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ABSTRACT 

Hazardous operations, such as the operations in process plants, are confronted by three 

major risks: occupational, process and intentional damage risks. Previous works have 

studied these risks independently. Furthermore, these works failed to consider many 

important elements. For example: 1) Hazardous operations are expanding to remote 

areas in harsh environments, and thus harsh environmental factors need to be included 

in the assessment model to deal with this emerging challenge. 2) Scarce prior data can 

cause uncertainty of assessment results. Conventional assessment methods, such as fault 

trees, produce static outcomes which neither reduce the uncertainty caused by scarce 

data nor reflect the latest risks. 3) Variables in the models are considered to be discrete 

(normally binary). This approximation reduces the accuracy of assessment results. 4) 

Influence of intrusion scenarios on security risks is not considered. 5) Safety and 

security have interactions which can influence the real risk level and decision making. 

Existing works neither conduct a dynamic assessment of integrated risk considering 

such interaction in a robust framework, nor do they analyze the measure selection for 

the effective prevention of integrated risks.  

 

To overcome these limitations, this research establishes a dynamic model which 

includes harsh environmental factors to quantify the occupational risks and identify the 

critical causal factors. Moreover, a continuous Bayesian network is proposed to 

represent the continuous variables. Intrusion scenarios have been included in the 
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dynamic assessment model for intrusion risk. The critical intrusion scenarios and weak 

links of the security system are identified. Then the interaction of safety and security is 

analyzed in an integrated framework. Its influence on risk level and decision making is 

studied using a Bayesian network and influence diagram. These methods applied in this 

research not only reduce the uncertainty of assessment results, but also explore a new 

area of integrated risk assessment and management. 
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1. Introduction 

1.1 Problem statement  

With rapid industrialization in the 20th century, complex processes accompanied by 

increasing hazardous substances and risky operation conditions have significantly 

increased the risk in hazardous operations. [1, 2] The major risks confronted by 

hazardous facilities (e.g., chemical plants) come from three sources: occupational, 

process and intentional origins. Occupational risks and process risks are the safety risk 

and they have been a concern for a long time [3, 4], while the intentional risk of 

hazardous operations started to attract attention after 9/11, 2001. [5, 6] Safety concerns 

are caused by accidental failures, and in contrast, a security risk is caused by a human 

with harmful intention. [6] The concept of process safety started to be applied in 

industrial practice with the occurrence of catastrophes across the world between 1960 

and 1990 [3]. With catastrophic damage to humans, facilities and the environment, these 

well-publicized events (see Table 1.1) have served as a driving force for the evolution 

of process safety [2]. 

 

Table 1.1 The catastrophic events influencing the evolution of process safety [2] 

Accidents Years Countries Consequences 

Flixborough explosion 1974 United Kingdom 28 deaths and 36 injured 

Seveso disaster 1976 Italy 

Extermination of more than 

80,000 animals; medical 

examination of thousands of 

people; allowance of abortion, 

based on the mother's decision 
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Bhopal gas tragedy 1984 India At least 3,800 deaths [7] 

San Juanico Disaster 1984 Mexico 

550 deaths and 7000 others 

need medical help; severe 

damage on an area of about 

100,000 m2 [8] 

Sandoz Chemical 

Spill 
1986 Switzerland 

14 people were treated in 

hospital; killed half a million 

fish [9] 

Piper Alpha 1988 United Kingdom 167 deaths 

Exxon Valdez Spill 1989 United States 

Causing one of the most 

devastating human-caused 

environmental disasters.  

Phillips 66 1989 United States 
23 deaths and hundreds of 

people injured 

Baia Mare Cyanide 

Spill 
2000 Romania 

About 80% of life in the 

Serbian section of the Tisza 

has been killed; caused the 

worst environmental disaster 

since the Chernobyl nuclear 

leak in 1986 [10] 

AZF Factory 

Explosion 
2001 France 

31 deaths and numerous others 

injured; material damages of 

two billion Euros [11] 

BP Texas City 2005 United States 
15 deaths and almost 200 

injured 

T2 Explosion 2007 United States 

Four deaths and 32 injured; 

damaged buildings within one 

quarter mile of the facility 

Deepwater Horizon 2010 United States 

11 deaths and caused an 

uncontrolled oil spill lasting 

for almost 90 days 

West Fertilizer 

Explosion 
2013 United States 

15 deaths and more than 160 

injured; More than 150 

buildings were damaged 

 

Another safety risk, occupational risk, started to become a topic of interest for 

organizations in the 19th century [12]. Occupational events can directly threaten (injure 

or kill) workers in hazardous operations; thus, they are a significant challenge for risk 

https://en.wikipedia.org/wiki/Environmental_disaster
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management. The distinction between occupational accidents and process accidents is 

that occupational ones (e.g., slips) occur in a working life context and that the main 

influences are limited to the involved workers. [13] The workers are often the 

contributors to and the victims of occupational accidents [13]. Occupational accidents 

occur more often than process accidents (e.g., explosions and fire). The international 

Labor Organization (ILO) reports that over 313 million occupational accidents occur 

worldwide each year [12]. Because of the high frequency, losses caused by occupational 

accidents are significant. For example, UK HSE states that more than a third of all major 

injuries reported each year were caused by slips or trips. [14] The death of workers in 

the oil and gas industry was six times more likely to be caused by a fall than from an 

explosion. [14] Occupational events not only have serious physical and emotional 

influences on employees, but also lead to a loss of approximately 4% of the global gross 

domestic product [12].  

 

To protect workers and facilities from occupational and process risks, research has been 

conducted to enhance the risk analysis of hazardous operations. [1－3, 13, 15] These 

studies can be classified into qualitative, semi-quantitative and quantitative. [2] 

Qualitative analysis involves a risk with non-numerical results [2]. Semi-quantitative 

analysis provides approximate results rather than exact values by assessing risk using a 

scoring method. Quantitative analysis can provide numerical estimation results, which 

create better understanding and informed decision making [2, 3] The qualitative models 
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include ranking, risk matrix and HAZOP etc. [2], while quantitative models contain 

fault tree (FT), Bow-tie (BT) and Bayesian network (BN) etc. The increasing use of 

quantitative risk assessment (QRA) methods has become a trend [2] and the majority of 

new research has focused on quantitative development [3].   

 

Applied in diverse industries (e.g., the nuclear industry and chemical process industry), 

quantitative risk is measured by numerical estimation of accident likelihood and 

consequences. [2] A typical QRA is constituted with the following stages: (1) hazard 

identification; (2) probability calculation; (3) consequence assessment and (4) risk 

measure. [15] 

 

Although conventional quantitative assessment methods have made great contributions 

to safety, they suffer from some drawbacks facing the emerging challenges. [1] Firstly, 

some hazardous operations (e.g., offshore oil industry) have expanded to remote areas 

(e.g., Arctic) with harsh environmental factors, such as extreme temperatures and strong 

winds. Employees are confronted by greater occupational risks working in such a harsh 

environment. To deal with this challenge, assessment methods including the harsh 

environmental factors need to be developed to support effective risk management in the 

new operational environment. Secondly, the conventional assessment methods (e.g., FT 

and BT) are static; thus, they cannot capture the risk changes caused by deviations in 

hazardous operations. The risk can change with various factors such as the aging of 
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facilities; thus, the risk may have increased after the initial assessment and the obtained 

static risk could be outdated for the management of the latest risks. Often only scarce 

data is available for risk assessment. As a result, the input data could be inaccurate, 

which influences the assessment accuracy. The dynamic assessment can involve the 

new observed information from practice and update an assessment result with these 

observations. Thus, dynamic assessment can reduce the uncertainty caused by scarce 

data. The dynamic assessment results can reflect the latest risk with a high accuracy to 

support effective risk management. Thirdly, the variables (i.e., causal factors, accidents 

and consequences) are assumed to be discrete (normally binary) in the conventional risk 

assessment model. The changes of continuous variables continuously influence real-

time risk. When the conventional methods convert continuous variables into discrete 

ones, the continuous influence cannot be captured due to the discrete approximation and 

thus uncertainty is introduced in the assessment. In this way, the discrete assumption in 

the conventional models reduces the accuracy of risk assessment. This proposed 

research partially aims to overcome these limitations of traditional quantitative risk 

assessment methods. 

 

Safety concerns have been studied for a long time. However, besides accidental failures, 

damage in hazardous operations can also be caused by intentional acts. After 9/11, 

intentional threats on hazardous facilities started to attract attention. Hazardous facilities 

(e.g., chemical plants) raise terrorists' interests due to their significant damage potential. 
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Attacks on hazardous facilities have occurred repeatedly (see Table 1.2). These attacks 

have caused major events, such as fire and explosions. [16,17] In such a situation, only 

managing accidental risks is not sufficient; security risks can no longer be ignored [18, 

19]. Realizing the security challenges, some works have studied security risks of 

hazardous facilities. [20, 21－28] These works analyzed the vulnerability of facilities 

based on defence measures, but did not consider the effects of intrusion scenarios. 

However, in practice, the security risk level is not only related to security measures, but 

also depends on what it is protecting against. [29] A plant well designed for preventing 

the clandestine entry of strangers may have significant vulnerability in the case of a 

direct attack with guns. Without including the information of intrusion scenarios, the 

assessment result cannot reflect the real security level of hazardous facilities. 

 

Table 1.2 Physical attacks on hazardous operations 

Year Country Event description 

2005 Spain 
Suspected Basque separatists detonated bombs at two 

chemical plants. [30] 

2006 
Saudi 

Arabia 

Two vehicles carrying explosives attempted to attack a 

major oil production facility. [31] 

2015 France A deliveryman attacked a US-owned chemical plant. [17]  

2015 Iraq 
Islamic State militants detonated explosives and set fire to 

the key infrastructure in Iraq's largest refinery. [16] 

2015 France 
Double blast was caused by criminal acts in two huge fuel 

tanks at a petrochemical plant. [33] 

2016 Algeria An Algerian gas plant was attacked by a rocket. [32] 

2016 Iraq Several Islamic State bombers attacked a gas plant. [34] 

2016 Libya Suicide car bombers attacked main oil terminals. [35] 

2017 
Saudi 

Arabia 

A speedboat laden with explosives was used to blow up 

an Aramco fuel terminal. [36] 
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Safety and security share many commonalities. [37] Both types of events can cause 

damage to hazardous systems. [38] Their risk levels can be determined by the 

occurrence frequency of abnormal events (accidents or intentional events) and their 

consequences. Both of the risks need to be assessed and measures are needed once the 

risk levels become unacceptable. [39] These commonalities provide the basis to manage 

safety and security risks together. These two types of risks have interactions which can 

change the risk level and the effects of management measures. [19, 40] One hazardous 

factor of safety (security) may also contribute to security (safety) risk. Thus, if the 

interaction is not considered, the negative effects of hazardous factors will be partly 

ignored, and the real risk can be underestimated. Similarly, a measure may influence 

both safety and security risks. If the safety and security are not managed together, the 

effects of measures may be underestimated. If the measures are decided based on their 

effects and cost, such an underestimation could lead to incorrect selection of measures. 

To effectively manage risks for hazardous operations, the safety and security risks need 

to be assessed in an integrated framework in which measures are decided considering 

their effects on both safety and security risks. Because of this, some industries (e.g., 

aerospace industry) have conducted the analysis of safety and security risks together. 

[37] However, these industries mainly focus on cyber security instead of physical 

security. [37] In this research, safety and security risks are assessed and managed in an 

integrated perspective considering the interactions of safety and physical security. 
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1.2 Knowledge and technical gaps 

Previous works have conducted research on the risk assessment and management of 

hazardous operations. Much research has focused on causal factor analysis of 

occupational accidents. [41 － 45] Researchers analyzed the causal factors for 

occupational accidents, such as slips, trips and falls from height (STFs), in different 

industries such as helicopter manufacture, the residential construction industry and the 

offshore oil industry. [41－45] Besides the works on causal factor analysis, some 

researchers assessed the occupational risk using different risk models, such as BT and 

quantitative models they proposed [14, 46, 47]. However, these works did not explore 

dynamic occupational risk assessment. Therefore, their works did not capture the 

changes and calculate the latest risks which are important to guide effective risk control. 

Also, their static assessment could not reduce the uncertainty caused by the inaccurate 

inputs. Moreover, those models did not consider the harsh environmental factors. Thus, 

they cannot be applied to hazardous operations in remote areas (e.g., the Arctic). 

 

Process risk has been quantitatively studied using different models. Among these 

models, the discrete BN is widely used for process risk assessment in recent works. [48

－51] It has been used to analyze the risk of a vapor ignition, drilling accidents and dust 

explosion, and its ability to represent dependency and conduct a dynamic assessment is 

demonstrated. [48－51] However, these studies approximate continuous variables using 

discrete ones. Process variables often have continuous change and continuously 
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influence the process risk. Discrete BN models cannot capture such continuous 

influence and thus their assessment accuracy is degraded by the discrete assumption. 

Having recognized the drawback, some researchers have attempted to incorporate 

continuous nodes into BNs. [52－54] However, limited studies have explored the 

development and implementation of a continuous assessment method to reduce the 

uncertainty caused by the discrete assumption of variables.   

 

After 9/11, security studies have been conducted for attack process analysis, 

vulnerability assessment, security system development and security risk management 

of hazardous operations. [20, 21, 22, 26－28] However, the defensive ability of a 

system varies with different intrusion scenarios. These works only analyzed the 

defenders' countermeasures without considering intrusion scenarios of attackers; thus, 

the likelihood of a successful attack and the weakness of barriers for specific intrusion 

scenarios cannot be decided. Furthermore, each intrusion scenario has a corresponding 

intrusion feature. Without considering the intrusion scenarios, the intrusion principle 

and process for different intrusion scenarios cannot be clarified. Moreover, the security 

barriers to prevent the launching of an attack also influence the security risks. Previous 

models did not consider such security barriers. 

 

The preceding works have separately conducted safety and security risk analysis. Since 

safety and security risks exist in the same system and have strong interconnections, 
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accidental and intentional factors are supposed to be studied together [19]. Few works 

have been undertaken on integrated safety and physical security risks. [18] Since 

terrorists have targeted hazardous operations (see Table 1.2), physical security and its 

interaction with safety need to be studied to effectively manage the risks in hazardous 

operations. Previous works also separately studied the decision-making for safety and 

security risk management of hazardous operations based on cost-effective analysis of 

measures. [55－58] A decision model for integrated risks considering both safety and 

security aspects is lacking. No existing studies have analyzed the influence of the 

interaction of safety and security on risk reduction effects of measures. Those previous 

studies may have underestimated the effect of measures, misleading the decision-

making.  

 

Based on this analysis, the following gaps are identified: 

(1) Previous works did not consider the complete risk in hazardous operations from 

three major sources － occupational, process and intentional origins. Thus, the 

hazardous facilities could be exposed to another high risk even if one certain risk 

(e.g., occupational risk) is well controlled.  

(2) Hazardous operations are expanding to remote areas with harsh environments. To 

cope with this challenge, a risk assessment model including harsh environmental 

factors is needed to support the risk management of hazardous operations in remote 

areas.  
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(3) Dynamic models to reduce the uncertainty caused by data scarcity and to provide 

the latest risks are missing for the occupational risk assessment of hazardous 

facilities (e.g., offshore oil facilities). 

(4) Discrete assumptions of the conventional risk assessment models deteriorate the 

assessment accuracy. The assessment models which can represent a continuous 

variable and capture the influence of its continuous change are lacking.  

(5) Security risk analyses of facilities only consider the security measures. The 

influences of intrusion scenarios are not included. 

(6) Safety and security risks have interactions which can change the real risk level and 

the effects of measures. Safety and security risk assessment and management in an 

integrated framework considering their interactions are absent. 

1.3 Scope and objectives  

This study targets the risk assessment and management of hazardous operations, chiefly in 

the chemical and oil industries, considering three risk sources. It dynamically assesses the 

risks confronted by hazardous facilities and manages risks in an integrated way. In this 

research, hazardous operations refer to the operations dealing with hazardous substances. 

Hazardous facilities mean the facilities involved in hazardous operations. Considering the 

priority of preventing accident occurrences over mitigating consequences, this study 

focuses on assessment and management of occurrence probability of abnormal events (i.e., 

accidents and intentional events) instead of loss analysis. The research improves risk 

assessment accuracy in the following areas. Three major occupational accidents (STFs) are 
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studied to obtain the occupational risks in the offshore oil industry. This study represents 

the real logic relationships to reduce the uncertainty of assessment results. It includes harsh 

environmental factors to analyze the impacts of a harsh environment on occupational risks. 

The risk is updated using the available evidence and critical factors are identified to 

effectively guide risk management. Furthermore, the discrete assumption of conventional 

assessment methods is relaxed to accurately assess the occurrence probability of an 

abnormal event. Moreover, the successful intrusion probabilities considering different 

intrusion scenarios are assessed to support the security risk analysis. The analysis of attack 

motivations and the damage process are not covered in this study. After overcoming these 

drawbacks of the existing risk assessment methods, the safety and security risks are studied 

in an integrated framework, and the influence of the interaction of safety and security on 

the occurrence probability of abnormal events is analyzed. Since hazardous facilities attract 

attackers mainly due to their significant damage potential, attackers targeting hazardous 

facilities normally aim to cause major abnormal events such as explosions (see Table 1.2) 

instead of just hurting workers by causing occupational events. Thus, the security risk has 

a stronger interaction with process risks (risks of major accidents). Considering this, the 

research focuses on the interaction of process risk and security risk, and the dependency of 

security risk and occupational risk is not covered. This security risk focuses on the 

physical intentional risk, not covering the cyber causes and state conflicts. 

 

The objectives of this study are to:  
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(1) Develop dynamical methods to increase risk assessment accuracy of hazardous 

operations considering three major risk origins. 

(2) Deal with the challenge of risk assessment for hazardous facilities located in a harsh 

environment. 

(3) Develop effective assessment and management approaches for integrated risks 

considering the interaction of safety and security. 

 

The innovations of this work are identified as follows. It conducts dynamic risk assessment 

for hazardous facilities considering three major sources. The dynamic assessment model 

can obtain the latest risk and reduce the uncertainty caused by scarce data. Harsh 

environmental factors are included in the model to cope with the emerging challenge. The 

discrete assumption of previous methods is relaxed to improve the accuracy of risk 

assessment. The proposed assessment model for security risk considers intrusion scenarios 

and launching barriers. It conducts a dynamic assessment of the defensive ability of process 

plants and dynamic identification of critical intrusion scenarios and weak links in a security 

system for different intrusion scenarios. The safety and security related risk factors are 

analyzed in a unified framework. The integrated risk in hazardous operations is dynamically 

assessed and measures are decided considering the dependency of safety and security.  
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1.4 Organization of the thesis 

This thesis is organized in a manuscript format, including five journal papers as chapters. 

Table 1.3 shows the journal papers completed during the research and also demonstrates 

the objectives and related tasks.  

 

Table 1.3 The objectives and tasks of each chapter 

Papers as chapters Objectives Associated tasks 

Chapter 2 Dynamic 

Occupational Risk 

Model for Offshore 

Operations in Harsh 

Environments 

Obtain the dynamic 

occupational risk of 

hazardous operations 

considering harsh 

environmental factors 

 Visually represent the 

occurrence and escalation 

of occupational accidents 

using BTs 

 Quantitatively represent 

the real logic of causal 

factors and occupational 

accidents using conditional 

probability tables (CPTs) 

 Dynamically assess 

occupational risk with 

observed evidence 

 Identify the critical 

causal factors to support 

occupational risk control 

Chapter 3 Predictive 

Abnormal Events 

Analysis using 

Continuous Bayesian 

Network 

 

Reduce the uncertainty 

caused by discrete 

assumption for 

dynamically probabilistic 

assessment and diagnosis 

of abnormal events of 

facilities  

 Establish a continuous 

Bayesian network (CBN) 

to represent continuous 

variables 

 Use Markov Chain 

Monte Carlo to solve CBN 

 Demonstrate the merits 

of CBN for dynamically 

probabilistic assessment 

and diagnosis of abnormal 

events of facilities 
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Chapter 4 Security 

assessment of process 

facilities－Intrusion 

modeling  

 

 Decide the defensive 

ability of system against 

different intrusion 

scenarios  

 Identify critical intrusion 

scenarios and the weak 

links within the security 

system 

Identify potential 

intrusion scenarios 

Propose graphical 

models to represent the 

intrusion processes of 

different intrusion 

scenarios 

Propose BN to quantify 

successful intrusion 

probabilities and security 

potential in different 

scenarios 

Update intrusion 

probabilities and security 

potential using evidence 

Chapter 5 Probabilistic 

Assessment of Integrated 

Safety and Security 

Related Abnormal 

Events: A Case of 

Chemical Plants 

 Analyze the interaction 

of safety and security 

 Dynamically assess the 

integrated probability of 

abnormal events 

considering the 

dependency of safety and 

security 

Propose an integrated 

framework to incorporate 

safety and security-related 

factors 

Establish BN to represent 

the dependency of safety 

and security 

Dynamically analyze the 

influence of the interaction 

of safety and security on 

the integrated risk and 

causal factors' significance 

using BN 

Chapter 6 Integrated risk 

management of 

hazardous processing 

facilities 

Analyze how the 

interaction of safety and 

security influences 

measure decision 

Effectively manage 

integrated risk considering 

both safety and security-

related factors 

Establish influence 

diagram (ID)-based 

management model 

Analyze the real effects 

and cost of measures using 

ID 

Measure selection to 

effectively reduce real risk 

to an acceptable level   

 

The overview of each chapter is explained as follows: 
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Chapters 2－4 improve risk assessment methods to increase assessment accuracy and 

to fit the emerging challenge. Chapters 5 and 6 assess and manage the safety and 

security risks in an integrated framework. In this way, this research assesses risk in an 

integrated perspective with improved assessment methods to obtain the real risks and 

to effectively manage risks. The detailed contents are as follows: 

 

Chapter 2: BT models are established to systematically represent the occurrence and 

escalation process of three occupational accidents (STFs) in the offshore oil industry 

considering the harsh environmental factors. Then the BTs are converted to BNs to 

quantitatively calculate the probabilities of occurrence and consequences of STFs. 

Using CPTs, the BNs represent the real logical relationships (Noisy-OR) between 

causal factors and occupational accidents. The occurrence probabilities and 

consequences of STFs are updated with observed evidence. The critical factors are 

identified based on their posterior occurrence probabilities and likelihood to cause the 

STFs, given their occurrence.  

 

Chapter 3: The drawbacks of traditional discrete assessment models are clarified. To 

overcome those drawbacks, a CBN is proposed to represent the continuous variables 

which continuously influence the abnormal event. This CBN is used to assess the 

probability of abnormal events of facilities and diagnose the states of causal factors. 

The results show that the CBN can incorporate continuous variables and assess the 
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abnormal events of facilities with a higher accuracy. CBN includes various continuous 

distributions and thus it is difficult to solve. The Markov Chain Monte Carlo algorithm 

(MCMC) is used to calculate the complex CBN. 

 

Chapter 4: The defensive ability of hazardous facilities against intrusions varies for 

different intrusion scenarios, which influences the security risk. The intrusion processes 

and principles for different intrusion scenarios are clarified using graphical models. The 

defensive ability of hazardous facilities is dynamically quantified for different intrusion 

scenarios and weak links within security systems are dynamically identified based on a 

proposed BN model. The BN model establishes links between different intrusion 

scenarios, enabling to use evidence from one intrusion scenario to update probabilities 

in another intrusion scenario.  

 

Chapter 5: The occurrence probabilities of process accidents and intentional abnormal 

events have interactions, which could change the real risk level and significance of 

causal factors in critical infrastructures. This chapter establishes the dependency of 

safety and security, analyzes how safety and security interact, and quantifies the 

influence of their interaction on the risk level. The integrated risk is dynamically 

assessed considering the dependency of safety and security, and the real significance of 

causal factors is dynamically analyzed to identify critical causal factors. 
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Chapter 6: Hazardous operations are confronted by both accidental and intentional risks. 

If only accidental risk is considered for risk management, there could be hidden risk 

(intentional risk) after the application of measures; thus, the real risk level is still 

unacceptable. To effectively reduce risk, safety and security risks need to be managed 

together. Since a management measure may work for different risks, managing safety 

and security risks together can help scientifically decide the measures. This chapter 

established an ID-based risk management model which includes intentional factors and 

accidental factors. The effects and costs of potential measures are assessed, based on 

which the proper measures are selected.    
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2. Dynamic Occupational Risk Model for Offshore Operations in 

Harsh Environments 

Preface 

A version of this chapter has been published in the Journal of Reliability Engineering 

and System Safety 2016; 150: 58－64. As the primary author, I reviewed related 

literatures, developed the BT and BN models and applied these models to analyze risks 

of STFs. I completed the first version of the manuscript and further revised according 

to the suggestions of co-authors and reviewers. Dr. Faisal Khan helped to identify the 

research topic and scope. Dr. Hangzhou Wang, Dr. Zhi Yuan and Hanwen Liu reviewed 

the manuscript and provided revision suggestions. Shelly Leighton helped to collect 

data from industry for the case study.  

Abstract 

The expansion of offshore oil exploitation into remote areas (e.g., Arctic) with harsh 

environments has significantly increased occupational risks. Among occupational 

accidents, slips, trips and falls from height (STFs) account for a significant portion. 

Thus, a dynamic risk assessment of the three main occupational accidents is meaningful 

to decrease offshore occupational risks. Bow-tie Models (BTs) were established in this 

study for the risk analysis of STFs considering extreme environmental factors. To relax 

the limitations of BTs, Bayesian networks (BNs) were developed based on BTs to 

dynamically assess risks of STFs. The occurrence and consequence probabilities of 
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STFs were respectively calculated using BTs and BNs, and the obtained probabilities 

verified BNs' rationality and advantage. Furthermore, the probability adaptation for 

STFs was accomplished in a specific scenario with BNs. Finally, posterior probabilities 

of basic events were achieved through diagnostic analysis, and critical basic events were 

analyzed based on their posterior likelihood to cause occupational accidents. The 

highlight is systematically analyzing STF accidents for offshore operations and 

dynamically assessing their risks considering the harsh environmental factors. This 

study can guide the allocation of prevention resources and benefit the safety 

management of offshore operations. 

Keywords: Occupational accident; dynamic risk assessment; harsh environment; 

Bayesian network; Bow-tie model 

2.1 Introduction 

Occupational accidents are of major concern in the offshore oil industry. Statistics 

indicates fatalities are more likely to be caused by occupational accidents than by 

catastrophic events such as explosions or air transport incidents [1]. According to the 

RIDDOR report [2], slips, trips and falls from height (STFs) lead to approximately one 

third of all injuries in the offshore industry. With the recent expansion to remote areas, 

offshore oil exploitation meets particular challenges caused by the increasingly harsh 

environment, coupled with the remoteness of offshore platforms [3]. The harsh 

environment for offshore oil industry includes poor natural conditions (e.g., strong wind 
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and ice, etc.), as well as the workplace conditions deteriorating the safety situation, such 

as vessel motion. Risk assessment for STFs becomes more meaningful in the offshore 

oil industry while confronted by such increasing challenges.  

