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ABSTRACT  

Early detection of faults in a process plant is important in order to prevent of happening 

catastrophic events which might cause deaths, economic, and environmental losses. 

Recently, on-line calculation of risk and its use for monitoring of process faults were 

proposed by [Bao et al., 2011]. In this study, a new methodology is proposed which 

brings more clarity in the calculation of risk from online monitoring of process data. In 

the proposed methodology, process faults have been classified into two groups: hardware 

failure and disturbance type faults.  First a “Bank of Kalman Filters” is used to detect and 

diagnose possible failures occurred in the system.  Based on the fault category, if it is a 

disturbance type fault, the estimated states are used directly to calculate the probability of 

fault. On the other hand, for hardware failure, residuals obtained from Kalman Filter are 

used to update the probabilities of the affected gates of the “Event Tree”, and the 

probability of occurrence of a catastrophic event is calculated. Next, the risk of operating 

system under the current condition is calculated using the updated probability and 

severity. Results show that using the combination of “bank of Kalman Filter” and “Event 

Tree Analysis” brings more clarity to risk calculation and improves the detection time of 

the failure. Based on the calculated risk, operators can prioritize the faults and take 

appropriate action to the most critical one which ensures process safety. 
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1 INTRODUCTION  

The risk assessment in the process industry is briefly discussed in this chapter. The 

chapter also states the motivation and objectives of this study. 

1.1 Online risk assessment in the process industry 

In nowadays process industry, there are thousands of variables in complex plants 

interacting with each other. Due to the connectivity of these variables, if one variable 

deviates from its normal operation, the effect can reach the other parts of the plant, and in 

some cases it can lead to major problems such as explosion, overflow of a tank, etc. So, 

it’s critical to monitor the operation status of the process plant in order to detect any 

abnormal situation before it leads to a catastrophic event. By technology advancement, 

the task of monitoring the plant has been automated. However, the task of responding to 

the abnormal situations in a process plant is still performed by human operator. The task 

is called Abnormal Event Management (AEM) which involves the early detection of an 

abnormal event, diagnosing its cause, and take appropriate action to bring the process 

back to normal condition (Venkatasubramanian et al., 2003a). 

To monitor the complex plants with thousands of variables, process control systems such 

as Supervisory Control and Data Acquisition (SCADA) system and Distributed Control 

System (DCS) are used in modern process plants.  In order to notify the operators about 

the abnormal situations, warning systems are installed in control rooms to monitor the 

plant state and detect the deviation of the normal range. Traditional warning systems are 
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designed to detect the abnormality of single variables. So, for each variable one alarm 

system is installed. However, in some cases the warning system is unable to detect the 

deviation of a secondary variable. In such cases, the operator may not be able to detect the 

possible catastrophic event until the primary variable deviates from its normal range and 

an alarm being triggered. Early detection of the abnormality, on the other hand, is critical 

to give the operator enough time to bring the process back to the normal state.  

Assigning an alarm for each variable can increase the number of alarms operators receive. 

Even in the case of minor disturbance, operator gets some secondary alarms due to the 

noise in the measurement. This can be worse in the case of a major event, when many 

redundant alarms can be announced before and after the primary alarm. This phenomenon 

is called “alarm flooding”. Detecting a fault in early stage and reducing the false alarms 

are main aspects in designing a new warning system. In (Izadi et al. 2009a) a framework 

is proposed to optimally design the alarm systems. In this framework, three techniques 

are suggested to reduce the false and nuisance alarm rate: filtering of process data, adding 

alarm delay and using alarm deadband.   

 

1.2 Motivation and Objectives 

Recently, on-line calculation of risk and its use for monitoring of process faults were 

proposed by Bao et al. (2011). In this study, a new methodology is proposed which brings 

more clarity in the calculation of risk from online monitoring of process data. 
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Based on the type of fault occurred in the system, the probability and severity of fault is 

calculated. Herein, a bank of Kalman filters is used to detect and diagnose different types 

of faults.  

The focus of this thesis is to assess the risk of a faulty system online which is able to 

annunciate alarms at an early time to give the operator enough time to fix the system. The 

specific objectives of the thesis are: 

 Use a bank of Kalman filters to distinctly detect and diagnose different types of 

faults occurring in a process system, 

 Assess the risk of the process operating under faulty conditions. 

 In this study, a Bank of Kalman Filters is used to detect and diagnose the faults. Bank of 

Kalman filter is able to efficiently detect and diagnose the faults occurred in the plant. 

After that, using Event Tree Analysis (ETA), the probability of occurrence of a 

catastrophic event is calculated. These probabilities are used to update the risk of 

operating system under faulty conditions. The whole methodology is briefly discussed in 

chapter 3.  

1.3 Thesis Structure 

In the first chapter, the risk assessment was briefly discussed. Chapter 2 reviews the 

literature comprehensively. Different methods to analyze the risk and methods to detect 

and diagnose the faults occurred in a system are reviewed in that chapter. Chapter 3 

discussed the methodology to assess the risk. Two ``bank of Kalman filters`` are used in 

order to detect and diagnose sensor and actuator faults. Based on the type of the fault the 
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risk is calculated using the probabilities and severities of the detected faults. Chapter 4 

discusses results for two case studies. A continuous stirred tank heater (CSTH) and the 

RT 580 fault finding in control systems are used as examples. The concluding remarks 

and recommendations to improve the work are discussed in chapter 5.  

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

2 LITERATURE REVIEW 

In modern manufacturing facilities, there is a large number of variables which interacting 

with each other under closed-loop control. So, due to complexity and interaction between 

variables, a failure in one part can propagate to the whole system. Minimizing downtime, 

increasing the safety of the plant operations, and reducing manufacturing cost can be 

achieved by early and accurate fault detection and diagnosis. For more heavily 

instrumented plants, there are more data available for use in detecting and diagnosing 

faults (Chiang et al., 2001; Bouhoushe et al., 2005; Volosencu 2015). 

Producing higher quality products, reducing product rejection rates, and satisfying safety 

and environmental regulations have been main goals in process and manufacturing 

industries. Previous process operations are no longer adequate to meet these standards. In 

order to achieve this goal, in modern industrial processes, variables operate under closed-

loop control. The standard process controllers (PID controllers, model predictive 

controllers (MPC) etc.) compensate the effects of disturbances and changes occurring in 

the process maintaining the operations in the normal range. On the other hand, there are 

changes in the process which can’t be handled by the controllers. This type of change is 

called fault. In other words, a fault is an unexpected deviation of any characteristic 

property or variable from its operating range (Chiang et al., 2001; Volosencu 2015). 

Abnormal situations or unexpected process disruptions are the main cause of losses in the 

process industry. They cost at least $20B in the U.S. industry (Cochran et al., 1996).  A 

range of process disruptions from a minor disturbance to a major process upset are 
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considered as abnormal situations. These situations require the plant operators to take 

action as soon as possible to bring the plant back to the normal condition. 

There are different types of faults occurring in the system (process parameter changes, 

disturbance parameter changes, actuator problems, and sensor problems). Heat exchanger 

fouling, an extreme change in the ambient temperature, a sticking valve, and a sensor 

biased measurement are examples of process parameter change, disturbance parameter 

change, actuator problem, and sensor problem, respectively. Detecting, diagnosing and 

removing the faults are necessary to satisfy the performance specifications, which are 

associated with process monitoring and Abnormal Situation Management (ASM) (Chiang 

et al., 2001; Volosencu 2015; Venkatasubramanian et al., 2003a). 

