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ABSTRACT 

Pipelines are extensively used as the most economic means of transporting oil and 

gas. The steel pipelines have been widely used for these applications due to the high 

strength to weight ratio of the material, resulting in lower material cost.  These pipelines 

are subjected to corrosions during the service life, resulting in the reduction of wall 

thicknesses. The prediction of the remaining strength of a corroded pipeline is required for 

fitness-for-purpose assessment. For the prediction of the remaining strength, different 

models were developed based on simplified results of analysis and/or empirical fits to 

limited experimental data which are expressed in terms of burst pressure. The established 

design codes adopt simplified design equations for the burst pressure prediction for 

corroded pipelines. However, the burst pressures predicted using the simplified equations 

are not consistent with the burst test results and results obtained from rigorous finite 

element (FE) analyses. Besides, the pipelines are often subjected to axial force and bending 

moment. The effects of the axial force and bending moment on the burst pressure are not 

rationally accounted. In this research, the axial forces and bending moments experience by 

energy pipelines are first examined considering a case of offshore pipelines. The improved 

burst pressure models are then developed for pipelines with and without the axial forces 

and bending moments. The existing models of burst pressures for deteriorated-steel 

pipelines are investigated to determine the contributing parameters to the burst pressures. 

The Folias factor and flow stress are identified as the major parameters contributing to the 

burst pressures of the corroded pipelines. A detailed study, based on FE analysis using 

Abaqus, has been carried out to develop a new method of defining the Folias factor and to 
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develop an improved model for burst pressure prediction for a corroded pipeline. The finite 

element analysis is then extended to develop the new interaction rules for the pipelines 

subjected to multiple patches of the corrosion defects. The FE analysis is used to develop 

failure loci for burst pressure prediction for pipelines subjected to axial forces and bending 

moments. Corroded pipelines often suffer from the stress corrosion cracking (SCC) when 

the pipelines in corrosive environments are subjected to high tensile stresses. The SCC 

occurs at a stress intensity factor well below the fracture toughness of the material. The 

effects of the SCC and the crack propagation in the deteriorating pipelines cannot be 

captured using standard FE modeling techniques. It is proposed to employ fracture 

mechanics to determine the remaining strengths of pipelines containing corrosion defects 

or crack-like defects or corrosion with crack-like defects.  
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CHAPTER 1 

Introduction 

1.1 Background 

The offshore and onshore oil and gas development activities have been growing 

rapidly over the last few decades to meet the global energy demands. Pipelines play a very 

important role in these activities through transporting the products of hydrocarbon from 

the wellheads to the platforms, between the platforms, and to the end users.  Pipelines are 

also used for transporting municipal water and waste water, and for other industrial 

applications. Pipelines are made of different materials including steel, pre-stressed concrete 

and polymers. Steel pipelines are widely used in the oil and gas industries due to the high 

strength to weight ratio of the material, resulting in lower material cost. The size of the 

commonly used pipelines varies from 100 mm to 1500 mm (Mohitpour et al. 2003). The 

diameter to thickness ratios of the pipelines range from 10 to 75 (Guo et al. 2014). 

Depending on the thicknesses, the pipelines are classified as thick pipelines or thin 

pipelines. During analysis and design, separate assumptions are used for thick pipelines 

and thin pipelines. The network of pipelines used in the offshore oil and gas industries 

consists of several segments. Depending on the purposes, the pipelines, used at different 

segments, are classified as flowlines, infilled flowlines and export pipelines (Guo et al. 

2014). The flowlines transport oil and/or gas from satellite subsea well to subsea manifolds 

to production facility platforms. These flowlines also transport water or chemicals from 

production facility platforms to injection wellheads. The infilled flowlines transport oil 
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and/or gas between production facility platforms. The export pipelines transport oil and/or 

gas from production facility platforms to onshore.  The networking system of the above 

mentioned flowlines is schematically shown in Figure 1.1.  

