analyzed using the Comparative CT method 

(2∆CT)158. All data are presented with mean ± standard error (SE) for fetal data except 

mean ± standard deviation (SD) for qPCR. On the graphs, significant differences are 

marked, and the number of observations is indicated in parentheses on the x-axis. 
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III. RESULTS 

 

 

3.1 Litter size  

 

The number of fetuses present in WT and Cyp27b1 null mothers was determined at ED 

18.5. It is an indicator of fertility and the capacity of the mother to carry fetuses to term. 

Litter sizes were no different between the maternal genotypes, specifically 8.3±0.5 in 

Cyp27b1 null vs. 8.1±0.3 in WT mothers.  
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Figure 11: Average litter size of fetuses borne of WT and Cyp27b1 null mothers. 

Litter sizes were no different between litters borne of Cyp27b1 null mothers and litters 

borne of WT mothers. Values are means ± SE and the number of observations are 

indicated in parentheses. 
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3.2  Hormone physiology  

 

The fetal serum concentrations of several hormones relevant to calcium and phosphorus 

homeostasis were determined. 

3.2.1 Calcitriol   

We measured calcitriol first, in order to confirm that it is absent in Cyp27b1 null fetuses 

born of Cyp27b1 null females.  

 

Serum calcitriol levels in null fetuses were 16 pmol/L was not significantly different from 

the published detection limit for human sera (6 pmol/L). It may represent the detection 

limit for mouse sera, which has not been formally established (Figure 12). The kit uses 

anti-mouse antibodies, and as a consequence, non-specific binding within mouse sera can 

be expected to raise the detection limit. 

  

Cyp27b1 null mothers had detectable calcitriol (167 ± 70 pmol/L), but significantly lower 

than levels found in related WT mothers (719 ± 79 pmol/L). 
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Figure 12: Serum calcitriol in WT and Cyp27b1 null mothers and their fetuses. 

Cyp27b1 null fetuses have levels of calcitriol that are lower than the expected detection 

limit. Maternal calcitriol is lower in null mothers compared to WT mothers. The dashed 

line represents the expected detection limit of the assay for mouse sera. Values are means 

± SE and the numbers of observations are indicated in parentheses.  
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3.2.2 25OHD and 24,25-dihydroxyvitamin D 

Calcitriol is formed by hydroxylation of 25OHD, and both 25OHD and calcitriol are 

catabolized by 24-hydroxylation. In this process 25OHD is converted to the inactive 

form, 24,25-dihydroxyvitamin D. Calcitriol stimulates its own catabolism via Cyp24a1. 

The absence of calcitriol in Cyp27b1 null fetuses could result in accumulation of its 

precursor or altered rate of catabolism by Cyp24a1.  Therefore, we measured these 

metabolites of vitamin D as well, specifically the D3 isoforms.  

 

Both 25OHD3 and 24,25-dihydroxyvitmain D were no different between Cyp27b1 null 

fetuses and their Cyp27b1+/- littermates. However, these metabolites were significantly 

higher in these fetuses in comparison to both WT and Cyp27b1+/- fetuses borne of WT 

mothers.  
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Figure 13: Serum 25OHD3. Serum 25OHD3 was significantly higher in fetuses born of 

null mothers when compared to fetuses born of WT mothers, whereas there were no 

differences between litters. This suggests that maternal calcitriol may be an important 

direct or indirect determinant of fetal 25OHD3. Values are means ± SE and the numbers 

of observations are indicated in parentheses. 
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Figure 14: Serum 24,25-dihydroxyvitamin D. Serum 24,25-dihydroxyvitamin D was 

significantly higher in fetuses born of null mothers when compared to fetuses born of WT 

mothers, whereas there were no differences between litters. This suggests that maternal 

calcitriol may be an important direct or indirect determinant of fetal 24,25-

dihydroxyvitamin D. Values are means ± SE and the numbers of observations are 

indicated in parentheses. 
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3.2.3 PTH 

Next, we wanted to measure PTH, as it is the main stimulator of calcitriol’s synthesis.  

 

There were no differences in PTH within or between litters. However, fetal serum PTH 

levels did display a nonsignificant trend towards lower values in fetuses borne of 

Cyp27b1 null mothers, in comparison to fetuses borne of WT mothers. This suggests that 

maternal calcitriol plays a direct or indirect role in regulating fetal PTH levels.  I am 

drawing your attention to this trend now, to support other results that follow. 

 

This data matches prior study of Vdr null fetuses which also had normal PTH levels in 

comparison to their WT counterparts. 131,137 
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Figure 15: Serum PTH in fetal mice borne of WT and Cyp27b1 null mothers. Serum 

PTH is no different between null and Cyp27b1+/- fetuses of null mothers, or when 

compared to WT and Cyp27b1+/- fetuses of WT mothers. Values are means ± SE and the 

numbers of observations are indicated in parentheses. 
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3.2.4 FGF23 

Calcitriol is a potent stimulator of FGF23 synthesis, and so loss of calcitriol's actions 

should also lower serum FGF23 levels.  FGF23 was not significantly different between 

Cyp27b1 null fetuses and their Cyp27b1+/- littermates.  However, both null fetuses and 

their Cyp27b1+/- littermates had significantly lower serum FGF23 than in Cyp27b1+/- 

fetuses born to WT mothers (Figure 16). This suggests that fetal calcitriol is not necessary 

for regulation of fetal FGF23. Instead, maternal calcitriol may directly or indirectly play a 

role in determining the fetal FGF23 concentration. 

 

This data contrasts with prior study of Vdr null fetal mice which indicated 50% lower 

serum FGF23 than their WT sisters.102  
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Figure 16: Serum FGF23 in fetal mice borne of WT and Cyp27b1 null mothers. 

FGF23 is lower in fetuses born of null mothers compared to Cyp27b1+/- fetuses born of 

WT mothers, whereas there were no differences within litters. This suggests that maternal 

calcitriol may be an important direct or indirect determinant of fetal FGF23. Values are 

means ± SE and the numbers of observations are indicated in parentheses. 
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3.3 Serum and amniotic fluid mineral concentrations 

 

Postnatally, in the absence of calcitriol, serum calcium and phosphorus become low, urine 

calcium becomes low and phosphorus excretion is increased. We wanted to investigate 

this in the fetus by determining amniotic fluid calcium and phosphorus values, which acts 

as a surrogate of renal excretion into the urine.  

3.3.1 Total serum calcium and amniotic fluid calcium measurement  

 

Serum calcium was no different between null fetuses and their Cyp27b1+/- littermates or 

when compared to Cyp27b1+/- and WT fetuses of WT mothers (Figure 17).  

 

Amniotic fluid calcium was no different between Cyp27b1 null fetuses and their 

Cyp27b1+/- littermates; however, the value was significantly increased in fetuses from 

Cyp27b1 null mothers as compared to the offspring of WT mothers (Figure 18). The 

normal amniotic fluid in the Cyp27b1 null fetuses in comparison to their Cyp27b1+/- 

littermates likely indicates that renal calcium excretion is normal. However, as both 

Cyp27b1 null and Cyp27b1+/- fetuses have increased amniotic fluid calcium in comparison 

to fetuses borne of WT mothers, maternal calcitriol may be an indirect or director 

determinant of amniotic fluid calcium. This also suggests that the trend towards lower 

PTH in fetuses from Cyp27b1 null mothers may be true, as lower PTH would be expected 

to lead to an increase in calcium excretion into urine and amniotic fluid, in keeping with 

what happens postnatally in the presence of low PTH. 
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This data coincides with prior study of Vdr null fetuses, that found normal amniotic fluid 

calcium in Vdr null fetuses in comparison to littermates. 131 
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Figure 17: Serum calcium in fetal mice borne of WT and Cyp27b1 null mothers. 

Serum calcium is no different between null and Cyp27b1+/- fetuses born of Cyp27b1 null 

mothers and WT and Cyp27b1+/- fetuses born of WT mothers. Values are means ± SE and 

the numbers of observations are indicated in parentheses. 
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Figure 18: Amniotic fluid calcium in fetal mice borne of WT and Cyp27b1 null 

mothers. Amniotic fluid calcium is significantly higher in fetuses born of Cyp27b1 null 

mothers compared to fetuses born of WT mothers. This suggests that maternal calcitriol is 

an important indicator of amniotic fluid calcium content. Values are means ± SE and the 

numbers of observations are indicated in parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WT DAM NULL DAM 



 80 

3.3.2 Serum and amniotic fluid phosphorus measurement  

 

There was no difference in serum phosphorus concentrations between Cyp27b1 null and 

Cyp27b1+/- littermates or when compared to fetuses borne of WT mothers (Figure 18). 

 

Amniotic fluid phosphorus was no different between null and Cyp27b1+/- littermates.  

However, amniotic fluid phosphorus was significantly lower in fetuses from Cyp27b1 

null mothers, as compared to fetuses from WT mothers (Figure 19). The normal amniotic 

fluid phosphorus in the Cyp27b1 null fetuses in comparison to their Cyp27b1+/- littermates 

likely indicates that renal phosphorus excretion is normal. However, as both Cyp27b1 null 

and Cyp27b1+/- fetuses have decreased amniotic fluid phosphorus in comparison to fetuses 

borne of WT mothers, maternal calcitriol may be an indirect or director determinant of 

amniotic fluid phosphorus.  Moreover, these results also match the trend towards lower 

PTH in Cyp27b1 null fetuses, as lower PTH would cause a decrease in phosphorus 

excretion into urine and, thereby, amniotic fluid.  