 

Some research has been conducted about STFs. Amandus et al. [4] evaluated the causes 

and costs of STFs in a helicopter manufacturing plant by investigating the records of 

4070 helicopter plant workers. Nenonen [5] applied the data mining method to analyze 

factors related to slipping, stumbling, and falling accidents at work. Courtney et al. [6] 

analyzed the likelihood of isolating the contribution of slipperiness to STF-related 

injuries from injury surveillance systems in the USA. Bentley et al. [7] identified large 

numbers of risk factors for STFs in residential construction through incident-centered 

and incident-independent methods of investigation. These studies mainly focus on cause 

analysis of STFs instead of quantifying risks. Furthermore, very few literatures were 

related to risk analysis of STFs of offshore oil industry. Attwood et al. [1, 8] determined 

the relative importance of influencing factors of offshore occupational accidents, and 

established a prediction model for the frequency and costs of offshore occupational 

accidents. However, this model only includes general causes, which limits its capacity 

to provide specific risk information of STFs. Moreover, it cannot dynamically assess 

the occupational risks. In the current research, the risks of STFs in offshore operations 

were dynamically assessed using Bayesian Networks (BNs). A novel point is the 

involvement of harsh environmental factors suffered by offshore platform workers. 
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This paper is organized as follows: Section 2.2 introduces the fundamentals of Bow-tie 

Models (BTs) and BNs. The dynamic assessment model of occupational risks is 

presented in Section 2.3. Section 2.4 explains the model application (i.e., probability 

calculation, probability update and critical factor analysis), and the conclusions are 

presented in Section 2.5. 

2.2 Background 

BT and BN are two powerful risk analysis models. BT is the combination of a fault tree 

(FT) and an event tree (ET). Its left part is the FT where the detailed causes are 

systematically identified following a Boolean logic; the right is the ET which starts with 

an accident and identifies the potential consequences depending on the states (success 

or failure) of safety barriers. Therefore, both causes and consequences can be 

incorporated in a graphical BT model [9, 10], thereby clearly presenting the accident 

process and potential consequences. As for BN, it is a directed acyclic graph with Bayes' 

theorem as the key mechanism [11, 12]. The variables in BN (i.e., risk factors, accidents, 

safety measures and potential consequences) are represented by nodes, while arcs are 

used between the nodes to reveal variable causality. The dependency degree of nodes is 

indicated by the conditional probability tables (CPTs). To complete BNs, the prior 

probabilities of root nodes and CPTs for other nodes should be provided [12]. BNs work 

with two inference methods, namely predictive (forward) inference and diagnostic 

(backward) inference [9], which are illustrated using a basic BN (Fig. 2.1) [12]. For the 

predictive inference, probability A is obtained according to its CPT and probability B, 

https://en.wikipedia.org/wiki/Boolean_logic


31 
 

following the law of total probability (equation 2.1). Diagnostic inference updates 

probability B given the certain state of node A (evidence) according to the Bayes' 

theorem (equation 2.2). The forward inference can predict the probability of rear 

variables, while the backward inference enables to update the probability of precedent 

variables given evidence. Thus, BNs can conduct predictions as well as diagnostics. 

 

B A
 

Fig. 2.1 Basic BN [12] 
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where n represents the total state of B and k is the kth state of B. 

 

BTs outperform BNs in some aspects. In a cause-accident-consequence order, BTs are 

an organized tool to clarify the occurrence and escalation process of accidents. 

Furthermore, comparing with the fact that no specific semantic guides BNs 

development [12], BTs can be easily established following the development procedure 

of FTs and ETs. However, BTs are unsuitable to dynamically quantify the occupational 

risks because of the limited logic relationship and static structure [10]. Fortunately, 
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these limitations enable to be relaxed by coupling BTs with BNs. The principle for BN 

to relax BT in the area of occupational risk analysis is illustrated in this paper. 

 

As powerful assessment tools, BTs and BNs are extensively used in research. Jacinto 

and Silva [13] proposed a semi-quantitative assessment methodology of occupational 

risks for the ship building industry, in which BT was used to qualitatively identify causal 

pathways and consequences of relevant accidents. Ale et al. [14] introduced the 

concepts and overall structure of a BT-based quantifying occupational model. Martín et 

al. [15] used BNs to establish dependency relationships between different causes of falls 

from height and identified the major causes. Chen and Leu [16] assessed fall risks in 

bridge construction projects using BNs. Bobbio et al. [17] mapped FTs into BNs and 

explored the capabilities of BNs for the analysis of dependable systems. A few papers 

[9, 10, 18] performed dynamic risk analysis in process safety areas by transforming BTs 

into BNs. However, as discussed in this paper, occupational accidents often have a logic 

more complex than traditional OR-gates or AND-gates. Thus, only consisting of 0 and 

1, the CPTs of BNs for process accidents [9] do not fit occupational accidents.  

2.3 The dynamic assessment model of occupational risks 

2.3.1 BT-based occupational risk model 

The risk factors, safety measures and potential consequences were identified for 

offshore STFs (Tables 2.1 and 2.2) according to literature reviews [19－29] and 
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professionals' knowledge. Then BTs for STFs were respectively established based on 

the identified components. For the sake of simplification, this paper only presented the 

BT of slips (Fig. 2.2) whose symbols can be found in Tables 2.1 and 2.2. The occurrence 

and escalation process of slips is clearly presented through the BT-based occupational 

risk model in Fig. 2.2. 

 

The prior probabilities of basic events should be assigned first to quantify occupational 

risks, and they were obtained using Kirsten method [30]. In this method, experts provide 

the qualitative evaluation using their experience and best judgment, and then 

corresponding probabilities can be obtained according to Table 2.3 [30－32]. This 

method can not only effectively involve expert experience, but also avoids the difficulty 

that experts meet when they directly provide probability values. A group of experts from 

the offshore oil industry (e.g., UTEC Survey Canada) were invited to determine prior 

probabilities of basic events, and the averages are shown in Table 2.1. 

 

Table 2.1 Prior probabilities of basic events 

Symbols Description Probability Symbols Description Probability 

X1 

Spillages of 

chemicals on 

floor 

1.0×10-2 X23 Litter on floor 1.0×10-6 

X2 Oil on floor 1.0×10-1 X24 Debris on floor 1.0×10-5 

X3 Water on floor 1.0×10-1 X25 
Other obstacles 

on floor 
1.0×10-5 

X4 Dust on floor 5.5×10-6 X26 
Damaged floor 

surface 
5.5×10-5 
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X5 

Slips caused 

by slippery 

floor material 

5.5×10-6 X27 
Loose floor 

surface 
5.5×10-5 

X6 Storm 1.0×10-1 X28 
Uneven floor 

surface 
1.0×10-4 

X7 Darkness 5.5×10-4 X29 
Changes in 

level of floor 
1.0×10-4 

X8 
Ice and snow 

on floor 
1.0×10-1 X30 

Unreasonable 

workplace 

arrangement 

1.0×10-4 

X9 Strong wind 1.0×10-1 X31 Crowded area 1.0×10-5 

X10 Vessel motion 1.0×10-1 X32 Lighting glare 5.5×10-4 

X11 Poor fitness 1.0×10-4 X33 Sudden noise 5.5×10-4 

X12 Fatigue 1.0×10-1 X34 
Trip caused by 

poor footwear 
1.0×10-7 

X13 
Loads 

carrying 
1.0×10-3 X35 

Low quality of 

materials of 

high workplace 

floor and 

ladders 

1.0×10-3 

X14 
Lack of 

experience 
1.0×10-1 X36 

Old age of high 

workplace floor 

and ladders 

1.0×10-3 

X15 
Passive 

attitudes 
1.0×10-3 X37 No handrails 1.0×10-6 

X16 Distraction 1.0×10-1 X38 

Slippery high 

workplace floor 

and ladders 

1.0×10-5 

X17 
Stress and 

limited time 
1.0×10-2 X39 

Holes in high 

workplace floor 

and ladders 

1.0×10-6 

X18 
Poor 

supervision 
5.5×10-4 X40 

Extreme low 

temperature 
1.0×10-2 

X19 
Poor safety 

culture 
1.0×10-6 X41 

Poor 

motivation 
1.0×10-3 

X20 

Poor 

housekeeping 

and 

maintenance 

5.5×10-5 X42 
Abnormal 

intelligence 
1.0×10-3 

X21 
Poor safety 

regulation 
1.0×10-6 X43 

Poor safety 

training for 
1.0×10-2 
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high place 

work 

X22 
No sign of 

warnings 
5.5×10-4 X44 

No warning 

and fencing 

around holes 

1.0×10-1 

Table 2.2 Intermediate events, safety barriers and consequences 

Symbols Factors Symbols Factors 

IE1 
Slips caused by 

contamination on floor 
IE16 

Falls caused by poor situation of 

ladders and high workplaces 

IE2 
Slips caused by poor 

floor condition 
IE17 

Falls caused by harsh 

environments 

IE3 
Slips caused by harsh 

environments 
IE18 

Falls caused by poor human 

factors 

IE4 
Slips caused by poor 

physical situation 
IE19 Falls caused by poor management 

IE5 
Slips caused by lack of 

attention 
SB1 Handrails 

IE6 
Slips caused by poor 

human factors 
SB2 

No sharp edge materials & holes 

nearby 

IE7 
Slips caused by poor 

management 
SB3 PPE 

IE8 
Trips caused by 

contamination on floor 
SB4 Emergency rescue 

IE9 
Trips caused by poor 

floor surface condition 
SB1' Harness & backscratchers 

IE10 
Trips caused by poor 

underfoot condition 
SB2' 

Falls within two meters & no 

sharp edge materials at landing 

spots 

IE11 
Trips caused by harsh 

environments 
C1 Near miss 

IE12 
Trips caused by poor 

physical situation 
C2 Minor injury 

IE13 
Trips caused by lack of 

attention 
C3 Lost working-time injury 

IE14 
Trips caused by poor 

human factors 
C4 Unrecoverable major injury 

IE15 
Trips caused by poor 

management 
C5 Fatality 
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Table 2.3 Classes for probabilities of occurrence [30－32] 

Qualitative evaluation Quantitative evaluation 

Certain 1 

Very high 10-1 

High 10-2 

Moderate 10-3 

Low 10-4 

Very low 10-5 

Extremely low 10-6 

Practically zero 10-7 

X2

X1

X4

X3

IE1

X5

IE2

X10

X8

X7

X6

IE3

X14

X13

X12

IE4

X17

X16

X15

IE5

IE6

X21

X20

X19

X18

IE7

X22

Slip

X9X11

C1

C2

C3

C4

C4

C5

SB1 SB4SB2 SB3

C3

 

Fig. 2.2 Bow-tie model for slips (refer to tables 2.1 and 2.2) 

 

Although BT is an excellent risk analysis tool, it has limitations to quantify occupational 

risks. The three main limitations are discussed as follows: 

(1) The traditional logic gates of BTs may not fit occupational accidents. Most basic 

events of STFs have the likelihood to independently cause upper events. However, 
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the occurrence of such a basic event does not necessarily lead to the upper event. 

For example, the event X3 (water on floor) can lead to slips (shown in Fig. 2.2), but 

not all people who walk on the wet floor slip in practice. Therefore, the logic gates 

of BTs cannot express the real logic relationship of occupational accidents. 

(2) BTs cannot accurately describe the potential consequences. Human factors are 

involved in occupational accidents, complicating the consequence determination. 

Particularly, when the same safety barriers fail, it does not necessarily lead to the 

same consequence to humans. For example, even if a worker slips with the failure 

of all safety barriers (refer to Fig. 2.2), several potential consequences (e.g., minor 

injuries, lost working-time injuries, unrecoverable major injuries and fatality) may 

occur in practice with their corresponding probabilities. However, the BT in Fig. 

2.2 only assigns one consequence (fatality) to this scenario. Actually, BTs usually 

consider the most likely potential result for one scenario as the only consequence, 

which is often unrealistic for occupational accidents. 

(3) BTs cannot dynamically assess occupational risks because of its static structure [10]. 

According to the changing operations and working environments, offshore 

occupational risks change over time. The proposed safety measures based on static 

risk analysis may not effectively prevent and mitigate the latest risk. Therefore, 

dynamic risk analysis is required for related decision making in offshore 

occupational areas. 
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2.3.2 BN-based dynamic occupational risk model  

BNs were developed based on the established BTs to relax aforementioned limitations, 

because it has the following advantages: 

(1) BNs can represent the real logic (Noisy-OR) [17] between basic events and their 

upper events of occupational accidents using CPTs, which facilitates the 

quantification of occupational risks.  

(2) CPTs can represent the probability of different potential consequences given the 

same barrier failure.  

(3) BNs are expert in dynamic risk assessment [18, 33]. Thus, it enables to quantify the 

latest occupational risk in offshore operations. 

 

BNs were established for STFs (Figs. 2.3－2.5) based on BTs through two main steps. 

Firstly, the components of BTs (the basic events, intermediate events, top events, safety 

barriers and consequences) are correspondingly converted into root nodes, intermediate 

nodes, pivot nodes, safety nodes and consequence nodes of BNs [9]. These nodes are 

connected by arcs based on their causality. Secondly, CPTs of BNs are achieved 

according to the weights of events which came from the same survey with prior 

probabilities of basic events. The weight of an event refers to the occurrence likelihood 

of its upper events given the event occurrence. The development process of the CPT for 

node IE4 (Fig. 2.3) is demonstrated as follows. 11X , 12X  and 13X represent 

nonoccurrence of these events, and the weights of X11 X12 X13 are a1 (0.001), a2 (0.001) 



39 
 

and a3 (0.01) respectively. If X11 and X12 occur while X13 does not take place, the 

occurrence probability P(IE4)=a1+a2 (0.002). This value is added to the CPT of node 

IE4 (column 4 in Table 2.4). Following this rule, P(IE4) in different scenarios can be 

calculated and then the CPT of node IE4 can be completed (Table 2.4). 

 

Table 2.4 The CPT of node IE4 for slips 

Scenario 131211 XXX  
131211 XXX  

131211 XXX  
131211 XXX  

131211 XXX  
131211 XXX  131211 XXX  

131211 XXX  

P(IE4) 0.012 0.011 0.002 0.011 0.010 0.001 0.001 0 

 

 

Fig. 2.3 BN for slips (refer to tables 2.1 and 2.2) 
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Fig. 2.4 BN for trips (refer to tables 2.1 and 2.2) 

 

Fig. 2.5 BN for falls from height (refer to tables 2.1 and 2.2) 
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2.4 Application of occupational risk model 

2.4.1 Probability calculation of accidents and consequences 

BTs and BNs were used to calculate occurrence and consequence probabilities of STFs 

and the results are shown in Table 2.5. According to Table 2.5, the accident probabilities 

calculated by BTs are much higher than those from BNs. UK HSE [2] states that the 

rate of STFs in the deck operations on mobile installations was 0.025. It is obvious that 

the accident probabilities obtained from BTs are too large (all bigger than 0.6) compared 

with those from industry. Such large difference is caused by the fact that BT's logical 

gates do not fit occupational accidents. In comparison, the results from BNs (column 4 

in Table 2.5) are closer to the practical data of UK HSE, which shows the advantage of 

BNs over BTs in occupational risk analysis. Furthermore, the fatality probability 

(column 5 in Table 2.5) shows BNs' rationality. According to UK HSE [34], falls from 

height were the most common cause of fatalities. The result from BNs shows that the 

fatality probability caused by falls from height is much higher than that caused by slips 

and trips, which is consistent with the industry. Moreover, the occurrence probability 

of falls from height calculated by BN is the lowest among the three types of accidents, 

while its fatality probability is the highest. This fits the accident characteristics that the 

consequence severity of falls from height is more difficult to mitigate compared with 

slips and trips.  
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Table 2.5 Accident and fatality probabilities 

Accidents 

Occurrence 

probability 

(BT) 

Fatality 

Probability 

(BT) 

Occurrence 

probability 

(BN) 

Fatality 

Probability 

(BN) 

Slips 9.24×10-1 1.07×10-4 2.08×10-2 2.03×10-6 

Trips 6.15×10-1 9.23×10-5 1.38×10-2 1.34×10-6 

Falls from 

height 
7.35×10-1 5.88×10-4 5.39×10-3 5.62×10-5 

2.4.2 Occupational risk update 

One feature of BNs is the sequential updating (adaptation). When the occurrence of 

basic events is observed, occurrence and consequence probabilities of STFs can be 

updated using the observed evidence. In a certain scenario, it is assumed that four basic 

events (strong wind, lack of experience, stress and limited time, and poor housing and 

maintenance) are observed during eight weeks (Table 2.6). Taking advantage of the 

evidence, BNs updated both the occurrence probabilities and fatality probabilities of 

STFs (Fig. 2.6). As Fig. 2.6 shows, the occurrence and fatality probabilities of STFs 

increased over time. Especially for trips, these probabilities almost doubled through the 

eight weeks. Furthermore, although the increase rate for occurrence probability of falls 

from height is smaller than that of slips and trips, its fatality probability has the largest 

growth. This shows that the changes of the four observed basic events cause more severe 

deterioration to the consequence severity of falls from height. Interestingly, the great 

increases on occurrence and fatality probabilities of STFs in week 1 (with the increased 

percentages 22.4%, 14.8% and 5.7% respectively) are only caused by the harsh 

environmental factor (strong wind). Thus, as a harsh environmental factor, strong wind 



43 
 

can considerably deteriorate STFs, which indicates the importance of considering harsh 

environments in offshore risk analysis. Through the adaptation analysis, the updated 

occurrence and fatality probabilities of STFs were obtained, and corresponding safety 

measures can be proposed to effectively reduce risks. 

 

Table 2.6 Observed abnormal events during eight weeks 

Week 1 2 3 4 5 6 7 8 

Strong wind 2 － 1 － － 2 － 1 

Lack of experience － 1 － － 1 － 2 － 

Stress and limited time － － － 1 － － － 1 

Poor housekeeping and maintenance － － － － 1 － － － 

 

 

  (a) Occurrence probability of STFs           (b) Fatality probability of STFs 

Fig. 2.6 Dynamic occurrence and fatality probabilities of STFs  

2.4.3 Critical factor analysis 

Another feature of BNs is the backward (diagnostic) analysis, which can be used to 

update probabilities of root nodes given accident occurrence. The updated probabilities 

(posterior probabilities) of the basic events mean their most likely probabilities when 

the accident occurs. The basic events with large posterior likelihood to cause STFs are 
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considered as the critical factors in this study. The posterior likelihood can be measured 

by the product of the weights and posterior probabilities of basic events. Two steps were 

taken to obtain the posterior likelihood of basic events. Firstly, the posterior 

probabilities of root nodes were obtained with the help of GeNIe software [35]. Then, 

the posterior likelihood of each basic event to lead to STFs was calculated according to 

its weight and posterior probability, and the basic events with top five biggest posterior 

likelihood are shown in Fig. 2.7. 

 

 

               (a) Slips                  (b) Trips               (c) Falls from height 

Fig. 2.7 Basic events with bigger posterior likelihood to cause STFs (refer to tables 2.1 and 2.2) 

 

According to Fig. 2.7, critical factors causing STFs were determined. Specifically, the 

posterior likelihood of X6 (storm), X8 (ice and snow on floor) and X9 (strong wind) to 

cause slips is much bigger than other basic events, thus they were selected as the critical 

factors for slips. Similarly, X9 (strong wind) and X10 (vessel motion) were identified as 

the critical factors for trips. For falls from height, the critical factors are X43 (poor safety 

training for high place work), X10 (vessel motion) and X44 (no warning and fencing 

around holes). Through the analysis, the critical factors for slips, trips and falls from 
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critical factors should be given priority for the effective prevention of future accidents. 

Furthermore, X43, with a lower prior probability (0.01), has the largest posterior 

likelihood to cause falls from height, which partly results from its large posterior 

probability (0.11). Moreover, environmental factors (e.g., X6, X8, X9 and X10) can be 

found among the critical factors for all STFs accidents. Especially for slips and trips, all 

the critical factors are harsh environmental factors. This reveals occupational risks can 

be significantly influenced by harsh offshore environments.  

2.5 Conclusions 

This study established BTs to better illustrate the occurrence and escalation process of 

STFs, and then the limitations of BTs were relaxed using BNs. The accident 

probabilities as well as fatality probabilities obtained from BTs and BNs were analyzed. 

These probabilities indicate the rationality and advantage of BNs to quantify 

occupational risks. Furthermore, probability adaptation was completed in a certain 

scenario. Through the adaptation, it is found both accident probabilities and fatality 

probabilities increase over time, and the adaptation consequences also indicate the harsh 

environmental factors can significantly deteriorate STFs. Moreover, the critical factors 

were identified according to their posterior likelihood to cause STFs. It is found 

environmental factors exist among the critical basic factors for all STFs accidents. This 

further reveals that harsh environmental factors pose significant potential hazards to 

occupational safety. Thus, measures should be presented to cope with the influence of 

harsh environments.  
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Some points can be further improved in the future study. Slips, trips and falls from 

height have an interactive relationship. For example, slips may cause falls from height. 

The interactive relationship can be modeled, thereby identifying effective measures to 

prevent various accidents at the same time. 
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3. Predictive Abnormal Events Analysis Using Continuous 

Bayesian Network 

Preface 

A version of this chapter has been published in the ASCE-ASME Journal of Risk and 

Uncertainty in Engineering Systems, Part B: Mechanical Engineering. 2017; 3: 1－7. I 

am the primary author of this paper. I defined the specific research aim, developed the 

methods and completed the analysis of case study. I completed and improved the 

manuscript. Dr. Faisal Khan suggested the general research topic and provided 

feedbacks on the manuscript. Dr. Ming Yang helped revise the original manuscript to 

make the argument clearer. Dr. Hangzhou Wang suggested MCMC algorithm to solve 

the established model and helped to learn this algorithm. 

Abstract 

The reliable prediction and diagnosis of abnormal events provide much needed 

guidance for risk management. The traditional Bayesian Network (traditional BN) has 

been used to dynamically predict and diagnose abnormal events. However, its inherent 

limitation caused by discrete categorization of random variables degrades the 

assessment reliability. This paper applied a continuous Bayesian Network (CBN) based 

model to reduce the above-mentioned limitation. To compute complex posterior 

distributions of CBN, the Markov chain Monte Carlo method (MCMC) was used. A 

case study was conducted to demonstrate the application of CBN, based on which a 
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comparative analysis of the traditional BN and CBN was presented. This work 

highlights that the use of CBN can overcome the drawbacks of traditional BN to make 

dynamic prediction and diagnosis analysis more reliable. 

Keywords: Dynamic analysis, Abnormal events, Uncertainty, Continuous Bayesian 

network, Markov chain Monte Carlo method 

3.1 Introduction 

Risk analysis helps propose effective prevention and mitigative measures of accidents 

[1]. The prediction and diagnosis of abnormal events are an important part of risk 

analysis and management. Many qualitative and quantitative assessment methods have 

been presented. Among them, the Bayesian network (BN) based approach is one of the 

most robust quantitative tools, since it has the capability to analyze dynamic risks given 

new information or data collected from ongoing operations [2－4]. Especially for 

events with very low frequency but severe consequences such as the Macondo blowout 

accident, BN-based approaches can utilize the relatively abundant precursor data to 

estimate accident probability and reduce uncertainty by considering the 

interdependency among the causes of the accident. Khakzad et al illustrated the specific 

process of converting BT into BN, and took accident precursors and conditional 

dependency into account to update the probability of events and the consequent risk for 

a vapor ignition accident using BN [2]. In another study, they conducted risk analysis 

of drilling operations using an object-oriented Bayesian network. The object-oriented 
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Bayesian network makes the model tractable, and demonstrates the dependencies of 

events more clearly. [1] Yuan et al. applied BN to dynamically assess the risks of dust 

explosion considering common cause failures and dependencies among root events and 

possible consequences, and also identified the critical factors given the occurrence of a 

dust explosion [3]. Abimbola et al. used BN to update the belief about the operational 

data considering the dependencies in the constant bottom-hole pressure drilling 

technique [4].  

 

However, the modeling flexibility and preciseness of a BN-based approach is degraded 

by the use of discrete nodes [5－7]. Normally, for the sake of calculation, traditional 

BN based risk models treat causal factors with a continuous nature as discrete variables 

(frequently Boolean). This approximation introduces uncertainty to the assessment 

process. Many variables continuously change with the variation of their causal factors, 

which often fails to be modeled by discrete nodes of traditional BN. For instance, 

‘strong wind’, as a causal factor for a ‘high wave’, is defined as wind with a speed of 

over 10.8 m/s. Although winds of 1 m/s and 9 m/s have significantly different effects 

on wave height in practice, both are categorized as the discrete state of ‘no strong wind’ 

in a traditional BN. Consequently, they will be assigned the same conditional 

probabilities in the conditional probability tables (CPTs) [2, 3]. This means their 

contributions to a ‘high wave’ are considered as identical in this BN. This becomes one 

of the main sources of uncertainty of such BN.  
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To overcome this limitation, a continuous Bayesian network (CBN) is applied to deal 

with continuous factors. CBN is defined as the specific Bayesian network, the nodes of 

which are variables represented by continuous distributions. A few studies have been 

conducted to investigate continuous nodes in BN models [8－10]. However, to the 

authors' knowledge, limited work has been conducted on the development of a CBN 

based safety analysis approach and the implementation of CBN to overcome the 

uncertainty caused by the assumption of discrete states of nodes in traditional BN. The 

rare application of continuous nodes in BN is mainly because of the difficulty in 

computing posterior distributions due to the involvement of various continuous 

distributions and multiple dependent variables. Some research [11－13] uses the 

conjugate method to solve the CBN based on the assumption that the prior and 

likelihood distributions are conjugate pairs (i.e., the posterior distributions are in the 

same family as the prior distributions). However, this assumption produces some level 

of uncertainty.  

 

This paper proposes the development method of CBN and applies the Markov chain 

Monte Carlo method (MCMC) to compute CBN. Although CBN has a higher 

computational cost than traditional BN, it can be solved efficiently using software by a 

personal computer, even given a reasonably large number of nodes in the network. The 

application of CBN is demonstrated using a case study and results are compared with 

those of the traditional BN to prove the effectiveness of CBN in reducing uncertainty 
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of risk analysis. The work is organized as follows: Section 3.2 illustrates the process of 

converting traditional BN to CBN, while Section 3.3 introduces the use of MCMC to 

solve CBN. A case study is presented in Section 3.4 to reveal the advantages of CBN 

for the prediction and diagnosis analysis of abnormal events. Finally, Section 3.5 

captures the conclusions.  

3.2 The algorithm of converting traditional BN to CBN 

The development of traditional BN has been well documented in the existing literature. 

However, there is limited study of the establishment of CBN based on continuous nodes 

and conditional probabilities. A fault tree (FT), an effective tool used to systematically 

analyze the causes of accidents following top down Boolean logic, can be mapped into 

traditional BN [14]. An FT can be easily established due to its organized structure. 

However, an FT is hard to convert directly to CBN, because they not only have 

completely different model structures, but also have different variable types (i.e. FT has 

discrete variables while CBN uses continuous variables.) Since traditional BN has the 

same variable types as FT and an identical structure as CBN, in order to develop CBN 

with ease, FT can be developed first and then converted into traditional BN, followed 

by the conversion of traditional BN to CBN. 