 

Figure 1.1: Offshore Pipelines (Guo et al. 2014) 

 

The internal pressure exerted by the transported oil and/or gas is the primary 

loading in a pipeline during operation. Sometimes, the oil is transported with high 

temperature to avoid the consolidation of wax in oil and to ease of flow of oil through the 

pipelines.  The temperature develops compressive axial force in the pipe wall when the 

pipeline is restrained in the longitudinal direction.  
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The unburied offshore pipelines are sometimes laid on the seabed having 

undulations in the vertical profile. The offshore pipelines may run over props on the seabed. 

The buried offshore pipelines are also subjected to undulations on the bed of the trench. 

These bed undulations lead to initial imperfections (out-of-straightness) of the laid 

pipelines. The initial imperfection causes the development of bending moment and axial 

force in the pipeline. The offshore pipelines are often operated at a high internal pressure 

and a high temperature (HPHT) for ease of transportation of the oil. The HPHT causes 

upheaval buckling and/or lateral buckling of a surface laid pipeline with the initial 

imperfection. Pipelines undergoing the bucklings are subjected to high bending moments 

and axial forces, in addition to the high internal pressures. The effects of these complex 

loading conditions should be properly identified for the structural integrity assessments of 

the pipelines. However, only the internal pressure is commonly considered for the 

structural integrity assessment of pipelines (ASME B31G 2012). 

The pipelines are exposed to corrosive environments through the routes and carry 

corrosive subjects, causing wall corrosions during the service life. According to CEPA 

(2017), corrosion is the lead cause of oil and gas transmission pipelines failure, followed 

by manufacturing/construction defects and cracking. The corrosion defects may be aligned 

along a circumferential direction and/or a longitudinal direction of the pipelines. It has been 

demonstrated that the longitudinal extend of a defect has greater effect on the structural 

performance, in terms of burst pressure, than the circumferential extent of the defect (e.g., 

DNV-RP-F101 2015, CSA Z-662-15). The defect depth has been identified as the most 

influential geometric parameter of a defect on the remaining strength of a corroded pipeline 
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(DNV-RP-F101 2015). The circumferential extend (defect width) has been reported to 

have the minimum effect on strength reduction (Chiodo and Ruggieri 2009). 

The pipeline may contains multiple corrosion defects spaced along the 

circumferential direction and/or the longitudinal direction of the pipeline as shown in 

Figure 1.2. When the multiple corrosion defects interact with each other under the applied 

loads, these are termed as interacting defects. The existing design codes (e.g., ASME B31G 

2012, DNV-RP-F101 2015, CSA Z-662-15 2015) define the limiting distances between 

the defects, beyond which the defects do not interact. For the interacting defects, the 

remaining strength of a pipeline is evaluated considering a single defect with modifying 

the depth of the overall defect. 

 

Figure 1.2: Multiple corrosions on inner surface of a pipe wall (Sykes 2012) 
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The pipe-walls may contain other flaws including cracks, gauge defects at the 

welding, non-uniform wall thickness, and ovality of cross-section. When the pipelines with 

tensile loadings are subjected to corrosive mediums then cracks are developed in the pipe 

wall at a stress intensity factor lower than the fracture toughness of the material.  This 

phenomenon is known as stress corrosion cracking (SCC). The crack-like defects are more 

damaging than other flaws. A crack-like defect causes high stress concentration near the 

crack tip/crack front that leads to reduce the strength of the pipeline. Similar to corrosion 

defects, the cracks may be aligned along the circumferential direction and/or the 

longitudinal direction of the pipeline. The circumferential cracks are more detrimental 

when the pipelines are subjected to bending loading or tension loading, resulting in higher 

longitudinal stress in the pipe-walls. The effects of longitudinal cracks are more significant 

when the pipelines are subjected to an internal pressure, leading to the higher 

circumferential stresses. 