  

This data is consistent with prior study of Vdr null fetuses had normal amniotic fluid 

phosphorus in comparison to their littermates.131 
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Figure 19: Serum Phosphorus in fetal mice borne of WT and Cyp27b1 null mothers.  

Serum phosphorus is no difference between null and Cyp27b1+/- fetuses born of null 

mothers and WT and Cyp27b1+/- fetuses born of WT mothers. Values are means ± SE and 

the numbers of observations are indicated in parentheses. 
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Figure 20: Amniotic fluid phosphorus in fetal mice borne of WT and Cyp27b1 null 

mothers. Amniotic fluid phosphorus is significantly lower in fetuses of Cyp27b1 null 

mothers when compared to fetuses of WT mothers. This suggests that maternal calcitriol 

plays a role in the regulation of fetal phosphorus excretion. Values are means ± SE and 

the numbers of observations are indicated in parentheses. 
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3.4 Fetal skeletal ash weight, mineral content and morphology  

 

Ultimately circulating mineral ends up in the skeleton; therefore, if loss of calcitriol 

affects mineral transport or accretion of mineral into the bone, this should be visualized in 

the skeleton. Furthermore, if calcitriol is important for osteoblast or osteoclast function, 

then altered skeletal development may be a measurable outcome. To address this, fetal 

ash weight, mineral content and morphology were assessed.   

 

3.4.1 Fetal ash weight and skeletal mineral content  

 

 

Ash weight is a reflection of the total mineral content within the fetal skeleton. There was 

no difference in ash weight between null and Cyp27b1+/- fetuses of Cyp27b1 null mothers 

(0.0151 ± 0.0008g vs. 0.0160 ± 0.0008g) or when compared to WT and Cyp27b1+/- 

fetuses of WT mothers (Figure 21).  

 

There were no differences in ash calcium (Figure 22), phosphorus (Figure 23) or 

magnesium (Figure 24) content in Cyp27b1 null fetuses compared to their Cyp27b1+/- 

littermates, or when compared to WT and Cyp27b1+/- littermates from WT mothers. 
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Figure 21: Ash Weight of fetal mice borne of WT and Cyp27b1 null mothers. Fetal 

ash weight was no different between null and Cyp27b1+/- fetuses of Cyp27b1 null 

mothers, or when compared to WT and Cyp27b1+/- fetuses of WT mothers. Values are 

means ± SE and the numbers of observations are indicated in parentheses. 
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Figure 22: Skeletal calcium content in fetal mice borne of WT and Cyp27b1 null 

mothers. Intact fetuses were reduced to ash and skeletal mineral content was measured 

using flame atomic spectrophotometry. Skeletal calcium content was no different between 

null and Cyp27b1+/- fetuses borne of Cyp27b1 null mothers or when compared to WT and 

Cyp27b1+/- fetuses of WT mothers. Values are means ± SE and the numbers of 

observations are indicated in parentheses. 
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Figure 23: Skeletal phosphorus content of fetal mice borne of WT and Cyp27b1 null 

mothers. Intact fetuses were reduced to ash and skeletal mineral content was measured 

using flame atomic spectrophotometry. Skeletal phosphorus content was no different 

between null and Cyp27b1+/- fetuses borne of Cyp27b1 null mothers or when compared to 

WT and Cyp27b1+/- fetuses of WT mothers. Values are means ± SE and the numbers of 

observations are indicated in parentheses. 
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Figure 24: Skeletal magnesium content in fetal mice borne of WT and Cyp27b1 null 

mothers. Intact fetuses were reduced to ash and skeletal mineral content was measured 

using flame atomic spectrophotometry. Skeletal magnesium content was no different 

between null and Cyp27b1+/- fetuses borne of Cyp27b1 null mothers or when compared to 

WT and Cyp27b1+/- fetuses of WT mothers. Values are means ± SE and the numbers of 

observations are indicated in parentheses. 
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3.4.2 Tibial morphology  

To examine skeletal development, the morphology of the fetal tibiae were examined, as it 

is the gold standard methodology recognized by the literature. The sequential 

development is visually laid out with the identifiable zones of chondrocytes within the 

growth plate followed by the start of the endochondral bone.  

By use of this method, Cyp27b1 null fetal tibias showed normal endochondral 

development with no differences in length or cellular morphology compared to tibial 

sections from WT fetuses born of WT mothers (Figure 25). 

 

These results contrast with prior study of Vdr null fetuses which have shown increased 

placental calcium transport in the Vdr null fetuses compared to their Vdr+/- 

littermates.131,137 
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Figure 25: Fetal Tibial morphology. Cyp27b1 null fetuses (B) show normal 

endochondral development, with no alteration in the length and cellular morphology of 

cartilaginous or boney compartments (as shown by methyl green stain), in comparison to 

WT fetuses borne of WT mothers (A).  These images are representative of the individuals 

examined.  
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3.5 Placental calcium transport 

 

Thus far, Cyp27b1 null fetuses show no deficit in mineral concentrations in the 

circulation or accreted into the skeleton. We wanted to measure placental calcium 

transport to be certain that delivery of mineral to the fetus is also unaffected by absence of 

calcitriol, versus increased as it was in the Vdr nulls.  

 

Placental calcium transport was not altered between Cyp27b1 null and Cyp27b1+/- 

littermates or when compared to related Cyp27b1+/- and WT fetuses from WT mothers 

(Figure 26).  
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Figure 26: Placental calcium transport in fetuses borne of Cyp27b1 null and WT 

mothers. Five minutes following injection of 45Ca/51Cr-EDTA into the dam, Cyp27b1 

null fetuses showed the same amount of placental calcium transport as their Cyp27b1+/- 

littermates. Placental calcium transport was also no different when compared to WT and 

Cyp27b1+/-  fetuses of WT mothers. Values are means ± SE and the numbers of 

observations are indicated in parentheses. 
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3.6 Expression of placental genes as assessed by qPCR 

 

As there is normal placental calcium transport in Cyp27b1 null fetuses, it seems as if 

placental function is normal despite loss of fetal calcitriol. However, we examined 

placental function further to determine if absence of calcitriol leads to any alteration in 

the expression of placental genes that are involved in calcium or phosphorus transport.  

 

These genes were examined in placentas of Cyp27b1 null vs. Cyp27b1+/- littermates, as 

well as in WT vs. Cyp27b1+/- littermates (Table 1). Cyp27b1+/- placentas showed robust 

expression of Cyp27b1 which was absent in respective null placentas (1.000 ± 0.277 vs. 

0.0068 ± 0.006). Separate comparison of Cyp27b1 null vs. WT placentas showed absent 

expression of Cyp27b1 in the null placentas. 

 

There was no difference in expression of Trpv6 (Figure 27AB) or Pthrp (Figure 28AB) 

between null and Cyp27b1+/- placentas, or between null and WT placentas.  

 

Cyp24a1, Pmca1, S100g, Napi2a, Napi2b, Napi2c were all expressed in the placenta. 

There was a slight statistically significant decrease in expression of Pmca1 in Cyp27b1 

null placentas, that may be physiologically insignificant. There were no other differences 

evident between Cyp27b1 null and Cyp27b1+/- placentas, or between placentas of WT and 

Cyp27b1+/- littermates, for each of these genes (Table 1).  

 

Low expression of Fgf23 was present in Cyp27b1 null and Cyp27b1+/- placenta (High CT 

values of ~ 38 cycles). This corresponds with previous findings from our laboratory.  
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In contrast to the normal expression of Trpv6 and Pthrp in Cyp27b1 null placentas, 

previous study of Vdr null fetuses showed an upregulation in Trpv6131,137 and Pthrp131 in 

comparison to their littermates.  
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Table 1: Expression of genes related to calcium and phosphorus transport within the placenta 

of Cyp27b1 null fetuses versus their Cyp27b1+/- siblings and WT fetuses versus their Cyp27b1+/- 

siblings. Values are means ± SD. 

 

 

 

 

 

 

Gene Fold change  

(Cyp27b1 null vs. 

Cyp27b1+/-littermates) 

P value Fold change  

(WT vs. Cyp27b1+/-

littermates) 

P value  

Cyp27b1 0.007 ± 0.006 vs. 

1.000 ± 0.277 

P < 0.05 1.681 ± 0.307 vs. 

 1.000 ± 0.424 

P <0.05 

Cyp24a1 0.523 ± 0.476 vs.  

1.000 ± 1.081 

P=NS 1.353 ± 0.476 vs.  

1.000 ± 0.613 

P=NS 

S100g 0.958 ± 0.358 vs.  

1.000 ± 0.261 

P=NS 0.967 ± 0.305 vs. 

1.000 ± 0.241 

P=NS 

Pmca1 0.837 ± 0.079 vs.  

1.000 ± 0.122 

P < 0.05  0.873 ± 0.174 vs.  

1.000 ± 0.076 

P=NS 

NaPi2a 0.861 ± 0.679 vs.  

1.000 ± 0.442 

P=NS 1.404 ± 0.620 vs.  

1.000 ± 0.428 

P=NS 

NaPi2b 1.151 ± 0.637 vs.  

1.000 ± 0.317 

P=NS 0.693 ± 0.275 vs. 

1.000 ± 0.327 

P=NS 

NaPi2c 0.841 ± 0.731 vs.  

1.000 ± 0.724 

P=NS 0.927 ± 0.276 vs. 

