
  

 

 

 

 

 

 

 

Gravity Surveying, Potential-field Modeling, and Structural 

Mapping and Analysis of the Howley Basin, western 

Newfoundland 

 

 

 

By 

Linden Ernst 

 

A Thesis submitted to the school of Graduate Studies 

in partial fulfilment of the requirements for the degree of 

Master of Science 

 

 

Department of Earth Sciences 

Memorial University of Newfoundland 

2018  



i 

 

Abstract 

The northeast trending Cabot Fault transects western Newfoundland. Early 

Carboniferous, possibly late Devonian, activation and continued strike-slip movement 

throughout the late Paleozoic has led to the deposition of non-marine, fluvial and 

lacustrine facies, in an isolated sedimentary basin in western Newfoundland, the Deer 

Lake Basin. The Howley Basin is the northeast depocenter within the Deer Lake Basin. It 

is separated from the Humber Basin depocenter to the west by a northeast trending, 

elongated ridge of inverted older Carboniferous sedimentary units.  

Active oil seeps, bitumen in shallow drill core, organic rich lacustrine shales and 

mudstones, porous sandstones, and a large negative gravity signal over the Howley Basin 

make it an attractive hydrocarbon exploration target. Poor exposure, limited shallow 

drilling along the margins, and a lack of high-resolution geophysics leaves much of the 

Howley Basin’s internal stratigraphy and structure unknown. Integration of potential-field 

geophysics and detailed structural mapping and analysis is used to asses the Howley 

Basin’s structure and hydrocarbon potential. 

A large lake overlies most of the Howley Basin. Full coverage of gravity 

surveying required acquisition of gravity stations over the lake. A Ground Penetrating 

Radar was used in conjunction with the gravity survey to determine the bathymetry of the 

lake and was used to remove the anomalous mass of the water column in the complete 

Bouguer gravity anomaly. Gravity data collected in this study was combined with 

reprocessed pre-existing gravity datasets. A high-resolution aeromagnetic survey and the 

gravity data was used to model the Howley Basin. Interpretations show that the basin 
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forms an asymmetric half-graben deepening to the east, reaching a depth of 4.3 km, well 

into the predicted oil window.  

Structural mapping of the Howley Basin revealed that the basin has been affected 

by episodes of transtension and transpression throughout the Carboniferous and likely 

continuing into the Permian. Hydrocarbon maturation is predicted to have peaked in the 

late Pennsylvanian to early Permian. Late-stage transpressional inversion of the Howley 

Basin is interpreted to have been focused on its margins, potentially creating large 

wavelength structural traps in the center of the basin. 
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Chapter 1: Introduction 

The Carboniferous Deer Lake Basin is a fault-dominated, non-marine, onshore 

basin in west-central Newfoundland (Figure 1.1; Hyde et al., 1988). Alluvial to lacustrine 

sedimentary units of the basin unconformably overlay Proterozoic gneiss and plutonic 

rocks, and allochthonous Ordovician shelf and rise rocks of the Humber margin to the 

west, and are in fault contact with Ordovician to Silurian igneous rocks of the Notre 

Dame arc to the east (Figure 1.1, 1.2; Hyde, 1982). Thus, the tectonic contact between 

these two crustal blocks, the Baie Verte-Brompton Line (BBL; Williams and St-Julien, 

1982), lies beneath the basin. The Deer Lake Basin is transected by two disjunct north-

northeast trending fault-bounded elongated prominent ridges (Fisher Hills and Birchy 

Ridge; Figure 1.1) of Tournaisian rocks that separate two low-lying depocenters underlain 

by Viséan to Westphalian rocks (Hyde, 1982): the Humber Basin to the west and the 

Howley Basin to the east (Figure 1.1). This study focuses on Howley Basin. 

The Howley Basin is overlain by a large lake (Sandy Lake; Figure 1.1), thick 

spruce forests and bogs, and large accumulations of glacial till. Exposure within the basin 

is extremely sparse and typically only small sections of outcrop are separated by large 

distances. Minor shallow drilling within the basin has been confined to its margins, 

leaving its internal stratigraphy unknown. The basin is accessible by a network of forest 

service roads, an abandoned railway, and by traversing small streams where the majority 

of exposure is. 

The Carboniferous strata within the Deer Lake Basin have been of economic 

interest since the discovery of coal in 1838 (Hayes, 1949). Howley’s (1879-1909) coal 
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exploration efforts for the Newfoundland and Labrador Geological Survey (NLGS) 

resulted in trenching and testing the near-surface stratigraphy along the eastern margin of 

the Howley Basin by sinking boreholes (Murray and Howley, 1881, 1918). Hatch (1921), 

for the Reid Newfoundland Company, followed up Howley’s discovery of coal showings 

and intersections by extending a boring operation into the west-central Howley Basin, to 

maximum depths of approximately 150 m. Intermittently, between 1898 and 1920 small-

scale underground coal mining was conducted by the Reid Newfoundland Company and 

the Anglo Newfoundland Development Corporation within the Howley Basin (Hayes, 

1949). 

  Bitumen seeps have been recognized and exploited by early residents of the area 

(Hyde et al., 1994).   Langdon (1993) reported on the bitumen seeps primarily occurring 

at unconformable boundaries between Carboniferous and pre-Carboniferous rocks, both 

west and east of the Tournaisian ridges. Hatch (1919) produced geological maps of the 

Deer Lake Basin, outlining the shale series, and sampled and tested their volatiles and oil 

yields. His results showed that the greatest yields came from shales exposed on the 

southern shoreline of Grand Lake, near Glover Island (Figure 1.1). These outcrops have 

since been flooded by the construction of a dam on Grand Lake. Between 1917 and 1919, 

one of three wells drilled in the Humber Basin (maximum depth 231 m) encountered 

over-pressurized gas (Landell-Mills, 1954). Another two of four wells (maximum depth 

848 m), drilled in 1955-1956 by Claybar Uranium and Oil Ltd. and Newkirk Mining 

Company in the Humber Basin, encounted gas (Langdon, 1993). In 2000, Deer Lake Oil 

and Gas Ltd. drilled three oil exploration wells in the Humber Basin (one reaching a 
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depth of 1879 m), with minor gas showings (Mukapahydhay, 2009, quoted from Burden 

et al., 2014). 

Extensive uranium exploration in the Deer Lake Basin in the late 1970s by 

Northgate Exploration Ltd., Shell Resources Ltd., and Westfield Minerals, resulted in 150 

shallow drill holes (Deveraux et al., 2009), primarily on prospects in the Humber Basin. 

Of this exploration effort, only 5 holes were collared in the western margin of the Howley 

Basin reaching a maximum depth of 77 m (O’Sullivan, 1979a, b, c). Throughout the 

2000s a very focused uranium exploration in the northeast Humber Basin by a joint 

venture between Altius Resources Inc. and JNR Resources Inc., resulted 78 high-density 

very shallow drill holes, as well as geochemical surveying and airborne magnetic and 

radiometric (Deveraux et al., 2009). Spruce Ridge Resources Ltd., over the same period, 

also conducted geochemical and airborne magnetic and radiometric surveys in the 

northwest Humber Basin (Froude and Metsaranta, 2009).  

Palynological, thermal maturation, and Rock-Eval studies of outcrop and core 

samples show lacustrine rocks of Tournaisian age are over-mature, and lie in the dry gas 

zone, whereas Viséan lacustrine oil shales are marginally mature to under-mature, with an 

oil window depth of 2-3 km (Barss, 1981, Macauley 1984: Hyde et al., 1988; Kalkreuth 

and Macauley 1989; Hamblin et al., 1997). Langdon (1993) showed that Viséan to 

Westphalian arkosic sandstones have good effective porosity and are prospective 

reservoirs. Langdon and Abrajano (1994) performed geochemical studies on bitumen 

found in core of Westphalian sandstones in the Howley Basin and concluded it had 

migrated from Viséan lacustrine oil shales. 
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Baird (1960) produced geological maps of the region for the Geological Survey of 

Canada (GSC). Popper (1970) determined that structures he observed in the Fisher Hills 

were of dextral strike-slip origins. Hyde (1982), completed the most extensive field 

mapping project of the Carboniferous rocks in the Deer Lake Basin to date, and his 

stratigraphic and sedimentology reports are the most comprehensive available (e.g., Hyde 

1978, 1979, 1984, 1989, 1995; Hyde et al., 1988). 

Weaver’s (1967) regional gravity survey, and Miller and Wright’s (1984) focused 

gravity survey over the Deer Lake Basin both showed a large negative gravity anomaly 

over the Howley Basin. Weaver (1967) suggested the Howley Basin was 5 km deep, and 

Miller and Wright proposed that it was 1.5 km deep. Wiseman, in Langdon (1993), 

modeled the Howley Basin to potentially reach a maximum depth of 4 km. Most of the 

few seismic surveys have been limited to the Humber Basin. An experimental refraction 

survey is reported by Miller and Wright (1984). Wright et al., 1996 interpreted a 12 km 

long seismic reflection line to show that Viséan units reached a depth of 2.5 km and were 

cut by normal and reverse faults. A recently acquired seismic survey traversed the eastern 

Howley Basin and its eastern bounding fault, and has been interpreted to show strongly 

deformed Viséan and Westphalian formations reaching a depth of 1.5 km (Vasquez, 

2017). 

Despite the Howley Basin’s large low gravity anomaly (Weaver 1967; Miller and 

Wright, 1984) presumably associated with a deep sedimentary pile and greater burial 

depths, potentially being underlain by lacustrine source rocks (Hamblin et al., 1997) and 

known good reservoir sandstones (Langdon, 1993), with migrated bitumen intersected in 
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core (Langdon and Abrajano, 1994; Hamblin et al., 1997), it has received no hydrocarbon 

exploration. A lack of exposed bedrock outcrops, limited shallow drilling, and basin-wide 

seismic reflection surveys, leaves internal stratigraphy, structures, and development of the 

Howley Basin unknown. 

This study is a multidisciplinary approach combining structural geology and 

potential-field geophysics to evaluate the deformational history, depth, and internal 

stratigraphy of the Howley Basin with a focus on the potential for the basin to produce, 

migrate, and trap hydrocarbons. Detailed structural field mapping of known exposures 

and suspect areas of new outcrops was completed to analyze the structural styles and 

relationships of stratigraphic units within the basin. Acquisition and processing of a new 

high-density gravity survey was combined with pre-existing datasets and publicly 

available high-resolution aeromagnetic surveys to assist with delineating structural trends 

and build a 2½ D geophysical forward model of the Howley Basin. 
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Chapter 2: Geological and Geophysical Background 

2.1 Regional Geology and Tectonics 

The geology of the island of Newfoundland can be separated into lithotectonic 

elements consisting of Early Paleozoic ribbon-shaped microcontinents and 

suprasubduction-zone oceanic terranes (Figure 2.1) that were accreted onto the eastern 

Laurentian margin in successive orogenic cycles in the Early to Late Paleozoic closure of 

the Iapetus Ocean. These microcontinents evolved, some as composite terranes, on either 

side of Iapetus Ocean, outboard of the Laurentian (Dashwoods- basement to obducted 

oceanic tracts and Notre Dame arc) or Gondwanan (Ganderia, and Avalonia) continental 

masses (Figure 2.1), prior to docking with Laurentia. Accretion of the continental 

lithosphere of these microcontinents produced the most profound orogenesis in the 

Newfoundland Appalachian orogeny (van Staal and Barr, 2012). 

 Going from present day west to east, and in order of time, the accretion of 

Dashwoods is attributed to the most significant phase of the Early-Middle Ordovician 

Taconic orogenic cycle, Ganderia to the Silurian Salinic orogeny, and Avalonia to the 

Early Devonian Acadian orogeny. Newfoundland was positioned in the hinterland of, and 

was largely unaffected by, the subsequent accretion of the peri-Gondwana Meguma 

microcontinent (Middle Devonian to Late Carboniferous Neoacadian orogeny), and the 

terminal collision between composite Laurentia and Gondwana (Carboniferous-Permian 

Alleghanian orogeny), which were major mountain building events further south in the 

Appalachian mountain belt (see van Staal and Barr, 2012, and references therein).  



9 

 

However, in Newfoundland, pre-existing weak tectonic lineaments were reactivated as 

dextral strike-slip faults during these later orogenies (Waldron et al., 2015).  

 The tectonstratigraphic zones proposed by Williams (1979), and subzones 

(Williams et al., 1988; Williams, 1995; Figure 2.2), have recently been refined with the 

aid of deep crustal imaging of the LITHOPROBE East project (e.g., Quinlan et al., 1992; 

Waldron and Stockmal, 1994; Waldron et al., 1998; Hall et al., 1998; van der Velden et 

al., 2004), which suggests that some zones are rootles allochthons that cannot be extended 
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to depth. Instead, van Staal and Barr (2012) propose lithotectonic elements compose the 

building blocks of the geology of Newfoundland. However, the tectonstratigraphic zones 

of Williams (1988) hold true as a good first-order subdivision of rocks at the surface. A 

comparison of the two terminologies used to subdivide the geology of Newfoundland 

follows. 

The Humber zone (Williams, 1979) or Humber margin (van Staal and Barr, 2012), 

is a Cambro-Ordovician passive margin built on the eastern edge (present coordinates) of 

Laurentia. The Notre Dame subzone (Williams et al., 1988) is now described as several 

peri-Laurentia suprasubduction-zone oceanic tracts obducted onto the Dashwoods 

microcontinent (van Staal and Barr, 2012) with an additional three phases of overprinting 

magmatic activity (the Notre Dame arc). The Exploits subzone (Williams et al., 1988) has 

been divided into the peri-Gondwana Victoria arc and Tetagouche-Exploits back arc 

basins. The Gander and Avalon zones are redefined as accreted composite peri-

Gondwanan microcontinents, Ganderia and Avalonia, respectively (Williams et al., 1988; 

van Staal and Barr, 2012; Figures 2.1 and 2.2). These tectonostratigraphic zones or 

lithotectonic elements are separated by predominately northeast-trending throughgoing 

sutures, which are marked by ductile and/or brittle fault zones that were reactivated in 

subsequent orogenic events. Post-tectonic igneous activity or sedimentation have 

indiscriminately intruded or overlapped the sutures zones (Figure 2.2). 

 This dissertation is concerned with the formation and geometry of the Howley 

Basin, which is situated along the suture zone between the Humber zone and Notre Dame 

subzone. The BBL, a narrow structural zone characterized by discontinuous ophiolite 
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complexes, separates the Humber and Notre Dame subzones (Williams and St. Julien, 

1982; Figure 2.2). The BBL was developed during the Taconic orogeny but has had a 

long-lived polyorogenic displacement history lasting possibly into the Permian (Waldron 

et al., 2015). Following Brem (2003), the term Cabot Fault System (CFS) will be reserved 

for brittle Carboniferous movements, which have reactivated and crosscut the BBL in 

Newfoundland (Figure 2.2).  

The following sections are a brief overview of the Lower to Middle Paleozoic 

development of the geology of western Newfoundland and Upper Paleozoic geology in 

Atlantic Canada. These sections are particularly relevant to this study because the 

Humber zone, and potentially the Notre Dame subzone, form the basement to the Howley 

Basin, and several lines of evidence suggest a cogenetic evolution for a series of Upper 

Paleozoic basins in Atlantic Canada. 

2.1.1 Development of Lower to Middle Paleozoic Geology in Western 

Newfoundland 

Humber Margin 

The Humber margin records the generation and closure of the Cambro-Ordovician 

Taconic Seaway (Zagorevski and van Staal, 2011; van Staal and Barr, 2012). Following 

Neoproterozoic rifting of Rodinia, a passive margin developed on Mesoproterozoic 

Grenvillian basement along the eastern edge of Laurentia (present coordinates). Early 

Ordovician tectonic loading of the then advancing composite Dashwoods microcontinent 

created a westward migrating peripheral bulge followed by a foreland basin (Knight, 
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1991). Middle Ordovician docking of the Dashwoods block produced westward trusting 

of siliciclastic slope and rise rocks over platform carbonates as imbricated thin-skinned 

duplexes, the uppermost of which carried ophiolites of the Bay of Islands Complex 

(Cawood and Shur, 1992).  The Silurian Salinic orogeny further imbricated the duplexes 

with westward displacement and exposed metamorphosed and deformed platform rocks 

in the eastern Humber margin (Cawood et al., 1994). Acadian deformation in the Early 

Devonian resulted in thick-skinned westward thrusting at the orogenic front (Cawood and 

Williams, 1988; Waldron and Stockmal, 1991, 1994).  

Dashwoods Microcontinent 

 The Notre Dame subzone of Williams et al. (1988) is a composite terrane of Early 

Paleozoic obducted oceanic tracts (Lushs Bight, Baie Verte) and pulses of arc and non-arc 

magmatism (Notre Dame arc; Whalen et al., 2006; van Staal et al., 2007; Figure 2.3). The 

Dashwoods microcontinent, of Mesoproterozoic Grenvillian crust, is inferred from 

isotopic data and zircon inheritance of Ordovician arc plutons and volcanics to underlie 

all of these terranes (van Staal et al., 2007).  

A Lower Cambrian transgressive sequence in the Humber margin is regarded as a 

rift-drift transition that is thought to represent rifting of part of the St. Lawrence 

promontory to create the ribbon-shaped Dashwood microcontinent (Waldron and van 

Staal, 2001). It is postulated that this was facilitated by an inboard ridge jump of the main 

Iapetus tract (van Staal et al., 2007), creating a narrow spreading seaway, the Taconic 

Seaway (Zagorevski and van Staal, 2011; van Staal and Barr, 2012; Figure 2.1), rifting  
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Dashwoods from Laurentia. Paleomagnetic data and fossil evidence show that 

Dashwoods never traveled very far from the Laurentian margin. Following rifting, a 

complex series of subduction-related processes between the Late Cambrian to Middle 

Ordovician led to the accretion of suprasubduction zone oceanic tracts and associated arc 

rocks and cover sequences onto the Dashwoods microcontinent. This was accompanied 

by two pulses of arc magmatism. All Ordovician igneous activity is bounded to the west 

by the BBL, and to the east by the Red Indian Line (Figure 2.3). A final episode of non-

arc magmatism in the Early Silurian indiscriminately intrudes and overlaps tectonic 

boundaries (see van Staal et al., 2007; van Staal and Barr, 2012 and references therein for 

further details on the development of the Notre Dame arc; Figure 2.3).     

2.1.2 Overview of Upper Paleozoic Geology in Atlantic Canada 

Upper Paleozoic sediments are widespread throughout the Maritime Provinces of 

Atlantic Canada, both onshore and offshore, unconformably overlying all of the terranes 

assembled during the Neoacadian and earlier (Gibling et al., 2008; Figure 2.2 B). These 

sediments are preserved in series of variably connected or isolated depocenters (basins in 

their own right), collectively known as the Maritimes Basin (Roliff, 1962; Williams, 

1974; Bradley, 1982). The greatest accumulation of sediments in the Maritimes Basin, up 

to 12 km deep (Sanford and Grant, 1990), occurs along a relatively narrow, northeast-

trending, fault-bounded and fault-dominated, central region (Figure 2.2 B). Flanking the 

thick, highly deformed central region, are relatively thin, and mildly deformed platformal 

areas (van de Poll et al., 1995; Figure 2.2 B).  
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Although presently isolated, the Deer Lake Basin lies along strike of the 

northeast-trending principal deformation zone (PDZ), the CFS, and is considered a 

constituent of the Maritimes Basin (Hyde, 1988; Langdon, 1996; Figure 2.2). The 

existence of common stratigraphic elements within the “subbasins” of the broader 

Maritimes Basin (Figure 2.4), suggests basin-wide events controlled subsidence and 

deformation throughout their evolution. Tectono-stratigraphic sequence stratigraphic 

interpretations of industry and academic seismic surveys in the Gulf of St. Lawrence have 

greatly improved understanding of the interplay and timing of faulting and subsidence 

within the Cabot Fault region (e.g., Langdon and Hall, 1994; Langdon, 1996, and many 

others).   

The term ‘Maritimes Basin’ encompasses all post-Acadian sedimentation in the 

Canadian Appalachians, ranging in age from Early- to Mid-Devonian to Early Permian. 

However, because of the diachronous nature of orogenesis in an oblique collision zone 

with promontories and reentrants, post-Acadian deposition in their respective areas may 

be coeval with or even older than Acadian events elsewhere. Early- to Mid-Devonian 

alluvial to lacustrine strata associated with thick volcanic successions and intrusions 

occur in small, poorly exposed, and structurally complex areas in Nova Scotia and 

southern Quebec. Deposition may have been in small fault-bounded basins developed 

along reactivated Acadian tectonic lineaments, but limited exposure and lateral extent has 

precluded definitive models for this period of basin formation (see Gibling et al., 2008). 

By the Late Devonian and into the Early Mississippian, deposition of thick 

alluvial to lacustrine sediments (Horton Group and equivalents; Figure 2.4) into linear, 
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northeast- and east-trending, fault-bounded basins was widespread across the Maritimes 

Basin. Thick, dark oil shales across the region, with a common Tournaisian age, indicate 

subsidence was extremely rapid and outpaced sediment supply (Gibling et al., 2008). 

Topmost Anguille strata in the Bay St. George Basin and Horton strata in the Gulf of St. 

Lawrence overstep bounding faults and onlap basement, suggesting that a period of 

thermal subsidence followed initial rifting (Hall et al., 1992; Durling and Marillier, 1993; 

Gibling et al., 2008). Seismic profiles over Horton basins show several kilometers of 

strata, typically in half-grabens, with basin-bounding faults linked to Acadian thrusts in 

extension (Marillier et al., 1989; Gibling et al., 2008). Waldron et al. (2015) propose that 

there was substantial dextral displacement along regional northeast-trending faults during 

this time period, and Anderson et al. (2000) showed that the Ming’s Bight Group, within 

the BBL/CFS on the Baie Verte Peninsula in northern Newfoundland, was exhumed in a 

dextral transtensional regime in the Middle to Late Devonian.  These conclusions suggest 

that dextral lateral motion along releasing bends or offsets in pre-existing weak northeast-

trending tectonic lineaments may have contributed to localized subsidence during the 

Late Devonian (e.g., Langdon and Hall, 1994; Langdon, 1996).  

Inversion and a sedimentary hiatus succeeded Horton Group deposition followed 

by a change in sedimentation throughout the Viséan (Figure 2.4). The Mid-Viséan basal 

Windsor Group (in part Deer Lake Group equivalent) and Horton Group contact is an 

angular unconformity at numerous localities across the region and marks the change to an 

open-marine sequence of laminated bituminous limestone and shale deposited in a 

relatively deep reducing environment. Thick sulfate and chloride evaporite conformably 
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overlie basal Windsor units, indicating that subsequently much of the basin experienced 

restriction of oceanic connection in an arid environment. The Windsor Group occupies a 

large area and is seen to overstep basin boundaries and onlap basement, implying a near-

simultaneous marine inundation into a region below sea-level (Schenk et al., 1994; 

Gibling et al., 2008). Accommodation space for Windsor Group has been attributed to 

thermal subsidence (Pascucci et al., 2000), however, locally thickened strata and coarse 

conglomerates within fault-bounded basins implies tectonic activity during Windsor 

Group deposition (Waldron and Rygel, 2005; Gibling et al., 2008). 

The Upper Viséan to Lower Namurian Mabou Group rocks conformably overlie 

Windsor Group strata (Figure 2.4) and are up to 1 km thick. The Mabou Group marks the 

change to non-marine deposition, transitioning from gray shallow lacustrine facies to red 

playa and floodplain deposits. A wide distribution of the Mabou Group and onlapping 

stratigraphic relationships with pre-Carboniferous sediments suggests that thermal 

subsidence controlled deposition, however, local conglomerates within the group have 

been interpreted to imply tectonic activity during this period (Knight, 1982; St. Peter, 

1993).  

The Mabou Group is capped by a regional unconformity that cuts down into older 

units at numerous locations (Langdon and Hall, 1994; Langdon, 1996; Pascucci et al., 

2000; Figure 2.4). An angular discordance and sedimentary hiatus implies that it 

represents a long-standing subaerial erosional surface. Gondwanan glaciation has been 

proposed for lowering of base-level at this time (Gibling et al., 2008); however, most 
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authors attribute regional exhumation to tectonism related to the onset of the Alleghenian 

orogeny (e.g., Langdon and Hall, 1994; Langdon, 1996). 

By the Early Pennsylvanian, basal Cumberland Group (Figure 2.4) were being 

deposited into rapidly subsiding active extensional basins along major fault zones (Cabot, 

Hallow, and Cobiquid-Chedabucto Fault Zones), throughout the Maritimes Basin. 

Alternating and coeval braided-fluvial, lacustrine and floodplain deposits with abrupt 

changes in paleoflow directions, stratal thickening, synsedimentary deformation 

structures (Waldron, 2004), and exposed syndepositional faults (Plint, 1985), all point to 

pronounced intermittent tectonism during this period of deposition (Gibling et al., 2008). 

Transpressional and transtensional structures developed over this period attest that the 

Alleghanian compression in the southern U.S. Appalachians manifested as predominately 

dextral strike-slip in character over the Maritimes Basin.  

The Upper Cumberland Group and Pictou Group (Figure 2.4) reflect a period of 

regional thermal subsidence following the tectonism of Early Pennsylvanian. A single 

basin, fed by a large river system with headwaters in the Appalachian Mountains to the 

southwest, is envisioned to cover much of the Atlantic Provinces during this time. 

Subsidence was slow and changes in facies are coincident with Milankovitch cycles 

(Gibling et al., 2004). 

Transpressional deformation affecting Permian strata has been observed in several 

basins (Pascucci et al., 2000; Gibling et al., 2002; Waldron, 2004), indicating that tectonic 

activity had resumed in the Maritimes Basin. 
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Shortly after the assembly of Pangea, rifting along the Gondwanan, and the then 

composite Laurentian suture zone, led to the opening of the Atlantic Ocean in the 

Mesozoic. Pre-existing east-west-trending faults were reactivated as sinistral trantensional 

structures (Waldron et al., 2015), and regional exhumation and erosion removed 

considerable thicknesses of Permian to Carboniferous cover (Ryan and Zentilli, 1993). 

2.2 Geology of the Deer Lake Basin 

The Deer Lake Basin is an elongated, northeast-trending, distensive depocenter 

paralleling the CFS in west-central Newfoundland. Within the basin, the CFS is 

represented by a series of parallel or sub-parallel steep north-northeast trending faults 

(Map A). Intermittent dextral strike-slip displacement along the CFS throughout the 

Carboniferous is thought to be the predominant mechanism for subsidence and 

subsequent inversion of the basin, creating a tectonically active intermontane valley into 

which detritus from nearby pre-Carboniferous highlands were deposited. Post-tectonic 

thermal subsidence, changes in paleoclimate, and an evolving dynamic drainage system 

may have influenced depositional environments throughout the basin’s history (Hyde, 

1995; Hyde et al., 1988; Langdon, 1996).  

Three gross intervals of sedimentation are preserved in the Deer Lake Basin. They 

are represented by the Tournaisian Anguille Group, the Viséan Deer Lake Group, and the 

Westphalian Howley Formation (Figure 2.5; Hyde, 1995). Faults, unconformities, varying 

degrees of deformation, and palynological breaks separate and define these units. 

Deposition is postulated to have continued into the Permian, but exhumation and erosion 
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have since removed 1-2 km of strata, possibly including Permian cover (Hamblin et al., 

1997). All of the sediments preserved in the Deer Lake Basin are non-marine, indicating 

the basin was topographically high enough or was isolated from regional Viséan marine 

transgression by surrounding topography (Hyde, 1984). Geophysical studies (Haworth et 

al., 1976) and stratigraphical considerations (Hamblin et al., 1995) indicate that the valley 

basin was open to the northeast into White Bay during the Tournaisian (Anguille 

deposition), as far as Conche on the Great Northern Peninsula of Newfoundland (Figure 

2.2). In Carboniferous units near Deer Lake, clasts which are clearly derived from the 

south, imply that topography separated the Deer Lake Basin from the Bay St. George 

Basin for most of its depositional history. And the basal North Brook Formation of the 

Deer Lake Group, with an inferred lower Viséan age, contain clasts derived from adjacent 

surrounding highlands with paleoflow indicators that suggest at this time the basin was 

fed from all directions (Hyde et al., 1994).  

Carboniferous strata in the basin are in fault contact with Ordovician to Silurian 

igneous terranes of the Notre Dame arc along its length to the east, and unconformably 

onlap Cambro-Ordovician platform carbonates and Precambrian Grenville basement to 

the west (Hyde, 1982; Map A). Thus, the inferred suture zone between the Humber 

margin and the Notre Dame arc, the BBL, is buried somewhere underneath the Deer Lake 

Basin. 

A stark contrast in the structure of Carboniferous units is evident throughout the 

basin. Tournaisian units are highly indurated, tightly folded, frequently internally faulted, 

and occupy two elongated, northeast-trending disjunct end-on ridges that form a central 



24 

 

spine to the basin, separating the topographically low Humber Basin to the west and the 

Howley Basin to the east (Map A). On the other hand, the younger strata in the basin 

(Deer Lake Group and Howley Formation) underlie the topographically low regions to 

the east and west, and are generally gently folded and less consolidated. Deformation of 

the Deer Lake Group increases with proximity to faults (Hyde, 1982). The contact 

between Tournaisian strata and the Deer Lake Group is typically faulted, but an angular 

unconformity has been inferred in the Fisher Hills Block (Hyde, 1982, 1989; Figure 2.5). 

2.2.1 Anguille Group 

The Anguille Group is considered the initial basin fill and the first fining-upward 

megasequence in the Deer Lake Basin (Hyde, 1984, 1988). Palynological evidence and 

the remains of paleoniscoid fish suggest a Tournaisian age, but basal units are undated 

and may be as old as Famennian (Hyde, 1995). The Group has been subdivided into the 

Gold Cove, Saltwater Cove, Cape Rouge, Blue Gulch Brook, Forty-Five Brook, and 

Thirty-Five Brook Formations (Hyde, 1982, 1984; 1995; Map A; Figure 2.5).  

Lithologies of the Anguille Group consist of basal alluvial to fluvial 

conglomerates and sandstones of varying composition – reflecting proximal sources – in 

the south, and dolostones in the north. These units grade upwards and are interbedded 

with dark grey mudstones and grey micaceous sandstones. Higher up in the stratigraphy, 

pebble to cobble conglomerates are interbedded with dolomitic and micaceous 

sandstones. Finer-grained calcareous sands and silts with black mudstone are regarded as 

coeval distal deposits. Coarse-grained sandstone and pebble to coble conglomerates cap 
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the succession in the south (Hyde, 1984, 1995). An aggregate thickness for the Anguille 

Group is probably up to 3000 m (Hyde, 1995). 