Process monitoring includes four procedures: fault detection, fault identification, fault 

diagnosis, and process recovery. Fault detection is finding if a fault has occurred. Early 

detection is important to avoid major process problems by giving time to the operator to 

take appropriate actions. Fault identification is identifying the subsystems and variables 

most related to the diagnosis of the fault and put plant operator’s and engineer’s attention 

on these subsystems and variables. Finding the cause of the unwanted conditions is fault 

diagnosis which is essential to remove the fault. In process recovery procedure, the 

effects of the faults are removed (Chiang et al., 2001; Volosencu 2015). 

Advanced sensor development and control technology has improved the efficiency and 

productivity in the process industries (Tao et al., 2017). However, these technologies are 

not able to eliminate the abnormal situations. So, the operators have to continuously 

intervene to correct the abnormal situations (Cochran et al., 1996).   
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In order to early detection of an abnormal situation, warning systems have widely been 

used in process industries (Lu et al., 2018, Jain et al., 2018). These systems are able to 

detect a deviation from normal operating conditions and notify the operator to take proper 

action in order to bring the system back to the normal conditions. The warning system is 

considered as the 3
rd

 layer in the layer of protection analysis (LOPA) (Crowl & Louvar, 

2001). These systems have an important role in the plant safety by informing the 

operators. They can be defined as the mechanisms run in a plant to inform the personnel 

about the risk of a possible danger before it happens. In other words, the warning system 

gives the operator enough time to be prepared for a danger or make a decision to reduce 

the effects of the events or even prevent them (Hotz et al., 2006).  

There have been many types of these systems used in the process industry. The warning 

systems trigger an alarm in the case of an abnormal situation. In some processes, there are 

many alarms triggered at the same time due to safety consideration. The number of 

alarms increases in some cases which are more than what even an experienced operator 

can handle (Yang et al., 2012). So, “alarm rationalization” has been the main focus of 

recent projects in industry, which is detecting the abnormal situations while trying to 

reduce the number of false alarms at the same time. In this process, the design 

requirements of alarms are considered based on plant alarm philosophy; that means the 

alarm setting, consequences of deviation, and the corrective action the operators have to 

take are taken into account (Izadi et al., 2009a; Hollender & Beuthel, 2007). Izadi et al. 

(2009a) proposed a framework to optimally design the alarm system. Filtering of process 
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data, adding alarm delay and using alarm deadband are considered as useful techniques to 

reduce the false alarms.  

Alarm management has been considered as one of the main tasks in all industries. The 

Engineering Equipment and Materials Users Association (EEMUA) has published a 

guideline to properly design, manage and procure of alarm systems known as EEMUA 

191 (EEMUA, 2007). Based on this guideline, a warning system should be: unique, 

relevant, timely, understandable, prioritized, focusing, and diagnostic. A similar 

milestone was published by International Society of Automation (ISA) which is known as 

ISA 18.2 Standards (ISA, 2009). Some standards for alarm systems are provided in ISA 

18.2 such as: definition, design, management, and installation. Both EEMUA 191 and 

ISA 18.2 show the proper efforts and tasks required to effectively design an alarm system.  

There are different types of alarms defined based on necessity (ISA, 2009): 

 Absolute alarms, 

 Deviation alarms, 

 Rate of change alarms, 

 Statistical alarms, 

 Discrepancy alarms, 

 Controller output alarms, 

 Instrument diagnostic alarms, and 

 Bad measurement alarms. 
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These types of alarms can be classified as: continuous alarms and digital alarms. The 

former one is associated with continuously measurable variables such as: pressure, 

flowrate, and temperature; the digital alarms are associated with logical decisions such as: 

instrument failure, valve malfunction, and measurement failure. In continuous alarms, a 

limit is designed based on: distribution of process variable, maximum rate of change, 

average response time, the amount of risk involved, and process condition model 

(EEMUA, 2007). When a variable deviates from each assigned limit, an alarm is 

triggered having an identifier. The most common identifiers used with continuous alarms 

are: high (identified as PVHI), low (identified as PVLO), high-high (identified as 

(PVHH) and low-low (identified as PVLL).  

Common warning systems which are used mostly in the industry are variable based 

systems. In this type of systems, if it is possible, an alarm is assigned for each variable. 

So, an alarm is triggered when the value of a single variable deviates from its normal 

range. Due to connectivity of variables in a plant, any change in one variable can make 

changes in other variables as well. Consequently, when one variable crosses its threshold 

limit, there could be many other variables go beyond their normal range and make many 

alarms to be triggered which some of these alarms are false or nuisance alarms (Izadi et 

al., 2009a; Izadi et al., 2009b). This occurrence is known as alarm flooding (Yang et al., 

2012; ISA, 2009). In the ISA 18.2 alarm flooding is defined as (ISA, 2009): 

“A condition during which the alarm rate is greater than the operator can effectively 

manage (e.g. more than 10 alarms per 10 minutes).” 



10 

 

Based on EEMUA 191, the approximate time an operator needs to effectively manage an 

alarm is 10 minutes and the rate of alarms shouldn’t be more than 60 alarms per hour 

(EEMUA, 2007). But, in reality, the alarm rate exceeds this standard value. Table 2-1 

shows a comparison between EEMUA standards and what happens in some industries 

(Izadi et al., 2009b) 

Table 2-1: EEMUA standards and average values happen in industry (Izadi et al., 2009b) 

 EEMUA Oil and Gas Petrochemical Power 

Average alarms/hr ≤6 36 54 48 

Average standing alarms 9 50 100 65 

Peak alarms/hr 60 1320 1080 2100 

Distribution % (low/med/high) 80/15/5 25/40/35 25/40/35 25/40/35 

 

ISA 18.2 recommends some similar standards for the maximum time an alarm system can 

be in flood. It recommends that an alarm system shouldn’t be in flood more than one 

percent of reporting time which is far away from what happens in reality. Advanced 

alarming techniques can be considered to study and analyze alarm floods. ISA 18.2 

classified these techniques into 4 different categories: 

 Information based alarming 

 Logic based alarming 

 Model based alarming, and 

 Additional alarming consideration 
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Alarm management is a relatively new area in process control. In early stage of designing 

a new plant, one crucial step is finding the necessary points for which an alarm is required 

(Yan et al., 2007a). The studies on alarm management and design in process industry can 

be classified as two categories: single variable alarm design and multivariate alarm 

analysis. The former one is an essential step to effective alarm design. The alarms are set 

on either process variables (PVs) or manipulated variables (MVs) (Yan et al., 2007b). 

Due to presence of noise, different operating conditions, and instrumentation limitation, 

these variables have dispersions in their statistical distributions which can cause high 

false or missed alarm rates (Izadi et al., 2009a; Izadi et al., 2009b; Kang & Seong, 1999). 

Data filtering, adding alarm delay, using deadband and alarm window design are some 

techniques to overcome this issue (Izadi et al., 2009a).  

There are numerous variables in an industrial plant which makes it difficult to analyze 

and design an alarm for each single variable. So, it is more effective to use multivariate 

alarm systems.  