1. 2 Rationale for the current study 

The fitness-for-purpose of the corroded pipelines are assessed using burst pressure 

models available in the existing design codes (e.g., ASME B31G 2012, DNV-RP-F101 

2015, CSA Z-662-15 2015, BS 9710 2013). The design codes provide simplified models 

for burst pressure predictions for corroded pipelines. Most of the existing burst pressure 

models neglect the presence of axial forces and bending moments experienced by the 

pipelines. However, the pipelines crossing various ground and operating conditions may 

experience axial forces and bending moments of various magnitudes (Taylor et al. 2015). 
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The burst pressure models should account for the effects of the axial forces and bending 

moments to properly assess the remaining strength of the pipelines.   

In the existing methods, no specific guideline is provided to assess the pipelines 

having cracks or crack-like defects. The current research focuses on addressing the 

limitations discussed above toward developing an improved method for the assessment of 

the remaining strength of deteriorating pipelines.   

1. 3 Research Objectives and Scope 

The overall objective of the research is to develop the improved model for 

predicting the remaining strengths of deteriorating pipelines with particular focus to 

offshore energy pipelines. The level of axial forces and bending moments experienced by 

an offshore pipeline is first examined using finite element modelling. A case of offshore 

pipeline is considered for the assessment of the axial force and bending moments. Existing 

models for assessing the remaining strengths of deteriorating pipelines are then evaluated 

to develop the improved methods for FFS (fitness-for-service) assessments of the pipelines. 

A fracture mechanics approach is employed to assess the pipelines subjected to crack or 

crack-like defects. Specific objectives of this research are to: 

(i) Examine the loading conditions experienced by the offshore pipelines subjected 

to high temperature and/or high internal pressure.   

(ii) Evaluate existing burst pressure models and identify the contributing 

parameters to the burst pressure of a deteriorating pipeline. 
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 (iii) Develop an improved burst pressure model. 

(iv) Develop the new interaction rules for pipelines with multiple corrosion defects.     

(v) Evaluate the remaining strengths of corroded pipelines subjected to combined 

loadings including axial force, bending moment and internal pressure.  

(vi) Examine the effects of crack-like defects and crack-in-corrosion (CIC) defects 

using fracture mechanics criterion.  

1.4 Outline of the Research Methodology 

The following presents a brief outline of the methodologies undertaken to achieve 

the above objectives.  A more detail discussion on the research methodologies and results 

are provided in the subsequent chapters. 

Literature review:  Existing literature on the remaining strength assessments of 

offshore energy pipelines is thoroughly reviewed.  

Loads on offshore pipelines: Performance of a pipeline depends on the internal 

forces such as axial forces and bending moments in addition to internal pressure. The 

offshore pipelines laid on the seabed experience internally developed forces due to 

upheaval buckling resulting from high temperature and/or high operating pressure. The 

internal forces in pipelines subjected to upheaval buckling are investigated using large 

deformation finite element modelling techniques. A version of the work has been published 

in an Elsevier’s journal, Applied Ocean Research, Vol. 66(2017), 146-155. Preliminary 
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findings from this work were presented in the 69th Canadian Geotechnical Conference 

(GeoVancouver2016), Vancouver, B.C., 2–5 October 2016. 

Evaluation of existing burst pressure models: Burst pressure models available in 

the existing design codes and literature are evaluated using rigorous finite element 

analyses.  Based on this study, the key parameters responsible for the discrepancies 

observed in the existing burst pressure models are identified. This work has been published 

in an ASME journal, Journal of Pressure Vessel Technology, Vol. 139 (2016), 021702-1. 

Preliminary findings from this work were presented in two conferences: one at 34th 

International Conference on Ocean, Offshore and Arctic Engineering, St. John’s, NL, May 

31- June 5, 2015 and the other at IBC Energy’s 6th Annual Conference, St. John’s, NL, 

April 14-15, 2015. 

Development of the improved burst pressure model: The finite element modelling 

techniques are employed to conduct a parametric study with various pipe diameters and the 

shapes of corrosion geometries. Using the results of finite element analyses, the improved 

close-form equations for the Folias factor and for the burst pressure are developed for 

corroded pipelines. The work has been published in an ASME journal, Journal of Pressure 

Vessel Technology, Vol. 140(2018), 011702-1-9. 