1.0007 vs. 0.276 

P=NS 
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Figure 27: Expression of Trpv6 mRNA in Cyp27b1 null versus Cyp27b1+/- placentas 

(A) and in Cyp27b1 null versus WT placentas (B). Values are means ± SD and the 

number of observations are indicated in parentheses. 
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Figure 28: Expression of Pthrp in Cyp27b1 null versus Cyp27b1+/- placentas (A) and 

in Cyp27b1 null versus WT placentas. Values are means ± SD and the number of 

observations are indicated in parentheses. 
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3.7 Expression of renal genes as assessed by qPCR  

 

Expression of genes related to calcium and phosphorus transport were examined in 

kidneys of Cyp27b1 null fetuses and their Cyp27b1+/- littermates, as well as in kidneys of 

WT fetuses and respective Cyp27b1+/-  littermates (Table 2).  

 

Cyp27b1 null fetal kidneys showed the expected absent expression of Cyp27b1. In a 

comparison of WT kidneys versus their Cyp27b1+/-littermates, there appeared to be a 

trend towards higher Cyp27b1 expression in the WT kidneys; however, this was not 

statistically significant (Table 2). 

 

Between Cyp27b1 null fetuses and Cyp27b1+/- littermates there were no differences in 

expression of Cyp24a1, calcium transporter Pmca1 or Napi2a, Napi2b and Napi2c.  

 

We did observe a significant decrease in renal expression of S100G, which encodes for 

Calbindin-D9k, between null fetuses and Cyp27b1+/- littermates (0.304±0.11 vs. 

1.00±0.63). This data is consistent with the role of Calbindin-D9k in calcium transport in 

the kidney. 
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Table 2: Expression of genes related to calcium and phosphorus transport within the kidney 

of Cyp27b1 null fetuses versus their Cyp27b1+/- siblings and WT fetuses versus their Cyp27b1+/- 

siblings. Values are means ± SD. 

 

 

 

Gene Fold Change 

(Cyp27b1 null vs. 

Cyp27b1+/- littermates) 

P Value Fold Change  

(WT vs. Cyp27b1+/- 

littermates) 

P Value  

Cyp27b1 

 

Absent Expression N/A 1.408 ± 0.364 vs. 

1.000 ± 0.239 

P = NS 

Cyp24a1 1.252 ± 1.232 vs. 

1.000 ± 0.576 

P = NS 1.221 ± 0.563 vs. 

1.000 ± 0.614 

P = NS 

Pmcab1 1.038 ± 0.142 vs. 

1.000 ± 0.265 

P = NS 0.987 ± 0.158 vs. 

1.000 ± 0.212 

P = NS 

S100g 0.304 ± 0.114 vs. 

1.000 ± 0.626 

P < 0.05 0.823 ± 0.110 vs. 

1.000 ± 0.341 

P = NS 

Napi2a 0.847 ± 0.436 vs.  

1.000 ± 0.386 

P = NS 0.865 ± 0.214 vs. 

1.000 ± 0.276 

P = NS 

Napi2b 1.059 ± 0.251 vs. 

1.000 ± 0.329 

P = NS 0.959 ± 0.246 vs.  

1.000 ± 0.082 

P = NS 

Napi2c 0.866 ± 0.271 vs. 

1.000 ± 0.436 

P = NS 0.830 ± 0.218 vs.  

1.000 ± 0.527 

P = NS 
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IV. DISCUSSION 

 

The role of calcitriol, the active, hormonal form of vitamin D, is critically important in the 

regulation of calcium and bone metabolism in both the child and the adult.23,24,159 Without 

calcitriol’s actions to stimulate passive and active absorption of calcium and phosphorus, 

serum calcium and phosphorus are low, PTH levels are increased, while bone grows 

abnormally and is undermineralized.  However, the role of calcitriol in fetal bone and 

mineral homeostasis is less clear.  

 

Prior study of fetuses with disrupted vitamin D physiology, including vitamin D deficient 

rodents, Cyp27b1 null pigs, and Vdr null fetuses, have suggested that calcitriol is not 

required to regulate fetal bone and mineral metabolism. In particular, Vdr null fetuses, 

which have the genetic inability to respond to calcitriol, have normal serum calcium, 

phosphorus, PTH, amniotic mineral content, skeletal morphology, and skeletal mineral 

content in comparison to WT siblings.131,137 Furthermore, calcitriol must not be required 

to stimulate placental calcium transport because Vdr null fetuses were found to have an 

increased rate of transport, and upregulated placental expression of two factors that are 

required for placental calcium transport: PTHrP and the calcium channel TRPV6. These 

findings were consistent with the vitamin D deficiency models, and suggested that 

calcitriol is not required to regulate fetal calcium homeostasis, skeletal development or 

mineralization, and placental mineral transfer. However, Vdr null fetal mice were found 

to have high circulating levels of calcitriol.131,137 Therefore, we hypothesized first that 

calcitriol is not required for bone and mineral homeostasis. Secondly, we hypothesized 

that the upregulation of placental function in the Vdr null fetuses may be due to calcitriol 
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having physiological effects to reduce placental calcium transfer, such that when calcitriol 

has no receptor to signal through, calcium transport increases due to loss of calcitriol’s 

normal effects as a “brake” on the forward flow.  However, this hypothesis is unable to 

explain why models of vitamin D deficiency do not show increased placental calcium 

transport.169   Alternatively, we considered that since Vdr null fetuses have higher than 

normal concentrations of calcitriol, it is conceivable that such high levels of calcitriol act 

through non-classical receptors, such as Pdia3 (discussed below) to upregulate placental 

calcium transport despite the absence of VDR. Such an action might not be physiological 

but only brought about with high concentrations of calcitriol, and this would explain why 

both Vdr null fetal mice and fetal sheep treated with pharmacological doses of calcitriol 

had increased placental calcium transport.  

 

In order to test these hypotheses, we studied Cyp27b1 null fetuses, who cannot synthesize 

calcitriol. If our first hypothesis held true, Cyp27b1 null fetuses would have normal serum 

minerals, hormones, bone mineral and bone morphology in comparison to their 

Cyp27b1+/- littermates and related WT fetuses. If our second hypothesis held true then 

placental function would be upregulated in Cyp27b1 null fetuses. However, if the third 

hypothesis held true, placental function would be normal, or possibly downregulated in 

the Cyp27b1 null fetuses. 

 

In brief, our main findings were that Cyp27b1 null fetuses have normal placental calcium 

transport and expression of genes related to placental calcium transport, Trpv6 and Pthrp, 
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which supports that the third hypothesis is confirmed by the data. I will now discuss these 

results in more detail.  

 

4.1 Maternal calcitriol can rescue Cyp27b1 null fetuses  

 

Previous research from our lab (unpublished) set out to examine Cyp27b1 null fetuses  

using a traditional breeding scheme, by mating Cyp27b1+/- males and females together to 

generate mixed sex litters of null, heterozygous and WT offspring.160 Cyp27b1 null 

fetuses derived from these crosses were determined to have normal serum calcium, 

phosphorus, PTH, amniotic mineral content and skeletal morphology in comparison to 

their WT siblings. However, this approach was confounded by the unexpected finding of 

detectable amounts of calcitriol in the null fetuses, due to passage of calcitriol across the 

placenta from the Cyp27b1+/- mothers. Most previously published data had suggested that 

25OHD crosses the placenta, whereas vitamin D and calcitriol do not.93 However, there is 

one study that supports the passage of calcitriol across the placenta.162 Therefore, while 

this breeding approach did not result in a true calcitriol-depleted fetus, it confirmed the 

presence of significant passage of calcitriol across the placenta from the maternal 

circulation. Moreover, it suggests that infants lacking Cyp27b1 have calcitriol at birth due 

to “rescue” from their heterozygous mothers. The current project compared fetuses from 

Cyp27b1 null mothers to those of WT mothers. In this way Cyp27b1 null fetuses were 

truly calcitriol deficient.  

 



 102 

4.1.1 Cyp27b1 null fetuses of Cyp27b1 null mothers are devoid of calcitriol, although 

Cyp27b1 null mothers gain calcitriol from their Cyp27b1+/- fetuses 

Calcitriol was undetectable in Cyp27b1 null fetuses, and equivalent to the values 

observed in non-pregnant Cyp27b1 null mice. Thus, Cyp27b1 null fetuses generated in 

this manner truly lacked calcitriol. On the other hand, the calcitriol level of Cyp27b1 null 

pregnant mothers appeared to increase compared to the non-pregnant value. This suggests 

that there was reverse flow of calcitriol across the placenta from heterozygous placentas 

or fetuses to the mother, thereby partly rescuing the mother. We have reported this 

previously in our studies of maternal physiology of Cyp27b1 null females across 

pregnancy and lactation.159 This phenomenon has also been shown in studies of anephric 

rats administered radio-labelled 25OHD. In these studies, some calcitriol was evident in 

pregnant dams while non-pregnant rats had no calcitriol.163,164 This suggests that the 

placenta can contribute some calcitriol to the maternal circulation in rodent models. The 

same cannot be said for humans, as demonstrated through a vitamin D sufficient,  

anephric pregnant woman who continued to have low calcitriol levels despite her baby’s 

normal placenta.165  

 

However, although the Cyp27b1 null mothers had some calcitriol, this was evidently not 

enough to rescue their Cyp27b1 null fetuses, since their calcitriol level was undetectable. 

Of course, the possibility that what was undetectable by ELISA might have been 

detectable by the standard methodology of liquid chromatography tandem mass 

spectrometry (LC-MS/MS) cannot be fully eliminated. Regardless, it is clear that 

Cyp27b1 null fetuses had either no calcitriol or very low levels of it, and were largely 
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unaffected by its absence. 

