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Abstract

Biodiversity is declining rapidly among North American landbirds. While population
decreases are most evident in species at risk, steep declines in common avian species
have also been observed and shown to have significant economic and ecological impacts.
Basic data on distributions and habitat preferences are lacking for many species.
Traditional methods used to obtain this information are limited by cost, accuracy, and
human resources. Furthermore, traditional methods have a limited capacity to accurately
estimate metrics such as population density and microhabitat selectively. Recently,
microphone arrays have become a more affordable, portable, and capable method of
obtaining this data. | deployed 110 microphone arrays in the Labrador portion of the
Boreal Shield Ecozone. My objectives were to (1) demonstrate a new localization
workflow using microphone arrays, (2) determine the relationships between habitat
characteristics and avian community parameters, and (3) identify microhabitat features
associated with two common species in steep decline, the Boreal Chickadee (Poecile

hudsonicus) and the Cape May Warbler (Setophaga tigrina).
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CHAPTER 1: General introduction

1.1 Status of North American Landbirds

Biodiversity among North American landbirds has declined significantly in the
last 40 years (Sekercioglu et al. 2004; Berlanga et al. 2010; Downes et al. 2011). Partners
in Flight, a tri-national North American initiative for the conservation of birds, states that
86 of the 448 species assessed are at high risk of becoming extinct, with 22 species
expected to lose 50% of their current population in the next 40 years (Rosenberg et al.
2016). Additionally, the abundance of landbirds in North America has declined by
approximately 1.5 billion individuals (or 9%) since 1970 (Rosenberg et al. 2016). For
example, 35% of the 450 bird species that are found in Canada have declined in number
by at least 25% since the 1970s (Government of Canada 2014), and 46 of the 269
landbird species that breed in Canada have declined by more than 50% in number
(Berlanga et al. 2010; Downes et al. 2011). Currently, the Committee on the Status of
Endangered Wildlife in Canada has designated 58 landbird species as being at risk under

the categories of endangered, threatened, or special concern (COSEWIC 2018).

These declines in abundance are attributed to a number of factors. Partners in
Flight lists several large-scale threats to bird populations, including urbanization, tropical
deforestation, climate change, agricultural land conversion, and energy and resource
extraction (Rosenberg et al. 2016). For example, although North American forest cover
has remained stable over the last 20 years (Keenan et al. 2015), a long-term study using

high-resolution satellite imagery found that there was a global net loss of 1.5 million km?



of forest from 2000 to 2012 (Hansen et al. 2013). Across the tropics, 2101 km?/year were
lost during this period, with half of this loss occurring in the rainforests of South America
(Hansen et al. 2013). The latter region is of particular importance to Partners in Flight
because approximately 30% of the species on the initiatives' "watch list" and list of
"'common species in steep decline™ are migratory species that breed in Canada and/or the
United States, but that rely on South American forests during the boreal winter
(Rosenberg et al. 2016). The watch list identifies the species that are at the highest risk of
extinction in North America and of the greatest conservation concern at the continental
scale. The list of common species in steep decline includes species that are still abundant,

but that have experienced long-term declines in number (Rosenberg et al. 2016).

Habitat change and habitat loss are also widespread on the avian breeding grounds
in Canada. The boreal forest is rapidly changing in North America and Eurasia (Bradshaw
et al. 2009; Gauthier et al. 2015). The boreal forest is a key resource for the Canadian
economy because paper and lumber are among the largest national exports. They are
linked to the annual harvest of approximately 780,000 ha of the 347 million ha of total
forested area in Canada (Gauthier et al. 2015; NRCan 2017). Between 2015 and 2016, a
further 34,000 ha (< 0.1%) of forest was converted to another land type (e.g., agricultural
land) and 19 million ha (5.0%) were lost due to insects, fire, and disease (NRCan 2017).
Within the Boreal Plains ecozone, approximately 75% of forested habitat has been
converted to agricultural land since the 1900s (Hobson and Bayne 2000). Given that
approximately 60% of Canada's landbirds and 50% of North American warbler species

breed within the boreal forest of Canada (Downes et al. 2011), it is clear that the boreal



forest is of critical importance for maintaining the survival and reproduction of landbird

populations.

The loss of landbird resident and migrant species (Sekercioglu et al. 2004;
Berlanga et al. 2010; Downes et al. 2011) has substantial ecological and economic
impacts. For example, landbirds save the Canadian forestry industry an estimated $5.4
billion per year by consuming pests (Mols and Visser 2002; Classen et al. 2014; Wells et
al. 2014). Birds also facilitate ecosystem processes (Whelan et al. 2008; Sekercioglu et al.
2016), such as seed dispersal (Sekercioglu et al. 2004; Garcia et al. 2010; Garcia and
Martinez 2012), pollination (Anderson et al., 2006), and nutrient decomposition (De
Vault et al. 2003). Similarly, they are the foundation for recreational activities, with 4.8
million Canadians having spent $537 million on birding in 2012 alone (FPTGC 2014).
Conserving landbirds is therefore important for our ecosystems and our economy. They
also have significant cultural and symbolic importance, and are often central figures in

heraldry, religion, and mythology (Cocker and Tipling 2013).