There are many multivariate fault detection methods proposed to early fault detection and 

diagnosis. These methods can be classified as: quantitative model based methods, 

qualitative model based methods and historical data based methods (Venkatasubramanian 

et al., 2003a, 2003b, and 2003c). In the quantitative model based approaches, a first 

principle model is required to estimate the state of the process variables. Kalman Filter is 

a powerful tool frequently used in this approach. Zadakbar et al. (2013) used the residuals 

generated from Kalman Filter to detect the faulty conditions in a process plant. On the 

other hand, due to the complexity of a real plant, developing a first principle model is 
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difficult. In qualitative mode based approach, a causal model such as fault tree is used to 

detect the faults. In these techniques, alarms and variables in a process are grouped based 

on their interrelations (Yang et al., 2012; Kondaveeti et al., 2010). Root cause 

determination is achieved using causality analysis of interrelated variables. In a causality 

analysis, information theoretic approaches are used in order to determine a cause and its 

effects from a time series data (Hlavackova et al., 2007; Barnett et al., 2009). Different 

approaches have been used for root cause analysis in process industry using transfer 

entropy (Bauer et al., 2007), reachability (Yang et al., 2009), and sign directed graph 

(SDG) (Yang et al., 2010). However, the capability of these qualitative approaches to 

detect the fault in real time is limited. As an alternative to the fist principle approach, the 

historical data based methods have been proposed in literature. There are some 

relationships between different variables in a system. Using multivariate analysis, some 

information can be extracted from a large number of variables and be expressed by a 

smaller number of latent variables (Izadi et al., 2009b). These virtual variables are 

calculated by combining other variables. Principle Component Analysis (PCA) is a 

multivariate technique which reduces the number of false and missed alarms by assigning 

alarms on fewer variables based on Q and T
2
 statistics of many other variables 

(Kondaveeti et al., 2009; Zadakbar et al., 2012). One difficulty arises using these methods 

is that developing a statistical model needs a large set of historical data.  

Some visualization tools using the High Density Alarm Plot (HDAP) and the Alarm 

Similarity Color Map (ASCM) have been used to identify the nuisance alarms 

(Kondaveeti et al., 2010). Event correlation analysis (Noda et al., 2011) and fuzzy 
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clustering methodology (Zhu & Geng, 2005) have been studied in order to identify the 

similarity among alarms to reduce the nuisance alarms.  

As a probabilistic graphical method, Bayesian Network (BN) has been used in some 

studies (Argiolas et al., 2012; Hossain & Muromachi, 2012). BN is a powerful tool which 

is capable of doing fault diagnosis under uncertainty. BN was used in safety analysis 

method proposed by Khakzad et al. (2011)  

Recently, as an alternative to variables based alarm system, risk-based alarm 

methodology has been studied (Bao et al., 2011). In this approach, an alarm is assigned to 

be triggered when the risk of associated event exceeds a predefined threshold. Risk is 

defined as a function of the probability of occurrence of an event and its consequences. In 

the proposed methodology, authors used a univariate approach which has limited 

capability to reduce the false alarms. Ahmed et al. [2011] extended the methodology by 

proposing an event-based alarm system. They proposed instead of defining the risk for 

each variable, an alarm is triggered when the risk of an event goes beyond the threshold. 

In the mentioned studies on risk-based alarm systems, it’s not said how to calculate the 

probabilities and the severities of an event. In current study, event tree analysis is used to 

calculate these parameters. 
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3 METHODOLOGY 

 

In the current study, a new methodology is proposed to assess the risk of system operating 

under faulty conditions. The proposed methodology is consisted of two sections: a) fault 

detection and diagnosis, and b) risk assessment. Figure 3-1 shows the flowchart of the 

proposed methodology. 

The first step in the methodology is finding a model describing the system. To find such a 

model, the previous operating data are used. The more the available data are, the better 

the model is. This model can be updated as some new data are gathered. The State Space 

(SS) model of the system can be found using System Identification Toolbox of 

MATLAB.  

Having this model, new data, obtained from different sensors assigned on different 

variables, are applied to find if the system is working under normal condition or a fault 

has occurred in the system.  

Fault detection and diagnosis is an important step regarding the safety improvement in a 

complex industrial process. The three essential tasks involved in the fault diagnosis are: 

fault detection, fault isolation and fault identification. The first task detects the occurrence 

of a fault in the process; fault isolation classifies the different faults and fault analysis 

determines the type, magnitude and the cause of the fault (Ding, 2008).  

There are many different approaches regarding fault detection techniques. These methods 

can be classified in three categories: quantitative model based approach, qualitative model 
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based approach and historical data based approach (Venkatasubramanian et al., 2003a, 

2003b, and 2003c). 

A common part in all developed model based techniques is using a process model. Using 

the processing data, which are collected online during the plant operation, the fault 

detection and diagnosis algorithms are implemented based on this model (Ding, 2008).  

Advanced computer technology and the control techniques along with technological and 

economic demands have made the model based fault diagnosis approach as a powerful 

tool to solve fault diagnosis problems. The schematic description of the model based fault 

diagnosis approach is shown in Figure 3-2 (Ding, 2008). As seen in this figure, an 

important part of this approach is residual generation. One popular method to generate 

residuals, which has been used in the current study, is the Kalman filter which is briefly 

discussed in the next section.  
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Figure 3-1: Implementation steps of the proposed methodology 
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Figure 3-2: the schematic description of the model based fault diagnosis technique (Ding, 2008) 

Here, a bank of Kalman filters are used to distinguish between different sensors or 

actuators faults. The number of Kalman filters is the summation of sensors and actuators 

in the system. There is also another Kalman filter which assumes that the system is under 

normal conditions at all the time. The main model is modified for sensor/actuator which 

is discussed later on this chapter. These filters are used to predict the states of the model 

at each time which are used to calculate the probability of failure.  

Each Kalman filter defines a hypothesis that assumes the associated sensor/actuator is 

faulty. To find if the hypothesis is right or not, for each Kalman filter, a fault indicator is 

defined as the Weighted Sum of Squared Residuals (WSSR). Once these indicators are 

calculated, the accuracy of hypotheses is validated and the occurrence of a fault is 

detected.  

Next step in the methodology is to classify the type of faults. Here, two types of failure 

are defined: hardware failure and disturbance failure. Sensor failure and actuator failure 
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are categorized as hardware failure. The reason to distinguish between different types of 

failure is that to find the probability of failure different methods are used for hardware 

and disturbance failures. For hardware failure, the fault indicators are used to update the 

probability of failure at each time, and state predictions are applied in the case of a 

disturbance failure.  

These updated probabilities are applied to an Event Tree (ET) to calculate the probability 

of occurrence of a major event. An Event Tree is a graphical representation of different 

scenarios knowing that an initiating event has already happened in the system. The Event 

Tree Analysis (ETA) will be briefly discussed in the next sections.  

The consequence (severity) of each fault is calculated simultaneously.  Usually the 

severity of a fault is a function of different parameters (e.g. the severity of an explosion is 

higher when more people are working on a plant rather than when no one is at the 

location of the explosion). Herein, the only factor considered in calculating the severity of 

a fault is residuals obtained from associated Kalman filter.  

Having the probability of a major event and the severity of the fault, the risk of system 

operating under current conditions is updated at each time. If the calculated risk exceeds a 

predefined threshold, an alarm will be triggered to bring operator’s attention to the faulty 

location. On the other hand, if the risk remains below the critical point, no alarm will be 

announced. In that case, the number of false alarms is reduced.  