 

4.2 Calcitriol is not required to regulate fetal bone and mineral homeostasis 

 

A number of experiments were conducted in order to assess calcitriol’s role in the 

regulation of fetal bone and mineral homeostasis. In depth study of Cyp27b1 null fetuses 

borne of Cyp27b1 null mothers demonstrated no differences in serum calcium, 

phosphorus, PTH, ash weight and skeletal mineral content, tibial morphology, placental 

gene expression or placental calcium transport. These results support our hypothesis that 

calcitriol is not required to regulate fetal bone and mineral homeostasis. If calcitriol were 

required, we would have expected to see decreased serum calcium and phosphorus, an 

increase in PTH, as well as rachitic changes in the tibias.  

 

Prior animal data are consistent with these findings. Study of vitamin D deficiency, loss 

of VDR, and loss of Cyp27b1, have all indicated that calcitriol is not required to maintain 

serum calcium and phosphorus, PTH, ash weight, skeletal mineral content, skeletal 

morphology and transport of calcium and phosphorus across the placenta.93 There are two 

reasons that may explain why calcitriol is not required in the regulation of fetal bone and 

mineral metabolism. Firstly, it is clear that calcitriol’s main role in both the child and the 

adult is to stimulate intestinal calcium absorption,21 as deletion of VDR from only the 

intestinal cells causes a rachitic phenotype in mice, while Vdr null mice can be  

genetically rescued (phenotypically normal) by selectively expressing VDR only within 

intestinal cells.73,74 However, within the fetal system, the intestinal mineral absorption 
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pathway is a minor circuit as the placenta is the dominant organ of mineral transport from 

mother to fetus.121,147,148 Secondly, calcitriol is not required for mineral transport across 

the placenta to occur, 131,139 since the absence of calcitriol in Cyp27b1 null mice did not 

reduce or increase placental calcium transport. 

 

4.3 Differences in loss of Cyp27b1 and VDR on placental function  

 

Although study of vitamin D deficient, Vdr null and Cyp27b1 null fetuses have shown 

clear and consistent evidence that calcitriol does not play a role in fetal bone and mineral 

homeostasis, there are notable differences between Vdr null and Cyp27b1 null placentas.  

 

Prior study from our lab of Vdr null fetuses, which have high levels of circulating 

calcitriol, indicated a non-significant increase in placental calcium transport in both Vdr 

null fetuses born of Vdr+/- mothers and those born of Vdr null mothers in comparison to 

WT littermates, when studied in isolation. However, when these data sets were pooled, a 

significant increase in placental calcium transport in the Vdr null fetuses was revealed. 

Vdr null fetuses also displayed an increased expression of placental Pthrp, known to 

stimulate placental calcium transport, and Trpv6 mRNA131 These findings were later 

confirmed by an independent group using an alternate Vdr null model, which also 

displayed significant increases in placental calcium transport, and placental expression of 

calcium transporter Trpv6 mRNA in Vdr null fetuses in comparison to their Vdr+/- 

littermates.137  
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In contrast, in the current study, Cyp27b1 null fetuses, which cannot synthesize calcitriol, 

had normal transport of calcium across the placenta, as well as normal placental 

expression of both Trpv6 and Pthrp mRNA, as compared to both their Cyp27b1+/- 

littermates and related WT fetuses.  

 

Taken together, these comparative results imply that the high levels of circulating 

calcitriol in the Vdr null fetuses are able to act on an alternate receptor to stimulate 

placental calcium transport. This may explain why some prior animal studies found an 

increase in placental calcium transport in animals treated with pharmacological doses of 

calcitriol.93 However, at normal physiological concentrations, calcitriol may have no 

significant effect on placental calcium transport or the placental expression of Pthrp and 

Trpv6, as loss of Cyp27b1 does not alter these placental parameters. This is consistent 

with vitamin D deficiency models which exhibit normal levels of placental calcium 

transport. 139,140 Overall, this may imply that the “pharmacological” effects of very high 

calcitriol concentrations in Vdr null fetuses, and with pharmacological administration of 

calcitriol in normal fetuses, may not be relevant to normal physiology. However, these 

findings may still be relevant to human pregnancies in which the baby has HVDRR, 

related to loss of VDR signaling.  

 

4.5 Renal response to calcitriol  

 

Renal gene expression studies indicated that loss of fetal Cyp27b1 had no effect on 

expression of calcium transporter Ca2+- ATPase or the sodium phosphate transporters 
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Napi2a, Napi2b and Napi2c. However, there was an observed decrease in calcium 

transporter S100G, which encodes for calcium binding protein Calbindin-D9k, in Cyp27b1 

null fetuses in comparison to their Cyp27b1+/- littermates. This result confirms that the 

kidneys are responsive to fetal calcitriol levels. The decrease in renal expression of 

S100G in the Cyp27b1 null fetuses is consistent with calcitriol’s ability to stimulate 

Calbindin-D9k to transport calcium within the kidney cells. The absence of an effect due 

to fetal calcitriol on renal excretion of calcium and phosphorus (as measured by amniotic 

fluid mineral content), adds to previous evidence that the renal-amniotic fluid pathway 

plays a minimal role in fetal mineral homeostasis. These data contrast with placental 

expression of S100G, which was unchanged in Cyp27b1 null fetuses in comparison to 

their Cyp27b1+/- littermates. The lack of change in placental S100G is consistent with 

prior studies in vitamin D deficiency models,139,140 and suggests that S100G is not 

regulated by calcitriol in the placenta.  

 

 

4.6 Maternal calcitriol directly or indirectly regulates fetal mineral metabolism 

 

Although the presented evidence is that fetal calcitriol does not regulate fetal bone and 

mineral homeostasis, maternal loss of Cyp27b1, and therefore calcitriol, had modest 

effects on the fetuses that were independent of fetal genotype. Whether these were direct 

or indirect effects is not clear. Lack of maternal Cyp27b1 led to significantly increased 

concentration of calcitriol’s precursor 25OHD3 and the vitamin D metabolite 24,25-

dihydroxyvitamin D in the fetal serum. It is likely that lack of maternal metabolism of 

25OHD3 into calcitriol in the Cyp27b1 null mothers led to higher values crossing the 
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placenta where it accumulates to reach a higher concentration of 25OHD3. Consequently, 

the higher amount of 25OHD3 may have led to more 24,25-dihydroxyvitamin D3 simply 

due to more substrate being present.  Fetuses borne of Cyp27b1 null mothers also had 

increased calcium content and decreased phosphorus content in amniotic fluid (an index 

of fetal kidney function), and significantly reduced serum FGF23. PTH was non-

significantly decreased in fetuses of the Cyp27b1 null mothers, as compared to those 

borne of WT mothers. In each of these cases, both Cyp27b1 null and Cyp27b1+/- fetuses 

borne of Cyp27b1 null mothers were indistinguishable, but different from both Cyp27b1+/- 

and WT fetuses borne of WT dams. This suggests that these differences are solely due to 

loss of maternal calcitriol, and not due to fetal genotype. As there are differences due to 

maternal genotype across multiple parameters, it is convincing that maternal genotype has 

a real effect on fetal parameters that are independent of fetal genotype. It is currently 

unknown whether these differences lead to any persistent changes in the neonates or older 

pups.  

 

These results indicate that maternal calcitriol plays a direct or indirect role in regulating 

fetal FGF23 and fetal renal excretion of calcium and phosphorus. Also, by implication, 

fetal PTH, since the non-significantly lower PTH levels in fetuses of null dams might 

explain the findings of increased calcium and reduced phosphorus in amniotic fluid.  It is 

likely that maternal calcitriol has a direct effect on these parameters of fetal bone and 

mineral homeostasis, as preliminary work in our lab which led to my project showed 

detectable levels of calcitriol in Cyp27b1 null fetuses borne of Cyp27b1+/- mothers.160 

This is supported by a prior study of human placenta and an in vitro perfusion system to 
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determine that calcitriol can cross the placenta.162 Furthermore, it is known that 25OHD 

readily crosses the placenta, so it is logical that calcitriol would also be able to cross the 

placenta as it only differs by one hydroxyl group. 93 

 

4.7 Rescue Diet 

 

Supplementation with calcium, phosphorus and lactose has been shown to prevent the 

rachitic phenotype and normalize fertility in Cyp27b1 null and Vdr null post-weaning and 

adult mice.155,166 Similar findings have also been demonstrated in human studies, in which 

the lactose content of breast milk has been shown to increase calcium absorption in 

babies.166  The ability of the rescue diet to prevent the rachitic phenotype is through 

passive intestinal calcium absorption and is consistent with the important roles of both 

calcitriol and VDR on intestinal calcium and phosphorus absorption through upregulation 

of calcium transporters.26,141,168 This may help explain why children and adults with 

vitamin D deficiency display a rachitic phenotype but fetuses do not. The placenta is the 

dominant supplier of mineral in the fetal circulation and the intestines play a much lesser 

role. Neither calcitriol nor VDR are required for placental mineral transport.131 

Thus, for the purpose of this study, and to ensure that fertility was optimized, Cyp27b1 

null and WT mothers were kept on an enriched rescue diet (2% calcium, 1.25% 

phosphorus and 20% lactose) in order to support fertility.  
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4.8 Study Limitations 

4.8.1 Comparison of fetuses borne of Cyp27b1 null versus WT mothers 

As previously mentioned, prior study in our lab determined that Cyp27b1 null fetuses 

borne of Cyp27b1+/- mothers have detectable levels of calcitriol due to significant 

transplacental passage of calcitriol from the mother. Thus, the Cyp27b1 null fetuses 

generated for this study came from matings of Cyp27b1 null females with Cyp27b1+/- 

males. While this mating scheme was successful in generating true calcitriol-depleted 

fetuses, it doesn’t allow for null and WT fetuses to be compared within the same litter. 

