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Abstract

Measurement error and misclassification in covariates are commonly arising problems

in statistical models. They have negative impacts on statistical inference about the

outcome, including bias and large variability in estimators. Furthermore, in a statisti-

cal model, two or more covariates can interact, which in practice is quite challenging

to deal with. One of the recent techniques is Bayesian method that incorporates the

prior knowledge about parameters. In this research, Bayesian techniques are applied to

the models with interaction terms, while addressing measurement error and misclassi-

fication. Moreover, through extensive simulation studies, Markov Chain Monte Carlo

algorithms are used to implement the Bayesian methods.
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Lay summary

The presence of measurement errors in variables in the statistical model are common

problems in practice. They can provide incorrect statistical inference and misleading

conclusions. Besides, presence of interaction terms are common in many research ar-

eas. Erroneous variable incorporated with interaction term, makes the analysis more

complicated. One of the recent techniques is Bayesian methods that incorporates the

prior knowledge about parameters. The primary goal of this research is to monitor

the behaviour of the Bayesian estimations of the model parameters in presence of mea-

surement error for both discrete and continuous covariates, under different frameworks

including Monte Carlo iteration numbers, sample size, magnitude of measurement er-

ror, prior selection. More specifically, this study pays more attention to the behaviour

of the coefficient of interaction term.

We studied the Bayesian estimates for (a) Contineous covariate without measurement

error, (b) Contineous covariate with measurement error, (c) Discrete covariate without

measurement error and (d) Discrete covariate without measurement error models.

We observed that, generally, lowering the measurement error as well as increasing the

number of iterations and sample size improved the convergence of the MC estimates.

Moreover, it was difficult to capture the behavior of the coefficient of interaction term.

Therefore, it required more iterations, large sample size, less amount of measurement

error to perform as well as the other coefficients.
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Chapter 1

Introduction and Overview

1.1 Measurement error

A most fundamental task of any statistical model is to display the relationship be-

tween response (dependent variable) and the explanatory (independent) variables. In

epidemiological studies an example is the relationship between smoking status (inde-

pendent or exposure variable) and heart disease (dependent variable). Sometimes, due

to some unavoidable facts, an accurate measurement of the exposure variable is hard

to achieve. For instance, X is the variable we are interested in which is unobserved.

Instead, we observe W , which is the substitute variable for X. We define W as the

surrogate variable for X, that incorporates errors (mismeasurement) in our desired

model. This mismeasurement can occur in both the discrete and continuous covariates.

Mismeasured continuous variable induces measurement error and categorical variable

introduces misclassification in the regression models. The existence of measurement

error and misclassification has been a problem in statistical analysis for years in several

sectors, for example, in biology, epidemiology, econometrics which was analyzed and

discussed by different authors such as Pearson (1902), Wald (1940), Berkson (1950),

Fuller (2008) and Carroll et al. (2006). Various components are indeed responsible
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for the erroneous measurement such as inaccuracy in the instruments, higher price of

exact measurement etc. For instance, in clinical trials, different methods may generate

different measurements. Moreover, sometimes researcher may go through a method

that is cheaper and more convenient for observations. Therefore, all these can lead to

an independent covariate that involves measurement error.

1.1.1 Impact of Measurement error

Many researchers do not consider dealing measurement error due to the lack of aware-

ness, the unavailability of the necessary information about correcting measurement

error, etc. It has long been recognized that the ignorance of the measurement error in

inferential procedures may be substantial, often turning out in an unreliable conclusion

with bias, large variability, incorrect inference in the estimation of parameters, reducing

power of tests and inaccurate coverage probabilities of confidence intervals (Muff et al.

(2015), Liao et al. (2014), Gustafson (2003)). Generally, in presence of measurement

error with no additional information, the model is not identifiable. We consider a model

as identifiable if the parameters in the parameter space can be estimated identically

using the data. Otherwise, the non-identifiability issue arises (Gustafson (2012 and

2014)).

1.1.2 Types of Measurement error

The very initial approach of analyzing measurement error is identifying the error com-

ponent properly. Several types of measurement error can be induced in the model in

practice. Theoretically measurement error can be both differential and non-differential.

An error whose magnitude is different for the individuals who have the outcome, for

instance some disease, compared to those without the outcome can be defined as the
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differential error. The non-differential measurement error is independent of the out-

come variable, that is the magnitude is similar for both individuals who have and have

not the outcome.

1.1.3 Measurement error models

A very preliminary step of analyzing the measurement error is to precisely identify the

correct model for measurement error procedure. The two most common measurement

error models are classical error model and Berkson error model.

1.1.3.1 Classical model

The classical measurement error arises in laboratory specially when an instrument is

used for measurement, and the measurements vary around the true value. Consider X

to be the true variable that is unobserved. Therefore, instate of X we observe W as a

surrogate variable for X. That is

W = X + U.

Here, U is the measurement error which is independent of X with E(U) = 0 and

V ar(U) = δ2. In here, δ2 is known as the measurement error. This case can be

observed when measurements are disturbed by a number of uncontrollable factors and

influences.

1.1.3.2 Berkson model

Another error structure is Berkson measurement error model. This arises when the

average measurement value of a group of individual is assigned on each individual.

When the independence assumption between U andX is often too strong, we investigate
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the effect of applying the Berkson error model, which assumes

X = W + U.

Here, U is independent of W .

1.2 Methods of estimation

Measurement error in the covariate can create unavoidable issues in the inference pro-

cess. Different author suggests different techniques of adjusting the measurement error

in the regression model. They differ based on the assumptions on variables to be satis-

fied, the availability of data as well as parametric vs nonparametric. Some measurement

error methods are provided in Fuller (2006), Carroll et al. (2006) and Gustafson et al.

(2011). The methods that are commonly used to correct measurement error in the

estimation process include - Regression calibration, simulation extrapolation (SIMEX)

as well as likelihood methods including Bayesian methods.

1.2.1 Bayesian Methods

Bayesian methods recently draw the attention in statistical science, considered as an

interesting alternative to the classical theory until the late 1980’s (Ntzoufras et al.

2009). This method considers parameters as random variables that are characterized

by a prior, and the prior is assumed to be the distribution for unknown parameters. In

classical inference, data is considered as observations of random variable. This explains

the main difference between Bayesian and classical inference. The Bayesian inference

is based on the famous theorem called Bayes Theorem. Assume that two outcomes A
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and B, then we can define the Bayes theorem as follows

P (A|B) =
P (B|A)P (A)

P (A)
∝ P (B|A)P (A).

This equation is known as Bayes’ rule. Basically in Bayesian inference, the parameter

is the random variable and its distribution is known as prior distribution. We collect

the sample and update our prior knowledge about the unknown parameter of inter-

est. The updated version of prior called the posterior density, which is the conditional

distribution of unobserved values (such as the parameters) given the observed data.

This posterior distribution is our target and it summarizes all the information about

the parameters. To calculate the posterior density, we have to find the joint density of

the data and parameters and integrate out the parameters to get the marginal density

of the data. We can then divide the joint density by this marginal density to get the

posterior distribution. Mathematically this can be expressed as follows.

Let η is the unknown parameter which is a random variable. The distribution of η is, for

instance, p(η), which is the prior distribution. This explains the available information

about the parameter we had, before observing the data, and say X . Then the posterior

distribution is

p(η|x) = p(x|η)p(η)
p(x)

.

As p(η|x) does not depend on x, it can be written as

p(η|x) ∝ p(x|η)p(η). (1.1)

Here, the posterior distribution is p(η|x) that is proportional to the multiplication of

the likelihood, p(x|η) =
∏n

i p(xi|η) and the prior distribution p(η).

Since generally, measurement error creates the problem of non-identifiability of the

parameters, which requires extra information to deal with, some researchers recommend
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using more informative prior distributions (Gustafson et al. (2005) and Gustafson

and McCandless (2014)). This additional information from the prior distribution is

expecting to handle the non-identifiability problem. Some other researchers put some

controversy with this concept as several types of priors are accessible in practice and

selecting an inappropriate prior can assemble a misleading conclusion. Therefore, using

validation subsample and replication that acquires extra information for solving the

issue of non-identifiability is also proposed.

1.2.1.1 Prior selection

Developing prior distributions is undoubtedly the most controversial aspect of any

Bayesian analysis (Lindley (1983), Walters and Ludwig (1994)). It becomes more cru-

cial when the method has to deal with measurement error. An inappropriate choice

for priors will undoubtedly distort the inference procedure (Gustafson and McCandless

(2014)). Therefore, considerable care should be taken when selecting priors.

In general there are three different types of priors.

1. Non-informative prior

A prior distribution is non-informative if this does not provide any useful information

about the parameter of interest. It can be defined as vague, diffuse, and uniform prior

as well. Many statisticians favor non-informative priors because they appear to be more

objective. However, it is unrealistic to expect that non-informative priors represent to-

tal ignorance about the parameter of interest.

2. Informative prior

An informative prior is the one which is not dominated by the likelihood and it has a

significant impact on the posterior distribution. Therefore, when a prior distribution

dominates the likelihood, it is clearly an informative prior. These types of distributions
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must be specified with care in practice.

3. Improper prior

A prior is said to be improper if it is not a legitimate probability function. For example,

a uniform prior distribution on the real line, p(η) ∝ 1, for −∞ < η < ∞, is an improper

prior.

1.2.2 Adjustment for measurement error

1.2.2.1 Study design

Generally, obtaining consistent estimators from a non-identifiable model in presence of

measurement error is not possible Dealing with this problem demands additional in-

formation that can be acquired from the validation subsample and replicated data set

(Carroll and Li (1992), Cook and Stefanski (1994) and Carroll et al. (2006)).

1. Validation subsample

In some cases, one can effectively observe the true variable of interest from a subset of

the data. This is called the validation subsample. That is, this study design allows one

to measures the true exposure variable.

2. Replication data

Another study design for estimating the parameters and dealing with non-identifiability

is replicated data. Here the researcher can obtain independent measurements of the

error-prone variable.
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1.2.3 Markov Chain Monte Carlo (MCMC)

In this part, we will introduce the Markov Chain Monte Carlo (MCMC), that allows

us to approximately build the posterior distribution as calculated by Bayes’ Theorem.

A Markov chain is a stochastic process that describes a sequence of possible events in

which the probability of each event depends only on the state attained in the previous

event. More precisely, future states are independent of past states given the present

state. Consider a draw of η(t) to be a state at iteration t. The next draw η(t+1) is

dependent only on the current draw η(t), and not on any past draws. This satisfies the

Markov property

p(η(t+1)|η(1), η(2), ...η(t)) = p(η(t+1)|η(t)).