Different steps of the methodology are briefly discussed in the following sections. 
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3.1 Kalman Filter 

The Kalman filter is an efficient method to generate residuals in which the linear model 

of a plant is used. Considering the following discretized linear time invariant model: 

{
Xk = AkXk−1 + BkUk−1 +Wkwk
Yk = CkXk + Vkvk                           

                                                                                     (3–1) 

in which, k ∈ ℕ shows the time index and xk ∈ ℝ
n is the state; Uk ∈ ℝ

l and Yk ∈ ℝ
m are 

noise-free input and noisy output; wk ∈ ℝ
n and vk ∈ ℝ

m are stationary Gaussian white 

noise vectors with covariance Q ∈ ℝn×n and R ∈ ℝm×m , for example wk~𝒩(0, Q) and 

vk~𝒩(0, R), to represent process disturbances and measurement noise, respectively; 

system matrixes Ak, Bk, Ck, Wk, and Vk have proper dimensions. Taking into account the 

possible faults occurring in different parts of the system, Eq. (3-1) needs to be modified.  

Considering the process fault, new equations can be as: 

{
Xk = AkXk−1 + BkUk−1 + Fkfpk +Wkwk
Yk = CkXk + Vkvk                                           

                                                                    (3– 2) 

In which, the new term, Fkfpk, shows the process fault. 

In Kalman filter approach, the residuals are used for fault detection and diagnosis. At any 

time, the residuals are calculated as the following equation: 

rk = yk − ŷk|k−1                                                                                                                     (3– 3) 

In Eq. (3-3), k is the time instant, yk and ŷ𝐾 are the measurement and corresponding 

predicted values at time instant k. In many studies, the Kalman filter based residual 

generation method has been used to get the residuals (Zadakbar et al., 2013; Hsoumi et 

al., 2009). In the case of a linear system with Gaussian noise, the Kalman filter gives the 
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optimal state estimation. It is also robust considering disturbance and uncertainty in the 

process.  

For a linear system with known matrixes and Gaussian process and measurement noise, 

least square estimate of  xk is obtained using the Kalman filter; Kalman filter gives  

minimum variance for  xk − x̂k|j in which x̂k|j is the estimation of xk using previous 

inputs and outputs, {u(1), y(1), … u(j), y(j)}, where j = k − 1, for predicting one step 

ahead, or j = k for filtering (Li et al., 2008). The predictor algorithm of Kalman filter is:  

{
X̂k+1|k = AX̂k|k−1 + BUk + KkỸk

Ŷk = CX̂k|k−1                                   
                                                                                    (3– 4) 

Where, the Kalman gain, Kk, is given as: 

{

Kk = Pk
−CT(CPk

−CT + R)−1

Pk
− = E[ek

−ek
−T]                     

ek
− = xk − x̂k                        

                                                                                              (3– 5) 

In the case of process fault, the residuals are calculated using the following equation: 

rk = [(CkFkfpk + CkWkwk + CkVkvk) − CkKkỸk]                                                       (3– 6) 

In order to remove noise, the residuals calculated from Eq. (3-6) are filtered using 

exponential filtering method, as the following equation: 

rk = αrk + (1 − α)rk−1                                                                                                       (3– 7) 

In this equation, α is the filter coefficient which can be tuned to minimize false alarms.  

The concept of getting residuals using Kalman Filter is shown in Figure 3-3. 
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Figure 3-3: Residual Generation using Kalman Filter 

 

The Kalman filter has been used to detect and diagnose faults. There are different types of 

faults occur in a system which can be classified as: hardware failure (e.g. sensor failure 

and actuator failure) and disturbance failure. To distinguish between different failures the 

concept of “bank of Kalman filters” has been applied.  

 

3.2 Sensor Fault Detection 

In order to detect and diagnose a sensor fault using a “Bank of Kalman Filters”, m 

Kalman filters are designed where m represents the number of monitored sensors. Each 

Kalman filter uses all sensor measurements except one (m-1 sensor measurements) which 

is assumed to be the faulty sensor. In other words, each Kalman filter is designed with the 

hypothesis that detects the faulty sensor. For example, the i
th

 Kalman filter uses the set of 

sensor measurements y
i
 in which the i

th
 sensor measurement is excluded. In the case of i

th
 

sensor fault, all Kalman filters use faulty measurements except the i
th

 filter (Kobayashi & 

Simon, 2004). 
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On the other hand, while there is no faulty data in i
th

 filter, it accurately estimates the 

states. The states and predicted outputs for i
th

 Kalman filter are calculated using the 

following equation: 

{
Xk = AkXk−1 + BkUk−1
Ŷk
i = Ck

i Xk                        
                                                                                                     (3– 8) 

In which, the matrix Ck
i  is obtained by removing the i

th
 row of matrix Ck.  

A weighted sum of squared residuals (WSSR) is used to detect and diagnose a sensor 

failure, which is calculated as: 

WSSRs
i = (Yi − Ŷi)

T
(Σi)

−1
(Yi − Ŷi)                                                                               (3– 9) 

Where, Σi is a square matrix to normalize the residual vector(Yi − Ŷi), and it is computed 

as: 

Σi = diag[σi]
2
                                                                                                                        (3– 10)   

In this equation, σi is the standard deviation vector of the i
th

 sensor-subset. The i
th

 sensor 

fault indicator signal, WSSRs
i , uses all sensor measurements except the i

th
 sensor value. If 

the sensor subset used by i
th

 Kalman filter contains a faulty value, the associate fault 

indicator signal increases. In other words, in the case of i
th

 sensor fault, the value of the 

fault indicator signal exceeds a predefined threshold for all Kalman filters except for the 

WSSRs
i . In this case, the sensor fault is detected and identified (Kobayashi & Simon, 

2004). 
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One important assumption is that, at any time, only one sensor failure occurs. Figure 3-4 

shows the structure of the sensor FDI system. In this structure, m indicates the number of 

monitored sensors.  

 

Figure 3-4: Sensor Fault Detection and Diagnosis procedure using Bank of Kalman Filter 

 

Different types of sensor failure have been considered in this study as: 

 Total failure (sensor stops working and gives zero output), 

 Stuck Failure (sensor outputs remains constant), 

 Bias Failure (a constant value is added to sensor output), and 

 Noisy failure (sensor output gets additional noise) 
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3.3 Actuator Fault Detection 

While Eq. (3-8) doesn’t account the actuator bias or component parameters, any change 

in these parameters can influence the fault indicator signals. So, there is a need to find 

another filter to detect this kind of fault and distinguish it with sensor faults.  

In order to detect and diagnose the actuator failures, n Kalman Filters are designed, where 

n is the number of actuators in the system. For each filter, the states and predicted output 

are calculated using the following equations (Rago et al., 1998): 

{
Xk = AkXk−1 + Bk

𝑖Uk−1
Yk = CkXk                        

                                                                                                     (3– 11) 

Here, matrix Bk
𝑖  is obtained by zeroing the i

th
 column of matrix B. In other words, in the 

set of Kalman filters designed for detecting actuator failure, the i
th

 filter doesn’t take into 

account the input to the i
th

 actuator. So, in case of i
th

 actuator failure, all Kalman Filters 

use faulty inputs except the i
th

 one which is designed to detect and diagnose the i
th

 

actuator fault. The actuator fault indicator, WSSRa
i , is defined as: 

WSSRa
i = (Yi − Ŷi)

T
(Σi)

−1
(Yi − Ŷi)                                                                               (3– 12)  

in which, the normalizing matrix, Σi, is calculated using Eq. (3-10). Here, all sensor 

measurements are used. If i
th

 actuator fails, all actuator fault indicator increase except i
th

 

one.  