3.2.1 The distinction between traditional BN and CBN  

Figuring out the distinctions is essential to determine how to convert traditional BN to 

CBN. The analytical mechanism of CBN is fundamentally different from that of 
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traditional BN. In CBN, parental nodes are considered to be contributing quantitatively 

to the physical values of their child nodes. This quantitative relationship can be 

represented in the form of a mathematical expression that links the value of the child 

nodes to that of the parental nodes. In contrast, traditional BN links the probability of 

discrete states of child nodes to the discrete state combination of parental nodes using 

CPTs. To quantitatively represent child nodes using parental nodes in CBN, two main 

changes are required from traditional BN. Firstly, the nodes of CBN need to be 

represented using measurable variables rather than discrete states. Secondly, the values 

or distribution parameters of child nodes in CBN are represented as the function of the 

value of parental nodes. Thus, the CPT of traditional BN are converted to conditional 

probability distributions or functions representing the relationship between values of 

child and parental nodes. Compared with traditional BN, CBN is able to obtain the 

continuous state distribution of each node, and this distribution can provide more 

information about the occurrence of an abnormal event and its causal factors. 

3.2.2 Converting traditional BN to CBN 

To develop CBN, FT is applied first to identify the causes of abnormal events and 

determine the logic relationships. Then FT is mapped into traditional BN, and 

consecutively traditional BN is converted to CBN. As the existing literature [14] has 

provided the method of mapping FT into traditional BN, this paper mainly illustrates 

the process to convert traditional BN to CBN (shown in Fig. 3.1).  
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Firstly, the measurable variables reflecting continuous states of the nodes of traditional 

BN are identified to replace the discrete states. For example, wind speed can be 

identified as the measurable variable of ‘strong wind’, and thus the discrete node of 

‘strong wind’ is converted to the continuous node of wind speed. This process to obtain 

continuous nodes of CBN is shown in Fig. 3.2. These continuous nodes are linked 

according to their dependent relationships. Then the prior distributions of root nodes as 

well as the quantitative relationships between nodes are determined according to 

historical data and expert's experience. It is worth noting that the relationships between 

nodes of CBN have two types (probabilistic and deterministic) [15]. The probabilistic 

relationship refers to conditional probability distributions. In this case, the parameters 

of probabilistic distribution of child nodes are represented as the function of the value 

of the parental nodes. Thus, even if parental values are determined, the values of child 

nodes are still random in nature. On the contrary, in a deterministic relationship, the 

values of parental nodes usually directly determine the value of child nodes. It is 

important to determine the proper relationship type between nodes, since it can 

influence the calculation process of CBN. The deterministic link needs to be ignored 

while inferring the full conditional distribution of CBN using the Gibbs algorithm of 

MCMC [15]. After CBN is established, the distributions of nodes can be updated 

through forward and backward inference when evidence is available. 
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Propose the measurable 

variables of nodes of 

traditional BN

Determine the prior 

distributions of  nodes 

Decide nodes’ 

relationship 

(e.g. conditional 

distributions) 

Convert discrete nodes 

into continuous ones of 

measurable variables

Do the measurable variables

represent continuous state of nodes? 

Yes

No

Is information enough 

to decide prior distributions 

and nodes’ relationship?

Collect practical data 

and enquire experts

Yes

No

Link dependent nodes 

 

Fig. 3.1 Procedure to convert traditional BN into CBN 
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Discrete nodes 

of traditional 

BN

Continuous 

nodes of CBN

 

Fig. 3.2 The process to obtain continuous nodes of CBN 

3.3 CBN analysis using MCMC 

The analytical method is unable to compute the complicated posteriors in CBN. MCMC 

has the capacity of deriving complicated distributions with high dimensions. To clearly 

understand MCMC, it is necessary to illustrate its relationship with the Monte Carlo 

and Markov chain. Monte Carlo simulation is a class of computational algorithms used 

to obtain numerical consequences depending on random samples. This method samples 

numerous random data following certain rules (e.g. a distribution), and these sampled 

data are then analyzed to obtain the desired consequences such as mean, variance and 

distribution density function. However, Monte Carlo simulation cannot directly sample 

from complicated distributions containing various dependent variables. To overcome 

this limitation, the Markov chain is applied to help Monte Carlo sampling, and thus 

MCMC is proposed. The basic principle of MCMC is achieving Monte Carlo sampling 

through the Markov chain [15]. The Markov chain is a random process that starts in one 
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state and moves from one state to another on the state space with appropriate transition 

probabilities. Its next state is only dependent on the current state rather than on previous 

ones. The state transition of a point on the state space of a Markov chain is actually the 

sampling process of Monte Carlo simulation. The state parameters of the point in the 

Markov chain are the sampled variable values from Monte Carlo. Detailed information 

about MCMC and its algorithms (e.g., Metropolis-Hastings, Gibbs and slice sampling) 

can be obtained from [15－17].  

 

A simple CBN (Fig. 3.3) is applied to illustrate the process of solving CBN with MCMC. 

 

Y3

Y5Y4

Y2Y1

 

Fig. 3.3 A simple CBN 

 

The prior and conditional distributions for the variables of the CBN in Fig. 3.3 are 

assumed as follows: 

),(~1 GammaY , ),(~ 2

2 NormalY , )(~3 lExponentiaY , 

),(~)|( 13314 yyGammaYYYp , ),(~)|( 4324325 yyyGammaYYYYp +  

where  ,,,,  are constants, and iy  are the values of variables iY  (i=1,2,3,4,5).  
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The calculation of )|( 51 YYp  is taken as an example to illustrate how to use MCMC to 

compute the posterior probability distribution of CBN. According to Bayesian theory, 

the posterior probability distribution of Y1 given Y5 is represented as equation (3.1). 
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(3.1) 

 

From equation (3.1) it can be seen that to calculate )|( 51 YYp , five variables and three 

integrations need to be dealt with, and among them, Y3 and Y4 are dependent. This 

posterior distribution is too complicated to be solved with an analytic method or Monte 

Carlo simulation. To overcome the limitation, the Gibbs algorithm of MCMC is applied 

to solve the posterior distributions of Y1 given Y5. Firstly, the full conditional 

distributions of the CBN in Fig. 3.3 are obtained as equations (3.2)－(3.6): 

 

)|(),|()|( 314154321 YYYpYpYYYYYp                  (3.2) 

)|(),|()|( 4325254312 YYYYpYpYYYYYp                 (3.3) 

)|()|()|()|( 4325314354213 YYYYpYYYpYpYYYYYp              (3.4) 

)|()|()|( 432531453214 YYYYpYYYpYYYYYp                  (3.5) 

)|()|( 432543215 YYYYpYYYYYp                       (3.6) 
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The original values for the variables of the CBN (Fig. 3.3) are provided as 

0

4

0

3

0

2

0

1 ,,, yyyy , and the evidence 
e

y5  is constant during the MCMC simulation. The 

full conditional distribution of Y1 is further inferred as in equation (3.7). It is found that 

the full conditional distribution of Y1 is a Gamma distribution with parameters 
3y+  

and 4y+  . This kind of posterior distribution with closed form can be directly 

simulated with standard algorithms [16] (e.g., Monte Carlo). Thus, a new value 
1

1y  

can be sampled from Gamma ( 0

3y+  ,
0

4y+  ). It replaces 
0

1y   to serve as the 

parameter of Y3. 

 

),()|(),|()|( 43314154321 yyGammaYYYpYpYYYYYp ++      (3.7) 

 

The full conditional distribution of Y3 is further inferred as equation (3.8). 
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(3.8) 

 

As shown in equation (3.8), the full conditional distribution of Y3 is the product of an 

exponential and two Gamma distributions, and it does not have the closed form. To 

solve this complex full conditional distribution, some other algorithms (e.g., slice 

sampling and Metropolis-Hastings) are required. If the Metropolis-Hastings algorithm 

is applied to deal with the full conditional distribution of Y3, a proposed distribution 
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Gamma (1,2) can be presented first. Samples are drawn from Gamma (1,2) and an 

assessment is made depending on the assessment standard [15], to determine whether 

to accept samples. The accepted sample is 
1

3y  and it replaces 
0

3y  to serve as the 

parameters of the full conditional distributions of other variables. On the other hand, if 

the slice sampling is used to deal with the full conditional distribution of 3Y  , an 

auxiliary variable Z   needs to be introduced. [17] It is assumed 
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, and the joint distribution of 3Y  

and Z  is defined as uniform over the region )(0:),{( 33 YfZZYU = . To sample 

3Y  , we can sample jointly for ),( 3 ZY   and then ignore Z  . The process to obtain 

),( 3 ZY  is as follows: the initial value 
0

3y  is provided and 
0Z  is sampled uniformly 

at random from the interval (0, 
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). Then 

1

3y  is sampled uniformly at random in the region })(:{ 0

33 ZYfYS = . The obtained 

1

3y   replaces 
0

3y   to serve as the parameters of the full conditional distributions of 

other variables. Through a similar process as described above, 
1

2y  and 
1

4y  can be 

sampled from their full conditional distributions.  

 

After 
1

1y  , 
1

2y  , 
1

3y   and 
1

4y   are sampled, the second round of simulation is 

conducted, and  
2

1y  , 
2

2y  , 
2

3y   and 
2

4y   are obtained. Following this procedure, 

numerous y1 can be obtained. The y1 sampled from the converged Markov chain can be 

considered as data from )|( 51 YYp . Then the posterior distribution of Y1 given Y5 is 
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analyzed through these samples. The whole process to obtain the posterior distribution 

of Y1 is the Gibbs simulation, in which slice sampling and Metropolis-Hastings are tried 

to solve the full conditional distributions. 

 

As described above, MCMC enables solving the complicated posterior distributions 

which Monte Carlo cannot deal with, although it may have a higher computational cost 

than does Monte Carlo.  

 

3.4 Case study 

This case study is used to demonstrate the advantages of CBN compared with traditional 

BN. The dynamic probability prediction and diagnosis of severe vessel roll is presented, 

and the result from CBN is compared with that from traditional BN to illustrate the 

capability of CBN to reduce uncertainty. 

 

3.4.1 The development of traditional BN for the severe vessel roll 

A common hazard for vessels, the ‘severe roll’ is an important contributor to the crew 

falling on vessels. Therefore, it is meaningful to study the occurrence probabilities of 

‘severe roll’ and diagnose its causal factors. This hazard is mainly caused by waves, 

including wind waves, swells and beachcombers. The roll studied in this paper results 

from a wind wave. Theoretically, wave height and wavelength contribute to the vessel 

roll, but for the sake of simplification, wavelength was not considered due to its very 
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complex relationship with wind and vessel roll [18]. Besides waves, vessel width and 

the wind directly acting on vessels contribute to roll as well. Following the steps 

mentioned in Section 3.2, FT was established first (shown in Fig. 3.4), and the meaning 

of symbols is shown in the two left columns of Table 3.1. The classification criteria of 

discrete states are shown in Table 3.2. According to Beaufort wind scale [19], we define 

‘strong wind’ as wind with a speed of over 10.8m/s, and a ‘rough sea’ is defined as 

waves with a height of over 2.5m/s, based on the Douglas sea scale [20]. After 

consulting the staff working on an international freighter, the severe roll angle for 

falling down has been defined as over 10º. The vessel with a width of less than 10m is 

assumed to be a ‘small vessel’. 

 

Table 3.1 Description of symbols in FT, traditional BN and CBN 

Symbols in FT  

and traditional BN 
Description Symbols in CBN Description 

X1 Strong wind I1 Wind speed 

X2 Rough sea I2 Wave height 

X3 Small vessel I3 Vessel width 

TE Severe roll ITE Roll angle 

Table 3.2 Classification criteria of discrete states 

Discrete states Criteria 

Strong wind Wind speed >10.8m/s [19] 

Rough sea Wave height>2.5m [20] 

Small vessel Vessel width<10m 

Severe roll Roll angle>10º 
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TE

X2

X1 X3
X3

X1

 

Fig. 3.4 FT for ‘severe roll’ 

 

Then the FT was converted to traditional BN (shown in Fig. 3.5) where all nodes are 

discrete. The prior probabilities of ‘strong wind’ and ‘small vessel’ were defined and 

shown in Table 3.3. The CPTs of the traditional BN were also obtained and the CPT of 

‘rough sea (X2)’ is shown in Table 3.4. 

 

X2

X3

TE

X1

 

Fig. 3.5 The traditional BN for ‘severe roll’ 
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Table 3.3 Prior probability 

Factors Prior probability 

X1 0.1 

X3 0.8 

Table 3.4 The CPT for ‘rough sea (X2)’ 

 X1 X1' 

X2 0.8 0 

X2' 0.2 1 

3.4.2 The development of CBN for vessel roll 

Following the process mentioned in Section 3.2, the traditional BN for ‘severe roll’ was 

converted to CBN (Fig. 3.6). Measurable variables of causal factors and abnormal 

events were determined correspondingly (see the right two columns of Table 3.1). The 

continuous nodes of measurable variables were used to replace traditional BN discrete 

nodes. The prior and conditional distributions of these continuous nodes were assumed 

as shown in Tables 3.5 and 3.6. In practice, this information can be obtained through 

historical data and expert opinion.  

 

I2

I3

ITE

I1

 

Fig. 3.6 CBN for vessel roll 
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Table 3.5 Prior distributions 

Factors Prior distributions 

I1 Weibull (2, 3.780) 

I3 Gamma (15, 2) 

Table 3.6 Conditional distributions 

Factors Conditional distributions 

p(I2|I1) Lognormal (I1/20, 0.2553) 

p(ITE|I1, I2, I3) Gamma(I1*(180*I2/100/(1-(I3*2/100)*(I3*2/100))), 2) 

 

3.4.3 The calculation of traditional BN and CBN for severe vessel roll 

CBN and traditional BN can both be used to analyze the occurrence of severe vessel 

roll. Furthermore, like traditional BN, CBN can update nodes when evidence is 

available. Thus, it can dynamically assess the occurrence probabilities of abnormal 

events (forward inference) and diagnose the latest situation of causal factors (backward 

inference). More importantly, CBN can significantly reduce the uncertainty of 

traditional BN in these two types of inferences. In this study, GeNie software [21] was 

applied to perform the inference of traditional BN, and OPENBUGS software [22] was 

used to perform the CBN calculation. According to the prior probabilities and CPTs, the 

occurrence probability of ‘severe roll’ is 0.0808 from traditional BN; while that 

probability is 0.0841 from CBN, based on the prior and conditional distributions. The 

original occurrence probabilities of ‘severe roll’ obtained through traditional BN and 

CBN are very close.  

3.4.3.1 Forward inference 

In this case, the evidence includes wind speeds of 1m/s, 9.5m/s and 11m/s. This 
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evidence was used to update the distribution of roll angles in the CBN. Then the 

obtained distribution was analyzed to determine the updated probability of ‘severe roll’. 

According to the criterion of ‘strong wind’ (Table 3.2), the discrete states (‘strong wind’ 

or ‘no strong wind’) of this evidence can be respectively obtained. When the discrete 

states of wind were implemented in traditional BN, the probabilities of ‘severe roll’ 

were updated. With wind speeds of 1m/s, 9.5m/s and 11m/s, the probabilities of ‘severe 

roll’ were calculated as 0, 0 and 0.808 using traditional BN. The former two have the 

same probabilities, because their observed wind speeds belong to the same discrete state 

(‘no strong wind’) and consequently have the same conditional probability in the CPTs 

of the traditional BN. This indicates that the traditional BN cannot effectively reflect 

the influence of the change of wind speeds on vessel roll when wind speeds are in the 

same discrete states (Table 3.2). In contrast, according to the results obtained through 

the CBN, the distribution of roll angles for the wind speed of 1m/s (Fig. 3.7 (a)) has an 

obvious change compared to that corresponding to the wind speed of 9.5m/s (Fig. 3.7 

(b)) though these two wind speeds belong to the same discrete state. Furthermore, the 

probabilities of ‘severe roll’ increase significantly from 1.5075E-05 to 0.7310. In this 

way, CBN overcomes the drawback of traditional BN and captures the dynamic changes 

of causal factors. 

 

In traditional BN, the probabilities of ‘severe roll’ corresponding to 1m/s and 9.5m/s 

are the same (i.e., 0), but it has a much higher probability (0.808) given the wind speed 

of 11m/s. This result is not reasonable, because practically the probabilities of ‘severe 
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roll’ should be close for the similar levels of wind speed (9.5m/s and 11m/s) given other 

fixed causal factors. According to Fig. 3.7 (a), (b) and (c), the roll angles from CBN 

have far less change with an increase of wind speed from 9.5m/s to 11m/s than their 

change caused by the increase of wind speed from 1m/s to 9.5m/s. Unlike the results 

obtained from traditional BN, the probability of ‘severe roll’ calculated by CBN given 

the wind speed of 11m/s (0.8459) is close to that corresponding to 9.5m/s (0.7310). This 

shows CBN can better reflect the change of roll angles over the changes of causal factors 

than traditional BN. For the simulations of roll angle distributions (Fig. 3.7), two 

Markov chains were used for each scenario. Each chain generated 200000 samples and 

the first 999 ones were discarded (burn-in). It was found that the historical traces of the 

two chains of each scenario overlapped; thus, the Markov chains are believed to be 

converged [23]. Also, MC errors (0.002, 0.015 and 0.018) of roll angles for the three 

scenarios are smaller than 0.05; thus, the simulation accuracy is acceptable [23]. The 

calculation of roll angles is a forward inference. Thus, samples are obtained from 

standard distributions (i.e., Weibull, Lognormal and Gamma distributions) using 

standard algorithms [16] in the simulations, and the acceptance rate is 1. 
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Fig. 3.7 Distribution density of roll angles over different wind speeds 

Note: the practical roll angles should be within 0 to 90º. In the case study, when the result is larger 

than 90º, it is considered to be 90º. 

 

3.4.3.2 Diagnosis analysis 

One of the features of BN is the diagnosis analysis (backward inference). Normally, 

when the abnormal event has been observed, the states of its causal factors can be 

inferred using diagnosis analysis. CBN can also help to reduce the uncertainty existing 

in the diagnosis process of traditional BN. 

 

Assuming roll angles were observed as 1º, 9.5º, 10.5º and 30º, the probabilities of 

causal factors were updated. For traditional BN, the discrete states (‘severe roll’ or ‘no 

severe roll’) of these observed angles were obtained according to Table 3.2 and used as 

the evidence for the update. Meanwhile, with these observed angles, the distributions 

of causal factors were also updated using CBN.  

 

The results obtained from traditional BN are shown in the second row of Table 3.7. 

When the roll angles are 1º , 9.5º , 10.5º  and 30º , the corresponding posterior 
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probabilities of ‘rough sea’ are 0.0070, 0.0070, 0.9109 and 0.9109 respectively. Thus, 

traditional BN failed to predict the state change of causal factors given different roll 

angles (e.g., 1ºand 9.5º), because these observed angles belong to the same discrete 

state according to Table 3.2. Furthermore, when the roll angles are very close (e.g., 9.5

ºand 10.5º ), the diagnosis consequences are very different (0.0070 and 0.9109). 

However, in practice, the likely probabilities of causal factors are believed to be similar, 

given alike evidence of abnormal events. When CBN was applied to conduct the 

backward analysis, the posterior distributions of causal factors were obtained, and then 

the posterior probabilities of abnormal states of these factors were calculated depending 

on the classification criteria (Table 3.2). The posterior distribution density of wave 

heights from CBN is shown in Fig. 3.8, and the posterior probabilities of ‘rough sea’ 

are shown in row 3 of Table 3.7. The results from CBN show that the states of ‘rough 

sea’ change given different roll angles which even belong to the same discrete state (e.g., 

1ºand 9.5º), and also the posterior probabilities of ‘rough sea’ are close (0.1934 and 

0.2475) given small difference in roll angles (9.5ºand 10.5º) as evidence. The diagnosis 

results reveal that CBN is able to better capture the changes of abnormal events and 

reflect them in the state change of causal factors through backward analysis. Two 

Markov chains were used for each scenario following the slice algorithm, and each 

chain generated 20000 samples with the burn-in of 999 samples. The acceptance rate of 

simulation for all scenarios is 1. Moreover, following the procedure described in Section 

3.4.3.1, it was verified that the Markov chains converged, and the simulation accuracy 
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is acceptable. 

 

Table 3.7 The diagnosis of ‘rough sea’ from traditional BN and CBN 

Evidence (roll angles) 1º 9.5º 10.5º 30º 

Probabilities of ‘rough sea’ from traditional BN 0.0070 0.0070 0.9109 0.9109 

Probabilities of ‘rough sea’ from CBN 0.0061 0.1934 0.2475 0.9888 

 

Accurate diagnosis results are important for the prioritization of causal factors and 

development of countermeasures to effectively prevent abnormal events. After 

obtaining the posterior probabilities of causal factors according to CBN, the factors with 

bigger posterior probability can be identified, and the mean increase of roll angles can 

be respectively calculated given the unit increase of each causal factor. The causal 

factors with larger posterior probability and leading to a bigger increase of roll angles 

are critical factors. These factors should be given priority when deciding 

countermeasures. In this case, it is of little value to identify the critical causal factors, 

because none of them can be controlled in order to reduce the probability of the 

abnormal event. Since the causal factors in this case study tend to be uncontrollable, 

critical factors are not identified here. However, the way of identifying critical factors 

can be used when analyzing risks in other areas. 
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Fig. 3.8 Distribution density of wave heights 

 

3.4.3.3 Flexibility of CBN 

‘Severe roll’ can lead to different types of accidents. For different accidents, the criteria 

used to define ‘severe roll’ may differ. For example, a roll angle greater than 10º can be 

considered a ‘severe roll’ in the case of crew falling on a vessel; while for vessel 

capsizing, it is more reasonable to use a bigger roll angle (e.g., above 80º) to define 

‘severe roll’. CBN is open to the flexibility of definition of accident type and the 

associated criteria used to define abnormal states. For example, in this case, CBN is 

able to sample numerous roll angles, and once a specific type of accident is determined, 

the probability of ‘severe roll’ can be computed as the percentage of the roll angles of 

more than the defined criteria. Given the criteria defined for ‘severe roll’ mentioned 
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above, the probability of ‘severe roll’ for capsizing corresponding to the wind speed of 

11m/s is 0.0014, while the probability of ‘severe roll’ for falling down is 0.8114. 

However, traditional BN can only calculate the probability of abnormal events for one 

accident.  

3.5 Conclusions 

This paper applied a CBN-based method to predict the probability of an abnormal event 

and diagnose its causal factors to reduce the uncertainty caused by the assumption of a 

discrete state made in a traditional BN. The comparative analysis of traditional BN and 

CBN shows that CBN is able to produce a more reasonable prediction of abnormal 

events and reflect the effects of any measurable change of casual factors on the 

probability variation of abnormal events. CBN can also better infer the state of causal 

factors than traditional BN given the observation of abnormal events. Furthermore, 

CBN has flexibility that helps calculate the probabilities of abnormal events for various 

accidents. The case study presented in this paper partially validated the usefulness of 

the proposed approach. Future work will be necessary to validate the approach using a 

real-world case. Moreover, it will also be valuable to develop a generic risk management 

framework that adopts the CBN-based approach as the basis.  
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4. Security Assessment of Process Facilities－Intrusion Modeling  

Preface 
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according to the feedbacks of co-authors and reviewers. Dr. Faisal Khan helped to 
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Abstract  

The process industry is confronted with terrorism threats. Effective security 

management demands the ability to defend facilities against different intrusion 

scenarios. This study first presented various intrusion scenarios to explain the 

corresponding intrusion process using graphical barriers. Subsequently, this work 

dynamically analyzed the successful intrusion probabilities and security potentials of 

barriers using a Bayesian network considering the dependency of barriers and 

interaction of different intrusion scenarios. It was observed that successful intrusion 

probabilities and security potentials are strong functions of intrusion scenarios. 

Therefore, extensive intrusion scenarios must be considered while assessing and 

designing the security systems of process facilities.  
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Keywords: Intrusion scenarios; Intrusion process analysis; Bayesian network model; 

Dependency modelling; Probability update 

4.1 Introduction 

Terrorism is increasingly becoming a pressing concern across the world. The attacks on 

process facilities [1－10] demonstrate that the process industry is now an attractive 

target for terrorists. The process industry plays an essential role in the social and 

economic development, and large amounts of hazardous substances are processed in 

process plants every day. Attacking a process plant not only results in substantial 

economic losses [2] but also generates severe societal impact [11]. Thus, decent security 

management is urgently needed to protect process plants from terrorist attacks. 

Vulnerability assessment provides required information for security management. 

Vulnerability constitutes of two parts: the likelihood of successful intrusion and 

successful damage. Since prevention of intentional damage is very difficult once the 

intrusion is successful, especially for attacks with weapons, intrusion prevention 

accounts for a significant part of security management. Thus, effective intrusion 

assessment greatly supports the security management of process plants. Whether the 

existing barriers can effectively prevent intrusions becomes an interesting topic. 

However, as argued in [12], the adequacy of a security system depends on what it is 

protecting against. If the threat has been underestimated, readiness could be 

overestimated [12]. One feature of a security problem is that it includes two active sides

－ attackers and defenders, making successful intrusion depend on both 
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countermeasures of defenders and the intrusion pattern of attackers. The 

countermeasures which perform well in one kind of intrusion scenario do not 

necessarily work in another one. This means a facility well secured against one intrusion 

scenario could be vulnerable to others. If the intrusion assessment is conducted without 

the consideration of intrusion scenarios, the security risk of a plant could be 

significantly underestimated. To solve this problem, this study analyzes impacts of 

intrusion scenarios on successful intrusion probabilities.  

 

The following works have conducted assessments of vulnerability and security risks. 

Reniers et al. [13] described a systematic development of a practical security system in 

the process industry. The authors stated that the probability of each type of intrusion 

scenario must be defined in the security risk assessment process [13], but they did not 

research the influence of different types of intrusion scenarios. Bajpai et al. [11] 

explained the steps of security risk management, including threat analysis, vulnerability 

analysis, security countermeasures and emergency response. Although terrorists, 

disgruntled employees, contractors and criminals were identified as sources of threats 

[11], intrusion scenarios were not discussed in their work. Argenti [14] clarified the 

collection process of related data based on expert experience to support the vulnerability 

assessment of physical protection systems. However, the influence of intrusion 

scenarios on related vulnerability data was not considered during expert surveys. 

Landucci [15] et al. investigated the possibility that a shock wave generated by 
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improvised explosives could damage process equipment and/or trigger an escalation 

sequence leading to a domino scenario. This study supports vulnerability assessments 

of industrial plants for a shock wave caused by improvised explosive devices. However, 

it did not research intrusion processes and scenarios. Van Staalduinen et al. used a 

graphical attack model to represent the process of state changes from safe conditions to 

successful attacks by breaching security barriers. Then a Bayesian network (BN) model 

was applied to calculate failure probabilities of barriers and consequence probabilities 

[5]. However, this model did not consider the influence of intrusion scenarios, and thus 

the assessment result cannot accurately reflect defensive ability for a specific intrusion 

scenario. Furthermore, not every security barrier works for all intrusion scenarios. Their 

graphical model cannot reflect how attackers achieve intrusion by destroying 

corresponding barriers in different intrusion scenarios. Thus, the intrusion process could 

not be well understood, and effective countermeasures could not be proposed for a 

specific intrusion scenario. Akgun et al. [16] presented a fuzzy integrated model to 

assess the vulnerability of a critical facility under multiple qualitative/quantitative 

criteria in a group decision-making environment. This model considered the 

interdependencies among the system functions (i.e., logical dependencies), but intrusion 

scenarios were not included in their assessment. Argenti et al. [17] applied a BN model 

to assess the vulnerability of chemical facilities to deliberate attacks quantitatively. 