Legislation, such as Canada's Species at Risk Act (S.C. 2002, c. 29), provides a
framework for conserving landbirds. Yet implementing recovery strategies is often
hindered by an inability to identify critical habitat and distribution patterns for individual
species. Currently, there are several techniques researchers can use to obtain this
information. The most common method has been the point count technique, in which
individual birds are included in counts if they are seen or heard (Blumstein et al. 2011;

Mennill et al. 2012; Venier et al. 2012). Despite its widespread use, however, point



counts are subject to several biases (Digby et al. 2013; Klingbeil and Willig 2015). For
example, the ability to detect and classify vocalizations in situ varies widely with
observer skill (Hobson et al. 2002; Hutto and Stutzman 2009). It is also often not possible
to know how far away a detected bird is, or whether the same individual or multiple
individuals are being detected. Furthermore, point counts are typically only 5-10 min in
length, and are often conducted only during the early morning when birds are most active.
Consequently, point counts often fail to detect less common or less vocal species (Hobson
et al. 2002; Bas et al. 2008). The reliability of detecting vocalizations at a given distance
also varies among species, populations, vocalization types, habitat types, and weather

conditions (Johnson 2008; Yip et al. 2017).

In an attempt to address some of these limitations, several variations of the
traditional point count method have been developed. For example, distance sampling
(Buckland et al. 2001), double-observed surveys (Nichols et al. 2000), MacKinnon lists
(MacKinnon and Phillips 1993), spot mapping (Schwab et al. 2006), and removal surveys
(Farnsworth et al. 2002) incorporate species-specific detection probabilities to estimate
density and abundance. Forcey et al. (2006) sampled across 6 different habitats and found
considerable variation in detection probability (59.8% to 84.2%) using a double-observer
method. O’Dea et al. (2002) compared the MacKinnon list method to traditional point
counts and found that both methods had equivalent estimates of species richness, but that
MacKinnon lists overestimated species abundance, lacked a sampling protocol, and
required considerably more time for both field collection and data entry. Furthermore, all

five of these methods rely on several indirect assumptions. For example, they assume that



individuals are not double-counted during surveys, that individuals are accurately
assigned to being within or outside a set survey boundary, and that the observer does not
affect the distribution of individuals (Murray et al. 2011; Reidy et al. 2011). Yet, these
assumptions are often violated or untested (Murray et al. 2011; Reidy et al. 2011). For
example, the presence of human observers has been shown to affect the natural behaviour

and habitat choice of birds (Mech and Barber 2002; Lee and Marsden 2008).

1.2 Acoustic Monitoring

Acoustic monitoring, which is based on audio recorders placed in the environment
to passively record species-specific sounds, is a new technique that overcomes many of
the limitations of point counts (Blumstein et al. 2011; Mennill et al. 2012). Virtually all
landbirds regularly produce species-specific vocalizations, especially during the breeding
season, and, therefore, monitoring these vocalizations can be a reliable way of
determining whether a particular species is present at a given location. Unlike humans,
recorders are ideal for detecting rare species because they can operate continuously for
long periods of time, at night, and at multiple locations simultaneously (Hutto and

Stutzman 2009; Klingbeil and Willig 2015).

In addition to determining species presence, audio recording units can be used as
part of a microphone array to localize vocalizing animals in 2-dimensional or 3-
dimensional space (Blumstein et al. 2011). This can allow researchers to distinguish
among spatially separated individuals (e.g., those living in adjacent territories), and to

identify and characterize preferred microhabitats, such as singing posts and nesting sites.



This allows researchers to study microhabitat use in the absence of obscuring or
confounding observer effects. Additionally, birds are known to vocalize at species-
specific rates (Emlen 1972). By calculating the area over which vocalizations are
detected, vocalization density can be calculated and used as a proxy for population
density (Marques et al. 2013). This information can be incorporated into population
monitoring protocols, which is useful for developing conservation decisions about land

management.

Localization requires multiple microphones to be distributed throughout the
environment at a high enough density that vocalizations from target species are detected
at three or more microphone locations. Because sound travels at a constant and
predictable speed, it will arrive at each microphone at a slightly different time. These
time-of-arrival differences among microphones can be measured from audio recordings
using various techniques, such as spectrogram or waveform cross-correlation, and
trilateralization can then be used to calculate the origin of the sound in 2-dimensional or

3-dimensional space (Wilson et al. 2014).

There are several factors that affect detection and localization accuracy of sound
in a microphone array. Detection and localization accuracy are significantly better when
the total number of microphones and microphone density are higher (Patricelli and
Krakauer 2010; Mennill et al. 2006; Mennill et al. 2012), when signals are produced
within the area bound by the array (McGregor et al. 1997; Bower and Clark 2005), when

signals are produced in open versus densely foliated habitat (McGregor et al. 1997;



Mennill et al. 2012), and when signals contain frequency modulation (McGregor et al.
1997). Therefore, the detection capability and accuracy of microphone arrays can vary

according to array configuration, habitat, and target species.

Despite these limitations, previous studies and reviews have indicated that
microphone arrays are an effective tool for surveying wildlife populations (Blumstein et
al. 2011; Shonfield and Bayne 2017), though there are still several challenges remaining.
First, a reliable and automated method for species recognition has yet to be developed
(Blumestein et al. 2011). Software programs exist, but are often not commercially
available or have been developed for particular taxa and cannot be applied to data that
contain several types of vocalizations from multiple taxa. Second, there is currently no
framework or workflow that is capable of processing large volumes of audio recordings
efficiently. Existing procedures involve one or more manual steps, such as processing
each vocalization individually to determine time-of-arrival differences (e.g., Sound
Finder, Wilson et al. 2014). Manual steps in the processing of individual vocalizations
limits the number of localizations that can be processed in a single study to a few hundred

or, possibly, a few thousand.