Markov chain is a number of draws of η that are dependent on the previous one. Monte

Carlo is a solution to the difficult problem of sampling from a high dimensional distri-

bution for the purpose of numerical integration. This uses repeated random sampling to

generate simulated data, similar to the experimental data to use with a mathematical

model.

In context of Bayesian, our goal is producing independent draws from the posterior

distribution through simulation and making summary by using those draws. The pos-

terior distribution presented in formula (1.1), is proportional to the multiplication of

likelihood and prior. As in some cases, the normalizing constant is not known, the

draws from the multiplication are dependent on each other and may be treated as

Markov Chain samples. If our chain satisfies some regularity conditions, then the chain

will eventually converge to the stationary distribution (in our case the posterior) and

we have approximate draws from the desired distribution which is the posterior dis-

tribution in here. Once we have a Markov chain that has converged to the stationary

distribution, then the draws in our chain appear to be like draws from posterior and we

should be able to use Monte Carlo Integration methods to find quantities of interest.
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To ensure that the MC draws are less dependent, it is common in practice to omit a

part of the draws by either thinning or burn-in method.

The advantage of the MCMC algorithm is that this method can deal with compli-

cated integration in the posterior distribution. Another most important aspect is that,

integrals often do not have closed-form solution and MCMC method can help to ob-

tain the closed-form solution of the estimates (Brooks (1998), Richardson et al. (2013)).

Two MCMC algorithms have commonly been used in Bayesian for collecting draws

from the posterior - the Gibbs Sampler and the Metropolis-Hastings algorithm.

1.2.3.1 Gibbs sampler

Gibbs sampling generates a Markov chain of samples. The idea is to sample from a

full conditional distribution with the remaining variables fixed to their current values

when we have a p.d.f. or p.m.f. that is difficult to sample from directly. We set some

starting value and obtain a sequence of random values of the parameters. These satisfy

the property of being a Markov chain.

Suppose we have a joint distribution that we want to sample from (for example, a pos-

terior distribution). We can use the Gibbs sampler to sample from the joint distribution

if we knew the full conditional1 distributions for each parameter.

Let us consider taking sample from the full conditional distribution, where say we have

only three parameters, η = (η1, η2, η3). The followings are some steps to collect Gibbs

sampler:

1Full conditional distribution is the distribution of the parameter (ηi) conditional on the known
information (x) and all the other parameters: p(ηi|η−i, x)
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1. Provide an initial value for the unknown parameters η(0).

2. Start with any η value and draw a value η1 from the full conditional distribution

p(η1|η(0)2 , η
(0)
3 , x).

3. Draw a value η
(1)
2 from the full conditional p(η2|η(1)1 , η

(0)
3 , x). η

(1)
1 is the updated value

from the first iteration.

4. Draw a value η
(1)
3 from the full conditional p(η3|η(1)1 , η

(1)
2 , x) using both updated val-

ues.

5. Draw η(2) using η(1) and continue this process using the most updated values.

6. Repeat until we get M draws, with each draw being a vector.

If the draws are large enough and satisfy some regularity conditions then according

to Ergodic theorem, these draws converge to the stationary distribution which is the

posterior distribution in here. Gibbs sampling is applied where the full conditional

distributions are obtained. Besides, when it is difficult to obtain the conditional distri-

butions, we use Metropolis-Hastings Algorithm as the solution.

1.2.3.2 Metropolis-Hastings Algorithm

When the full conditional distribution for the unknown parameters are not available

then this algorithm can be used. It can approximate the desired distribution comprised

of any combination of prior probabilities and sampling models.

The Metropolis-Hastings Algorithm follows the following steps:

1. Choose a starting value η(0).

2. At iteration t, draw a candidate η(∗) from a jumping distribution2 Jt(η
∗|η(t−1), x).

2transition probability matrix
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3. Compute an acceptance ratio r

r =
p(η∗|x)/Jt(η∗|η(t−1))

p(η(t−1)|x)/Jt(η(t−1)|η∗)
.

4. Accept η(t) as η(∗) if it has higher probability min(r, 1). If η(∗) is not accepted, then

η(t) = η(t−1). Basically, if our candidate draw has higher probability than our current

draw, then our candidate is better, and we definitely accept it.

5. Repeat steps 2-4 M times to get M draws from the stationary distribution, with

optional burn-in.

In this study, the Gibbs sampler algorithm has been used for collecting draws from the

posterior.

1.2.4 Test statistics and diagnostic plots

Making valid inference based on all the outcomes and hypothesis testing is an essential

part in any statistical analysis.

For this research purpose and inspection, the Geweke and Heidelberg-Welch diagnostic

test has been performed where we check the hypothesis

H0 : Markov Chain is from stationary distribution.

After generating a chain and calculating the test we decide whether to accept or reject

the null hypothesis based on some steps of all the tests.
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1.2.4.1 Geweke Test

Geweke diagnostic takes two non overlapping parts, usually the first 10% and last 50%

proportions, of the Markov chain and compares the means of both parts, using the

difference of means this test try to see if the two parts of the chain are from the same

distribution (null hypothesis).

1.2.4.2 Heidelberg-Welch Test

The test is successively applied, firstly to the whole chain, then after discarding the

first 10%, 20% of the chain until either the null hypothesis is accepted, or 50% of the

chain has been discarded. If the outcome constitutes the failure of the stationarity test,

it indicates that a longer MCMC run is needed.

Besides conducting the hypothesis testing, diagnosing the MCMC requires some graph-

ical representation that assess the behaviour of the samplers with respect to the fitted

parameters. Therefore, the cross correlation plots, autocorrelation plots and trace plots

has generated accordingly.

Trace plots for parameters in context of Bayesian needs to perform to make sure that

the prior distribution is well calibrated. It shows precisely where the chain has been

exploring. If the chain is stationary it should not show long-term trend and the aver-

age value of the chain should be roughly flat and more dense around the true value.

Long-term trends or drifts in the plot indicate slower convergence.

Auto correlation plot measures the auto correlations between the samples returned by

our MCMC. High auto correlation is an indication of slow convergence and for this case
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reparameterization can help.

The cross correlation plot calculates the cross correlation between the monitored vari-

ables for each of chains. High correlation among parameters indicates low convergence.

Therefore, this may need reparameterization.

1.3 Interaction in the model

Let us consider an example, the impact of smoking and age on the weight. Both the

smoking and age has separate influence on the weight. However, an adult smoker’s

weight differs from the young smoker’s weight. That is, the impact of smoking on

weight depends on the level of age, that leads the term interaction.

The presence of interactions can have important implication for the interpretation of

statistical models. However, in some cases, due to the complex nature of capturing in-

formation from the interaction term, some researchers ignore this which causes the issue

of model misspecification. Avoiding the interaction term in the model can question the

efficiency of the inference of model. Most importantly, in presence of both the error-

prone and accurately measured variables, the interaction terms can possibly become

erroneous as well that is quite challenging to detect and deal with, according to Carroll

et al. (2006), Gustafson et al. (2011), Richardson et al. (2002) and Buzas et al. (2014).

In order to make the inference reliable and precise, proper care should be taken for the

erroneous variables. One of the possible techniques can be Bayesian method which has

mentioned and discussed before, that provides prior information about the unknown

parameters and can be used to handle measurement error in the independent variables

and interaction terms.



14

1.4 Organization of the Dissertation

In most of the practical cases, information remains in some regressors (independent

variables) are not completely accurate and this inaccuracy guides to the terms mea-

surement error and misclassification. This thesis defines the general concepts of mea-

surement error, outlines the impact of ignoring measurement error and finally addresses

Bayesian method as a well known fixing procedure for model with measurement error

and misclassification. In chapter 2, we study the interaction model without any error

in the variables where the main objectives are to illustrate how the Bayesian method is

applied and how statistical tools are used to diagnosis the convergency of the Markov

Chains. In chapter 3, an error-prone continuous variable has been added to the model

that interact with an accurately measured variable where we asses the performance of

the MCMC estimates from validation subsamples and replication and compare their

performances with the naive estimates that ignores the error in the variables. Analyz-

ing the discrete variable without misclassification is the topic of chapter 4 where an

extensive simulation study has been conducted under different scenarios. The following

chapter includes a misclassified covariate in our regression model where sensitivity anal-

ysis is performed to exhibit a transparent vision about the impact of error in covariates.

Finally, chapter 6 outlines the conclusion about all the analysis scheme that has done

on the former chapters.



Chapter 2

Interaction model with continuous

covariate without measurement

error

The effects of measurement error on the estimated parameters often studied through

simulation studies. In this chapter we demonstrate the Bayesian approach to estimate

the parameters in the linear model with interaction. Moreover, we analyze the MCMC

estimates using graphical and statistical tests introduced in Chapter 1.

Let us consider the following model, where, Y is the response variable, X is accurately

measured and z is a non-random continues covariates.

Y |X ∼ N(β0 + β1X + β2z + β3Xz, δ2).

Here,

X ∼ N(ϕx, γ
2).
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Consider we have n independent subjects in our study. Using Bayesian approach we can

calculate the joint density of unobserved quantities given the observed one as follows.

f(η|y, x) ∝
n∏

i=1

{f(yi|xi, β̃, δ
2)f(xi|ϕx, γ)}f(β̃)f(ϕx)f(γ

2)f(δ2), (2.1)

where, β̃ = (β0, β1, β2, β3) and η = (β0, β1, β2, β3, ϕx, δ
2, γ2) is the vector of unknown

parameters in the model 2.1. Consider applying improper priors for the regression coef-

ficients β values and for ϕx and proper priors of Inverse Gamma distribution (IG(a, b))

where, a is shape parameter and b is scale parameter and IG(a, b) is centred at b/a, for

the variance components δ2 and γ2.

f(β) ∝ 1, f(ϕx) ∝ 1, γ2 ∼ IG(0.5, 0.5), δ2 ∼ IG(0.5, 0.5).

Therefore, the posterior can be written as

f(η|y, x) ∝ (
1

δ2
)n/2e−Σn

i=1(yi−β0−β1xi−β2zi−β3xizi)
2/2δ2

× (
1

γ2
)n/2e−Σn

i=1(xi−ϕx)2/2γ2

× (
1

γ2
)0.5+1e−(0.5)/2γ2

× (
1

δ2
)0.5+1e−(0.5)/2δ2 .