However, they considered only the damage pattern (e.g., deliberate misoperation) 

instead of intrusion scenarios. Thus, the influence of intrusion scenarios on the 
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performance of physical security systems was not included. Furthermore, the 

interactions of different intrusion scenarios and dependency among causal factors (e.g., 

the dependency between CCTV and intrusion detection by security guards) were 

missing. Fakhravar et al. [18] developed a Discrete-time BN to investigate the 

vulnerability of a gas pipeline considering the performance of security countermeasures. 

This work did not analyze specific intrusion processes in different scenarios and did not 

consider the influence of intrusion scenarios on vulnerability. McGill et al. [19] assessed 

the non-performance of a security system based on the probability of adversary success 

using fuzzy logic. This work approximated the relationship between defensive 

capabilities and probability of adversary success based on the effectiveness of six 

defensive criteria. However, this model assumed a fixed initiating event; thus, it did not 

analyze the influence of intrusion scenarios on the probability of adversary success.  

 

To the authors' knowledge, few works have considered the effects of intrusion scenarios 

on the success likelihood of intrusion. Van Staalduinen et al. [2] classified the attacks 

into three scenarios (manned, vehicle, and aerial-drone), and the consequence 

probabilities of the three scenarios were respectively calculated using BN models. 

However, this work did not analyze the damage process of barriers in specific intrusion 

scenarios, nor identify the security potentials of barriers in different intrusion scenarios. 

Moreover, since their work did not include the interactions of different intrusion 

scenarios, it cannot predict the latest successful intrusion probability of a scenario given 
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evidence from another scenario. This function is vital to obtain reliable intrusion 

probabilities with limited available information. Furthermore, this work failed to 

consider important barriers (e.g., tools' availability) for specific intrusion scenarios.  

 

The current paper proposes an innovative approach to model the effects of intrusion 

scenarios on a successful intrusion. This work will help to identify critical scenarios and 

the weak links which can be strengthened to make the security system robust. 

Specifically, this study identified potential intrusion scenarios and visually represented 

specific intrusion processes by destroying corresponding barriers in a graphical model. 

Then a BN model was established based on the graphical model to assess success 

intrusion probabilities and analyze the security potentials of barriers in different 

intrusion scenarios. In this study, a barrier's security potential reflects the ability of the 

barrier to intrusion prevention in its current state. It is measured by the product of 

occurrence likelihood of an insecure barrier and the likelihood that the insecure barrier 

leads to intrusion success. The bigger the product is, the smaller security potential the 

barrier has. An insecure barrier means a barrier with a weak security state. Taking the 

barrier of workers in workplaces as an example, if the workers have a reduced ability 

to detect attackers and to timely report to security personnel, the barrier of workers in 

workplaces is an insecure barrier. Various factors can lead to the poor state of a barrier 

(i.e., an insecure barrier), which include technical factors, human factors [20] and 

organizational factors. For example, the poor state of the barrier of workers in 
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workplaces could be caused by the lack of training and regulations; the barrier of the 

fence could be in its weak state due to the design flaw, material defects or the lack of 

maintenance. Compared to previous works, this study clarifies intrusion processes by 

destroying corresponding barriers in different scenarios and quantitatively analyzes the 

influence of intrusion scenarios on the likelihood of successful intrusions and the 

security potentials of barriers. It includes attackers' features in the ability assessment of 

a defensive system. Furthermore, by including launching barriers, it can help defenders 

estimate what intrusion scenarios attackers would prefer, which will be discussed later. 

Moreover, this work enables the prediction of the latest successful intrusion probability 

in a scenario given evidence from another. Based on the updated result, the latest critical 

intrusion scenarios and weak links can be identified.  

 

To facilitate a functional demonstration of the proposed method, several assumptions 

are made in this study: a) the attack target is located inside process plants; b) the 

attackers' goal is to destroy process facilities instead of gathering intelligence; c) the 

attackers know potential intrusion scenarios, but only one intrusion scenario is applied 

per time; d) no reinforcements of attackers come after starting the intrusion; e) in an 

intrusion stage, attackers seek the largest likelihood of successful intrusion regardless 

of cost; f) for internal intrusions, the terrorists first have an attack motivation and then 

they attempt to become employees in order to launch internal attacks; and g) all 

defenders aim to protect facilities, and none of them intend to cause damage. This study 
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only focuses on the intrusion processes of physical terrorism attacks instead of cyber 

attacks, wars or other causes. The damage to targeted facilities given successful 

intrusion is not covered in this work. The methodology framework of this work is shown 

in Fig. 4.1. The novel contributions of this work are: a) quantitatively analyzing the 

impacts of intrusion scenarios on the defensive ability of process plants; b) including 

the security layer for preventing the launching of an attack; and c) demonstrating 

dynamic assessment to support the dynamic identification of critical intrusion scenarios 

and dynamic detection of weak links in a security system.  

 

Establishment of a 

BN model based on 

graphical models

Dynamic assessment of the 

successful intrusion 

probabilities and barriers’ 

security potentials  using 

the BN model

Decide defensive ability 

for potential intrusion 

scenarios
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different scenarios 

Dynamic calculation of 
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different intrusion 

scenarios
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security system
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security potentials 
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Identification of 

security barriers

Development of 

graphical models 

to show intrusion 

processes

 

Fig. 4.1 Methodology framework for intrusion modelling 
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This paper is organized as follows: Section 4.2 identifies intrusion scenarios and 

security barriers. Section 4.3 presents graphical intrusion models and illustrates their 

advantages compared to the Swiss cheese model. In Section 4.4, a BN model is 

established, and it is applied to calculate and update successful intrusion probabilities 

as well as the security potentials of barriers for four intrusion scenarios. Section 4.5 

provides conclusions.  

4.2 The identification of intrusion scenarios and security barriers  

4.2.1 Intrusion scenario identification 

In this study, an intrusion refers to a process in which attackers or their attack tools (e.g., 

drones) reach the target by destroying related security barriers, given an attack 

motivation. This means that the arrival of attack tools to targets is also considered as a 

successful intrusion. The significant parameters to feature different intrusion scenarios 

in this work include attackers' background (insiders or outsiders), the devices used 

during the intrusion, and whether the intrusion is direct through violence. Table 4.1 

shows the intrusion classification determined by records of previous terrorism attacks 

[3, 5－7, 21, 22] and related literature [2, 13]. 

 

Table 4.1 Intrusion classification 

Intrusion 

categories 
Intrusion types Intrusion scenarios 

External intrusion 
Creep into  

Creep in without guns 

Creep in with guns 

Direct attacks with firearms 
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Direct intrusion by 

violence 

Direct vehicle attacks with 

firearms 

Rocket attacks 

Drone attacks carrying 

explosives 

Intrusion by 

insiders 
Intrusion by insiders 

Intrusion by employees  

Intrusion by contractors 

 

The intrusion categories are divided based on the attackers' background. External 

intrusion is conducted by strangers or visitors, while intrusion by insiders is launched 

by workers or contractors. According to whether attackers need to avoid detection, the 

external intrusion is classified into two types－‘creep into’ and ‘direct intrusion by 

violence’. For the intrusion type of ‘creep into’, attackers secretly intrude to avoid 

detection, while for the latter one, attackers directly intrude and destroy activated 

security measures using violence. Normally, in direct intrusion by violence, attackers 

have the strong capacity (e.g., being equipped with weapons) to damage the plant 

defences and the security in the area is very weak. In such a case, attackers have the 

confidence to achieve their goal even if they are detected (e.g., the attacks in Algeria 

[23]). Each intrusion type includes several intrusion scenarios. The type of ‘creep into’ 

is divided into ‘creep in without guns’ and ‘creep in with guns’ considering the 

significant difference of intrusion difficulty level caused by firearms. ‘Direct intrusion 

by violence’ is classified into ‘direct attacks with firearms’, ‘direct vehicle attacks with 

firearms’, ‘rocket attacks’ and ‘drone attacks carrying explosives’, based on the 

difference of applied intrusion devices [2]. The ‘intrusion by insiders’ is divided into 

‘intrusion by employees’ and ‘intrusion by contractors’, based on the intruder's identity. 
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The employees' intrusion is considered much easier than the contractors'. Interviewing 

workers from a Chinese chemical plant, it was learned that contractors have different 

badges and work clothes from employees and that patrollers usually pay more attention 

to contractors. Compared with employees, in some companies, contractors may have 

limited access and less familiarity with the plant.  

 

Table 4.1 demonstrates that attackers have various options to reach their targets. In 

practice, plants' security measures mainly focus on thieves who creep into plants, 

without paying enough attention to potential attacks which include different intrusion 

scenarios. Such security management leaves plants with a high vulnerability level.  

4.2.2 Security barrier identification 

Three security layers are identified based on three intrusion stages－launching, entrance 

and reaching targets within plants. The definitions of the three security layers are: 

(1) Launching layer. When an attacker has an attack motivation for a given target, some 

conditions (e.g., obtaining required tools) must be satisfied to launch the attack. 

Thus, preparation of launching conditions is the first stage and the security layer 

working in this stage is called the launching layer. The launching layer comprises 

some launching barriers. 

(2) Entrance layer. The target is assumed to be inside process plants, and attackers or 

their tools must enter the plant before reaching the target. Thus, the second stage is 
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to enter the plant. The security layer preventing attackers from entering plants is the 

entrance layer, which is constituted by entrance barriers. 

(3) Interior layer. In the last intrusion stage, the attackers or their tools head for targets 

inside plants until reaching the target. The layer working in this stage is called the 

interior layer. It is made up of interior barriers.  

 

The security barriers of each security layer are identified [11, 13, 19, 24, 25] and shown 

in Table 4.2. The target is a storage tank located in open air within a process plant. The 

security layers are noted for each security barrier in Table 4.2 to support the 

establishment of the graphical models in Section 4.3. Thereinto, L is the launching layer; 

E represents the entrance layer; and I is the interior layer. 

 

Table 4.2 The identified security barriers [11, 13, 19, 24, 25] 

Symbols Meanings 
Security 

layers 

Prior 

probabilities 

of insecure 

barriers 

B1 
Intelligence collection and suppression of 

terrorism by the security agency  
L 0.300 

B2 Accessibility of intrusion tools L － 

B3 Satisfaction of ability requirements for staff L 0.100 

B4 Background screening for employment L － 

B5 
Report of abnormal words and actions of 

colleagues 
L 0.450 

B6 Fence E 0.100 

B7 Patrol E & I － 

B8 CCTV  E & I 0.010 

B9 Folding gate E 0.006 

B10 Guard E 0.150 

B11 Local police E & I － 
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B12 Workers escorting visitors I 0.001 

B13 Workers in workplaces I 0.200 

 

The practical meanings of parts of the security barriers in Table 4.2 are illustrated below. 

(1) Intelligence collection and suppression of terrorism by the security agency. The 

security agency collects terrorism intelligence, including information regarding 

terrorist groups, individuals, weapons and attack plots, to help suppress terrorist 

activities. Intense suppression can help cut the financial sources of terrorist groups, 

causing an impediment to weapons' purchase (e.g., rockets). Thus, good intelligence 

collection and suppression of terrorism can detect and destroy a potential attack in 

a timely way and limit terrorists' ability to launch attacks. 

(2) Accessibility of intrusion tools. For some intrusion scenarios, tools (e.g., firearms) 

are required to launch an attack. Thus, the accessibility of similar tools limits the 

occurrence of such intrusion scenarios.  

(3) Satisfaction of ability requirements for staff. For intrusion by insiders, attackers 

must become employees or contractors. They must satisfy the ability requirements 

to have an opportunity to be hired. 

(4) Report of abnormal words and actions of colleagues. For intrusion by insiders, when 

workers or contractors have a motivation to launch an attack, they may use abnormal 

words or actions in daily life. Other workers may notice such abnormality and report 

it to related institutions. In this way, this barrier could prevent the launching of an 

internal attack. 
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(5) Workers escorting visitors. Based on the visitor escorting policy, workers should be 

assigned to escort visitors. These workers will prevent the visitors from approaching 

unauthorized facilities. This policy is a barrier to prevent intrusion launched by a 

visitor. 

(6) Workers in workplaces. Many plants have a policy that workers take charge of their 

own work areas. Normally, when strangers enter workplaces, workers interrogate 

them and report to security personnel. These workers constitute a barrier for a 

successful intrusion.  

4.3 Intrusion process analysis for different scenarios 

4.3.1 Swiss cheese model and its limitations to represent intrusion process  

The Swiss cheese model has been applied to represent accident causation in previous 

work [26]. In the model, slices were used to model barriers which represent defences 

against failure. A hole in a slice represents a weakness in the system. Accidents occur 

when the holes in the slices are aligned [5]. If a Swiss cheese model (see Fig. 4.2) is 

used to describe the principle of the successful intrusion, ‘S’ represents security barriers 

between attack motivation and successful intrusion. It can be observed from Fig. 4.2 

that successful intrusion occurs due to the failures of security barriers. However, for 

each intrusion scenario, the corresponding barriers may be different. If existing barriers 

are analyzed without considering the intrusion scenarios, the principle and process of 

barrier damage in each intrusion scenario cannot be understood. Thus, corresponding 
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countermeasures cannot be adequately proposed for specific intrusion scenarios. For 

example, although all barriers in Fig. 4.2 can help to prevent intrusion, listing only all 

existing barriers without considering the intrusion scenario, the Swiss cheese model 

cannot clarify what barriers work for which intrusion scenario and what barriers exist 

in different intrusion stages.  

 

 

Fig. 4.2 Schematic Swiss cheese model for successful intrusion 

 

Furthermore, a Swiss cheese model has limitations to model intrusion process due to its 

linear nature, and below is a brief review of the impractical points.  

(1) The barriers are represented by a linear sequence in Fig. 4.2, but in practice, the 

barriers do not necessarily function in a strict sequence. Some barriers may have a 

parallel relationship (e.g., gates and fences). 

(2) Barriers may not be destroyed one by one, since the following barriers may be 

skipped automatically when the previous barrier fails. Fig. 4.2 cannot reflect this 

point. 

(3) Some barriers can only work together with other barriers, which cannot be 

represented in Fig. 4.2.  
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4.3.2 The establishment of graphical models and their merits 

To overcome the limitations of the Swiss cheese model, a graphical intrusion model is 

proposed in this study. Not only can the graphical intrusion model represent the 

nonlinear feature of intrusion issue, but it also clarifies the processes for specific 

intrusion scenarios. A general graphical model is shown in Fig. 4.3. This model includes 

three security layers, and corresponding security barriers are assigned inside the layers. 

The security layers are represented using large rectangles, while security barriers are 

shown as small rectangles. The intrusion is achieved through the damage of security 

barriers and the intrusion processes in a particular scenario are represented by different 

sets of arrows starting from attack motivation and ending with the successful intrusion. 

 

Launching layer Entrance layer

Attack 

motivation

Successful intrusion in 

intrusion scenario 

‘m’

Interior layer

 

Fig. 4.3 A general graphical model for an intrusion scenario 

 

This study presents graphical models for four intrusion scenarios: i) creeping in without 

guns, ii) direct vehicle attacks with firearms, iii) drone attacks carrying explosives, and 

iv) intrusion by employees. The security layers and intrusion scenarios are listed in 

Table 4.3. The attack target is a storage tank located in open air within a process plant. 
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To highlight the merits of the proposed graphical models, a Swiss cheese model is also 

established for the comparison purpose. Fig. 4.4 is a Swiss cheese model demonstrating 

the process of a successful intrusion, while Fig. 4.5 shows the graphical models 

developed for these four intrusion scenarios.  

 

Table 4.3 Successful intrusion scenarios and their security layers 

Symbols Meanings 

ML1 Launching layer for ‘creep in without guns’ 

ME1 Entrance layer for ‘creep in without guns’ 

MI1 Interior layer for ‘creep in without guns’ 

ML2 Launching layer for direct vehicle attacks with firearms 

ME2 Entrance layer for direct vehicle attacks with firearms 

MI2 Interior layer for direct vehicle attacks with firearms 

ML3 Launching layer for drone attacks carrying explosives 

ME3 Entrance layer for drone attacks carrying explosives 

MI3 Interior layer for drone attacks carrying explosives 

ML4 Launching layer for intrusion by employees 

ME4 Entrance layer for intrusion by employees 

MI4 Interior layer for intrusion by employees 

C Successful intrusion of ‘creep in without guns’ 

V Successful intrusion of direct vehicle attacks with firearms 

D Successful intrusion of drone attacks carrying explosives 

E Successful of intrusion by employees 

 

B1 B2B4 B6 B7B8B9

Attack 

motivation

B11B5 B10 B12 B13

Successful 

intrusion

B3

 

Fig. 4.4 Swiss cheese model for successful intrusion (refer to Table 4.2 for meanings of symbols) 
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Fig. 4.5 (a) Graphical intrusion model for ‘creep in without guns’  
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Fig. 4.5 (b) Graphical intrusion model for direct vehicle attacks with firearms  
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Fig. 4.5 (c) Graphical intrusion model for drone attacks carrying explosives 
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 Fig. 4.5 (d) Graphical intrusion model for intrusion by employees 

Fig. 4.5 Graphical intrusion models for different intrusion scenarios (refer to Table 4.2 for 

meanings of symbols) 

 

Unlike the Swiss cheese model in Fig. 4.4, the graphical models in Fig. 4.5 clearly show 

intrusion processes. For example, Fig. 4.5(a) includes various intrusion processes for 

‘creep in without guns’, two of which are explained below. These two processes are 

noted using ‘1’ and ‘2’ in Fig. 4.5(a). 

(1) In intrusion process 1, a person with an attack motivation overcomes the intelligence 

collection and suppression of terrorism by the security agency (B1), and launches 

the attack of ‘creep in without guns’. The person enters the plant by breaching fences 

(B6) without being detected by patrol (B7). In the plant, the attacker is detected by 

workers in workplaces (B13) who then report to the patrol (B7). Unfortunately, the 

patrols are unable to control the attacker, and they call local police (B11). However, 

before local police arrive, the attacker reaches the storage tank.  
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(2) In intrusion process 2, a person with attack motivations overcomes the intelligence 

collection and suppression of terrorism by the security agency (B1) and launches an 

attack of ‘creep in without guns’. The person enters the plant from the folding gates 

(B9) without being detected by guards (B10). In the plant, the attacker is not 

detected by workers in the workplaces or the patrol, successfully reaching the 

storage tank. 

 

Apart from this merit, the proposed graphical models (Fig. 4.5) include the nonlinear 

relationship between barriers. Specifically, they have the following advantages, 

compared to the Swiss cheese model in Fig. 4.4: 

⚫ They consider that attackers could destroy alternative barriers to reach their targets. 

For example, in Fig. 4.5(a), when attackers creep into a plant, they could enter 

through gates or, alternatively, through fences. In this scenario, the gate and fence 

are not destroyed in sequence.  

⚫ They consider that attackers could skip barriers instead of destroying one by one in 

sequence to reach their targets. In the entrance stage of Fig. 4.5(a), when the patrol 

or guards detect attackers, the local police could be informed, and they then become 

an element of the entrance layer. Otherwise, the barrier of local police is skipped. 

⚫ They represent the fact that some barriers only function while cooperating with 

other barriers. Fig. 4.5(a) shows that CCTV helps patrols and local police detect 
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attackers. However, if no officers are watching, the CCTV itself could not prevent 

intrusions. 

⚫ They identify what barriers exist in different intrusion stages for a specific intrusion 

scenario. This can help to guide the selection of a countermeasure. For example, 

managers hope to prevent an attack as early as possible. If one measure can enhance 

the interior barrier and another measure can enhance the launching barrier, both of 

which have similar prevention effects and cost, priority should be given to the latter 

one. 

⚫ They demonstrate what barriers are destroyed in different intrusion scenarios.  

This visual information can provide support to decide what barriers can be enhanced 

to prevent specific intrusion scenarios. For example, according to Fig. 4.5 (d), 

background screening could prevent the launching of an internal attack. If an 

internal attack is launched, to prevent such an attack from reoccurring, resources 

can be allocated to enhance background screening. This is consistent with the 

practical case. In the 2015 terrorist attack on a French chemical plant, the 

deliveryman of the plant was on a terrorist list but was not identified due to 

inadequate background screening [3]. 

4.3.3 The features of different intrusion scenarios 

Some features of the four intrusion scenarios are observed in Fig. 4.5. According to Fig. 

4.5(a) and Fig. 4.5(b), all three security layers work for ‘creep in without guns’ and 

direct vehicle attacks with firearms. All entrance and interior barriers contribute to the 
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intrusion prevention of ‘creep in without guns’, but only one launching barrier has 

prevention effects for that intrusion scenario. This is because the attack of ‘creep in 

without guns’ does not need many attackers and special attack tools; thus, it is easy to 

conduct and hard to detect before launching. 

 

According to Fig. 4.5(c), the entrance and interior layers do not work for the intrusion 

scenario of drone attacks carrying explosives. Existing barriers tend to be designed to 

prevent attacks launched on the ground instead of an air attack; thus, drone attacks with 

explosives have the least barriers among the four intrusion scenarios, as shown in Fig. 

4.5. Drones are emerging products, and they have been used for attacks. ISIS has 

recently conducted drone attacks in Iraq, and the FBI detected plots of launching small 

drones with bombs targeting the Pentagon and the capitol of the US in 2011 [22].  To 

prevent a drone attack carrying explosives, the existing barriers need to be enhanced, 

for example, by taking stricter control of explosives. Also, extra barriers can be added, 

such as applying interference devices to disable drone flights above the chemical plant 

area. Moreover, legislation could be passed to define process plants as no-fly zones 

(some nations have taken this measure) and to require that manufacturers design drones 

which cannot fly above process plants.  

 

Fig. 4.5(d) shows that the entrance layer also does not work for intrusion by employees, 

which is because the attackers have the authority to enter the plant in this scenario. 

https://www.washingtonpost.com/national/national-security/mass-man-accused-of-plotting-to-hit-pentagon-and-capitol-with-drone-aircraft/2011/09/28/gIQAWdpk5K_story.html?utm_term=.19aa89968f37
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However, attackers need to overcome four launching barriers to start an internal attack 

as demonstrated in Fig. 4.5(d). This leaves more options to prevent the launching of 

intrusion by employees than other intrusion scenarios shown in Fig. 4.5. 

4.4 Quantitative intrusion assessment using a Bayesian network model  

In this section, successful intrusion probabilities of the above-mentioned four scenarios 

are calculated using a BN model. The calculation results are used to assess the defensive 

ability for each intrusion scenario. The barriers' security potentials are also analyzed 

considering the prior probabilities of insecure barriers and weights. Subsequently, the 

defensive ability and barriers' security potentials in different scenarios are dynamically 

assessed. 

4.4.1 The establishment of BN model 

Fig. 4.6 shows a general BN model of successful intrusion for ‘m’ potential scenarios. 

Within this Figure, nodes represent causal factors and target events, while arcs show 

their dependence. The relationship of dependent nodes is represented with conditional 

probability tables (CPTs). More detailed information about the basic of BN model can 

be obtained from [27, 28].   

 



102 
 

Failure of 

entrance 

layer 1

Failure of 

interior 

layer 1

Failure of 

launching 

layer 1

Successful 

intrusion in 

scenario 1Causal 

factor 5

Causal 

factor 6

Causal 

factor 4

Failure of 

entrance 

layer m

Failure of 

interior 

layer m

Failure of 

launching 

layer m

Successful 

intrusion in 

scenario m

Causal 

factor 8

Causal 

factor n

Causal 

factor 7

Causal 

factor 3

Causal 

factor 2

Causal 

factor 1

 

Fig. 4.6 A general Bayesian network model for ‘m’ intrusion scenarios 

 

The BN model as shown in Fig. 4.7 is established to conduct the quantitative assessment 

of successful intrusion for these four scenarios. As discussed in Section 4.3, successful 

intrusion is achieved once security barriers are destroyed. This means barrier failures 

contribute to the success of intrusion and thus insecure barriers can be considered as 

causal factors of the successful intrusion. The insecure barriers and failure of security 

layers serve as the primary and intermediate nodes of the BN model. Fig. 4.5 has 

provided a clear demonstration of the barriers and layers involved in each intrusion 

scenario. Based on Fig. 4.5, the related nodes are decided for each intrusion scenario. 

Then the dependencies among barriers are analyzed and represented as links among the 

nodes. For example, CCTV helps the patrol and local police to detect and locate 

attackers; thus, failure of the CCTV may contribute to a failure of the patrol and local 
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police to defend against attackers. Therefore, CCTV is linked to the patrol and local 

police in the proposed BN model. Furthermore, some barriers work for more than one 

intrusion scenario. For example, B1 (Intelligence collection and suppression of 

terrorism by security agency) influences the successful intrusion probabilities of all four 

scenarios through influencing the failure probability of their launching layers. To reflect 

this feature, B1 is linked to four launching layers in the BN. With such linking, the 

interactions between the four intrusion scenarios are established. In this way, the 

proposed BN model (Fig. 4.7) represents the quantitative dependencies among barriers 

and also includes the interactive relationship between different intrusion scenarios. The 

prior probabilities of insecure barriers are presented in Table 4.2. The prior probabilities 

could be determined by experts according to the specific situation of the plant. Experts 

need to consider the causal factors (e.g., technical, human and organizational factors) 

of insecure barriers to decide their prior probabilities. The analysis results could reflect 

the practical situation of the specifically targeted plant, and help to manage security in 

practice. Although the data used in Section 4.4 is hypothetical, it does not influence the 

function illustration of the proposed BN model. The current paper aims to explain the 

functions of this model and demonstrate its advantage instead of directly guiding the 

practical security management with the analysis results. 
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Fig. 4.7 Quantitative intrusion assessment model considering different intrusion scenarios (refer 

to Tables 4.2 & 4.3 for the meanings of symbols) 

4.4.2 The assessment of successful intrusion probabilities and security potentials 

of barriers 

4.4.2.1 The probabilities of successful intrusion in different scenarios 

The successful intrusion probabilities and the failure probabilities of security layers are 

calculated using the established BN model in Fig. 4.7, and the results are shown in rows 

2 and 5－7 of Table 4.4. To help understand the defensive ability in each intrusion 

scenario, the assessment criteria are defined in Table 4.5. “Unacceptable” means the 

success probability of intrusion cannot be accepted, while “acceptable” means the 

current defensive state for the intrusion is acceptable. “Tolerable” means the successful 

intrusion probability is tolerable when the cost of countermeasures is not proportionate 



105 
 

to the probability reduction. It is worth mentioning that the probabilities in Table 4.5 

are conditional probabilities, given a precondition that attackers have an attack 

motivation and are planning to launch an attack on a specific target. The probability 10-

4 in Table 4.5 can be understood as that for when 10,000 intrusions are planned to be 

launched, only one intrusion succeeds. The probability smaller than 10-4 is acceptable, 

while that higher than 10-3 is unacceptable. According to this explanation, 10-4 means 

that if attackers plan to attack a plant once per 30 days, they may succeed one time in 

3×105 days (i.e., 822 years). 