In this study, 1 used the cable-free microphone array technology described by
Mennill et al. (2012) to assess habitat and microhabitat use of landbirds at a local scale in
central Labrador, Canada, regardless of their current population or conservation status. |
conducted the study in Labrador because 15 of its 102 native species are at risk

(Mactavish et al. 2016; NLFLR 2017; Appendix 1). Within the Boreal Shield Ecozone in



Labrador, there have been significant declines in bird species that occupy open and
shrub/early successional habitats, including those listed as “not at risk” (Downes et al.
2011). The Labrador portion of the Boreal Shield Ecozone is also under-represented in
national bird surveys (Downes et al. 2011). The majority of surveys in this ecozone were
conducted in southern Ontario and Quebec, with poor coverage outside of these regions
(Downes et al. 2011). Finally, Labrador is subject to intense development. In particular,
logging, hydroelectric power generation (e.g., the Lower Churchill Project), and mining
are significant sources of human disturbance (Roberts et al. 2006). Therefore, studies on
the avian communities in this region, and subsequent monitoring of these communities,
are important for understanding the impact of these disturbances. The study area |
sampled included 88 sites across the 2016 and 2017 avian breeding seasons, and
encompassed a 50 x 50 km area in Labrador that was south of Grand Lake, north of the

Churchill River, and west of Goose Bay and Lake Melville.

1.3 Study Objectives

The first objective, detailed in the second chapter, was to determine whether or
not microphone arrays are a practical tool for characterizing avian communities. |
introduce and explain the methodology of a new, automated localization workflow that is
capable of processing millions of vocalizations from thousands of hours of recordings. |
test the accuracy of this workflow using speaker playbacks broadcasted from known
locations to determine if this localization procedure is as accurate as previous procedures

that required manual oversight. Included in the chapter are the number of vocalizations



recorded, the amount of time required to detect, identify, and localize the vocalizations,

and the accuracy of localization.

The second objective, detailed in the third chapter, was to determine the
relationships between habitat characteristics and avian community parameters (i.e.
species richness, composition, and the presence/absence of individual species). | also
compared my results to those observed previously in other locations across North
America. Changes in avian community parameters are influenced by several habitat
characteristics, such as mean tree height, stem density, canopy cover (MacArthur and
MacArthur 1961; MacArthur et al. 1962; Lee and Rotenberry 2005; McElhinny et al.
2005; Lemaitre et al. 2012), and vegetative species richness (Lee and Rotenberry 2005). |
use the microphone array data to develop explanatory models that identify the habitat
characteristics that are associated with avian species richness, avian species composition,
and the presence/absence of each avian species across the study area. Finally, using a
subset of 20 arrays that were deployed in the same locations in both 2016 and 2017, |
calculated the similarity of species compositions between two consecutive breeding

Seasons.

The third objective, detailed in the fourth chapter, was to determine if birds
vocalized selectively from particular types of song perches. The chapter focused on the
microhabitat selection of Boreal Chickadee (Poecile hudsonicus) and Cape May Warbler
(Setophaga tigrina), which are two common species experiencing steep population

declines across their range (Rosenberg et al. 2016; Sauer et al. 2017). Using the



localization data provided by the microphone arrays, | tested whether the microhabitat
characteristics of singing locations differed in structure from locations selected at random
from within the same general habitat. The ability to localize singing birds over long
periods of time across broad geographic regions makes this approach useful for
understanding the habitat and microhabitat requirements of birds. If these species were
listed under the Species at Risk Act (S.C. 2002, c. 29), this information would be valuable
for conservation efforts because recovery documents and conservation strategies require

data on critical habitat and microhabitat used during the breeding phase.

1.4 Co-authorship Statement

I conducted this research independently, but with contributions made from Dr.
David Wilson, my graduate supervisor. In particular, he aided with the initial research
proposal, preparation of manuscripts, and several practical aspects of the thesis (e.g.,
equipment maintenance). | was responsible for the majority of the study design, but was
in direct consultation with David Wilson. It is worth noting that | used the microphone
array set-up described by Mennill et al. (2012), of which David Wilson was a co-author. |
completed the data collection with the assistance of David Wilson, Bronwen Hennigar
(MSc student in the Wilson lab), and Mohammad Fahmy (Honours student in the Wilson

lab).

William Balsom wrote and developed the custom localization program used
throughout the thesis and described in detail in chapter 2 (co-author of any manuscript

derived from that chapter). | completed the data analyses and interpretation with guidance
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from David Wilson, and | wrote the manuscripts that constitute the chapters of this thesis
(chapter 2-4). I made revisions to these manuscripts based on the recommendations of
David Wilson (co-author of those manuscripts), as well as comments provided by my
committee members (Dr. lan Warkentin and Dr. Yolanda Wiersma). As the chapters of
this thesis are written as manuscripts to be submitted for publication as separate entities,
there is some necessary repetition of material between the general introduction and

manuscript chapters.
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CHAPTER 2: A new method for studying avian communities using microphone

arrays and acoustic localization

Abstract: There are several methods for obtaining information about the distribution,
abundance, and habitat requirements of individual species within an avian community.
However, many of these methods are limited by cost, accuracy, and human resources.
Microphone arrays are an emerging technique used to obtain avian community data.
Despite recent advances in hardware, such as cable-free arrays, the workflow options for
processing large volumes of audio recordings and performing localization algorithms on
large datasets are still lacking. In this study, I describe a new custom localization program
and fully automated workflow. | then use the workflow to detect and localize songs from
a largely understudied avian community from the boreal forest in Labrador, Canada.
Using this new method, | was able to process, detect, and accurately localize millions of
detections from thousands of hours of audio with only 325 h of processing time. This
technique is easy to use, requires minimal manual inspection, and the code is free, using

software that is available to most institutions and laboratories.