However, this may be considered a strength in that WT and Cyp27b1 null mothers are 

close relatives from the same colony and we were able to control for any changes that 

may be displayed in the fetuses due to maternal differences by comparing Cyp27b1+/- 

fetuses borne of Cyp27b1 null and WT mothers.  This allowed us to determine that the 

significant differences in serum FGF23, amniotic fluid calcium and amniotic fluid 

phosphorus content, between Cyp27b1 null and WT fetuses were due to loss of maternal 

calcitriol rather than loss of fetal calcitriol.  It is possible to generate WT and null fetuses 

within the same uterus; however, it would require transferring blastocysts in culture to 

pseudopregnant dams, which is well-beyond the scope of this project.  

4.8.2 Use of the rescue diet  

Use of the rescue diet which is high in calcium, phosphorus and lactose, may confound 

our findings by providing extra mineral to the Cyp27b1 null mothers.  However, the use 

of the rescue diet is necessary in order to allow for normal fertility, and thereby provide 

readily available pregnancies to study Cyp27b1 null fetuses during the time frame of a 
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Master’s project. Moreover, use of the rescue diet mimics the human condition, because 

pregnant women lacking CYP27B1 are treated with high doses of calcium,93 if they are 

unable to afford calcitriol treatment which is quite expensive. To control for any 

differences due to rescue diet, both WT and Cyp27b1 null mice were kept on the rescue 

diet from birth. 

4.8.3 Calcitriol assay  

There is a possibility that there were circulating levels of calcitriol in the Cyp27b1 null 

fetuses that were not detected by the ELISA assay. However, Dr. Glenville Jones, a 

expert in the field in vitamin D measurement, suggests that the ELISA assay is more 

sensitive than the standard methodology of LC-MS/MS (personal correspondence). 

Therefore, calcitriol levels would have also been undetectable using this LC-MS/MS.  

4.8.4 The ability of the mouse model to reflect the human condition 

The Cyp27b1 mouse model is used to study PDDR, characterized by loss of function of 

the CYP27B1gene in humans. The Cyp27b1 knockout mouse model mirrors PDDR quite 

well. Much like humans with PDDR, who appear normal at birth and present with 

symptoms of rickets at 1-2 years of age, Cyp27b1 null mice also appear normal at birth 

and present with hypocalcemia, hypophosphatemia, secondary hyperparathyroidism and 

rickets after weaning. 81  One notable difference between the Cyp27b1 mouse model and 

the human condition is that calcitriol is able to pass through the placenta from the fetus to 

the maternal circulation in the mouse model, whereas the human placenta does not allow 

for this passage of calcitriol from the fetus to the mother. 165 
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4.9 Relevance to Human Health 

 

The Cyp27b1 mouse model is very consistent with the human condition of PDDR. 

Moreover, such studies are not possible on human fetuses, so we must rely on the animal 

models to inform us on the human condition. Although data from these studies suggest 

that calcitriol is not required for fetal bone and mineral homeostasis, they do not imply 

that vitamin D insufficiency should be ignored during human pregnancy. Instead, they 

reassure us that human fetuses born of vitamin D deficient mothers, as well as mothers 

with PDDR or HVDRR, should be normal, as previous clinical studies have also 

suggested. 169 In addition, we know that the neonate needs vitamin D shortly after birth 

(as hypocalcemia can begin as early as 48 hours after birth in fetuses born of vitamin D 

deficient mothers), and so it is best that the newborn start off with sufficient levels, even 

if unnecessary during fetal life. 

 

4.10 Future work  

 

4.10.1 Identification of calcitriol’s alternate putative receptor 

Contrasting data of placental function between Vdr null fetuses (which have high levels 

of circulating calcitriol) and Cyp27b1 null fetuses (which cannot synthesize calcitriol) 

suggest that calcitriol may act on an alternate receptor, that has not yet been identified, in 

order to upregulate placenta calcium transport and related gene expression in the Vdr null 

fetuses. A future direction for this project includes identification of this alternate putative 

receptor. RNA-sequencing of placental tissue may help to identify the differentially 
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regulated genes that allow calcitriol to upregulate placental function in the Vdr null 

fetuses. One possible known receptor to study is Pdia3, which is associated with rapid 

membrane-initiated signaling by calcitriol.170 In order to study this, we would ideally 

generate a double knockout of Vdr/Pdia3. However, since previous study of Pdia3 null 

mice have shown that Pdia3 null fetuses die before ED 12,170 it would be best to study 

mice that are both Vdr null and have a conditional (floxed) knockout of Pdia3 within their 

placentas.  An alternative approach to this would be to cross Vdr null mice with Pdia3 

heterozygotes. Pdia3 heterozygotes have a distinctive bone phenotype which suggests that 

this may be a possible solution.170 

4.10.2 Confirmation of calcitriol’s role in upregulation of placental calcium 

transport in Vdr null fetuses 

Since these studies found that loss of calcitriol, through loss of Cyp27b1, did not 

appreciably disturb normal placental function, it appears that the high levels of circulating 

calcitriol in Vdr null fetuses are able to work on an alternate receptor in order to 

upregulate placental calcium transport. To confirm this, Cyp27b1/Vdr double knockout 

mice could be studied.171 In this way, if Cyp27b1/Vdr double knockout fetuses have 

normal placental calcium transport, we would know for sure that it is the high levels of 

calcitriol in the Vdr null fetuses that upregulate placental calcium transport in these mice. 

Alternatively, this could be studied using mice that are both Vdr null and vitamin D 

deficient.  
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4.10.3 Postnatal study of Cyp27b1 null pups 

To date, there are no studies that look at the role of calcitriol in the neonate. It would be 

interesting to study Cyp27b1 null pups borne of Cyp27b1 null mothers after weaning to 

determine if the effects due to loss of maternal calcitriol that were evident in utero lead to 

any progressive alterations in mineral or bone physiology in the offspring before or after 

weaning.  

 

4.10.4 Study of Cyp27b1 null mothers mated to Cyp27b1 null males 

It would be ideal to conduct an experiment to compare Cyp27b1 null mothers mated to 

Cyp27b1 null males with Cyp27b1 null mothers mated to Cyp27b1+/- males, to be certain 

that the calcitriol in the mother in the current study isn’t rescuing the null fetuses. But this 

is beyond the scope of the current project, but may pose an interesting follow-up study.  

 

4.11 Summary  

 

Transplacental passage of calcitriol from Cyp27b1+/- mothers to their fetuses can provide 

near-normal concentrations of calcitriol in fetuses lacking Cyp27b1. However, when 

Cyp27b1 null fetuses are borne of Cyp27b1 null mothers, and thus are truly calcitriol 

depleted, they display normal serum minerals, PTH, FGF23, renal excretion of calcium 

and phosphorus into the amniotic fluid, placental calcium transport, as well as placental 

and renal expression of genes related to calcium and phosphorus transport. Of 

importance, the normal placental calcium transport and placental expression of Trpv6 and 

Pthrp mRNA contrasts that of Vdr null fetuses, which have increased placental calcium 

transport, and expression of Trpv6 and Pthrp mRNA in comparison to their Vdr+/- and 
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WT counterparts.131,137 These results suggest that high or pharmacological levels of 

calcitriol may act on an alternate receptor to stimulate placental calcium transport and 

expression of Trpv6 and Pthrp. Such actions of calcitriol are not necessarily 

physiological, since WT fetuses normally have low levels of calcitriol. Furthermore, 

fetuses borne of Cyp27b1 null mothers differ in serum 25OHD, 24,25-dihydroxyvitamin 

D, FGF23, and amniotic fluid calcium and phosphorus, and possibly PTH, in comparison 

to fetuses borne of WT mothers. These findings suggest that maternal calcitriol has 

effects on fetal mineral homeostasis that are independent of the fetal genotype. Whether 

they are direct or indirect effects of maternal calcitriol will be determined in future 

studies. 

 

4.12 Conclusion  

 

My research hypothesis stated that, firstly, calcitriol is not required for bone and mineral 

homeostasis. Secondly, we hypothesized that the upregulation of placental function in the 

Vdr null fetuses may be due to calcitriol having physiological effects to reduce placental 

calcium transfer, such that when calcitriol has no receptor to signal through, calcium 

transport increases due to loss of calcitriol’s normal effects as a “brake” on the forward 

flow.  Or alternatively, we hypothesized that since Vdr null fetuses have higher than 

normal concentrations of calcitriol, it is conceivable that such high levels of calcitriol act 

through non-classical receptors to upregulate placental calcium transport despite the 

absence of VDR. My studies of Cyp27b1 null fetuses agree with our first hypothesis that 

calcitriol is not required for bone and mineral homeostasis. My studies also agree with the 
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alternate version of the second hypothesis, that calcitriol can act through non –classical 

receptors to upregulate placental calcium transport despite absence of VDR.  