 

Table 4.4 The probabilities of successful intrusion and security layer failure  

in the four intrusion scenarios 

 

Creep in 

without 

guns 

Direct 

vehicle 

attacks 

with 

firearms 

Drone 

attacks 

carrying 

explosives 

Intrusion 

by 

employees 

Prior probabilities of the 

successful intrusion  
8.58×10-5 1.55×10-4 4.37×10-3 1.34×10-3 

Posterior probabilities of 

the successful intrusion 

(given successful drone 

attack) 

9.01×10-5 2.78×10-2 － 5.22×10-3 

Posterior probabilities of 

the successful intrusion 

(given launched vehicle 

attacks, but failure to enter) 

8.19×10-5 － 7.85×10-1 5.19×10-3 

Failure probabilities of 

launching layers 
8.85×10-1 4.19×10-3 4.37×10-3 5.41×10-3 

Failure probabilities of 

entrance layers 
4.77×10-3 9.75×10-2 1.00 1.00 

Failure probabilities of 

interior layers 
1.77×10-2 3.42×10-1 1.00 2.48×10-1 
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Table 4.5 Assessment criteria for defensive ability 

Defensive ability Successful intrusion probabilities 

Unacceptable >10-3 

Tolerable 10-4－10-3  

Acceptable <10-4 

 

Comparing the successful intrusion probabilities in row 2 of Table 4.4 to the criteria in 

Table 4.5, it is observed that the abilities to defend against ‘a drone attack carrying 

explosives’ and ‘intrusion by employees’ are unacceptable, while that for ‘a direct 

vehicle attack with firearms’ is tolerable. Only the successful intrusion likelihood of 

‘creep in without guns’ is acceptable. Thus, ‘a drone attack carrying explosives’ and 

‘intrusion by employees’ are critical intrusion scenarios in this case. According to rows 

6 and 7 and columns 4 and 5 of Table 4.4 it is observed that the highly successful 

probabilities given an attack motivation in the two critical scenarios are mainly caused 

by the high failure probabilities of the entrance and interior layers (all higher than 0.2). 

This is decided by the intrusion features. As explained in Section 4.3, attackers for 

internal intrusion are employees or contractors; they have the authorization to enter the 

plant. Thus, the failure probability of the entrance layer is considered as 1 in this 

scenario. When attackers are familiar with plant circumstances and patrol schedules, 

they can exploit deficiencies in the security system to avoid being detected while 

conducting an intrusion. Thus, with a failure probability of 2.48e-1, the interior layer 

does not work well for intrusion by employees. A drone attack carrying explosives 

intrudes from the air. As mentioned in Section 4.3, drone attacks have not been much 
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considered in security management and countermeasures for drones to enter plants and 

to approach the targeted facilities located in the open air are unavailable. Thus, a plant 

normally has very high failure probabilities of the entrance and interior layers for drone 

attacks carrying explosives. This is why drone attacks carrying explosives have the 

highest success likelihood (4.37×10-3). In contrast, ‘creep in without guns’ has the 

lowest successful probability (8.58×10-5) due to both its small failure probabilities of 

the entrance and the interior layers (4.77×10-3 and 1.77×10-2).  

 

The comparison of results of different intrusion scenarios in Table 4.4 reveals the 

importance of considering various potential intrusion scenarios in the security 

assessment. If a security manager only focuses on the prevention of ‘creep in without 

guns’, the defensive ability is considered as acceptable with a successful intrusion 

probability of 8.58×10-5. Therefore, the manager may conclude that no additional 

security countermeasures are needed for intrusion prevention. However, in practice, 

attackers could attempt a drone attack carrying explosives which has a high likelihood 

(4.37 × 10-3) to achieve the intrusion. Thus, the defence level of the plant is 

unacceptable in reality. Considering various potential intrusion scenarios is necessary 

for security management. Furthermore, by considering intrusion scenarios, critical 

intrusion scenarios can be identified, which provides useful guidance for the security 

resource assignment. For example, in this case study, priority should be given to 

countermeasures for drone attacks and intrusion by employees instead of evenly 
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allocating resources for all scenarios. Moreover, since this assessment model includes 

launching layers, the results could help security managers estimate what intrusion 

scenarios attackers are most likely to apply. When attackers select intrusion scenarios, 

they not only consider whether a launched intrusion could succeed, but also consider 

whether the intrusion is difficult to launch. Attackers will not prefer an intrusion 

scenario which is almost impossible to launch, even though once launched it has a high 

probability to intrude successfully. Thus, without including launching layers, estimating 

what intrusion scenarios attackers are most likely to apply is unrealistic. The proposed 

method includes the launching layer in the intrusion analysis, overcoming this drawback. 

In this case, drone attacks carrying explosives have the highest successful intrusion 

probability; thus, it is believed attackers prefer drone attacks if they seek high successful 

intrusion probabilities. 

4.4.2.2 The security potential of barriers for each intrusion scenario 

Security potential assessment of barriers can help to detect the weak links of the security 

system. If a barrier has a high probability to be in an insecure state and its insecure state 

has a significant contribution to a successful intrusion in a scenario, the barrier is 

considered to have a small security potential in that intrusion scenario. As shown in 

Table 4.6, security potentials are divided into four levels according to the product of 

occurrence probabilities of insecure barriers and weights of the insecure barriers of a 

successful intrusion. To improve the defensive ability of a security system in an 
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intrusion scenario, improvement of the barriers with small security potentials in that 

scenario has a priority. 

 

Table 4.6 The classification criteria for security potentials of barriers 

Probability * weight Classification of security potentials Expression 

[10-3,1) Very low (VL) Red 

[10-4, 10-3) Low (L) Purple 

[10-5, 10-4) Medium (M) Orange 

(0, 10-5) High (H) Green 

 

This section analyzes the security potentials of barriers in each intrusion scenario. First, 

the occurrence probabilities of insecure barriers are calculated with a BN model. The 

weight of a barrier is calculated as the probability change of successful intrusion given 

occurrence and nonoccurrence of the insecure barrier using the BN model. Compared 

to the criteria in Table 4.6, the security potentials of barriers in different intrusion 

scenarios are decided and shown in Table 4.7. The rows of Table 4.7 represent the 

security potential of each barrier in different intrusion scenarios. From rows 1 to 14, it 

can be observed that the security potential of a barrier can vary from high to very low 

in different intrusion scenarios. For example, B1 (Intelligence collection and 

suppression of terrorism by security agency) poses a high-security potential for ‘creep 

in without guns’, but has a very low one for drone attacks carrying explosives. If the 

aim is to prevent drone attacks carrying explosives, B1 could be given priority. However, 

if ‘creep in without guns’ requires better prevention, B1 does not have priority to be 

improved. Each column of Table 4.7 shows what barriers have smaller security potential 
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in each intrusion scenario. This can help to identify the weakness in each intrusion 

scenario. However, to assess the weak link of the security system, the critical intrusion 

scenarios need to be decided first. The barriers with small security potentials in critical 

scenarios are the weak links of the system. For example, drone attacks carrying 

explosives and intrusion by employees are critical intrusion scenarios in this case study. 

Barriers B1－B3 have very low-security potentials for the critical scenarios; therefore, 

they are the weak links of the security system. It is worth mentioning that the 

probability-based information could support the decision of countermeasures' priority. 

However, other factors (e.g., the cost effects) also need to be analyzed to decide the 

priority of countermeasures finally.  

 

Table 4.7 The security potentials of barriers in each intrusion scenario 

   Intrusion 

    scenarios 

 

Security 

potentials          

(prior/posterior) 

Creep in 

without guns 

Vehicle 

attacks with 

firearms 

Drone 

attacks 

carrying 

explosives 

Intrusion by 

employees 

B1 H/H L/VL VL/VL L/VL 

B2 － L/VL VL/VL － 

B3 － － － VL/VL 

B4 － － － L/VL 

B5 － － － L/L 

B6 M/M － － － 

B7 M/M H/H － M/M 

B8 H/H H/H － H/H 

B9 H/H H/H － － 

B10 M/M H/H － － 

B11 H/H M/M － M/H 

B12 H/H － － － 
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B13 H/H － － L/L 

Note: ‘－’ means the barriers do not work for that intrusion scenario. L represents low-security 

potential, and M means medium. H means high, while VL represents very low. 

 

The analysis results of security potentials can be presented in the graphical models 

proposed in Section 4.3 by representing security potentials using different colours (see 

column 3 of Table 4.6). Fig. 4.8 shows the security potentials of barriers in the scenario 

of intrusion by employees. It clearly shows all four barriers in the launching layer have 

low to very low-security potential, while only one barrier in the interior layer has low-

security potential. This provides a visual reference for security managers to understand 

the weakness for intrusion by employees. 
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Red: very low-security potential; Purple: low; Orange: medium; Green: high. B1: Intelligence 

collection and suppression of terrorism by security agency; B3: Satisfaction of ability requirements 

for staff; B4: Background screening for employment; B5: Report of abnormal words and actions 

of colleagues; B7: Patrol; B8: CCTV; B11: Local police; B13: Workers in workplaces. 

Fig. 4.8 Graphical model with security potentials for the scenario of intrusion by employees 
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4.4.3 The dynamical probability assessment 

Because of data scarcity, the prior probabilities of insecure barriers often need to be 

obtained from experts' experiences in practical assessment, which introduces 

uncertainty to assessment results. With a dynamic feature, a BN model can update the 

probability to reduce such uncertainty. Furthermore, the occurrence probabilities of 

insecure barriers may change over time, which leads to the change of successful 

intrusion probabilities for different scenarios. This is another source of uncertainty of 

assessment results. A BN model can diagnose the change of insecure barriers using 

available evidence. Then successful intrusion probabilities could be updated based on 

the posterior probabilities of insecure barriers. 

4.4.3.1 Dynamic probability assessment given a successful intrusion 

By integrating different intrusion scenarios in a BN model, the intrusion information of 

one scenario could be applied to update the probabilities of successful intrusion of other 

scenarios. For example, when attackers successfully intrude using a drone carrying 

explosives, the evidence can be set as ‘successful intrusion of drone attacks carrying 

explosives’ in the BN model of Fig. 4.7. Then the BN model is updated, and the 

posterior probabilities of successful intrusions of the other three scenarios are shown in 

row 3 of Table 4.4. Comparing rows 2 and 3 of Table 4.4, it is observed that the updated 

successful intrusion probabilities of ‘creep in without guns’, direct vehicle attacks with 

firearms and intrusion by employees become larger than their prior estimates. This is 

because when a successful intrusion of a drone attack carrying explosives occurs, 
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barriers B1 and B2 are believed to have higher probabilities within insecure states than 

the prior estimation, and their changes increase failure probabilities of launching layers 

for other scenarios and further lead to the growth of successful intrusion in those 

scenarios. When the evidence of successful drone intrusion carrying explosives is 

included in the assessment, the success probability of direct vehicle attacks with 

firearms has the largest growth, from 1.55×10-4 to 2.78×10-2. According to the criteria 

in Table 4.5, the defensive ability against vehicle intrusion is unacceptable instead of 

tolerable (the prior result obtained in Section 4.4.2.1). The vehicle intrusion with 

firearms becomes a critical intrusion scenario for the targeted facility. This analysis 

reveals that if evidence about one intrusion scenario is observed, the successful intrusion 

probabilities for other scenarios can be updated, even though evidence related to those 

intrusion scenarios is unavailable. After an update, it may be observed that more 

intrusion scenarios are critical ones for the targeted facility. Using the solid evidence to 

conduct the dynamic assessment, the BN model provides a more reliable assessment of 

defensive ability. 

4.4.3.2 Dynamic probability assessment given a failed intrusion 

Many intrusions are effectively prevented in practice. Such an event can also help to 

update probabilities of successful intrusion in different scenarios. For example, a direct 

vehicle attack with firearms was launched on a storage tank, but attackers failed to 

intrude into the plant. The evidence is set as ‘failure of the launching layer for direct 

vehicle attack with firearms’ and ‘success of the entrance layer for direct vehicle attack 
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with firearms’ in the proposed BN model of Fig. 4.7. Given this evidence, the BN model 

is updated, and the results are shown in row 4 of Table 4.4. 

 

After comparing rows 2 and 4 of Table 4.4, it can be seen that the posterior probabilities 

of successful intrusion for both the drone attack carrying explosives and intrusion by 

employees increase. The increase of success probability of a drone attack carrying 

explosives is much larger than that of intrusion by employees. This is because the 

launching barriers of drone attacks carrying explosives and direct vehicle attacks with 

firearms are the same. The launching of the two attacks can be prevented by both 

‘intelligence collection and suppression of terrorism by security agency’ and 

‘accessibility of intrusion tools’. Thus, when the launching layer for direct vehicle 

attack fails, the posterior failure probability of the launching layer for drone attacks 

carrying explosives experiences a significant increase from 4.37×10-3 to 7.85×10-1. 

Intrusion by employees has only one identical launching barrier with direct vehicle 

attacks with firearms, and the posterior probability of its launching layer increases from 

5.41×10-3 to 2.10×10-2, which is much smaller than the probability increase of the 

launching layer for drone attack carrying explosives. This model reveals that the drone 

attacks carrying explosives and direct vehicle attacks with firearms have similar features. 

Thus, when the plant is vulnerable to one intrusion scenario, it is more probable to be 

vulnerable to the other one. 
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It is interesting to observe that the posterior success probability of ‘creep in without 

guns’ has a decrease from 8.58×10-5 to 8.19×10-5. This is because of the failure 

probability of entrance layer of ‘creep in without guns’ decreases from 4.77×10-3 to 

4.28×10-3. The success of the entrance layer for direct vehicle attack with firearms 

make it believe that the insecure barriers in the entrance layer have smaller posterior 

occurrence probabilities than the prior belief. This change decreases the posterior failure 

probabilities of entrance layer of ‘creep in without guns’, which causes the reduction of 

the successful intrusion probability of ‘creep in without guns’. The updated results 

demonstrate that the entrance layer has a better ability for entrance prevention in the 

scenario of ‘creep in without guns’, and the plant has a better defence ability to prevent 

‘creep in without guns’ than the prior belief. 

4.4.3.3 Dynamic assessment for security potentials of barriers 

If a failed intrusion is observed, the security potentials of barriers can also be updated. 

For example, when the ‘failure of the launching layer for direct vehicle attack with 

firearms’ and ‘success of the entrance layer for direct vehicle attack with firearms’ are 

set as the evidence in the BN model of Fig. 4.7, the posterior occurrence probabilities 

of insecure barriers are calculated using the BN model. Then the updated security 

potentials of barriers are analyzed following the process mentioned in Section 4.4.2.2, 

and the results are shown in Table 4.7. According to Table 4.7, it is observed that the 

security potentials of B1 and B2 in the scenario of a direct vehicle attack with firearms 

become ‘very low’ instead of ‘low’ (prior security potentials), while the security 
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potentials of B1 and B4 in the scenario of intrusion by employees become ‘very low’ 

instead of ‘low’. B11's security potential in the scenario of intrusion by employees 

becomes high instead of medium. Thus, when evidence is used in the BN model, the 

posterior security potentials of barriers are obtained, which supports a more reliable 

weakness identification of a security system. After updating, it is believed B4 also has 

a very low-security potential for one of the critical intrusion scenarios－intrusion by 

employees. Thus, apart from B1－B3, B4 is also a weak link of the security system. 
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Red: very low-security potential; Purple: low; Orange: medium; Green: high. B1: Intelligence 

collection and suppression of terrorism by security agency; B3: Satisfaction of ability requirements 

for staff; B4: Background screening for employment; B5: Report of abnormal words and actions 

of colleagues; B7: Patrol; B8: CCTV; B11: Local police; B13: Workers in workplaces. 

Fig. 4.9 Updated graphical model with security potentials for the scenario of intrusion by employees 

 

Fig. 4.9 provides a visual expression of the updated security potentials of barriers for 

intrusion by employees. Compared to Fig. 4.8, it clearly demonstrates that the security 
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potentials of B1 and B4 move to very low from low, while that of B11 becomes high 

instead of medium. The visual form provides security managers with an updated 

understanding of the weakness for intrusion by employees.  

4.5 Conclusions 

This study developed a graphical model to visually express principles and processes of 

barrier damage to achieve an intrusion in different scenarios. Compared with a Swiss 

cheese model, the proposed graphical model reflected the nonlinear relationship of 

barriers. Then, a BN model was established based on the graphical model. The BN 

model has a dynamic feature and includes dependency among barriers and interaction 

between different intrusion scenarios. The successful intrusion probabilities and 

security potentials of barriers in four intrusion scenarios were assessed using the 

proposed BN model. The assessment results revealed that the defensive ability of a 

process plant and the security potentials of barriers could significantly vary in different 

intrusion scenarios. According to the assessment results of the BN model, critical 

intrusion scenarios and weak links in the security system were identified. Then dynamic 

assessments were demonstrated using the BN model to reduce the uncertainty of prior 

results. It is observed that the BN model can use evidence from an intrusion scenario to 

update successful intrusion probabilities in other intrusion scenarios. With limited 

evidence, a BN model could capture the changes of successful intrusion probabilities 

and security potentials of barriers to produce more reliable information for security 

management. 
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In future work, real-life information will be collected by interviewing related experts 

(e.g., security managers of chemical plants), and a real case will be analyzed to verify 

the model. Also, countermeasures can be proposed to address the weak links within the 

security system, and their cost and effectiveness could be analyzed.  
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5. Probabilistic Assessment of Integrated Safety and Security 

Related Abnormal Events: A Case of Chemical Plants 
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Abstract  

Conventional risk assessment of chemical plants considers process accident related 

causal factors. In the current geopolitical situation, chemical plants have become the 

target of terrorism attacks, making security concerns as important as safety. To protect 

the public and environment from undue risks, security related causal factors need to be 

considered as part of the risk analysis of chemical plants. This paper presents an 

integrated approach to dynamically assess the occurrence probability of abnormal 

events. The abnormal event is a state of a process plant arrived either due to a process 

accident or an intentional (terrorist) threat. This approach considers both safety and 

security related risk factors in a unified framework. A Bayesian network is used to 

model specific evolution scenarios of process accidents directly initiated from security 

related factors and the interaction of causal factors. This model enables to dynamically 
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analyze the occurrence probabilities of abnormal events and causal factors given 

evidence; it could also capture the impacts of interaction among safety and security 

related causal factors on these occurrence probabilities. The proposed approach is 

applied to an oil storage tank to demonstrate its applicability and effectiveness. It is 

observed that the effect of dependency between correlative accidental and security 

related factors significantly change the occurrence probability of abnormal events in 

dynamical assessment.   

Keywords: Safety & security; Interaction effect; Integrated assessment model; 

Dynamic assessment; Bayesian network  

5.1 Introduction  

Probabilistic analysis helps generate a risk profile, which supports decision making in 

chemical process design and operation. Such analysis is essential for chemical plants 

where large inventories of hazardous materials pose the potential of fires, explosions, 

or the leak of toxic gases [1]. The high-pressure and high-temperature operational 

conditions of chemical plants tend to exacerbate the consequences of chemical process 

accidents [1－3]. For this reason, much research has been presented to analyze the 

accidental risks of chemical plants [4]. However, these methods only consider 

accidental causes and ignore the intentional threat [5, 6]. The 9/11 attack causing 2996 

deaths called people's attention to security [7]. The past years have seen terrorists using 

chemical plants as targets. Van Staalduinen et al. have listed some attacks on chemical 
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plants which have occurred in recent years [6, 8]. Besides their listed ones, more attacks 

have occurred. A chemical plant explosion caused intentionally by a delivery person in 

France in 2015 resulted in one death and two injuries [9]. Also, suspected Basque 

separatists detonated bombs at two chemical plants in Spain in 2005, resulting in 

injuries from toxic fume inhalation [10]. In 2015, Islamic State militants detonated 

explosives and set fire to the key infrastructure in Iraq's largest refinery in Baiji [11] 

which once produced 300,000 barrels of refined petroleum products per day, meeting 

50 percent of the country's needs [12]. The attacks closed the plant for several years 

[11]. These attacks indicate that chemical plants are becoming attractive targets for 

terrorists these days. In such a situation, even if the accidental process risks are reduced 

to an extremely low level, the plants could still be exposed to high risks due to the 

vulnerability of chemical plants. Thus, security related causal factors should not be 

ignored in the risk assessment system. 

 

In this study, the abnormal event is a state of a process plant arrived either due to a 

process accident or an intentional (terrorist) threat. Two paths can lead to the occurrence 

of abnormal events in chemical plants, as shown in Fig. 5.1. The first path has been 

much studied [4, 5], while the second path needs increasing attention considering the 

increasing occurrence of terrorist attacks across the world. Some research was 

undertaken to conduct a security analysis. Bajpai proposed an analysis method of 

security risk in which a security risk factor table and rankings were applied to determine 
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security risk status [13]. Van Staalduinen et al. have used the sequential barrier approach 

to explain the attack process, and fault trees (FTs) and event trees (ETs) have been used 

to calculate the probabilities of barrier failure and consequence occurrence [6]. Then 

FTs and ETs were converted into Bayesian networks (BNs) to better reflect reality using 

the Noisy-AND technique and to dynamically update the probability considering the 

dependency. In another paper [14], Van Staalduinen et al. conducted both threat and 

vulnerability assessments concurrently rather than sequentially using BNs. After the 

risk was assessed, potential countermeasures were proposed and a cost analysis of the 

countermeasures was completed to decide the optimal solution. Khalil has proposed a 

probabilistically timed dynamic model for physical security attack scenarios on critical 

infrastructures [15]. He assumed the time for attackers to compromise specific security 

layers follows distributions. For each attack trial, the Monte-Carlo method is used to 

sample the time to compromise the security layer and the time is compared with the 

estimated mission time. If the attacker can successfully compromise his high-value 

targets and realized his malicious intent within the estimated mission time, the attack is 

considered as successful. With numerous attack trial simulations, the probability of 

successful attack was obtained. Feng et al. have used a game-theoretic method 

considering the strategic interactions between defenders and attackers to optimize the 

allocation of defensive resources [16]. Zhang et al. applied game theory for security 

management. They explored pure and mixed strategies in an illustrative case. [17] In 

another work, Zhang et al. proposed a game theoretic model (Interval CPP Game) to 
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deal with the defender’s distribution-free uncertainties on the attacker’s parameters. [18] 

McGill et al. [19] proposed a model for assessing system vulnerability given an 

initiating event based on the subjective evaluation of several security effectiveness or 

defensive criteria. The approach is “model-free” with fuzzy logic techniques, enabling 

quick implementation given sufficiently trained security experts. In another work [20], 

McGill et al. developed a quantitative risk assessment and management framework 

supporting strategic asset-level security resource allocation decision for critical 

infrastructure and key resource protection with quantitative benefit-cost analysis. This 

work provided an in-depth development of an asset-driven risk analysis focusing on 

security threats. Florentine et al. [21] developed a security risk analysis methodology 

for meat supply. Bayes theorem was applied to assess the likelihood of terrorist attack 

by analyzing the observables. The application of Bayesian equation provides an option 

to deal with the issues of credibility of the information source and help update the 

likelihood of an attack. Haimes et al. [22] developed a modeling roadmap for strategic 

responses to terrorism risks of water systems. In this roadmap, state variables reflecting 

the state of security risks were identified from three major systems－geopolitical 

environment, terrorism networks and the homeland. These previous works make 

corresponding contributions to the security risk analysis, but they did not consider 

accidental factors. As argued in [23], safety and security issues are supposed to be 

considered together, not only because they concern the same systems in an increasing 

number of sectors, but also because they have strong interconnections which need 
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consideration [23]. Safety factors interact with security factors; thus, their states could 

change vulnerability and further influence the real intentional risks confronted by 

chemical plants. Above works do not include safety factors, thus some uncertainty could 

be introduced to their assessment results. 

 

Normal 

operations

Abnormal 

state

P2: intentional threats

P1: accidents

 

Fig. 5.1 Basic damage pathways in chemical plants  

 

Limited efforts have explored the integrated risks of process accidents and intentional 

threats. Reniers et al. have developed a security risk assessment and protection 

methodology which combined the rings-of-protection approach with generic security 

practices [24]. The authors have briefly described the interaction of safety and security 

[24], but they have not further quantitatively studied the interaction. Aven has argued 

that intentional threats need to be included in risk assessment and proposed a unified 

framework for safety and security [5]. However, this framework only describes a 

general conceptual procedure for assessing either safety or security risk. The interaction 

of safety and security has not been studied to obtain integrated risks. Ayyub et al. [25] 

developed a common quantitative framework accommodating both natural and human-

caused hazards for critical asset and portfolio risk analysis to support the cost-effective 

decision making of risk reduction. This framework could assess risks of natural and 

intentional hazards. Although this work includes two types of hazards (natural hazard 
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and intentional hazards), it only considered the dependencies of different assets within 

a portfolio instead of dependencies of different hazards, and this work does not include 

process accidents in the safety perspective. Moreover, this work uses equations to 

calculate risks, thus the accident evolution process and relationships between factors 

are not visual. Furthermore, the proposed model could not backward update the 

probabilities of causal factors. Thus, it cannot infer the latest situation of causal factors 

to guide the risk reduction given different situation (e.g., observing the occurrence of 

an abnormal event). Fovino et al. have integrated attack trees (ATs) into a pre-existent 

FT to include potential malicious attacks in the risk analysis [26]. However, they only 

studied cyber-security, without considering physical attacks. Furthermore, they 

assumed that the goal of the sub-attack-tree is the causal event of the FT, without 

considering the scenario that accidental factors can also affect security. Also, they only 

considered the scenario where attacks destroyed the safety system (e.g., remote 

shutdown system), making it failed to prevent an accidental initiation. However, they 

did not consider the specific scenario where an (unintentional) process accident is 

directly initiated from a poor security factor. Moreover, FTs and ATs used in that work 

cannot clearly reflect the dependencies of causal factors, and are not capable of updating 

the predicted probabilities given new information due to their static structures. Pietre-

Cambacedes et al. have used Boolean logic Driven Markov Processes (BDMP) to model 

safety and security interdependencies in critical systems [23]. However, this work did 

not explore the capacity of dynamical assessment given evidence, and did not include 
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the scenario where process accidents directly initiate from security related factors. 

Moreover, this research focus on facility failure related to poor accidental and 

intentional factors, without considering the intrusion process of attackers. Intrusion 

prevention is the major strategy to control security risk. Without including the intrusion 

analysis, the assessment results cannot reflect the real intentional risk. Furthermore, the 

BDMP model has its limitations as explained by the authors. [23] The situations 

appropriate for the native Markovian framework of BDMP are limited [23]; the ability 

of BDMP to conduct sensitivity analysis of different factors is not well established [23]. 

According to above literature review, the works dealing with both safety and security 

risks are limited. To the authors' knowledge, no research has conducted a dynamic 

integrated risk assessment considering the interaction of safety and security with a 

robust model.  