2.1 Introduction

Identifying the presence or absence of bird species across several locations is an
important first step to understanding the distribution, abundance, and habitat requirements
of individual species within an avian community. There are several direct observation
techniques used to survey and monitor birds, such as point counts, spot mapping, and

radio telemetry, but these methods are often limited because they require highly trained
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personnel whose presence on the ground has been shown to affect natural avian behaviour
and habitat choice (e.g., Mech and Barber 2002; Lee and Marsden 2008). Additionally,
there are often limitations to the timing and duration of observations. For example, most
observations are conducted during the early morning, thus excluding or otherwise

underrepresenting nocturnal species and species that are most active during the day.

Acoustic monitoring involves the use of one or more passive acoustic recording
units that are used in place of a human observer. This technology mitigates several biases
associated with other monitoring methods. In particular, point counts are associated with
observer bias because the ability to detect and classify vocalizations in situ varies with
observer skill (Hobson et al. 2002; Hutto and Stutzman 2009). Acoustic recording units
provide permanent archives of recordings that can be inspected repeatedly to confirm
species identity. Acoustic recording units have also been shown to be more robust than
human-observer methods to variations in vocalizations of individual species, habitat type,
and weather, which obscure aural detection and species identification (Hobson et al.

2002; Blumstein et al. 2011).

Microphone arrays are an emerging technique in which three or more passive
acoustic recording units are synchronized and dispersed in an animal's environment. This
technique has been used to study the vocal and spatial behaviour of several taxa (Mennill
and Vehrencamp 2008; Krakauer et al. 2009; Bates et al. 2010; Harris et al. 2016) and to
survey bird species abundance, richness, and composition (Hobson et al. 2002; Acevedo

and Villanueva-Rivera 2006; Celis-Murillo et al., 2009, 2012). The primary advantage of
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using a microphone array over point count method is the ability to localize individual
vocalizations in space (Blumstein et al. 2011). Since sound travels at a predictable rate
through the air, the time required for an acoustic signal produced by an animal to reach
each microphone in the array will differ slightly. It is therefore possible to determine the
location of the signal using the time-of-arrival differences among the microphones in the
array. There are several approaches for determining time-of-arrival differences, including
spectrogram and waveform cross-correlation. Trilateralization algorithms can then be
applied to the time-of-arrival differences to calculate the spatial origin of the signal
(Wilson et al. 2014). With localization, the sampling area can be standardized and set to a
small enough area that all vocalizations produced within it are detected. This, in theory,
mitigates the effects of habitat, weather, species, and bird behaviour on the probability of
detection and inclusion in the sample. Additionally, since the array is spatially explicit,
and since birds tend to vocalize at species-specific rates, it is possible to calculate song
density, which is the number of songs per unit of area per unit time (Stevenson et al.
2015). Song density should correlate with animal densities, and, so, can be used as a
consistent and reliable metric to be compared among sites, regions, years, and studies

(Stevenson et al. 2015).

A significant challenge to using microphone arrays is that the recordings from
each microphone must be synchronized. If they are not, the time-of-arrival differences
and the localizations derived from them will be inaccurate. The traditional method of
synchronizing a microphone array was to connect the microphones to a central recording

device via long cables (Mennill et al. 2012). Deploying these arrays took large teams of
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researchers multiple days to set up (e.g. Fitzsimmons et al. 2008, Mennill and
Vehrencamp 2008). The transportation and deployment time of these systems limited the
number of arrays that could be established in a single study and often did not allow for

arrays to be treated as the unit of replication (Mennill et al. 2012).

During the last decade, cable-free microphone arrays have been developed for
studying species in terrestrial communities (Ali et al. 2009; Thompson et al. 2009; Collier
et al. 2010; Blumstein et al. 2011; Mennill et al. 2012; Stevenson et al. 2015). These
arrays comprise commercially available recorders that synchronize with each other using
self-generated radio signals (Burt and Vehrencamp 2005) or a common GPS time source
(e.g., Mennill et al. 2012). Because these systems are cable-free, they can be deployed in
the field more easily and more quickly than their cable-based counterparts. For example,
Mennill et al. (2012) were able to fit an entire 8-microphone cable-free array into a single
backpack, and to set it up in the field, covering an area of approximately 0.25 ha, in under

1h.

Despite these advances in hardware, software options for detecting and localizing
signals from large volumes of recordings are lacking. Software programs exist for
isolating vocalizations/sounds, assigning species labels to the vocalizations, and then
performing spectrogram or waveform cross-correlation. Examples include ISHMAEL,
which was developed by the Cooperative Institute for Marine Resources Studies
(CIMRS) bioacoustics lab at Oregon State University (Mellinger et al. 2017), XBAT,

which was developed by the Cornell Lab of Ornithology (Mills and Figueroa 2005), and
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Sound Finder, which was developed by Wilson et al. (2014). However, these software
programs often require one or more manual steps, such as building species-specific
recognizers for detecting vocalizations or processing each vocalization individually to
determine time-of-arrival differences prior to localization. Additionally, no software of
which | am aware is able to process large volumes of audio data efficiently. For example,
ISHMAEL requires approximately 1 h to process 1 h of audio recordings. As a result,
most studies involving the technology have been proof-of-concept studies or have
involved a maximum of a few hundred detections, which significantly reduces the
temporal and/or spatial coverage of such studies (Bower and Clark 2005; Mennill et al.