To conclude, fetal-sourced calcitriol is not required to regulate fetal bone and mineral 

homeostasis. However, when the current findings are contrasted with those of Vdr null 

fetuses, which have abnormally high concentrations of circulating calcitriol, it is apparent 

that calcitriol may be able to act on an alternate receptor, that has not yet been identified, 

in order to explain the upregulation of placental function that occurs in Vdr null fetuses 

and with pharmacological treatment with calcitriol, as opposed to the lack of upregulation 

in placental calcium transport and gene expression that occurs in fetuses that lack vitamin 

D or calcitriol. Loss of maternal calcitriol caused modest effects on the fetal phenotype 

that were independent of fetal calcitriol levels, but, these effects were relatively masked 

by the ability of the placenta and fetus to maintain bone and mineral homeostasis without 

fetal calcitriol.  Whether these modest effects of loss of maternal calcitriol on fetal bone 

and mineral homeostasis have any long-term effects on neonatal, child, or adult mineral 

and bone metabolism, are beyond the scope of this MSc thesis and remain the subject of 

future investigations. 
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PROVIDED HEREIN. 

 

Should any provision of this Agreement be held by a court of 

competent jurisdiction to be illegal, invalid, or unenforceable, that 

provision shall be deemed amended to achieve as nearly as 

possible the same economic effect as the original provision, and 

the legality, validity and enforceability of the remaining provisions 

of this Agreement shall not be affected or impaired thereby. 

 

The failure of either party to enforce any term or condition of this 

Agreement shall not constitute a waiver of either party's right to 

enforce each and every term and condition of this Agreement. No 

breach under this agreement shall be deemed waived or excused by 

either party unless such waiver or consent is in writing signed by 

the party granting such waiver or consent. The waiver by or 

consent of a party to a breach of any provision of this Agreement 

shall not operate or be construed as a waiver of or consent to any 

other or subsequent breach by such other party. 

 

This Agreement may not be assigned (including by operation of 

law or otherwise) by you without WILEY's prior written consent. 

 

Any fee required for this permission shall be non-refundable after 

thirty (30) days from receipt by the CCC. 

 

These terms and conditions together with CCC's Billing and 

Payment terms and conditions (which are incorporated herein) 

form the entire agreement between you and WILEY concerning 

this licensing transaction and (in the absence of fraud) supersedes 

all prior agreements and representations of the parties, oral or 

written. This Agreement may not be amended except in writing 

signed by both parties. This Agreement shall be binding upon and 

inure to the benefit of the parties' successors, legal representatives, 
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and authorized assigns. 

 

In the event of any conflict between your obligations established 

by these terms and conditions and those established by CCC's 

Billing and Payment terms and conditions, these terms and 

conditions shall prevail.  

 

WILEY expressly reserves all rights not specifically granted in the 

combination of (i) the license details provided by you and accepted 

in the course of this licensing transaction, (ii) these terms and 

conditions and (iii) CCC's Billing and Payment terms and 

conditions. 

 

This Agreement will be void if the Type of Use, Format, 

Circulation, or Requestor Type was misrepresented during the 

licensing process. 

 

This Agreement shall be governed by and construed in accordance 

with the laws of the State of New York, USA, without regards to 

such state's conflict of law rules. Any legal action, suit or 

proceeding arising out of or relating to these Terms and Conditions 

or the breach thereof shall be instituted in a court of competent 

jurisdiction in New York County in the State of New York in the 

United States of America and each party hereby consents and 

submits to the personal jurisdiction of such court, waives any 

objection to venue in such court and consents to service of process 

by registered or certified mail, return receipt requested, at the last 

known address of such party. 

 

WILEY OPEN ACCESS TERMS AND CONDITIONS 

Wiley Publishes Open Access Articles in fully Open Access 

Journals and in Subscription journals offering Online Open. 

Although most of the fully Open Access journals publish open 
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access articles under the terms of the Creative Commons 

Attribution (CC BY) License only, the subscription journals and a 

few of the Open Access Journals offer a choice of Creative 

Commons Licenses. The license type is clearly identified on the 

article. 

 

The Creative Commons Attribution License 

The Creative Commons Attribution License (CC-BY) allows users 

to copy, distribute and transmit an article, adapt the article and 

make commercial use of the article. The CC-BY license permits 

commercial and non- Creative Commons Attribution Non-

Commercial License 

 

The Creative Commons Attribution Non-Commercial (CC-BY-

NC) License permits use, distribution and reproduction in any 

medium, provided the original work is properly cited 

and is not used for commercial purposes. (see below) 

Creative Commons Attribution-Non-Commercial-NoDerivs 

License 

 

The Creative Commons Attribution Non-Commercial-NoDerivs 

License (CC-BY-NC-ND) permits use, distribution and 

reproduction in any medium, provided the original work is 

properly cited, is not used for commercial purposes and no 

modifications or adaptations are made. (see below) 

  

Use by commercial "for-profit" organizations 

Use of Wiley Open Access articles for commercial, promotional, or 

marketing purposes requires further explicit permission from Wiley 

and will be subject to a fee. 

Further details can be found on Wiley Online Library 

http://olabout.wiley.com/WileyCDA/Section/id-410895.html 

Other Terms and Conditions: 
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v1.10 Last updated September 2015 
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 

+1-978-646-2777. 

 

 

 

 

 

APPENDIX C                  NATURE PUBLISHING GROUP LICENSE 

       TERMS AND CONDITIONS  
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This Agreement between Ms. Brittany Ryan (“You”) and Nature 

Publishing Group (“Nature Publishing Group”) consists of your 

license details and the terms and conditions provided by Nature 

Publishing Group and Copyright Clearance Center.  

 
License Number 4373070643762 

 

License Date Jun 20, 2018 

 

License Content Publisher Nature Publishing Group 

 

Licensed Content Publication Nature BoneKEy Reports 

 

Licensed Content Title Vitamin D endocrine system and the intestine 

 

Licensed Content Author Sylvia Christakos, Liesbet Lieben, Ritsuko Masuyama and        

Geert Carmliet   

 

Licensed Content Date Feb 5, 2014 

 

Permission Type Reuse in a dissertation/thesis   

 

Type of use academic/educational 
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Requestor type University/Academic 

 

Format Print and electronic 

 

Portion Figures/tables/illustrations 

 

Number of figures/tables 1 

 

Title or numeric reference of the portion(s) Figure 1.4 

 

Will you be translating? No 

 

 

Title of your thesis /dissertation The Role of Calcitriol in Regulating Fetal Bone and 

Mineral Metabolism, as Elucidated Through Study of Cyp27b1 Null Fetal Mice 

 

Expected completion date Oct 2018 

 

Expected size (number of pages) 150 

 

 

Requestor Location Ms. Brittany Ryan 

         15 Kelland Crescent 

                                 St. John's, NL A1E 6E9 

                                 Canada 

                                 Attn: Ms. Brittany Ryan 

 
TERMS AND CONDITIONS 

1. NPG warrants that it has, to the best of its knowledge, the rights to license reuse of this 

material. However, you should ensure that the material you are requesting is original to Nature 

Publishing Group and does not carry the copyright of another entity (as credited in the published 

version). If the credit line on any part of the material you have requested indicates that it was 

reprinted or adapted by NPG with permission from another source, then you should also seek 

permission from that source to reuse the material. 

 

2. Permission granted free of charge for material in print is also usually granted for any electronic 

version of that work, provided that the material is incidental to the work as a whole and that the 

electronic version is essentially equivalent to, or substitutes for, the print version. Where print 

permission has been granted for a fee, separate permission must be obtained for any additional, 

electronic re-use (unless, as in the case of a full paper, this has already been accounted for 

during your initial request in the calculation of a print run). 

 

3. Permission granted for a first edition does not apply to second and subsequent editions and for 

editions in other languages (except for signatories to the STM Permissions Guidelines, or where 

the first edition permission was granted for free). 
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4. Nature Publishing Group's permission must be acknowledged next to the figure, table or 

abstract in print. In electronic form, this acknowledgement must be visible at the same time as the 

figure/table/abstract, and must be hyperlinked to the journal's homepage. 

 

5. The credit line should read: Reprinted by permission from Macmillan Publishers Ltd: 

[JOURNAL NAME] (reference citation), copyright (year of publication) For AOP papers, the 

credit line should read: Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL 

NAME], advance online publication, day month year (doi: 10.1038/sj.[JOURNAL 

ACRONYM].XXXXX) Note: For republication from the British Journal of Cancer, the following 

credit lines apply. Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer 

Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication) For AOP 

papers, the credit line should read: Reprinted by permission from Macmillan Publishers Ltd on 

behalf of Cancer Research UK: [JOURNAL NAME], advance online publication, day month year 

(doi:10.1038/sj.[JOURNAL ACRONYM].XXXXX) 

6. Adaptations of single figures do not require NPG approval. However, the adaptation should be 

credited as follows: Adapted by permission from Macmillan Publishers Ltd: [JOURNAL NAME] 

(reference citation), copyright (year of publication) Note: For adaptation from the British Journal 

of Cancer, the following credit line applies. Adapted by permission from Macmillan Publishers 

Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year 

of publication) 

 

7. Translations of 401 words up to a whole article require NPG approval. Please visit 

http://www.macmillanmedicalcommunications.com for more information. Translations of up to a 

400 words do not require NPG approval. The translation should be credited as follows: Translated 

by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), 

copyright (year of publication). Note: For translation from the British Journal of 

Cancer, the following credit line applies. Translated by permission from Macmillan Publishers 

Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year 

of publication) We are certain that all parties will benefit from this agreement and wish you the 

best in the use of this material. Thank you. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 155 

 

 

 

 

 

 

 

 
 

APPENDIX D                 AMERICAN SOCIETY OF NEPHROLOGY 

       TERMS AND CONDITIONS  

June 20, 2018 

 

 

 

This Agreement between Ms. Brittany Ryan (“You”) and 

American Society of Nephrology (“American Society of 

Nephrology”) consists of your license details and the terms and 

conditions provided by American Society of Nephrology and 

Copyright Clearance Center.  