 

This paper presents a new approach for establishing an integrated dynamic model to 

help analyze integrated accidental and intentional process risks confronted by chemical 

plants considering the interaction of safety and security related factors. This work has 

the following features: (1) the proposed model simultaneously considers accidental and 

security related causal factors and quantitatively represents their interactions. Thus, it 

reflects the real-life condition of the correlative causal factors and assists in quantifying 

the impact of interactions on the occurrence probabilities of causal factors and end 

events. (2) this model includes the security related factors existing in the intrusion 

process to conduct a complete probability assessment of abnormal events. (3) this 
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Bayesian-network-based model could visually represent the relationships between 

correlative accidental and security related factors, thus it enables to clearly show the 

specific process accident evolution path directly initiated from security related factors. 

(4) because the inclusion of safety and security interaction, this model could reflect the 

real significance of causal factors with sensitivity analysis. (5) this model has dynamic 

feature and thus it could update the states of abnormal events and causal factors given 

evidence, especially enables to update states of both types of factors (i.e., accidental and 

security related factors) given evidence of one type of factors. This dynamic feature not 

only helps managers learn the latest situation of abnormal events and causal factors, but 

also assists to reduce the uncertainty caused by scarce data of security issues. Bayesian 

network has been used to analyze process accidents, occupational accidents and security 

issues [27－32], but to the best of our knowledge, no work is conducted using BN to 

exploit the interaction of safety and security. A comparison of current method and 

previous work described above is shown in Table 5.1. A novel point of this research is 

the consideration of both safety and security related risk factors in a robust framework, 

and the quantitatively dynamical analysis of impacts of interactions between safety and 

security. Note that this research focuses on physical abnormal events related to a 

chemical plant. It does not consider external threats related to cyber attack, war or other 

causes.  
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Table 5.1 Comparison of the current method and related previous work 

Methods 

Quantitative 

analysis of 

impacts of 

the 

interaction 

of safety and 

security 

Dynamic 

probability 

assessment 

using 

evidence 

Visually show 

the specific 

accident 

evolution 

directly 

initiated from 

a poor security 

factor  

Inclusion 

of 

physical 

intrusion 

process 

Bajpai [13]    √ 

Van Staalduinen [6]  √  √ 

Van Staalduinen [14]  √  √ 

Khalil [15]    √ 

Feng [16]    √ 

Zhang [17-18]    √ 

McGill [19]    √ 

McGill [20]    √ 

Florentine [21]  √   

Haimes [22]    √ 

Reniers [24]    √ 

Aven [5]    √ 

Ayyub [25]    √ 

Fovino [26] √    

Pietre-Cambacedes 

[23] 
√    

Current method √ √ √ √ 

 

This paper is organized as follows: Section 5.2 explains the approach to establish the 

integrated dynamic model. In Section 5.3, a case study on the probability assessment of 

an oil storage tank fire is conducted to demonstrate the proposed approach. Section 5.4 

presents the conclusions. 
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5.2 The proposed integrated dynamic probability assessment approach 

The approach to obtain the integrated dynamic probability assessment model is shown 

in Fig. 5.2. FTs are established first and then are converted to BN. After involving the 

dependency caused by common factors and correlative accidental and security related 

factors in the BN, the integrated dynamic model is obtained. The detailed process is 

demonstrated in the following subsections and the schematic diagrams of the FT and 

BNs are shown in Fig. 5.3 to facilitate the clarification of the approach.  

A probability 

assessment model 

for the process 

accident
A dynamic probability 

assessment model for 

abnormal process 

events with actual 

logic relationships 

A dynamic probability 

assessment model for 

abnormal process events 

with the dependency 

caused by common 

factors

An integrated dynamic 

probability assessment 

model for abnormal 

process events

Relax logic 

relationships 

between 

causal 

factors

A probability 

assessment model 

for abnormal 

process events

Represent 

the common 

factors with 

one node

Identify and 

link correlative 

accidental and 

security related 

factors

A probability 

assessment 

model for the 

intentional threat
 

Fig. 5.2 The approach to obtain the integrated dynamic probability assessment model  
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(a) Schematic FT for the abnormal event         (b) Schematic BN for the abnormal event  
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(d) Schematic integrated BN model (c) Schematic BN with dependence caused by common factors 

Fig. 5.3 Schematic diagrams of the FT and BNs  

 

5.2.1 FT establishment for integrated probability assessment and its limitation 

relaxation  

Many accidental and security related factors needs to be considered to predict the 

probability of an abnormal event. FT is an appropriate tool to deal with large numbers 

of causal factors, and thus it is applied to identify causal factors and clarify their 

relationships in the proposed approach. First, the process accident and intentional threat 

are respectively analyzed with FTs and then the two FTs are combined using an OR 

gate. In this way, the FT of the abnormal event is obtained and its schematic diagram is 

shown in Fig. 5.3(a). However, as discussed in [29], the logic gates of the FT have 

limitations to express the actual logic relationships. Furthermore, FTs have static 

structures and thus they could not conduct dynamic assessment. To accurately represent 

the logic relationships of causal factors [29] and to obtain the dynamic feature, the 

schematic FT in Fig. 5.3(a)) is converted to BN (Fig. 5.3(b)) following the procedure 

mentioned in [33]. The BN in Fig. 5.3 (b) not only represents the NOISY-OR and 
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NOISY-AND logic gates with conditional probability tables (CPTs) [29], but also 

enables assessment in a dynamic manner [33].  

5.2.2 The involvement of dependence caused by the common factors 

Some basic events (e.g., H2 and S2) contribute to various intermediate events, which 

leads to dependency. The probability calculation of BN in Fig. 5.3(b) cannot involve 

such dependency. The dependence caused by the common factor H2 can change the 

probability of a process accident P(A), while the dependence caused by the common 

factor S2 changes that of an intentional threat P(T). Consequently, the probability of the 

abnormal event P(AE) is changed by these common factors. The principle related to 

how the common factor H2 changes P(A) is as follows:  

 

P(A) = P(I1I2 )*P(A I1I2 )+P(I1 ' I2 )*P(A I1 ' I2 )+P(I1I2 ')*P(A I1I2 ')+P(I1 ' I2 ')*P(A I1 ' I2 ')
 
(5.1) 

 

Since 1I  and 2I are considered as independent in the BN of Fig. 5.3(b), equation (5.1) 

can be converted to equation (5.2).  

 

)''(*)'(*)'(

)'(*)'(*)()'(*)(*)'()(*)(*)()(

2121

212121212121
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+

++=
(5.2) 

 

However, since 2H  simultaneously contributes to 1I  and 2I , 1I  and 2I  are not 

independent in practice. This means that )(*)()( 2121 IPIPIIP   and the result from 

equation (5.1) does not equal that from equation (5.2). The BN in Fig. 5.3(b) assumes 
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the independence of 1I  and 2I , which introduces uncertainty when the occurrence 

probability of the process accident is assessed.  

 

Another drawback of the model in Fig. 5.3(b) is that the common factors are represented 

separately, thus the common factor (e.g., 2H ) may have various posterior probabilities, 

when the probability of the common factors is updated with the evidence of the 

occurrence of an abnormal event. However, one causal factor obviously has only one 

occurrence probability in practice. 

 

To overcome these drawbacks, the common variable needs to be represented with one 

node in the BN. This not only makes the probability assessment of abnormal events 

more accurate, but also ensures that one common variable has one posterior value. Thus, 

the nodes of the common factors in Fig. 5.3(b) are combined to one and the BN 

considering dependence from common factors is obtained, as shown in Fig. 5.3(c). The 

occurrence probabilities of the process accident, intentional threat and abnormal event 

can be calculated respectively according to Fig. 5.3(c). However, the calculation 

assumes that accidental factors and security related factors do not interact, which is not 

the case in practice. 

5.2.3 Link the correlative accidental and security related factors 

By linking the correlative accidental and security related factors of Fig. 5.3(c), the 

integrated dynamic model is obtained as Fig. 5.3(d). The major reason to study security 
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and safety in an integrated framework is that the security related factor may influence 

the accidental factor and vice versa. Because of this, the correlative security related 

factors can be treated as causal factors of the process accident. If the influence of 

security related factors on the process accident is not considered, it seems that the causal 

factors of the process accident are not completely involved. Moreover, if the security 

related factors are not considered, the state of the correlative accidental factors cannot 

be specified. Furthermore, process accident evolution path directly initiated from poor 

security factors could not be identified without considering accidental and security 

related factors in one framework, which will affect the intervention design. These points 

are explained through Fig. 5.3(c) and Fig. 5.3(d). In Fig. 5.3, it is assumed S3 is the 

security related factor ‘lax entry control’; H3 is the accidental factor ‘the lack of 

professional knowledge’; and I2 is the accidental factor ‘human errors’. As an initiating 

event, the security related factor ‘lax entry control’ contributes to ‘the lack of 

professional knowledge’ and causes ‘human errors’, because the chemical plant 

becomes more accessible to non-employees (e.g., staff's children) when chemical plants 

have lax entry control. These people may not intend to cause damage in the plant, but 

they have a high likelihood to cause process accidents due to the lack of required 

professional knowledge. If the security perspective is not considered while analyzing 

the probability of the process accident, lax entry control will not be included, and thus 

the causal factors for the process accident are not complete. This will affect the accuracy 

of probability prediction of the process accident. Furthermore, in Fig. 5.3(c), managers 
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may estimate the probability of human error considering accidental factors (e.g., 

experience related factors). However, practically, human error is also influenced by 

entry control, as shown in Fig. 5.3(d). For instance, the probability of human error could 

be 0.1 [34, 35] given good entry control, while its probability may increase to 0.2 given 

poor entry control. Human error likelihood changes with entry control, and without 

consideration of the state of the entry control, the probability of human error may not 

be specified. Moreover, Fig. 5.3(d) reveals the specific process accident evolution path 

that lax entry control (initiation) is propagated through accidental factors (lacking 

professional knowledge and human errors), and terminates as process accidents. This is 

consistent with the process accident in a practical case. In 1998 in Iowa, two teens 

driving a vehicle approached and destroyed the pipeline by accident and caused a tank 

explosion, killing two volunteer fire fighters and injuring seven more. The cause was 

that no fence existed for aboveground propane pipes and tanks [36]. Through above 

analysis, it can be clearly seen that both accidental and security related causal factors 

should be considered in an integrated framework to accurately predict the probability 

of process accidents and effectively design the intervention. With the integrated 

framework, the impact of each factor could be better reflected. For example, some 

security related factors such as lax entry control exacerbate both safety and security. 

The probability growth of such factors can increase both the probabilities of intentional 

threats and process accidents. Thus, the probability increase of the abnormal event from 

the integrated dynamic model will be greater than that from Fig. 5.3(c), given the 
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probability growth of such factors. Sometimes the security related factor may have 

opposite effects on safety and security, which means it improves safety but exacerbates 

security or exacerbates safety but improves security. For such factors, only improving 

their states may not effectively reduce the integrated probabilities of abnormal events. 

A potential way to deal with these factors is to change their form and remove their 

contradictory effects, which will be explained in section 5.3.2.2.2.  

 

Another advantage of considering accidental and security related causal factors in an 

integrated framework is that the observation of a factor could be used to update the 

probabilities of accidental and security related factors at the same time. In this way, the 

latest states of both accidental factors and security related factors are obtained from the 

integrated dynamic model. Consequently, the poor factors can be detected from both 

safety and security perspectives to help prevent abnormal events.  

 

Through the established models in this paper, the calculation and update results from 

the models with and without considering the interaction can be compared to 

quantitatively study the influences of interaction on the probabilities of abnormal events 

and causal factors. Furthermore, with sensitivity analysis of causal factors on an 

abnormal event, the correlative causal factors' significance can be identified. The 

difference between the correlative causal factors' significance obtained with and without 

the involvement of interaction is studied.  
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5.3 Case study 

The occurrence probability of an oil storage tank fire was analyzed to demonstrate the 

strength of the integrated dynamic probability assessment model. For the sake of clear 

demonstration of effects of interaction between safety and security related factors, some 

simplification is made. The attractiveness and vulnerability altogether influence the 

occurrence probability of intentional events. Attractiveness could be assessed based on 

factors like deterrence and visibility [20] and previous work has conducted 

attractiveness analysis [37]. This case study did not deal with attractiveness assessment 

and it assumed the storage tank farm is in an area with an attack probability 0.1.  

Furthermore, attack types (e.g., explosive born vehicle or creep in without guns) could 

also influence the occurrence probabilities of intentional events [19]. In this case study, 

the attack type is creeping in without guns, and the influence of different attack types 

could be included in future work. With this simplification, the considered security 

factors in this case study are those related to vulnerability.  

5.3.1 The establishment of the integrated dynamic probability assessment model 

To analyze the probability of an oil storage tank fire, an FT is used first to identify the 

accidental and security related factors and to determine their logic relationships. The 

basic events (see Table 5.2) and the intermediate events (see Table 5.3) are identified 

referring to [24, 38, 39] and the prior probabilities of basic events are assumed partly 

based on previous literature [30－32]. Then, as mentioned in Section 5.2, the FT is 

converted to a BN, shown in Fig. 5.4(a). After combining the common factor into one 
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node, the model becomes the form of Fig. 5.4(b). Then the relationships between the 

accidental and security related factors are identified and correlative factors are linked 

to obtain the integrated dynamic model shown in Fig. 5.4(c). As indicated with red 

arrows in Fig. 5.4(c), a process accident evolution path directly initiating from a security 

related factor and terminating with a process accident is demonstrated. Along the path, 

the termination (accidental oil storage tank fire TE1) initiates from X52, and propagates 

through IE32, X20, IE10, IE9, IE27 and IE23. The practical meaning of this evolution path 

is that guards with poor ability create a chance for non-employees to enter chemical 

plants, and these untrained people trigger human errors which causes an oil leak and 

further propagates to become an oil fire. According to this evolution process, two types 

of countermeasures can be proposed for different stages of the process accident 

evolution. The first is to prevent the initiation occurrence (e.g., hiring guards with good 

security skills), and the second option is to block the propagation (e.g., applying safety 

devices to prevent accidents given human errors). 

 

Table 5.2 Basic events and their prior probabilities [24, 30－32, 38, 39] 

Symbols Details of the activity/event or state 
Prior 

probability 

X1 No level measurement device 6.70E-02 

X2 Failure of level measurement device 1.40E-04 

X3 No overflow alarm 4.50E-02 

X4 Failure of overflow alarms 9.80E-02 

X5 Failure of worker to monitor level 1.25E-01 

X6 No level control device 1.45E-01 

X7 Failure of level control device 2.52E-03 

X8 No routine inspection 1.00E-02 
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X9 No proper maintenance 1.00E-02 

X10 Aging 1.00E-02 

X11 Corrosion 7.80E-03 

X12 Fatigue 1.00E-01 

X13 Material deficiency 1.58E-03 

X14 Installation deficiency 5.61E-03 

X15 Manufacture deficiency 2.12E-03 

X16 Design deficiency 4.00E-02 

X17 Earthquake 1.30E-04 

X18 Subsidence of foundation 3.40E-02 

X19 
High pressure liquid backing up from 

downstream vessels 
2.30E-04 

X20 Lack of knowledge of operations on site 1.00E-01 

X21 Not following operational procedures on site 1.00E-03 

X22 Lack of knowledge of remote operations 2.58E-01 

X23 Not following dress regulations 1.50E-01 

X24 No effective elimination of static 1.00E-02 

X25 

Static occurrence in equipment operation 

(e.g., transfer and improper sampling 

procedures) 

4.50E-02 

X26 
Failure of anti-static measures like grounding 

of equipment 
5.50E-02 

X27 
Poor signs to help operations and remind of 

potential hazards 
1.20E-01 

X28 Non-explosion-proof motor and tools used 3.00E-04 

X29 Short Circuit 5.00E-02 

X30 Mechanical frictions 6.00E-02 

X31 Poor safety awareness 2.68E-02 

X32 Not following open fire rules 5.00E-02 

X33 Poor monitoring of potential hazardous acts 3.00E-03 

X34 No warning sign for open fire 1.00E-02 

X35 
Spark caused by operations like welding and 

hitting 
2.00E-01 

X36 Checking without blind flange 6.00E-03 

X37 Hot operation not following procedure 4.50E-02 

X38 Lightning 1.00E-06 

X39 No lightning arresters 3.00E-05 

X40 Improperly placed lightning arresters 1.50E-04 

X41 Poor grounding of tanks 2.60E-04 

X42 Rim seal leak 6.00E-02 

X43 Exothemic runaway  reactions 8.90E-04 

X44 Heat accumulation to fire point 2.18E-01 
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X45 
Failure of alarm of combustible gas 

concentration 
4.28E-02 

X46 Workers do not respond following procedure 1.03E-01 

X47 Get keys from staff 1.41E-02 

X48 Skills to directly open locks without keys 3.51E-02 

X49 Destroy locks using tools like shears 1.53E-01 

X50 No effective hindering facility 1.21E-03 

X51 Poor security awareness of guard 8.00E-03 

X52 Poor ability of guards 1.62E-02 

X53 Poor security knowledge of guard 1.42E-03 

X54 Bride guard 1.26E-03 

X55 Fake identity 1.62E-02 

X56 Accidentally destroyed 1.93E-02 

X57 Destroyed by attackers 2.51E-01 

X58 Insufficient wall height 3.26E-03 

X59 No barbed wire on top 2.16E-02 

X60 
Not following procedures for remote 

operations 
1.00E-03 

X61 No receptionist on duty 2.58E-02 

X62 Receptionist is controlled by attackers 2.53E-01 

X63 No security alarm 5.86E-02 

X64 Improperly placed security alarms  1.26E-01 

X65 Poor quality of security alarm system 4.32E-02 

X66 Poor inspection of security alarm system 2.13E-02 

X67 Poor maintenance of security alarm system 2.48E-02 

X68 
Location of security alarm accessible to 

attackers 
2.14E-01 

X69 
Attackers are familiar with security alarm 

system 
2.43E-02 

X70 No video surveillance 3.54E-02 

X71 Improperly placed video surveillance  1.98E-02 

X72 
Staff in charge of video surveillance does not 

observe in time 
2.02E-01 

X73 Poor quality of video surveillance system 1.21E-02 

X74 Poor inspection of video surveillance system 2.13E-02 

X75 
Poor maintenance of video surveillance 

system 
1.28E-02 

X76 
Location of video surveillance system 

accessible to attackers 
1.04E-01 

X77 
Attackers are familiar with video surveillance 

system 
4.15E-02 

X78 Insufficient frequency of patrol 1.26E-03 
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X79 Improper patrol route 2.54E-03 

X80 Attackers know the patrol schedule 4.30E-04 

X81 Dark circumstances 3.05E-02 

X82 Too many obstacles 8.63E-03 

X83 Attackers know the work time and area 1.23E-01 

X84 Poor education 5.00E-02 

X85 Poor reporting regulations   4.72E-02 

X86 Poor reporting education   5.00E-02 

X87 Destroy pumps 1.02E-01 

X88 Attackers have fake badge and work clothes 2.43E-02 

X89 Open valves 7.23E-01 

X90 Destroy pipes 2.29E-01 

X91 Destroy tank body 2.15E-03 

X92 Open cover using control button 2.37E-01 

X93 
Common workers do not have work clothes 

and badges 
6.28E-02 

X94 Setting spark by hitting 2.15E-03 

X95 Lighter 4.92E-01 

X96 Match 4.61E-01 

X97 Setting static spark 5.23E-02 

X98 Setting electronic spark of equipment 6.85E-02 

X99 Loading or transferring oil to storage tank 2.04E-01 

X100 Spark from vehicle emission 1.52E-01 

X101 Electricity leakage 3.67E-03 

X102 Heat caused by overload 2.56E-02 

X103 Leak is not observed by workers in time 2.64E-01 

X104 Overflow caused by intentional operations 8.00E-02 

X105 Attack 1.00E-01 

Table 5.3 Intermediate and top events [24, 38, 39] 

Symbols Meaning 

IE1 No effective level measurement device 

IE2 Overflow alarms do not work effectively 

IE3 Level control devices do not work effectively 

IE4 Overflow 

IE5 Valves cannot close 

IE6 Corrosion damage 

IE7 Too heavy force on the facility 

IE8 Facility leak 

IE9 Leak caused by unintentional human error 

IE10 Human error for operation on site (e.g., valves open accidently on site) 
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IE11 
Human error in remote operations (e.g., press control button to open 

valves mistakenly) 

IE12 Ignition source 

IE13 Static spark 

IE14 Static from workers 

IE15 Static from equipment 

IE16 Clothes or shoes generate static 

IE17 Spark or heat from electronic equipment 

IE18 Open flame caused unintentionally by individuals 

IE19 
Fire on facility caused by operation against rules (rule-based human 

error) 

IE20 Fire caused by lightning 

IE21 
Spark resulted from direct stroke or secondary 

effects (e.g., the bound charge) on tank 

IE22 No effective lightning arrester 

IE23 Leaked oil on fire 

IE24 Workers do not recognize attackers 

IE25 Spontanous combustion 

IE26 Leak and ignition not managed in time 

IE27 Oil leak 

IE28 Open or destroyed locks 

IE29 Pass fence 

IE30 Via entry 

IE31 Via wall of wire 

IE32 Lax entry control 

IE33 Wall destroyed 

IE34 Pass receptionist 

IE35 Security alarm does not work properly 

IE36 Failure of security alarm system 

IE37 Natural failure of security alarm system 

IE38 Security alarm system destroyed by attackers 

IE39 Improper response of workers to overflow alarm 

IE40 Success of attackers to access oil 

IE41 Intrusion into storage area without being detected 

IE43 
Destroy facilities (e.g., tank) or intentionally conduct operations to 

access oil 

IE44 Video surveillance does not catch attackers 

IE45 Failure of video surveillance system 

IE46 Natural failure of video surveillance system 

IE47 Video surveillance system destroyed by attackers 

IE48 Successfully ignite oil 

IE49 Setting open fire 
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IE50 Patrol does not find attackers 

IE51 Patrol does not meet attackers 

IE52 Attackers successfully hide 

IE53 Workers do not find attackers or incorrectly report the attack 

IE54 Workers do not find attackers 

IE55 Workers do not correctly report the attack 

IE56 Patrol does not recognize attackers 

IE57 Poor security awareness of workers 

IE58 Poor security of wall 

IE59 Go through security defensive line 

IE60 Attackers are not detected 

IE61 Workers do not meet attackers 

TE1 Accidental fire of the oil storage tank 

TE2 Intentional fire of the oil storage tank 

TE Fire of the oil storage tank 
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(a) The BN for oil storage tank fire directly converted from the FT 
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(b) The BN for oil storage tank fire with dependency caused by common factor 
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(c) The integrated BN for the oil storage tank fire 

Fig. 5.4 The models for oil storage tank fire 
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5.3.2 Probability analysis with the established BNs 

5.3.2.1 Probability calculation and comparison 

The probabilities of storage tank fire, accidental storage tank fire and intentional storage 

tank fire are respectively calculated with the BNs shown in Fig. 5.4, and the results are 

shown in Table 5.4. Comparing columns 2 and 3 of Table 5.4, the probability of the oil 

storage tank fire decreases when the common causal factor is treated as one node in the 

model shown in Fig. 5.4(b). In other words, when the dependence caused by common 

factors is not considered, the probability of the abnormal event is overestimated. 

Columns 3 and 4 of Table 5.4 indicate that after considering the dependency among 

correlative accidental and security related factors, the probability of an accidental 

storage tank fire increases. This is because the correlative security related factors (e.g., 

IE32) also serve as causal factors of an accidental storage tank fire and their poor states 

increase the occurrence probability of the correlative accidental factors (e.g., X20). The 

model in Fig. 5.4(b) does not consider the correlative security related factors as causal 

factors of an accidental storage tank fire; thus, the causal factors of accidental fire are 

not completely involved and its assessment result is underestimated. The probability of 

intentional storage tank fire decreases, because the accidental factor X27 reduces the 

occurrence likelihood of the poor security related factors (i.e., X89, X90, X92 and X104). 

The increase of the probability of an accidental storage tank fire is much larger than the 

reduction of its intentional counterpart; thus, the integrated probability of the storage 

tank fire increases. According to Table 5.4, the dependency caused by common factors 
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and by interaction among correlative accidental and security related factors can cause 

the probability changes of abnormal events, although in this case, such changes are 

minor due to the small occurrence probability of related causal factors. The occurrence 

of those causal factors can influence safety and security at the same time and thus 

changes the probability of an abnormal event. However, when their occurrence 

probabilities are very small, such influences are weak in a static assessment. If the 

related causal factors are observed in a dynamic assessment, their effects could be more 

obvious. This point will be further explained in subsection 5.3.2.2.2. 

 

 

Table 5.4 The probabilities of storage tank fire, accidental storage tank fire and intentional 

storage tank fire from different BN models 

 Results of 

model in Fig. 

5.4(a) 

Results of 

model in Fig. 

5.4(b) 

Results of the 

integrated dynamic 

model 

Probability of storage 

tank fire 
1.7833E-02 1.7429E-02 1.7433E-02 

Probability of 

accidental storage 

tank fire 

1.3991E-02 1.3584E-02 1.3589E-02 

Probability of 

intentional storage 

tank fire 

3.8959E-03 3.8976E-03 3.8972E-03 

5.3.2.2 Probability update and comparison 

Dynamic assessment is important for effective risk management, since the management 

measures may need modification with the state change of causal factors and abnormal 

events over time. Furthermore, the security data is scarce, which causes uncertainty to 
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the prior probabilities. After updating the prior probability with evidence in a dynamic 

assessment, the obtained posterior probabilities become more realistic. This integrated 

dynamic model has more obvious advantages in dynamic assessment. 

5.3.2.2.1 The posterior probability calculation of common factors 

When the occurrence of an oil storage tank fire is observed as evidence, the integrated 

dynamic model and BN model of Fig. 5.4(a) are used to update the causal factors. The 

posterior probability of the common factor X33 (poor monitoring of potential hazardous 

acts) from the integrated dynamic model is 3.44E-03. However, X33 has three posterior 

probabilities (3.04E-03, 3.06E-03 and 3.32E-03) according to the BN model of Fig. 

5.4(a). It reveals the integrated dynamic model has the advantage to correctly update 

the probability of common factors. 

5.3.2.2.2 The effects of interaction of correlative causal factors on posterior probability 

From columns 3 and 4 of Table 5.4, it is observed that the probability change of storage 

tank fire caused by the interaction between correlative accidental and security related 

factors is small. This is because the occurrence likelihood of those correlative factors is 

small, limiting the influences of their interactions on a storage tank fire. However, when 

evidence of the correlative factors that exacerbate both safety and security is observed, 

their influences may significantly change the probability of a storage tank fire. For 

example, when IE32 as ‘lax entry control’, X28 as ‘non-explosion-proof motor’ and X93 

as ‘common workers do not have work clothes and badges’ are observed, the 
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probabilities of storage tank fire, accidental storage tank fire and intentional storage 

tank fire from the model of Fig. 5.4(b) and the integrated dynamic model are shown in 

Table 5.5. Comparing the values between columns 2 and 3 of Table 5.5, all the posterior 

probabilities of storage tank fire, accidental storage tank fire and intentional storage 

tank fire from the integrated dynamic model have a much bigger increase than those 

from Fig. 5.4(b). Among them, the posterior probability of storage tank fire from the 

integrated dynamic model is 11.3% larger than that from Fig. 5.4(b). This is because 

the probability growth (from prior probabilities to 100%) of these observed factors can 

simultaneously increase the probabilities of accidental fire and intentional fire in the 

integrated dynamic model. However, because of lack of interaction of correlative 

accidental and security related factors in the model of Fig. 5.4(b), the probability growth 

of those observed causal factors can only increase the probability of either an accidental 

or an intentional storage tank fire.  