Interaction rules for multiple corrosion defects: Burst pressure for a pipeline with 

multiple corrosion defects is assessed considering each size of corrosion patches 

independently but separated by a distance from each other. The current design codes 

provide design equations for calculate the limiting distances beyond which the defects act 
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independently. These design equations do not include the depth of corrosion into 

consideration. However, it has been demonstrated that the limiting distance can be different 

depending on the defect depth. The effects of the defect depth and the arrangement of the 

defects on the interaction of multiple corrosion defects are investigated using finite element 

analyses, ending to the development of the new interaction rules. This study has been 

published in a CSCE journal, Canadian Journal of Civil Engineering, Vol. 44(2017): 589-

597. Preliminary findings from this study were presented in CSCE Annual Conference, 1-

4 June, 2016.   

Corroded pipelines subjected to combined loadings: The above studies on the 

remaining strengths of corroded pipelines examine the pipelines under internal pressure 

only.  However, as demonstrated in Mondal and Dhar (2017a & 2017b), the axial forces 

and bending moments are developed in the offshore pipelines. The effects of axial forces 

and bending moments on the burst pressures of corroded pipelines are examined using 

finite element analysis to develop simplified design methods.  

Cracking in corroded pipelines: The corroded pipelines often suffer from stress 

corrosion cracking (SCC) when the pipelines in corrosive environments are subjected to 

high tensile stresses. A SCC occurs at a stress intensity factor well below the fracture 

toughness of the material. The effect of a SCC and the crack propagation in deteriorating 

pipelines cannot be captured using standard FE modeling techniques. It is proposed to 

employ fracture mechanics criterion to determine the remaining strengths of the pipelines 

containing crack-like defects.  The investigations of pipelines with crack-like defects are 

conducted using fracture mechanics approach. 
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1.5 Organization of the Thesis 

This thesis is organized in nine chapters.  

Chapter 1 includes a discussion on the research background, objectives of the research 

and an outline of the methodology. 

Chapter 2 provides a discussion on the literature review relating to the burst pressures of 

defected (corroded or cracked) pipelines subjected to different loadings, including the 

pipelines with multiple corrosion defects. 

Chapter 3 presents the study to investigate the loadings experienced by the offshore energy 

pipelines during installation and operation. 

Chapter 4 presents the study to evaluate the burst pressure models for corroded pipelines 

available in the existing design codes. The factors contributing to the discrepancies in the 

burst pressure models are identified and are discussed in this chapter.    

Chapter 5 presents a study to investigate the contributing factors identified in Chapter 4 

and to develop the improved model for burst pressure calculation of a corroded pipeline 

subjected to the internal pressure.   

Chapter 6 presents a study to evaluate the existing interaction rules for a pipeline 

containing multiple corrosion defects. Based on the study, the improved interaction rules 

are developed.  

Chapter 7 presents a study to account for the effects of bending moments and axial forces 

on the burst pressures of corroded pipelines.  
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In Chapter 8, burst pressure evaluation, using fracture mechanics criterion, is presented. 

The burst pressures of pipelines containing corrosion only defects or crack-in-corrosion 

defects are examined. 

Chapter 9 presents the overall conclusion of the thesis and the recommendations for future 

work.  

All references reviewed in this study are given after Chapter 9.      
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CHAPTER 2 

Literature Review 

2.1 General 

The major design consideration for a pipeline is the internal pressure containment 

where the pipeline is designed to carry the maximum internal pressure without failure. The 

capacity of a pipeline to carry the internal pressure is termed as “burst pressure”. The burst 

pressure of a pipeline depends on the pipe diameter, wall thickness and the strength of the 

material. The offshore pipelines are often subjected to axial forces and bending moments 

in addition to the internal pressures. The strength of a pipeline is also affected by these 

loads.  