The lithostratigraphy of the Anguille Group has been interpreted to represent the 

deepening and filling of a narrow lake(s). Alluvial fans formed prograding deltas as the 

lake(s) deepened with distal turbidites interfingering with deep water lacustrine facies 

(Hyde, 1984, 1995). An absence of bioturbation, the preservation of organic matter, and 

the presence of sulfides indicate anoxic bottom conditions within the Anguille lake(s) 

(Popper, 1970; Hyde et al., 1994); thus, shale rich horizons within the Anguille Group are 

an attractive hydrocarbon source rocks (Langdon, 1993). 

2.2.2 Wigwam Brook and Wetstone Point Formations 

The Wigwam Brook and Wetstone Point Formations are both only observed in 

fault contact with other lithologies, except where the Wigwam Brook Formation 

nonconformably overlies pre-Carboniferous plutonic rocks in northwestern Birchy Ridge 

(Smyth and Schillereff, 1982; Hyde, 1982; Map A; Figure 2.5). The Wigwam Brook and 

Wetstone Point Formations both are characterized by conglomerates, sandstones, 

intercalated with silt- to- mudstones and thin carbonate beds, reflecting fluvial 

environments (Hyde, 1995). Both units have been placed stratigraphically between the 

Anguille Group and Deer Lake Group and are considered time equivalents (Hyde, 1995; 

Figure 2.5). A well-preserved Late Tournaisian spore assemblage in the Wetstone Point 

Formation, and sandstone clasts within the Wigwam Brook Formation that are 
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petrographically similar to Anguille Group sandstone, point to a post-Anguille deposition 

for both formations (Hyde, 1995).   

2.2.3 Deer Lake Group 

The Deer Lake Group is widespread in the Deer Lake Basin, occupying the 

topographically low regions flanking east and west of the ridges underlain by Tournaisian 

strata, from north Glover Island, Grand Lake, in the southeast (Figure 1.1), to the lower 

reaches of Taylor’s Brook in the northwest (Map A). Based on stratigraphic relationships 

and microspore analysis the group has been subdivided into the North Brook Formation, 

Rocky Brook Formation, Humber Falls Formation, and The Little Pond Brook Formation 

(Hyde, 1982, 1985; Figure 2.5). These units represent a second fining upward 

megasequence representing the development and filling of an intermontane lake (Hyde, 

1988).    

North Brook Formation 

The North Brook Formation is the most extensive formation, and forms the basal 

member of the Deer Lake Group (Hyde, 1982, 1989; Map A; Figure 2.5). In the lower 

part of the formation, massive, thick beds of poorly sorted, pebble to boulder 

conglomerates are intercalated with coarse arkosic sandstones, interpreted as reflecting 

paleo-debris flow and alluvial fan settings. These coarse sediments mark the present-day 

basin margins. This, together with matching clast lithologies to proximal sources, 

suggests that that present-day basin margins closely represent basin margins during 

deposition. Coarse lithologies grade upward and basin-inward into finer, red, calcareous 
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sandstones and mudstones, representing deposition on distal meandering fluvial channels. 

Rare stromatolitic limestone beds are considered to have been deposited as inorganic 

precipitates in discrete ponds that formed on alluvial fan and basin floor surfaces (Hyde, 

1989).  A single occurrence of amygdaloidal basalt is underlain and overlain by North 

Brook Formation, just east of Deer Lake (Hyde, 1984, 1989, 1995). 

Abundant schists, phyllite and quartzite clasts observed in North Brook 

conglomerates to the south are correlated with Fleur-de-Lys rocks (metamorphosed rift 

sediments of the Humber margin; Map A; Hibbard et al., 1980) that outcrop further to the 

south, implying that a topographical high separated the Bay St. George and Deer Lake 

Basins at the time of North Brook deposition (Hyde, 1984, 1989, 1995). Paleoflow 

indicators show that during North Brook deposition detritus arrived from all directions, 

filling the basin center (Hyde et al., 1994). The North Brook Formation has not been 

dated paleontologically; however, an intertonguing stratigraphic contact with the 

overlying Rocky Brook Formation, of Viséan age, favors a similar age for the youngest 

North Brook beds (Hyde, 1989).  

Rocky Brook Formation 

Lithologies of the Rocky Brook Formation consist of interbedded gray, green and 

red siltstone and mudstone, red fine-grained sandstone, oӧlitic and stromatolitc 

dolostones, and dark brown oil shales (Hyde, 1984; Hamblin et al., 1997). Hyde (1982, 

1984; 1995) subdivided the Rocky Brook Formation into two members: the lower 

Spillway Member, and the upper Squires Park Member (Map A). Stratigraphic 
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arrangement of the above lithologies is interpreted to reflect the inception, deepening and 

filling of a paleolake(s) above the North Brook Formation (Spillway Member), followed 

by another phase of subsidence and filling (Squires Park Member; Hamblin et al., 1997). 

In both members, periods of basin subsidence and deepening of the lake led to deposition 

of organic-rich shales in anoxic conditions. These beds are excellent hydrocarbon source 

rocks (Hamblin et al., 1997).  

The Rocky Brook Formation is interpreted to overlie and partly be a distal 

equivalent to North Brook Formation (Hyde, 1995). It is dated palynologically to be 

confined to the Late Viséan (Hamblin et al., 1997), providing a time constraint for North 

Brook deposition. A lack of marine fossils, paleoniscoid fish remains, and the presence of 

analcime in most lithologies, indicate a lacustrine depositional environment for Rocky 

Brook Formation (Gall and Hyde, 1989; Hyde, 1995). Rocky Brook Formation is present 

in both the east and west basins, flanking the Tournaisian ridges, but only the Spillway 

Member has been recognized in the east (Hyde, 1982). Stratigraphic thickness of Rocky 

Brook Formation vary significantly throughout the basin (Wright et al., 1996), but reach 

upwards of 1000 m on Glover Island (Hyde, 1995; Figure1.1). 

Humber Falls Formation 

The Humber Falls Formation is the upper unit of the Deer Lake Group in the 

Humber Basin. It is characterized by red, grey and pink arkosic, cross-stratified, 

sandstone interbedded with grey pebble to cobble conglomerates, and minor red siltstone, 

in thick fining-upward sequences (Hyde, 1984). The Humber Falls Formation is 
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interpreted as braided fluvial to alluvial fan deposits that prograded over Rocky Brook 

lacustrine units as subsidence decreased and sediment input overwhelmed the lake 

(Hamblin et al., 1997). In the western Humber Basin, basal conglomerates overlie 

mudstones assigned to the Rocky Brook Formation in a sharp contact that has been 

regarded as a potential disconformity (Hyde, 1984, 1995). However, spore assemblages 

reported by Barss (1980) give a Viséan age, similar to underlying Rocky Brook, 

signifying a rapid facies change (Hyde, 1995). Abundant planar and trough cross-

stratification, together with clast lithologies, and a decrease in grain size towards the 

southwest, indicate a southwesterly dipping paleoslope, with a source to the northeast 

(Hyde, 1984, 1995). The Humber Falls Formation reaches a maximum thickness of 250 m 

in the Humber Basin (Hyde, 1995). 

Little Pond Brook Formation 

The Little Pond Brook Formation is exposed only east of the Fisher Hills 

structural block, where it outcrops along the eastern and western shores of Grand Lake, 

north of Glover Island (Hyde, 1982; Map A). Lithologies consist of sandstones, 

mudstones, and conglomerates that have a gradational contact with the underlying Rocky 

Brook Formation (Hyde, 1982, 1984; Map A). Previous workers mapped the Little Pond 

Brook Formation as the Howley Formation (e.g., Belt, 1969; Hyde and Ware, 1981); 

however, a Viséan-Namurian spore assemblage (Barss, 1981), led Hyde (1982) to map 

these units as Little Pond Brook Formation. Similar lithologies and time of deposition 

suggests that the Little Pond Brook Formation is the eastern equivalent of the Humber 

Falls Formation. As such, a similar depositional environment is interpreted (Hyde, 1995). 
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Paleoflow indicators in fluvial facies and clasts lithologies point to a western paleoslope. 

The Little Pond Brook Formation is at least 750 m thick (Hyde, 1995). 

2.2.4 Howley Formation  

The Howley Formation is the youngest preserved stratigraphic unit within the 

Deer Lake Basin, with a spore assemblage dated as Westphalian A (Barss, 1981; Hyde, 

1995). Thus, a significant time gap separated the Howley Formation from the Humber 

Falls and Little Pond Brook Formations, and a sedimentary hiatus has been suggested to 

span most of the Namurian in the Deer Lake Basin (Langdon and Hall, 1994; Figure 2.5). 

Exposure of the Howley Formation is very sparse and is limited to the western and 

eastern margins of the northeastern depocenter, the Howley Basin. The Howley 

Formation is inferred to underlie the center of the basin, but exposure is absent. Along its 

margins the Howley Formation is inferred to be in fault contact with other Carboniferous 

and pre-Carboniferous rocks (Hyde, 1982; Map A). 

Lithologies of the Howley Formation consist of interbedded gray to red cross-

stratified arkosic sandstone, coarse- to- very coarse-grained brown arkose sandstone, 

pebble to boulder conglomerate, and siltstone. Thin bituminous coal seams are 

interbedded with pyritiferous and carbonaceous sandstones and siltstones. Carbonate and 

ironstone nodules, and coalified wood debris are common (Gall, 1984). Conglomerate 

clasts in the formation indicate highland basement sources to the east and northeast (Gall, 

1984). The formation has been interpreted as dominantly fluvial with coal seams, 

probably forming on a well-vegetated alluvial plain/coal swamp crossed by low to high 
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sinuosity streams (Belt, 1968; Gall, 1984; Hyde, 1984, 1995). Hyde (1984) calculated a 

stratigraphic thickness of 3100 m for a section of Howley Formation along the northeast 

margin, but noted this result was speculative given the lack of exposure and deformed 

nature of the formation. 

2.3 Previous Geophysical Studies and Interpretations 

The structure and depth of the Deer Lake Basin has been investigated with 

geophysical methods from the 1960s to present. Geophysical methods used to investigate 

the structure of the basin are: ground-based gravity surveying, aeromagnetic surveying, 

and seismic refraction and reflection surveys. High-resolution seismic surveys have only 

been collected over and west of Birchy Ridge, to the axis of the Humber Syncline, in the 

Humber Basin (Wright et al., 1996). The LTHOPROBE East transect crossed the 

northern portion of the Fisher Hills block, and continued on the eastern side of Grand 

Lake near Hinds Brook, just south of the Howley Basin (Figure 2.5). This survey was 

designed and processed for deep-crustal imaging, at the expense of near-surface 

resolution (Quinlan et al., 1992).   

The first geophysical investigation that included data collection over the Deer 

Lake Basin was a regional gravity survey covering the island of Newfoundland in the 

1960s by Weaver (1967). Gravity stations were taken at 13 km mean station spacing, with 

four stations in the Howley Basin and approximately 30 over the Carboniferous strata in 

the whole Deer Lake Basin (Miller and Wright, 1984). This dataset showed an anomalous 

gravity high in the northwestern part of the basin, associated with gabbro and/or diorite in 
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the Aides Pond area (Baird, 1960; Map A), and an east-west low over sediments in the 

Howley Basin. Modeling by Weaver (1967) suggested that the gabbro/diorite extends to 

greater than 6 km and, using a density contrast of -0.06 g cm-3 from a Bouguer value of 

2.67 g cm-3, modeled sediments in the Howley Basin to reach 5 km in depth. 

In 1981 and 1982 Miller and Wright (1984) collected 230 gravity stations over the 

Deer Lake Basin and adjacent pre-Carboniferous units with a mean station spacing of 2.5 

km. Elevation data was obtained using barometric altimeters and psychrometers for 

temperature and humidity information, that was reported to be accurate to ± 2 m. 

Positions of gravity stations were located on topographical maps, with an estimated 

uncertainty of ± 50 m. The resulting uncertainty in the gravity measurements were ± 0.5 

mGal (Miller and Wright, 1984). The gravity survey was complimented by an 

aeromagnetic survey database available in the public domain, and augmented with 

industry aeromagnetic and land-based magnetic surveys (see Miller and Wright, 1984 for 

more details). A small (1.5 km in length) preliminary refraction seismic survey was also 

reported on by the same authors. This survey was shot east-west over a western petal of 

the Birchy Ridge flower structure, underlain by North Brook and Humber Falls 

Formation (see Figure 1 of Miller and Wright, 1984).    

Miller and Wright (1984) modeled the gravity and magnetic data on a profile that 

trended northwest-southeast over the Howley and Humber basins, across the southern 

portion of the Birchy Ridge structure and the northern section of the Humber Syncline 

(see Figure 1 of Miller and Wright, 1984). The authors removed a fifth-order polynomial 

trend surface from the Bouguer anomaly map, stating it was the most ‘statistically best-
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fitting.’ The residual gravity anomaly map was modeled in conjunction with the magnetic 

data. After placing a mafic-ultramafic unit up to 7 km depth, correlated with rocks of the 

Long Range Inlier, under the western limb of the Humber Syncline; felsic volcanics up to 

4 km deep under the eastern limb; and felsic (?) volcanics up to 4 km depth under the 

Howley Basin, Miller and Wright (1984) reported a maximum depth of 1.2 km for the 

Humber Basin and 1.5 km for the Howley Basin (see Figure 6 of Miller and Wright, 

1984). It should be noted that Miller and Wright (1984) followed Hyde’s (1982) 

geological interpretation that the Howley Formation rests unconformably on pre-

Carboniferous basement throughout the Howley Basin, and as such, used a homogeneous 

density of 2.37 g cm-3 in their modeling. This may be an oversight; basement geology is 

not constrained, and a fifth-order polynomial would have been influenced by igneous 

bodies present to 7 km depth, also there exists a distinct possibility that the denser Deer 

Lake Group rocks constitute a significant volume of sediments within the Howley Basin.  

The seismic refraction data was interpreted to show the Deer Lake Group reaching 

a maximum depth of 250 m, with a westward dip (see Miller and Wright, 1984 for 

processing parameters and survey logistics). This is likely not an accurate estimation for a 

maximum thickness of the Deer Lake Group, as the seismic line was shot over a 

potentially thrust-bounded fault panel underlain by North Brook Formation with expected 

uplifted basement. Furthermore, the western part of the section was surveyed over the 

Humber Falls Formation and its sharp lithological contact with the underlying Rocky 

Brook Formation is suspected to be of high seismic impedance, and produce a refracted 

wave.  
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Wiseman in Langdon (1993) used an ‘improved’ gravity data set and 

aeromagnetics to complete a 2.5-D simultaneous modeling of the Humber and Howley 

basins. Their imaged profiles show models of the Humber Basin, but do not include the 

Howley Basin. Instead the authors stated that ‘revised basin profiles’ indicate that the 

Howley Basin reaches a maximum thickness of 4 km along its eastern margin. It should 

be noted that the following was not reported in the modeling: processing parameters for 

potential-field data; sources of their potential-field data, or how it was improved from 

previous datasets; rock density or magnetic susceptibilities used for modeling; strike 

lengths used in the 2.5-D modeling; or ties to well data. The lack of details in this report 

is a serious flaw and undermines its scientific utility. 

Wright et al. (1996) reported on a 12 km long seismic reflection survey shot over 

the east limb of the Humber Syncline, underlain by Rocky Brook and Humber Falls 

Formations (Map A). This survey was less than 2 km away from the seismic refraction 

survey of Miller and Wright (1984). Wright et al. (1996) interpreted the depth-migrated 

profile to show that the Deer Lake Group reached a maximum depth of over 2.5 km 

towards the center of the syncline (Figure 2.6). A number of high-angle faults are imaged 

in the seismic data, both normal and reverse, cutting Deer Lake Group sediments (Figure 

2.6). Wright et al. (1996) interpreted this fault zone to be an along strike extension of the 

Fisher Hills block, which developed in the Late Devonian to Early Carboniferous, and 

continued throughout the whole Carboniferous period. A comparison between this 

seismic line and that of the LITHOPROBE transect interpreted by Waldron and Stockmal 

(1994), 10 km to the southwest, shows that Rocky Brook strata thicken to the northeast. 
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The LITHOPROBE East onshore Vibroseis, Meelpaeg 3 and 4 profiles, transect 

Carboniferous units of the Deer Lake Basin across the Fisher Hills block and into the 

Notre Dame arc across northern Grand Lake (Map A). The seismic data from this project 

has been processed and interpreted by different authors (Quinlan et al., 1992; Waldron et 

al., 1998; Hall et al., 1998; van der Velden et al., 2004). Seismic acquisition and 

processing for this project was designed for deep crustal imaging, however, Waldron et 

al. (1998) and van der Velden et al. (2004) interpret reflections to represent the interface 

of Carboniferous sediments and basement. Waldron et al. (1998) depicts the Deer Lake 

Basin as shallow to the west, deepening into a half-graben to the east, with subsidence 

focused on a steep east facing normal fault, presumably breaching just east of the Fisher 

Hills block; whereas, van der Velden et al. (2004) shows the Deer Lake Basin to be 

shallow and symmetrical, with the BBL/CFS vertical on the eastern margin along the 

Grand Lake Fault. It should be noted that both of these publications focused on deep 

structure and the architecture of the Deer Lake Basin is only briefly mentioned in text. 

2.4 Proposed Basin Evolution Models 

Two alternative structural models for the development of the Deer Lake Basin 

have been proposed: that of flower structures and lateral basins developed from thermal 

subsidence  (Hyde et al., 1988), based on detailed mapping within the basin and regional 

potential-field geophysics of Miller and Wright (1984); and that of intermittent fault 

controlled subsidence (Langdon, 1996), primarily extrapolated from tectonic 

considerations of regional Carboniferous deposition in the Maritimes Basin and 

geophysical studies therein. Both authors are in agreement that dextral transpressive 
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movement along the Cabot Fault system produced tight folds within the Anguille Group 

with axes and second-order faults oriented obliquely to strikes of through-going steep 

bounding-faults, forming positive flower structures (e.g., Harding, 1985). However, 

timing, duration, and mechanisms of basin development have been debated (Hyde et al., 

1994). 

Hyde et al. (1988) proposed that deposition of the Anguille Group followed rifting 

related to strike-slip faulting in the late Devonian(?) to early Tournaisian. A subsequent 

dextral transpressive movement along the Cabot Fault System in the Tournaisian uplifted 

and deformed the Anguille Group. This interpretation is based on sandstone clasts found 

in the Tournaisian Wigwam Brook Formation that contain the same heavy minerals 

(epidote and garnet) as is observed in sandstones of the Saltwater Cove Formation, 

implying that the Anguille Group was uplifted, at least in part, by the Tournaisian. He 

also interpreted the presence of an angular unconformity of near orthogonal dips between 

the North Brook Formation and Saltwater Cove Formation in the Fisher Hills block. At 

this location a greater stratigraphic thickness than vertical thickness of the North Brook 

Formation is interpreted to reflect offlapping of North Brook strata to have been 

deposited in a small pull-apart basin, and that deposition occurred during uplift of the 

flower structure(s). He also pointed to locally derived schist and quartzite clasts in the 

North Brook Formation to imply uplift to the south before North Brook Formation 

deposition. Hyde et al. (1988) also interpreted onlapping stratigraphical relationship, 

combined with matching clasts in Viséan units to proximal sources on the western 

Humber Basin margin, to indicate no lateral movement since deposition. Viséan Deer 
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Lake Group sediments unconformably overlying pre-Carboniferous basement on the 

western margin of the Humber Basin led Hyde et al. (1988) to ascribe post-Tournaisian 

sedimentation in the Deer Lake Basin to lateral growth by thermal subsidence, combined 

with normal faulting, east and west of the Fisher Hills and Birchy Ridge structural blocks. 

This model predicts that the Deer Lake Group and Howley Formation both 

unconformably overlie pre-Carboniferous basement (i.e., the Deer Lake Group does not 

underlie the Howley Formation in the Howley Basin). 

Alternatively, Langdon (1996) purposed that basin initiation in the Late 

Devonian-Tournaisian was produced by extensional collapse of an over-thickened crust at 

the Acadian mountain front, accompanied by dextral transtension along irregular fault 

traces of the CFS. This produced a distensive east-dipping half-graben into which the 

Anguille Group was deposited. Continued dextral displacement along shifting faults 

geometries in the CFS, caused a pulse of regional transpression and inverted the Anguille 

Group in the Tournaisian. Second-stage expansion of the Deer Lake Basin in the Viséan 

(Deer Lake Group deposition) is described as resulting from the development of cross-

cutting east-west faults with dextral lateral movements, creating right-stepping geometries 

and pull-apart basins. Continued inversion of the Anguille Group is considered by 

Langdon (1996) to have occurred in the Namurian to Westphalian. Under a regional 

transpressive stress field through the Westphalian, active dextral strike-slip fault 

geometries confined subsidence to the Howley Basin, but produced reverse faulting in the 

northwestern Humber Basin. Deposition must have continued into the Permian to account 
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for known burial depths of the Howley Formation, but have since been eroded (see 

Langdon, 1996 for a full description).  
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Chapter 3: Structural Analysis of the Howley Basin  

The internal structure of the Howley Basin is poorly documented and understood. 

This is mainly due to extremely sparse exposure, and a lack of detailed structural analysis, 

seismic reflection geophysics, and deep drilling within the basin. Previous interpretations 

of the evolution of the Humber and Howley Basins have relied primarily on regional 

considerations, while mappable structures within the Howley Basin have largely been 

overlooked (e.g., Hyde et al., 1988; Langdon, 1996; Section 2.4). 

The construction of a dam on Grand Lake at the outflow of Junction Brook in 

1924 (Howley, 2009) flooded the low-lying topography in the central region of the basin, 

creating Sandy Lake. Furthermore, much of the basin is covered by thick glacial till, 

limiting exposures to eroded streambeds along the eastern and western margins of the 

basin. In fact, there are no bedrock outcrops within the central region of the basin. This is 

a very limiting factor when attempting to delineate the structural geometry of the basin.  

The basin has been explored in shallow drilling programs along its margins during 

coal exploration in the 19th century, and uranium and asbestos exploration in the late 

1970s to early 1980s. Drill logs from these historic drilling operations are reported on, but 

provide little insight into the structure of the basin (Appendix A). 

To date there have been no published detailed cross-sections of the structures    

within the Howley Basin: Hyde’s (1979a, b), Hyde’s et al. (1980) and Hyde and Ware’s 

(1981) geological maps documented some macroscopic structures of the basin, but 

Hyde’s regional cross-sections did not contain structural constraints for the overall 
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architecture of the Howley Basin (Hyde, 1982). Popper’s (1970) cross-sections transect 

Anguille Group members through the Fisher Hills region further south, and the cross-

section of Cawood and van Gool (1998) is also located south of the Howley Basin proper. 

LITHOPROBE East transects that cross the basin have been processed for deep crustal 

reflections and have poor resolution of the shallow crustal structure (Quinlan et al., 1992; 

Hall et al., 1998; Waldron et al., 1998; van der Velden et al., 2004). 

The following sections describe the structural analytical methods employed in the 

study, and the mappable structures within the Howley Basin. These structures are 

documented in a series of detailed geological maps, constrained viable vertical cross-

sections, and associated stereoplots for orientations of the various structural elements. In 

the absence of exposure, digital terrain models (DEMs) (Map B) and aeromagnetic data 

(Maps C, D) are of great value in delineating structural features and are presented and 

described throughout this chapter. Derivation of these maps is given in Chapter 4.   

3.1 Methods 

Geological mapping of the Howley Basin was completed over two field seasons, 

from August 14th to 22nd, 2012 and August 29th to September 2nd, 2013. These periods 

were chosen based on low precipitation during the preceding weeks, because most of the 

outcrops within the basin occur low in streambeds. Increased precipitation at the end of 

both field trips made continued work unpractical.  

Mapping of the Deer Lake Basin by the NLGS by Hyde, in the late 1970s and 

early 1980s, is the most extensive and detailed report on the surficial structures of the 
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basin to date. Geological base maps (Hyde, 1979a, 1979b; Hyde et al., 1980; Hyde and 

Ware, 1981), used for his 1:100,000 compilation map of the Deer Lake Basin (Hyde, 

1982), were used to locate known exposures within and east of the Birchy Ridge area. 

These locations were visited and re-examined for stratigraphic and structural features. 

Areas of new development since the early 1980s (i.e., new logging roads, clear cuts, and 

quarries) were explored for new bedrock outcrops. 

Some of the outcrops documented on Hyde’s maps were not found. This is likely 

due to erosion and slumping of surficial material into streams with high/steep banks, 

covering previously exposed sections, or migration of sediments and/or encroaching 

spruce forests or bogs in the less turbulent, flatter-lying streams. In some instances high 

water levels of streams prevented examination of documented riverbed exposures.  

Exploration for coal in the Howley Basin was a priority for the NLGS between the 

years of 1879 to 1909 (Murray and Howley, 1881, 1918), and prospective tracts of land 

within the basin became privately owned, explored, and mined into the 1920s (Hatch, 

1921; Hayes, 1949). These earlier efforts in coal exploration and extraction were the most 

laborious attempts at uncovering the stratigraphy of the Howley Formation, which lies 

under a thick cover of superficial deposits over much of the basin. Results of boreholes, 

trenching, and notes on now flooded exposures recorded during these early workings 

have been integrated into this study because they offer a glimpse into the internal 

structure and stratigraphy of parts of the basin with no current exposure.  
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Data obtained in these early coal explorations is difficult to pinpoint onto current 

maps because most of it is referenced to geographic features in text. To further obscure 

the accuracy of locating the positions referenced to, rising of the water level in the Grand 

Lake-Sandy Lake watershed in 1924 (Howley, 2009) has since changed the extent of the 

water courses in this region. Also, azimuths used to describe geographic features, relative 

distances between locations of interest, and oriented features are implicitly referenced to 

magnetic north. All of the above was taken into consideration when attempting to place 

this data onto the following geological maps and incorporate it into this study.   

Locations of exposures studied during this investigation were recorded with a 

Garmin MAP62® handheld GPS, WAAS (Wide Area Augmentation System) enabled, in 

NAD83 UTM Zone 21N. Previous geological mapping in the Howley Basin was 

completed before the wide use of field-based GPS units, and locations of previous field 

data must have been located by geographic features from topographic maps and air 

photos.  The precise documentation of exposure localities with GPS improves the overall 

dataset for the Howley Basin. A Freiberg geological compass was used to collect 

orientation data, and is presented in dip direction/dip amount notation for planar features 

and plunge-trend notation for linear features. All data were recorded in field notebooks 

and placed into spreadsheets on a personal computer at a later date. 

Geological data collected in this study – and unlocatable, pertinent observations 

made by previous workers – were overlain onto a newly created digital geological map 

for the study area (Map A). This map was created from geological  data (Newfoundland 

and Labrador Geological Survey a, b, c) and topographic data (Natural Resources Canada 
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a) downloaded from the NLGS’s Geo Atlas and Natural Resources Canada’s (NRCan) 

web portals, respectively, and reprojected into NAD 83, UTM Zone 21N. Geological 

units, and locations of contacts and faults, were modified to adhere to field observations 

and geophysical interpretations. Lithological subdivisions (Map A) of pre-Carboniferous 

rocks were created by separating units based on their Generalized Unit Name and their 

Detailed Rock Type, as given in the attributes table associated with the Detailed Geology 

Layer file available from the GSN’s Geo Atlas. This was deemed to be the most useful 

subdivision of geological units for this study because the Generalized Unit Name groups 

rocks of similar affinity and the Detailed Rock Type separates rocks based on their 

overall composition, which can correspond to physical properties of rocks (i.e., magnetic 

susceptibility and density); this is helpful in delineating units with potential-field 

geophysics (Chapters 4, 5). Carboniferous strata subdivisions were kept at the greatest 

detail possible from the same layer file.  

Orientation data for locations on Hyde’s 1:50,000 geological maps (Hyde, 1979a, 

1979b; Hyde et al., 1980; Hyde and Ware, 1981) that were not found during the present 

study were measured from copies of his paper maps with a protractor relative to the UTM 

grid and placed onto digital maps. Locations were determined by referencing to 

geographical features on topography maps of the area. Symbols used to differentiate 

between data collected during this study and those that have been copied from Hyde’s 

maps are given on Map A. 

Detailed geological maps of subareas were created at various scales. These 

subareas are grouped into the Southeastern Margin (Section 3.2), Northeastern Margin 
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(Section 3.3), Northern Margin (Section 3.4), Western Margin (Section 3.5), and Birchy 

Ridge regions (Section 3.6), in order to present all structural geological data collected in 

the surveyed area (Map A). Each detailed geological map is accompanied by a vertical 

cross-section and a lower-hemisphere, equal-area stereographic projection plot of 

orientation data. 

Viable vertical cross-sections were constructed for each of the subareas based on 

considerations of the observed structural styles and orientation patterns. Symbols used in 

the cross-section design are given on Map A.  Cross-section trends were set orthogonal to 

the beta axis of the corresponding strip map (i.e., average calculated fold axis orientation, 

based on bedding orientation data). In some instances, however, homoclinal sections gave 

poorly constrained beta axes, and apparent dips in such sections show values close to true 

dip if cross-section trends were set slightly oblique to their calculated beta axis. Beta axes 

and pi girdles were calculated for areas with sufficient bedding orientation data using 

GEOrient (Holcombe, 2011). For a given cross-section trend, apparent dips of planar 

features were calculated with GEOcalculator (Holcombe, 2013), with locations projected 

orthogonally onto the plane of section. Down-plunge projections of stations with bedding 

orientations were deemed unnecessary for several reasons. The calculated beta axes show 

low plunges, but somewhat variable trends due to a mild degree of non-cylindricity of the 

structures, as well as to the inherent inaccuracies of strikes measured on the irregular 

surfaces of the thick beds. For low plunges of beta axes, the difference in geometry 

between the constructed fold profile and the vertical section is minimal (Ramsay and 

Huber, 1987). Variation in trend of calculated beta axes may lead to inappropriate cross-
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over of the projection lines for adjacent stations. All stations lie at the bottom of stream 

beds which have low topographic elevation gradients; also elevation differences between 

bottom stream bed and top of valley wall are low (<50 m). These aspects have little effect 

on the construction of the vertical sections, and stations are conveniently projected onto 

the elevation gradient of topography in the plane of section.   

Macroscopic folds have been delineated in a number of subareas, in both the 

Eastern and Western Margins of the basin. In all cases, folds are characterized by straight 

limb dip domains with narrow, angular to sub-angular hinge zones. Unfortunately, 

macroscopic hinge zones are not observed in the field – primarily due to the lack of 

exposure – with the exception of some larger mesoscopic folds, located in quarry walls of 

the Anguille Group in the Birchy Ridge area (Map A; Section 3.6). Based on orientation 

data analysis of bedding in macroscopic folds and observations of fold styles of 

mesoscopic folds, folding in the study area is considered to be kink-style in nature; 

polyclinal kink-fold geometries were observed in a few localities. The folds affect well-

bedded siliciclastic successions of relatively competent sandstone strata with relatively 

minor interbeds of shale and siltstone, and in rare localities coal and limestone. Given the 

mechanical constitution of the folded successions and the kink-style of the folds, it is 

reasonable to assume that the folds have class 1B (parallel-style) profile properties, and 

formed by a flexure slip and/or flow mechanism. This mechanism leaves the beds 

internally unstrained, and maintains orthogonal bed thicknesses throughout folded layers 

(Ramsay and Huber, 1987; Marshak and Mitra, 1988). In well-constrained observed and 

constructed fold sections, no evidence for thickening or thinning of beds on opposing fold 
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limbs has been observed, strengthening the argument that folding is accommodated by 

flexure slip or flow.  