The methodology proposed here is able to detect the disturbance failure. While m+n 

Kalman Filters are designed to detect and diagnose the sensor/actuator failure, if a 

disturbance failure occurs, all fault indicators increase. Table 3-1 represents different 

scenarios based on fault indicators. 
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Table 3-1: the summary of fault detection and diagnosis approach based on fault indicators 

 

All WSSRa remain 

below the 

predefined 

threshold 

All WSSRa but the 

j
th

 exceed the 

predefined threshold 

All WSSRa exceed 

the predefined 

threshold 

All WSSRs remain 

below the predefined 

threshold 

No fault NA NA 

All WSSRs but the 

i
th

 exceed the 

predefined threshold 

NA NA 

The i
th

 sensor 

failure is detected 

and diagnosed 

All WSSRs exceed 

the predefined 

threshold 

NA 

The j
th

 actuator 

failure is detected 

and diagnosed 

Disturbance failure 

 

3.4 Risk Quantification 

Risk is defined in Oxford Dictionary as “(Exposure to) the possibility of loss, injury, or 

other adverse or unwelcome circumstances; a chance or situation involving such a 

possibility” (OED Online, 2016). It can be defined as the likelihood of occurrence a 

hazardous event. Quantifying the risk consists of two factors: the probability of 

happening an unwelcome event, and the severity or consequences caused by that event 

(Zadakbar et al., 2013). Eq. (3-13) is proposed to calculate the risk for a univariate 

deterministic system (Bao et al., 2013): 

𝑅𝑖𝑠𝑘 = 𝑃 × 𝑆                                                                                                                     (3 − 13) 

In this formula, P stands for the probability of hazardous event to happen, and S 

represents the severity. When the process deviates from normal operation, the probability 

of occurrence an unwanted event increases. Using residuals obtained from Eq. (3-3), the 

probability and severity are calculated by Eq. (3-14) and Eq. (3-15), respectively. In these 

equations, the upper and the lower bounds for normal operating range are chosen as  
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𝜇 + 3𝜎 and 𝜇 − 3𝜎. If the generated residuals deviate from this normal range, a 

hazardous event is likely to happen. For residuals at threshold points, 𝜇 ± 3𝜎, the 

probability of happening a fault is 0.5, which means the process can go to faulty condition 

or come back to normal operation. As shown in Eq. (3-14), for positive or negative fault 

signals, the probability of fault is calculated by 𝜑 (
𝑟−(𝜇+3𝜎)

𝜎
) and 1 − 𝜑 (

𝑟−(𝜇−3𝜎)

𝜎
), 

respectively.  

{
 
 

 
 
𝑟𝑘 > 𝜇 → 𝑃 = 𝜑(

𝑟𝑘 − (𝜇 + 3𝜎)

𝜎
) = ∫

1

√2𝜋𝜎
𝑒
−(
(𝑟−(𝜇+3𝜎))

2

2𝜎2
)

𝑑𝑟
𝑟𝑘

−∞

               

𝑟𝑘 < 𝜇 → 𝑃 = 1 − 𝜑(
𝑟𝑘 − (𝜇 − 3𝜎)

𝜎
) = 1 − ∫

1

√2𝜋𝜎
𝑒
−(
(𝑟−(𝜇−3𝜎))

2

2𝜎2
)

𝑑𝑟
𝑟𝑘

−∞

    (3 − 14) 

 

The residuals are also used to calculate the severity of fault as: 

{
𝑟 > 𝜇 → 𝑆 = 100

𝑟−(𝜇+3𝜎)
𝑟−𝜇

𝑟 < 𝜇 → 𝑆 = 100
𝑟−(𝜇−3𝜎)

𝑟−𝜇

                                                                                              (3 − 15) 

At each time instant, having the probability and severity of the fault, the risk is calculated 

using Eq. (3-13). When the risk exceeds a predefined threshold, a fault is detected and 

proper decisions are taken to take the system to a safe condition. 

3.5 Event Tree 

Event Tree is an analysis technique to analyze the outcomes of failing or functioning of 

different parts of the system given that an event has already occurred (Wang & Roush, 

2000). This technique consists of the following steps (Crowl & Louvar, 2001; Ferdous, 

2011): 
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A. Identification of Initiating Event: The first step in Event Tree analysis is to 

identify the initiating event which is an event that starts the path to a catastrophic 

event (e.g. spark, lightning, gas release, a change in flow-rate etc.), 

B. Identification of Safety Barriers: The safety barriers are designed to prevent of 

occurrence a catastrophic event or to mitigate the effects of failure. They are 

functioning according to the order they are needed to prevent or mitigate. The 

barriers which are referred to as the prevention layers are designed to reduce the 

probability of occurrence a hazardous event. Some safety barriers are listed as 

follow: 

 Process Plant Design 

The design stage of a plant can be considered as a safety barrier. There are a lot of 

HAZOP studies (HAZard and Operability studies) implemented during designing time of 

a plant to design it as safe as possible (Ishtiaque et al., 2017; Ora et al., 2017), . 

 Process Control System 

When a plant is operating, the process control system is the first safety barrier. It can 

bring the variables (e.g., level, temperature, pressure, etc.) back to the normal operating 

range if they deviate. In some cases, the deviation is so big that the control system is 

unable to keep the variables in normal range. In these cases, the control system failure is 

considered as an initiating event. 

 Alarm System 
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As mentioned before, the process control system may fail to function. In such a case, 

alarms could be announced to inform the operators that a problem has happened in the 

system. Alarms could be designed based on different approach (e.g., variable based 

design, event based design, etc.) (Dalaptadu, 2014). Any alarm system should have some 

properties: 

 It should detect problems as early as possible, giving plant’s operators and 

personnel enough time to take appropriate action to bring the plant back to safe 

condition. 

 It should be independent of the system for which the alarm system is designed 

(i.e., system failure should not affect the alarm system). 

 It should be simple to implement. 

 Its maintenance should be easy. 

 Plant’s Operators and Personnel 

While the plant is complex and large scale, there are some unexpected conditions 

occurring in the plant. On the other hand, there are some tasks which are impossible to be 

automated. In certain situations, human operators are needed in place for their flexibility 

to fix some problems happening in the system. In such cases, operators can be considered 

as a protective layer. 

 Shutdown System /Safety Instrumented System ( SIS) 

In some cases, none of mentioned barriers works their functions. In such cases, to prevent 

a hazardous event, the system needs to be shut down. If operator fails to shut down the 
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system manually, it should be designed to happen automatically. Usually, automatic 

shutdown systems are separated from other parts of the system. They use different sensors 

and logic systems. Automatic shutdown system should perform the following functions: 

- They don’t work when system variables are in normal and safe range, 

- When normal conditions are violated, this system should automatically become 

active to take the process to a safe condition, or mitigate the consequences 

C. Event Tree Construction: 

When the initiating event and safety barriers are identified, event tree is constructed as: 

 Input The Initiating Event: Event Tree starts with a horizontal arrow to represent 

the initiating event, 

 Place the Safety Barriers: Starting from the initiating event, event tree can go to 

two ways which mean the failure or success of the first barrier (e.g., usually the 

top way stands for the success and the bottom one represents the failure), 

 For each way, next step should be decided based on HAZOP study 

 For each path, the safety barriers are evaluated qualitatively to find the 

consequences of different conditions (e.g., what happen if specific barriers fail or 

succeed to perform their function). 