The expression of full conditional distributions of the parameters is given as a function

of one individual unobserved quantity at a time given the observed amounts. Following

Gustafson (2004) the notation, say mc denotes all the unobserved quantities other than

m. Let B be a matrix of order n × 4 where, the ith row is (1, xi, zi, xizi). Therefore,

similar to Chapter 4 Mathematical Details in Gustafson (2004), the full conditional

distributions are as follows:
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β̃|β̃c ∼ N{(B′B)−1B′y, δ2(B′B)−1}

ϕx|ϕc
x ∼ N(x̄, γ2/n)

δ2|δ2c ∼ IG{(n+ 1)/2, (Σn
i=i(yi −Bβ)2 + 1)/2}

γ2|γ2c ∼ IG{(n+ 1)/2, (Σn
i=i(xi − ϕx)

2 + 1)/2}.

To estimate the unknown parameters in the model and to investigate the limiting be-

haviour of the posterior distributions, extensive simulation studies have been performed

under different scenarios for the impact of (a) Monte Carlo iteration number and (b)

sample size which has been presented as follows.

2.1 Simulation Studies

2.1.1 Monte Carlo iteration number (M, number of draws)

In this section, a sample of 1000 subjects were iterated 50000, 100000 and 300000 times

to observe the pattern of convergence to the true value of parameters with probability

one. The true value for model parameters considered as β0 = β1 = β2 = β3 = 0.5,

ϕx = 0, γ2 = 1.0 and δ2 = 1.0.

The following tables and graphs show the summary of the simulation results. The Esti-

mate is the sample mean of the Monte Carlo iterations. The MSE and S.D. represents

the Mean Squared Error and Standard Deviation of the samples, respectively. The

empirical 95% coverage probability is calculated as the proportion of the times ± 2S.D.

contains the true value of interest.
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Table 2.1: MCMC summary for 50000 iterations

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.547 0.105 0.004 0.745

β1 0.5 0.612 0.108 0.007 0.721

β2 0.5 0.417 0.056 0.003 0.712

β3 0.5 0.013 0.050 0.002 0.632

ϕx 0.0 -0.032 0.042 0.001 0.504

γ2 1.0 1.201 0.063 0.005 0.704

δ2 1.0 0.974 0.057 0.003 0.643

Table 2.2: MCMC summary for 100000 iterations

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.504 0.103 0.004 0.768

β1 0.5 0.520 0.107 0.005 0.752

β2 0.5 0.492 0.050 0.003 0.788

β3 0.5 0.501 0.041 0.001 0.832

ϕx 0.0 -0.013 0.035 0.001 0.613

γ2 1.0 1.042 0.063 0.005 0.902

δ2 1.0 0.976 0.055 0.002 0.810
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Table 2.3: MCMC summary for 300000 iterations

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.501 0.101 0.001 0.821

β1 0.5 0.545 0.107 0.002 0.882

β2 0.5 0.560 0.047 0.001 0.932

β3 0.5 0.482 0.031 0.001 0.913

ϕx 0.0 -0.003 0.045 0.001 0.807

γ2 1.0 1.040 0.023 0.002 0.887

δ2 1.0 0.985 0.041 0.003 0.802
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Figure 2.1: Histogram of the MCMC estimates of β1, β2 and β3 with respect to different

replication numbers. The vertical red solid line represents the true parameter value and

the dashed black, green and yellow line indicates 50000, 100000 and 300000 iterations,

respectively.

Tables 2.1, 2.2, 2.3 and Figure 2.1 represent the histograms of the estimated regression
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coefficients. In the tables, we considered up to three digits after decimal point for the

tabulated values. In the graphs, the x-axis indicates the parameter values and y-axis

shows the frequency.

It is expected that with the increment of iterations number, the distance between the

true parameters and MCMC estimated values will decrease. Considering both the

mean and variability, the Bayesian estimates meet the expectations. More specifically,

the MSE decreases as the number of iterations increases. Moreover, the empirical

95% coverage probability improves with the increase in iteration numbers. The results

also confirms the fact that for the coefficient of the interaction term, larger number

of iterations are required, in order to have a better coverage probability. It is due

to the fact that the interaction term adds an extra parameter to the model, without

adding extra data. That is why, generally, capturing the true value for the parameter

of interaction term is more challenging.

2.1.1.1 Diagnostic tests and Plots

Tables 2.4, 2.5 and 2.6 show the Heidelberg and Welch Diagnostic test results for 50000,

100000 and 300000 iterations, respectively.
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Table 2.4: Heidelberg and Welch Diagnostic test output for 50000 iteration

Variable Stationarity p-value

β0 passed 0.789

β1 passed 0.880

β2 passed 0.559

β3 passed 0.411

ϕx passed 0.746

γ2 passed 0.126

δ2 passed 0.805

Table 2.5: Heidelberg and Welch Diagnostic test output for 100000 iteration

Variable Stationarity p-value

β0 passed 0.586

β1 passed 0.659

β2 passed 0.252

β3 passed 0.485

ϕx passed 0.713

γ2 passed 0.196

δ2 passed 0.345
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Table 2.6: Heidelberg and Welch Diagnostic test output for 300000 iteration

Variable Stationarity p-value

β0 passed 0.453

β1 passed 0.416

β2 passed 0.568

β3 passed 0.936

ϕx passed 0.389

γ2 passed 0.102

δ2 passed 0.486

The results from the tables confirm that the Markov Chain converges to the stationary

state for all the parameters, for all the iterations. The trace plots and autocorrelation

plots for β3 (coefficient of the interaction term) were produced to further assist the

diagnosis about the convergence of the chains.
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Figure 2.2: Trace plots of β3 estimates with respect to different iteration numbers.

From the left, the first, second and third trace plot has generated under 50000, 100000

and 300000 iterations respectively.

Since trace plots shows precisely where the chain has been exploring and roughly flat

around, we can observe from Figure 2.2 that for 50000 iteration, the Markov Chain
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is approximately flat around at 0.45 when the true value considered was 0.5. The

chain became closer to 0.5 (approximately 0.47) for 100000 iterations and for 300000

iterations, the chain mixed better, become more fuzzy and flat around almost at 0.5.
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Figure 2.3: Autocorrelation plots of β3 estimates with respect to different iteration

numbers. From the left, the first, second and third trace plot has been generated for

50000, 100000 and 300000 iterations, respectively.

From the autocorrelation plot for β3, in Figure 2.3, the Markov Chain shows slight

correlations between the MCMC draws for 500000 and 100000 iterations, which is an

indication of slow convergence. However, 300000 iterations eliminates the correlations

and ensure swift convergence.

2.1.2 Sample size

In the sample sizes (n) scenario 100, 1000 and 10000 subjects were iterated 50000

times in order to monitor the behaviour of MCMC estimates. The true values of the

parameters considered similar as before (section 2.1).

The following tables and graphs show the summary of the simulation results. The

estimate is the sample mean of the distinct sample sizes.
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Table 2.7: MCMC summary for 100 sample size

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.481 0.203 0.027 0.721

β1 0.5 0.496 0.108 0.016 0.681

β2 0.5 0.560 0.148 0.030 0.692

β3 0.5 0.120 0.108 0.016 0.743

ϕx 0.0 0.056 0.129 0.023 0.510

γ2 1.0 1.356 0.406 0.171 0.506

δ2 1.0 0.846 0.199 0.038 0.658

Table 2.8: MCMC summary for 1000 sample size

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.512 0.107 0.005 0.743

β1 0.5 0.601 0.108 0.007 0.741

β2 0.5 0.468 0.050 0.003 0.721

β3 0.5 0.512 0.041 0.002 0.787

ϕx 0.0 -0.013 0.035 0.001 0.621

γ2 1.0 1.042 0.063 0.005 0.863

δ2 1.0 0.965 0.055 0.003 0.844
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Table 2.9: MCMC summary for 10000 sample size

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.520 0.016 0.000 0.826

β1 0.5 0.500 0.012 0.000 0.865

β2 0.5 0.491 0.014 0.000 0.941

β3 0.5 0.502 0.012 0.000 0.953

ϕx 0.0 -0.005 0.011 0.000 0.628

γ2 1.0 1.010 0.017 0.000 0.865

δ2 1.0 1.022 0.027 0.000 0.782
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Figure 2.4: Histogram of the MCMC estimates of β1, β2 and β3 with respect to different

sample size. The vertical red solid line represents the true parameter value and the

black, green and yellow line indicates the sample size 100, 1000 and 10000, respectively.

Tables 2.7, 2.8 and 2.9 and Figure 2.4 show the impact of sample size on the Bayesian
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estimates. Sample size has been expected to provide a significant impact on the esti-

mates, that, considering the table values, meet the expectations. With the increment of

n, the variability of the estimates decreased remarkably; as well as the MSE. Besides,

the increasing sample sizes improves 95% empirical coverage probabilities of the pa-

rameters. More interestingly, as the last graph shows, convergence of β3 requires large

sample size for better convergence.

2.1.2.1 Diagnostic test and Plots

Tables 2.10, 2.11 and 2.12 show Heidelberg and Welch Diagnostic test results for 100,

1000 and 10000 sample sizes, respectively.

Table 2.10: Heidelberg and Welch Diagnostic test output for 100 sample size

Variable Stationarity p-value

β0 passed 0.364

β1 passed 0.219

β2 passed 0.735

β3 passed 0.618

ϕx passed 0.559

γ2 passed 0.166

δ2 passed 0.904
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Table 2.11: Heidelberg and Welch Diagnostic test output for 1000 sample size

Variable Stationarity p-value

β0 passed 0.783

β1 passed 0.880

β2 passed 0.559

β3 passed 0.411

ϕx passed 0.746

γ2 passed 0.126

δ2 passed 0.805

Table 2.12: Heidelberg and Welch Diagnostic test output for 10000 sample size

Variable Stationarity p-value

β0 passed 0.635

β1 passed 0.526

β2 passed 0.510

β3 passed 0.168

ϕx passed 0.933

γ2 passed 0.177

δ2 passed 0.304

The results from the tables confirm that the Markov Chains converge to the stationary

states for all the parameters, for all the sample sizes. The trace plot and autocorre-

lation plots has been generated for β3 (coefficient of the interaction term) for further

assessment of the diagnosis about the convergence of the chains.
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Figure 2.5: Trace plots of β3 estimates with respect to different sample sizes. The first,

second and third trace plots were generated under 100, 1000 and 10000 sample sizes.