In order to maintain orthogonal bed thickness in cross-sections with kink-style 

folding, axial planes must form the bisector plane of the bedding planes on the opposing 

limbs (Marshak and Mitra, 1988). When calculated axial planes for sets of bedding planes 

with large differences in orientation, with a well-constrained fold axis, are projected into 

the plane of section, they produce axial planes with apparent dips that are very close the 

bisectors of the apparent dips of the bedding planes in the section. But, in situations 

where kink axial planes were calculated for sets of bedding planes with only slight 

differences in orientation, the results may produce spurious axial planes that can be very 

different from the bisector of their apparent dips in section; this is primarily due to the 

poorly constrained beta axis of those planes not accurately representing the fold axis (e.g., 

Ramsay and Huber, 1987). In the vertical cross-sections presented in this study, axial 

planes are drawn as the bisectors of the apparent dips of bedding planes because they 

produce more realistic fold geometries, in keeping with maintaining apparent bed 

thicknesses. The cross-sections below show viable geometries, in terms of balanced 

section constructions (Marshak and Mitra, 1988), and are a good first-order 

approximation of fold style within the study area.    

Faulting is common within the Carboniferous strata in the Howley Basin, 

particularly with increased proximity to basin-bounding faults; however, because of the 

lack of exposure, it is likely that many faults are not directly observable in outcrop. Their 

presence and apparent offsets are further obscured by the absence of repeated correlable 
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stratigraphic sequences. Thus, the presence and frequency, as well as orientation and 

movement patterns of faults displacing Carboniferous strata are largely unknown. This 

makes calculating approximate stratigraphic thickness of the Howley Formation 

speculative. On the assumption that displacements on faults within the Howley Formation 

are relatively minor, estimates of stratigraphic thicknesses are reported for subareas with 

homoclinal sections, excluding the documented macroscopic folds. 

3.2 Southeast Margin 

The Southeast Margin of the Howley Basin extends for 11 km along the eastern 

shore of Grand Lake where a narrow, up to 1.5 km wide strip, of Howley Formation is 

exposed to the west of its faulted contact with Silurian mafic and felsic volcanics of the 

Topsails Igneous Complex along the Grand Lake Fault (Map A). Exposures of the Grand 

Lake Fault are limited to outcrops in Alder Brook and Coal Brook (Map A), but only 

strike orientation can be estimated at these locations, based on geomorphic expressions. 

In other areas, closely spaced outcrops of Howley Formation to the west and pre-

Carboniferous igneous rocks to the east, constrain its location. In the absence of exposure, 

the presence of the Grand Lake Fault is marked by a sharp topographic gradient running 

along its length (Map B) and a short wavelength, high amplitude magnetic signature 

present in igneous rocks to the east (Map C). Thus, despite the lack of exposure, the 

location of the Grand Lake Fault is well defined on the Southeastern Margin of the basin, 

and has an overall trend of 220⁰. To the north, the map pattern shows that the Grand Lake 

Fault has a dextral strike separation of 1.25 km along an inferred southeast-northwest 
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trending cross-fault (Map A), north of which the basin widens considerably. Presence of 

the inferred cross fault is well established in physiographic and magnetic expressions 

(Map B and C), and is tightly constrained by a single outcrop of Howley Formation in its 

crook, with pre-Carboniferous igneous rocks exposed nearby in the highlands to the 

northeast and southwest (Hyde and Ware, 1981; Map A).  

The best exposed sections of the Howley Formation anywhere in the basin occur 

along the southeastern margin of the basin, in Alder Brook and Coal Brook (Map A). 

These brooks flow westward off the Notre Dame arc highlands into northeastern Grand 

Lake exposing up to 1.5 km long sections of Howley Formation in deeply eroded 

canyons. Other, isolated, exposures of the Howley Formation along this portion of the 

basin occur in a couple of other streambeds, road berms, and the northeastern shoreline of 

Grand Lake (Map A).  

The most southerly exposure of the Howley Formation occurs along the 

northeastern shore of Grand Lake, south of Hinds Brook (Hyde and Ware, 1981; Map A). 

This location was inspected, and a poorly sorted, sub-rounded, pebble to cobble, 

polymictic conglomerate bed was observed (Figure 3.1), but active erosion along the 

shoreline has caused this outcrop to slump off into large boulders, destroying any 

measurable features. 

Hyde and Ware’s (1981) map shows  that the Howley Formation at this location is 

dipping very steeply to the northwest (335/71), and they interpreted a curved splay of the 

Grand Lake Fault to strike parallel to this bedding orientation, separating it from Silurian 
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felsic volcanics exposed just to the south (Whalen and Currie, 1988; Map A). However, 

in Hyde’s (1982) compilation map this contact is shown as an unconformity. Given the 

steepness of bedding in the Howley Formation here, this unconformity would need to 

have been greatly tilted by post-Westphalian faulting or folding that affected both the 

Silurian volcanics and the Howley Formation. This is an unlikely scenario, and Hyde and 

Ware’s (1981) original interpretation of a faulted contact is favored (Map A).   
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3.2.1 Hind’s Brook 

The most southerly in situ exposure of the Howley Formation occurs along the 

northern road berm just northeast of the Hinds Lake Hydroelectric Generation Station 

(Figures 3.2, 3.3). Here, very coarse to conglomeratic arkosic sandstones with sub-

angular clasts dip steeply and young towards the west, as indicated by fining-upwards 

grading and a sharp contact between a conglomerate and sandstone bed. Bedding shows 

minor variation in strike and dip, and is treated to represent a homoclinal dip domain 

(Figures 3.2, 3.3). Further to the southeast, across the Grand Lake Fault, hematized, 

fractured, amygdaloidal basalt of the Topsails Igneous Complex (Whalen and Currie, 

1988) shows faults dipping steeply to the northwest and moderately to the south. Stepped 

fiber slickenlines on the southerly dipping fault indicate a normal-dextral sense of motion, 

and the northwestery dipping fault shows dip slip grooves (Figures 3.2, 3.3). Further to 

the southeast, strongly fractured and chloritized quartz-porphyritic rhyolite, containing 

thin disjunct quartz ribbons and macroscopic quartz veins dipping moderately steep to the 

east, is exposed. The contact between basalt and rhyolite at Hind’s Brook was not 

observed and its geometry and orientation are speculative (Figures 3.2, 3.3). 

The trend of the cross-section shown in Figures 3.2 and 3.3 is chosen to be 

perpendicular to the mean strike of the bedding in the Howley Formation, and is slightly 

oblique to the trend of the Grand Lake Fault.  

At Hinds Brook, the Grand Lake Fault was not observed directly; however, 

outcrop spacing between the Howley Formation and basalts constrain its surface location 
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to within approximately 50 meters (Figure 3.2). In order to adhere to field observations, 

the location of the fault, as given by the detailed faults layer (Newfound and Labrador 

Geological Survey c), was moved approximately 100 meters to the west. The strike of the 

fault was adjusted slightly, but kept with the trend of the surrounding topographic 

gradient (Map B). The dip of the Grand Lake Fault at this location cannot be determined 

from geological field data, but topography suggests a relatively steep dip. 



54 

 

Approximately three kilometers to the north-northeast from Hinds Brook, a single 

bedding measurement in a small unnamed brook was recorded by Hyde and Ware (1981), 

dipping moderately steep to the southeast (Map A). This exposure was sought after, but 

not discovered during this study. Before the rising of the water level in Grand Lake, 

Howley (1918a) noted coarse, thick-bedded, friable, gray sandstone and fine 

conglomerates, characterized by numerous small, white quartz pebbles, outcrop at the 

mouth of this brook, “dipping S. 10⁰ E. at a high angle of inclination.” Correcting for the 

magnetic declination of the era (~30⁰ W; Natural Resources Canada b) and assuming a 

dip of 60⁰, this bed has been placed on Map A with an orientation of 140/60, just to the 

west of the current location of the mouth of this brook (Map A). This location is 

approximate. Without bathymetry data or a detailed map of this coast before the 

construction of the dam, it is impossible to accurately determine where the mouth of this 

stream used to be. Also, a long period of time has passed since Howley’s (1918a) 

observation and the course of this small brook could have changed dramatically since 

then. Regardless, the moderately to steeply southeast dipping beds in this brook – 

documented by others – contrast with the steep westerly dips near Hinds Brook (Figure 

3.2), suggesting that macroscopic fold(s) are present in the Howley Formation between 

these two localities (see Section 3.2.4).  

3.2.2 Alder Brook 

The Howley Formation is relatively well-exposed along Alder Brook in a one 

kilometer long section from its termination against the Grand Lake Fault in the east, to the 

eastern shore of Grand Lake in the west (Figure 3.4; Map A). Along Alder Brook the 
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Howley Formation is dominated by alternating, thick to thin beds of coarse-grained to 

conglomeratic arkosic sandstones, and fine- to medium-grained laminated, mica-rich, 

arkosic sandstones, with rare mudstone, shale and thin coal seams. Locally these beds 

show scouring and grading, and are internally cross-bedded, providing younging criteria, 

indicating normal way up. There is no clear fining up or down trend in the succession. 

 These lithologies form a non-cylindrical homoclinal succession that youngs and 

dips moderate to moderately steep to the southeast (Figures 3.4, 3.5). Minor variations in 

strike and dip within the succession are regarded as small dip domains that produce 

calculated axial planes that dip steep to moderately steep to the southwest (Figure 3.5).  A 

beta axis of 40-177 is calculated for bedding planes in Alder Brook (Figure 3.5), but it is 

poorly constrained due to the lack of opposing fold limbs in the section. There are two 

aspects to the orientation of the calculated beta axis that raise concerns. The plunge of the 

axis is unexpectedly steep, especially when compared with fold axes plunges calculated 

for well-folded sections of the Howley Formation, for example in Coal Brook (see 

Section 3.2.3). Furthermore, the trend of the calculated beta axis is quite different from 

that determined for sections showing folds in this area of the basin, and is highly oblique 

to the basin-bounding fault. This beta axis reflects primarily small-moderate changes in 

the strike of the beds and is unrepresentative of macroscopic folding in the area A vertical 

cross-section was, therefore, constructed trending at 123⁰ rather than at 087⁰ 

(perpendicular to beta axis). This choice of cross-section trend is much more in keeping 

with the trends of section planes determined for other areas with better constrained 
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structure along the eastern basin margin. It also produces a more viable pattern of 

apparent dips for bedding in the section than if the section trended 087⁰. 

During an investigation into the structure of the Carboniferous series in the field 

seasons of 1891 and 1892 (before the raising of the water level of Grand Lake), Howley 

(1918a) reported: “fine-grained, finely micaceous, greenish-gray sandstone and loose, 

shaley layers were just protruding above the water surface [near the mouth of Alder 

Brook], striking up and down the shore in an extremely straight line, dipping to [120⁰] 

between 60⁰ and 70⁰” ( dip azimuth corrected for magnetic declination, 1920; Natural 

Resources Canada b). This bedding measurement has been approximately placed on Map 

A; without knowing the exact geography of the eastern shoreline of Grand Lake or the 

flooded section of Alder Brook before raising of the water level, it is impossible to 

accurately locate where this observation was made, and therefore it has been omitted from 

cross-section B to B’ (Figures 3.4, 3.5). the measurement is in keeping with other bedding 

orientations found along this stretch of the shoreline (Map A).  

In the northwest part of the section, a moderately steep, east-dipping fault was 

observed in a coarse arkosic sandstone outcrop with striae on a slikensided surface at 29-

155 (Figures 3.4, 3.5), indicating a northwest-southeast directed predominant strike-slip. 

At the southeast end of the succession, the Grand Lake Fault’s location is expected to lay 

in the streambed between closely spaced outcrops of Howley Formation to the west and 

Silurian, aphanitic, strongly sheared and hematized amygdaloidal basalt to the east. 

Although the fault plane is not directly observed, there is a sharp rise in local topography 
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at this location that trends 220⁰, and this is regarded as the strike of the Grand Lake Fault 

in this area (Map B).  

Assuming there is no structural repetition or omission of strata within the Alder 

Brook succession, an estimate for minimum thickness of the Howley Formation along the 

eastern margin of the basin can be made. Averaging both strikes and dips of all bedding 

measurements, with assigned equal weights, gives an orientation of 137/50 (dip 

direction/dip). Using this average strike and dip, anchoring a section perpendicular to 

strike of bedding at the most northwestern exposure and orthographically projecting the 

most southeastern exposure into the plane of section, plus correcting for overall change in 

topography between the two points (a gain of 60 m to the southeast), gives an estimated 

stratigraphic thickness of approximately 760 meters.  

A further 1.5 kilometers to the north-northwest from Alder Brook, Hyde and Ware 

(1981) documented two exposures of Howley Formation, in an unnamed stream, dipping 

moderately steep to the east-southeast to southeast (100/41 and 124/42; Map A). These 

exposures, despite considerable effort, were not located during this study. The beds at 

these localities have undetermined younging directions; however, considering their 

moderate east to southeast dips, and their position along strike in between the southeast-

dipping and younging homoclinal panel in Alder Brook and the southeast-dipping and 

younging western fold limb in Coal Brook (see Section 3.2.3), it is likely that these beds 

represent a continuation of beds between Alder Brook and Coal Brook, implying a 

southeast younging direction.    
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3.2.3 Coal Brook 

Another 0.5 kilometers to the north-northwest, the Howley Formation is relatively 

well-exposed for approximately 800 meters along Coal Brook, from where it crosses 

Route 401 southeastwards to its termination along the Grand Lake Fault (Figure 3.6; Map 

A). Lithologies exposed along Coal Brook are very similar to those observed in Alder 

Brook, but structural style is much different. Beds in the southeastern portion of Coal 

Brook form sub-cylindrical to non-cylindrical, steep to upright folds that trend oblique to 

sheared and hematized Silurian basalts across the Grand Lake Fault (Figures 3.6, 3.7). 

The Grand Lake Fault is not directly observable in outcrop, but closely spaced exposures 

of the Howley Formation to the west and basalts of the Topsails Igneous Complex mark 

its location, and a sharp rise in topography defines its strike at 220⁰ (Map B).  

The folds in the eastern part of Coal Brook define a macroscopic syncline-

anticline pair with additional parasitic folds on the eastern limb of the anticline (Figure 

3.7). The macroscopic folds are defined by planar, moderate to very steep dipping limb 

domains with close interlimb angles (48⁰ and 50⁰). Calculated axial planes for the main 

kink folds in the east dip steeply southeast (127/76, mean orientation) and are more or 

less parallel to one another, so that there is no singularity (Marksha and Mitra, 1988) in 

the kink structure when projected to depth. On the eastern limb of the anticline, near-

surface parasitic folds form a gentle (132⁰) syncline and an open (80⁰) anticline pair with 

upright southeasterly and steep northwesterly dipping axial planes, respectively (Figure 

3.7). When projected to depth, these folds quickly meet at a singularity, so that at depth 
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the eastern limb of the main anticline is solely defined by a single exposure of a 

moderately southeast dipping bed (Figures 3.6, 3.7). 

Bedding in the northwestern section of Coal Brook dips and youngs moderately to 

steeply to the southeast and south-southeast, forming the western limb of the main 

syncline (Figures 3.6, 3.7). Slight variations in strikes and moderate variations in dips of 

bedding close to the hinge of the syncline are interpreted to reflect small dip domains 

with moderately steep west and southwest-dipping axial planes (Figure 3.7). Further to 

the northwest, bedding diverges to a more southerly dip direction (Figure 3.6). This 

compares well with the bedding measurement at the confluence of Coal Brook noted by 

Hyde and Ware (1981) (see Map A). The steep dips of some of the more southerly 

dipping beds suggest that they do not represent the strike of a fold hinge, but rather have a 

more elaborate origin. Coal mining near the intersection of Coal Brook and Route 401, 

circa 1910, was discontinued because steeply dipping coal measures were offset by faults 

(Hayes, 1949; Figure 3.6). In re-examination of the workings by the Anglo-

Newfoundland Development Co. (Howse, 1947), geologists noted that the faults were 

near vertical. Thus, the more southerly dips of beds to the northwest likely represent a 

separate, rotated fault block. Alternatively, the change to more southerly dips in the 

northwestern section of Coal Brook could be explained by the superimposition of 

dissipating southeast plunging folds, away from the Grand Lake Fault, onto earlier 

developed southerly dipping beds. The structural geometry of bedding planes in the 

western portion of Coal Brook compares very well with that documented for Alder Brook 

(Figures 3.5, 3.7). The inferred southeast plunging kinks in both areas does not correlate 
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with the folds in the eastern part of Coal Brook (figure 3.7), and may represent a separate 

generation of structures.  

The pole plot for Coal Brook bedding shows two distinct sub-maxima for 

moderate to steep southeast dipping beds and steep southwest dipping beds (Figure 3.7). 

The two pole clusters define high-density maxima which accurately define the calculated 

best fit pi girdle (033/74) and beta axis (16-213) (Figure 3.7). This beta axis is, however, 

somewhat skewed by the more southerly dips of bedding towards the northwest. Also, 

calculated fold axes for the parasitic folds, which are based on single bedding 

measurements on each of their limbs, give spurious results; axial planes are highly 

oblique to the master fault trace and fold axis plunge to the north and south. The 

preferred, and likely the most accurate, mean fold axis for Coal Brook is calculated from 

averaging strikes and dips of closely spaced bedding measurements nearest to the hinge 

on either limb of the main syncline (122/46 for western limb and 298/74 for eastern limb). 

This method gives a fold axis orientation of 04-209.  

Folding of the Howley Formation in the southeastern section of Coal Brook likely 

causes repetition of strata from the west to east, and without recognized unique 

stratigraphic marker units exposed throughout the fold structure a stratigraphic thickness 

estimation for the entire section is not feasible. However, in the northwestern section, the 

moderate to steep southeasterly dipping and younging western limb of the main syncline 

is very similar in orientation to the homoclinal section through Alder Brook, as noted 

before (Figures 3.4-3.7). Using the best constrained fold axis, as defined by the syncline 

in Coal Brook (04-209), to project Alder Brook’s homoclinal section into the plane of 
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Cross-Section C to C’, a minimum thickness estimate can be made for both Alder Brook 

and northwest Coal Brook sections together. This projection puts the most southeasterly 

outcrop in the Alder Brook section at the most northwesterly outcrop (observed in this 

study) in Coal Brook, near the intersection of Coal Brook and Route 401 (α in Figures 3.5 

and 3.7).  The average dip direction and dip for the northwest section of Coal Brook 

(135/48) is very close to that determined for Alder Brook (137/50), increasing the validity 

of this construction. Making the same assumptions and using the same methods as was 

done for Alder Brook, the total minimum stratigraphic thickness of the Howley 

Formation along the southeastern margin obtained from sections through both Alder 

Brook and Coal Brook is approximately 990 meters. 

3.2.4 Fold Orientation Patterns along the Southeast Margin 

The pole plot for bedding within the Howley Formation along the Southeast 

Margin shows a bimodal population density distribution with two broad sub-maxima for 

very steep northwest dipping beds and steep southeast dipping beds (Figure 3.8). The 

broad sub-maxima suggest the presence of an overall non-cylindrical fold geometry, 

attributed to the minor kink folding of the southeast dipping homoclinal panels in Alder 

Brook and the west part of Coal Brook (Figures 3.4-3.7). The point maxima in the pole 

clusters define a gently southwest plunging beta axis (15-213) and a corresponding steep 

northwest dipping pi girdle (75/033), oriented slightly oblique to the map trace of the 

Grand Lake Fault along this margin (Figure 3.8).  
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This bedding population distribution stems from a predominance of steep northwest 

dipping beds in the south and in the eastern section of Coal Brook, and moderate to steep 

southeast dipping beds in the north and the western section of Coal Brook (Figures 3.4, 

3.6, 3.8).  

Folding along the Southeast Margin is only relatively well-constrained in the best-

exposed section through Coal Brook (Figures 3.6, 3.7). But even here, outcrops do not 

expose fold hinges and true fold geometries are not fully constrained. The most well-

defined fold for the Southeast Margin is that of the macroscopic syncline-anticline pair 

through Coal Brook (Figures 3.6, 3.7, 3.8). Calculated fold axes for these folds both 

plunge sub-horizontally to gently to the south-southeast (04-209 for the syncline and 24-

215 for the anticline; Figure 3.8). 

  Another fold in the Southeast Margin is inferred to account for the change in 

bedding orientations from steep west-northwest dipping and facing beds (293/71) 

observed near Hinds Brook (Figure 3.8) and the next northerly occurrence of Howley 

Formation where bedding dips moderately to the southeast (120/48; Figure 3.8). The 

bedding plane of Howley (1918a; 140/60; Figure 3.8) was not considered as data for 

interpretation of this fold because of the possibility of a large error in its estimated 

location. If the two bedding planes (293/71 and 120/48) are projected along the regional 

beta axis, they are predicted to form an anticlinal fold with an open to close interlimb 

angle (61⁰), steeply inclined south-southeast dipping axial plane (116/78), and a sub-

horizontal south-southeast plunging fold axis (06-205; Figure 3.8). The geometry of this 

fold is however very speculative, as it is only defined by a two bedding orientations 
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separated by several kilometers along strike with no exposure in between. Given the 

presence of faults observed elsewhere in the limited outcrops available to view, the 

probability of this fold’s continuity over this distance without additional folding and/or 

faulting is low. But in such a poorly exposed basin, this is the best representation of 

folding of the Howley Formation, south of Alder Brook. 

 An alternative view of the stratigraphy and structure of the Southeast Margin of 

the Howley Basin was presented by Howse and Fleishmann (1982). In their interpretation 

of the geology of the Southeast Margin of the Howley Basin the stratigraphy of the 

Howley Formation can be traced along the entire margin (Figure 3.9). They also 

interpreted that the main syncline in Coal Brook extends south with a faulted 

(downthrown to the east) curvilinear fold axis, south through Alder Brook, and speculated 

that it continued north. These features were not observed in the detailed work performed 

during this study, or documented by Hyde and Ware (1981); the main syncline in Coal 

Brook was not observed to extend south into Alder Brook. Furthermore, the strikes of 

beds recorded in this study throughout the map area have significant variations in 

orientations, whereas the strikes of beds in Howse and Fleischmann (1982) are 

uncanningly consistent throughout the entire margin (Figure 3.9). Furthermore, the 

stratigraphy of the Howley Formation was not observed to have the unique stratigraphic 

succession of marker horizons needed to confidently make correlations between the brook 

sections throughout the Southeast Margin. In addition, all of the macroscopic fold axes 

calculated from bedding data collected in this study, combined with those of Hyde and 

Ware (1981), plunge towards the south-southwest, and are predicted to be truncated by 
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the Grand Lake Fault if projected southwards. This is contrary to the fold pattern inferred 

by Howse and Fleishman (1982) who trace the syncline in continuity parallel and in 

proximity to the Grand Lake Fault (Figure 3.9).  

All observed and inferred macroscopic folds within the Southeast Margin have 

steep limbs and open to close interlimb angles that are interpreted to bend as angular kink 

folds around very steeply inclined southeast dipping axial planes. These are interpreted as 

contractional folds because such steep bedding dips and close interlimb angles are not 

predicted for extensional forced folds occurring in the hanging-wall of a listric normal 

fault (Hardy and McClay, 1999). 

The lack of exposure and drilling, or clear geophysical expressions of folds or 

subsidiary faults in the Howley Formation along the Southeast Margin all make definitive 

interpretations of stratigraphy and structure difficult. However, given the regional strike-

slip nature of the Cabot Fault system (Section 2.1.2), combined with observed oblique 

slip lineations on subsidiary faults along the fault zone in the map area, and interpreted 

contractional folds with fold axes making acute angles with the map trace of the Grand 

Lake Fault (5⁰-15⁰ to the northwest; Figure 3.8), structures along the Southeast Margin 

hint at a dextral transpessional event occurring post-Howley Formation deposition 

(Westphalian A).  

3.3 Northeastern Margin 

The Northeast Margin, north of the inferred margin-defining cross-fault, extends 

for 25 km from northeastern Grand Lake to northeastern Sandy Lake (Map A). Along this 
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margin the Grand Lake Fault separates the Howley Formation to the west from 

Ordovician and Silurian plutonic and volcanic terrains of the Notre Dame arc to the east. 

Exposure is extremely poor with the Howley Formation typically occurring as isolated 

outcrops in streambeds separated by several kilometers along and across strike. The only 

exceptions are moderately-exposed sections through Kelvin Brook and Northeast Brook 

(Map A).  

The Grand Lake Fault is not observed in outcrop, but its map trace is periodically 

constrained by closely spaced outcrops of the Howley Formation to the west and Notre 

Dame arc rocks to the east (Hyde, 1982; Whalen and Currie, 1988; Map A). Between 

geologically constrained locations, its map trace is well-defined in both topographic (Map 

B) and magnetic expressions (Map C), with the exception of the area between McGregor 

Brook and Kitty’s Brook where a magnetic low is continuous over the inferred boundary 

of the fault (Map C). This magnetic low does not correspond to geological boundaries 

observed at the present-day surface in the Notre Dame arc (Whalen and Currie, 1988), but 

does have a sharp gradient around its perimeter in all directions, except to the northwest, 

indicating that it has an upper-crustal source (Map C). 

 A notable kink in the trace of the Grand Lake Fault occurs in Kelvin Brook, north 

of which the fault has a more easterly trend (approximately 240⁰) than seen in the 

Southeast Margin (Map A). North of Kitty’s Brook, three unnamed east-west trending 

cross faults are interpreted to intersect the Grand Lake Fault and continue into the Notre 

Dame arc to the east (Hyde, 1982; Whalen and Currie, 1988; Map A). The two more 

southerly cross faults are interpreted to form a lens-shaped faulted contact around the 
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Ordovician Hungry Mountain Complex (basement to the Topsails Igneous Suite; van 

Staal et al., 2007), with Ordovician plutonic rocks and Silurian volcanics to the south and 

north (Whalen and Currie, 1988; Map A). The most southerly of these two faults has an 

inferred apparent dextral strike separation of 600 m (Whalen and Currie, 1988; Map A). 

This offset is however not constrained by bedrock exposures nor is it reflected in 

magnetics (Map C) or associated with a topographic gradient (Map B), and it is thus 

considered speculative as to whether the fault has affected the Howley Formation or 

offset the Grand Lake Fault. Its northerly counterpart is not interpreted to offset the Grand 

Lake Fault (Whalen and Currie, 1988; Map A). A further 3 km to the north-northeast, a 

west-northwest trending cross fault is interpreted to offset the Grand Lake Fault with a 

1.5 km apparent sinistral strike separation (Map A). To the north of this cross fault, an 

east-dipping thrust slice of ultramafic rocks is brought to the surface (Adams, 1981; 

Hyde, 1979b, 1982; Whalen and Currie, 1988; Map A). Adams (1981) has suggested that 

the Howley Formation unconformably overlies the ultramafics to the west and south. The 

surficial extent of the ultramafics depicted in Whalen and Curie’s (1988) map and the 

Detailed Bedrock Geology Layer of the NLGS’s GeoAtlas is underestimated: exposure of 

fine-grained serpentinized ultramafics and sericite schist discovered in the berm of a new 

logging road during this study (not shown on the maps of Hyde, 1979b, 1982, or Whalen 

and Curie, 1988), extends the strike of the unit by 1.5 kilometers to the northeast (Map 

A). Intersections of shallow drill holes (Adams, 1981; Map A) in between exposures 

confirms that the body lies just under the overburden (Section 3.3.5). The ultramafic 

thrust slice’s northwestern faulted boundary has been redrawn along the edge of the large 

magnetic high associated with it (Map A, C), extending its strike and width, while 
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adhering to field and drill observations. The magnetic high associated with the ultramafic 

body extends to the south, beyond the inferred cross-fault, but shows no signs of 

displacement, suggesting that the presence of this fault may be erroneously interpreted. 

Notably, there is no constraint by exposures of the Howley Formation on the presence, 

location, or nature of the northern cross-fault (Hyde, 1979b, 1982; Map A). 

The Northeast Margin of the Howley Basin has been explored for coal in the late 

19th to early 20th century (Murray, 1918; Hatch, 1921), and less so for uranium and 

asbestos in the early 1980’s (Wilkinson, 1982; Adams, 1981). Coal exploration included 

testing the near-surface stratigraphy of the Howley Formation by sinking boreholes 

westwards of the intersection of Goose Brook and the (then) Reid Newfoundland 

Railway, towards the center of the Howley Basin (Section 3.3.2). Ground-based uranium 

exploration tested the thick overburden with reverse circulation drilling and geochemical 

till surveys, but data acquired during these programs are of little use in the structural 

interpretation of the basin and are not reported on. Three diamond drill holes were 

situated on the aforementioned ultramafic thrust slice in the northeast corner of the basin 

in the search for asbestos mineralization, but unfortunately they did not intersect 

Carboniferous strata (Section 3.3.4; Map A).  

Lack of exposure and absence of high-density diamond drilling, or high-resolution 

geophysics leaves the structure of this part of the basin largely unknown. However, 

during the 2014 and 2015 field seasons, two seismic lines were collected using the 

Memorial University of Newfoundland’s MUNSIST vibrose source system along logging 

roads that cross the approximate trace of the Grand Lake Fault and extend to the west, 
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into the Howley Basin (Vasquez, 2017; Map A). Interpretation of these seismic surveys 

show the Deer Lake Group to underlie the Howley Formation, together reaching a 

maximum depth of ~ 1.5 km. Steep to sub-vertical east and west-dipping faults are 

interpreted in the seismic profiles, with the majority to be isolated in the Deer Lake Group 

(Vasquez, 2017). Livada (2014) completed a 17 km magnetotelluric survey that 

transected this part of the Howley Basin (Map A). Results show that the basin is 1-1.5 km 

deep with Deer Lake formations underling the Howley Formation, but was unable to 

image mesoscopic structures in the subsurface (Livada, 2014). 