 
License Number 4373080183505 

 

License Date Jun 20, 2018 

 

License Content Publisher American Society of Nephrology 

 

Licensed Content Publication Journal of the American Society of Nephrology 

 

Licensed Content Title Renal control of calcium, phosphorus and magnesium 

homeostasis 

 

Licensed Content Author J Blaine, M Chonchol and M Levi 

 

Licensed Content Date Oct 6, 2014 

 

Permission Type Reuse in a dissertation/thesis   
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Requestor type University/Academic 

 

Format Print and electronic 

 

Portion Figures/tables/illustrations 

 

Number of figures/tables 1 

 

Title or numeric reference of the portion(s) Figure 3 

 

Will you be translating? No 

 

 

Title of your thesis /dissertation The Role of Calcitriol in Regulating Fetal Bone and 

Mineral Metabolism, as Elucidated Through Study of Cyp27b1 Null Fetal Mice 

 

Expected completion date Oct 2018 

 

Expected size (number of pages) 150 

 

 

Requestor Location Ms. Brittany Ryan 

         15 Kelland Crescent 

                                 St. John's, NL A1E 6E9 

                                 Canada 

                                 Attn: Ms. Brittany Ryan 

 

Terms and conditions 

 

The following terms are individual to this publisher:  

 

NONE 
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APPENDIX E                                SPRINGER NATURE 

                                               TERMS AND CONDITIONS 

                                                                                                                          July 17, 2018  

 

 

 

This Agreement between Ms. Brittany Ryan ("You") and Springer Nature ("Springer 

Nature") consists of your license details and the terms and conditions provided by 

Springer Nature and Copyright Clearance Center. 

 
 

License Number 4391341161908 
 

License date Jul 17, 2018 
 

Licensed Content Publisher Springer Nature 
 

Licensed Content Publication Pflügers Archiv European Journal of Physiology 
 

Licensed Content Title TRPV5 and TRPV6 in Ca2 (re)absorption: regulating Ca2 entry at 

the gate 
 

Licensed Content Author Tom Nijenhuis, Joost G. J. Hoenderop, René J. M. Bindels 
 

Licensed Content Date Jan 1, 2005 
 

Licensed Content Volume 451 
 

Licensed Content Issue 1 
 

Type of Use Thesis/Dissertation 
 

Requestor type academic/university or research institute 
 

Format print and electronic 
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Portion figures/tables/illustrations 
 

Number of figures/tables/illustrations 1 
 

Will you be translating? no 
 

Circulation/distribution <501 
 

Author of this Springer Nature content no 
 

Title The Role of Calcitriol in Regulating Fetal Bone and Mineral Metabolism, as 

Elucidated Through Study of Cyp27b1 Null Fetal Mice 
 

Expected presentation date Oct 2018 
 

Portions Figure 1 
 
Requestor Location 
Ms. Brittany Ryan 
15 Kelland Crescent 
 

 
St. John's, NL A1E 6E9 
Canada 
Attn: Ms. Brittany Ryan 
Billing Type 
Invoice 

Billing Address 

Ms. Brittany Ryan 
15 Kelland Crescent 
 
 
St. John's, NL A1E 6E9 
Canada 

Attn: Ms. Brittany Ryan 
Total 
0.0 CAD 

 
Terms and Conditions 

Springer Nature Terms and Conditions for RightsLink Permissions 

Springer Customer Service Centre GmbH (the Licensor) hereby grants you a non-

exclusive, world-wide licence to reproduce the material and for the purpose and 

requirements specified in the attached copy of your order form, and for no other use, 

subject to the conditions below: 

1. The Licensor warrants that it has, to the best of its knowledge, the rights to license 
reuse of this material. However, you should ensure that the material you are 
requesting is original to the Licensor and does not carry the copyright of another entity 
(as credited in the published version). 

 
If the credit line on any part of the material you have requested indicates that it was 
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reprinted or adapted with permission from another source, then you should also seek 
permission from that source to reuse the material. 

2. Where print only permission has been granted for a fee, separate permission must be 
obtained for any additional electronic re-use.  

3. Permission granted free of charge for material in print is also usually granted for any 
electronic version of that work, provided that the material is incidental to your work as 

a whole and that the electronic version is essentially equivalent to, or substitutes for, 
the print version. 

4. A licence for 'post on a website' is valid for 12 months from the licence date. This 
licence does not cover use of full text articles on websites. 

5. Where 'reuse in a dissertation/thesis' has been selected the following terms apply: 

Print rights for up to 100 copies, electronic rights for use only on a personal website or 

institutional repository as defined by the Sherpa guideline 
(www.sherpa.ac.uk/romeo/). 

6. Permission granted for books and journals is granted for the lifetime of the first edition 
and does not apply to second and subsequent editions (except where the first edition 
permission was granted free of charge or for signatories to the STM Permissions 
Guidelines http://www.stm-assoc.org/copyright-legal-affairs/permissions/permissions-
guidelines/), and does not apply for editions in other languages unless additional 

translation rights have been granted separately in the licence. 

7. Rights for additional components such as custom editions and derivatives require 
additional permission and may be subject to an additional fee. Please apply to 
Journalpermissions@springernature.com/bookpermissions@springernature.com for 
these rights. 

8. The Licensor's permission must be acknowledged next to the licensed material in print. 
In electronic form, this acknowledgement must be visible at the same time as the 

figures/tables/illustrations or abstract, and must be hyperlinked to the journal/book's 
homepage. Our required acknowledgement format is in the Appendix below. 

9. Use of the material for incidental promotional use, minor editing privileges (this does 
not include cropping, adapting, omitting material or any other changes that affect the 
meaning, intention or moral rights of the author) and copies for the disabled are 
permitted under this licence. 

10. Minor adaptations of single figures (changes of format, colour and style) do not require 
the Licensor's approval. However, the adaptation should be credited as shown in 
Appendix below. 

 

Appendix — Acknowledgements: 

For Journal Content: 

Reprinted by permission from [the Licensor]: [Journal Publisher (e.g. 

Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE 

CITATION(Article name, Author(s) Name), [COPYRIGHT] (year of 

publication) 
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For Advance Online Publication papers: 

Reprinted by permission from [the Licensor]: [Journal Publisher (e.g. 

Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE 

CITATION(Article name, Author(s) Name), [COPYRIGHT] (year of 

publication), advance online publication, day month year (doi: 

10.1038/sj.[JOURNAL ACRONYM].) 

For Adaptations/Translations: 

Adapted/Translated by permission from [the Licensor]: [Journal Publisher (e.g. 

Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE 

CITATION(Article name, Author(s) Name), [COPYRIGHT] (year of 

publication) 

Note: For any republication from the British Journal of Cancer, the following 

credit line style applies: 

Reprinted/adapted/translated by permission from [the Licensor]: on behalf of 

Cancer Research UK: : [Journal Publisher (e.g. Nature/Springer/Palgrave)] 

[JOURNAL NAME] [REFERENCE CITATION (Article name, Author(s) 

Name), [COPYRIGHT] (year of publication) 

For Advance Online Publication papers: 

Reprinted by permission from The [the Licensor]: on behalf of Cancer Research 

UK: [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME] 

[REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] 

(year of publication), advance online publication, day month year (doi: 

10.1038/sj.[JOURNAL ACRONYM]) 

For Book content: 

Reprinted/adapted by permission from [the Licensor]: [Book Publisher (e.g. 

Palgrave Macmillan, Springer etc) [Book Title] by [Book author(s)] 

[COPYRIGHT] (year of publication) 

Other Conditions:  

 

Version  1.0 
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 

+1-978-646-2777. 
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APPENDIX F            JOHN WILEY AND SONS LICENSE 

TERMS AND CONDITIONS 
Jun 20, 2018 

 

This Agreement between Ms. Brittany Ryan ("You") and John 

Wiley and Sons ("John Wiley and Sons") consists of your license 

details and the terms and conditions provided by John Wiley and 

Sons and Copyright Clearance Center. 

 
License Number 4373060002148 

 

License date Jun 20, 2018 

 

Licensed Content Publisher John Wiley and Sons 

 

Licensed Content Publication Wiley Books 

 

Licensed Content Title Skeletal Morphogenesis and Embryonic Development 

 

Licensed Content Date Jul 19, 2013 

 

Licensed Content Pages 14 

 

Type of use Dissertation/Thesis 

 

Requestor type University/Academic 

 

Format Print and electronic 

 

Portion Figure/table 
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Number of figures/tables 1 

 

Original Wiley figure/table number(s) Figure 1.4 

 

Will you be translating? No 

 

Title of your thesis /dissertation The Role of Calcitriol in Regulating Fetal Bone and 

Mineral Metabolism, as Elucidated Through Study of Cyp27b1 Null Fetal Mice 

 

Expected completion date Oct 2018 

 

Expected size (number of pages) 150 

 

 

Requestor Location Ms. Brittany Ryan 

         15 Kelland Crescent 

                                 St. John's, NL A1E 6E9 

                                 Canada 

                                 Attn: Ms. Brittany Ryan 

 

Publisher Tax ID EU826007151 

 

Total 0.00 CAD 

 

Terms and Conditions 

 

TERMS AND CONDITIONS 

This copyrighted material is owned by or exclusively licensed to 

John Wiley & Sons, Inc. or one of its group companies (each a 

"Wiley Company") or handled on behalf of a society with which a 

Wiley Company has exclusive publishing rights in relation to a 

particular work (collectively "WILEY"). By clicking "accept" in 

connection with completing this licensing transaction, you agree 

that the following terms and conditions apply to this transaction 

(along with the billing and payment terms and conditions 

established by the Copyright Clearance Center Inc., ("CCC's 

Billing and Payment terms and conditions"), at the time that you 

opened your Rights Link account (these are available at any time at 

http://myaccount.copyright.com).  

http://myaccount.copyright.com)/
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Terms and Conditions 

 

The materials you have requested permission to reproduce or reuse 

(the "Wiley Materials") are protected by copyright. 