D. Classify Accident Outcomes: When the consequences of different branches in the 

event tree are found, they are classified to show the possible outcomes  

E. Estimate and rank outcomes probability: Having the initiating event frequency and 

the probability of failure of the barriers the frequency of all outcomes are 

estimated.  
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An example of an Event Tree is shown in Figure 3-5. In this figure, S means that the 

safety barrier functions properly and when it fails to function, the branch is shown by F. 

Some outcomes could be the same in the event tree. In this research the failure of first 

barrier which is controller failure has been studied. Based on controller failure the failures 

are classified. 

 

Figure 3-5: Schematic of an Event Tree 
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4 RESULTS AND DISCUSSION 

The proposed methodology has been applied to two case studies: a Continuous Stirred 

Tank Heater (CSTH) and the RT 580 fault finding in control systems. 

4.1 Continuous Stirred Tank Heater (CSTH) 

The proposed methodology is applied to a continuous stirred tank heater (CSTH) 

(Thornhill et al., 2008). In this example, system modeling uses experimental data making 

the model more realistic. In order to apply the methodology, the Simulink model of the 

plant is used (Thornhill et al., 2007).  

The schematic diagram of the plant is shown in Figure 4-1. The cold water stream is 

heated by steam and hot water streams. The level of the water in the tank is controlled by 

manipulating the cold water flow. Level controller is cascaded with flow controller to 

control the cold water flow. The temperature of the tank, assumed to be the same as the 

temperature of the outflow stream, is controlled by manipulating the steam valve. The 

process dynamics are discussed in detail in (Thornhill et al., 2008). The volume of the 

tank is 8 l with circular cross section and the height of 50 cm. 

The continuous state space model of the plant is represented as: 

{
𝑋′ = 𝐴𝑋 + 𝐵𝑈
𝑌 = 𝐶𝑋             

                                                                                                                    (4– 1) 

In which, 

{U = [
u1
u2
u3
] = [

Cold Water Valve Position
Steam Valve Position

Hot Water Valve Position
]   ,   Y = [

y1
y2
y3
] = [

Level
Cold Water Flow
Temperature

] 
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In the above equations, matrices A, B, and C are (Thornhill et al., 2008): 

A = [
−3.7313 × 10−3 1.5789 × 10−6 0

0 −2.6316 × 10−1 0
4.1580 × 103 1.5842 × 10−1 −2.7316 × 10−2

] 

B = [
0 0 4.29 × 10−5

1 0 0
0 6.4 × 10−1 8.8712

] 

C = [
2690 0 0
0 1.5132 × 10−1 0

−1979.2 0 1.1226 × 10−2
] 

Table 4-1 shows the steady state values and conditions for the operating point. Here, cold 

water valve and temperature measurements have time delay of 1s and 8s, respectively. In 

this table, the units in mA and metrics are presented. The values in mA range from 4 to 

20. For example, if the value of a variable is 4 mA, its metrics value is 0. 

 

Figure 4-1: schematic diagram of the CSTH plant (Thornhill et al., 2008) 
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Table 4-1: Operating point for CSTH (Thornhill et al., 2008) 

Variable  Operating Point 

Level/mA 12.00 

Level/cm 20.48 

CW flow/mA 7.330 

CW flow/m
3
s

-1 
3.823×10

-5 

CW valve/mA 7.704 

Temperature/mA 10.50 

Temperature/˚C 42.52 

Steam valve/mA 6.053 

HW valve/mA 5.500 

HW flow/m
3
s

-1 
5.215×10

-5
 

 

4.1.1 Fault Detection and Diagnosis for CSTH 

The CSTH has 3 sensors for level, cold water flow and temperature, so 3 Kalman filters 

were designed to detect and diagnose failure in each sensor. There also are two actuators 

in the system: CW valve, which is manipulated to control the level of the system, and 

steam valve, which is manipulated to control the temperature of the tank. To distinguish 

between sensor and actuator failure, two additional Kalman filters were designed. An 

additional Kalman filter, KF0, with the hypothesis that the system is under normal 

conditions is designed. Table 4-2 shows the designed Kalman filters and hypotheses 

associated with them. MATLAB software is used to implement the programming.  

Table 4-2: Designed Kalman filters for CSTH 

Kalman Filter Hypothesis 

KF1 Level sensor is faulty 

KF2 CWF sensor is faulty 

KF3 Temperature sensor is faulty 

KF4 CW actuator is faulty 

KF5 Steam actuator is faulty 

KF0 The system is not faulty 
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There are 12 possible sensor failure scenarios (total failure, stuck failure, noisy failure 

and bias failure for each sensor) and two actuator failure scenarios, by the assumption that 

at each time only one failure occurs. All failure scenarios are summarized in Table 4-3. 

Table 4-3: Possible failure scenarios for CSTH 

Failure 

number 

Failure scenario Description  

F1 Partial failure of level sensor Level sensor gets stuck at the value of 11.99 

mA 

F2 Total failure of level sensor Level sensor shows zero (4mA) 

F3 Bias failure of level sensor Level sensor gets additional value (0.6mA) 

F4 Noisy failure of level sensor Level sensor gets more noise (Gaussian noise 

with zero mean and 0.2 variance) 

F5 Partial failure of CWF sensor CWF sensor gets stuck at the value of 7.5mA 

F6 Total failure of CWF sensor CWF sensors shows zero (4mA) 

F7 Bias failure of CWF sensor CWF sensor gets additional value (0.6mA) 

F8 Noisy failure of CWF sensor CWF sensor gets additional noise (Gaussian 

noise with zero mean and 0.2 variance) 

F9 Partial failure of temperature 

sensor 

Temperature sensor gets stuck at the value of 

10.7mA 

F10 Total failure of temperature 

sensor 

Temperature sensors shows zero (4mA) 

F11 Bias failure of temperature 

sensor 

Temperature sensor gets additional value 

(0.6mA) 

F12 Noisy failure of temperature 

sensor 

Temperature sensor gets additional noise 

(Gaussian noise with zero mean and 0.2 

variance) 

F13 CW actuator failure CW valve fails to close (gets stuck at the value 

of 8.3mA) 

F14 Steam actuator failure Steam valve fails to open (gets stuck at the 

value of 4mA) 

F15 Disturbance failure Step change in HW valve position to 6.5mA 
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The results for failures F1, F7, F9, F13, F14 and F15 are presented here.  

For F1, as a failure scenario, the level sensor showed a constant value. While there is 

noise to cold water flow, it made the controller to go wrong and increased the cold water 

flow. The monitoring system tracked this abnormal condition. The level sensor stuck at 

t=1000s, the sensor output remained constant at the value of 11.99 mA, and the cold 

water flow started to increase.  