   The most southerly exposure of the Howley Formation in the Northeast Margin 

occurs in a logging road berm just north of the boundary-defining cross fault that 

separates the Southeast Margin and the Northeast Margin (Map A). Here, a single outcrop 

of poorly indurated, scoured, conglomerate and fine-grained, cross-bedded sandstone 

show gentle dip and younging direction to the west. Exposure of Silurian mafic volcanics 

and medium-grained amphibole granite across a narrow valley in the highlands to the east 

(not shown on the map of Whalen and Currie, 1988), tightly constrains the presence, 

location, and right-stepping offset geometry of the Grand Lake Fault along this cross-fault 

(Map A). The Detailed Bedrock Geology Layer (Newfoundland and Labrador Geological 

Survey a) shows Silurian mafic volcanics occurring where granite was discovered during 

this study. To accommodate field observations, the strike of the cross-fault was extended 

to the southeast to the contact between the mafic volcanics and the Ordovician Hinds 

Brook Granite, and the Hinds Brook Granite is presumed to occupy the area directly to 

the northeast of the cross-fault (Map A).     
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3.3.1 Kelvin Brook 

The Howley Formation is exposed within a few bends in eastern Kelvin Brook 

before heavily faulted, fractured, and veined red/pink, locally feldspar and quartz 

porphyritic rhyolites are encountered to the east of the Grand Lake Fault (Figures 3.10, 

3.11). In the west, coarse to very coarse massive arkosic sandstones intercalated with 

fine-grained sandstones containing abundant coalified plant fossils dip moderately to the 

southwest. Further east, approaching the Grand Lake Fault, the Howley Formation 

coarsens to thick scoured beds of poorly sorted, rounded to sub-angular, cobble to boulder 

polymictic conglomerate beds that young and dip moderate to steeply to the northwest 

(Figures 3.10, 3.11). These beds are cut by steep to vertical faults with varying strikes 

(Figure 3.10 – 3.12). Lineations on these faults predominately pitch shallowly (15⁰ to 

20⁰) to the north and east with the exception of a moderately steep pitch (48⁰) to the 

northeast on a vertical northeast-southwest striking fault, next to the Grand Lake Fault 

(Figure 3.10).  

In cross-section, bedding is shown to kink around steep southerly and 

northeasterly-dipping axial planes (Figure 3.11).  However, the large contrast in strikes 

between the most westerly bedding measurement and those to the east suggest that 

bedding orientations along Kelvin Brook have been affected either by folding and/or 

rotational faulting (Figure 3.10). Without more data it is difficult to predict any detail of 

the structure at depth. The small population of bedding measurements in Kelvin Brook 

produces a moderately west plunging (24-261) calculated beta axis beta and a steeply 

west-dipping pi girdle (081/66), but these orientations are strongly controlled by the 
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single southwest-dipping bed in the west, and may therefore may not be a true 

representation of fold orientation (Figure 3.11).  

Within 100 m north-northeast further upstream of the last outcrop of Howley 

Formation in the east, rhyolites are well-exposed in a section of Kelvin Brook, closely 

constraining the location of the Grand Lake Fault trace (Figure 3.10). The location of the 

map trace of the Grand Lake Fault needed slight adjustment and the contact between 

Hind’s Brook Granite and Silurian mafic volcanics was moved approximately 100 m to 

the west to account for field observations (Figure 3.10). Rhyolites exposed along this 

section are heavily faulted and veined. Quartz and/or carbonate veins and shear fractures 

predominately dip moderately to very steeply to the northeast and southwest (Figures 

3.10, 3.11). 

Two boreholes sunk in the field seasons of 1879 and 1893 are quoted as being ¼ 

of a mile, and the other one 1 ¾ miles up Kelvin Brook, respectively (BH-79-01, BH-93-
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01; Howley, 1881, 1918b; Map A; Appendix A). These boreholes were sunk before the 

raising of the water level of Grand Lake, and since then much of the western extent of 

Kelvin Brook has been flooded. Before flooding, Kelvin Brook flowed westerly for 

several miles past its present outflow into Grand Lake, to where it met with, the then 

called, Sandy Lake River (Howley, 1907). Judging from the descriptions of locations and 

the pre-flooding map of Howley (1907), these boreholes were actually much further west 

than what is shown on the maps of Hyde (1978, 1982) and Hyde and Ware (1981). The 

locations of these boreholes, as shown on Map A, are rough estimates of their locations, 

but are much closer to their true position than other workers have shown. 

The drill log of BH-79-01 (Map A; Appendix A) shows that after 5 m of 

overburden, alternating, very thick to thin beds of sandstone and shale with intercalated 

coal persisted to end of the hole at 66 m, dipping northerly at a very low angle (Howley, 

1881). The presence of coal in these beds would suggest that BH-79-01 intersected 

Howley Formation. However, further upstream in the since flooded Kelvin Brook, BH-

93-01 (Map A; Appendix A), below 32 m of overburden, intersected alternating very 

thick to thin beds of shale and sandstone to a depth of 102 m, with an average dip of 50⁰ 

(undetermined dip direction; Howley, 1918b). The core retrieved from this hole was 

interpreted to be lower down in the Carboniferous strata than the coal-bearing measures 

and the succession was considered by Howley (1918b) to be correlable with bituminous 

shales he had observed exposed in a stream a mile north of Wetstone Point, only a short 

distance inland from the (then) northwest shore of Grand Lake. Hyde (1982) has since 

mapped exposures along this section of Grand Lake to belong to the Wetstone Point 
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Formation (Tournasian conglomerates and sandstones) and Rocky Brook Formation 

(Viséan mudstones). Thus, it is probable that the bituminous shales described by Howley 

(1918b), north of Wetstone Point, belong to the Rocky Brook Formation. This location is 

also where Hatch (1919) calculated the highest oil yields from in the region. 

Unfortunately the creation of the dam on Grand Lake has flooded this area. Although the 

presence of these potential source rocks in the borehole near the eastern margin of the 

basin was of inconsequence to Howley’s pursuit of coal, they are significant in evaluating 

the hydrocarbon potential of this area; if these rocks are Rocky Brook Formation then 

they would underlie the Howley Formation (at least in part) along the eastern basin 

margin. This interpretation has not been documented in previous works. 

3.3.2 Goose Brook, McGregor Brook, and Kitty’s Brook 

Proceeding north along the Northeastern Margin there are several isolated 

exposures of the Howley Formation in brooks that flow from the east into Sandy Lake 

(Hyde, 1979b; Hyde, 1982; Map A). Despite great effort, none of these exposures were 

found during this study.  All of these outcrops occur close to the assumed and inferred 

map trace of the Grand Lake Fault with strikes of bedding near parallel to the fault trace 

(Map A). Dips are shallow to moderately steep and switch between southwest and 

northeast dip directions. Proximal exposures of igneous rocks of the Notre Dame arc to 

the east in Goose Brook and Kitty’s Brook give a geologically-constrained position of the 

Grand Lake Fault’s map trace along this margin of the basin (Hyde, 1982; Whalen and 

Currie, 1988; Map A). However, the structure of this part of the basin remains unresolved 

due to the lack of exposure. 
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3.3.3 Results of Coal Exploration in the Sandy Lake Area 

Construction of the railroad between Kitty’s Brook and the Sandy Lake trestle in 

1895 revealed lots of coal fragments in gravel cuts, but the lack of exposure in this region 

left little for interpretation of the geological structure and the lithostratigraphy, including 

the source of the coal fragments (Howley, 1918c). A gravel cut, about a mile and a half 

east of Goose Brook, with a greater abundance of Carboniferous fragments in the drift 

(sandstones and shales rather than the dominant granitic detritus of the highlands to the 

south and east) prompted Howley to postulate that bedrock lay a short depth underneath 

the cover and he began removing the overburden (Howley, 2009). He was correct and at a 

depth of three to four feet uncovered and sunk into a two-foot coal seam, dipping 290/40 

(Howley, 1895; Figure 3.13). Further trenching in this area that year, and in 1904, along 

with a single borehole, uncovered more bedrock and coal seams under a thin interval of 

overburden. All bedding showed a constant dip towards the northwest, leading Howley 

(1918d) to believe that the strata were un-faulted or folded in this area. These beds strike 

somewhat oblique to the beds exposed in proximity to the Grand Lake Fault (Figure 3.13; 

Map A).  

Following this discovery, coal exploration in the basin was focused in the area 

around Goose Brook, and resulted in numerous boreholes being drilled between the years 

1904 to 1921 by Howley (1918d, e, f, g, h, i) on behalf of the NLGS and Hatch (1921) for 

the Reid Newfoundland Company (Figure 3.13). Core from these operations is not 

available for inspection, but documented drill logs for most of the holes are attached to 

the Howley’s and Hatch’s reports (Appendix A). In lieu of the lack of exposure within 



82 

 



83 

 

 this area, these logs provide valuable insight into the near-surface structure and 

stratigraphy of the Howley Formation towards the center of the basin. 

Locations of these exploration sites are given on maps of Hyde and Ware (1981), 

and Hayes (1949, provided by the Reid Newfoundland Company). However, 

discrepancies in borehole locations between these two maps prompted an evaluation of 

their validity. Also, some of the relative distances between boreholes given in the text of 

the original authors do not coincide with the locations given on the maps of Hyde and 

Ware (1981) or Hayes (1949). 

Accurately locating the positions of these boreholes proved difficult; maps of 

borehole or trenching locations do not accompany any of the available reports of Howley 

or Hatch. Instead, the authors give relative distances and azimuths from a landmark or 

previously sunk borehole. In the case of Howley’s (1819c, d, e, f) earlier workings, the 

descriptions of borehole locations are vague and there are significant discrepancies 

between descriptions of the same location from different field seasons.  

For the boreholes of Hatch (1921), as presented on Figure 3.13, locations were 

found by using the azimuth and distance between the previous borehole and the next, 

correcting for the magnetic declination for the area in 1920 (30.78⁰ W Natural Resources 

Canada b). In his 1920 report, Hatch (1921) referenced the first borehole of the season to 

mile 354 of the railway. The UTMs of this location (E 0495592 m, N 5447319 m, 

NAD83 UTM Zone 21N) were found by measuring 1.1 miles westward along the railroad 

from the Goose Brook Bridge (mile 352.9; T’Railway). In his 1921 report the first 
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borehole of the season was referenced to the Goose Brook Bridge (E 0497258 m, N 

5447930 m, NAD83 UTM Zone 21N). Given the precision of Hatch’s (1920, 1921) 

relative measurements of azimuths and distances between holes (e.g., BH-19-03 is 1475 

feet North 13⁰15’ East magnetic of BH-19-02), this method of locating the coordinates of 

these boreholes must be the most accurate. 

The boreholes of Howley, drilled pre-1908, are significantly less precise in their 

descriptions of borehole locations. Also, drill logs are not appended to his reports on 

exploration for years prior to 1907. In many instances, Howley started a borehole in one 

year and would return to that location in a following field season to extend the borehole 

further. The approximate locations of Howley’s boreholes given on Figure 3.13 are 

labeled by the year they were first reported on, in ascending order.   

Within the drill logs of these boreholes the authors, in some instances, give the 

average dip of bedding relative to (presumably vertical) drill core axis for the entire 

borehole (Table 3.1; Appendix A). Changes in dip throughout the hole are not stated, 

leaving the reader to wonder to what extent of variance in dip within the borehole exists. 

In the reports of Hatch (1921), he also states the dip direction of bedding for the entirety 

of each borehole, and in several of Howley’s reports (1918h, i) he shows changes in dip 

directions between holes. It is unclear how either of these geologists were able to 

undoubtedly make conclusions on the strikes of bedding encountered in the boreholes 

given the technological resources available to them at that time. This is so because strikes 

of beds cannot be uniquely determined in vertical drill holes based on bedding/core 

angles alone (Marshak and Mitra, 1988). 
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 Table 3.1 summarizes the results of borehole logs post-1906, with their respected 

depth of overburden, vertical depth, percentage of shale intersected (overburden omitted), 

and average dip and speculated dip direction (corrected for magnetic declination) of 

bedding in core (1919 logs only; Hatch 1921). 
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Using the results of these exploration boreholes in the Goose Brook area, the 

authors made several interpretations of the geological structure of the region. Pointing to 

a drastic increase in depth of overburden encountered in BH-08-02, BH-08-03 and BH-

09-01 compared to those to the east (Table 3.1; Figure 3.13), and broken and slickensided 

core at the top of bedrock in BH-08-02 (Appendix A), Howley (1918i) inferred a fault to 

occur just to the west of BH-08-02. This argument is further supported by a coal seam 

“doubled up in a sharp fold,” discovered in a trench along the rail bed (Howley, 1918d; 

Figure 3.13).  

From the strata intersected in a series of boreholes running along the length of 

Goose Brook to the northwest into the center of the basin, Howley (1918i) interpreted the 

presence of a long-wavelength syncline ‘or trough’ to underlie this region. He interpreted 

that the syncline folded into an anticline by BH-09-05, stating a reversal in dip to the 

northwest (Figure 3.13). He further concluded that continued exploration in this direction 

would unveil another coal trough. As stated before it is unclear how he could have 

determined dip directions from these cores. Dips of bedding intersected in core is not 

given these drill logs. 

Hatch (1921) tested Howley’s theory of another coal trough occurring to the 

northwest by sinking a series of boreholes in 1919 (BH-19-01 to BH-19-06) along a line 

extending close to 3 km northwest from Howley’s BH-09-05 (Figure 3.13). In the drill 

logs from this field season, Hatch (1921) gives the average strike and dip of bedding for 

each borehole. These strikes have been corrected for the magnetic declination for the 

region in 1919 and placed on Figure 3.13. Because of the uncertainty in their validity they 
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have been given in red. The results of this boring operation, led Hatch (1921) to believe 

that this area of the basin formed a large synclinal structure plunging to the northeast 

(Figure 3.13). He correctly stated the uncertainty in these interpretations, but thought that 

this part of the Howley Basin held a high prospectivity for economic coal measures. In 

1920, Hatch (1921) sunk boreholes along the plunge of his interpreted syncline, along 

with several close to BH-08-05, which had intersected thick coal seams (Figure 3.13; 

Appendix A). He was unable to correlate strata between boreholes, even over very short 

distances. This led Hatch (1921) to believe that “during the coal forming period, 

subsidence and upheavals occurred at frequent intervals” causing periodic inundation, 

depositing coal seams between thick shale beds. He further suggested that subsidence and 

uplift occurred heterogeneously over a considerable area. 

Regardless of the uncertainty in the quality of orientation data ascertained from 

the authors’ interpretation of core from these boreholes, or their consequential structural 

interpretations, these logs are important in the evaluation of Howley Basin. Drill logs of 

these boreholes (Table 3.1; Appendix A) show that the Howley Formation in the center of 

the basin is dominated by thick beds of fine-grained strata, or shales (some over 10 m 

thick). This is much different than what is observed in exposures of the Howley 

Formation along the basin’s western and eastern margins and has significant consequence 

for both lithofacies distributions analysis and potential-field modeling (see Chapters 5, 6).  
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3.3.4 Northeast Brook 

Extending to the northwest from the junction of the most northerly cross fault and 

the Grand Lake Fault, the Howley Formation is exposed in an unnamed brook (assigned 

as Northeast Brook for this study) to where it enters northeast Sandy Lake (Map A; 

Figure 3.14).  The northwest section of the brook was traversed, but high water made 

accessing the southeast section difficult. Hyde’s (1979b) bedding measurements in the 

eastern part of the brook were used for cross-section construction (Figures 3.14, 3.15). 

The Howley Formation along Northeast Brook forms a moderately steep to vertical 

northwest dipping and younging homocline with dip domains folding around shallow to 

moderately steep southeast dipping axial planes, giving a very poorly constrained 

calculated beta axis of 35-266 (Figures 3.14, 3.15). The vertical cross-section in Figure 

3.15 was oriented slightly oblique (344⁰) to the calculated beta axis to give more realistic 

apparent dips in section.  In the northwestern part of the section, a minor trust fault with a 

hanging wall flat geometry was observed in outcrop (Figure 3.14 B), indicating southeast 

directed reverse slip across the western portion of the homocline. This trust fault was 

extended to depth with a hanging wall flat geometry, bending around the most 

northwesterly axial plane (Figure 3.15), offering a possible, but poorly constrained 

geometry. The strike of the most southeasterly exposure of the Howley Formation in 

Northeast Brook (Hyde, 1979b) diverges from the rest of the population of bedding 

planes to a more westerly dip (Figures 3.14, 3.15).    
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Calculated axial planes along Northeast Brook do not contain the beta axis (Figure 

3.15), and thus represent a separate set of structures unrelated to the dispersal of the 

bedding pole partial girdle; the beta axis reflects bending over an east-west axis, while the 

axial planes reflect kinking over southwest axes. This discontinuity between axial planes 

and the beta axis is interpreted to represent localized polyphaser deformation of the 

Northeast Margin of the Howley Basin. 

Assuming that structural repetition is minor southeast of the observed thrust, an 

estimated average stratigraphic thickness for the Howley Formation through Northeast 

Brook can be calculated. Using the same methods as applied earlier to the Alder Brook 

and Coal Brook sections, i.e., taking an average strike and dip for the section (62/332), 

and correcting for changes in topography (55 meters to the southeast), the minimum 

stratigraphic thickness for the Howley Formation in the northeastern part of the basin is 

approximately 2.5 kilometers.  

3.3.5 Northeast Ultramafic Thrust Slice  

A further 3.3 kilometers northeast, the Grand Lake Fault is offset by another east-

southeast trending cross fault (Map A). Hyde and Alexander (1979b) interpreted this 

cross fault to have a sinistral strike separation of 800 meters (Map A). The Howley 

Formation is not exposed in proximity to this cross-fault.  

North of this cross-fault, a thrust (?) slice of unnamed serpentinized ultramafic 

rock of Late Cambrian to Ordovician age (Whalen and Currie, 1988) is exposed along the 

western flank of the Grand Lake Fault (Map A), and is thought to be an extension of the 
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BBL (Dawson and Mersereau, 1989). The high magnetic anomaly and positive 

electromagnetic results (Adams, 1981) associated with the ultramafic slice have enticed 

several exploration companies to perform reconnaissance mapping, detailed geophysical 

and geochemical surveying, and light drilling over the area, in hopes of delineating a zone 

of economical asbestos mineralization within the ultramafics. A ground-based magnetic 

survey was interpreted to show that the ultramafic body dips steeply to the east (Adams, 

1981). Three closely spaced (within 1 km of each other) diamond drill holes (DDH-80-

BL-001, 002, 003; locations of drill holes unseparated on Map A) were sunk on the 

ultramafics as part of an exploration program by Minorex in 1980 (Adams, 1981). These 

holes were drilled at an angle of 45⁰ from vertical with two at azimuths of 146⁰ and one 

at an azimuth of 326⁰ reaching a maximum hole depth of 120 m. However, none of the 

drill holes intersected Howley Formation. 

3.3.6 Structure of the Northeast Margin 

The poorly populated pole plot for bedding along the Northeast Margin of the 

Howley Basin shows a bedding population distribution with a predominance of moderate 

to steep northwest dipping beds (Figure 3.16 B). Three gently east to southeast dipping 

beds in the southern portion of the Northeast Margin strongly influence a calculated 

shallowly southwest plunging beta axis (09-247) and a very steep northeast dipping pi 

girdle (067/81) (Figure 3.16 B). These three outliers are isolated from each other and are 

in close proximity to the Grand Lake Fault; the orientation of these beds could represent 

faulted blocks and not folded strata. Thus, their impact on regional fold geometry – as 

depicted in the pole plot (Figure 3.16 B) – is likely not accurate. Overall the bedding in 
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the Northeast margin is too sparse and occur at too great of a distance from each other to 

draw any conclusions on potential fold geometry in this region.  

Bedding orientations of the Howley Formation in the Northeast Margin are 

enigmatic. Strikes of bedding close to the Grand Lake Fault are nearly parallel with its 

map trace, but further west, towards the center of the basin, the dip directions of beds 

diverge to a more north-easterly trend. This is particularly evident in Northeast Brook 

(Figure 3.14), where the whole section has a very consistent dip direction to the northeast, 

with the exception of the most easterly outcrop which dips to the east-northeast (Hyde 

and Alexander, 1979; Figure 3.14). The rotation of bedding orientations to more north-

easterly trends may represent the superposition of later compressional folding onto earlier 

developed tilted sections, possibly developed during initial extension.  

Although the orientations of dips documented in drill logs of boreholes sunk along 

Goose Brook and west of it are speculative, the consistently shallow dips observed in core 

are continuous over large distances (Hatch 1921; Figure 3.13; Table 3.1; Appendix A). 

Overall, clearly both the Southeast and Northeast Margins show a dominance of steep 

beds, dipping both into and away from the inferred sub-vertical basin bounding fault in 

close proximity to it compared to exposures towards the centre of the basin. This may 

reflect dissipating deformation towards the center of the basin, producing large 

wavelength very open macroscopic folds.  

The lack of, and large distances between, exposures in the Northeast Margin of 

the Howley Basin limits any definitive interpretation of structures within. However, 
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where exposed, bedding and fault orientations suggest that this region experienced a 

transpressional event post- Howley Formation deposition. Steep to upright bedding of the 

Howley Formation occurs in both Kelvin Brook (Figure 3.10) and Northeast Brook 

(Figure 3.14). Faults in Kelvin Brook are steep to vertical with typically shallowly 

plunging slickenlines and strike from nearly parallel to almost perpendicular to the trace 

of the Grand Lake Fault, suggesting a predominance of strike-slip deformation (Figures 

3.10, 3.16). A single southeast verging thrust fault observed in Northeast Brook (Figures 

3.14, 3.16) indicates local contractional deformation. 

As interpreted by Howley (1918b), the possible presence of Rocky Brook 

Formation directly under overburden in BH-93-01 and Howley Formation in BH-79-01 to 

the west (Map A) suggests that the Rocky Brook Formation underlies the Howley 

Formation on the eastern margin of the basin, and at this location occupies a structural 

high relative to the east margin of the Howley Basin. Either the Rocky Brook Formation 

is in an eroded core of a high-amplitude anticline, or has been thrusted over the Howley 

Formation. Alternatively, BH-93-01 may have penetrated an eroded horst of Rocky 

Brook Formation. Without further drilling or seismic reflection geophysics no other 

conclusions can be made about the structure in this now flooded area. 

3.4 Northern Margin 

 The Howley Formation is not exposed along the Northern Margin of the Howley 

Basin (Map A). Early to late Silurian post-kinematic granites of the Wild Cove Pond 

Igneous Complex and early Ordovician siliciclastic schists of the Fleur de Lys 
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Supergroup (Hibbard et al., 1980) are exposed along the northeastern shores of Sandy 

Lake (Map A). Hyde and Alexander (1979b, 1982) suggested that perhaps the Howley 

Formation underlies a low-lying peninsula in the northeast corner of Sandy Lake (Map 

A); however, there is no clear geological or geophysical evidence to support this 

interpretation. This peninsula rises only a few meters above the level of Sandy Lake and 

is covered by a thick flat peat bog with no exposures of bedrock (Maps A, B). In lieu of 

bedrock exposure, aeromagnetics are the best representative of near-surface geology. 

Known exposures of the Wild Cove Pond granites to the north of the peninsula form a 

topographic high and have a relatively positive, short wavelength, magnetic signature, 

and appear to be continuous over the peninsula (Maps C, D). Also, a small isolated 

magnetic high occurs just to the east of the peninsula (Maps C, D), and given the 

numerous exposures of ultramafic enclaves in the Wild Cove Pond Igneous Suite, it is 

likely that another occurs at this location. Therefore, it is likely that the peninsula is 

underlain in the near-surface by the Wild Cove Pond Igneous Suite. Both the siliciclastic 

schists of the Fleur de Lys Supergroup and the Howley Formation have very low 

measured magnetic susceptibilities (Section 5.3). If either of these units underlie the 

peninsula, they are predicted to form a thin veneer overlaying the Wild Cove Pond 

Igneous Suite.  

3.5 Western Margin 

The Western Margin of the Howley Basin is here considered to extend for nearly 

30 km from the beginning of Junction Brook, at the northwestern corner of Grand Lake, 

to northwestern tip of Sandy Lake (Map A). Exposure along this margin is very poor; 
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much of the land on the western shores of Sandy Lake and northwestern Grand Lake are 

covered by extensive bogs or thick spruce forests. Outcrops of the Howley Formation 

along this margin are limited to a few streams that flow southeasterly off of Birchy Ridge 

into Grand Lake and Sandy Lake, namely Boot Brook and Mary Ann Brook (Map A). 

Further north, along the western shore of Sandy Lake, presence of the Howley Formation 

is solely constrained by the interpretations of intersections of Howley-like strata in 

shallow drill cores (O’Sullivan, 1979a, b, c; Map A). Core from these holes are stored at 

the NLGS’s Core Storage Facility in Pasadena, Newfoundland, but were left exposed 

outside over winter allowing the cores to be degraded to the point that they are of no 

value to examine (O’Sullivan, 1979a, b, c) Drill-logs of these holes (Appendix A) have 

been reviewed and are reported on below. 

Viséan Deer Lake Group formations, notably the North Brook Formation and 

Rocky Brook Formation, are exposed in the northwestern reaches of Boot Brook, berms 

of the TCH and adjacent logging roads, and in a new quarry near the intersection of the 

TCH and Route 401 (Map A). Hyde (1982) interpreted these units, along with the Howley 

Formation, to occupy three northeast-southwest trending fault panels, bounded by splays 

of the Hampden Fault (Map A). From northwest to southeast, these splays enclose and 

bring to surface fault panels of the North Brook, Rocky Brook, and Howley formations, 

along the southeastern flank of Birchy Ridge (Map A). The interpreted splays are not 

exposed, but are assumed to separate different lithologies and structural trends between 

them. The southwestern extent of these splays is unknown due to a lack of exposure, but 
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if continued along their inferred trend they would branch northeastward from the Fisher 

Hills-Birchy Ridge Fault near Junction Brook (Map A). 

The fault panels along the western margin of the Howley Basin are not readily 

expressed in topographic (Map B) or magnetic (Map C) maps. This is likely due to an 

overshadowing by Birchy Ridge, which is associated with strong topographic relief and a 

consistent linear increase in magnetic signature to the northwest (Maps, A, B, C).  

Mapping along the Western Margin for this project concentrated on traversing the 

streams and road cuts where exposures are known to occur – as documented on 

geological maps of Hyde et al. (1980) and Hyde and Ware (1981). Some of these 

outcrops were not located, and unfortunately, increased precipitation during the latter part 

of the field season raised the water level of the streams and prevented access to certain 

sections with known exposures at low water levels. The following geological maps and 

cross-sections are a combination of observations made in this study and the data and 

interpretations of Hyde et al. (1980) and Hyde and Ware (1981). 

3.5.1 North Brook Fault Panel 

The North Brook Fault Panel is interpreted as the narrow northeast-southwest 

trending strip of fine-grained, thick interbedded, locally rippled and laminated, muddy-

red and grey/green sandstones exposed along the northern berm of the TCH and adjacent 

logging roads (Map A). Hyde (1982) interpreted that this strip of North Brook Formation 

is in fault contact along a northeast-southwest trending fault with the Saltwater Cove 

Formation in the north, and the Rocky Brook Formation in the south. Its eastern extent is 
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terminated by the inferred map trace of the Hampden Fault which juxtaposes it with the 

Howley Formation to the east (Hyde, 1982; Map A).  

Bedding orientations within the fault panel are highly variable. Along the TCH 

and in Boot Brook, going from south to north, bedding of the North Brook Formation 

switches from dipping and younging to the east-southeast to southeast to south, with an 

overall trend of shallowing dips to the northeast (Map A). Within the most southern 

exposures in the North Brook Fault Panel, bedding is cut by a moderately south-southeast 

dipping fault with sub-horizontal lineations and a sub-vertical north-northwest dipping 

quartz vein (Map A). Further to the northeast, along a logging road north of the TCH, 

Hyde et al. (1980) interpreted beds of the North Brook Formation to young and dip very 

steeply to vertical to the east-southeast and west-southwest, defining an isoclinal vertical 

fold with a fold axis plunging to the southeast (Map A). This fold geometry implies that 

polyphased deformation has affected the North Brook Formation within the fault panel.  

Two diamond drill holes (DDH-79-04 and DDH-79-01; Map A) were collared 

along the northeastern contact of the North Brook Fault Panel, where it is interpreted to 

branch from, or is cut by, the Hampden Fault (Map A). Hyde et al. (1980) and Hyde 

(1982) placed these drill holes within the North Brook Formation; however, O’Sullivan 

(1979a, c) – author of the exploration reports for North Gate Exploration – placed these 

drill holes within the Howley Formation, east of the Hampden Fault. It would appear that 

this discrepancy of geological units in which these drill-holes are collared has arisen from 

Hyde’s (1982) interpretation of the Hampden Fault’s map trace being further east than 

shown on the geological map of Baird (1960); the drill hole locations were originally 
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projected by O’Sullivan (1979a, c) on Baird’s (1960) map. For this reason, the locations 

of these drill-holes – as given by the NLGS’s GeoAtlas – are believed to be accurate with 

respect to UTM grids and therefore have not been adjusted in the following figures. 

The log for hole DDH-79-04 (Appendix A; Map A) describes very steeply 

dipping, pale grey, medium- to very fine-grained sandstones, that are ‘the most coherent 

of all the units intersected within the drill holes along this margin’ (O’Sullivan, 1979c), 

persisting until 35 m depth. This succession is followed by steeply dipping, friable, poorly 

cemented, locally micaceous, brown silty mudstone until the end of the hole at 68 m 

depth (O’Sullivan, 1979c; Appendix A). Three kilometers to the north-northeast, situated 

very close to the interpreted location of the Hampden Fault, DDH-79-01 (Map A) is 

described as intersecting poorly consolidated, pale green/grey to black to red/brown, 

locally micaceous, interbedded silt to mudstones until the end of the hole at 41.5 m depth. 

Bedding in core varies from dipping 50⁰ to vertical, and at 27.4 m depth the core is 

reported as being highly sheared (O’Sullivan, 1979a; Appendix A).  

The indurated sandstones and steep dips in the top of DDH-79-04, may suggest 

that the Saltwater Cove Formation was intersected and not North Brook Formation, as 

both North Brook Formation and Howley Formation are typically friable. Also, the 

change to poorly cemented and friable mudstone down hole may indicate that this drill 

hole encountered a geologic contact, perhaps a faulted contact with the Howley 

Formation. If this is the case, then the Saltwater Cove Formation would need to be thrust 

over the Howley Formation on a west-dipping reverse fault. This interpretation is in 

agreement with the suggestion that the vertical fold in the northern North Brook Fault 
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Panel is the product of high strain poly-deformation and is more suited to structures 

mapped in the Saltwater Cove Formation (Section 3.6). The poorly consolidated 

mudstone with changing dips and sheared intersections of DDH-79-01 is interpreted to be 

the Howley Formation and supports an argument that the orientation and locations of the 

splays in the Western Margin may be misrepresented on Map A (Hyde, 1982).  