From the trace plots of β3 in Figure 2.5 we can observe that, with 100 subjects, Markov

Chain explores values around 0.2 to 0.8. As the sample size increases to 10000, the

range of exploring shrinks between 0.48 to 0.52 with less fluctuations.

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

Figure 2.6: Autocorrelation plots of β3 estimates with respect to different iteration

numbers. From the left, the first, second and third trace plot has generated for 100,

1000 and 10000 sample sizes, respectively.

From the auto correlation plots of β3, it is clear that the Markov Chain shows slight

correlation among draws for a small sample size 100. As we increase the size to 10000,

the correlation become invisible and secure quick convergence.



Chapter 3

Interaction model with continuous

covariate with measurement error

The presence of measurement error in the model distorts the Bayesian estimates. These

distortions are expected to be minimized through taking validation subsample and repli-

cation data. The primary inferential goal in this chapter is to diagnose the impact of

measurement error on the performance of Bayesian parameters under different frame-

works. Moreover, we investigate the performance of the estimates under validation

subsamples and replicates.

Let Y be the response variable and X be the true but unobserved continuous explana-

tory variable, subject to the measurement error. Let W be the surrogate explanatory

variable for X, and z is the other precisely measured continuous explanatory variable.
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Then the desired regression model can be written as

Y |X ∼ N(β0 + β1X + β2z + β3Xz, δ2),

where,

X ∼ N(ϕx, γ
2),

W |X ∼ N(X,ω2).

When we consider W as the surrogate variable for X then based on the observed

variable as Gustafson (2004) we can obtain the model and the solutions for the unknown

parameters as

Y |W ∼ N(β∗
0 + β∗

1W + β∗
2z + β∗

3Wz, δ∗2),

W ∼ N(ϕ∗, γ∗2).

In here,

ϕ∗ = ϕx,

γ∗2 = ω2 + γ2,

δ∗2 = δ2 + ((β1 + β3z)
2ω2γ2)/(ω2 + γ2),

β∗
0 =

β1ϕx

(1 + γ2/ω2)
,

β∗
1 =

β1

(1 + ω2/γ2)
,

β∗
2 = β2 +

β2ϕx

(1 + γ2/ω2)
,

β∗
3 =

β3

(1 + ω2/γ2)
.
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If we consider ω2 = 0, then δ∗2 = δ2, β∗
0 = 0, β∗

1 = β1, β
∗
2 = β2 and β∗

3 = β3. This

confirms that in the absence of measurement error, the model is identified. However,

in the presence of measurement error (ω2), the above equations imply that there are

more parameters than available data. In this case we can get extra data either from

validation subsamples or replicates.

The joint density of unobserved quantities given the observed ones, according to Bayesian

method, can be written as

f(η|y, w) ∝
n∏

i=1

{f(yi|xi, β̃, δ
2)f(wi|xi, ω

2)f(xi|ϕx, γ)}f(β̃)f(ϕx)f(γ
2)f(δ2)f(ω2),

where, η = (β0, β1, β2, β3, ϕx, δ
2, γ2, ω2) is the vector of unknown parameters. Consider

applying improper priors for the regression coefficients β’s and ϕx and proper priors of

Inverse Gamma distribution for the variance components δ2, γ2 and ω2.

f(β) ∝ 1, f(ϕx) ∝ 1, γ2 ∼ IG(0.5, 0.5), δ2 ∼ IG(0.5, 0.5), ω2 ∼ IG(0.5, 0.5).
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Therefore the posterior becomes

f(η|y, w) ∝(
1

δ2
)n/2e−Σn

i=1(yi−β0−β1xi−β2zi−β3xizi)
2/2δ2

× (
1

ω2
)n/2e−Σn

i=1(wi−xi)
2/2ω2

× (
1

ω2
)n/2e−Σn

i=1(xi−ϕx)2/2γ2

× (
1

γ2
)0.5+1e−(0.5)/2γ2

× (
1

δ2
)0.5+1e−(0.5)/2δ2

× (
1

ω2
)0.5+1e−(0.5)/2ω2

.

For validation subsamples, the measurements of X are known for some of the subjects.

Therefore, X can be partitioned into xc and xr, where, subscripts c and r denote

complete and reduced cases, respectively. That is, we observe only (W,Y, z) for reduced

case and observe (W,Y, z,X) for the complete cases. let ηM = (β0, β1, β2, β3, δ
2) is the

vector of parameters in the error model, ηR = (ϕx, γ
2) is the vector of parameters in the

response model and ηE = ω2 is the parameter in the exposure models. The posterior

distribution, for validation subsamples, takes the form

f(xr, η|y, w, xc, z) ∝
n∏

i=1

f(wi|xi, ηM)

×
n∏

i=1

f(yi|xi, zi, ηR)

×
n∏

i=1

f(xi, ηE)

×f(ηM , ηR, ηE).

For replication study design, repeated measurements of W , say, mi replicated mea-

surements are made for the ith subject. Then posterior distribution for the replication
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design takes the form

f(x, η|y, w, z) ∝
n∏

i=1

mi∏
j=1

f(wij|xi, ηM)

×
n∏

i=1

f(yi|xi, zi, ηR)

×
n∏

i=1

f(xi, ηE)

×f(ηM , ηR, ηE).

For the simulation purpose, this section turns the attention to analyze and describe

the behaviour of the Bayesian naive estimates in presence of measurement error, while

observing the impact of (a) MC iteration number and (b) the magnitude of measure-

ment error. Moreover, we investigated the performance of validation subsamples (two

scenarios) and replicates as the remedies of measurement error issues.

3.1 Simulation studies

3.1.1 Monte Carlo iteration number

We assumed a study design with 1000 subjects where MCMC algorithm has been imple-

mented and iterated different times to ensure the convergence of the estimated param-

eters towards the true values. Under each iteration scenario, the true values considered

β0 = β1 = β2 = β3 = 0.5, γ2 = 1, δ2 = 1, ϕx = 0, ω2 (measurement error) = 0.5 and

1000 burn-ins iteration values. Moreover, for the validation design, we generated 40

(4% for the sample size) accurately measured X. For the replication design, two sets of

independent W s were generated from the standard normal distribution. The associated

tables and graphs were produced accordingly as follows.



34

Table 3.1: Estimates of β1 for different number of iterations, for validation subsamples,

replicates as well as naive

Iteration Validation Replication Naive

1000 0.552 0.498 0.342

5000 0.496 0.453 0.289

10000 0.476 0.502 0.322

20000 0.546 0.531 0.364

30000 0.522 0.525 0.349

40000 0.514 0.489 0.350

50000 0.477 0.501 0.321

Table 3.2: Estimates of β2 for different number of iterations, for validation subsamples,

replicates as well as naive

Iteration Validation Replication Naive

1000 0.491 0.484 0.521

5000 0.491 0.501 0.477

10000 0.467 0.469 0.471

20000 0.498 0.494 0.502

30000 0.509 0.503 0.500

40000 0.536 0.530 0.549

50000 0.468 0.469 0.471



35

Table 3.3: Estimates of β3 for different number of iterations, for validation subsamples,

replicates as well as naive

Iteration Validation Replication Naive

1000 0.450 0.455 0.310

5000 0.470 0.422 0.270

10000 0.499 0.476 0.337

20000 0.472 0.494 0.320

30000 0.492 0.510 0.339

40000 0.475 0.499 0.330

50000 0.500 0.475 0.338
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Figure 3.1: Line graph of the MCMC estimates of β1, β2 and β3 with respect to different

iteration numbers. The horizontal red solid line represents the true parameter value

and the dashed blue, dotted green and black dotted dashed line indicates the validated,

replicated and naive estimates, respectively.
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Tables 5.7, 5.8, 5.9 and Figure 3.1 represent the mean MCMC estimates and the asso-

ciated line graphs regarding to validation, replication and naive samples, respectively.

For β2, the coefficient of accurately measured variable, all methods of estimate perform

similarly. However, in presence of error in X and therefore in Xz as well, the naive

estimates perform poorly. On the contrary, both validation subsampling and replica-

tion mechanism, the Markov Chain nearly converged to the true value, as the iteration

numbers increased. Interestingly, replication design performs better than the validation

design for both erroneous variable X and interaction term, Xz. A possible reason for

this may be, 4% validation subsample contains less information about the parameter

than the replication does.

3.1.2 Amount of measurement error

It is expected that substantial measurement error will have a considerable impact on

the estimation of parameters and as a result can make a misleading inference. By

introducing different amounts of mismeasurement phenomenon in the model, one can

have a sense of how measurement error can affect the associated regression coefficients.

The density plots and estimated values from simulation of the parameter of interest

can make this belief more visible. MCMC method has been carried out to simulate two

data sets from the similar setting as iteration case while considering measurement error

(ω2) as 0.5 and 1 only.
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Table 3.4: Effect of measurement error, ω2 = 0.5, on MCMC estimates from validation

subsample

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.452 0.068 0.002 0.515

β1 0.5 0.551 0.072 0.006 0.673

β2 0.5 0.492 0.036 0.001 0.688

β3 0.5 0.430 0.066 0.005 0.613

ϕx 0.0 0.013 0.040 0.002 0.783

γ2 1.0 0.975 0.051 0.003 0.562

δ2 1.0 0.955 0.051 0.002 0.683

ω2 0.5 0.764 0.268 0.0248 0.695

Table 3.5: Effect of measurement error, ω2 = 0.5, on MCMC estimates using replication

design

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.525 0.032 0.004 0.746

β1 0.5 0.495 0.037 0.008 0.799

β2 0.5 0.486 0.037 0.001 0.804

β3 0.5 0.455 0.059 0.004 0.824

ϕx 0.0 0.018 0.039 0.002 0.862

γ2 1.0 0.995 0.030 0.005 0.743

δ2 1.0 0.981 0.030 0.009 0.723

ω2 0.5 0.707 0.208 0.005 0.784
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Table 3.6: Effect of measurement error ω2 = 0.5, on MCMC estimates using naive