Using Bank of Kalman Filter, the WSSR associated to each filter was calculated for 

which the results are shown in Figure 4-2. In this figure, the left plots are WSSR before 

filtering and the right ones are filtered WSSR. At time t=1074s the first Kalman filter, the 

filter used for identify failure in cold water flow sensor, deviated from the threshold. At 

this time the system knows that a failure has occurred in the plant. But, it is not able to 

diagnose the cause of failure till t=1260s at which all WSSR deviate from the threshold 

except one associated to level sensor identification. It is the time that the level sensor 

failure has detected and diagnosed. The delay in detecting time of failure is due to 

processing time.  
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Figure 4-2: Fault indicators associated to 5 Kalman filters for failure F1; left plots are unfiltered and the 

right ones are filtered 
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In the bias failure of CWF sensor, failure F7, a constant value of 0.6 mA was added to the 

CWF sensor measurement at t=1000s. This affects the prediction accuracy of the model. 

The controller tries to reduce the CWF while affecting the level and the temperature of 

the tank. The fault indicator results for this failure scenario are shown in Figure 4-3. For 

this failure scenario, the first deviation happens at t=1003s when WSSR for KF3 exceeds 

the threshold and the fault is diagnosed at t=1028s when all WSSR cross their thresholds. 
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Figure 4-3: Fault indicators associated to 5 Kalman filters for failure F7; left plots are unfiltered and the 

right ones are filtered 
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In the next failure scenario, F9, the temperature sensor gets stuck at the value of 10.7 mA 

(the steady value of the operating point is 10.5 mA). The temperature controller tries to 

decrease the temperature by reducing the steam valve position. While the sensor value is 

wrong, it makes the real temperature of the tank to decrease. This failure does not affect 

the level of the tank. The results for fault indicators of this case are shown in Figure 4-4. 

The fault is detected at t=1000s when WSSR for KF4 exceeds the threshold and it’s 

diagnosed at t=1056s.  
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Figure 4-4: Fault indicators associated to 5 Kalman filters for failure F9; left plots are unfiltered and the 

right ones are filtered 
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In failure F13, as an actuator failure, the CW valve failed to close at t=1000s. In this 

scenario, the level set point and the temperature set point were changed in a pulse 

manner. The steady value for CW valve is 7.704 mA and as a failure it got stuck at the 

value of 8.3 mA. This change makes the CWF to increase and consequently the level of 

the tank increases. While the CW valve is stuck, the controller is unable to keep the level 

at the safe range, and finally tank overflow happens. Figure 4-5 shows the results for 

failure F13. The first fault indictor which detects the fault at t= 1002s is the one 

associated to KF1, but the CW actuator failure is diagnosed at t=1025s when all WSSR 

cross their thresholds.  
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Figure 4-5: Fault indicators associated to 5 Kalman filters for failure F13; left plots are unfiltered and the 

right ones are filtered 
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Failure F14 represents another actuator failure. For this scenario, the level set point and 

the temperature set point were changed in a pulse manner.  In this failure scenario, steam 

actuator fails to open. While this failure doesn’t affect the level of the tank, it reduces the 

temperature of the tank, and the temperature controller is not able to fix it. Figure 4-6 

represents the fault indicator results for failure F14. This failure is detected at t=1027s 

and its cause is diagnosed at t=1047s.  
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Figure 4-6: Fault indicators associated to 5 Kalman filters for failure F14; left plots are unfiltered and the 

right ones are filtered 
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As an example of disturbance failure, failure F15, HW got a step change from the steady 

value of 5.5 mA to 6.5 mA at t=1000s. Again, the level set point and the temperature set 

point were changed in a pulse manner. This affects both the level and the temperature of 

the tank. Level controller and temperature controller try to bring the system back to 

operating range by manipulating the CW and steam actuators. But the change is so big 

that the controllers can’t fix and it makes an increase in the level and the temperature of 

the tank. As shown in Figure 4-7, in the case of a disturbance failure, all fault indicators 

cross the threshold. This disturbance failure is detected at t=1011s when the first WSSR 

exceeds the threshold and at t=1014s all 5 fault indicators cross the limit. 
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Figure 4-7: Fault indicators associated to 5 Kalman filters for failure F15; left plots are unfiltered and the 

right ones are filtered 
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4.1.2 Risk Quantification for CSTH 

To find the risk profile, the probability of occurrence an event and its severity are needed 

to be calculated. The first step is finding the control failure probability to be applied to the 

event tree of the system. 

Using Eq. (3-14) the probability of controller failure, the first barrier failure, is updated at 

each time. For hardware failure the fault indicator values of KF0 are used.  The results for 

all failure scenarios are shown in Figure 4-8. At each time instant, the maximum value of 

WSSR is used to calculate the probability of the controller failure except in the case of 

disturbance failure in which the estimated states are used.  
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Figure 4-8: Controller failure probability for all failure scenarios for CSTH 
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Applying this updated probability to the event tree of the system, the updated 

probabilities of main outcomes are calculated. Figure 4-9 shows the Event Tree of the 

system in the case of failure F1. The numbers in the Event Tree are failure probabilities of 

each barrier (e.g. the failure probability of the Alarm System is 0.01), and F shows the 

failure probability of first barrier, control system, which is calculated at each time using 

the updated probability of the controller failure (Figure 4-8). For this failure, the 

outcomes are: safe, system shutdown and overflow of the system. Table 4-4 shows the 

outcomes for different failure scenarios. 

 

Table 4-4: main outcomes for different failure scenarios for CSTH 

Failure Outcome 

F1 Safe, System Shutdown, Overflow 

F7 Safe, System Shutdown, Decrease in Level, Increase in Temperature 

F9 Safe, System Shutdown, Decrease in Temperature 

F13 Safe, System Shutdown, Overflow 

F14  Safe, System Shutdown, Decrease in Temperature 

F15 Safe, System Shutdown, Overflow, Increase in Temperature 
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Figure 4-9: Event Tree of the CSTH system in case of F1 

 

The updated probabilities of the main outcomes in different failure scenarios are shown in 

Figure 4-10. As is shown in this figure, one barrier failure increases the probability of 

main outcomes.  
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Figure 4-10: The Probability of the occurrence of the main outcomes in different failure scenarios for CSTH 
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The severity of the failure is calculated using Eq. (3-15), Figure 4-11, and the risk of the 

system operating under faulty conditions is updated using Eq. (3-13), for which the 

results of different failure scenarios are shown in Figure 4-12. 

 

Figure 4-11: Severity profile for different failure scenarios for CSTH 
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Figure 4-12: Risk profile for different failure scenarios for CSTH 
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Table 4-5 summarizes the results for fault detection and diagnosis and the risk for all 

failure scenarios. As seen from this table, in most cases, using the risk, the fault is 

detected at an earlier time: 

 F1: fault indicators detect the fault at t=1074s, the risk profile detects the fault at 

t=1069s, 

 F7: fault indicators detect the fault at t=1003s, the risk profile detects the fault at 

t=1001s, 

 F9: fault indicators detect the fault at t=1003s, the risk profile detects the fault at 

t=1002s, 

 F13: fault indicators detect the fault at t=1002s, the risk profile detects the fault at 

t=1002s, 

 F14: fault indicators detect the fault at t=1027s, the risk profile detects the fault at 

t=1025s, and 

 F15: fault indicators detect the fault at t=1011s, the risk profile detects the fault at 

t=1010s, 
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Table 4-5: deviation time of each fault indicator and the risk profile from the threshold for CSTH 

Failure WSSR1 WSSR2 WSSR3 WSSR4 WSSR5 R 

F1 - 1074 1077 1214 1260 1069 

F7 1005 - 1003 1028 1006 1001 

F9 1008 1004 - 1003 1056 1002 

F13 1002 1025 1003 - 1003 1002 

F14 1044 1040 1047 1027 - 1025 

F15 1014 1013 1013 1011 1014 1010 
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4.2 RT 580  

The RT 580 fault finding in control systems setup (Figure 4-13) located in CRISE (Centre 

for Risk, Integrity and Safety Engineering) at Memorial University of Newfoundland was 

used to demonstrate the proposed methodology. RT 580 has 5 different control systems: 

level control system, flow control system, temperature control system, level-flow cascade 

control system and flow-temperature cascade control system. 