2012; Spillman et al. 2015; Stepanian et al. 2016).

To alleviate the deficiencies of previous software, my objectives in this study
were to (1) develop a workflow that can automatically detect and localize animal sounds
recorded with a microphone array; (2) show that the workflow can handle large datasets
(i.e., thousands of hours of audio recordings); and (3) quantify the accuracy of
localizations using a series of playbacks broadcasted from known locations. To address
objectives 2 and 3, | deployed 110 microphone arrays in forest stands of eastern Labrador,

Canada.

2.2 Methods
2.2.1 Signal processing workflow
The software and workflow used for processing vocalizations involves three steps:

detection, identification, and localization. The first two steps utilize Kaleidoscope
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software (Version 4.3.2, Wildlife Acoustics, Concord, MA, USA). The third step is
accomplished using a custom program written in MATLAB (Version 6.1, The

MathWorks, Natick, MA).

2.2.1.1 Detecting vocalizations

Kaleidoscope software automatically detects vocalizations from a collection of
long audio recordings. The vocalizations can be comprised of “phrases” that contain
“syllables” (Catchpole and Slater 2008) that are above the threshold of background noise
and within a user-defined minimum and maximum frequency range and duration. The
background noise is determined by an algorithm that estimates the ambient level of
background energy through a rolling average of power levels going back in time by the
user-specified maximum duration of potential signals. Kaleidoscope generates a detection
list text file with one row for each detection and columns describing the structure of the
detection (minimum, maximum, and mean frequency) and its position within the raw

recording (time of onset and duration).

Kaleidoscope uses a cluster analysis to group together detections with similar
acoustic structure. The program calculates the distance of each detection to the centroid of
the nearest cluster in multi-dimensional space. If a vocalization is within a user-defined
distance from that centroid (a value between 0 and 2, where 0 excludes all detections and
2 includes all detections), then the vocalization is assigned to that cluster. The user can
preview the vocalizations in clusters and rename clusters to match the species they

represent.
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2.2.1.2 Localizing vocalizations

Vocalizations are localized automatically using a custom program written in
MATLAB (SoundScope; Balsom et al., in prep). The following input files are required
for localization: (1) the detection list text file produced by Kaleidoscope, (2) a text file
listing the date and start time of each raw audio recording, (3) a text file listing which
audio files were produced from the same array during the same time period, (4) the audio
files containing the detections, (5) a text file containing GPS coordinates of each
microphone in each array, and (6) a text file containing temperature data corresponding to

the times and dates of the recordings.

Each detection is localized in two steps. First, the program identifies the channel
in which the detection has the maximum signal-to-noise ratio (“reference channel™),
applies a bandpass filter based on Kaleidoscope's determination of the minimum and
maximum frequencies of the detection, and then uses pair-wise waveform cross-
correlations to measure when the signal was detected in each channel relative to when it
was detected in the reference channel. The result of this step is a vector with the observed
time-of-arrival differences. Second, the program produces a three-dimensional lattice,
with 2-m resolution, over a simulation of the study site. The study site is defined by the
most northern, eastern, western, and southern microphone coordinates, and by the
minimum and maximum heights of each of the microphones. A 100-m buffer is added to
each side of the simulated study site, and a 10-m buffer above and below the site. Most

avian acoustic signals produced beyond this buffer could not be detected by three or more
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microphones, and, so, could not be localized using this method. For each vertex in the
lattice, the program calculates the time it would take for the vocalization to travel to each
microphone, based on the known temperature and derived speed of sound. The vertex that
minimizes the difference between the observed and theoretical time-of-arrival differences
is selected by the program as the most likely origin of the vocalization. This process is
then repeated 100 times, with a new smaller study area centred on the estimated origin of
the vocalization from the previous iteration (dimensions equal to the spatial resolution of
the previous iteration), and a progressively finer lattice resolution. For each vocalization,
the program produces a unitless error value, which is the sum of absolute differences
between the theoretical time-of-arrival differences of the final estimated origin and the
original observed time-of-arrival differences (hereon in, "localization error value™). This
error term is not a direct measure of geographic error, but, rather, a measure of model fit.
As there are multiple factors that influence localization, it is possible for a vocalization to
be localized to its true spatial origin with perfect accuracy, but to still have a high

localization error value.

2.2.2 Microphone array deployment

In order to test the accuracy of the workflow and its ability to handle large data, |
deployed microphone arrays at 110 sites in Labrador, Canada during the 2016 and 2017
avian breeding seasons. The sites were distributed across a 50 x 50 km area of Labrador
that is south of Grand Lake, north of the Churchill River, and west of Goose Bay and
Lake Melville (central UTM: 20U 666550 m E, 5921190 m N; Chapter 3, Figure 3.1).

During 2016 (16 May — 10 July), arrays were deployed at 68 sites. During 2017 (17 May
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— 30 June), arrays were deployed at 42 sites, including 22 at new locations and 20 at

locations from the previous season.

The locations of sites were selected at random, but with the constraints that they
were within 1 km of road access and a minimum distance of 500 m from each other. |
chose a maximum distance from road access of 1 km because hiking beyond this distance
through dense forest while carrying a microphone array would have been difficult and
would have reduced our sample size. | chose to separate sites by a minimum of 500 m
because this reduced the risk of detecting the same birds at multiple sites (Wilson and
Mennill 2011). GPS coordinates for sites were generated using a random integer set
generator that creates non-repeating integers within confined boundaries
(RANDOM.org). These random coordinates were then plotted on 1:50,000 scale
topographic maps (National Topographic System, Series A771, Edition 4AMCE, Map13
F/7 - 13 F/10) and discarded if they violated the inclusion criteria or were within a

delineated swamp, bog, or water body.