3.5.2 Rocky Brook Fault Panel 

The Rocky Brook Fault Panel trends parallel to the North Brook Fault Panel and 

extends from the Hampden Fault to the south (Map A). To the south, the extent of the 

Rocky Brook Fault Panel is uncertain because of extensive bogs preventing observable 

exposure. The contact between these two fault panels was first considered a geological 

contact by Hyde and Ware (1981), but was later re-interpreted to be a faulted contact by 

Hyde (1982). Exposure within the Rocky Brook Fault Panel is limited to abundant 

outcropings in the streambed of Boot Brook (Figure 3.17), and in a newly developed 

quarry, near the junction of the TCH and Route 401 (Map A). Boot Brook exposes 

sections of the Saltwater Cove Formation, North Brook Formation, Rocky Brook 

Formation, and Howley Formation on its southerly course from its headwaters on Birchy 

Ridge to its mouth on the channel connecting Sandy Lake and Grand Lake (Map A). The 

section of Boot Brook south of the TCH, which exposes Rocky Brook Formation and 

Howley Formation lithologies, was traversed for this study.  

Rocky Brook Formation lithologies along this section of Boot Brook consist of 

predominately blue/grey and red very fine-grained sandstones (color changes a product of 
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redox reactions) with subordinate thin beds of laminated fine-grained sandstones that 

locally form lenses and are crossbedded. At the southernmost part of the section, limey-

tan weathered, light grey limestone beds with wavy black laminations are exposed. 

 For the first 1.5 km, south of the TCH and the inferred fault contact with North 

Brook Formation, Boot Brook winds through a low-lying alder forest with no exposure. 

The lack of exposure along this section could possibly be due to the presence of 

predominately easily weathering lithologies, such as shale and limestone. The location of 

the panel’s southerly inferred faulted contact with the Howley Formation is spatially 

constrained by a sub-crop of very coarse-grained pebbly sandstone 150 m downstream 

from an outcrop of limestone (Figure 3.17). Angular boulders of quarts-pebble 

conglomerates at this location show slickensided surfaces, indicating that a fault is 

nearby, and this is likely a faulted contact.  

 In Boot Brook, bedding planes of the Rocky Brook Formation form two dip 

domains with varying strikes between them (Figures 3.17, 3.18). In the north, moderately 

steep south-southwest dipping bedding planes form long open folds along moderately 

steep north-northwest dipping axial planes. In the south, beds face and dip moderately to 

steeply to the southwest with dip variations forming long open folds around moderately 

steep northwest dipping axial planes (Figures 3.17, 3.18). Combined, these two dip 

domains give a moderately inclined beta axis plunging due south (39-180; Figure 3.18). 

This is, however, not likely a true portrayal of fold geometry; maintaining bed thickness 

between these two dip domains with flexural slip folding is not geologically feasable, and 

a fault has been inferred to separate the two dip domains (Figures 3.17, 3.18). This 
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inferred fault was given a southeast-northwest trend in keeping with trends of faults 

observed further south in Boot Brook (Figure 3.17). 

 A well-exposed section in the southern dip domain displays various lithologies, 

bedding orientations, and faults over a short interval (Figures 3.17, 3.18). Here, from 

north to south, a sharp contact between medium- to coarse-grained sandstones and 

muddy-red fine-grained sandstones dips steeply to the south-southeast, and is followed by 

very fine-grained laminated muddy- red sandstones that dip moderately to the south. 

These beds then fold to dip more steeply to the southwest. A sub-vertical northwest 

dipping fault crosscuts these beds, but lineations are weathered out and offsets were not 

observed. To the south of this fault, the same very fine-grained laminated muddy-red 

sandstones continue to dip moderately to the southwest and are followed by a steep 

southwest-dipping fault with a hanging wall flat geometry and downdip slickenlines. A 

few meters to the south, coarse arkosic sandstones with abundant mud chips are exposed. 

This unit is then cut by another steeply southwest dipping fault that is parallel to bedding 

of a thin shale bed (5 to 10 cm thick). Another 5 meters to the south, a sub-vertical 

southerly dipping fault is located in very fine-grained sandstones to shaley beds, with 

unknown dips, before exposure is lost (Figures 3.17, 3.18). 

At the southernmost, part of the section – close to its faulted contact with the 

Howley Formation – bedding in limestone outcrops form a close syncline with a steeply 

west dipping axial plane (260/72) and a gently south- plunging calculated fold axis (26-

178; Figures 3.17, 3.18). This fold is not well represented on cross-section F to F’ 

because its limbs strike at a large angle to the trend of the cross-section, and its projection 
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does not depict true fold geometries (Figures 3.17, 3.18). This syncline is also notably 

oblique to the inferred trace of the faulted contact with the Howley Formation, just to the 

south (Figure 3.17). Alternatively, the rapid change in dip directions of the limestone beds 

may represent the presence of an unexposed fault. However, a fold is favored at this 

location because limestone beds in the Rocky Brook Formation are thin and rare, and 

given the proximity of the two outcrops of limestones combined with their drastic 

contrast in dip directions, a fault-induced change in dip direction with such little offset is 

unlikely. 

To the northeast of Boot Brook, a newly developed quarry – not documented on 

Hyde and Ware’s (1981) map – just to the west of the intersection of the TCH and Route 

401, exposes a 100 m east-west vertical section of the Rocky Brook Formation (Map A). 

Flooding of the quarry prevented examination of the entire quarry wall, but bedding is 

easily recognized from afar and a consistent steep dip to the west was observed across its 

entirety (Figure 3.19). On the western edge of the quarry, medium- to coarse-grained, 

parallel laminated and cross-bedded arkosic sandstones with thin beds containing pebble 

clasts, overlie a brecciated horizon with dark brown to black rip-up clasts (Figure 3.19). 

The rest of the quarry, to the east, is dominated by dark gray/blue shale. The change in 

lithologies along the western edge of the quarry may expose an interfingering of North 

Brook Formation with the Rocky Brook Formations, or the base of the Humber Falls 

Formation; coarse- to medium-grained arkosic sandstones are not present in the Rocky 

Brook Formation (Hyde, 1995).  All lithologies dip and face moderately steep to the west 

(Figure 3.29). These dip directions are nearly perpendicular to those of the Rocky Brook 
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Formation observed in the northern section of Boot Brook (Figure 3.17) and indicate that 

folding and/or faulting must occur between these exposures.  

The Boot Brook Fault Panel is internally strongly deformed and shows 

contractional structures. Observed faults within the fault panel dip steeply to sub-vertical 

to the southwest and northwest, parallel to and cross-cutting bedding, respectively. The 

strikes of the southwest faults are nearly perpendicular with the inferred map traces of 

bounding faults, whereas the northwest dipping fault is nearly parallel (Figures 3.17, 

3.18). These geometries would suggest that these faults developed as conjugate synthetic 

and antithetic shears (southeast- and northwest-dipping, respectively) during dextral 

displacement along the bounding faults. However, the downdip lineations observed on 

one of the steep southeast-dipping faults in a shale horizon, with a hanging wall flat 

geometry, is enigmatic (Figures 3.17, 3.18). Another ambiguous structure is the close 
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syncline that gently plunges to the south at the top of the succession; its fold axis – albeit 

poorly constrained -  makes a very large angle to the map trace of the bounding fault just 

to the south (Figure 3.17). During dextral strike-slip deformation, fold axes are predicted 

to form at 45⁰ to master faults, with their acute angle in the direction of displacement, and 

progressively rotate towards parallelism with the master fault (e.g., Harding (1988)). The 

angle between the fold axis and the inferred strike of the fault is too large for the fold to 

have developed from either dextral or sinistral strike-slip movement along this fault. This 

fold axis orientation relative to bounding faults may be evidence of polyphase 

deformation within the Rocky Brook Fault Panel. Moreover, the calculated beta axis does 

not lie on the calculated axial planes and indicates bending of already tilted/folded beds. 

Together, these observations are strong evidence that the Rocky Brook Fault Panel has a 

polyphased deformation history.  

3.5.3 Howley Fault Panel 

Exposure of the Howley Formation to the east of the Rocky Brook Fault Panel is 

limited to a few localities in the southerly reaches of Boot Brook and Mary Ann Brook 

(Hyde, 1982; Map A). Exposures of the Howley Formation in Boot Brook are interpreted 

to be located in a fault panel, bounded by the Hampden Fault to the south and a splay that 

juxtaposes Howley Formation with Rocky Brook Formation to the north (Hyde, 1982). If 

these bounding faults continue with their inferred trend to the south, they would enclose 

the exposures of the Howley Formation in Mary Ann Brook as well (Map A). 
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Bedding of the Howley Formation in Boot Brook is documented as dipping gently 

to the west for the northerly exposure and very steeply to the southeast for the southerly 

exposure (Map A). On Hyde and Ware’s (1981) original map, they put the more 

southerly, steeply dipping bed of Howley Formation, to the east of the Hampden Fault, 

but on Hyde’s (1982) compilation map both exposures are included in the fault panel. If 

these beds are not separated by a fault and represent folding within the fault panel, they 

would produce an open synclinal structure with a sub-horizontal fold axis plunging to the 

southwest (06-217; Map A). This fold axis is speculative because it is based on only two 

bedding measurements, one of which is very gently dipping, and the error in the 

calculation is large (i.e., the gently dipping bedding could easily represent the hinge 

region of a fold). If, however, the predicted fold axis is true and the inferred map trace of 

the Hampden Fault is accurate, then their relative geometries may suggest dextral 

transpression along the Hampden Fault. 

Further to the southwest, in the streambed of Mary Ann Brook, Hyde and Ware 

(1981) documented several bedding measurements and assigned the rocks to the Howley 

Formation (Map A). This stream was traversed during this study, but exposure of bedrock 

was not found. The bedding measurements of Hyde and Ware (1981) dip sub-horizontally 

to gently to the southeast, south, and east over a short interval, and presumably lie inside 

Howley Fault Panel (Map A). 
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3.5.4 Howley Formation Drill Holes in the Western Margin 

North of Boot Brook, the Howley Formation is interpreted to lay to the east of the 

Hampden Fault, along the western shore of Sandy Lake all the way to its northwest 

extremity (Hyde, 1982; Map A). This area is however low-lying and underlain by boggy 

terrain with no bedrock exposure. The presence of Howley Formation along this section 

of the Western Margin is solely constrained by intersections of Howley-like strata in 

shallow drill holes (DDH-79-02, DDH-79-03, and DDH-79-05; O’Sullivan 1979a, b, c; 

appendix A), in close proximity to the Hampden Fault (Hyde, 1982; Map A). 

  O’Sullivan (1979c) reported that DDH-79-05 intersected interbedded red/brown 

laminated siltstone, green-grey friable sandstone, unconsolidated siltstone, and green-grey 

medium-grained sandstone to the end of the hole at 121 m (Appendix A). Bedding/core 

angles are not given in this drill log. DDH-79-02, 4 km to the north of DDH-79-05 and 1 

km east of DDH-79-01 (Map A), is described as intersecting frequently alternating of 

lithologies over short intervals, ranging from poorly consolidated brown micaceous 

siltstone to white coarse-grained sandstone. Dips of bedding also frequently alternate and 

range from horizontal to 40º with no clear trend over the 100 m of core (O’Sullivan 

1979a; Appendix A). Continuing north 5 km, DDH-79-03, shown to be collared in 

Saltwater Cove Formation on Map A, intersected a suite of friable and poorly cemented 

lithologies, that notably has the most fine-grained rocks of all of the western Howley 

Basin drill holes. This drill hole is also unique in that many of the fine-grained lithologies 

have quartz pebbles throughout, as well as angular clasts of talc and schist. No bedding 

core angles are given. Because of the friable character of lithologies intersected in this 
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hole, it is interpreted to be collared in the Howley Formation and not the Saltwater Cove 

Formation. Bituminous material is reported at 45 m (O’Sullivan 1979b; Appendix A) and 

was used in Langdon and Abrajano’s (1994) and Hamblin’s (1997) studies of source rock 

and migration of hydrocarbons. It should be noted that in Hamblin’s (1997) report the 

location of DDH-79-03 is erroneously placed approximately 22 km to the southwest.  

These drill holes show a wide-range of friable and poorly consolidated lithologies 

with varying dips. This suggests that the Howley Formation in the Western Margin was 

deposited during episodic tectonic activity and that its variable lithologies reflect detritus 

of proximal sources. Post-deposition deformation has sheared and folded the Howley 

Formation in the Western Margin. 

3.5.5 Junction Brook 

Junction Brook begins at the northwest extremity of Grand Lake, near the 

southwest corner of the Howley Basin, west of the inferred continuation of the Fisher 

Hills-Birchy Ridge Fault (Map A). The river is dammed and is now dry unless the 

spillway is open, revealing excellent exposures of the North Brook Formation, Rocky 

Brook Formation (Spillway Member), and Humber Falls Formation, on its northwesterly 

course to the Humber River (Hyde, 1982; Map A). Because the rocks exposed along 

Junction Brook are west of the Fisher Hills-Birchy Ridge Fault, they are considered part 

of the Humber Basin and not the Howley Basin. However, it was decided to traverse 

Junction Brook because it is situated in an interesting position with regards to the 

structure of the western margin of the Howley Basin: if continued south along their 
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inferred trends, the splays that enclose the fault panels east of Birchy Ridge would meet 

the Fisher Hills-Birchy Ridge Fault at or near Junction Brook (Hyde, 1982;  

Map A). The section of Junction Brook that exposes the North Brook Formation was 

traversed and is reported on. 

From southeast to northwest, the North Brook Formation quickly progresses from 

thick sequences of red, coarse- to medium-grained sandstones with thin beds of trough-

filling pebble to cobble conglomerates into thick beds of very fine-grained, laminated, red 

sandstones that are locally cross-bedded and internally fining upwards. Overall the North 

Brook Formation through Junction Brook forms a steep, quickly changing to gentle, 

westerly dipping and younging homoclinal panel in a fining upwards sequence. Slight 

variations in dips produce steeply east dipping axial planes and a poorly constrained 

shallowly southwest plunging beta axis (06-202; Figures 3.20-3.23).  

Along the most southeasterly section of Junction Brook, near the presumed 

location of the Fisher Hills-Birchy Ridge Fault, the North Brook Formation is highly 

deformed. Here, steep coarse-grained sandstone beds are crosscut by numerous very steep 

to sub-vertical faults (Figures 3.20-3.23). A group of these faults strike roughly east-west, 

nearly perpendicular to the map trace of the Fisher Hills-Birchy Ridge master fault, with 

shallowly west plunging lineations (Figures 3.20-3.23). One such fault, exposed on the 

floor of the dry riverbed, displaces an identifiable sandstone bed that displays a fault drag 

structure, giving a sinistral kinematic movement indicator (Figure 3.24). Two other sub 

vertical faults strike northeast-southwest with moderate southwest plunging lineations, 

and one fault, closest to the presumed map trace of the master fault, has nearly down-dip 
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lineations (Figures 3.20-3.24). Because a lot of these faults occur at high angles to 

bedding, they give poor apparent dips in section (Figure 3.22). Faults with very shallowly 

exaggerated apparent dips in section were omitted. 

3.5.6 Structure of the Western Margin 

The Deer Lake Group formations and Howley Formation, enclosed by inferred 

northeast trending splays of the Hampden Fault, form fault panels along the Western 

Margin of the Howley Basin (Hyde, 1982). The panels internally all show significant 

contractional deformation structural features. Steeply dipping bedding, tight folds, and 

steep to sub-vertical internal faults, suggest strike-slip transpressional deformation. Given 

the fault panels’ location along southeast Birchy Ridge, which has compelling structural 

evidence for dextral strike slip transpression (e.g., Hyde et al., 1994 and many others; 

Section 3.6), a dextral strike-slip origin of structures observed within the fault panels 

would be logical. However, some geometries of structures with thoroughgoing faults are 

not predicted in strike-slip transpressional theory (e.g., Harding, 1985). First, strain 

partitioning between the Fisher Hills-Birchy Ridge Fault and the Hampden Fault along 

the connecting splays would produce a transtensional step-over geometry with inferred 

dextral displacement. Also, both fold axes of tight folds and steep faults with dip slip 

lineations with the fault panels, make large angles to the strikes of bounding splays 

(Figures 3.17; Map A). The above arguments require the splays to have their map traces 

as inferred by Hyde (1982) and may suggest that they may have different orientations and 

do not branch from the Fisher Hills-Birchy Ridge Fault. This argument is presently 

speculative and for this reason the fault map traces as Hyde (1982) has inferred have been 



118 

 

left on Map A. The splays may also be an over simplification of a complex network of 

connecting faults that have undergone polyphased deformation with significant fault 

block rotation. The lack of exposed kinematic indicators within the fault panels has not 

allowed for structural interpretations into the exact nature or deformational history of 

these fault-bounded units.  

The Howley Formation mapped along the Western Margin of the basin (Hyde, 

1982) is only exposed in a few localities, and based on core from shallow drill holes 

(O’Sullivan, 1979a, b, c; Map A). Without any palynological control or exposure/ 

intersections of coal, there is some skepticism that the drill holes along the Western 

Margin of the basin in fact intersected true Howley Formation; both Humber Falls 

Formation and Little Pond Brook Formation were shown by Gall (1984) to be 

petrologically very similar. For clarification as to which formation underlays the western 

Howley Basin, a palynological investigation is advised. However, once again, without 

further supporting geoscience, the Howley Formation will remain assumed to underlie the 

Western Margin and all following interpretations will be based on this assumption. 

Deformation along Junction Brook is concentrated at the head of the river and 

quickly dissipates to the west (over a few hundred meters) to a gently west dipping 

homocline of un-deformed sandstone beds (Figures 3.20-3.22). The steeply west-dipping 

bedding and suite of steep to sub-vertical faults with shallowly plunging lineations are 

interpreted to reflect strike-slip deformation. The exposed fault with a sinistral kinematic 

indicator (Figure 3.23) suggests that this suite of faults are antithetic strike-slip shears. If 

deformation at the head of Junction Brook is the product of strain associated with the 
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Fisher Hills-Birchy Ridge Fault, the quickly dissipating deformation would suggest that 

fault-induced strain is very localized and reflect strike-slip rather than regional 

contractional deformation. 

Structural mapping of the Western Margin of the Howley Basin clearly shows that 

all formations experienced post-depositional deformation. The fault panels show a large 

compressional component with structures that suggest poly-deformation, whereas 

Junction Brook is dominated by localized strike-slip. Episodes of post-Westphalian, but 

likely beginning in the Namurian, dextral strike-slip transpression is favored, with lateral 

growth of the Birchy Ridge manifested as predominately steep reverse-dextral faults 

migrating to the east. The Fisher Hills-Birchy Ridge Fault is interpreted as the master 

through-going strike-slip fault accommodating lateral dextral displacement.  

3.6 Birchy Ridge  

Birchy Ridge forms a northeast-southwest trending topographical high from the 

headwaters of Junction Brook into White Bay, separating the Howley Basin in the east 

from the Humber Basin to the west (Maps A, B). It is fault bounded along its length by 

the north-northeast trending Fisher Hills-Birchy Fault to the west and the Hampden Fault 

to the east (Map A). Birchy Ridge is not imaged well magnetically; a very long 

wavelength, consistent, magnetic gradient increasing to the northwest into a pronounced 

high over the Taylor Brook Gabbro over shadows any features in this area (Map C). 

However, the first vertical derivative magnetic (Map D) has a very strong continuous 
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signal associated with the Fisher Hills-Birchy Ridge Fault, but the Hampden Fault 

remains invisible.  

Within the ridge the Saltwater Cove Formation of the Anguille Group is well-

exposed in a network of logging roads and incised stream beds. Characteristic lithologies 

of the Saltwater Cove Formation consist of indurated arkosic pebble to coble 

conglomerates and sandstones forming fining upwards sequences, interbedded with black 

to grey-green shale with rare cleavage.  

Much greater exposure than other Carboniferous lithologies in the map area 

allowed for two regional cross-section constructions, giving good control of structural 

style, and two small quarries permitted detailed inspection of fold geometries. No drill 

holes have been collared in the Saltwater Cove Formation along Birchy Ridge in the map 

area.   

3.6.1 Southern Quarry 

A small quarry next to a logging road in east-central Birchy Ridge, a kilometer 

west of the Hampden Fault, exposes two long (~100 m) vertical sections of typical 

Saltwater Cove Formation lithologies (Map A; Figure 3.25). The southern wall of the 

quarry exposes very steep to upright southeast dipping beds of very fine-grained grey 

sandstone (Figure 3.25). Immediately to the southeast a massive, very coarse-grained, 

thick arkosic sandstone bed overlays a 2 m thick shale bed, together younging and 

dipping shallowly to the southwest (Figure 3.25). Marker beds were not observed 

crossing this sharp change in orientations over a short length; thus there are two options
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to account for this type of geometry: there is a fault separating the two almost 

perpendicular dips; or the shallowly dipping massive arkosic bed sits in the core of a 

shallowly southwest plunging syncline, and the upright fine grained beds to the northwest 

lay underneath and the marker is not exposed on the west limb. If the latter is the case, 

strata would kink around a moderately steep westerly dipping axial plane into a shallowly 

southwest dipping orientation, with a gently southwest plunging (23-215) calculated fold 

axis (Figures 3.25, 3.26). 

In the northern quarry wall, thick bedded fining upward sequences of arkosic 

conglomerates, laminated blue-grey sandstones, and black shales are exposed in an 

upward facing anticline-syncline pair that fold around steep southeast-dipping axial 

planes, with calculated fold axes plunging gently to moderately to the southwest (Figures 

3.25, 3.26).  

 An outcrop in the center of the quarry revealed a sub-vertical southwest dipping 

1.5 m fault zone of brecciated fault gouge, cutting steeply southeast dipping rippled 

siltstone and sandstone packages (Figure 3.27). Kinematic indicators or offsets were not 

observed within the fault zone. It is unknown how much offset has occurred on this fault, 

but assuming only minor, both structures on the northern wall and southern wall are 

projected into cross-section (Figure 3.26). The fault was omitted because of its near 

parallelism with the cross-section (Figure 3.25). Together, the sparse dataset of bedding 

planes forms a moderately cylindrical fold plot with a calculated beta axis of 36-218 

(Figure 3.26). Folding in the Southern Quarry appears to show a weak easterly directed 

sense of asymmetry (Figure 3.26). 



123 

 



124 

 

 

3.6.2 Southern Birchy Ridge 

From well-exposed sections along the berms and clear-cuts of an unnamed  

logging road, and outcrops documented along McIsaacs Brook on Hyde and Ware’s 

(1980) 1:50,000 geological map, a detailed cross-section through the  central region of 

Birchy Ridge was constructed (Map A; Figures 3.28, 3.29). The Saltwater Cove 

Formation along this section forms fining upward packages of sub-angular, arkosic, 

pebble to cobble conglomerate beds, sandstones, and shales. These lithologies form non-

cylindrical, steep to sub-vertical asymmetrical trains of tight, upward facing anticlines 

and synclines that, at depth, bend around sub-vertical axial planes trending north-south 

(Figures 3.28, 3.29). Fold axes plunge moderately to the north-northeast for the eastern 

folds, and moderately to the south-southwest for the western folds (Figure 3.28).  

Together, these bedding planes give a moderately well-defined beta axis (34-190)
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plunging moderately to the south-southwest (Figure 3.29). Overall, folding through 

southern Birchy Ridge is asymmetric with an east vergence (Figure 3.29).  

A well-exposed group of showings on the berm of a new logging road in the 

eastern part of Figure 3.28, display a faulted section on the most easterly limb of a close 

syncline. Here, fining upwards packages of black organic shale beds (2 cm to 1.0 m thick) 

and fine- to medium-grained, laminated and fractured grey sandstones are overlain by 

massive medium- to coarse-grained grey sandstones and pebble conglomerates. 

Conglomerates overlie shales to the north, creating spectacular load structures (Figure 
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3.30). The section forms a sub-vertical to moderately west dipping limb that shallows to 

the west. A moderately inclined slickensided fault surface concentrated in a shale bed 

separates the northern section from the southern section. This fault dips to the northeast 

with lineations plunging (38-074) moderately to the east-northeast (Figures 3.28, 3.29). 

3.6.3 Northern Birchy Ridge 

Approximately 1 km to the north, exposures along Route 422 and Flights Brook 

(from Hyde and Ware’s (1980) 1:50,000 geological map) provide well-constrained data 

for a cross-section through northern Birchy Ridge (Map A; Figures 3.31, 3.32). 

Lithologies examined here are similar to those exposed to the south, but with greater 

amounts of sandstones and siltstone exposed. Fining upwards packages are typically on 

the order of several meters. In northern Birchy Ridge, these rocks form very steep to 

upright, tight, upwards facing asymmetrical anticlines and synclines that fold around very 

steep to upright axial planes that dip to the east and south east (Figures 3.31, 3.32), quite 

similar to folding observed through McIsaacs Brook (Figures 3.28, 3.29); however, in this 

cross-section the overall sense of fold asymmetry appears to be west-directed. Fold axes 

along this section predominately plunge moderately to the south with a single shallowly 

southwest plunging and a moderately north plunging fold axis in the eastern part of the 

section (Figure 3.31). A single occurrence of steep east dipping cleavage was observed in 

a mica-rich fine-grained sandstone and has a moderate southeast dip, roughly parallel 

axial planes of the folds (Figures 3.31, 3.32). Together, bedding planes form non-

cylindrical folds with a gently plunging beta axis (23-192) to the south (Figure 3.32). 
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3.6.4 Northern Quarry 

  Approximately 3 km north of McIsaacs Brook, in another small quarry, thick 

packages of medium grained arkosic sandstones and dark grey-black shale, with thin 

bedded siltstone are exposed in two vertical walls (Map A; Figure 3.33). In the 

northwestern wall (K to K’), an open anticline-syncline pair folds around steeply west-

dipping to upright axial planes before folding into a steep close, partly broken, anticline 

with a very steeply west-dipping axial plane (Figures 3.33, 3.34). Cleavage in the steep 

forelimb of the anticline dips steeply to the west-southwest. To the east of the broken 

anticline, an open syncline is cut by a steep east-northeast dipping fault with near down-

dip lineations (Figures 3.33, 3.34). 

 The southeast quarry wall (K’’ to K’’’) displays thick bedded, medium- to coarse-

grained arkosic sandstones interbedded with dark grey shales that form an open, upward 

facing, syncline (Figures 3.33, 3.34). Slaty cleavage in the shale beds through this fold 

dip moderately to steeply to the west, forming steep to near parallelism intersection 

angles with bedding (Figures 3.33, 3.34). The cleavage bedding relationship in this fold is 

near axial planar with cleavage in the west limb and the core of the syncline, but diverges 

to moderately southwest-dipping in the eastern limb (Figure 3.34). This anomalous 

cleavage measurement may reflect late-stage refolding. To the east, a steep east dipping 

fault within sheared along a shale bed, separates the syncline from a non-cylindrical open 

syncline anticline pair that projects to form an anticline folding around a steeply west 

dipping axial plane at depth (Figures 3.33, 3.34). On the steeply southeast dipping limb, 

steep east dipping cleavage is present in a shale bed (Figures 3.33, 3.34). Further to the 
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east, a sub-vertical east dipping fault separates the eastern limb of the anticline with steep 

northwest dipping and younging beds before exposure is lost (Figures 3.33, 3.34). 

 Non-cylindrical folds along this section give shallow to moderately north-

northeast and shallow southwest plunging fold axes (Figure 3.33). Together, bedding 

produces a very poorly constrained shallowly south-southwest plunging (07-200) beta 

axis, with fold geometry showing good sense of east-directed vergence (Figure 3.34). 

3.6.5 Structure of Birchy Ridge Structures 

The Saltwater Cove Formation exposed throughout Birchy Ridge is in a highly 

deformed state; mesoscopic and macroscopic folds are frequent, often with close to tight 

(near locking angle) interlimb angles, and steep faults are common that both cut and shear 

bedding planes. Lithologies are the most indurated of all of the Carboniferous units, with 

slaty cleavage forming in the more incompetent beds. Overall the fold system in Birchy 

Ridge displays an easterly sense of vergence. 

Folding within Birchy Ridge, albeit predominately non-cylindrical, consistently 

produces en echelon fold axes that form oblique angles with bounding master faults’ map 

traces (Fisher Hills-Birchy Ridge and Hampden faults). This is in agreement with 

previous workers observations and interpretation that dextral transpressional strain along 

these faults produced deformation of the Saltwater Cove Formation in Birchy Ridge (e.g., 

Hyde, 1982, 1984; Hyde et al., 1994). Internal steep northwest trending faults with near 

downdip lineations are interpreted to be reverse, and the sub-vertical north-northeast 

trending faults, synthetic strike-slip shears. Reclined to vertical folds, folded cleavage, 
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and curvilinear fold limbs, all suggest that the Saltwater Cove Formation has endured at 

least two episodes of high strain dextral transpression. 
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Chapter 4: Geophysical Analysis of the Howley Basin  

4.1 Introduction 

 The lack of exposure and limited shallow drilling in the Howley Basin leaves its 

structural and stratigraphic architecture elusive. Geophysical surveying can be a very 

cost-effective method of predicting subsurface features, basin geometry and depth; all of 

which are critical for proper evaluation of hydrocarbon generation, migration, and 

trapping scenarios. A government funded, high-resolution aeromagnetic survey was 

collected over the Howley Basin in 2009 (Cook and Kilfoil, 2009; Section 4.5). Gravity 

data collection has not been carried out regionally over the basin since 1983 (Miller and 

Wright, 1984). Since that time there have been substantial advances in gravity collecting 

and processing technologies.  

One of the primary objectives of this study is to supplement the high-resolution 

aeromagnetic data with a modern land-based gravity survey (Section 4.4). Because much 

of the Howley Basin is overlain by Sandy Lake – which is the largest area not sampled by 

previously acquired gravity surveys (Miller and Wright, 1984) – a thorough coverage of 

the basin required surveying over the frozen surface of the lake. In order to arrive at 

geologically meaningful gravity data for locations over Sandy Lake, a detailed 

bathymetry map (Section 4.2.5) was created in order to remove the anomalous mass of 

the water column (Section 4.4.4) in the complete Bouguer (terrain and bathymetry 

corrected) anomaly map (Map E). To accomplish this, a Ground Penetrating Radar (GPR) 
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was used to survey the depth of Sandy Lake along transects that traversed gravity station 

locations on the lake (Section 4.2). 

The largest contributor to the uncertainty in gravity measurements is the accuracy 

and precision of the gravimeter’s elevation. Advances and availability of GPSs have 

allowed for field-based units to reach very high and reliable resolutions. A Real Time 

Kinematic (RTK) GPS survey was run in conjunction with gravity surveying to reach 

sub-decimeter resolution at each station location (Section 4.3). This is a significant 

advance from previous gravity surveys collected over the Howley Basin. 

Two governmentally funded high-resolution aeromagnetic surveys and several 

recently acquired industry aeromagnetic surveys (available in the public domain), flown 

in the area around the Howley Basin, have been knit together (Section 4.5) to create a 

regional magnetic map (Map C). Coverage of the recent surveys is not complete, and the 

lower-resolution GSC’s regional aeromagnetic map (Kilfoil and Bruce, 1990) was used to 

fill in the gaps (Section 4.5). 