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.425 0.012 0.002 0.697

β1 0.5 0.342 0.019 0.001 0.577

β2 0.5 0.521 0.010 0.002 0.752

β3 0.5 0.310 0.051 0.010 0.517

δ2 1.0 1.033 0.040 0.001 0.562

Table 3.7: Effect of measurement error, ω2 = 1.0, on MCMC estimates using validation

subsample

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.525 0.044 0.002 0.715

β1 0.5 0.561 0.087 0.010 0.624

β2 0.5 0.491 0.037 0.002 0.645

β3 0.5 0.424 0.090 0.007 0.567

ϕx 0.0 0.029 0.051 0.003 0.512

γ2 1.0 0.973 0.063 0.005 0.752

δ2 1.0 0.957 0.05 0.002 0.531

ω2 1.0 1.056 0.075 0.006 0.516
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Table 3.8: Effect of measurement error, ω2 = 1.0, on MCMC estimates using replication

design

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.471 0.047 0.001 0.761

β1 0.5 0.484 0.043 0.002 0.757

β2 0.5 0.487 0.038 0.002 0.742

β3 0.5 0.437 0.075 0.005 0.737

ϕx 0.0 0.032 0.050 0.003 0.586

γ2 1.0 0.998 0.033 0.001 0.656

δ2 1.0 0.988 0.027 0.001 0.742

ω2 1.0 1.00 0.019 0.000 0.572

Table 3.9: Effect of measurement error, ω2 = 1.0, on MCMC estimates using navie

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.525 0.013 0.002 0.515

β1 0.5 0.258 0.012 0.001 0.484

β2 0.5 0.532 0.027 0.002 0.637

β3 0.5 0.232 0.018 0.002 0.526

δ2 1.0 1.066 0.070 0.003 0.621
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Figure 3.2: Posterior distribution of β3 under naive, validation subsample and replica-

tion design for measurement error 0.5 and 1. The solid vertical red line indicates the true

value of the parameters. The solid black, dashed green and dotted blue curves identifies

the posterior distribution of validation subsample, replication and naive design.

Focusing on a higher measurement error scenario (ω2 = 1), naive provided a poor

estimation of the parameter (with less variability), when replication and validation

subsample provided better estimates. Decreasing the error from 1 to 0.5 affects both

the location and the width of the posterior densities of β3, and this adjustment moves

the posterior distributions closer to the true value with less variability.

In overall, for both ω2 cases, replication design provides a better estimates and conver-

gence to the true value of β3. More probable reason for this context is, we considered

only 4% of the validation subsample while repeated samples has been taken for repli-

cation data to adjust measurement error.
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3.1.3 Validation subsample

Since the continuous explanatory variable X is not precisely measured and replaced by

a noisy surrogate W , therefore one possible adjustment for the bias caused by mismea-

sured variable would be considering validation subsample. We simulated data sets for

two validation cases (4% and 20% of the sample size) considering 1000 Monte Carlo

subjects that iterated 50000 times.

Starting the simulation framework with 4% validation subsample (this refers only 4% of

the subjects consist of the accurate information of the X variable) and eventually rising

the sample information to 20%, we investigated the behaviour of Bayesian estimates.

Table 3.10: Bayesian estimates for validation subsamples (4% and 20%), replicates as

well as naive

Parameter True value Validation Validation Replication Naive

4% 20%

β0 0.5 0.525 0.505 0.513 0.516

β1 0.5 0.587 0.508 0.486 0.252

β2 0.5 0.531 0.525 0.518 0.553

β3 0.5 0.415 0.482 0.458 0.261

ϕx 0.0 -0.006 0.057 0.017 -

γ2 1.0 0.994 1.038 0.989 -

δ2 1.0 0.982 0.994 0.968 1.114

ω2 1.0 1.046 0.995 1.005 -
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Table 3.11: MCMC estimates under 4% validation subsample

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.525 0.044 0.002 0.715

β1 0.5 0.587 0.058 0.005 0.671

β2 0.5 0.531 0.047 0.002 0.655

β3 0.5 0.415 0.050 0.003 0.643

ϕx 0.0 -0.006 0.042 0.002 0.729

γ2 1.0 0.994 0.059 0.004 0.582

δ2 1.0 0.982 0.034 0.001 0.811

ω2 1.0 1.046 0.071 0.006 0.532

Table 3.12: MCMC estimates under 20% validation subsample

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.505 0.074 0.002 0.685

β1 0.5 0.458 0.057 0.004 0.753

β2 0.5 0.525 0.044 0.002 0.715

β3 0.5 0.520 0.044 0.002 0.782

ϕx 0.0 0.057 0.070 0.005 0.756

γ2 1.0 1.038 0.052 0.003 0.766

δ2 1.0 0.994 0.027 0.001 0.624

ω2 1.0 0.995 0.035 0.001 0.657
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Table 3.13: MCMC estimates under replication design

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.513 0.044 0.002 0.764

β1 0.5 0.486 0.054 0.003 0.677

β2 0.5 0.518 0.039 0.002 0.698

β3 0.5 0.458 0.049 0.003 0.786

ϕx 0.0 0.017 0.041 0.002 0.782

γ2 1.0 0.989 0.035 0.001 0.754

δ2 1.0 0.968 0.040 0.001 0.823

ω2 1.0 1.005 0.020 0.000 0.842

Table 3.14: MCMC naive estimates

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.516 0.238 0.003 0.615

β1 0.5 0.252 0.248 0.012 0.581

β2 0.5 0.553 0.063 0.003 0.789

β3 0.5 0.261 0.239 0.011 0.592

δ2 1.0 1.114 0.117 0.005 0.548
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Figure 3.3: Posterior distributions of β1 and β3 for 4% and 20% validation subsample

and replication design. The vertical red solid line is the true mean and the solid black

and dotted red curves represents the posterior densities resulting from the 4% and 20%

of validation subsample. And the blue dashed curve indicates the posterior distribution

of replication design.

The significant impact of both validation subsamples (4% and 20%) on the behaviour

of posterior densities of β1 and β3 can be seen from Figure 3.3 and the associated

tabulated values. 4% validation subsample displays wider posterior densities, implies

larger variance for β1. Indeed, increasing the validation subsample from 4% to 20%

improves the estimates and therefore assisting MCMC method for convergence towards

the true value with less variability. A reasonable explanation can be because, 20%

validation subsample contains more information for variable X than 4%. Besides, from

the tables we can acquire that naive estimate provided poor inference when, replication

data yield better performance.
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Interestingly, the curve for β3 has nearly similar variability and location under both

validation subsampling (4% and 20%) and replication cases, illustrates the challenging

nature of capturing information from the interaction term.

In overall scheme, we can conclude that, increasing the validation subsample highly

secure the estimates to converge to the true value compared to the replication design.

However, in application, exactly measuring X for 20% of the sample may be very

expensive. That is why it is sometimes better to have more inaccurate replicates of X

than large number of accurate ones.
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Following the posterior densities of all parameters are presented for a 20% validation

subsample.
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Figure 3.4: Posterior distributions of β1, β2, β3 and ω2. Here the solid black, dashed

blue and dotted red curve gives the posterior density from the replication, validation

subsampling and naive, respectively.

Since X is the mismeasured continuous variable, z is precisely measured continuous
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variable, therefore the coefficient of z (β2) is less likely to be affected by the measure-

ment error presented in the model. The top right panel of β2 in Figure 3.4 as it was

expected, naive estimator performs similar to other two designs. However, measure-

ment error has significant influence on the coefficient of X (β1) and Xz (β3) which is

transparent from the graph as well. Naive estimates from the analysis for both β1 and

β3 provides a density with less variability, nevertheless, this is unsuccessful for assuring

almost sure convergence of the parameters. It is also noted that validated design pro-

vides slightly less variable density than the replicated ones.

The diagnostic plots and tests (not shown) satisfies the inference made from all frame-

works in this chapter.



Chapter 4

Interaction model with discrete

variable without misclassification

Let us consider a response model where one of the covariates is discrete

Y |X ∼ (β0 + β1X + β2z + β3Xz, δ2)

Here, X is the binary variable with probability of success

p(X = 1) = r.

When X and z are both observed covariates, all the model parameters (β0, β1, β2, β3, δ
2, r)

can be uniquely estimated. Then the joint density of unobserved quantities given the

observed ones is obtained as

f(η|y, x) ∝
n∏

i=1

{f(yi|xi, β̃, δ
2)p(xi, r)f(β̃)}f(r)f(δ2),
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where η = (β0, β1, β2, β3, δ
2, r ) is the vector of unknown parameters of interest. Con-

sider applying improper priors for the regression coefficients (β values) and proper priors

of Inverse Gamma distribution for the variance component δ2 and a non informative

Beta distribution with known parameters for r. That is

f(β) ∝ 1, δ2 ∼ IG(0.5, 0.5), r ∼ Beta(a, b).

Therefore the posterior becomes

f(η|y, x) ∝ rΣ
n
i=1xi+na−n(1− r)nb−Σn

i=1xi

× (
1

δ2
)n/2e−Σn

i=1(yi−β0−β1xi−β2zi−β3xizi)
2/2δ2

× (
1

δ2
)0.5+1e−(0.5)/2δ2

To investigate the performance of the posterior distributions under various scenarios,

simulation studies have been conducted, where no misclassification has been considered

in the desired model. The scenarios considered for (a) MC iteration number, (b) sample

size (n) and (c) prior selection for r.

4.1 Simulation studies

4.1.1 Monte Carlo iteration number

The purpose of this section is to observe the converging trend of the MCMC estimates

to the true value while varying the iteration numbers. A sample of size 1000 has been

iterated 50000, 100000 and 300000 times for our study purpose. The discrete covariate

X has been generated for two probability cases - rare case (probability r = 0.05) and
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common case (probability r = 0.5) to observe the impact of r on the estimates. For each

iteration and probability scenario, other model parameters were assigned as β = 0.5

with δ2 = 1, and 1000 burn-ins.

4.1.1.1 Rare case

The MCMC estimated values of the unknown parameters and the associated graphs

has been produced to understand impact of iteration numbers as well as the magnitude

of probability r.