Each array consisted of four audio recorders (Model SM3, Wildlife Acoustics,
Concord, MA, USA) that were placed at the corners of a 40 m X 40 m square, and which
provided complete coverage of an area of approximately 0.15 ha. Field equipment
consisted of 16 recorders (i.e., 4 arrays) in 2016 and 8 recorders (i.e., 2 arrays) in 2017.
Each recorder was fitted with a Garmin SM3 GPS that was used to provide a standard
GPS time source to synchronize the recorders within an array to within 1 ms of each

other. Recorders were attached to trees using two drywall screws (Figure 2.1). Each
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recorder had two channels: one built-in microphone (pick-up pattern: omnidirectional;
frequency response: 50—20,000 Hz, + 10 dB; Wildlife Acoustics, Concord, MA, USA)
was positioned approximately 1 m above the ground, and a second microphone (model:
SMM-A2; pick-up pattern: omnidirectional; frequency response: 50-20,000 Hz, + 10 dB)
was positioned in the canopy approximately 2 to 3 m above the first using an extendable
painter's pole with a hook at the end (Figure 2.2). A wire hook attached to the external
microphone was hooked over a tree branch to fasten the microphone in place. Both
microphones were oriented to point towards the middle of the array. Microphone
positions were determined with a survey-grade Global Navigation Satellite System

(GNSS; Geo7X, Trimble, Sunnyvale, CA, USA) with 10-cm accuracy (Figure 2.3).

Each array fit into a pair of backpacks and could be set up by a team of two
people. On a typical day, the research team (2 to 4 people) could take down, relocate, and
set up two microphone arrays. After arriving at a target location, the average set-up time
for a microphone array, including the time required to position the microphones, was less
than 1 h. After setting up an array, each recorder was programmed to record continuously
until stopped, and to create a new stereo sound file every 2 h throughout this time
(WAVE format, 24 kHz sampling rate, 16-bit amplitude encoding). All arrays were left
recording for a minimum of 24 h, beginning 2 h after the initial setup to minimize
disturbance effects associated with setup. During periods of heavy rain, the arrays were

left in place for at least one day after the rain had stopped.
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2.2.3 Localization accuracy

To determine the localization accuracy of the microphone arrays, | performed
speaker playbacks at 8 microphone arrays. A tonal frequency up-sweep stimulus (200 ms
in length, increasing logarithmically from 0.5 to 2.5 kHz) was played 9 to 15 times from a
12.7-cm loudspeaker (5 watts, Model No 7-100, Pignose Ind., Las Vegas, NV, USA)
placed facing upwards in the approximate centre of the array. The amplitude of the
stimulus was 90 dB sound pressure level, as measured at 1 m from the speaker with a
sound level meter (c-weighing, fast-response). The position of the loudspeaker was
recorded using the Trimble Geo 7x GNSS. These coordinates were used as the "true"
location of the sound. The stimuli were localized in MATLAB to obtain estimates of the

location using the procedure described above (section 2.2.1.2).

Although the localization program is capable of producing location estimates in
three-dimensional space, we found an unexpectedly high amount of localization error in
the vertical z-dimension. Error values were significantly reduced and location estimates
were more accurate when localizing sounds in two-dimensional space. Location estimates
were, on average, 4.00 m (x9.32 m, standard deviation) farther from the true location
when localized in three-dimensional space. Therefore, localization accuracy was defined
as the two-dimensional distance between the location of the loudspeaker, as estimated by
the localization program, and the location of the loudspeaker, as determined by the
GNSS. Localization accuracy was compared to the localization error values produced by

the localization program.
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2.2.4 Avian community data analysis

An initial run of the detection and clustering process was performed in
Kaleidoscope on a subset of 14 randomly selected 2-h audio files recorded from the 2016
dataset. Recordings were analyzed using the following settings: fast Fourier
transformation (FFT) window size = 256 points (5.33 ms); frequency range of potential
signals = 2000—-10000 Hz; duration of potential signals = 0.1-4.0 s; maximum inter-
syllable gap = 0.35 s. Settings used during the clustering process included: maximum
distance from the cluster centre = 2.0; maximum states = 12; maximum distance to cluster
centre for building clusters = 0.5; maximum clusters created = 500. This produced 36,416
detections and 201 clusters. The detections within the clusters were manually inspected
and 56 of these clusters were renamed to reflect the species they represented. Species
identities were determined by listening to recordings of vocalizations and viewing their
associated spectrograms, and then comparing these to the species accounts on the Birds of
North American website (Rodewald 2015). The remaining clusters contained multiple
species vocalizing and thus were not renamed, but, instead, retained the default label, as
recommended by the program instructions. The cluster information stored in the metadata
file was then applied to the full 2016 and 2017 datasets. This eliminated the need to

manually assign detections to species.