 

Figure 4-13: RT 580 fault finding in control systems setup 

The methodology is applied to level control system. The schematic diagram of the plant is 

shown in Figure 4-14. In the experimental setup, water from the collecting (reservoir) 

tank is pumped to a process tank and from there goes back to the reservoir tank. The aim 
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of level control system is to control the level of the process tank using a controller to 

manipulate the inlet flow to the process tank. To find the relevant matrices of the 

continuous state space model of the system, Eq. (4-1), open loop system identification 

experiment was done by changing the inlet valve position in a stepwise manner and 

measuring the flow and the level of the process tank. For experimental scenario, Eq. (4-1) 

has one input, the control valve position, and two outputs, the level of the process tank 

and the inlet flow to the tank. 

 

Figure 4-14: Schematic diagram of the RT 580 setup 

 

Figure 4-15 shows the step test data for the open loop experiments. 
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Figure 4-15: Step test data for open loop experiment: valve position (top), flow (middle) and level (bottom) 

Using System Identification Toolbox of MATLAB, the matrixes A, B and C in Eq. (4-1) 

for RT 580 are found as: 





















61.1088.11157.1

529.5708.2307.2

1259.02222.02488.0

A

   ,     
























22.3

4275.0

008781.0

B

,      














3204.0698.2516.2

1479.04767.077.11
C

 

Three fault scenarios were simulated in the system: F1: level sensor failure, F2: actuator 

failure and F3: disturbance fault by changing the cock-boll valve V-7. Subsequently, four 

Kalman filters were designed: KF0 with the hypothesis that the system works with no 
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fault, KF1 for detecting and diagnosing level sensor failure, KF2 for flow sensor failure 

and KF3 for actuator failure. 

In the first failure, level sensor fails at t=350s, the sensor fails to the lowest value, which 

makes the control command to increase the valve position.  As seen in Figure 4-16, fault 

indicators for KF0, KF2 and KF3 increase after the fault happens in the system, but fault 

indicator for KF1 stays in the normal range. It means the fault in the system is the one 

associated with KF1, level sensor failure. 



60 

 

 

Figure 4-16: Fault indicators for 4 Kalman filters in the case of sensor failure for RT 580 
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In the second failure, as an example of actuator failure, the control valve fails to open at 

t=350s. For this case, Figure 4-17, the fault indicators associated to KF0, KF1 and KF2 

increase after the fault occurs which means the fault is diagnosed as the actuator failure 

identified by KF3. 
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Figure 4-17: Fault indicators for 4 Kalman filters in the case of actuator failure for RT 580 
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To simulate disturbance failure, the opening of cock-boll valve V-7 was reduced at 

t=260s. This change made the flow to decrease which lead to reduction in the level of the 

process tank. As seen in the Figure 4-18, for this failure, all fault indicators increased. So, 

a fault is detected in the system, but the cause of the failure cannot be identified. 
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Figure 4-18: Fault indicators for 4 Kalman filters in the case of disturbance failure for RT 580 
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At each time instant, the probability of failure of the controller system, first barrier in the 

event tree of the system, is updated using Eq. (3-14) for which the results are shown in 

Figure 4-19.  

 

Figure 4-19: controller failure probability for 3 failure scenario for RT 580 
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The controller failure probability is applied to the event tree of the system which is shown 

in Figure 4-20. The numbers in the Event Tree are failure probabilities of each barrier 

(e.g. the failure probability of the Emergency Shutdown System is 0.001), and F shows 

the failure probability of the first barrier, control system. Applying this probability to the 

event tree of the system, the probability of the outcome, the process tank goes dry, is 

calculated for which the results are shown in Figure 4-21. As is shown in this figure, the 

failure of one barrier increases the probability of catastrophic outcomes, decrease in the 

system level. 

 

Figure 4-20: Event tree for level control setup of RT 580 
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Figure 4-21: The Probability of the system goes dry for 3 failure scenarios for RT580 

 

The severity and the risk of the failure are calculated using Eq. (3-15) and Eq. (3-13). 

Figures 4-22 and 4-23 show the results for severity and the risk, respectively. 
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Figure 4-22: severity profile for 3 failure scenarios for RT580 
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Figure 4-23: Risk profile for 3 failure scenarios for RT580 

 

4.3 Summary  

The proposed methodology was applied to two case studies. First example was CSTH for 

which the state space model was used. For this example, there are 15 possible failure 

scenarios of which some results are provided in this chapter. For each failure scenario, the 
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fault was correctly detected and diagnosed. After classifying the faults, the risk of model 

operating under different conditions were calculated. The results showed that using risk 

as a fault detector, the operators would have more time to take action in case of an 

unwanted event.  

The methodology was also applied to an experimental set up, RT 580 fault finding in 

control systems. The experimental results showed correct detection and diagnosis for 

different types of failures.  
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5 CONCLUSION AND FUTURE WORK 

5.1 Concluding Remarks 

In this study, a new methodology is proposed for online risk assessment using a 

combination of Bank of Kalman Filters and Event Tree Analysis. The proposed 

methodology uses two sets of Bank of Kalman Filters to detect and diagnose sensor and 

actuator faults. Each filter is designed to detect and diagnose the failure in one single 

sensor or one single actuator. In case of a fault, all fault indicators associated to Kalamn 

Filters deviate from a threshold except one which is designed for the faulty part. The 

methodology was able to detect and diagnose different sensor faults and actuator faults. It 

also detects disturbance fault. Here, different types of failures are classified and the risk 

for different types of failures are calculated. Using residuals obtained from Kalman 

Filters, the probability and severity of failure is updated at each time. Applying these 

updated probabilities to Event Tree, the probability of catastrophic event is updated. 

Using these updated probabilities, the risk of the system operating under faulty conditions 

is assessed online. The method has several advantages: (i) it is able to distinguish between 

different types of failures, (ii) it provides an alarm early to notify the operator that there is 

failure in the system and diagnosed the cause, (iii) Using Event Tree, the safety of the 

current system is investigated, and if it is necessary, additional barriers are added to the 

system to improve the safety.  
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5.2 Future Work 

As an assumption in this study, at each time only one fault occurs in the system. The 

methodology needs to be modified to be able to detect and diagnose multiple faults at the 

same time. The modification can be done by improving the ability of fault indicators to 

detect multiple failures at the same time.  

Here a bank of Kalman filters were used to detect and diagnose different types of failure 

for linear time invariant models. In case of nonlinear and/or time variant models other 

types of filters such as particle filter can be used. 

The results need to be compared to some available methods. 
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