Table 4.1: Summary of MCMC estimates for 50000 iteration

Parameter True value Estimator MSE S.D. Emperical 95%

coverage probability

r 0.05 0.048 0.006 0.000 0.515

β0 0.50 0.471 0.042 0.002 0.673

β1 0.50 0.125 0.261 0.071 0.546

β2 0.50 0.464 0.048 0.002 0.626

β3 0.50 0.240 0.264 0.077 0.756

δ2 1.00 1.002 0.045 0.002 0.747
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Table 4.2: Summary of MCMC estimates for 100000 iteration

Parameter True value Estimator MSE S.D. Emperical 95%

coverage probability

r 0.05 0.056 0.010 0.000 0.741

β0 0.50 0.501 0.030 0.001 0.634

β1 0.50 0.483 0.142 0.028 0.781

β2 0.50 0.507 0.033 0.001 0.792

β3 0.50 0.343 0.212 0.053 0.794

δ2 1.00 0.873 0.131 0.009 0.737

Table 4.3: Summary of MCMC estimates for 300000 iteration

Parameter True value Estimator MSE S.D. Emperical 95%

coverage probability

r 0.05 0.061 0.014 0.000 0.654

β0 0.50 0.484 0.036 0.001 0.836

β1 0.50 0.458 0.221 0.053 0.896

β2 0.50 0.513 0.035 0.001 0.723

β3 0.50 0.546 0.049 0.031 0.781

δ2 1.00 1.011 0.016 0.003 0.941
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Figure 4.1: Histogram of the MCMC estimates of β1, β2 and β3 with respect to different

iteration numbers under rare probability. The vertical red solid line represents the true

parameter value and the dashed black, green and blue line indicates the 50000, 100000

and 300000 iteration estimates of β values, respectively.

Table 4.1, 4.2 and 4.3 display the estimated MCMC parameters with S.D., MSE as well

as the empirical 95% coverage probability values from the simulation studies. Accord-

ing to the tabulated values, parameters began to approach to the true value with the

increment of iterations number. Besides, the MSE and S.D. values began to decrease.

However, β1, the coefficient of X required more iterations to converge towards the true

value. The histograms help to visualize the converging behaviour of MCMC estimates

towards their true values, more clearly. The white, green and blue histograms repre-

sents 50000, 100000 and 300000 iterations, respectively. With the increment of iteration

number, the MCMC means start converging to their true means. As predictor X has

few numbers of observations, it costs more iteration for β1 to reach near to the true

value. On the contrary, the estimated MCMC β2’s were closer to the true mean. More-

over, for the interaction term, it took more iterations for β3 to reach the true value.

However, with the increment of iteration number, the variability starts to shrink in all
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β cases.

4.1.1.2 Common probability

A similar set up has been considered for the common case of X variable. With a higher

probability (r = 0.5), X has more successes to estimate the parameters. Therefore, the

convergence for all parameters are faster than the rare case (r = 0.05).

Table 4.4: Summary of MCMC estimates for 50000 iteration

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

r 0.5 0.522 0.027 0.000 0.765

β0 0.5 0.595 0.105 0.009 0.736

β1 0.5 0.321 0.189 0.023 0.785

β2 0.5 0.588 0.099 0.008 0.714

β3 0.5 0.347 0.164 0.019 0.632

δ2 1.0 1.033 0.057 0.004 0.942
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Table 4.5: Summary of MCMC estimates for 100000 iteration

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

r 0.5 0.483 0.023 0.000 0.854

β0 0.5 0.462 0.057 0.004 0.871

β1 0.5 0.555 0.083 0.008 0.841

β2 0.5 0.512 0.045 0.002 0.864

β3 0.5 0.475 0.066 0.006 0899

δ2 1.0 0.959 0.059 0.004 0.876

Table 4.6: Summary of MCMC estimates for 300000 iteration

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

r 0.5 0.520 0.026 0.000 0.948

β0 0.5 0.491 0.046 0.003 0.913

β1 0.5 0.501 0.063 0.005 0.979

β2 0.5 0.542 0.063 0.005 0.894

β3 0.5 0.472 0.071 0.007 0.965

δ2 1.0 1.000 0.044 0.002 0.928



55

Histogram of β1

β1

F
re

qu
en

cy

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
0

40
00

0
60

00
0

80
00

0
50000 iterations

100000 iterations

300000 iterations

Histogram of β2

β2

F
re

qu
en

cy
−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
0

40
00

0
60

00
0

80
00

0

50000 iterations

100000 iterations

300000 iterations

Histogram of β3

β3

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
0

40
00

0
60

00
0

80
00

0

50000 iterations

100000 iterations

300000 iterations

Figure 4.2: Histogram of the MCMC estimates for β1, β2 and β3 with respect to different

iteration numbers under common probability. The vertical red solid line represents the

true parameter value and the dashed black, green and blue lines indicate the 50000,

100000 and 300000 iterated estimates of β values.

The histograms and the outputs in Table 4.4, Table 4.5 and Table 4.6 show that chang-

ing of the iteration number has a good impact on the MCMC estimates. Lower iteration

generates poor estimates while higher iteration number minimize the distance between

the true and estimated values of the parameters. In addition, β2 achieves the lowest

variability for 300000 MCMC iteration. Furthermore, the associated MSE and S.D.

values began to decrease as the chain numbers increase.

4.1.2 Sample size

It is expected that the sample size has a significant effect on the posterior estimates.

Therefore, the behaviour of the estimates were studied for the sample size (n) 100,

1000, and 10000. For these scenarios, we considered r to be 0.05 and iteration numbers

to be 50000. The other parameters were as before. Histograms of estimated values for
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all the coefficients (β values) were made to visualize the behaviour of the estimated

parameters.

Table 4.7: Summary of MCMC estimates for 100 sample size

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

r 0.05 0.078 0.038 0.002 0.571

β0 0.50 0.545 0.128 0.023 0.547

β1 0.50 0.147 0.620 0.522 0.531

β2 0.50 0.501 0.101 0.014 0.573

β3 0.50 0.402 0.374 0.201 0.624

δ2 1.00 1.344 0.396 0.168 0.574

Table 4.8: Summary of MCMC estimates for 1000 sample size

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

r 0.05 0.046 0.007 0.000 0.734

β0 0.50 0.479 0.038 0.000 0.648

β1 0.50 0.840 0.373 0.001 0.581

β2 0.50 0.516 0.037 0.000 0.745

β3 0.50 0.623 0.202 0.000 0.743

δ2 1.00 1.046 0.066 0.000 0.862
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Table 4.9: Summary of MCMC estimates for 10000 sample size

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

r 0.05 0.051 0.002 0.000 0.845

β0 0.50 0.506 0.012 0.000 0.782

β1 0.50 0.497 0.044 0.000 0.851

β2 0.50 0.490 0.013 0.000 0.774

β3 0.50 0.532 0.055 0.000 0.815

δ2 1.00 0.980 0.023 0.000 0.951
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Figure 4.3: Histograms of the MCMC estimates of β1, β2 and β3 with respect to different

sample sizes for the rare case (r = 0.05). The vertical red solid line represents the true

parameter value and the dashed black, green and blue lines indicate 100, 1000 and

10000 samples, respectively.

The estimated values of the unknown parameters are presented in Tables 4.7, 4.8 and

4.9. The dramatic change of the parameters and their variances is clear from the
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histogram of β values in Figure 4.3,

All the β estimates with small sample size appeared to have large variances. Moreover,

for small sample size the MCMC estimates were far from the true values. For larger

sample sizes, the variances became small. Besides, the estimates converge to the true

values with the increase in n. Therefore, larger sample size helped the MCMC estimates

to converge faster to their true values with less variability.

4.1.3 Beta Prior

In this section the impact of prior selection for r on the estimation process was explored.

For this purpose, Beta distributions with parameters 5 and 1 as the least informative,

1 and 1 (uniform between zero and one) as non informative and 2 and 5 as most

informative, were selected. A sample of 1000 observations were iterated 50000 times to

create the following tables and histograms. Other parameters were set the same as the

last section.

Table 4.10: Summary of MCMC estimates for the least informative prior (Beta(5, 1))

Parameter True value Estimator MSE S.D. Emperical 95%

coverage probability

r 0.05 0.050 0.015 0.000 0.848

β0 0.05 0.540 0.059 0.004 0.872

β1 0.5 0.036 0.072 0.007 0.841

β2 0.5 0.575 0.058 0.004 0.871

β3 0.5 0.412 0.071 0.007 0.913

δ2 1.0 0.969 0.053 0.003 0.741
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Table 4.11: Summary of MCMC estimates for the non informative prior (Beta(1, 1))

Parameter True value Estimator MSE S.D. Emperical 95%

coverage probability

r 0.05 0.049 0.018 0.000 0.871

β0 0.5 0.512 0.046 0.003 0.536

β1 0.5 0.488 0.064 0.005 0.885

β2 0.5 0.487 0.046 0.003 0.926

β3 0.5 0.459 0.088 0.009 0.877

δ2 1.0 1.109 0.046 0.003 0.984

Table 4.12: Summary of MCMC estimates for the most informative prior (Beta(2, 5))

Parameter True value Estimator MSE S.D. Emperical 95%

coverage probability

r 0.05 0.049 0.018 0.000 0.983

β0 0.5 0.530 0.053 0.003 0.944

β1 0.5 0.454 0.077 0.007 0.917

β2 0.5 0.451 0.046 0.003 0.834

β3 0.5 0.482 0.066 0.006 0.921

δ2 1.0 0.976 0.049 0.003 0.887
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Figure 4.4: Histograms of the MCMC estimates for β1, β2 and β3 under common

probability. The vertical red solid line represents the true parameter value, and the

dashed black, green and blue lines represent the least, non and the most informative

priors, respectively.

Figure 4.4 shows that for β1 and β3, non and most informative beta priors provided

similar histograms, where the least informative prior provided the worst results. For

β2, all priors perform quite similar. This implies that for the coefficient of z, the choice

of prior for r is not as important as for the coefficients of X and Xz.



Chapter 5

Interaction model with discrete

variable with misclassification

Let X be a binary exposure variable in the regression model that we discussed in

Chapter 4. In here, X is unobservable and instead, a surrogate binary covariate W

is measured that incorporates the error and leads to the term misclassification. The

magnitude of misclassification is characterized in terms sensitivity (probability of cor-

rect classifying success) and specificity (correctly classifying failure). Therefore, the

response model is as follows

Y |X ∼ (β0 + β1X + β2z + β3Xz, δ2),

where,

P (X = 1) = r.
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Moreover,

P (W = 1|X = 1) = u

P (W = 0|X = 0) = v,

where u is the sensitivity and v is the specificity.

Based on the misclassified W we have

Y |W ∼ N(β∗
0 + β∗

1W + β∗
2z + β∗

3Wz, δ2∗), (5.1)

where

δ2∗ = δ2 + (β1 + β3z)
2V ar(X|W ),

and

V ar(X|W ) =
(1− u)r

1− rw
(1− (1− u)r

1− rw
)− [

ur

rw
+ (1− (1− u)r

1− rw
)2]W 2

+ [(
ur

rw
− (1− u)r

1− rw
)(1− 2

(1− u)r

1− rw
)]W.