 

The analysis above shows that, although the interaction between safety and security has 

little influence on the prior occurrence probability of the abnormal event, when evidence 

of the factors which simultaneously deteriorate safety and security is observed, the 

probability of the abnormal event can have big change due to the interaction of safety 

and security. This reveals the importance of considering the interaction between safety 

and security while dynamically assessing the occurrence probability of the abnormal 

event. 
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Table 5.5 The posterior probability of storage tank fire, accidental and intentional storage tank fire 

 Results from model 

in Fig. 5.4(b) 

Results from the integrated 

dynamic model 

Probability of storage tank 

fire 
1.842E-02 2.051E-02 

Probability of accidental 

storage tank fire 
1.451E-02 1.635E-02 

Probability of intentional 

storage tank fire 
3.973E-03 4.224E-03 

 

Moreover, changes of some causal factors can have opposite effects on changes of 

accident probability and intentional threat probability. If the dependency between 

correlative accidental and security related factors is not considered (e.g., the model 

shown in Fig. 5.4(b)), the effects of such factors cannot be represented. The integrated 

dynamic model can reflect the effect that when the states of such factors change, the 

occurrence probabilities of process accidents and intentional threats have opposite 

changes. Taking X27 (poor signs to help operations and remind of potential hazards) as 

an example, from columns 2 and 3 of Table 5.6, when X27 is observed as good signs, 

the probability of accidental storage tank fire decreases, but that of the intentional 

storage tank fire increases. Comparing the values in columns 2 and 4, when X27 is 

observed as poor signs, the probability of accidental fire grows, and that of intentional 

fire decreases. However, no matter how the state of X27 changes, it generates either an 

extra process accident likelihood or an additional threat probability. Fortunately, in this 

case, the probability reduction of accidental storage tank fire is much bigger than the 

probability increases of intentional storage tank fire if the state of X27 is improved. 
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However, in some cases, when causal factor states are improved to reduce process 

accidents, the integrated probability of an abnormal event may increase due to the 

growth of intentional threat probability. To effectively avoid the conflict effect, the form 

of such factors needs to be changed. For example, the form of X27 can be changed to 

‘poor guide signs of operations that only staff can read’. In this way, improving X27 can 

help staff operate safely and avoid guiding attackers to destroy facilities. 

 

Table 5.6 The probability comparison of storage tank fire, accidental storage tank fire and 

intentional storage tank fire given different states of X27 from the integrated dynamic model 

 X27 (No 

evidence) 

X27 (good 

signs) 

X27 (poor 

signs) 

Probability of storage tank fire 1.7433E-02 1.7295E-02 1.8443E-02 

Probability of accidental storage 

tank fire 
1.3588E-02 1.3450E-02 1.4607E-02 

Probability of intentional storage 

tank fire 
3.8972E-03 3.8978E-03 3.8931E-03 

 

Furthermore, the model in Fig. 5.4(b) cannot update security related factors using the 

evidence of accidental factors, and the observation of security related factors cannot be 

applied to update accidental factors. This is because the model presented by Fig. 5.4(b) 

is not capable of modeling the interaction between correlative accidental factors and 

security related factors. In contrast, the integrated dynamic model can use evidence of 

either correlative accidental or security related factors to update both correlative 

accidental factors and security related factors. For example, when the model in Fig. 

5.4(b) is updated given the occurrence of the accidental factors X20 (Lack of knowledge 
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of operations on site) and X23 (Not following dress regulations), the posterior 

probability of the security related factor IE32 (Lax entry control) is the same as its prior 

probability. However, when the same evidence is used in the integrated dynamic model, 

not only can the accidental factors be updated, the posterior probability of the security 

related factor IE32 becomes 1.517E-02, 7.6 times of its prior probability (1.983E-03) as 

shown in row 2 of Table 5.7. This means when human error occurs on site, and people 

in the chemical plant do not dress following regulations, the lax entry control is believed 

to have a bigger occurrence probability. The result from the integrated dynamic model 

is consistent with practice. In this way, the accidental and security related factors are 

updated given evidence of accidental factors X20 and X23, and then both poor accidental 

and security related factors can be detected. Similarly, when X104 (Overflow caused by 

intentional operations) is observed, the posterior probabilities of IE2 (Overflow alarms 

do not work effectively) and IE3 (Level control devices do not work effectively) are the 

same as their prior probabilities based on the model in Fig. 5.4(b). However, their 

probabilities increase to 2.206E-01 and 4.023E-01 from 1.386E-01 and 1.472E-01 

respectively (see rows 3 and 4 of Table 5.7) using the integrated dynamic model. When 

X23 (Not following dress regulations) is observed, the probability of IE24 (Workers do 

not recognize attackers) increases from 2.992E-01 to 3.330E-01 (see row 5 of table 5.7) 

according to the integrated dynamic model. This means when most employees do not 

wear work clothes, it is believed workers can hardly detect intruders according to 

clothing, which lowers the likelihood for workers to recognize attackers.  
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Table 5.7 The effects of interaction between correlative accidental factors and security related 

factors in dynamic assessment 

Factors Prior probability Posterior probability Evidences 

IE32 1.983E-03 1.517E-02 Occurrence of X20 & X23 

IE2 1.386E-01 2.206E-01 Occurrence of X104 

IE3 1.472E-01 4.023E-01 Occurrence of X104 

IE24 2.992E-01 3.330E-01 Occurrence of X23 

5.3.2.2.3 Significance analysis of correlative factors 

The contribution amount of a causal factor to the abnormal event is an important index 

of this factor's significance, which could guide the decision making of prevention 

measures. It can be reflected by the probability change of the abnormal event given the 

occurrence and nonoccurrence of the causal factor. In this section, the contribution 

amount of correlative accidental and security related factors is calculated to study the 

effect of their interactions on these factors' significance. For the sake of this study, a 

critical value of 1.50E-03 was set for the probability change of the abnormal event. 

When considering the dynamic integrated models, changes of factors X10, X20, X22, X31, 

X32 and IE32 (1.82E-03) produced a variation of the abnormal event exceeding the 

critical value. On the other hand, changes of factors X10, X20, X22, X31 and X32, but not 

IE32 (1.11E-05), produced a variation of the abnormal event exceeding the critical value 

when the model represented by the picture in Fig. 5.4(b) was applied. This is because, 

when the interaction between safety and security is not considered, IE32 is assumed not 

to influence safety, and the importance of IE32 is significantly underestimated. In this 

way, some important factors could be incorrectly ignored when the prevention resources 
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are assigned. In comparison, the integrated dynamic model can more accurately reflect 

the significance of correlative factors, and thus can effectively guide the decisions for 

prevention measures. For example, according to the result from the integrated dynamic 

model, IE32 (the entry control) needs more resources to be strengthened.  

 

It is worth noting that conditional probabilities of BNs in this case study were assumed, 

while theoretically these values could be obtained from historical data or expert 

experiences. However, since the three BNs presented in Fig. 5.4 have the same variables 

and almost the same conditional probabilities (all the same CPTs for the three models 

except that the integrated dynamic model has additional ones for the links of correlative 

accidental and security causal factors), the comparison of their results could reflect the 

effects of the interaction of safety and security related factors. The case study is for 

illustration purposes, the results do not mean to directly guide practice. Once data from 

practice or experts are inputted to the proposed model, it could generate more real 

results to guide practice.  

5.4 Conclusions 

This study presented a new approach for modeling accidental and security related 

factors in an integrated dynamic framework to assess the probabilities of abnormal 

events. The established model reflected the actual relationship of the correlative causal 

factors, process accidents, intentional threats and abnormal events, and quantified the 

effects of the interactions on their occurrence probabilities. The necessity and merits of 
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considering correlative accidental and security related factors together are clarified. An 

oil storage tank is studied for fire occurrence probability using the proposed model. The 

main highlights of the study are:  

• The proposed model visually provides specific (unintentional) process accident 

evolution scenarios from initiation caused by security related factors to propagation 

and final termination. This helps to design intervention at different stages of event 

propagation.  

• The integrated dynamic model considers dependency caused by common factors, 

which improves the assessment accuracy of abnormal events and avoids double 

counting of posterior values of common factors. 

• According to the integrated dynamic model, the probability growth of the causal 

factors which simultaneously exacerbate safety and security results in a larger 

probability increase of abnormal events compared to that without considering the 

safety and security dependency. This provides clear evidence of the improved 

predictability of the model.  

• The integrated dynamic model identifies causal factors whose state changes 

oppositely affect the process accident probability and intentional threat probability. 

This work helps quantify the impact of such factors and proposes a method to 

eliminate their opposite impacts on safety and security.  

• This integrated dynamic model has dynamic feature; thus, it could obtain the latest 

states of variables and reduce uncertainty caused by scarce data through probability 
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update with evidence. A great point is that by considering the interaction between 

accidental and security related factors, the integrated dynamic model enables to 

update states of both types of factors (i.e., accidental and security related factors) 

given evidence of one type of factors. This state updating means the model can 

identify both accidental and security related factors which are more probable to be 

of poor states. 

• The integrated dynamic model can capture the actual significance of correlative 

causal factors contributing to the abnormal events by including the interaction of 

accidental and security related factors.  

 

The current work is mainly aimed to quantitatively show the difference of probabilities 

of abnormal events and causal factors with and without considering the interaction of 

safety and security. To clearly demonstrate this point, this paper made some 

simplification as explained in Section 5.3. In the future work, apart from relaxing those 

simplification, we could also conduct cost-effective analysis to understand how the 

interaction of safety and security could influence the cost effect of countermeasures. In 

this way, the research results will have more direct guidance to risk management and 

resource assignment. Moreover, a case study containing more factors which have 

opposite effects on safety and security could be conducted to magnify the effects of 

such factors. 
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6. Integrated Risk Management of Hazardous Processing Facilities 

Preface 
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the manuscript and revised according to Dr. Faisal Khan's suggestions. Dr. Faisal Khan 
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Abstract 

Processing facilities handling large amounts of hazardous substances are attractive 

targets for terrorists. Thus, these work sites are exposed not only to accidents but also 

to intentional threats. Some research has separately studied risk caused by either 

potential accidental events or terrorist acts. However, studies focusing on integrated risk 

assessment and management (dealing with both safety and security issues) are lacking. 

This paper proposes an approach to assess and manage integrated risks. This method is 

based on an influence diagram which incorporates safety and security-related factors 

into one framework. It considers the effects of management actions on both accidental 

and intentional risks. This method can help to detect hidden risk (i.e., the risk not 

recognized during design and operation stages) and ensure to reduce the real risk to an 

acceptable level by guiding the selection of management actions. The effectiveness of 
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the proposed method is demonstrated using the overfilling risk management of an oil 

tank.  

Keywords: Decision making; safety and security; influence diagram; multi-criteria; 

hidden risk 

6.1 Introduction 

Terrorism is increasingly threatening the world, and attacks on process plants have 

repeatedly occurred in recent years [1]. In June 2015, a terrorist attacked a U.S.-owned 

chemical plant in France and caused an explosion in gas canisters, leaving one person 

dead and two injured [2]. Three weeks later, two explosions were caused by malicious 

acts at a petrochemical plant in southern France [3]. In 2016, an Algerian gas plant was 

hit by terrorists using rockets [4]. In the same year, suicide car bombers attacked Libya's 

main oil terminals (Es Sider oil export terminal), and an oil storage tank at Ras Lanuf 

was set on fire after a rocket hit [5]. In 2017, an attack was launched to blow up an 

Aramco fuel terminal in southern Saudi Arabia using a speedboat laden with explosives 

[6]. Process facilities are thus exposed to not only accidental but intentional risks as 

well, which raises challenges to risk management. The accidental and intentional risks 

are synergistic [7], influencing their causation and the effects of risk prevention 

measures, and thus affecting the decision making of risk management. In this paper, the 

term measure is used to represent a management action to minimize risk.  
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Some researchers have argued that it is not sufficient to address accidental hazards; 

integrated risks including accidental and intentional ones need to be studied to ascertain 

the real risks confronted by the process industry [7－10]. Compared to the work on 

separate assessment of either safety or security related risks [11, 12], relatively limited 

work has been conducted using integrated risk assessment considering the dependency 

of safety and security [7]. Fovino et al. [13] incorporated intentional factors into 

traditional risk analysis by integrating attack trees into a pre-existent fault tree (FT). 

Their approach considered the dependency of intentional acts and accidental failures to 

obtain the integrated risk. Pietre-Cambacedes et al. [7] modelled the dependency of 

safety and security of critical systems using Boolean logic Driven Markov Processes. 

This model analyzed risk scenarios in a qualitative and quantitative form, combining 

safety and security aspects. As for integrated risk management, to the authors' 

knowledge, no specific decision model exists for integrated risks considering both 

safety and security aspects.  

 

Previous works have studied the decision making for accidental risk. Yuan et al. [14] 

proposed a Bayesian network (BN)-based method to help allocate safety measures for 

dust explosions considering both available budget and acceptable residual risk. Sedki et 

al. [15] proposed an influence diagram (ID)-based approach to study the consequences 

of deviant actions of operators based on three parameters: benefit, cost and deficit. This 

model enables managers to rank a set of actions through the utility calculation of each 
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action pertaining to the criteria. However, these works only consider accidental risks, 

ignoring intentional ones. Thus, their selected management actions to minimize risk 

cannot solve the problem of hidden risks, which will be discussed in this paper. The 

hidden risk refers to that which managers do not recognize while conducting risk 

management. Aside from the works about safety-oriented concerns, some research has 

analyzed the measure decision for security issues. Villa et al. [16] proposed a method to 

conduct cost-benefit and cost-effectiveness analysis for the allocation of physical 

security measures. The approach helps to select economically feasible security 

measures with a maximum net present value considering the budget constraints of a 

chemical plant. Stewart et al. [17] described risk-informed decision support for 

assessing the costs and benefits of counterterrorism protective measures for 

infrastructure. This research showed under what combination of risk reduction, threat 

probability, and fatality and damage costs, the counterterrorism protective measures 

would be cost-effective for infrastructures through three illustrative examples. However, 

these studies did not consider the influence of interaction of safety and security on risk 

reduction effects of measures. Thus, the efficiency of measures may be underestimated, 

negatively influencing the decision making for minimizing risk.   

 

This paper proposes a risk-based measure decision method for integrated risk 

management. It discusses the process and principles of measure decision and clarifies 

the influence of the interaction of safety and security on decision making. This method 
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includes the dependency of safety and security-related factors and visually shows how 

measures work to reduce integrated risks. By managing risks from an integrated 

perspective, the method avoids the underestimation of measures' effects. Furthermore, 

this method can detect the hidden risk to ensure that the real risk confronted by facilities 

is reduced to an acceptable level. The new point is that the proposed risk-based method 

can effectively manage integrated risks considering the dependency of safety and 

security. 

 

This paper is organized as follows: Section 6.2 presents the background of integrated 

risk, an influence diagram and the effects of measures. Section 6.3 explains the risk-

based decision-making method. A case study of overfilling of a gasoline tank is 

demonstrated in Section 6.4. Section 6.5 provides discussion and conclusions.  

6.2 Background 

6.2.1 Integrated risk 

To facilitate the study of integrated risk, both safety-related events (i.e., accidents, 

incidents, mishaps and near misses) and security-related events (i.e., terrorism, 

vandalism and mischief) are called abnormal events. Safety-related events are called 

accidental abnormal events, while security-related events are called intentional 

abnormal events. The risk is defined as probability multiplied by consequences (losses) 

[8, 18]. Following this definition, the integrated risk is the product of probability and 
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consequence of an abnormal event. Integrated risk constitutes an accidental risk and 

intentional risk (see Fig. 6.1). The basic difference between accidental and intentional 

risks is whether it includes harmful human intentions [19]. The accidental risk is caused 

by random failure (accidental abnormal events), while the intentional risk includes 

intentional acts (intentional abnormal events).  

 

Oil fire is taken as an example to explain integrated risk. As shown in Fig. 6.1, oil fire 

can occur in an accidental scenario where oil leaks due to corrosion and the leaked oil 

are accidentally ignited by the spark of electronic equipment; it can also occur in an 

intentional scenario where attackers destroy the tank to expose oil and ignite it using a 

lighter. The accidental scenario and intentional scenario can both lead to an oil fire. The 

product of probability and consequence of oil fire in both accidental and intentional 

scenarios is the integrated risk of an oil fire. Managing oil fire risk through an integrated 

perspective is necessary because accidental and intentional oil fires are dependent as 

shown in Fig. 6.1, and thus a risk measure may have effects on both an accidental and 

intentional oil fire. For example, an effective fire suppression system can mitigate not 

only an accidental oil fire but also an intentional oil fire. The goal of this study is to 

demonstrate the advantage of integrated risk management considering the synergy of 

accidental and intentional abnormal events. To clearly demonstrate the function of the 

proposed method, some simplifications are made. The consequences (i.e., damage of 

abnormal events to facilities) are considered as fixed, and probabilities of abnormal 
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events are considered as the only variable reflecting integrated risks. Thus, this study 

focuses on discussion about the management of occurrence probabilities of abnormal 

events. 

 

Integrated oil 

fire risk

Accidental oil 

fire risk

Intentional oil 

fire risk

 

Fig. 6.1 Integrated oil fire risk 

6.2.2 Influence diagram 

An ID is a probabilistic graphical model used to help decide risk management measures 

under uncertainty, considering the utility (e.g., efficiency and cost) of measures. 

Compared to a risk assessment model like BN, besides chance nodes, ID (see Fig. 6.2) 

contains two extra types of nodes－decision nodes and utility nodes [15]. Decision 

nodes represent the decision to apply or not to apply certain measures, while utility 

nodes represent the utility of decision alternatives or strategies. By analyzing the utility 

values of different decision alternatives, the measures reducing risks to an acceptable 

level are selected. Also, since the budget is limited in practice, the selected measures 

need to satisfy budget requirements, which can be analyzed by comparing utility values 

to the budget. The chance nodes, decision nodes and utility nodes are linked using arcs. 
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The arcs among chance nodes of an ID have the same properties as the arcs in a BN, 

representing that the linked chance nodes are dependent [20]. The arcs from decision 

nodes to chance nodes mean the decision of measures to be taken can change the 

occurrence probabilities of the linked chance variables. For example, safety training 

may reduce the occurrence probabilities of human error; thus, the decision node ‘safety 

training’ needs to be linked to the chance node ‘human error’. Their quantitative 

relationship is represented using a conditional probability table (CPT) in which the 

decision to ‘not provide safety training’ corresponds to a high occurrence probability of 

human error (e.g., 0.45), while the decision to ‘provide safety training’ corresponds to 

a smaller occurrence probability such as 0.1 [21, 22]. In this way, the ID establishes a 

link between a decision and the causal factor. When the measure ‘provides safety 

training’ is analyzed by a manager, the state of the decision node is set as ‘provide safety 

training’. Then the ID is updated, and it obtains the updated risks after application of 

the measure. The arcs from chance nodes and decision nodes to utility nodes 

demonstrate that the utility values are influenced by the state combination of chance 

nodes and decision nodes. Their relationships are represented by conditional tables 

which show the utility values corresponding to different state combinations of chance 

nodes and decision nodes. When different measures are applied, the ID is updated to 

obtain new utility values based on which the measures are assessed and the decision is 

made. The dashed arcs among decision nodes represent the decision sequence of 

different measures [15, 23]. The shapes of chance, decision and utility nodes in an ID 



173 
 

are different. Chance nodes are oval, while decision nodes are rectangular [24]. The 

utility nodes are hexagons [15]. The values of chance nodes are probabilities, ranging 

from 0 to 1, while those of utility nodes do not have the range limitation. The decision 

nodes represent the proposed measures; thus, they only have two states, ‘application of 

the measure’ or ‘no application of the measure’ without numerical values. The ID 

including decision and utility nodes is an excellent tool for decision making. It can 

represent the dependency of safety and security-related factors and facilitate measure 

selection considering measures' effects on accidental and intentional risks. 
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Fig. 6.2 A general influence diagram 
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6.2.3 Effects of measures on accidental and intentional risks 

A measure 

of risk 

management

Accidental 

risk change

Intentional 

risk change

Effect

Effect

Integrated 

risk change
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Fig. 6.3 The effects of measures on accidental and intentional risks 

 

Safety and security are dependent, as shown in Fig. 6.3; thus, the safety measures may 

influence security, while security measures influence safety. For example, the safety 

measure of a high-level alarm can also inform the high level caused by intentional acts, 

and thus prevent the intentional damage. The security measure of unauthorized access 

control can not only prevent attackers but also reduce human-induced unintentional 

events (human error), since it can avoid accidents by preventing unauthorized or 

untrained personnel from entering specific workplaces. However, some measures may 

have conflicting effects on safety and security. The security measure ‘non-explosion-

proof security surveillance facilities’ may cause an accidental explosion of released 

flammable substances. Since measures have effects on both safety and security, the 

decision needs to be made from an integrated perspective. Fig. 6.3 also demonstrates 

that integrated risk change reflects the efficiency of measures which serves as one of 

the criteria for measure assessment.  
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A real accident is analyzed to explain how risk management measures can influence 

safety and security. According to a CSB report [25], a toxic chemical release occurred 

during an unloading operation at the MGPI Processing, Inc. in Atchison, the US in 2016. 

The driver of the cargo tank motor vehicle (CTMV) incorrectly connected the discharge 

hose of sulfuric acid to the unsecured fill line for the sodium hypochlorite bulk tank. 

This led to the inadvertent mixing of sulfuric acid and sodium hypochlorite, which 

caused a reaction in the sodium hypochlorite bulk tank. This reaction promoted the 

release of a cloud containing toxic chlorine gas and other compounds. Because of this 

gas release, over 140 individuals sought medical attention and six of them were 

hospitalized. In this toxic gas release, some measures influenced safety and security-

related risks. The padlock on the cam lever dust cap that secures the fill line is designed 

to prevent unauthorized access. It can not only prevent human error (incorrect 

connection) as occurred in the MGPI accident, but can also prevent the damage caused 

by intentional acts. Thus, the measure ‘install padlock on the cam lever dust cap’ can 

reduce both accidental and intentional risks. Another measure has opposite effects on 

accidental risk and intentional risk. To protect the respirators from theft and intentional 

damage, operators have a practice of locking respirators between shelves. Thus, in an 

emergency condition, operators would be unable to access their respirators, thereby 

worsening the severity of the injuries and becoming a source of potential fatality. The 

measure ‘locking respirators’ benefits security to some degree, but it increases the 

safety-related risk. The accident occurred because the driver mistook the sulfuric acid's 
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fill line for the sodium hypochlorite's. If the measure ‘add markers of the chemical at 

fill line connections’ is applied, this error can be avoided. However, such markers may 

provide information for attackers to cause damage. Thus, the measure ‘add markers of 

the chemical at fill line connections’ can reduce the accidental risk, but may increase 

the intentional risk. Another measure, ‘install additional monitoring and emergency 

shutdown devices’, as applied by MGPI after the accident, can detect a release caused 

by either accidental or intentional events and shut down the operation to minimize the 

damage. Thus, this measure can reduce the accidental and intentional risks at the same 

time. Through the analysis of the MGPI toxic gas release incident, it is evident that a 

measure can simultaneously influence safety and security-related risks. Thus, a measure 

decision of risk management needs to consider the measure's effects on accidental and 

intentional risks. The effects of measures on integrated risk can be treated as a criterion 

for measure assessment and decision making.    

6.3 Method description 

6.3.1 Methodology framework  

This ID-based risk management method is divided into two stages. As mentioned in 

Section 6.2.1, the consequences (i.e., damage of abnormal events to facilities) are 

considered as fixed, and then the integrated probability of abnormal events reflects 

integrated risk. Thus, this study focuses on discussion about the management of 

probabilities of abnormal events. The first stage is integrated probability assessment, 
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while the second is measure decision. In the first stage, a BN was established for the 

assessment of an integrated probability of an abnormal event. If the probability is 

unacceptable, potential measures are proposed and an ID is established in stage two 

based on the BN of stage one. The rationality analysis of proposed measures is 

conducted first. Rationality of measures is explained in Section 6.3.2.1. Then the effects 

and costs of reasonable measures are assessed using the ID, based on which the decision 

is made. The methodology framework is shown in Fig. 6.4.  
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Fig. 6.4 Methodology framework  
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6.3.2 Approach for risk-based measure decision 

6.3.2.1 Criteria of measure assessment 

Three criteria are applied for measure decisions: rationality, risk reduction efficiency 

and cost. 

(1) Rationality: Rationality of measures means that measures do not influence the 

normal operation of the process plant. For example, attackers may release oil 

through valves. If all valves are removed, it causes problems for the oil release by 

attackers, but the function of valves necessary for normal production is missing. 

Thus, this measure is not rational. To conserve assessment resources, such measures 

are discarded in the screening step of decision making.  

(2) Risk reduction efficiency: The goal of measures is to reduce risks. Thus, the selected 

measures (strategies) need to reduce risk to an acceptable range effectively. 

(3) Cost: Risk can be reduced with the increase of investment for risk management. In 

an extreme case, the process plant is protected by the security measures used to 

protect the military base and the security risk may be reduced to close to 0. However, 

those measures are too expensive to apply. Practically, risk management has the 

limitation of budget, and the cost of measures cannot exceed the budget allocation. 

The cost of measures should be a criterion of measure selection. Thus, when several 

measures (strategies) can reduce risks to an acceptable range, the economic ones are 

preferred. 
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6.3.2.2 Risk assessment 

BN is applied to assess the integrated probability of the abnormal event considering the 

dependency of safety and security, as shown in Fig. 6.5(a). First, an abnormal event 

(e.g., gas release or explosions) is defined, and then the accidental and intentional causal 

factors are identified. These causal factors and the abnormal event are represented using 

chance nodes in BN. According to the dependency among causal factors and abnormal 

events, these nodes are linked by arcs, and their quantitative relationship is represented 

using CPTs [20]. In this way, the dependency between safety and security is included 

(see the green arcs in Fig. 6.5(a)), and the integrated probability of the abnormal event 

is obtained. If the calculated probability is higher than the accepted standard, risk 

management measures are requested.  

6.3.2.3 Decision making  

1) Measure proposal. Experts propose potential measures for integrated risk reduction 

based on the causal factors. The measures can be inherent, engineered, or procedural 

[14].   

2) Measure assessment. Decision nodes and utility nodes are added to the BN to obtain 

an ID (see Fig. 6.5(b)). The decision nodes representing measures are linked to 

related chance nodes. Their effects on the linked chance nodes are represented using 

CPTs. Besides adding cost as a utility node, the node ‘abnormal event’ changes from 

a chance node to a utility node, since the probability change of the abnormal event 

is a parameter for effect assessment of the measure. Thus, there are two utility nodes 
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in the ID. To assess the cost of these measures, these decision nodes are also linked 

to the utility (cost) node. After establishing the ID, measures are assessed in two 

steps based on the criteria. 