In the full dataset (110 microphone array samples), | detected 4,879,624

vocalizations (2016 = 2,734,885; 2017 = 2,144,739) from 32 species of birds from 5862.6

h of audio. All detections were localized in MATLAB using the procedure described
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above (section 2.2.1.2). The resulting dataset included several duplicated detections (same
vocalization in multiple channels), detections of non-avian, non-target sounds (e.g.,

mosquitoes, squirrels, vehicles), and detections with large localization error values.

| used the "rgeos™ package (Bivand and Rundel 2017) in R (Version 3.0.1; R Core
Team, Boston, MA, USA) to identify those detections contained within the bounds of the
microphone array (most northern, eastern, western, and southern microphone
coordinates), plus a 5-m buffer on each side of the array. Based on this, the dataset was
reduced to 1,928,312 detections. | further reduced the data to include only those
detections with a localization error value < 0.02, which corresponds to a localization
accuracy of 3.55 m or better for 90% of detections (see Results). A total of 470,761
detections met this criterion. For sites that were sampled in both years, only the data from
2017 were included (with the exception of one array in 2017 which had no species
present), which allowed for a relatively equal number of sampling sites in the two years
(2016 = 48 sites, 2017 = 40 sites). Additionally, I removed all duplicate and non-target
detections, which reduced the number of detections to 59,155. | manually reviewed the
classifications of the remaining detections to confirm the species assignment was correct,

though this step is not a necessary part of the basic detection/localization process.

2.3 Results
2.3.1 Efficiency of localization workflow
Using the final version of the analytical approach detailed above, and once

sufficiently trained with the software programs, the complete signal processing workflow,
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including the optional manual review of detections to confirm correct species assignment,
required approximately 325 h, or 41 days (assuming an 8-h workday). Detecting
vocalizations within Kaleidoscope, including the initial training step, required
approximately 25 h. With a standard computer (iMac, 32 GHz Intel Core i5, 16 GB
RAM) using parallel processing across 4 processors, localizing the nearly 5 million
detections (0.5-2.0 s in length) required approximately 140 h. However, the localization
process was fully automated and required only 5-10 min to set up. Manually inspecting

the detections to confirm species identification required 160 h.

2.3.2 Localization accuracy

The average localization accuracy for the speaker playbacks (i.e., distance
between their true location and the location estimated by the localization program) was
3.08 m (n = 160 sounds). | found that 17.5% of the stimuli were localized to within 1 m
of their true location, and 87.5% to within 5 m of their true location. | found that 12.5% of
stimuli had a localization accuracy of at least 5 m (Figure 2.4). | was able to determine
that 90% of stimuli that were localized with a localization error value of 0.02 or less were
within 3.55 m of their true locations (Table 2.1). Comparing this to natural bird
vocalizations recorded with my arrays, 867,970 vocalizations in 2016 (31.7% of all
vocalizations recorded in 2016) and 585,576 vocalizations in 2017 (27.3 %) had a

localization error value of 0.02 or less.
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2.4 Discussion

Multiple studies have argued that acoustic monitoring is preferred over traditional
observer-based methods for monitoring avian communities because recording units detect
continuously (Acevedo et al. 2009; Blumstein et al. 2011). Extending the approach to
microphone arrays can yield even more insight by permitting the localization of
individuals. Although hardware obstacles associated with microphone arrays have been
overcome, software obstacles have not. Most studies involve only a few dozen or few
hundred sounds, yet leaving multiple recorders recording for many days can yield
millions of detections. | developed a system that is able to process, detect, and localize

millions of detections from thousands of hours of audio in a timely fashion.

Generating location estimates for a larger number of detections can be an
expensive and time-consuming process. The localization procedure used in this study
employed Kaleidoscope and MATLAB software. Currently, the localization algorithm
written in MATLARB is in the process of being translated to be able to run in R (Balsom et
al., in prep). As it is presented here, though, the initial cost of these software programs
may limit the accessibility of this workflow to some laboratories. Kaleidoscope is
currently $1500 USD and MATLAB is currently $500 USD for an educational license,
plus both products require an annual software maintenance fee. However, the main
advantage of the procedure is that the vocalization detection and localization steps were
fully automated and significantly reduced the time spent manually processing data. Once

the input files were formatted, the custom program built in MATLAB was able to localize
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each detection in approximately 400 ms, allowing for a large dataset (ca., 5 million

vocalizations) to be processed in approximately 6 days.

| was able to produce accurate location estimates with a high level of confidence
based on sounds broadcasted from within the array (mean: 3.08 m, 95% confidence
interval: 2.59-3.56 m). These results are comparable with a previous study using the same
array configuration that reported an average location accuracy of 1.87 m for sounds
produced within the array and 10.22 m for sound produced outside the array (Mennill et
al. 2012). Other studies have had better accuracy (i.e., McGregor et al. 1997; Patricelli
and Krakauer 2010), but these studies had significantly higher microphone densities
and/or occurred in areas with less dense vegetation (i.e., open fields). The distribution of
localization accuracies was also similar to those found in a previous study. Wilson et al.
(2014) broadcasted 76 natural sounds from 5 species (3 bird and 2 frog vocalizations)
from a loudspeaker in 38 different microphone arrays and used Sound Finder software to
localize the sounds in two-dimensional space. They were able to localize 24% of sounds
to within 1 m of the actual location and 74% of sounds to within 10 m (Wilson et al.
2014). My ground truth experiment, which involved 160 sounds broadcasted in 8 arrays,
had comparable accuracy; approximately 18% of sounds were localized to within 1 m and

97% of sounds were localized to within 10 m (Figure 2.4).