The coefficients in model (5.1) are as follows

β∗
0 = β0 + β1(

(1− u)r

1− rw
),

β∗
1 = β1(

ur

rw
+

(1− u)r

1− rw
),

β∗
2 = β2 + β3

(1− u)r

1− rw
,

β∗
3 = β3(

ur

rw
+

(1− u)r

1− rw
).
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In here, rw is the probability of success for W that is defined as

rw = P (W = 1) = ru+ (1− u)(1− r).

Since rw varies between zero and one, with the following bounds are needed

min(u, 1− v) ≤ rw ≤ max(u, 1− v).

The joint density of unobserved quantities given the observed ones is obtained as

f(η, x|y, w) ∝
n∏

i=1

{f(yi|xi, , β̃, δ
2)p(wi/xi, u, v)p(xi, r)f(β̃)}f(r)f(δ2)f(u, v, r),

where η = (β0, β1, β2, β3, r, δ
2, v, u) is the vector of unknown parameters. Applying

improper priors for the regression coefficients (β values) and proper priors of Inverse

Gamma distribution for the variance component δ2 and non informative uniform dis-

tributions for r, u and v, we have

f(η|y, w) ∝ rΣ
n
i=1xi(1− r)n−Σn

i=1xi

× uΣn
i=1wi(1− u)n−Σn

i=1wi

× vΣ
n
i=1xi(1− v)n−Σn

i=1wi

× (
1

δ2
)n/2e−Σn

i=1(yi−β0−β1xi−β2zi−β3xizi)
2/2δ2

× (
1

δ2
)0.5+1e−(0.5)/2δ2 .

The behaviour of the posterior distributions under various scenarios has been observed

through simulating suitable data set. The scenarios considered were (a) Monte Carlo
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iteration number, (b) sample size (n), (c) prior selection and (d) sensitivity and speci-

ficity.

5.1 Simulation studies

5.1.1 Monte Carlo iteration number

In order to observe the impact of number of iterations on convergence, a sample of 1000

observations were replicated 50000, 100000 and 300000 times. The response model’s

parameters were kept the same as Chapter 4. Moreover, X is unobservable and W

provides error-prone information for X in the model. Sensitivity and specificity were

considered to be 0.9 and 0.3, respectively. The simulation studies were done for two

separate scenarios of rare probability (r = 0.05) and common probability (r = 0.5).

5.1.1.1 Rare probability

It is expected that for small number of successes in the discrete variable X the conver-

gence rate of Monte Carlo chains is slower (as comparing to larger number of successes).

The associated tables and graphs are produced as follows.
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Table 5.1: Summary of MCMC estimates for 50000 iterations

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.50 0.498 0.039 0.005 0.671

β1 0.50 0.627 0.180 0.003 0.767

β2 0.50 0.468 0.051 0.002 0.538

β3 0.50 0.498 0.191 0.004 0.543

r 0.05 0.051 0.007 0.002 0.874

δ2 1.00 1.024 0.051 0.007 0.716

u 0.90 0.709 0.190 0.008 0.614

v 0.30 0.290 0.017 0.003 0.872

Table 5.2: Summary of MCMC estimates for 100000 iterations

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.50 0.516 0.043 0.002 0.845

β1 0.50 0.364 0.230 0.070 0.713

β2 0.50 0.544 0.059 0.004 0.867

β3 0.50 0.609 0.391 0.153 0.923

r 0.05 0.056 0.010 0.000 0.655

δ2 1.00 0.980 0.048 0.003 0.961

u 0.90 0.710 0.190 0.005 0.873

v 0.30 0.289 0.017 0.000 0.832
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Table 5.3: Summary of MCMC estimates for 300000 iterations

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.50 0.472 0.048 0.00 0.567

β1 0.50 0.389 0.251 0.00 0.856

β2 0.50 0.519 0.044 0.00 0.777

β3 0.50 0.619 0.222 0.00 0.945

r 0.05 0.046 0.007 0.00 0.993

δ2 1.00 0.976 0.049 0.00 0.981

u 0.90 0.708 0.191 0.00 0.876

v 0.30 0.291 0.016 0.00 0.782

Histogram distribution of β1

β1

fr
eq

ue
nc

y

−0.5 0.0 0.5 1.0 1.5

0
20

00
0

40
00

0
60

00
0

80
00

0

50000 iterations

100000 iterations

300000 iterations

Histogram Histogram distribution of β2

β2

fr
eq

ue
nc

y

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
20

00
0

40
00

0
60

00
0

80
00

0

50000 iterations

100000 iterations

300000 iterations

Histogram Histogram distribution of β3

β3

fr
eq

ue
nc

y

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
20

00
0

40
00

0
60

00
0

80
00

0

50000 iterations

100000 iterations

300000 iterations

Histogram

Figure 5.1: Histogram of the MCMC estimates of β1, β2 and β3 with respect to different

iteration numbers under rare probability in presence of misclassification. The vertical

red solid line represents the true parameter value and the dashed, dotted and dotted

dashed lines indicates the 50000, 100000 and 300000 replicated estimates of β values.
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The tabulated values and the graphs for the regression coefficients have been presented

in the Tables 5.1, 5.2 and 5.3. Figure 5.1 helps to visualize the convergence pattern at a

glance. The red solid lines represent true value of the parameters, and white, green and

yellow with dashed, dotted and dotted dashed horizontal lines, indicate the estimated

values. From the histograms and tabulated values of the coefficient of X, (i.e β1), we

can observe that the increasing number of iterations did not help the MCMC estimates

to converge the true parameter value. This is due to the fact that number of successes

is very low (only 50). Moreover, for the rest of the observations, misclassification rate is

very high (1−0.3 = 0.7). Without correcting for the bias caused by misclassification, the

naive estimator does not perform well. However, the coefficient of accurately measured

variable Z (i.e. β2) converges faster its true value, with the increment of iterations.

Finally, β3, the coefficient of interaction slowly converges to the true value as iteration

number rises. This is because both X (misclassified) and Z (accurately measured)

contribute both negatively and positively to the convergence of β3.

5.1.1.2 Common probability

The simulation setup for the common probability (r = 0.5) are similar to the rare

probability case . The simulation outputs are provided in Tables 5.4 to 5.6. The

histograms of the estimated values for the coefficients are presented in Figure 5.2.
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Table 5.4: Summary of MCMC estimates for 50000 iterations

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.502 0.054 0.004 0.876

β1 0.5 0.507 0.077 0.008 0.885

β2 0.5 0.554 0.075 0.006 0.893

β3 0.5 0.457 0.087 0.010 0.924

r 0.5 0.488 0.019 0.000 0.853

δ2 1.0 1.023 0.051 0.003 0.814

u 0.9 0.796 0.104 0.002 0.817

v 0.3 0.203 0.097 0.002 0.846

Table 5.5: Summary of MCMC estimates for 100000 iterations

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.469 0.062 0.005 0.987

β1 0.5 0.644 0.163 0.023 0.877

β2 0.5 0.501 0.057 0.004 0.843

β3 0.5 0.436 0.102 0.013 0.614

r 0.5 0.495 0.016 0.000 0.884

δ2 1.0 0.920 0.089 0.006 0.871

u 0.9 0.799 0.101 0.002 0.766

v 0.3 0.200 0.100 0.002 0.878
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Table 5.6: Summary of MCMC estimates for 300000 iterations

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.484 0.023 0.00 0.856

β1 0.5 0.522 0.033 0.00 0.995

β2 0.5 0.452 0.050 0.00 0.697

β3 0.5 0.563 0.067 0.00 0.892

r 0.5 0.499 0.005 0.00 0.915

δ2 1.0 0.994 0.015 0.00 0.893

u 0.9 0.799 0.100 0.00 0.798

v 0.3 0.200 0.099 0.00 0.673
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Figure 5.2: Histogram of the MCMC estimates of β1, β2 and β3 with respect to differ-

ent iteration numbers under common probability in presence of misclassification. The

vertical red solid line represents the true parameter value and the black, green and yel-

low histograms and the corresponding dashed, dotted and dashed dotted lines indicate

50000, 100000 and 300000 iterations, respectively.
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From the graph and table of the parameters the convergence trend is clearly visible. All

the estimated MCMC parameters β1, β2 and β3, start converging to the true parameter

values with the increment of the replication number that meet the prediction as well.

Besides, the low standard deviation value with higher iteration make the decision that

high iteration can provide fast convergence.

5.1.2 Sample size

Sample size is considered to be one of the most important factor in any statistical

analysis. It may have significant effect on the convergence of the Markov Chain and its

convergence to the true value of the parameters. The simulation study was conducted

for sample sizes 100, 1000 and 10000 with 50000 iterations. Other parameter values

were 0.5 for all β values, r = 0.05, u = 0.9, v = 0.3 and δ2 = 1.

Table 5.7: Summary of MCMC estimates for 100 sample size

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.50 0.488 0.126 0.022 0.777

β1 0.50 0.475 1.293 1.949 0.812

β2 0.50 0.612 0.167 0.035 0.837

β3 0.50 0.598 1.578 3.085 0.887

r 0.05 0.039 0.021 0.000 0.643

δ2 1.00 0.929 0.157 0.031 0.853

u 0.90 0.706 0.199 0.017 0.854

v 0.30 0.293 0.045 0.002 0.771
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Table 5.8: Summary of MCMC estimates for 1000 sample size

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.50 0.520 0.005 0.002 0.842

β1 0.50 0.327 0.039 0.069 0.547

β2 0.50 0.492 0.004 0.002 0.729

β3 0.50 0.486 0.161 0.036 0.764

r 0.05 0.058 0.011 0.000 0.979

δ2 1.00 0.946 0.068 0.004 0.871

u 0.90 0.710 0.090 0.005 0.881

v 0.30 0.289 0.017 0.000 0.615

Table 5.9: Summary of MCMC estimates for 10000 sample size

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.50 0.497 0.002 0.00 0.884

β1 0.50 0.549 0.075 0.00 0.884

β2 0.50 0.506 0.004 0.00 0.693

β3 0.50 0.487 0.056 0.00 0.778

r 0.05 0.049 0.002 0.00 0.858

δ2 1.00 1.014 0.020 0.00 0.854

u 0.90 0.709 0.090 0.00 0.533

v 0.30 0.290 0.010 0.00 0.734



72

Histogram distribution of β1

β1

de
ns

ity

−1 0 1 2 3

0
50

00
10

00
0

15
00

0
20

00
0

sample size 100

sample size 1000

sample size 10000

Histogram Histogram distribution of β2

β2

de
ns

ity
−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0
50

00
10

00
0

15
00

0
20

00
0

sample size 100

sample size 1000

sample size 10000

Histogram Histogram distribution of β3

β3

de
ns

ity

−1 0 1 2 3 4

0
50

00
10

00
0

15
00

0
20

00
0

sample size 100

sample size 1000

sample size 10000

Histogram

Figure 5.3: Histogram of the MCMC estimates of β1, β2 and β3 for different sample

sizes under rare probability. The vertical red solid line represents the true parameter

value and the dashed black, green and yellow histograms indicate 100, 1000 and 10000

sample size estimates of β values.