Final compilations of gravity (Map D) and aeromagnetics (Map C) are used, along 

with geological interpretations and assumptions, to execute several 2 ¾ D forward 

modeling profiles of the Howley Basin (Chapter 5). 

4.2 Ground Penetrating Radar (GPR) – Bathymetry Data  

GPR systems use a transmitter of high frequency radio waves with a separate 

receiver at fixed geometry to image the subsurface through reflections of “lossy” 
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dielectric material (Jol, 2009). By moving the transmitter and receiver over an area of 

interest, reflections are processed to create a two-dimensional profile of dielectric 

property contrasts in the subsurface medium. This geophysical technique is well suited to 

image the interface between freshwater and soft sediments at the bottom of a lake because 

of their contrasts in dielectric properties (Jol, 2009). The results of this survey were used 

to create a bathymetry map of Sandy Lake (Section 4.2.5) for the purpose of removing the 

anomalous mass created by the water column (Section 4.4.4), from the Bouguer gravity 

map (Map D).  

4.2.1 Sensors and Software GPR System  

 A GPR system was rented from Sensors & Software, Mississauga, Canada to 

collect the bathymetry data. The system consists of two 50 MHz antennas, a Digital 

Video Logger (DVL), and a control module. The two antennas are each powered by two 

12 Volt batteries, mounted on the antennas, and are connected to the control module via 

fiber optic cables. The control module is mounted onto the back of the DVL and is 

powered by an external 12 Volt battery. The DVL allows the user to see reflections in 

real-time and is the interface in which parameters for data collection are set. A Garmin 

hand-held GPS was connected to the control module to georeference data as it was stored 

in the control module’s internal memory.  

4.2.2    GPR Surveying 

 Prior to GPR surveying, the approximate maximum depth of Sandy Lake (100 

feet) was obtained through discussions with residents of Howley, who had observed lake 
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depths with recreational depth finders while boating on the lake. This information plus an 

initial survey of the conductivity of the lake water (Appendix B) led to the choice of 

renting 50 MHz antennas in order to image the deepest portions of the lake with the 

highest resolution.  

The GPR surveying was done over Sandy Lake to measure the depth of the water 

column under gravity stations taken on the ice. This was completed by attaching the GPR 

transmitter and receiver on two parallel toboggans with a 1.4 m horizontal separation and 

towed behind a sleigh attached to a snow machine (Figure 4.1). The snow machine was 

driven at approximately 22 km/h along transects over gravity station locations while the 

GPR collected GPS referenced data (Figure 4.2).
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4.2.3 Bathymetry 

Georeferenced GPR reflection data collected over Sandy Lake (Appendix C) was 

uploaded into Sensors & Software’s EKKO_Project 2 software platform. Each transect 

was plotted with a velocity of 0.033 m/ns – the speed of electromagnetic waves in fresh 

water (Jol, 2009) – to give the depth of the water column (e.g., Figure 4.3A). Each 

transect was then interpreted for reflections of the bottom of the lake with EKKO_Project 

2 Polyline Interpretation Tool in the LineView screen (e.g., Figure 4.3B). The nodes used 

to make the polyline interpretations were exported into Microsoft Excel as georeferenced 

depth files, recorded as Eastings and Northings, UTM Zone 21N, NAD83, and depth in 

meters (Appendix C).  An ArcGIS shape file of the shoreline and islands of Sandy Lake 

was exported as a .csv file, with each node used to create the polyline of the lake assigned 

a depth value of zero (Appendix C). This file was then added to the bathymetry Excel file 

(Appendix C) and loaded into Oasis Montaj as a database. The shoreline point data was 

used to more accurately represent the true depth of the lake by interpolating only to the 

shore of the lake and assigning that point a value of zero meters. GPR and shoreline point 

data were gridded in Oasis Montaj with a 50 m minimum curvature cell size and linear 

color scheme, and then windowed with the outline of Sandy Lake polygon file (Figure 

4.4; Appendix C). This grid was used to correct for the mass of the water column beneath 

each gravity reading taken on the lake (Section 4.4.4).  
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4.3 Real Time Kinematic (RTK) Global Positioning System (GPS)  

A GPS survey was conducted in conjunction with the gravity surveys to 

accurately determine each gravity station’s exact planimetric and vertical location, 

referenced to the GRS80 ellipsoid. The accuracy and precision of the vertical component 

is particularly important in gravity surveying because of the inverse squared relationship 

gravity has with distance to mass (Section 4.4).  

An RTK survey was selected as the most practical survey method for this study 

because of the speed at which sub-decimeter accuracy is achieved in both the planimetric 

and vertical. The RTK method uses two receivers, a stationary receiver (the base station) 

and a roving receiver. The base station is set up to calculate its approximate location by 

averaging satellite signals, for an unspecified amount of time, as determined by the user. 

Once the base’s location has been approximated it is then locked at this specific location. 

It uses this approximate location, along with satellite ephemeris, to calculate the 

differential corrections (atmospheric and orbital errors and counteract anti-spoofing 

signals put on by the United States Department of Defence (DoD)). The approximate 

location of the base and correction code is sent to the roving receiver via radio signal. If 

the roving receiver shares multiple common satellites with the base, it is able to use this 

data to determine its location to within a few centimeters relative to the base’s location in 

real-time. Detailed description of the theory and algorithms used in RTK surveying are 

beyond the scope of this study and the interested reader is referred to Hofmann-

Wellenhof and Moritz (2006). 
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4.3.1 Topcon HiPer Lite+ GPS 

 The Topcon Positioning HiPer Lite+ system uses two dual-frequency receivers 

that are capable of receiving and processing L1 and L2 signals from both GPS satellites, 

DoD, and Global Navigation Satellite System (GLONASS) satellites, Russian Federation 

Ministry of Defence. This capability allows for more satellites to be in view at any one 

time, increasing accuracy in position and decreasing the Dilution of Precision (DOP) – a 

function of the geometric arrangement of satellites, as they are presented to the receiver, 

which can enhance or reduce location resolution depending on degree of clustering and 

position of satellites on the horizon.  The ability of the HiPer Lite+ receivers to process 

both frequencies of GPS and GLONASS satellites, allows them to remove almost all 

ionospheric effect from the code and carrier phases, and requires less observation time to 

achieve the same precision as single frequency receivers (Topcon, 2004).    

Both receivers are equipped with 915 MHz spread radio modems that enable 

communication between themselves. The 1 Watt transmitter on the base is only able to 

transmit a relatively short distance of 1-2 km, and is dependent on line-of-sight and 

atmospheric conditions. A Topcon RE-S1 1 Watt 915 MHz spread radio repeater was 

purchased and used for surveys conducted after March, 2013, effectively doubling the 

range of communication between the base and roving receivers (Topcon, 2006). The 

receivers also use an internal Bluetooth transmitting and receiving module to 

communicate with other devices with Bluetooth wireless technology (Topcon, 2004). A 

Topcon FC-200 data collector was used in conjunction with Topcon’s TopSURV 
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integrated controller survey software to record rover measurements and configure 

receivers in the field. 

4.3.2 GPS Surveying 

During RTK surveying, the base receiver was set to record ‘static’ observations. 

Satellite observations and estimation steps were recorded every 1.0 seconds with a 10.0⁰ 

elevation mask cut-off. Typical static observations were taken for two hours or greater. 

The raw data was then uploaded to a computer and post processed with a publically 

available application (Section 4.3.3). After post processing, the base’s location is 

determined to within a few centimeters. The difference between the approximate location 

of the base and its post-possessed location is used to perform a three-dimensional shift to 

all of the roving receiver’s stations associated with that base, giving their precise location 

relative to the preferred ellipsoid.  

The receivers record the position of their Antennas’ Phase Center (APC), which is 

located inside the receiver. The receivers are either placed on a leveled tripod, which 

stands an unfixed height above the surface of the Earth (base receiver), or on a 2 m stake 

(roving receiver). In order to determine the ellipsoidal height of each gravity station’s 

location to the desired accuracy, both receivers’ heights above the surface of the Earth 

must be known. Before a base receiver is set to its approximate its location, the slant 

height of the receiver, measured with a measuring tape from a point directly under the 

receiver – located with a scope attached to the tripod - and its Slant Height Measure Mark 

(SHMM) (Topcon, 2004). The slant height was recorded in both a notebook and 
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internally in the FC200 within TopSurv survey software. The fixed vertical height of the 

roving receiver was recorded in TopSurv as 2.0 m. 

To insure that only measurements with the desired accuracy were taken with the 

roving receiver, survey parameters were set in TopSURV to allow station locations to be 

recorded only if the roving receiver had a fixed solution (sharing multiple satellites with 

and was receiving corrections from the base) and had an uncertainty of less than 3.0 cm in 

the vertical.      

On the first survey (February 14th to March 3rd, 2013) we were unable to collect 

raw satellite ephemeris data with the base receiver due to technical issues. This meant that 

all of the roving stations had the same uncertainty in position as their base station’s initial 

approximation. To overcome this, all roving stations were tied back to the first base 

station’s approximation. This was done by re-occupying a point common within both the 

current base station’s radio transmitting range and that of the previous base station. The 

difference between the two roving receiver locations, at the same point, was then applied 

in a three-dimensional shift to all of the roving stations associated with that particular 

base. Upon resolving the technical issue with the base receiver, raw data was collected 

and processed on the following fieldtrip (July 18th to 23rd, 2013) for a base station with a 

rover measurement at precisely the same location of a previously occupied rover station 

from the winter survey (marked with flagging tape and in a flat, unique location). This 

allowed for one three-dimensional shift be applied to all of the winter survey’s stations, 

bringing their precise locations relative to the accuracy of position of the later base.  
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Another method used during the winter survey was to consider the ice surface 

overlaying Sandy Lake to be at the same elevation everywhere. Using this assumption, 

day surveys that were conducted too far away from the original base station, but within 

transmitting range of the lake, used the lake as a defined vertical reference point. That is, 

each base station would have at least one rover measurement on the lake surface.  This 

allowed us to tie in stations vertically to the original base station by treating the entire 

lake as a common vertical point. A vertical shift was then applied to the roving stations 

for each base station to bring them to a common survey datum. This method introduced 

large errors (several meters) into these peripheral surveys’ horizontal resolution, but kept 

the vertical to within a few centimeters. Great care was taken to record all of the common 

points and shifts during the winter survey and we feel that the resulting data is in good 

standing. 

4.3.3 Post-processing of GPS Static Observations 

Base stations’ static observations were uploaded to a PC from the receiver using 

Topcon’s PC-CDU software, which places observations in a .tps format. These files were 

then translated into Receiver Independent Exchange Format (RINEX) observation (.??O 

format) files using Topcon’s Topcon Link v.7.5 software application. The slant height of 

each base station was recorded within Topcon Link and the plum line was internally 

calculated and placed within its respective RINEX file. Each RINEX file was post-

processed using NRCan’s CSRS-PPP online application (Natural Resources Canada, c). 

Processing parameters were static observations, NAD83 Epoch 2010 Newfoundland with 

the CGDV28 vertical datum. Results of the post-processing were received by email. 
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Ellipsoid heights were returned in WGS84; however, WGS84 and GRS80 have the exact 

same value for their semi-major axis, and their semi-minor axes only differ by less than a 

millimetre, thus transformations from WGS84 to GRS80 are not needed (Neacsu, 2011). 

Final vertical uncertainties in post-processed base stations’ static observations 

range from 1.0 centimeter to 15.7 centimeters, with an average of 3.1 centimeters (Table 

4.1). The 15.7 centimeter uncertainty is an outlier. Removing it from the others gives an 

average uncertainty of 1.9 centimeters and brings the maximum uncertainty to 2.5 

centimeters. Fortunately, the base associated with this large vertical uncertainty was only 

used for one gravity station (#22133; Section 4.4). This gravity station was not omitted 

from the database because a high uncertainty in the vertical does not necessarily mean 

inaccuracy in the measurement.  
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4.4 Gravity 

Gravity surveying is a geophysical method that measures the gravity field at a 

series of specific locations to record spatial differences. Spatial differences (or anomalies) 

are then related to subsurface geology, based on contrasts in densities of lithological 

units.  

Geophysical interpretations of gravity surveys are based on Newton’s law of 

gravitational force. This law, given by Equation (4.1), states that there is a mutual 

attractive force between two masses, m1 and m2, which is proportional to the product of 

the masses and inversely proportional to the square of the separation between their 

centers of mass:  

 𝐹21
⃗⃗⃗⃗⃗⃗ = 𝐺

𝑚1𝑚2

𝑟2
�̂� 

(4.1)  

Here, 𝐹21
⃗⃗⃗⃗⃗⃗  is the force on m2 due to m1, �̂� is a unit vector directed from m2 towards m1, r is 

the distance between m1 and m2, and G is the universal gravitational constant, which in SI 

units is equal to 6.672 x 10-11 Nm2/kg2 (Telford, 1990). The force 𝐹12
⃗⃗ ⃗⃗  ⃗ on m1 due to m2 is 

equal and opposite to 𝐹21
⃗⃗⃗⃗⃗⃗ .  If we consider the force exerted on a mass at the surface of the 

Earth, and Newton’s second law of motion (i.e., 𝐹  = m𝑔 ), then by dividing Equation (4.1) 

by m2 and substituting in the mass of the Earth (me) and radius of the Earth (re), we arrive 

at Equation (4.2), where g is the force per unit mass, which is equivalent to acceleration 

(Mishra, 2011). 



152 

 

 𝑔 = 𝐺
𝑚𝑒

𝑟𝑒2
 

(4.2)  

The mass of an object is a function of its volume and density. If an object is not of 

uniform density, then its gravitational acceleration is a vector product of the density and 

distance to the point of measurement integrated over the volume. Consequently, the 

gravitational attraction of a non-homogenous body will vary from point to point, in 

response to its density distribution (Seigel, 1994); thus, gravity measurements taken over 

lithological units with varying densities will show spatial differences.  

The gravity surveying geophysical method is of particular interest in the Howley 

Basin because the less dense sediments within the basin will give an anomalously low 

gravity signal. The amplitude of the relative gravity low can be related to the thickness of 

sediments, and a depth estimate for the basin can be made.  

4.4.2 Scintrex CG-5 Autograv Gravimeter 

A Scintrex CG-5 Autograv gravimeter was used to measure the gravity field for 

this survey. The Scintrex CG-5 Autograv Gravimeter is a microprocessor-based 

automated gravimeter that uses a fused quartz spring system to give relative gravity 

measurements over an 8000 mGal range with ± 0.001 mGal precision. The system 

operates by balancing the gravitational force the proof mass applies to the spring with an 

electrostatic restoring force. The position of the mass is read by a capacitive displacement 

transducer to within 0.02 nm and an automatic feedback circuit applies DC voltage to 

capacitor plates to produce an electrostatic force, bringing the mass back to a null 
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position. This feedback voltage is a measure of the relative gravity field. Voltage is then 

converted to a digital signal and stored in the machine’s data acquisition system for 

processing.  Measurements are obtained by continuously averaging a series of readings at 

a 6 Hz sampling rate (Scintrex, 2009). The readings are displayed graphically or 

numerically on its screen in real-time along with running calculations of error and 

standard deviation, allowing for on-site assessment of data accuracy/noise.  

The CG-5 Autograv uses an onboard computer and numerous sensors to make 

several internal calculations to correct for external effects on the gravity field, including: 

an automated tidal accelerating calculation; drift correction; tilt correction; temperature 

correction; along with an auto rejection filter (see Scintrex, 2009 for more details). The 

CG-5 is equipped with a manual adjustable leveling tripod to ensure the machine is level 

and sturdy during gravity readings. 

The CG-5 Autograv also benefits from a durable shock mount system, which is 

reported to be able to withstand up to 20 G shocks with tares of less than 0.005 mGals 

(Scintrex, 2009). This feature makes the CG-5 Autograv an attractive gravimeter for 

field-based surveys in which transportation over rough terrane is unavoidable, such as this 

one.    

4.4.3 Gravity Surveying 

Gravity measurements were collected at a total of 202 unique gravity stations over 

the Howley Basin and adjacent formations on four separate fieldtrips: February 14th to 
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March 3rd, 2013; July 18th to 23rd, 2013; February 17th to 18th, 2014; and June 19th to 22nd, 

2014. 

 During the first fieldtrip, emphasis was put on collecting gravity over Sandy 

Lake, because during the winter the lake’s frozen surface was stable enough (Section 

4.4.4) for the gravimeter to achieve accurate readings. Fluctuations in the water level with 

time required all gravity readings taken over the lake to be done during this fieldtrip – in 

order to keep all stations on the lake at the same elevation. Transportation during winter 

surveys was done with snowmobiles along a network of trails, old railway tracks, and 

over frozen lakes and bogs. Subsequent fieldtrips concentrated on collecting gravity 

stations along transects that extended beyond the basin’s boundaries and filling in gaps 

from previous surveys. Access was via truck, ATV, and foot. 

Before gravity measurements were collected in the field, instrument drift and X 

and Y tilt offsets and sensitivities were measured. This was done before each field trip to 

correct for minor adjustments in the gravimeter’s spring relaxation and sensitivity to tilt, 

which can change with time and environmental factors i.e., vibration during transport. 

Once the gravimeter was properly calibrated, a field base station was created. The 

field base station was chosen to be located in an un-occupied dairy barn (-57.106824⁰ W, 

49.156262⁰ N) because it provided a sheltered location, with a concrete slab, and was 

isolated from varying anthropogenic noise. To ensure the gravimeter was at exactly the 

same location and elevation for each reading, tape was placed on the floor and the 

leveling tripod was set to its lowest level.  
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To obtain absolute gravity measurements, the field base station was tied in to a 

secondary station of the Canadian Gravity Standardization Network (CGSN), station 

number 2307, located at the Visitor’s Information Centre in Deer Lake (-56.982948⁰ W, 

49.187866⁰ N), absolute gravity value of 981000.4700 mGal (Natural Resources Canada, 

d). By reading the relative gravity, with the CG-5, at the Visitor’s Centre and then at the 

field base station, the absolute gravity value at the field base station could be determined. 

This was done by adding the difference between the relative gravity reading made at the 

CGSN station and its known value to the relative gravity readings at the field base station. 

Ties between the CGSN station in Deer Lake and our field base station were made each 

field trip and resulted in a calculated averaged absolute value of 980967.893 mGal with a 

standard deviation of 0.014 mGal (Appendix D). This field base station was denoted as 

station number 90001 for later processing purposes (see Section 4.4.4). 

All of the relative gravity readings taken in the field during this study were tied to 

a base station of known absolute gravity before and after each day. For the initial three 

fieldtrips all of the field readings were tied into the field base station (90001), but during 

the June 19th to 22nd, 2014 field trip, field readings were directly tied to CGSN stations in 

Deer Lake (described above) or in Springdale, station number 9221-1977, located at the 

Green Bay Information Centre (-56.190833⁰ W, 49.481111⁰ N), absolute gravity value of 

981031.2100 ± 0.0310 mGal (Natural Resources Canada, d). These two CGSN stations 

were given survey station numbers 90002 and 90003, respectively. 

Gravity readings were collected throughout the Howley Basin with several 

transects crossing the basin’s boundaries (Map E). The surveying was completed in a 
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non-traditional format (i.e., without grids) because densely forested areas and large bogs 

made transportation along grids difficult. However, a series of logging roads and old rail 

beds provided good coverage over the basin and were the main locations of gravity 

readings. In some instances, where a hole in the spatial coverage persisted, bogs were 

traversed by foot or snowmobiles to obtain gravity readings.  

Gravity station locations were selected mainly by their distance from a previous 

station along a transect line. If the ground was unsuitable because of instability of the 

ground (see below) or excessive topographic undulation within approximately 50 meters 

of the proposed gravity station site, a better suited location was sought within as close 

proximity as possible to the proposed location. After each gravity measurement, the 

gravimeter displayed: station number or latitude and longitude, the average relative 

gravity measurement, the standard deviation of the individual readings, X and Y tilts, 

internal temperature of the spring, earth tide correction, duration of the measurement, 

number of rejected readings, and time and date. All of the above data were recorded in the 

gravimeter’s internal computer and later uploaded to a computer. These data plus 

geographical references were also recorded in field notebooks as a safeguard from loss. 

Each gravity station was marked with a unique station number recorded on flagging tape. 

This was done so that repeat measurements could be taken at the exact same location, 

either on the same day or subsequent days.  

Surface stability proved to be an issue with collecting gravity readings over both 

frozen surfaces and bogs. The frozen surface of Sandy Lake was in particular noisy due to 

surface vibration. Several factors were postulated as to why this occurred: diurnal 
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fluctuations in temperature causing cracks in the ice would create vibrations that would 

reflect off of the shoreline, which could last for hours; changes in barometric pressure and 

wind would create contrast in pressure over the lake and produce waves in the ice; and 

anthropogenic noise from people on snowmobiles traveling over the lake. In an effort to 

remove noise caused by vibrations in the ice, the seismic filter on the gravimeter was used 

during the first fieldtrip (February 14th to March 3rd, 2013). For all other surveys, the 

regular auto-rejection filter was used. 

Another issue that arose during the winter surveys was that the metal feet of the 

leveling tripod would slowly melt into an icy layer that covered much of the ground under 

the snow or on the frozen lake. This would cause the gravimeter to tilt during a recording. 

To fix this problem, three small wooden blocks with dimensions of approximately 3.5 cm 

x 8.5 cm x 12 cm, laid on their widest face, were placed under the tripod feet while taking 

gravity readings in the winter (Figure 4.5). The additional height of the gravimeter’s 

sensing unit caused by placing the wooden blocks under the tripod (3.5 cm) was recorded 

and compensated for during processing (see Section 4.4.4) 

Taking gravity recording in bogs during the summer surveys also had 

complications: soft unstable ground produced tilting problems and wave-like fluctuations 

in the gravity signal – observed in real-time on the gravimeter’s interface. Several 

methods were tried to reduce noise caused by the un-stable surfaces of bogs: holes were 

dug through the top layer and the leveling tripod placed on more stable peat, or onto 

gravel or clay (Figure 4.5); or a one meter stake with threads that fit into the bottom of the 

gravimeter’s leveling tripod was sunk into the peat with the gravimeter attached. It was 
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found that the least noisy readings were acquired when holes were dug close to 

substantial vegetation (i.e., spruce tree stands), which typically coincided with gravel or 

clay under a shallow layer peat, which produced a more stable platform. When available, 

vegetation was sought to dig holes next to, for gravity readings taken in bogs during the 

summer surveys. Wind was also a factor for noisy gravity readings. To limit the amount 

of wind-induced vibration on the gravimeter, an umbrella was used to block the 

prevailing winds (Figure 4.5). 

Winter surveying required shoveling pits in the snow to reach the ground. These 

pits were dug with a telescoping avalanche shovel and were made only big enough to 

allow the gravimeter to be placed inside and operated. The bottom of the pit was scraped 

vigorously to remove all snow and achieve a stable surface, typically on iced-over 

ground, for the gravimeter to take a reading on. No depth measurements of snow pits 

were made, and the gravitational effect of the surrounding snow mass was considered to 

be negligible.
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4.4.4 Gravity Corrections  

In order to arrive at geologically meaningful gravity anomalies, certain 

‘corrections’ need to be applied to the observed gravity, as measured in the field. These 

corrections are adjustments for known temporal and spatial variations in the observed 

gravity that can overshadow the effects of subsurface density distributions in the observed 

gravity field. The corrections applied to this data set follow Hinze et al., (2005) – New 

standards for reducing gravity data: The North American gravity database. This was 

done so that gravity readings collected during this dissertation would be easily transferred 

to publically available databases (e.g., Canada Geoscience Data).  Oasis Montaj’s Gravity 

and Terrain Correction Extension program was used to execute these reductions. 

 Data recorded with the gravimeter were uploaded to a computer for each day 

survey, or loop, and formatted to be edited in Microsoft Excel. This data was then placed 

in an Oasis Montaj .raw file format, to be uploaded into Oasis Montaj. Each .raw loop 

contains station numbers, relative gravity readings, date and time of measurements (in 

GMT), instrument height above the ground (Section 4.4.3), and units of measurement for 

distance and elevation (Appendix D). The location of each station – recorded with the 

Topcon HiperLite+ GPS and post processed with PPP (Section 4.3.3) – was placed in .csv 

format and uploaded to Oasis along with corresponding gravity station numbers 

(Appendix D). Absolute gravity readings at base stations were placed into a .csv file and 

loaded into Oasis as a separate database (Appendix D). This data was then used to make 

the necessary corrections to the observed gravity with Oasis Montaj’s Gravity and Terrain 

Correction Extension. 
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Tidal Correction 

Tidal acceleration in the gravity field is caused by the temporal variations in 

position of the moon and the sun with respect to a specific location and time on the 

Earth’s surface. Each of these bodies has its own gravitational force, which is 

proportional to its mass and distance from the location of observation. Because both the 

moon and the sun are in motion with respect to the Earth, their distances from a specific 

location on Earth vary periodically. This produces a diurnal effect on the Earth’s 

gravitational field with a range of ±0.3mGal and an approximate period of twelve hours 

(Blakely, 1995).  

Tidal acceleration models have been produced to calculate the theoretical value on 

Earth given the date, time, and longitude and latitude of a gravity station. The CG-5 

Autograv uses the Longman formula (Longman, 1959) to compensate for the tidal 

acceleration of the moon and the sun (Scintrex, 2009); however, some mistakes were 

made when choosing the station designation in the gravimeter and the longitude and 

latitude were not properly recorded at each gravity station. This produced inaccurate tidal 

acceleration compensations within the gravimeter. To correct for this error, the tidal 

accelerations calculated by the gravimeter were removed from the observed readings and 

recalculated with Oasis Montaj’s Gravity and Terrain Correction Extension using 

observation locations measured with the TopCon GPS system and the time each gravity 

measurement was taken, in GMT. The tidal correction formula used by Oasis Montaj is 

too complex to list here, but can be obtained from the Dominion Observatory of Canada. 
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Although not all of the field stations had erroneous longitude and latitude 

readings, all of the station readings had their tidal acceleration corrections removed and 

recalculated with Oasis to give consistency to the data set.  

Instrument Height 

The sensing unit in the CG-5 is an additional 8.9 cm above the instrument’s base 

plate. The leveling tripod raises the gravimeter another 16.5 to 20.0 cm off of the ground, 

giving and average additional height of 27.15 cm. Because the elevations obtained with 

the HiPer Lite+ GPS were at the surface of the Earth, this additional height of the sensing 

unit in the gravimeter causes an approximately -0.084 mGal (Equation 4.2) differences in 

the observed gravity at each station, if not accounted for. However, since the gravimeter 

was at approximately the same height above the surface of the Earth at all of the absolute 

base station readings – used to tie in observed gravity measurements with absolute gravity  

– as well as all of the survey readings, this consistent off-set caused by the additional 

height of the sensing unit is already accounted for (Salib, 2014). 

 During the winter surveys (February 14th to March 3rd, 2013; February 17th to 

18th, 2014) three wooden blocks were used to help stabilize the gravimeter while taking 

readings on frozen ground or ice (Section 4.4.2; Figure 4.5). These wooden blocks 

elevated the gravimeter an extra 3.5 cm off the surface of the Earth, which was not 

accounted for during base station readings. To correct for this additional height of the 

sensing unit during winter gravity surveys, an instrument height of 0.035 m was placed 

into the .raw files (Appendix D) and were calculated in Oasis Montaj’s Gravity and 
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Terrain Extension with Equation 4.2: where Rh is the height corrected reading; Rt is the 

tide corrected reading; and Hi is the instrument height in meters. 

 𝑅ℎ = 𝑅𝑡 + 0.308596𝐻𝑖 
(4.2) 

Instrument Drift  

Although the CG-5 has an internal drift correction program, it needs to record 

periodical measurements at a stable location for over twelve hours with the tidal 

acceleration removed to perform an accurate calculation of the linear trend. But, during 

the first field trip to Howley (February 14th to March 3rd, 2013), the tidal acceleration 

was erroneous, resulting in an improperly calculated instrument drift by the gravimeter. 

This happened because the time difference between local time and GMT, which is used in 

the tidal acceleration calculation, was put into the gravimeter as -3.5 hours when the 

convention used is +3.5 hours. Fortunately, Oasis Montaj’s Gravity and Terrain 

Correction Extension has an instrument drift correction programed into the software. It 

uses the closure error in the base readings to calculate instrument drift (Equation 4.3), 

where: D is the instrument drift in mGal/hour; Rb1 is the relative gravity reading at base 1 

with the tidal acceleration and instrument height corrected, at time Tb1; Rb2 is the 

relative gravity reading at base 2 with the tidal acceleration and instrument height 

corrected, at time Tb2; Gb1 and Gb2 are the absolute gravity and base 1 and 2, 

respectively.  

 
𝐷 =

(𝑅𝑏2 − 𝑅𝑏1) − (𝐺𝑏2 − 𝐺𝑏1)

𝑇𝑏2 − 𝑇𝑏1
 

(4.3) 
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Absolute Gravity 

The CG-5 is a relative gravimeter, in that it is capable of measuring differences in 

the gravitational field very accurately, but it is unable to determine the absolute gravity. 

To determine the absolute gravity of field stations, a relative gravity measurement is 

taken at a location where the absolute gravity is known before and after each day survey, 

creating a loop. The difference in the relative gravity reading and the known absolute 

gravity measurement at the base station is then applied to all of the field readings for that 

loop. Equation 4.4 was used in Oasis Montaj to determine the absolute gravity and apply 

instrument drift to field readings, where: Ga is the absolute gravity value; Gb1 is the 

absolute gravity value at base station 1; Rh is the height corrected, relative gravity value 

from Equation 4.2; Rb1 is the relative gravity value at base station 1; T is the time of field 

reading; Tb1 is the time of base station 1 reading; and D is the calculated instrument drift 

in mGal/hour from Equation 4.3. 

 𝐺𝑎 = 𝐺𝑏1 + (𝑅ℎ − 𝑅𝑏1) − (𝑇 − 𝑇𝑏1)𝐷 
(4.4) 

Latitude Correction 

The theoretical or normal value of gravity – the value that would be observed if 

the Earth had no geological or topographical complexities – varies on the Earth’s surface, 

primarily with latitude. This is because the Earth’s surface is best approximated by an 

ellipsoid, with a greater radius at the equator than the poles. The difference in radii 

(approximately 21 km) has two effects on the gravity field: the distance to the center of 

the Earth, and the centrifugal force varies with latitude (Blakely, 1995). To correct or 
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normalize absolute gravity measurements made in the field, the theoretical gravity value 

at the location’s latitude is removed.  