 

Screening step: Proposed measures are analyzed to see whether they influence normal 

operations. If a measure influences normal operations, it is not rational and needs to be 

discarded. The screening process makes the analysis of the next step clearer. 

 

Engineering-economic step: This step includes the efficiency and cost assessment of 

measures. The decision nodes are set as ‘application’ or ‘no application’; then the 

updated integrated probability of the abnormal event and costs of measures is obtained. 

The updated probability of the abnormal event and cost of measures is compared to the 

accepted standard and budget to select management measures. If several measures 

(strategies) satisfy the requirement of risk reduction, the economical one is selected. 

The cost cannot exceed the budget designation.  

 

This method uses a graphical model to clearly show how the measures reduce the 

integrated risks in a visual form. For example, the red arcs in Fig. 6.5(b) represent how 

measure 2 reduces the integrated risk. Measure 2 works on the accidental causal factor 

3 which contributes accidental and intentional abnormal events; thus, measure 2 can 

influence the occurrence probabilities of both accidental and intentional abnormal 
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events. This visual form can assist experts to propose further measures, which are 

explained in Section 6.4. Furthermore, using CPTs, this model has a flexible form to 

represent the relationship between measures and causal factors. The relationships 

between measures and factors have two types. The first is that the measure eliminates 

causal factors [26], while the second improves the state of factors. For example, if the 

avoiding safety measure 2 [26] in Fig. 6.5(b) eliminates the safety-related causal factor 

3. The proposed model uses a CPT (see Table 6.1) to represent this relationship without 

a structural change of the model. Table 6.2 shows another relationship: the application 

of measure 1 reduces the occurrence probability of accidental causal factor 1 to a smaller 

value (0.05) instead of eliminating this causal factor.  

 

Table 6.1 CPT for accidental causal factor 3 

Measure 2 Application No application 

Poor state of accidental causal factor 3 0 0.10 

Good state of accidental causal factor 3 1 0.90 

Table 6.2 CPT for accidental causal factor 1 

 

Measure 1 Application No application 

Poor state of accidental causal factor 1 0.05 0.10 

Good state of accidental causal factor 1 0.95 0.90 
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(a) BN for risk assessment          (b) ID for risk management 

Fig. 6.5 The establishment of ID based on BN 

6.4 Illustrative example 

Overfilling of storage tanks is a potential hazard for offloading operations of gasoline. 

It can lead to fire and explosions, causing severe damage to the community and 

environment [27, 28]. Thus, controlling the occurrence of overfilling to an acceptable 

level is very important for the safe offloading operation in an oil storage depot. An 

illustrative example of overfilling a gasoline storage tank is analyzed to demonstrate the 

function of the proposed method. This case study is analyzed based on a practical 

overflow accident which occurred at the Caribbean Petroleum Corporation facility [27]. 

In 2009, an overflow occurred in San Juan Bay when the Cape Bruny cargo ship was 

unloading more than 11.5 million gallons of gasoline to various tanks on site. Tank 409 

started to overflow between the 11 p.m. and 12 a.m. check on October 22. The released 

gasoline formed a vapour and exploded, burning 17 of the 48 tanks. The CSB report 

[27] revealed the following causes for the overfilling. The level measure gauge and 
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transmitter did not work; thus, operators could not obtain accurate tank levels. In this 

situation, operators incorrectly estimated the tank fill time due to lacking the ability to 

identify and incorporate the flow rate change in real time into tank fill time calculations. 

No independent alarm existed to inform operators about the high level of gasoline. 

Therefore, the operators failed to shut down or divert the flow before overfilling. After 

failing to shut down the flow manually, no automatic overfilling prevention system 

existed to prevent potential overfilling, rendering the occurrence of overfilling.  

6.4.1 Overfilling probability assessment 

As described in Section 6.3, BN is applied to assess the occurrence probability of 

gasoline overfilling. This model not only considers the accidental factors identified 

based on the practical case [27], but also includes the security factors. For the intentional 

perspective, this case study considers a specific attack scenario where an outsider creeps 

into a storage farm without firearms and attempts to cause an overflow. To achieve this 

goal, attackers need to launch attacks, enter the storage farm and successfully cause the 

overflow. Thus, lax entrance control and lax security inside the farm contribute to the 

intentionally caused overfilling. The identified root causal factors and their prior 

probabilities are shown in Table 6.3. These prior probabilities are decided through an 

informed estimation based on the available literature [29, 30]. The storage farm has a 

much weaker security level than chemical plants; thus, its probabilities of lax entrance 

control and lax security inside the farm are considered to be high. According to [27], 

since the plant does not have an independent high-level alarm and automatic overfilling 
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prevention system, the prior probabilities of these two factors are 1.  

 

Table 6.3 Root causal factors and prior probabilities [29, 30] 

Root causal factors Prior probabilities 

Malfunction of the level measure gauge 1.05E-1 

Failure of the transmitter 2.43E-2 

Incorrect estimation of the level 1.10E-1 

Failure of the independent high-level alarm 1.00 

Failure of the automatic overfilling prevention system 1.00 

Attack 1.00E-1 

Lax entrance control 3.00E-1 

Lax security inside the farm 2.50E-1 

 

After identifying causal factors and analyzing their relationships, the BN is established 

and shown in Fig. 6.6. This model includes the dependency of safety and security-

related factors (see the blue, green and orange arcs). Specifically, when attackers 

attempt to cause overfilling, the automatic overfilling prevention system prevents their 

success by diverting the flow to another tank. Furthermore, when the level reaches a 

critical value, the independent high-level alarm can inform operators about the danger 

of overfilling. By this, the operators may detect the intentional acts and prevent the 

intentionally caused overfilling. Moreover, when attackers operate the valves to divert 

the flow to full tanks, the attackers' acts may be detected in time by operators in the 

control room by monitoring the abnormal level change. Thus, the three accidental 

factors, ‘failure of the automatic overfilling prevention system’, ‘failure of the 

independent high-level alarm’ and ‘not obtaining gasoline level’ contribute not only to 

accidental overfilling but also to overfilling caused by attackers. By linking the three 
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accidental causal factors to the security node ‘successfully cause overflow’, the 

dependency between safety and security is established in the model.  

 

 

Fig. 6.6 The BN for gasoline overflow assessment 

 

The occurrence probability of gasoline overfilling is calculated using the BN of Fig. 6.6. 

As shown in row 2 and column 4 of Table 6.5, the occurrence probability of gasoline 

overflow is 1.48E-2. In this case, the accepted standard for gasoline overflow is 

considered as 1.00E-3. Then, it is observed that the occurrence probability of overfilling 

is unacceptable; thus, measures are needed to manage the risk of overflow. 

6.4.2 Risk management 

Potential measures are proposed to reduce the overflow probability.  

(1) Removing all valves. Attackers can operate valves to divert flow to full tanks, 

thereby causing overfilling. Thus, when removing all valves, a hazardous factor for 
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intentional overfilling is eliminated. 

(2) Education for level estimation. When the level measure gauge fails, workers need 

to estimate the gasoline level and calculate filling time. If the estimation is correct, 

the flow can be manually diverted before a tank is full. Therefore, educating 

operators to estimate levels correctly can help to avoid accidental overfilling.  

(3) Installation of an independent high-level alarm. The independent high-level alarm 

can inform operators to stop or divert flow to avoid overfilling when a level reaches 

the critical value, even if the primary system of level measure fails.  

(4) Installation of an automatic overfilling prevention system. The automatic overfilling 

prevention system can automatically stop or divert the flow to another tank when 

the level is beyond the critical value to avoid overfilling.  

(5) Inspection and maintenance of level measure gauge. The level measure gauge 

provides required level information for operators to divert the flow in time. As a 

procedural measure, ‘inspection and maintenance of level measure gauge’ improves 

the operation of the level measure gauge, which helps to reduce the overfilling 

probability. 

  

These measures are assessed based on the criteria (rationality, risk reduction efficiency 

and cost) explained in Section 6.3. First, the rationality of measures is analyzed. For the 

measure ‘removing all valves’, if all valves are removed, operators cannot control the 

flow, negatively influencing the offloading operation. Thus, this measure is not rational 
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in this case study, and it needs to be discarded. The remaining measures (education for 

level estimation, installation of an independent high-level alarm, installation of an 

automatic overfilling prevention system, and inspection and maintenance of level 

measure gauge) do not influence the required operations; thus, they are rational. The 

effects and cost of these reasonable measures are further analyzed to select the proper 

measures. After linking these reasonable measures with corresponding causal factors in 

Fig. 6.6, the ID is obtained, as shown in Fig. 6.7. It is worth noting that the chance node 

‘gasoline overflow’ of BN is converted to a utility node in the ID since the probability 

of gasoline overflow serves as an index for measure assessment. Besides the utility node 

‘gasoline overflow’, another utility node ‘cost’ is added in the ID. Then CPTs of causal 

nodes influenced by measures are decided according to the related literature [29] and 

experts' opinion. Taking the CPT of failure of an independent high-level alarm as an 

example, its CPT is shown in Table 6.4. It shows that when the measure installation of 

an independent high-level alarm is applied, the probability of failure of the independent 

high-level alarm is reduced from 1 to 0.043 [29].  

 

Table 6.4 The CPT for the failure of the independent high-level alarm [29] 

Installation of an independent high-level 

alarm 

Application No application 

Failure of an independent high-level alarm 0.043 1 

Success of an independent high-level alarm 0.957 0 
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Fig. 6.7 The ID for overfilling of a storage tank 

 

The obtained ID in Fig. 6.7 visually shows the risk reduction process with the proposed 

measures. For example, the measure ‘education for level estimation’ reduces the 

integrated overfilling risk by reducing the incorrect estimation of the level. This visual 

diagram helps to detect which causal factors still do not have measures, thereby 

providing help for further measure proposal. For instance, the causal factor ‘failure of 

the transmitter’ does not have a reduction measure. It reminds experts whether measures 

are available to reduce the failure of the transmitter when additional measures are 

needed. Furthermore, when numerous factors and measures are involved in a 
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complicated problem, it is difficult for managers to select proper strategies which 

include multi-measures. This model can conveniently calculate the cost and effects of 

strategies on accidental and intentional risks. Thus, this model facilitates strategy 

selection for complicated problems. 

 

The management measures need to reduce the probability of overfilling to an acceptable 

level. Furthermore, the cost of selected measures needs to be smaller than the budget 

allocation. Thus, the measures (strategies) should first satisfy the requirement of a 

probability reduction of overfilling. Then, among all the satisfied measures (strategies) 

for probability reduction, the economical ones are selected to manage overfilling risk. 

Assume that the budget for risk management is $10,000. To analyze efficiency and cost 

of measures, each of the four measures is set as ‘application’ by turn, while the other 

three measures are set as ‘no application’. The cost of each measure and corresponding 

probabilities of overfilling, intentional overfilling and accidental overfilling are 

obtained and shown in Table 6.5.  

 

Table 6.5 The effect and cost of each measure 

Measures 

Intentional 

overfilling 

probability 

Accidental 

overfilling 

probability 

Overfilling 

probability 

Cost of 

measures 

No 2.35E-3 1.25E-2 1.48E-2 0 

Education for level 

estimation 
2.35E-3 2.70E-3 5.03E-3 $500 

Inspection and 

maintenance of 
1.67E-3 1.24E-3 2.91E-3 $1000 
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level measure 

gauge 

Installation of an 

independent high-

level alarm 

1.00E-3 1.41E-3 2.41E-3 $2000 

Installation of an 

automatic 

overfilling 

prevention system 

1.43E-4 7.59E-4 8.96E-4 $20,000 

 

The overfilling probabilities after using corresponding measures are displayed in rows 

3－6 and column 4 of Table 6.5, while the overfilling probability without applying 

measures is shown in row 2 and column 4 of Table 6.5. Comparing the overfilling 

probabilities before and after applying corresponding measures, it shows that all 

measures can significantly reduce the probability of overfilling. However, the measure 

‘education for level estimation’ only reduces the probability of accidental overfilling 

(see row 3 and columns 2, 3 of Table 6.5), while the other three measures reduce both 

accidental and intentional overfilling probabilities (see rows 4－6 and columns 2, 3 of 

Table 6.5). If the security risk is not included in this analysis, the effects of those three 

measures are underestimated. For example, after applying the independent high-level 

alarm, the overfilling probability reduces from 1.48E-2 to 2.41E-3. If the security risk 

is not considered, the effect of the measure ‘installation of the independent high-level 

alarm’ is underestimated by 1.35E-3. The error value is even more substantial than the 

acceptance criteria (1.00E-3). Thus, the error cannot be ignored. Since risk reduction 

efficiency is an essential criterion for measure selection, if the effects of measures are 

underestimated, it may negatively influence the decision of risk reduction measures. 
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This proposed model avoids such underestimation and thus helps to select appropriate 

measures based on their actual effects. 

 

According to the overfilling probabilities in rows 3－6 and column 4 of Table 6.5, only 

the measure ‘installation of an automatic overfilling prevention system’ reduces the 

probability of overflow to an acceptable level. However, its cost exceeds the budget 

allowance. This means that no single measure can satisfy the requirements of risk 

reduction efficiency and cost control. Thus, the strategy which includes two measures 

is analyzed. Since the measure ‘installation of an automatic overfilling prevention 

system’ cannot satisfy the budget requirement, only three measures are left to form 

strategies. Three strategies are obtained by combining two of the three measures. These 

strategies are set as applications by turn in the ID, and the effects and costs of the three 

strategies are shown in Table 6.6.  

 

Table 6.6 Effects and costs of different strategies 

Number Strategies 

Intentional 

overfilling 

probability 

Accidental 

overfilling 

probability 

Overfilling 

probability 

Cost of 

strategies 

1 

Inspection and 

maintenance of 

level measure 

gauge & 

Education for 

level estimation 

1.67E-3 5.53E-4 2.22E-3 $2000 

2 

Education for 

level estimation 

& Installation of 

1.00E-3 4.29E-4 1.43E-3 $2500 
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an independent 

high-level alarm 

3 

Inspection and 

maintenance of 

level measure 

gauge & 

Installation of an 

independent 

high-level alarm 

7.12E-4 2.68E-4 9.79E-4 $3000 

 

As Table 6.6 demonstrates, the probability of overfilling (9.79E-4) reduces to an 

acceptable level, and the cost ($3000) is kept within the budget requirement only after 

the application of strategy 3. Thus, strategy 3 is selected to protect the storage tank from 

overfilling. To avoid overfilling, measures ‘inspection and maintenance of level 

measure gauge’ and ‘installation of an independent high-level alarm’ are applied in the 

tank farm. 

6.4.3 Discussion 

Rows 2－4 and column 6 of Table 6.6 show the cost increases from strategy 1 to strategy 

3. According to an interview with a safety manager of Yancon Cathay Coal Chemicals 

CO., LTD in China, the plant prefers typically conservative measures for safety 

management. For some potential hazards, they only take simple measures such as 

‘recording the abnormal event to remind workers to be cautious’. Comparing the effects 

of strategies 1 and 3 in rows 2 and 4 and column 5 reveals that if only pursuing less cost, 

the strategy (measure) may not achieve the expected goal of risk reduction. The facility 

may still be exposed to unacceptable risk with the applied measures. Thus, the effect 
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assessment of measures is essential. This was demonstrated by a rupture of the heat 

exchanger at Tesoro Anacortes Refinery of Washington that occurred in 2010 [31]. The 

heat exchanger catastrophically ruptured due to a High Temperature Hydrogen Attack 

(HTHA), and the highly flammable hydrogen and naphtha were released and ignited. 

This caused an explosion and an intense fire, burning for more than three hours. The 

rupture fatally injured seven employees, and it became the largest fatal incident at a US 

petroleum refinery since the BP Texas City accident in March 2005 [31]. According to 

the CSB investigation [31], mechanical integrity programs at the Tesoro Anacortes 

refinery emphasized inspection strategies to control the HTHA mechanism that 

ultimately caused the major process incident. However, inspection for HTHA is tough 

because the damage can be microscopic and may exist only in small localized areas of 

equipment. Furthermore, to identify HTHA by inspection, equipment must already be 

damaged by HTHA [31]. Thus, the inspection was unreliable and failed to prevent the 

rupture. The Tesoro Anacortes refinery simply cited non-specific, judgment-based 

qualitative measures to reduce the risk of HTHA mechanisms without rigorous analyses 

of their effects [31]. This practical event reveals the importance of assessing the effects 

of measures before making the decision instead of focusing on the measures' cost. The 

proposed method provides a tool for managers to assess the effects of potential measures 

(strategies). 

 

The results in Table 6.5 can guide strategy selection since they show the specific 
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probabilities of either accidental overfilling or intentional overfilling. For example, 

among all the financially acceptable measures, the installation of an independent high-

level alarm has the best effect of risk reduction. However, after its application, the 

intentional overflow probability is 1.00E-3, which is not smaller than the accepted 

standard. This means if a measure is selected to form a strategy with the installation of 

an independent high-level alarm, the measure must enable the reduction of intentional 

overfilling. Thus, the safety measures which only work for accidental overfilling are not 

considered. This guides measure selection to form an effective strategy. This point is 

confirmed by the application results of the strategies in rows 3 and 4 and columns 3－

5 of Table 6.6. 

 

If intentional overfilling is ignored while conducting risk analysis and only accidental 

risk is considered as in previous research [14, 15], the accidental overfilling probability 

is seen as the overfilling probability. According to row 3, column 4 and row 4, column 

4 of Table 6.6, strategies 2 and 3 can reduce the overfilling probability (i.e., accidental 

overfilling probability) to 4.29E-4 and 2.68E-4, respectively. These overfilling 

probabilities are acceptable compared to the acceptance standard (1.00E-3). Thus, both 

strategies 2 and 3 can satisfy the risk reduction requirement. Since the cost of strategy 

2 is smaller than that of strategy 3, the conclusion would be to select strategy 2. However, 

this decision leaves the storage tank with an unacceptable risk, since the hidden risk 

(security risk) after applying strategy 2 is ignored. This proposed model can detect the 
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hidden risk and help conduct effective risk management.   

 

This model clearly shows the component change in the overfilling risk after the 

application of different strategies. According to rows 2－4 and columns 3－4 of Table 

6.6 and row 2 and columns 2－3 of Table 6.5, after the application of safety strategies, 

the accidental overfilling probability has more significant reduction than that of 

intentional overfilling. Consequently, although in the original state, accidental 

overfilling is the significant hazard with an occurrence probability 1.25E-2, after 

application of each of the three safety strategies, the probability of intentional 

overfilling becomes higher than that of accidental overfilling. This means that 

intentional acts become the major contributor to the occurrence of overfilling. For 

example, when strategy 2 is applied, the probability of intentional overfilling is 1.00E-

3, while its accidental counterpart reduces to 4.29E-4. These results provide an 

opportunity for managers to learn significant risk sources.   

6.5 Conclusions and future work 

This study proposed a risk-based decision-making method for integrated risk 

management of hazardous processing facilities. This ID-based method incorporated 

security risk into the risk management system. It considered the dependency of safety 

and security-related factors and demonstrated how measures reduce accidental and 

intentional risks. Potential measures (strategies) were assessed using the proposed 

method according to three criteria. A case study of the overfilling of storage tanks was 
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analyzed to demonstrate the utility and effectiveness of the proposed method. The key 

highlights of the proposed method are:  

(1) Visually representing the dependency between safety and security, and showing the 

relationship between measures and causal factors. 

(2) Flexibly representing the effects of measures on causal factors. Thus, the model 

structure does not need to change when avoiding measures are applied. 

(3) Avoiding underestimation of the efficiency of measures. This provides the real 

measure effect which is essential for decision making.  

(4) Detecting the hidden risk, thereby ensuring that the selected measures (strategies) 

reduce the real risk to an acceptable range. 

(5) Enabling obtaining the accidental and intentional risks before and after the 

application of different measures (strategies). Not only can this inform the managers 

about the significant risk source, but it can also guide the selection of measures to 

form an effective strategy. 

 

In future work, more interactive relationships of safety and security can be analyzed 

using complex engineering cases. Specifically, an engineering case can include 

measures with opposite effects on safety and security. Furthermore, in the complex and 

highly digitized modern plant, cybersecurity and physical security are also highly 

dependent. For example, by breaking cybersecurity, hackers can cause fire and 

explosion (physical events) [32]. In future work, cyber security can also be included in 
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the integrated risk management. 
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7. Conclusions and Future Work 

7.1 Contributions and novelty 

7.1.1 Model development for occupational risks of hazardous operations in harsh 

environments 

The logic relationships between causal factors and occupational accidents are more 

complicated than OR (AND) logic. BN uses the CPTs to express the real logic 

relationships (Noisy-OR), which is important for accurate risk assessment. Furthermore, 

the harsh environmental factors are included in the assessment model. Thus, the 

proposed model also satisfies the risk assessment requirements for hazardous facilities 

in a harsh environment.  

7.1.2 Dynamic risk assessment 

The proposed assessment models have a dynamic feature. They can use the evidence of 

causal factors to forward infer the occurrence probabilities of abnormal events, and can 

also use the observation of abnormal events to backward infer the states of causal factors. 

Thus, these models can provide the latest risk updates for effective risk management 

and also can diagnose new states of causal factors to provide guidance for resource 

assignment. 

7.1.3 The inclusion of continuous variables 

Conventional models apply the discrete nodes to approximate the continuous variables, 
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which deteriorates the assessment accuracy. This research use CBN to represent the 

continuous variables and capture their continuous changes in a dynamic assessment. 

This reduces the uncertainty caused by the discrete assumption of conventional 

assessment models.  

7.1.4 Influence analysis of intrusion scenarios 

Different intrusion scenarios have different intrusion processes and principles. This 

research indicates how attackers can achieve their intrusions in different scenarios in a 

visual form. The influence of intrusion scenarios on the successful intrusion 

probabilities and security potentials is quantified, based on which the critical intrusion 

scenarios and weak links of the security system are decided.  

7.1.5 The exploration of integrated risk assessment and management 

The area of integrated risk for safety and security is a new and promising realm. With 

the increasing severity of terrorism activities, the security risk needs focused attention. 

Since safety and security have interactions which may influence the assessment results 

and measure decision, the integrated risk assessment and management become an 

interesting topic. This research conducted a dynamic assessment of integrated risk by 

analyzing safety and security-related factors in a framework. The interaction principle 

of safety and security is explained and its influence on risk level and the significance of 

causal factors are dynamically quantified. The cost and effects of measures are analyzed 

in an integrated framework to demonstrate how the interaction of safety and security 
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can influence decision-making. By managing the risk in an integrated way, the hidden 

risks can be detected and the proposed measures can reduce real risk to an acceptable 

level.  

7.2 Conclusions 

Hazardous operations face three major risks－occupational, process and intentional 

damage risks. The first two risks (i.e., safety risk) have been long studied. However, the 

issues including the emerging challenges of a harsh environment, the static feature of 

assessment results and the discrete assumption of assessment models have limited the 

application of existing works and deteriorated their assessment accuracy. The 

intentional risk of hazardous facilities has caused researchers' attentions after 9/11. 

However, previous studies on security analysis do not consider the influence of 

intrusion scenarios. Furthermore, existing works normally study risks caused by either 

accidents or intentional threats separately. In such a situation, even if a risk is strictly 

controlled, the hazardous facilities may still be exposed to another major risk. The safety 

and security risks have interactions which could change both the risk level and the 

impacts of measures. Works on dynamic risk assessment considering the interaction of 

safety and security are lacking. The influence of the interaction of safety and security 

on measure selection has not been studied. 

 

The risk of three occupational accidents (STFs) is assessed first in this thesis. The BT 

is applied to systematically identify causal factors and clearly represent the evolution 
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process of STFs. The BN model is established based on BT to dynamically assess the 

occupational risks and decide the critical causal factors. The harsh environmental 

factors are included in these assessment models. Then the discrete assumption of 

traditional assessment models is relaxed by representing continuous variables with CBN. 

As a result, the uncertainty caused by the discrete assumption of variables is overcome. 

To improve the security risk assessment, intrusion scenarios are included in the security 

assessment. The influence of intrusion scenarios on the successful intrusion 

probabilities and the security potentials of barriers are analyzed. The critical intrusion 

scenarios and weak links of the security system are dynamically decided. These works 

have reduced the uncertainty of conventional assessment methods. A robust framework 

is proposed for the dynamic assessment of integrated safety and security risks and the 

influence of the interactions of security and safety on risk level and the significance of 

causal factors are analyzed. Then the measure selection for integrated risk management 

is analyzed using an ID containing safety and security-related factors. The management 

actions are decided based on their costs and effects on both accidental and intentional 

risks. 

 

The methods proposed in this thesis would help providing the latest risk confronted by 

workers and facilities in hazardous operations. They enable the analysis of risk for 

operations in a harsh environment, and improve assessment accuracy by relaxing the 

limitations of previous methods. Furthermore, since this thesis studies risk in an 
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integrated way, considering interaction of safety and security, it can provide the real risk 

of hazardous operations and ensure the reduction of real risk to an acceptable level with 

the selected management actions. 

7.3 Future work 

This research makes contributions to dynamic risk assessment with high accuracy and 

integrated risk management considering safety and security related issues. However, the 

following points can be further improved in the future. 

7.3.1. Dependency between different occupational accidents 

This research separately studied the risk of three main occupational accidents (STFs). 

In practice, there may be dependency between different occupational accidents, because 

various occupational accidents may share the same causal factors. For example, when 

employees are tired, the likelihood that they suffer from both slips and falls from heights 

may increase. This means that the control of fatigue can reduce risks of slips and falls 

from height at the same time. If the dependency of different occupational accidents is 

studied, such common factors could be identified to more effectively reduce 

occupational risks. 

7.3.2 Distribution decision of continuous variables based on data 

In this research, the distributions of continuous variables in CBN are assumed. The case 

study on vessel roll is conducted for demonstration purposes. If this method is used to 

solve a practical issue, the data need to be collected and analyzed to make decisions 
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about distributions of variables and relationships between nodes.  

7.3.3 The inclusion of consequence analysis 

This research focuses on the dynamic assessment of the probabilities of abnormal events. 

Since risks are reflected by both probability and consequences, consequence analysis 

can be included in future work. For example, the influence of interaction of safety and 

security on consequences of abnormal events can be analyzed. With consequence 

analysis, the research can provide better guidance for the risk management of hazardous 

operations.  

7.3.4 Inclusion of cyber security risks 

For the security perspective, this research focuses on physical attacks. However, in the 

highly digitized modern plant, cyber attacks are also a security concern. Cyber security 

could also be incorporated into the integrated risk assessment system in future work. Its 

dependency with safety and physical security and its influence on the integrated risk 

can be analyzed. 

7.3.5 Development of a software 

Since this research deal with multi-risks, many factors and dependency relationships 

need to be analyzed. This significantly increases the workload. If the methods are used 

by industry, we cannot expect workers to establish complex models and do probabilistic 

analysis. Thus, a software including the proposed models could be developed in the 

future. The workers would only need to input the required parameters; the software can 



208 
 

provide the risk level, measures and visual evolution process of abnormal events.   

 