Figure 5.3 represents histograms of β1, β2 and β3, for the three sample sizes. A drastic

change we can notice from the plots. Higher sample size confirms faster convergence

for all the parameters. Most importantly, the variance for all β values of the histogram

becomes almost zero. Interestingly, MCMC estimates for β2 hits the true value for all

sample setup compared to the other two coefficients β1 and β3. The incorporated error

in the variable X as well in the interaction term may slower the convergence. This

confirms the fact that generally, increasing sample size does not help correcting bias

caused by measurement error.

5.1.3 Beta Prior

Another important simulation study done was varying beta prior for r from the least

informative to the most informative, to explore the convergence of MCMC for the
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response model coefficients. A sample of size 1000 was replicated 50000 times with

β values set to be 0.5, and r was set to be 0.05. Sensitivity was set to be 0.9 and

specificity 0.3 with 1000 burn-ins for generating the estimated MCMC values and related

histograms of regression coefficients.

Table 5.10: Summary of MCMC estimates for the least informative prior (Beta (5, 1))

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.526 0.061 0.005 0.888

β1 0.5 0.466 0.084 0.010 0.642

β2 0.5 0.540 0.066 0.005 0.934

β3 0.5 0.399 0.126 0.017 0.544

r 0.05 0.051 0.023 0.000 0.933

δ2 1.0 0.975 0.050 0.003 0.912

u 0.9 0.803 0.097 0.002 0.896

v 0.3 0.196 0.104 0.002 0.634
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Table 5.11: Summary of MCMC estimates for non informative prior (Beta(1, 1))

Parameter True value Estimator MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.528 0.062 0.005 0.822

β1 0.5 0.405 0.122 0.017 0.754

β2 0.5 0.488 0.058 0.004 0.986

β3 0.5 0.507 0.077 0.008 0.865

r 0.05 0.052 0.028 0.000 0.855

δ2 1.0 1.061 0.078 0.007 0.772

u 0.9 0.804 0.096 0.002 0.814

v 0.3 0.195 0.105 0.002 0.463

Table 5.12: Summary of MCMC estimates for the most informative prior (Beta(2, 5))

Parameter True value Estimate MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.570 0.089 0.008 0.883

β1 0.5 0.411 0.117 0.016 0.756

β2 0.5 0.452 0.074 0.007 0.871

β3 0.5 0.507 0.079 0.009 0.835

r 0.05 0.050 0.015 0.000 0.843

δ2 1.0 0.930 0.081 0.006 0.677

u 0.9 0.800 0.100 0.002 0.455

v 0.3 0.199 0.101 0.002 0.562
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Figure 5.4: Histogram of the MCMC estimates for β1, β2 and β3 with respect to dif-

ferent beta priors under rare probability. The vertical red solid line represents the true

parameter value and the black, green and yellow histograms indicate estimates of β

values for the least, non and the most informative priors, respectively.

Tables 5.10, 5.11 and 5.12 and Figure 5.4 represent the MCMC estimates and associated

graphs. Interestingly, prior information for β1 (the coefficient of erroneous variable),

seem to have no improvement on the convergence on MCMC estimates. Convergence of

estimated values for β2 were not affected by the choice of prior for r, either. However, for

β2, the convergence process is satisfactory, implying that inference about the coefficient

of the accurately measured variable is not affected by the error in another variable.

In addition, convergence in the MCMC estimates for β3 seem to require the most

information from prior that is reflected in the histogram of β3.

5.1.4 Sensitivity and Specificity

For analyzing the effect of sensitivity and specificity, we looked at two scenarios of (a)

high sensitivity, low specificity (u = 0.9, v = 0.3) and (b) both low (u = 0.3, v = 0.3).



76

Again for this section, we considered r to be 0.05 with a sample of size 1000. All other

parameters were set as the previous section. The following tables and graphs present

the results.

Table 5.13: Summary of MCMC estimates for u = 0.9, v = 0.3

Parameter True value Estimator MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.489 0.056 0.004 0.781

β1 0.5 0.474 0.146 0.020 0.763

β2 0.5 0.478 0.060 0.005 0.814

β3 0.5 0.498 0.078 0.008 0.792

r 0.05 0.050 0.016 0.000 0.807

δ2 1.0 0.934 0.037 0.003 0.825

u 0.9 0.799 0.101 0.002 0.681

v 0.3 0.200 0.100 0.002 0.727
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Table 5.14: Summary of MCMC estimates for u = 0.3, v = 0.3

Parameter True value Estimator MSE S.D. Emperical 95%

coverage probability

β0 0.5 0.467 0.062 0.005 0.672

β1 0.5 0.371 0.112 0.025 0.685

β2 0.5 0.547 0.071 0.006 0.793

β3 0.5 0.726 0.110 0.014 0.548

r 0.05 0.046 0.033 0.001 0.583

δ2 1.0 1.015 0.048 0.003 0.608

u 0.3 0.511 0.212 0.006 0.542

v 0.3 0.487 0.188 0.005 0.620
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Figure 5.5: Posterior distribution of β1 and β3 with respect to different sensitivity under

rare probability. The vertical red solid line represents the true parameter value and the

black and blue curves indicates the distribution for sensitivity 0.3 and 0.9, respectively.

Keeping the specificity at 0.3, we changed the sensitivity from 0.3 to 0.9 and summarized

the Bayesian estimates in tables 5.13 and 5.14 and in Figure 5.5. We observe that when

we have lower number of success in the variable with lower rate of specificity and higher

rate of sensitivity, the MCMC estimates perform well with lower MSE and S.D. value.

However, considering both the sensitivity and specificity at a lower rate, we observe

that the coefficient of the erroneous covariate and interaction term deviated from the

true value. Moreover, the MSE and S.D. values were higher for this scenario.



Chapter 6

Discussion and Conclusion

In statistical models, presence of measurement errors in variables are common problems

in practice. When we observe a data that is not measured correctly and the measure-

ment errors are not taken into account, statistical inference is incorrect and provides

a misleading conclusion. Therefore, it is important for the researcher to address mea-

surement errors in order to obtain valid statistical inference. Moreover, presence of

interaction terms in the model are common in many research areas. Erroneous vari-

able incorporated with interaction, makes the analysis more complicated to deal with.

One of the recent techniques is Bayesian methods that incorporates the prior knowl-

edge about parameters. Only a few studies have implemented Bayesian techniques into

interaction models with error in covariates.

Our primary goal was to monitor the behaviour of the Bayesian estimations of the

model parameters in presence of measurement error for both discrete and continuous

covariates. More specifically, we paid more attention to the behaviour of estimators for

the coefficient of the interaction term in the models.

We started with the continuous case where no measurement error was considered. More

specifically, in Chapter 2, we applied Bayesian techniques to the linear regression model
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with a continuous random covariate without measurement error interacting with a non-

random accurately measured covariate. We studied the behaviours of estimates under

different scenarios when (a) number of Monte Carlo iterations and (b) sample size

changed. Moreover, we analyzed the convergence of Markov Chains using graphical

and testing hypothesis methods. We observed that while increasing both iteration

numbers and the sample size, improved the convergence of the MC estimates, the coef-

ficient of the interaction term required more iterations to perform as well as the other

coefficients.

Moving to the mismeasured continuous covariate case, in Chapter 3, we studied the

behaviour of the Bayesian estimators for the naive estimator that ignores the error in

the error-prone covariate. We also considered validation subsample and replication as

an adjustment for the bias caused by measurement error, where those estimates were

also compared with the naive. Moreover, we studied the behaviours of estimates under

different scenarios when (a) number of Monte Carlo iterations, (b) percentage of valida-

tion subsample and (c) magnitude of measurement error. We observed that generally,

lowering measurement error as well as increasing number of iterations improved the con-

vergence of the estimates, for the coefficient of the interaction term affected both the

location and the width of the posterior densities, and therefore, the adjustment moved

the posterior distributions closer to the true value with less variability. Moreover, 4%

of the sample as the validated data was not as good as two replicates of error-prone

covariate. However, increasing the validation subsample size to 20% made a significant

improvement in the performance of the estimators. In application, however, there is a

trade-off between cost and effect of larger sample.

For the discrete case, in Chapter 4, we first considered a linear regression model with an

accurate discrete random covariate interacting with a nonrandom accurately measured

covariate. More specifically, we studied the behaviours of Bayesian estimates under

different scenarios when (a) number of Monte Carlo iterations for two cases of rare and
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common probability, (b) sample size and (c) prior for the probability of success for the

discrete random variable, changed. In here, we interestingly, observed that the non

informative and most informative priors improved the performance of the estimator of

the interaction term. However, for the coefficient of the nonrandom variable, the choice

of prior did not make any significant difference.

Moving to misclassified discrete covariate, in Chapter 5, we studied the performance

of the estimators for the naive one that ignores the misclassification in the error-prone

covariate. Moreover, we studied the behaviours of estimates under different scenarios

when (a) number of Monte Carlo iterations or two cases of rare and common probability,

(b) sample size, (c) prior for the probability of success for the discrete random variable

and (d) specificity and sensitivity, changed. The most interesting result of this chapter

was to observe that for the rare case with lower rate of specificity and higher rate of

sensitivity, the MCMC estimates perform well with lower MSE. However, considering

both the sensitivity and specificity at a lower rate, we observed that the coefficient of

the erroneous covariate and interaction term deviated from the true value.

Although our study included many interesting scenarios, there are still gaps that can be

filled. Further investigation is required to evaluate, for example, the impact of choices

of prior for the model coefficients, choices of distributions for the error-prone covariate

on the estimation process.
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