 Because the Earth’s surface is best represented by a smooth ellipsoid, defined by a 

semi-major axis at the equator and a semi-minor axis at the poles, the effect of changing 

radii and centrifugal force on the gravity field with latitude is calculable. Using the 

Somigliana (1930) closed-form formula, with constants derived from the GRS80 

reference ellipsoid (Moritz, 1980), gives Equation 4.5: where Ge is the normal gravity at 

the equator, 978032.67715 mGal; k is a derived constant, with a value of 

0.001931851353; e is the first numerical eccentricity, with e2 equal to 0.0066943800229; 

L is latitude in decimal degrees; and Gl is the theoretical gravity in mGals (Hinze et al., 

2005). This revised theoretical gravity equation was placed into Oasis Montaj’s 

“Gravity_Formulas.lst” and used to remove the theoretical gravity value from the 

absolute gravity (Equation 4.4) for each field station. 

 
𝐺𝑙 =

𝐺𝑒(1 + 𝑘 sin2 𝐿)

(1 − 𝑒2  sin2 𝐿)1/2
 (4.5) 

 

Free-air Correction 

Field-based gravity surveys are often collected over regions with significant 

topographical relief, generating gravity stations collected at different elevations. Because 

gravity varies with distance from the center of the Earth (Equation 4.1), gravity stations at 

higher elevations will have considerably lower observed gravity values, which are not a 
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reflection of density contrasts in the subsurface. The first-order approximation of the 

effect of increasing elevation is 0.3086 mGal/m (Blakely, 1995); therefore, to achieve the 

desired accuracy needed in a geologically motivated gravity survey, the elevation of each 

station, from a vertical datum, must be precisely measured and compensated for. 

Elevations of gravity stations, collected with the HiPer Lite+ GPS (Section 4.3), 

were used to calculate the free air correction, relative to the GRS80 ellipsoid. To increase 

accuracy and keep with standardizations recommended by Hinze et al. (2005), the 

second-order approximation of Heiskanen and Moritz (1969) was used with the GRS80 

ellipsoid parameters, to give Equation 4.6: where, Gf is the free-air anomaly in mGals; Ga 

is the absolute gravity value from Equation 4.4; Gl is the latitude correction from 

Equation 4.5; L is latitude; and Hs is the elevation above the ellipsoidal, in meters. This 

equation was placed into Oasis’ Gravity_Free_Air.lst file to be run with the GRFREEAIR 

GX script. Results are given in Appendix D.  

 𝐺𝑓 = 𝐺𝑎 − 𝐺𝑙 + (0.3087691 − 0.0004398 sin2 𝐿)𝐻𝑠

+ 7.2125 × 10−8𝐻𝑠2 
(4.6) 

Bouguer Correction  

The free-air correction compensates for the effects of increased elevation above 

the ellipsoid, but does not account for the additional mass of rocks existing between the 

level of observation and the ellipsoid. The simple Bouguer correction accounts for this 

additional mass by assuming an infinitely extendable slab, of homogenous density, with 

thickness equal to the height of observation above the ellipsoid; however, the Earth is not 
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flat and does not extend to infinity. To correct for the curvature of the Earth, the Bouguer 

slab is replaced by a spherical cap that extends to 166.7 km (see LaFehr, 1991), termed 

the Bullard B correction.  

The Bouguer correction, used in Oasis Montaj (Equation 4.7), includes the 

removal of the anomalous density void in the Bouguer slab caused by the mass of the 

water column for stations taken over Sandy Lake. This was accomplished by sampling the 

bathymetry grid (Section 4.2; Appendix C) with the locations of gravity stations using 

Oasis Montaj’s GRIDSAMP GX script, giving the predicted water depth in meters below 

each station. The water depth was then included into Equation 4.7: where, Gb is the 

Bouguer anomaly in mGal; Gf is the Free Air correction from Equation 4.6; D is the 

density of the Bouguer slab (2.67 g/cm3); Dw is the density of water (1.00g/cm3); Hs is 

the station’s elevation above the ellipsoid; Hw the water depth in meters; and Gc is the 

Bullard B correction.  

 𝐺𝑏 = 𝐺𝑓 − 0.0419088[𝐷 𝐻𝑠 + (𝐷𝑤 − 𝐷)𝐻𝑤] − 𝐺𝑐 
(4.7) 

 

Terrain Corrections 

Gravity readings taken at the Earth’s surface, in areas of moderate to strong 

topographic relief, need to be corrected for the additional mass, or lack thereof, caused by 

hills or valleys, not compensated for by the Bouguer slab. Both hills and valleys reduce 

the value of gz   – what the gravimeter measures – and the terrain correction needs to be 

added to the observed gravity value (Blakely, 1995). 
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To calculate the terrain correction, information about the surrounding topography 

is needed. DEMs were downloaded from the Canadian Digital Elevation Database 

(Natural Resources Canada, d) in .dem formats, and loaded into Oasis Montaj to be 

plotted as grids. Two separate DEM grid files were created: a local DEM, from 1:50,000 

National Topographic System (NTS) map sheets with 0.75 arc second horizontal 

resolution; and a regional DEM, from 1:250,000 NTS map sheets with 3 arc second 

horizontal resolution. Both the local and regional DEMs are projected in the NAD83 

(GRS80) horizontal datum in decimal degrees, with the Canadian Geodetic Vertical 

Datum of 1928 (CGVD28) as a vertical datum. The vertical positional accuracy is 

approximately 3.0 m, for both the local DEM and approximately 50 m for the regional 

DEM (Natural Resources Canada, e).  

Once loaded into Oasis Montaj as grid files, both DEMs were reprojected from 

latitude and longitude to meters, referenced to UTM Zone 21 NAD83, with the local 

DEM and the regional DEM having cell sizes of 18.8 m and 77.9 m, respectively 

(Appendix D). This was done for the regional DEM as well – even though it spans both 

UTM zones 21 and 22 – because the regional correction grid needs to be referenced to the 

same false Eastings and Northings as the survey data. 

There is a difference in vertical datums between the gravity station location data 

(GRS80 ellipsoid height) and the DEMs (CGVD28 orthometric height). However, Oasis 

Montaj’s terrain correction utility automatically assigns each station an elevation value 

that is on the surface of the DEM, so that during computation of the terrain corrections 
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none of the gravity stations are placed above or below the predicted surface of the Earth 

at that location.   

Terrain corrections in Oasis Montaj are calculated using a combination of the 

methods described by Nagy (1966) and Kane (1962). Three different zones (Figure 4.6) 

are defined by the user: the near zone – Zone 0, centered on the gravity station and 

extending a distance of one cell (0 to 111.88 m); the intermediate zone – Zone 1, 

extending from cells one to eight (111.88 to 895 m); and the far zone – Zone 2, extending 

from the eighth cell to a Regional Correction Distance (895 m to 166.7 km). The number 

of cells in each zone is defined by the terrain corrections script in Oasis Montaj 

(GRTERAIN GX) and the user defines the boundary between Zones 1 and 2, and the 

Regional Correction Distance. An intermediate zone extending to 895 m and a far zone 

extending to 166.7 km was chosen as the input parameters to comply with 

recommendations by Hinze et al. (2005). 

  In each of these zones the effect of the topography on the gravity signal is 

calculated by different approach of averaging the actual topography, based on distance 

from the station. In the near zone, four sloping triangular sections are summed together 

using Equation 4.8 (Figure 4.6A), which describes a surface defined by the gravity station 

and the elevations of the four diagonal corners. In the intermediate zone, the terrain effect 

for each point is calculated by the flat topped square prism approximation of Nagy 

(1966), using Equation 4.9 (Figure 4.6B). The terrain effect, in the far zone (beyond eight 

cells), is derived based on the annular ring segment approximation to a square prism as 

described by Kane (1962) (Equation 4.10; Figure 4.5C). In all of the below terrain 
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correction equations (Equations 4.8 – 4.10): g1-3 is the gravity attraction caused by 

topography within the respected segments; G is the gravitational constant; D is the 

assigned density of topography (2.67 g/cm3); and the remaining variables are geometric 

constants relating to distance to topography, shown in Figure 4.6. The gravitational 

attraction calculated for each zone for each station is summed together and added to the 

Bouguer corrected gravity value (Equation 4.7) to give the Complete Bouguer correction 

(Equation 4.11). 

 
𝑔1 = 𝐺𝐷∅(𝑅 − √𝑅2 + 𝐻2 +

𝐻2

√𝑅2 + 𝐻2
) 

(4.8) 
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𝑔2 = 2𝐺𝐷𝐴2
(𝑅2 − 𝑅1√𝑅1

2 + 𝐻2 − √𝑅2
2 + 𝐻2)

(𝑅2
2 − 𝑅1

2)
 (4.10) 

 

𝐺𝑐𝑏 = 𝐺𝑏 + 𝐺𝑡(𝑔1+𝑔2+𝑔3)   (4.11) 
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4.4.5 Repeatability – Gravity Data Quality 

As a measure of gravity data quality, select gravity stations were reoccupied. 

Many gravity stations were re-measured immediately after the initial reading was taken, 

whereas others were re-measured later the same day (or loop) or on subsequent days 

(different loops) (Appendix D). This method of assessing gravity data quality introduces 

issues: does the immediate re-measurement of the gravity field at a location skew the 
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repeatability towards a smaller average and standard deviation, or is it a better assessment 

of repeatability – and hence gravity data quality – because errors introduced by 

reoccupying a station at a later time (i.e., not precisely being at the exact same location or 

elevation, changes in atmospheric pressure) are removed? Although great care was taken 

to ensure that repeated gravity measurements were taken at stations that were easily 

locatable with unique features, adverse weather (the peril of any Newfoundland-based 

geophysical survey) could change ground conditions between days. This was especially a 

factor for winter surveys. 

Analysis of the absolute value of differences between repeated  absolute gravity 

measurements and the average gravity value for that particular station, reveals favorable 

results: all repeated measurements (taken immediately after as well as at a later time or 

date) gives an average difference of 0.008 mGals and a standard deviation of 0.014 

mGals; isolating just the repeated measurements taken a different time or another day 

gives an average difference of 0.021 mGals and a standard deviation of 0.021 mGals 

(Appendix D). The actual degree of repeatability likely lies somewhere between these 

values. Regardless, the higher endmember, which is likely overestimated because of 

reasons stated above, is still a very good value for repeatability – especially for a survey 

designed to capture such large amplitude anomalies – and is deemed of high quality.     

4.4.6 Existing Gravity Datasets Over the Howley Basin 

There are three publicly available ground-based gravity datasets that include 

stations over the Howley Basin: LITHOPROBE East transects 89-2 and 89-3 (project 
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number 1989107); Miller and Wright (1984) (project number 1985291); and Weaver 

(1967) (project number 1964010). Selected areas of these gravity surveys that cover and 

extend several kilometers beyond the Howley Basin’s boundaries were downloaded as 

point data from NRCan’s Geoscience Data Repository for Geophysical Data (Natural 

Resources Canada, f), and processed to be used with gravity data collected during this 

study. This was done to assist with modeling of the Howley Basin and help delineate 

regional trends. 

In order to combine (or level) the pre-existing datasets with gravity data collected 

during this study, the data was reprocessed with the same parameters (Section 4.4.4) as 

applied to the present gravity survey. That is, they were reprocessed from their absolute 

gravity values (tied to the International Gravity Standardization Network 71) with newly 

calculated latitude and terrain corrections, to give new free-air and complete Bouguer 

values. It should be noted that all previous interpretations of the older gravity datasets in 

the Deer Lake area (e.g., Miller and Wright (1984) and Wiseman in Langdon (1993)), 

were completed without terrain corrections applied. Thus, the newly processed datasets 

better represents the true response of the gravity field due to subsurface features and are 

less obscured by mass associated with topographic relief in the surrounding area.    

To complete the reprocessing of the pre-existing gravity data, locations of stations 

were projected into the NAD83 (CSRS) UTM Zone 21N horizontal datum – to comply 

with the present study and the DEMs used for terrain corrections (Section 4.4.4) – and 

elevations were converted from orthometric heights (CGVD28) into ellipsoid elevations 

(GSR80), with NRCan’s GPS·H v3.2 application.  
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Because the older datasets were collected before the advent of field-based GPSs, 

planimetric locations of gravity stations were likely located by referencing geographic 

features on topographic maps, and elevation data was acquired with barometric altimeters 

and sling psychrometers for temperature and humidity information (Miller and Wright, 

1984; Weaver, 1967). Planimetric uncertainties reported for these datasets are 20 m, 20 

m, and 100 m, with uncertainties in elevations of 1.0 m, 3.0 m, and 3.0 m for the 

LITHOPROBE, Miller and Wright’s (1984), and Weaver’s (1967) datasets, respectively. 

The error in the quantitative measurement of gravity station locations is evident for these 

datasets  when they are overlaid onto digital topographic maps; some of Miller and 

Wright’s (1984) gravity stations that were collected near waterbodies plot within the 

waterbodies – even though their survey did not include gravity measurements over lakes. 

As a measurement of location data quality, the pre-existing datasets’ gravity station 

locations (reprojected in NAD83 (CSRS) UTM Zone 21N) were used to sample the DEM 

grid to get expected elevations for each station’s location. These values were then 

compared to elevations reported during the collection of the gravity data. This exercise 

returned undesirable results: Miller and Wright’s (1984) dataset has 37 stations (10.0% of 

the dataset) and Weaver’s 8 stations (7.5% of the dataset) with differences between the 

sampled DEM elevations and reported elevations of greater than 20 meters, with 

maximum and average differences of 153 m and 9.6 m, and 90 m and 7.9 m for Miller 

and Wright’s (1984) and Weaver’s (1967) datasets, respectively (Appendix D). In 

comparison, the same exercise on the data collected in this study (after converting from 

ellipsoid elevations (GRS80) to orthometric heights (CGVD28)) gave a maximum 

difference of 6.98 m and an average of 1.74 m. The LITHOPROBE gravity survey had 
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better results with a maximum difference of 9.86 m and an average of 1.58 m (Appendix 

D). 

The increased differences between elevations reported in Miller and Wright’s 

(1984) and Weaver’s (1967) and their sampled DEM elevations could be caused by: 

uncertainties in their planimetric locations, which could cause the sampled elevations 

from the DEM to have been sampled at a location not precisely where the actual gravity 

station was; error within the measurement of elevations themselves; human error; or any 

combination of the above. To test the theory of error in the planimetric locations causing 

the increased differences between sampled and recorded elevations in the historic 

datasets, a slope map was created from the DEM, and the gravity stations with the 

greatest differences in elevations (greater than 20 m) were overlaid onto it (Figure 4.7). If 

the differences between the sampled and reported elevations are due to the planimetric 

uncertainties, then the stations with the greatest differences should be located in areas 

with a steep gradient (100% and 20% slope for Miller and Wright’s (1984) and Weaver’s 

(1967) datasets, respectively). Figure 4.7 shows that although many of the stations with 

large discrepancies between elevation values are near areas of steep gradients, the vast 

majority of them are not (note: because of the scale of Figure 4.7 and the size of station 

location markers, many of the stations that appear to plot in areas of steep topographic 

gradient in fact plot off of slopes greater than 20%). Thus, there must have been 

additional errors included in the measurement of elevations for some of the historic 

gravity stations. It should be stated that because of the planimetric resolution of the DEM 

(18.8 m; Section 4.4.4), there exists a possibility that large isolated undulations in  



175 

 

 



176 

 

topography could be aliased by undersampling. However, after traveling through much of 

the basin, it is the writer’s opinion that topography of this nature is non-existent within 

the study area.  Furthermore, the magnitude of some of the differences between sampled 

and recorded elevations are too great to be a function of uncertainties in planimetric 

location or accuracy of elevation measurements and must have a degree of human error 

involved. One such station – Miller and Wright’s (1984) station number 2038 – has a 

difference in elevation between the sampled DEM and the reported elevation of 153 m. 

This station’s gravity value is also anomalously high compared to surrounding values and 

does not agree with the gradient of the gravity field in the area, and therefore must be of 

human error. This station does not appear on Miller and Wright’s (1984) published map 

of the gravity survey over the Deer Lake Basin. It is quite possible that because Miller 

and Wright’s (1984) survey took place before the wide use of field-based computers to 

record data in real time, there was a point when hand-written data were transferred to 

digital form, which could have easily introduced errors by misreading hand-written 

numbers.  

Upon the discovery of this anomalous value in Miller’s (1984) dataset, his 

published paper copy of the gravity survey was scanned, georeferenced, and then overlaid 

with downloaded gravity stations from his survey (Natural Resources Canada, f). This 

exercise revealed that several gravity stations that appear on the downloaded dataset were 

not used in Miller’s (1984) published gravity maps of the Deer Lake Basin. It is unknown 

why there is this discrepancy in the number of stations between Miller and Wright’s 

(1984) report and data from their survey available on Natural Resources Canada (f). It 
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should be noted that the paper map in Miller and Wright’s (1984) report does not cover 

the full extent of their gravity survey, and gravity stations beyond its boundaries were not 

able to be checked for errors in the same manner.  

An attempt to reoccupy some of the previously recorded gravity station locations 

was done to compare values between gravity surveys to see if they produce similar 

values. However, because there are no permanent monuments of the historic gravity 

station locations, and given their planimetric uncertainties, we were unable to exactly 

reoccupy historic gravity stations. Table 4.2 displays the coordinates, distances between 

neighbouring stations, and the absolute differences between their absolute gravity values 

and calculated complete Bouguer anomaly values for the different surveys. Despite not 

being able to precisely reoccupy the historic gravity stations, differences in values 

between surveys were generally low relative to the scale of the complete Bouguer gravity 

anomaly over the Howley Basin (> -10 mGal): mean difference for absolute gravity is 

0.699 mGal and 0.685 mGal for the complete Bouguer gravity anomaly (Table 4.2). This 

shows that the re-processed existing gravity datasets agree to within acceptable resolution 

for combining them with the present survey datasets and will assist with gravitational 

modeling of the Howley Basin.  
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4.4.7 Composite Complete Bouguer Anomaly Map  

To keep erroneous gravity values from entering the current gravity database, all 

gravity stations that have large differences between the sampled DEM elevations and 

reported elevations (greater than 20 m) – for both Miller and Wright’s (1984) and 

Weaver’s (1967) stations – and/or stations that do not appear on Miller and Wright’s 

(1984) gravity map were removed. Also, where multiple gravity stations from different 

surveys occur within close proximity to each other, the most recent survey’s value was 

kept and the older survey’s removed. This was done because given the advance in 

technology, especially with GPS development, the newer survey’s gravity values are 

likely more reliable. A list of gravity stations removed from the downloaded databases, 

with reasons for doing so, is given in Appendix D. 

Once all of the erroneous gravity stations were removed, the datasets were 

combined into a single, simplified, database (Appendix E), and uploaded in Oasis Montaj 

for interpolating. Map E is the resulting composite complete Bouguer gravity anomaly 

map with geological contacts and faults overlaid onto it. A 250 m grid cell size was used 

to keep high resolution in areas of greater gravity station density (i.e., in the Howley 

Basin), but the blanking distance needed to be increased to 12000 m so that interpolations 

would extend between gravity stations with greater sampling intervals (i.e., in areas 

where Weaver’s (1967) stations are the only data points). A minimum curvature gridding 

algorithm with a histogram equalization color zoning method was used. The resulting grid 

is available in Appendix D.  
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4.5 Aeromagnetics 

Several high-resolution aeromagnetic surveys cover areas within and around the 

Deer Lake region that are all available in the public domain through the NLGS’s airborne 

geophysical database (Newfoundland and Labrador Geological Survey, d), including both 

governmentally funded and industry acquired surveys. Coverage of high-resolution 

aeromagnetic surveys is not complete, and gaps exist outside of the margins of the 

Howley Basin, noteably over the Notre Dame arc to the east and over the Wild Cove 

Pond Igneous Suite to the north (Map C). In these regions the only available 

aeromagnetic data is that of the GSC’s composite 200 m gridded magnetic map (Kilfoil 

and Bruce, 1990; DN09898; Appendix E).  

All of the aeromagnetic surveys used are available as Oasis Montaj .grd files 

through the NLGS’s airborne geophysical database (Newfoundland and Labrador 

Geological Survey, d). However, each survey was flown at different elevations, and each 

grid has been interpolated with different cell sizes (Appendix E). Some of the 

aeromagnetic surveys are only available as available as residual grids. In order to 

combine all of the aeromagnetic surveys into one composite grid, each grid needed to be 

leveled before combining. A method of leveling and stitching was chosen that keeps all 

individual grids with their original interpolation parameters, as not to introduce 

processing artifacts through blending of overlap points (Kilfoil pers. comm., 2018). The 

Deer Lake aeromagnetic survey (Kilfoil and Cook, 2009; DN09907; Appendix E) covers 

all of the Howley Basin and is the best representation of the magnetic signatures within it. 

All other grids were leveled to this grid.  
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To accomplish the leveling process, first each grid was re-gridded with a 50 m cell 

size in Oasis Montaj in order to allow each grid to be compared with a grid that shares 

common survey points, so as to reflect true values that are not skewed by cells, or 

interpolated survey points,  not lining up. Once re-gridded, each grid was compared to the 

Deer Lake grid (Cook and Kilfoil, 2009; DN09907; Appendix E) along shared survey 

areas to determine its mean difference in nT. The mean difference was then added or 

subtracted from the grid to level it with the Deer Lake grid. However, because not all 

surveys share large areas with the Deer Lake survey, first the regional GSC compilation 

grid (Kilfoil and Bruce, 1990; DN09898; Appendix E) was leveled to the Deer Lake grid, 

combined into a composite grid, and then used as the base for each subsequent grid to be 

leveled to. This allowed for each high-resolution survey to be leveled from the mean 

difference calculated over the entire area of its survey, giving a much larger number of 

cells to calculate from. After each grid was leveled and stitched with the composite 

aeromagnetic map, the process was redone with the original Deer Lake grid for final 

leveling and to keep the entirety of the Deer Lake survey. Below is the stepwise process 

that was used, which will hopefully clarify the rational and methods used to level all of 

the aeromagnetic grids to the Deer Lake grid. 

(1) Re-grid each grid to a 50 m cell size. (2) Use the Boolean And utility in Oasis 

Montaj grid utilities to isolate the area of the low-resolution regional GSC grid 

that is shared with the Deer Lake grid. (3) Subtract the isolated GSC grid (product 

of step 2) from the Deer Lake grid with the grid math utility. (4) Use the grid 

properties menu to find the mean value of the difference grid (the product of step 
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3). (6) Use the grid math utility to add the mean difference, in nT, to the GSC grid 

(leveling it with the Deer Lake survey/grid). (7) Use the Boolean XOR function to 

remove the area within the GSC grid that the Deer Lake grid occupies. (8) Use the 

Boolean OR utility to add (or stitch together) the cut GSC grid (product of step 7) 

and the Deer Lake grid to make a leveled composite grid. (9) Repeat steps 2-8 for 

the rest of the survey/grids, with the exception of finding the mean difference 

between it and the now composite grid and leveling the additional grid to the 

composite grid. (10) Repeat steps 2- 8 for the Deer Lake grid.  

After the leveling and stitching process, the composite grid was windowed to a 

smaller size, and the first vertical derivative was derived. The resulting grids were then 

overlaid with geological contacts and faults for geological interpretation (Maps C, D; 

Appendix E). 

4.6 Qualitative Interpretations of Gravity and Magnetic Maps 

The Howley Basin is associated with a large negative gravity anomaly (up to -13.5 

mGal) that is centered along the southeastern shore of Sandy Lake and is elongated 

northeast-southwest parallel to the Grand Lake Fault map trace (Map E).  The negative 

anomaly extends to the west-southwest over the basin with a moderate gradient increasing 

towards the Fisher Hills Ridge. A large positive gravity anomaly high over Proterozoic 

basement rocks in the northwest of the map leaves the Humber Basin dominated by a 

consistent gradient increasing in that direction. To the north, the Howley Basin also has a 

consistent gradient increasing to a localized anomalous gravity high situated over the 
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most western exposure of the Wild Cove Pond Igneous Suite. Along the southeastern 

margin of the Howley Basin, the negative gravity anomaly has a very sharp gradient over 

the Grand Lake Fault with a relative high over the Notre Dame arc rocks, including over 

the Hinds Brook Granite. In contrast, the assumed map trace of the Grand Lake Fault is 

not well defined over the Hinds Brook Granite in the region between Kitty Brook and 

Northeast Brook (Maps A, E). In fact, the Bouguer gravity map shows a negatively 

anomaly, with magnitudes on par with that associated with the Howley Basin, to the east 

over the Hinds Brook Granite. This anomaly has been well-sampled by this survey, as 

well as 9 stations of Miller and Wright (1984) (Map E). All gravity measurements agree 

to acceptable values. This anomalous gravity low over the Hinds Brook Granite has sharp 

gradients to high gravity values to the north, south, and east, indicating that the source of 

the anomalous low gravity signal is manifested in the upper crust. However, these sharp 

gradients do not agree with mapped contacts of igneous bodies in the area (Whalen and 

Currie, 1988; Map A). Unfortunately, the gradients have not been sampled densely (Map 

E). 

 The possibility that the Hinds Brook Granite forms basement to the Howley 

Basin, and the low gravity response associated with part of it, could have a significant 

contribution to the gravity signal of the Howley Basin, has not been addressed by 

previous geophysical modelers (e.g., Miller and Wright, 1984; Wisemen in Langdon, 

1993). This seems like an oversight on their behalf. Without knowledge of basement rock 

properties, it is difficult to make conclusions on this potential overshadowing by low 

density basement rocks. However, there is very little to no strike-separation of this 
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anomalous low over the Grand Lake Fault, and if any it would have an apparent sinistral 

offset. The CFS is predicted to have experienced more than 140 km dextral strike-slip 

displacement during the Carboniferous alone (Stockmal et al., 1990). If the Hinds Lake 

Granite underlays the Howley Basin, and is contributing to the low gravity response, then 

the Grand Lake Fault has had little to no lateral displacement along it in the late 

Carboniferous to Permian. 

The residual composite aeromagnetic map (Map C) and the complete Bouguer 

gravity map (Map E) agree many ways. The sediments in the Humber Basin are obscured 

by a magnetic high, with very high values associated with Proterozoic basement to the 

northeast, and the Silurian Taylor Brook Gabbro to the north. A localised magnetic high 

appears over the western portion of the Wild Cove Igneous Suite, although with a more 

northwest increasing gradient than the gravity field. The southwestern Howley Basin 

margin is delineated along the Grand Lake Fault, where mafic igneous rocks of the 

Topsails Igneous Sweet and Hungry Mountain Complex have large short wavelength 

magnetic signatures. And the anomalous gravity low over the northern portion of the 

Hinds Brook Granite, is mirrored by a strikingly similar low magnetic signal, extending 

into plutonic felsic units of the Topsails Igneous Complex to the south (Map C). It is 

unfortunate that this area of the Notre Dame arc is only covered by the much lower-

resolution regional aeromagnetic survey (Kilfoil and Bruce, 1990). 

One feature of the magnetic data that is not represented in the gravity map is that 

of a large, smooth, ellipsoidal shaped magnetic high, centered on the northern fringes of 

the Howley Basin gravity low (Maps C, E). With the abundance of ophiolites in the 
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region, and with the remnants of the BBL predictably lying beneath the basin, an 

ophiolite source is logical; however, the disconnect between gravity and magnetic signals, 

suggest that the source of the high magnetic anomaly is of low density rock, or does not 

have a great depth extent. Given the diverse pre-Carboniferous geology along the basin’s 

margins, there are many possibilities for the source of the magnetic anomaly. 

The first vertical derivative of the magnetic data (Map D), reveals many of the 

same features as the magnetic map (Map C); exposures of pre-Carboniferous igneous 

rocks are expressed as high amplitude, short-wavelength gradients, clearly outlining the 

map trace of the Grand Lake Fault.  

A feature highlighted in the first vertical derivative map is a sharp consistent 

gradient associated with the Fisher Hills-Birchy Ridge Fault, that clearly shows its map 

trace continuing through the head of Junction Brook (Maps A, D). Within the Howley 

Basin, the magnetic first vertical derivative reveals a blotchy expression that appears to 

form northeast trending lineations (Map D). The source of these lineations is unclear.   
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Chapter 5: Potential-field Modeling 

5.1 Introduction 

Forward modeling of gravity and magnetic databases aims to match measured 

values to computer predicted gravity and magnetic responses of the geometry assigned 

densities and magnetic susceptibilities of constructed geology. This method relies heavily 

on a priori knowledge of geology and physical properties to constrain the model (i.e., 

potential-field modeling is non-unique and there are many models that can fit the 

observed data). Pre-Carboniferous basement geology and internal stratigraphy are not 

constrained in the Howley Basin and pose a significant hurdle in the modeling process. 

Several assumptions and tactics that are used to simplify basement geology in order to 

arrive at a geologically reasonable model of the Howley Basin are discussed in this 

chapter. 

5.2 Regional-Residual Separation of Gravity Data 

The observed gravitational response is a complex combination of fields generated 

from multiple source bodies, of various geometries and depths (Telford et al., 1990). In 

any particular investigation, any number of sources may be considered ‘noise’ in 

delineating the extent of a geological body of interest. The regional-residual separation 

aims at removing the gravitational field caused by geological bodies of noninterest from 

the observed field to highlight the response of bodies of interest. 
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As a result of the gravitational field of a mass being a function of the reciprocal of 

distance squared (Section 4.4), sources at deeper depths produce a gravitational response 

with a larger wavelength than shallowly buried sources (Telford et al., 1990). This 

relationship provides a means for separating deep sources from shallow sources: 

waveform filtering. Ideally, by removing the long wavelength spectra from the observed 

gravity field, the signal from the regional (or basement rocks) can be removed, leaving 

the gravitational response of the shallow sources, and allowing for better modeling of 

geometries and depth extents of these geological bodies. However, the wavelength of a 

shallow geological body also depends on the lateral extent of the body. In the Howley 

Basin, this becomes an issue for wavelength filtering; the anomalous gravity low 

associated with sedimentary units within the basin is laterally extensive (10s of kms). 

Therefore, a regional separation based on long wavelength removal will also potentially 

remove aspects of the gravity field associated with the basin. This is unfortunate because 

the gravitational low over the Howley Basin extends east of the Grand Lake Fault into the 

Notre Dame arc (Map E; Section 4.6), and any attempt to remove the low gravity 

anomaly associated with potential basement rocks to the east will inadvertently remove 

part of the gravity signal associated with the Howley Basin.    

Previous interpretations of the depth of the Howley Basin from gravity data 

(Miller and Wright, 1984) were completed after a 5th-order polynomial trend was 

removed, stating it was statistically the best fit. These authors offered no geological 

rationale for this approach, and may have potentially removed part of the gravity anomaly 
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associated with the Howley Basin’s sedimentary pile. For this reason a regional residual 

separation was not conducted on the gravity data before geophysical modeling.      

5.3 Potential-field Properties of Lithologies 

During structural field mapping, rock samples of lithologies in the map area were 

collected and brought back to Memorial University of Newfoundland to ,measure their 

densities and magnetic susceptibilities for the geophysical modeling process. 

Unfortunately the sample survey concentrated on Carboniferous units and some of the 

igneous lithologies encountered at the basin’s margins were not sampled. This was 

because access to exposures in this area is very limited and the terrain is long and difficult 

to traverse.  