The corrosion is the primary cause of failure of a liquid pipeline and is the 

secondary cause of failure of a natural gas transmission pipeline and a distributing pipeline 

(Chauhan and Swankie 2010). A corrosion causes reduction of wall thickness locally. The 

corrosion defects can be of different shapes and with different orientations (along the 

longitudinal direction, circumferential direction and/or oblique direction), which affect the 

remaining strengths of the corroded pipelines. Pipelines experiencing tensile stresses in 

corrosive mediums are subjected to stress corrosion cracking that reduces the strengths of 

pipelines more significantly.  The remaining strengths of the deteriorating pipelines 

subjected to corrosion and stress corrosion cracking should be determined for the fitness-

for-purpose (FFP) assessments of the pipelines.  This research focuses on developing the 
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improve methods for assessing the strengths of the deteriorating pipelines.  This chapter 

presents a review of literature pertaining to the loading conditions of offshore pipelines 

followed by the current state of knowledge on the deteriorating pipelines subjected to those 

loadings.  

2.2 Existing Burst Pressure Models 

Several models of burst pressure for corroded pipelines are available in the 

literature. However, no single model was reported to predict the burst pressure accurately 

in general (Zhu and Leis 2012). The commonly used models include modified ASME 

B31G (2012), CSA Z662-15 (2015), DNV-RP-F101 (2015), LPC-1 (Swankie et al. 2012), 

Shell 92 (Zhou and Huang 2012), BS 7910 (2013) and RSTRENGTH (Kiefner and Vieth 

1989). The models are briefly described below. The following parameters are consistently 

used for all of the models described below.  

D: Outer diameter of pipeline 

t: Wall thickness 

d: Depth of corrosion defect 

l: Length of corrosion defect 

w: Width of corrosion defect 

y: Specified Minimum Yield Strength of the pipe material (SMYS) 

u: Specified Minimum ultimate Tensile Strength of the pipe material (SMTS) 

Sflow: Flow stress 

Po: Pressure resistance of defect free pipeline 
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P: Burst pressure of corroded pipeline 

M: Bulging stress magnification factor/Folias factor 

 

 

Modified ASME B31G: 

The modified ASME B31G code was developed through modification of the 

original ASME B31G code. The irregular longitudinal profile of a corroded area is replaced 

by an equivalent rectangular section having a depth of 0.85 times the maximum depth 

(dmax). The maximum stress capacity of the material is expressed by a flow stress, Sflow, 

which is taken as 1.1y or average of y and u, to account for the strain hardening effects. 

In the modified ASME B31G code, the burst pressure is expressed as (Equation 2.1): 

𝑃 =
2𝑡

𝐷
𝑆𝑓𝑙𝑜𝑤(= 1.1𝜎𝑦) [

1 − 0.85
𝑑𝑚𝑎𝑥

𝑡

1 − 0.85
𝑑𝑚𝑎𝑥

𝑡𝑀

]                   (2.1) 

In Equation 2.1, M is termed as the Folias factor, accounting for the effects of 

geometry of the defect, and is given by Equation 2.2 or 2.3 depending on the defect length. 

The Folias factor is discussed in details in section 2.2.1.  

 For
𝑙2

𝐷𝑡
≤ 50 

𝑀 = √1 + 0.6275
𝑙2

𝐷∙𝑡
− 0.003375

𝑙4

𝐷2𝑡2                  (2.2)  
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 For
𝑙2

𝐷𝑡
> 50 

𝑀 = 0.032
𝑙2

𝐷𝑡
+ 3.30                               (2.3) 

CSA Z662-15: 

The CSA Z662-15 code uses similar equations as those in the modified ASME 

B31G code, except that the average depth (davg) of the corroded area is used instead of 

0.85dmax. The flow stress is used as 0.9u for material with the yield strength greater than 

241 MPa, which is the case for most pipe materials. The burst pressure in the CSA Z662-

15 codes is given by (for y>241 MPa) Equation 2.4: 

𝑃𝑐 =
2𝑡

𝐷
(0.9𝜎𝑢) [

1 −
𝑑𝑎𝑣𝑔

𝑡

1 −
𝑑𝑎𝑣𝑔

𝑡𝑀

]                       (2.4) 

The Folias factor in this model is same as the one used in the modified ASME B31G. 