There were at least four sources of potential measurement error associated with
localization in this study. First, the accuracy of localization is highly dependent on the

accuracy of the measured positions of each microphone in the array. The global
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positioning system used, while more accurate than a conventional GPS, had an average
horizontal accuracy of 0.34 m, but ranged from 0.1 m to 1.2 m. However, this is a
significant improvement from studies using a very similar microphone array
configuration that reported an average microphone position error of greater than 1 m (i.e.,
Mennill et al. 2006; Mennill et al. 2012; Wilson et al. 2014). Second, the position of the
second (external) microphone of the acoustic recorder for each corner of the array was
assumed to be directly above the first (built-in) microphone and thus occupying the same
position on the horizontal plane. Deviations from this assumption likely occurred and
affected the quality of localizations, as placement of the external microphone was never
perfect and depended on the availability of branches. Third, the waveform cross-
correlation procedure depends on a high signal-to-noise ratio. While limited, a number of
locations were situated in locations where natural noise (e.g., wind, running water,
creaking trees) and anthropogenic noise (i.e., vehicle traffic) were apparent in recordings.
Similarly, low signal-to-noise ratios can also be present when there is more than one
signal being produced at a given point in time. There were several instances when two or
more birds vocalized from different locations within the array, which produced high
localization error values. An alternative to waveform cross-correlation is spectrogram
cross-correlation, which can better align signals recorded in noisy environments (Bower
and Clark 2005; Zollinger et al. 2012). Waveform cross-correlation has superior temporal
resolution when the signal can be distinguished from the background noise, while
spectrogram cross-correlation is computationally more demanding and requires more time

to process (Zollinger et al. 2012; Wilson et al. 2014).
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There are many methods available to researchers for studying and monitoring
avian communities. The utility and feasibility of each method depends on the research
question being asked, the time and financial resources available, and the quality of data
needed. Point counts are perhaps the most common method to determine species richness,
species diversity, and the abundance of avian species (Blumstein et al. 2011; Mennill et
al. 2012; Venier et al. 2012). However, acoustic monitoring provides permanent records
of bird vocalizations and removes the observer effect and other biases associated with
methods such as point counts. This permits researchers to use a dataset acquired from a
few field seasons to address multiple research topics, such as variation in song structure,
inter-year and/or inter-season variation in song production, and presence/absence patterns
of individual species. Furthermore, a recent review found that acoustic recorders often
performed equal to or better than point counts when estimating species richness,
abundance, and composition (Shonfield and Bayne 2017). These results could be obtained
with one or two acoustic recorders placed in several locations across a landscape.
However, microphone arrays and localization permit researchers to answer questions that
require the investigator to determine the spatial relationships among individuals or
between individuals and other aspects of their environment. Examples of previous studies
employing this technology include determining the distance between duetting partners in
rufous-and-white wrens, Thryothorus rufalbus (Mennill et al. 2006; Mennill and
Vehrencamp 2008), and the inter-individual spacing of chorusing male frogs (Bates et al.
2010). Spatial information can also be used to estimate density of individuals within the
environment by calculating the area over which vocalizations are detected (i.e., Dawson

and Efford 2009; Marques et al. 2013). | believe that this type of research can be
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incorporated into monitoring programs to better understand how individuals within a bird
community utilize the structures (e.g., trees, shrubs) within their environment, as well as

to estimate population density.

In conclusion, | have provided a new analytical approach to accurately determine
the location of individuals using acoustic localization. It is the first to be able to handle a
large volume of data while maintaining comparable accuracy with other systems
developed in recent years. The sound detection, species identifications, and localization
procedures are almost fully automated and require minimal manual inspection. The code
is free and uses software that is available to most institutions and laboratories. | also
demonstrated that this workflow can be combined with recent advances in microphone
array hardware (Mennill et al. 2012) to efficiently and accurately survey avian
communities. Overall, the acoustic monitoring and localization methods specified here

provide powerful tools for researchers to study animal behaviour and ecology.
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Figure 2.1: The audio recorder (Model SM3, Wildlife Acoustics, Concord, MA, USA)
used for the microphone array, and the Garmin SM3 GPS (black disc above recorder) that
was used to provide a standard time source to synchronize the recorders.
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Figure 2.2: The external microphone was extended 2 to 3 m above each audio recorder
using a modified hook on a painter’s pole.
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Figure 2.3: The survey-grade GNSS (Geo7X, Trimble, Sunnyvale, CA, USA) with 10-
cm accuracy used to determine the location of each microphone in the array.
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Figure 2.4: The localization accuracy of broadcasted sounds that were localized using a
custom MATLAB program. Localization accuracy is the difference between the location
of the vocalization, as estimated by the custom MATLAB program, and the true location,
as determined by the Trimble GNSS. Data are based on 160 frequency upsweeps
broadcasted from within 8 microphone arrays.
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Table 2.1: Results of the ground truthing experiment that demonstrate the relationship
between localization error, as calculated by the localization program, and localization
accuracy.

Localization Localization accuracy (m)

error value N 50% 75% 90% 95% 100%
<0.01 80 2.012 3.157 3.427 3.591 4.719
<0.02 144 2.365 3.038 3.550 6.665 13.951
<0.03 152 2.358 3.160 4.719 6.773 18.255
All 160 2.392 3.240 6.684 7.416 22.814

Notes: Localization accuracy is the difference between the origin of the upsweep stimulus,
as estimated by the custom MATLAB localization program, and the true origin of the
stimulus, as determined by the Trimble GNSS. Shown for each localization error value are
five common percentiles of localization accuracy. As an example of how to interpret this
table, 95% of localizations with an error value between 0 and 0.01 have a localization
accuracy of 3.591 m or less, whereas 95% of localizations with a localization error value
between 0 and 0.02 have a localization accuracy of 6.665 m or less.
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