Density measurements of the samples were made using Archimedes Method, 

which states that the difference in weights of the rock in air and the totally submerged 

rock is equal to the weight of the displaced volume of water (Equation 4.12). Rearranging 

Equation 4.12 gives Equation 4.13, and substituting Vr into the density formula (Equation 

4.14), allows the density of a rock to be determined with Equation 4.15; where Mr is the 

weight of the rock in air, Ms is the weight of the submerged rock, Mdw is the weight of 

water displaced by the submerged rock, Vr is the volume of the rock, ρr is the density of 

the rock, and ρw is the density of the water. 

𝑀𝑟 − 𝑀𝑠 = 𝑀𝑑𝑤 = ρ𝑤𝑉𝑟 
  (4.12) 
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 Rock samples were submerged in fresh water for several days before 

measurement to yield water saturated or in situ densities. Samples were allowed to dry for 

half an hour to allow surface water to evaporate, weight measured with an electronic 

scale, and then submerged in a pail of fresh water and weighed with the same electronic 

scale via a net of fishing line attached to a wooden rod placed over the electronic scale. 

The results of the density calculations are given in Table 5.1. 

 Magnetic susceptibility of the rock samples were measured with a Terraplus K-10 

v2 handheld magnetic susceptibility meter set to 5 cm dimeter core reading. Each sample 

was measured ten times at various angles and then averaged. The results of the magnetic 

susceptibility measurements are given in Table 5.1  

 As expected, the Carboniferous sedimentary rocks are essentially magnetically 

invisible, with a slightly elevated value for the Saltwater Cove Formation. Silurian basalts 

of the Topsails Igneous Suite have the greatest magnetic susceptibility value and 

variation, with more hematized samples, typically occurring near faults, being less 

magnetic. Both Ordovician plutonic felsic formations are considerably magnetic, but the 

Hinds Lake Granite has more variation than the Hungry Mountain Complex, although not 

enough samples were taken to draw any robust conclusions (Table 5.1).  

𝑉𝑟 = (𝑀𝑟 − 𝑀𝑠)/ρ𝑤 
  (4.13) 

𝜌𝑟 = 𝑀𝑟/𝑉𝑟 
  (4.14) 

𝜌𝑟 = 𝑀𝑟𝜌𝑤/(𝑀𝑟 − 𝑀𝑠) 
  (4.15) 
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Comparing calculated densities of Carboniferous hand samples collected during 

this study to those used by Miller and Wright (1984) (Table 5.1) shows that they are in 

general agreement with a slightly increase in mean density for all of the formations than 

Miller and Wright’s (1984), except for the Howley Formation, for which Miller and 

Wright (1984) report a value 0.1 g/cm3 lower. Along the margins of the basin the Howley 

Formation is often represented by poorly indurated pebble to cobble conglomerates and 

coarse-grained sandstones, which give considerably lower density values. It has come 
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into question as to how much of the Howley Formation is actually represented, away 

from the basin margins and at depth, by the coarse-grained beds; looking at the drill logs 

of the early coal explorers (Murray and Howley, 1918; Hatch, 1921; Section 3.3.3; 

Appendix A), it appears that shales constitute a large portion of the Howley Formation 

towards the center of the basin to ~150 m depth. These fine-grained rocks would likely 

yield a greater density. The fine-grained Howley Formation (Pn:H’), has been modeled to 

prevail at depth and towards the center of the basin, has been assigned a higher density 

(2.55 g/cm3; Table 5.1).  

5.4 Geological Constraints for Geophysical Modeling 

The Howley Basin has very few geological constraints to assist with geophysical 

modeling.  A lack of exposure in the center of the basin and low density of shallow drill 

holes along the basin’s margins leaves the internal stratigraphy of the Howley Basin at 

depth unknown. Basement geology is unknown as well. The Taconic BBL (the tectonic 

boundary between the Humber Margin and the Notre Dame arc) lies somewhere beneath 

the sediments of the Deer Lake Basin, thus it is unknown whether Grenvillian basement, 

Taconic allochthons, or arc related igneous rocks form the basement to the Howley Basin. 

Also, post-Ordovician magmatic rocks that have intruded over the BBL are both diverse 

and complex. This lack of definitive geological constraints leaves the modeler in the 

position that there could be any number of models to fit the geophysical data, with 

extreme endmembers. 
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One opportunity presents itself in the geophysical data to overcome the lack of 

geological constraints for modeling: if the assumption is made that the source of the 

magnetic high in the center of the Howley Basin (Map C; Section 4.6) is produced by a 

magnetic source in basement rocks, then determining the depth to the top that source 

body would reveal the depth of the Carboniferous-basement contact. By using this depth 

point as an anchor, and assuming that there is a limited lateral variation of basement rock 

density over the basin, the depth and geometry of the basin can be modeled without 

knowing the specific basement rock type or its properties. This is the best approach to 

arriving at a viable basin model without introducing many assumptions. 

To determine the depth of the magnetic source, the magnetic high was isolated by 

windowing it out of the grid (Map C; Figure 5.1A), and applying a radial average power 

spectrum with the MagMap application in Oasis Montaj.  The slope of the log of the 

power spectrum is proportional to the depth of magnetic source populations (see Spector 

and Grant, 1970). The isolated high magnetic anomaly in the center of the Howley Basin 

is an ideal signal for this method of depth determination (see Spector and Grant, 1970). 

This method of depth estimation predicts that the magnetic source, assumed to be isolated 

in potential basement rocks, is at 2 km depth (Figure 5.1B).  
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5.5 Methods and Results 

Potential-field modeling of the Howley Basin was completed with the GM-SYS 

extension in Oasis Montaj and is presented in Profile X to X’. The composite complete 

Bouguer gravity dataset (Appendix D) and the Total Magnetic Field Deer Lake 

aeromagnetic survey (Cook and Kilfoil, 2009; Appendix E) were used in for the modeling 

process. A magnetic field of 53957.4 nT with an inclination of 69.2º and a declination of -

19.1º was used for the Earth’s field parameters. The magnetic station locations were set to 

90 m elevation, to account for the nominal terrain elevation of the Deer Lake 

aeromagnetic survey (Cook and Kilfoil, 2009; Appendix E). Gravity stations were left at 

ground-level. Topography was not included because the gravity data has already been 

terrain corrected (Section 4.4.4).   
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The first step in the modeling process was to use the magnetic data to model the 

high magnetic anomaly in the middle of the basin at 2 km depth. Its large amplitude (~ 

450 nT) with short strike and width (~6 km x 5 km) required a very magnetically 

susceptible body to fit the observed field. A steeply east-dipping ophiolite was 

determined to be the most geologically reasonable solution. Given the numerous ophiolite 

xenoliths in the Silurian Wild Cove Pond Igneous Suite to the north (Hibbard et al., 1990; 

Map A), granites of this formation were used to model the pre-Carboniferous basement in 

the Howley Basin.  

Once the geometry of the ophiolite was modeled, 2 km of Carboniferous 

sedimentary rocks were placed on top of it. DC shifts (a static shift applied to the whole 

data set) were then performed on both the magnetic and gravity profiles to level them 

with the observed values at station 54, centered on the magnetic high (Profile X to X’). 

This made the rest of the model relative to the known depth point.  

Outside of view of Profile X to X’, a rough Humber Basin (2.5 g/cm3) was 

modeled with Proterozoic basement (with properties given in Table 5.1) extending from 

the western edge of the Humber Basin, dipping to the east, to a depth of 10 km under the 

center of Birchy Ridge (Map A). Below 10 km, Proterozoic basement is modeled to 

underlie the entire region.  

All mapped faults and geological contacts were located along the profile. When 

applicable, the strike lengths of pre-Carboniferous geological bodies were limited to their 

mapped extent or geophysical expression (e.g., the ophiolite was assigned a strike length 
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of 3 km into and out of the profile). All Carboniferous units were left at the default strike 

length of 30 km.  

Stratigraphic thicknesses of the North Brook Formation and Rocky Brook 

Formation are not constrained in the Howley Basin from geological mapping, as they sit 

in deformed fault panels in the Western Margin (Section 3.5). These units, however, are 

expected to underlie the Howley Formation (see Section 3.3). Deer Lake Group 

subsidence models in the Howley Basin are not full understood, and these formations 

have been modeled with homogeneous thicknesses throughout the basin (Profile X to X’). 

The remaining accommodation space, predicted from the low gravity signal over the 

basin, was filled with Howley Formation. Fine-grained constituents of the Howley 

Formation are expected to comprise a large portion of the Howley Formation at depth and 

towards the center of the basin (Section 3.3.3), and a higher density has been assigned for 

these rocks for the modeling process (Pn:H’; Table 5.1).   

Profile X to X’ shows the Howley Basin to form an asymmetric half-graben 

deepening to the east, to a maximum depth of 4.3 km. Subsidence is predicted to have 

been rapid during Howley Formation deposition, in a tectonically active basin. Coarse-

grained and fine-grained Howley Formation members are shown to interfinger towards 

the center of the basin to reflect this tectonic activity on facies during deposition. The 

model presented in Profile X to X’ is based on reasonable geological assumptions and 

interpretations, but many other models may fit the observed gravity and magnetic fields. 

Further supporting geoscience investigations are needed to constrain and refine potential-

field modeling of the Howley Basin. 
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Chapter 6: Discussion and Conclusions 

6.1 Geophysical Modeling 

Basement geology in the potential-field model of the Howley Basin (Profile X to 

X’) needed to be simplified due to the lack of geological constraints for the modeling 

process. The model presented is one of many that could fit the observed data. The Deer 

Lake Group is shown to underlie the Howley Formation. This interpretation is based on 

their exposure in the Western Margin fault panels, as well as Howley’s interpretation of 

BH-93-01, located in the on the Eastern Margin, intersection of bituminous shales that he 

correlated to exposures that have since been dated to Viséan and are considered Rocky 

Brook Formation (Howley 1918b; Hyde, 1982; Map A; Appendix A). Without further 

knowledge of stratigraphic thicknesses of the Deer Lake Group in the Howley Basin, or 

evidence for Viséan subsidence models, they have been modeled as isopachous.  

Granite of the Wild Cove Pond Igneous Suite has been interpreted to form the pre-

Carboniferous basement to the Howley Basin. This interpretation is based on a relatively 

consistent magnetic signal along the strike of the Howley Basin (Map C), suggesting 

basement lithologies do not vary laterally. This combined with the presence of numerous 

ophiolite xenoliths in the Wild Cove Pond Igneous Suite and the large magnetic anomaly 

in the center of the basin, which best fits a very magnetically susceptible steeply dipping 

body, made choosing the Wild Cove Pond Igneous suite a reasonable choice. The pre-

Carboniferous geology of the area is diverse and there are many possible lithologies that 

could underlie the Howley Basin.  
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Using the radially averaged spectrum of the magnetic anomaly (Section 5.2.3) and 

the assumption that the magnetic source is in pre-Carboniferous basement, the Howley 

Basin is predicted to be 2 km deep over the magnetic anomaly. Assuming the anomalous 

gravity low over the Howley Basin (Map E) is the product of increased sedimentary fill, 

the model shows that the Howley Basin forms an asymmetric half-graben, deepening to 

the east to a depth of 4.3 km (Profile X to X’). 

The potential-field model presented in Profile X to X’ is in general agreement 

with the seismic (Vasquez, 2017) and magnetotelluric (Livada, 2014) imaging of the 

eastern margin of the Howley Basin (Map A), in that this part of the basin is relatively 

shallow (1-1.5 km), Deer Lake formations underlie the Howley Formation, and major 

faults dip steeply to the west. Both the seismic and magnetotelluric surveys were unable 

to transect the entire basin perpendicular to strike, missed the large negative gravity 

anomaly associated with it (Map A, Map E), and likely did not image the deepest part of 

the basin. The inverted magnetotelluric profile predicts that the Howley Basin reaches a 

maximum depth of 2.5 km to the southwest (Livada, 2014). Interpolating between the 

magnetotelluric and potential-field models suggests a sharp lateral depth change along the 

strike of the Howley Basin, supporting a pull-apart subsidence model. 

6.2 Structural Synthesis 

Geological contacts in the Howley Basin were not observed during this study, 

precluding definitive kinematic indicators of basin development. Through distribution of 

lithofacies and inferred or assumed contacts (Hyde et al., 1988; Hyde, 1995), 
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palynological dating (Barss 1980, 1981; Hamblin et al., 1997), structural deformation, 

and regional tectonic considerations, the Howley Basin is interpreted to have been 

affected by several episodes of transpression (TP) and transtension (TT) throughout the 

Carboniferous. These phases of subsidence and deformation have been overlaid onto the 

X to X’ potential-field modeling profile (in pocket) to help depict the proposed 

deformational history of the Howley Basin. 

Tournaisian (possibly late Devonian; Hyde et al., 1988) structural development of 

the ‘Anguille Basin’ is obscured by its present state of deformation as exposed in the 

Fisher Hills and Birchy Ridge. Regionally, wide-spread Anguille Group (or Horton 

Group) basin development is considered to have occurred along reactivated Acadian 

thrusts in extension (Gibling et al., 2008). The elongated northeast-southwest extent 

(extending all the way to Conche (~250 km); Figure 2.3; Hamblin et al., 1995) of the 

Anguille Group favors subsidence facilitated by normal faulting on east-dipping Acadian 

tectonic structures and not a pull-apart origin; releasing bends in strike-slip systems 

produce short-lived, localized subsidence, as continued displacement straightens master 

faults (e.g., Zhang et al., 1989). Extension to produce the Anguille basin may have been 

rooted to the BBL in the south but must have continued with a north-northeast trend into 

White Bay (Map A; Hamblin et al., 1995). Thinning of the crust along the Anguille basin 

likely would have promoted subsequent strike-slip faulting to occur along the same path.  

The Saltwater Cove Formation in Birchy Ridge is strongly deformed and bound 

by prominent northeast trending faults (Map A). Aside from a tentative interpretation that 

the Saltwater Cove formation is thrust over Howley Formation on a west-dipping fault in 
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DDH-79-04 (Section 3.5.1; Map A; O’Sullivan 1979c; Appendix A), observations of 

bounding-faults were not made during this study. Cleavages and highly indurated 

lithologies indicate that the Anguille Group was deeply buried before becoming inverted 

to their current state. Tight fold trains are interpreted as contractional structures with 

orientation patterns indicating sustained poly-phase dextral transpressive strike-slip 

(Section 3.6). Structures observed in this study agree with previous workers (e.g., Hyde et 

al., 1988; Langdon 1996) that Birchy Ridge forms a positive flower structure. The overall 

east-verging asymmetry of fold geometries of the Saltwater Cove Formation in Birchy 

Ridge (Section 3.6) indicate that the flower structure is rooted to the Fisher Hills-Birchy 

Ridge Fault, to the west (Map A).  

Initiation of transpression of the Saltwater Cove Formation can not be determined 

by mappable structures; however, clast lithologies of the Wigwam Brook Formation 

suggest that uplift began by the late Tournaisian (TP1; Hyde et al., 1988). Growth of the 

Saltwater Cove Formation as a positive flower continued into the Viséan, or the basin 

experienced another phase of transpression (TP2). This interpretation is based on the 

stratigraphic relationship with unconformable offlapping of the North Brook Formation in 

the Fisher Hills, which indicates that Viséan basin initiation (TT1) was coeval with 

tectonic growth of the Anguille Group (Hyde, 1982; Hyde et al., 1988).  

Structural evidence for Viséan basin development was not obtained in this study. 

Regionally, Viséan accommodation space has been attributed to thermal subsidence, with 

localized thickening in active fault zones (Gibling et al., 2008). In the Deer Lake Basin 

Viséan subsidence was, at least in part, fault controlled. It is postulated that dextral 
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transtension (TT1) produced steep normal faults linked to Acadian tectonic structures 

developing on the flanks of the growing Anguille ridges. There is no evidence that this 

phase of basin development is of pull-apart origin (i.e., there are no documented strike-

slip faults in the western Humber Basin and the Grand Lake Fault in the south is 

interpreted to have only minor Carboniferous offset (Cawood and van Gool, 1998). 

A regional, erosive, unconformity and sedimentary hiatus in the Namurian is well-

imaged in marine seismic lines over the CFS (Langdon, 1996; Pascucci et al., 2000). This 

unconformity separates the Deer Lake Group and Howley Formation in the Deer Lake 

Basin. Gondwana glaciation has been purposed for this time period; however, faults 

cutting Mississippian formations are observed to not affect overlaying Pennsylvanian 

formations (Gibling et al., 2008). These observations, combined with the onset of the 

Alleghanian Orogeny, clearly indicate that the region experienced another episode of 

tectonism (Gibling et al., 2008). Vasquez (2017) also interpreted seismic profiles in the 

eastern Howley Basin to show sub-vertical faults terminating at the Rocky Brook 

Formation – Howley Formation contact, greatly supporting that the basin was tectonically 

active in the Namurian. 

 The Howley Formation is presently deformed and inverted (Chapter 3), with no 

preservation of structures related to basin initiation or development. Two palynological 

dates of Westphalian A have been interpreted for samples of exposures in the Southeast 

Margin (Section 3.2; Barss, 1981; Hyde, 1982); however, clear evidence of tectonism in 

the Namurian suggests that Howley Formation deposition began in the Namurian. Given 

the large low gravity anomaly and the predicted asymmetric half-graben shown in the 
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geophysical model (Profile X to X’; Section 5.3), it is reasonable to assume that the 

Howley Basin formed as a dextral transtensional pull-apart basin (TT2), with extension 

focused on the Grand Lake Fault. With the locus of extensional subsidence located along 

the Grand Lake Fault, it is clear that temporally and spatially, regional tectonic strike-slip 

activity migrated from west to east across the region. The Grand Lake Fault is likely a 

major splay in the CFS PDZ and is interpreted to form a listric west-dipping fault linked 

to the BBL root at depth. 

It is predicted that dextral transpressional growth of the Anguille flower structures 

(TP3) coincided with Howley Basin evolution. A west to east migration of strike-slip 

faulting from the Fisher Hills-Birchy Ridge Fault to Hampden Fault during TP3 would 

have incorporated the Deer Lake Group fault panels into the growing positive flower 

structure.    

 In this model of Howley Basin deposition, substantial and rapid subsidence is 

predicted to have occurred during active strike-slip faulting along bounding faults. This 

argument is supported by a minimum of 2.5 km measured stratigraphic thickness along 

Northeast Brook (Section 3.3.4) and the bore holes of Hatch (1921) that show thick 

packages of shale interbedded with sandstones and minor coal. Potential-field 

geophysical modeling also predicts up to 4 km of Carboniferous sediments in the Howley 

Basin, much of which could be the Howley Formation (Profile X to X’).  

 The Howley Formation is clearly presently inverted in both the Eastern and 

Western Margins, with steep bedding, close folds, and varying fault orientations and 
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lineations where exposure permits examination. In the Southeast Margin gently plunging 

fold axes make small angles to the Grand Lake Fault and are not traceable between 

nearby sections with good exposure (Section 3.2.4), suggesting a component of post-

Howley Formation dextral transpressional (TP4) deformation. This phase of deformation, 

however, shows a large compressional factor and is interpreted to have reactivated 

extensional structures into steeply dipping reverse faults. Post-Howley deformation may 

have been concentrated on the margins of the basin as the basin remains in net extension 

and, when reported, logs of bore holes towards the center of the basin show consistently 

shallow dips of bedding (Section 3.3.3; Hatch 1921). 

 Sub-cylindrical folds mapped throughout the Eastern Margin, with fold axes not 

contained in calculated axial planes (Sections 3.2, 3.3), suggest a syn- to post-Howley 

Formation poly-phased, predominately contractional, deformation history. The kinematics 

of these phases of deformation are unclear.     

6.3  Hydrocarbon Potential  

Active oil seeps and bitumen in shallow core (Langdon, 1993, 1994; Hamblin et 

al., 1997; Hyde et al., 1994), clearly show that oil has been generated and migrated east of 

the Anguille positive flower structures. Albeit limited in extent of study, Langdon (1993) 

showed the Howley Formation, along it’s western extent, to have good porosity and 

represents potential reservoir rocks. Distribution and deformation of both source and 

reservoir rocks in the Howley Basin present both potential stratigraphic and structural 

traps for migrated hydrocarbons. Structural analysis and geophysical modeling presented 
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in this study show that the Howley Basin may have several attributes favorable for 

hydrocarbon production, migration, and trapping. 

Source Rock: 

Organic rich mudstones and shales of Rocky Brook Formation have been 

identified as the primary source rock for conventional hydrocarbon plays in the Deer 

Lake Basin (Hyde et al., 1988; Hamblin et al., 1997; Burden et al., 2014). Exposure of the 

Rocky Brook Formation has been well documented east of the Anguille positive flower 

structures (Hatch, 1919; Hyde, 1982; Section 3.5.2); however, the question as whether 

Rocky Brook Formation underlies the Howley Basin has been a topic of debate among 

researchers (e.g., Hyde et al., 1994). 

A review of historic boring operations on the Eastern Margin of the Howley Basin 

and Howley’s (1918b) interpretations place the Rocky Brook Formation at shallow depth 

(Section 3.3; BH-93-01; Map A; Appendix A), provides good evidence that this targeted 

source rock underlies the Howley Formation with significant lateral extent. With 

confidence, the Rocky Brook Formation has been modeled to underlie the Howley Basin 

(Profile X to X’).    

Coal boring operations along Goose Brook (Section 3.3.3; Murray and Howley, 

1918; Hatch 1921) revealed that at shallow depths (maximum of 150 m), a large portion 

of the Howley Formation is comprised of very thick black shale beds (many over 10 m). 

These shale packages present another potential source rock in the Howley Basin. Rapid 

subsidence in the Howley Basin’s pull-apart model, may have created a stratified anoxic 
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lacustrine setting with good organic material accumulation and preservation, similar to 

what has been suggested for basal Rocky Brook Formation (e.g., Hamblin et al., 1997; 

Kelly and Burden, 2011). These interbedded shales and sandstones could also represent 

potential seals and reservoirs for hydrocarbon traps.  

Hydrocarbon Maturation: 

The Howley Basin has a conventional hydrocarbon play exploration depth of 2-3 

km (Hamblin et al., 1997). Potential-field geophysical modeling (Profile X to X’) predicts 

that the Howley Basin forms an asymmetric half-graben deepening to the east, to a depth 

of 4.3 km. This places Carboniferous sediments in the Howley Basin well into the 

predicted oil window. Stratigraphic thicknesses of formations within the Howley Basin 

can not be determined with the presently available datasets. In the model presented in 

Profile X to X’, subsidence in the Howley Basin was focused in the Namurian to 

Westphalian. With sedimentation and burial continuing into the early Permian (Ryan and 

Zentilli, 1993), hydrocarbon maturation is expected to have peaked in the late 

Pennsylvanian to early Permian.   

Migration and Traps  

Trap preservation is the greatest uncertainty in estimating the hydrocarbon 

potential in the Howley Basin and is dependent on relative timing of hydrocarbon 

generation and migration with basin deformation. Structural mapping of the Howley 

Basin has shown that the Howley Formation experienced at least one phase of post-

depositional transpressional deformation (Sections 3.2, 3.3). If oil generation predates 
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inversion of the basin, then initial migration oil into stratigraphic reservoirs may have 

been breached by faults, potentially leading to a secondary migration of oil into newly 

formed structural traps, if present and not breached. On the other hand, if oil generation 

was syn- to post-transpressional inversion the likelihood of trap preservation is greater, 

with both stratigraphic and structural traps prospective targets. 

The degree of deformation in the center of the Howley Basin is critical in 

evaluating the potential of the basin to have preserved hydrocarbons in reservoirs. If 

deformation associated with the last transpressional phase was focused on the basin’s 

margins, leaving the center of the basin remained relatively unaffected, then the 

probability of oil migration into sealed traps is greatly increased. Whereas, if the center of 

the Howley Basin experienced strong compressional stresses causing faulting and tight 

folding, as observed along the margins of the basin, then traps have a higher probability 

of being breached and/or being much smaller. Geophysical imaging of the structure of the 

center of the Howley Basin is strongly recommended before further evaluation.   

6.4 Recommended Future Work 

As discussed in the previous section the Howley Basin possesses several attributes 

of a promising hydrocarbon play, what it lacks is a systematic basin-wide evaluation 

scheme to mitigate risk associated with exploration in a poly-phased strike-slip dominated 

basin. This has been obviously hampered by a lack of exposure within the basin.  

Many of the kinematic structural arguments presented in Section 6.2 are based on 

palynologic dates of the Howley Formation, of which there are only two from outcrops in 
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the Southeast Margin (Barss, 1981; Hyde, 1982). It is recommended that a basin-wide 

assessment of the timing of deposition of the Howley Formation through palynological 

dating be conducted. This is particularly important for the Northeastern and Western 

Margins of the basin. 

Gravity data collection during this study, greatly increased the station density 

within the Howley Basin, especially over Sandy Lake, and is of good quality. The 

modeling process, however, is restricted in certainty and offers too much freedom in 

model possibilities due to limited knowledge of stratigraphy at depth towards the center 

of the basin and unknown pre-Carboniferous basement geology. A deep exploration well 

drilled towards the center of the Howley Basin would most certainly aid in basin 

assessment and would help refine and expand geophysical models. 

Structural mapping of the Howley Basin has been exhausted. Any future structural 

interpretation will need to rely heavily on high-resolution geophysics. A basin-wide 

seismic survey would greatly enhance all aspects of Howley Basin assessment. 
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Appendix A – Drill Logs 

In the attached folder are spread sheets of all of the borehole and diamond drill 

core logs collared in the Howley Basin, as described by the original authors. Many of the 

drill logs are from coal boring operations from the turn of the 20th century and are 

difficult to locate in the literature, were continued in following field seasons, are 

mislabelled, and have been erroneously placed on previous authors’ maps. This appendix 

aims at providing an easily accessible and accurate account of this dataset for future 

studies to benefit from. 

Boreholes that were initiated in one field season and continued in a following one 

are labeled with initial year of drilling and are continued until the end of the hole. 

Approximate locations of boreholes, determined by the methods described in Section 

3.3.3, are given in UTM coordinates (NAD83 Zone 21N).    

Appendix B –Conductivity of Sandy Lake Water Samples 

The GPR geophysical method uses pulses of an electromagnetic field to image the 

subsurface (Section 4.2). The conductivity of the subsurface limits the penetrating depth 

of the GPR, and can be estimated by equation: D= 40/α meters, where α= 0.18σ dB/m, 

and σ is in mS/m (Jol, 2009). Before the GPR survey was run, the average conductivity of 

the water in Sandy Lake was measured to determine if the GPR method would be 

effective in imaging the bottom of the lake, and creating a bathymetry map. 
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Three 40 ml samples of water were collected and their conductivity measured. 

One sample was taken at the main inflow to Sandy Lake, one at its outflow, and another 

away from the main current. The conductivity of the samples was measured with 

Memorial University of Newfoundland’s IQ Scientific Instrument’s 180G Handheld 

Multiparameter Meter. A standard 10 mS/cm was measured between each sample to 

ensure that the instrument was properly calibrated. The mean conductivity of all of the 

samples was 3.21 mS/cm with a standard deviation of 0.42 mS/cm. Using the above 

equation, an estimated depth of penetration of 70 m was determined, and the GPR was 

deemed appropriate to be used for recording the bathymetery of Sandy Lake. 

Appendix C – Ground Penetrating Radar Data, Interpretations, and 

Bathymetry Grid 

The attached folder contains the raw GPR data and associated GPS data (File: 

GPR_Raw); georeferenced nodes of lake-bottom interpretations (File: Interpretations), in 

.csv format; the georeferenced nodes that make up the shoreline (including islands) of 

Sandy Lake, as given by NRCan (Natural Resources Canada, a) (File: 

Sandy_Lake_Shoreline), in .csv format; the two combined (File: Bathymetry_Point), in 

.csv format; and the 50 m cell size minimum curvature interpolated bathymetry grid with 

a linear color scheme (File: Bathymetry_Grid), in .grd format. 

Appendix D – Gravity Data 

The attached file contains all of the gravity data collected during this study, RTK 

GPS gravity station locations (NAD83 (CSRS) UTM Zone 21N) and elevations (GRS80), 
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all data used for the reduction of the gravity data, as well as re-processed previous gravity 

surveys. This data was used to create Map E – composite complete Bouguer Gravity Map. 

Preprocessed gravity data collected during this survey (File: Oasis_Loops) is 

archived in .txt files in the Oasis gravity import format. Each .txt file corresponds to a day 

survey or “loop”, with the title of each file as that date in DDMMYY. Within each loop 

file, station number (STN); Type of station (T; 0 is base; 1 is survey station); Time in 

GMT (Time); Relative gravity reading (Rdng) without tidal acceleration removed, in 

mGals; and instrument height above the ground (In_Ht), in meters. The top line in each 

loop files specifies the date of collection (dt=YY/MM/DD), difference in time from GMT 

(gt=H.h), and units of distance used for distance, elevation, and instrument height, set to 

meters (un=MMM). 

Column descriptions for the following gravity data spreadsheets are given in File 

Grav_Descrp, where downloaded data follows file, Gravity_point_data_description, and 

any processing or collection completed in this study follows Gravitv_Key. 

The gravity data used for calculating the absolute gravity of the Howley base 

station (Section 4.4.3) is given in File: BaseTie, in .xslx format. The absolute gravity of 

all base stations used in all of the loops (Section 4.4.3) is given in File: BaseStations, in 

.csv format.  

The location of each gravity station (File: GPS_Location), as determined from the 

post-processed RTK GPS survey (Section 4.3), is given in.csv format, with station 
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number, Eastings and Northings in NAD83 (CSRS) UTM Zone 21N, and ellipsoid 

elevations in GSR80. 

The re-projected DEMs used for the terrain correction processing (Section 4.4.4) 

are given in File: DEMs, in .grd format. 

The final corrected gravity data collected during this study is given in File: 

PEEPgrav, in .xslx format. 

The previously collected gravity databases, with new calculations (Section 4.4.6), 

are given in Files: 89Grav, 85Grav, and 64Grav, in .csv formats. The gravity stations 

removed from the above databases, as discussed in Section 4.4.6, are given in File: 

Removed_Stations, in .xlsx format.  

A simplified composite gravity database of all stations used in final interpolation 

(Section 4.4.7) is given in File: Comp_Grav, in .xlsx format. The resulting composite 

interpolated composite complete Bouguer gravity grid, as discussed in Section 4.4.7, is 

given in File: Comp_Bouguer_Grav, in .grd format, and in GeoTIFF (.tif) format.   

Appendix E – Aeromagnetic Data 

The compilation aeromagnetic grids used for Maps C and D are given in .grd 

format and GeoTIFF (.tif) format in the folder Comp_Grids. Individual aeromagnetic 

surveys used in the derivation of the compilation aeromagnetic maps, with their 

designated Survey ID, Geofile number, and acquisition parameters is given as an .xslx file 

in the folder Surveys.  