  

You are hereby granted a personal, non-exclusive, non-sub 

licensable (on a standalone basis), non-transferable, worldwide, 

limited license to reproduce the Wiley Materials for the purpose 

specified in the licensing process. This license, and any CONTENT 

(PDF or image file) purchased as part of your order, is for a one-

time use only and limited to any maximum distribution number 

specified in the license. The first instance of republication or reuse 

granted by this license must be completed within two years of the 

date of the grant of this license (although copies prepared before 

the end date may be distributed thereafter). The Wiley Materials 

shall not be used in any other manner or for any other purpose, 

beyond what is granted in the license. Permission is granted subject 

to an appropriate acknowledgement given to the author, title of the 

material/book/journal and the publisher. You shall also duplicate 

the copyright notice that appears in the Wiley publication in your 

use of the Wiley Material. Permission is also granted on the 

understanding that nowhere in the text is a previously published 

source acknowledged for all or part of this Wiley Material. Any 

third party content is expressly excluded from this permission. 

 

With respect to the Wiley Materials, all rights are reserved. Except 

as expressly granted by the terms of the license, no part of the 

Wiley Materials may be copied, modified, adapted (except for 

minor reformatting required by the new Publication), translated, 

reproduced, transferred or distributed, in any form or by any 

means, and no derivative works may be made based on the Wiley 

Materials without the prior permission of the respective copyright 

owner. For STM Signatory Publishers clearing permission under 
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the terms of the STM Permissions Guidelines only, the terms of the 

license are extended to include subsequent editions and for editions 

in other languages, provided such editions are for the work as a 

whole in situ and does not involve the separate exploitation of the 

permitted figures or extracts, You may not alter, remove or 

suppress in any manner any copyright, trademark or other notices 

displayed by the Wiley Materials. You may not license, rent, sell, 

loan, lease, pledge, offer as security, transfer or assign the Wiley 

Materials on a stand-alone basis, or any of the rights granted to you 

hereunder to any other person. 

 

The Wiley Materials and all of the intellectual property rights 

therein shall at all times remain the exclusive property of John 

Wiley & Sons Inc, the Wiley Companies, or their respective 

licensors, and your interest therein is only that of having possession 

of and the right to reproduce the Wiley Materials pursuant to 

Section 2 herein during the continuance of this Agreement. You 

agree that you own no right, title or interest in or to the Wiley 

Materials or any of the intellectual property rights therein. You 

shall have no rights hereunder other than the license as provided 

for above in Section 2. No right, license or interest to any 

trademark, trade name, service mark or other branding 

("Marks") of WILEY or its licensors is granted hereunder, and you 

agree that you shall not assert any such right, license or interest 

with respect thereto. 

 

NEITHER WILEY NOR ITS LICENSORS MAKES ANY 

WARRANTY OR REPRESENTATION OF ANY KIND TO YOU 

OR ANY THIRD PARTY, EXPRESS, IMPLIED OR 

STATUTORY, WITH RESPECT TO THE MATERIALS 

OR THE ACCURACY OF ANY INFORMATION CONTAINED 

IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, 

ANY IMPLIED WARRANTY OF MERCHANTABILITY, 
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ACCURACY, SATISFACTORYQUALITY, FITNESS FOR A 

PARTICULAR PURPOSE, USABILITY, INTEGRATION OR 

NON-INFRINGEMENT AND ALL SUCH WARRANTIES 

ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS 

AND WAIVED BY YOU. 

 

WILEY shall have the right to terminate this Agreement 

immediately upon breach of this Agreement by you.  

You shall indemnify, defend and hold harmless WILEY, its 

Licensors and their respective directors, officers, agents and 

employees, from and against any actual or threatened claims, 

demands, causes of action or proceedings arising from any breach 

of this Agreement by you. 

 

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE 

LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER 

PERSON OR ENTITY FOR ANY SPECIAL, 

CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY 

OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING 

OUT OF OR IN CONNECTION WITH THE DOWNLOADING, 

PROVISIONING, VIEWING OR USE OF THE MATERIALS 

REGARDLESS OF THE FORM OF ACTION, WHETHER FOR 

BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, 

NEGLIGENCE, INFRINGEMENT OR OTHERWISE 

(INCLUDING, WITHOUT LIMITATION, DAMAGES BASED 

ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS 

OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND 

WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF 

THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION 

SHALL APPLY NOTWITHSTANDING ANY FAILURE OF 

ESSENTIAL PURPOSE OF ANY LIMITED REMEDY 

PROVIDED HEREIN. 
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Should any provision of this Agreement be held by a court of 

competent jurisdiction to be illegal, invalid, or unenforceable, that 

provision shall be deemed amended to achieve as nearly as 

possible the same economic effect as the original provision, and 

the legality, validity and enforceability of the remaining provisions 

of this Agreement shall not be affected or impaired thereby. 

 

The failure of either party to enforce any term or condition of this 

Agreement shall not constitute a waiver of either party's right to 

enforce each and every term and condition of this Agreement. No 

breach under this agreement shall be deemed waived or excused by 

either party unless such waiver or consent is in writing signed by 

the party granting such waiver or consent. The waiver by or 

consent of a party to a breach of any provision of this Agreement 

shall not operate or be construed as a waiver of or consent to any 

other or subsequent breach by such other party. 

 

This Agreement may not be assigned (including by operation of 

law or otherwise) by you without WILEY's prior written consent. 

 

Any fee required for this permission shall be non-refundable after 

thirty (30) days from receipt by the CCC. 

 

These terms and conditions together with CCC's Billing and 

Payment terms and conditions (which are incorporated herein) 

form the entire agreement between you and WILEY concerning 

this licensing transaction and (in the absence of fraud) supersedes 

all prior agreements and representations of the parties, oral or 

written. This Agreement may not be amended except in writing 

signed by both parties. This Agreement shall be binding upon and 

inure to the benefit of the parties' successors, legal representatives, 

and authorized assigns. 
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In the event of any conflict between your obligations established 

by these terms and conditions and those established by CCC's 

Billing and Payment terms and conditions, these terms and 

conditions shall prevail.  

 

WILEY expressly reserves all rights not specifically granted in the 

combination of (i) the license details provided by you and accepted 

in the course of this licensing transaction, (ii) these terms and 

conditions and (iii) CCC's Billing and Payment terms and 

conditions. 

 

This Agreement will be void if the Type of Use, Format, 

Circulation, or Requestor Type was misrepresented during the 

licensing process. 

 

This Agreement shall be governed by and construed in accordance 

with the laws of the State of New York, USA, without regards to 

such state's conflict of law rules. Any legal action, suit or 

proceeding arising out of or relating to these Terms and Conditions 

or the breach thereof shall be instituted in a court of competent 

jurisdiction in New York County in the State of New York in the 

United States of America and each party hereby consents and 

submits to the personal jurisdiction of such court, waives any 

objection to venue in such court and consents to service of process 

by registered or certified mail, return receipt requested, at the last 

known address of such party. 

 

WILEY OPEN ACCESS TERMS AND CONDITIONS 

Wiley Publishes Open Access Articles in fully Open Access 

Journals and in Subscription journals offering Online Open. 

Although most of the fully Open Access journals publish open 

access articles under the terms of the Creative Commons 

Attribution (CC BY) License only, the subscription journals and a 
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few of the Open Access Journals offer a choice of Creative 

Commons Licenses. The license type is clearly identified on the 

article. 

 

The Creative Commons Attribution License 

The Creative Commons Attribution License (CC-BY) allows users 

to copy, distribute and transmit an article, adapt the article and 

make commercial use of the article. The CC-BY license permits 

commercial and non- Creative Commons Attribution Non-

Commercial License 

 

The Creative Commons Attribution Non-Commercial (CC-BY-

NC) License permits use, distribution and reproduction in any 

medium, provided the original work is properly cited 

and is not used for commercial purposes. (see below) 

Creative Commons Attribution-Non-Commercial-NoDerivs 

License 

 

The Creative Commons Attribution Non-Commercial-NoDerivs 

License (CC-BY-NC-ND) permits use, distribution and 

reproduction in any medium, provided the original work is 

properly cited, is not used for commercial purposes and no 

modifications or adaptations are made. (see below) 

  

Use by commercial "for-profit" organizations 

Use of Wiley Open Access articles for commercial, promotional, or 

marketing purposes requires further explicit permission from Wiley 

and will be subject to a fee. 

Further details can be found on Wiley Online Library 

http://olabout.wiley.com/WileyCDA/Section/id-410895.html 

Other Terms and Conditions: 

v1.10 Last updated September 2015 
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 

+1-978-646-2777. 