DNV-RP-F101: 

In the DNV RP-F101 code, the maximum depth of corrosion and ultimate tensile 

strength of the material are used.  Partial safety factors are recommended for the material 

property and corrosion depth.  A factor of 1.05 is used in the equation that was developed 

based on comparison of the model with laboratory test results. The model used in the DNV-

RP-F101 code is given by Equation 2.5. 



16 
 

𝑃 =
2𝑡

𝐷 − 𝑡
(1.05𝜎𝑢) [

1 −
𝑑𝑚𝑎𝑥

𝑡

1 −
𝑑𝑚𝑎𝑥

𝑡𝑀

]                        (2.5) 

As seen in Equation 2.5, an average pipe diameter is used in the burst pressure 

model. The Folias factor in this model is given by Equation 2.6. 

𝑀 = √1 + 0.31 (
𝑙

√𝐷𝑡
)

2

                                       (2.6) 

LPC-1: 

The LPC-1 method also uses the ultimate tensile strength of the pipe material, the 

maximum depth of the corrosion and the average pipe diameter, as in the DNV-RP-F101 

method. The model for the burst pressure in the LPC-1 code is given by Equation 2.7:  

𝑃 =
2𝑡

𝐷 − 𝑡
𝜎𝑢 [

1 −
𝑑𝑚𝑎𝑥

𝑡

1 −
𝑑𝑚𝑎𝑥

𝑡𝑀

]                               (2.7) 

The Folias factor in this equation is same as the DNV-RP-F101 code given above. 

Shell 92: 

The burst pressure according to the Shell 92 method is given by Equation 2.8.     

𝑃 =
2𝑡

𝐷 − 𝑡
(0.90𝜎𝑢) [

1 −
𝑑𝑚𝑎𝑥

𝑡

1 −
𝑑𝑚𝑎𝑥

𝑡𝑀

]                       (2.8) 

The Folias factor in this method is expressed by Equation 2.9.    
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𝑀 = √1 + 0.80 (
𝑙

√𝐷𝑡
)

2

                                   (2.9) 

BS 7910 (2013): 

In this code, the corroded area is represented by a rectangular section with the 

maximum depth and the maximum length of a corrosion. The flow stress is defined as the 

reference stress which is the mean of yield strength and ultimate tensile strength. The 

equation of burst pressure in this codes is (Equation 2.10):  

𝑃 =
2𝑡

𝐷 − 𝑡
𝜎𝑟𝑒𝑓 [

1 −
𝑑𝑚𝑎𝑥

𝑡

1 −
𝑑𝑚𝑎𝑥

𝑡𝑀

]                          (2.10) 

Where, the equation of Folias factor is similar to the DNV-RP-F101 code.  

RSTRENGTH: 

The model of burst pressure in the RSTRENGTH method is similar to modified 

ASME B31G code, except the definition of flow stress. In RSTRENGTH, a 69 MPa (10 

ksi) is added to the SMYS to determine the flow stress. The model of burst pressure in the 

RSTRENGTH code is express as (Equation 2.11):  

𝑃 =
2𝑡

𝐷
𝑆𝑓𝑙𝑜𝑤(= 𝜎𝑦 + 69) [

1 − 0.85
𝑑𝑚𝑎𝑥

𝑡

1 − 0.85
𝑑𝑚𝑎𝑥

𝑡𝑀

]                            (2.11) 

Where the equation of Folias factor is similar to modified ASME B31G code. 
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2.2.1 Folias Factor 

Each of the models discussed above includes a parameter called “Folias Factor”. 

The term “Folias Factor, M” is used to describe the bulging effect of a shell surface that is 

thinner in wall thickness than the surrounding shell. It measures the stress concentration at 

the tip of a crack with expansion under an internal pressure. The factor was first derived 

analytically by Folias (1964) considering a surface crack along the axis of a cylindrical 

shell. The general form of the factor is given by Equation 2.12 (Folias 1973).  

𝑀 = 𝑓𝑒(𝜆) + 𝑓𝑏(𝜆)𝜒(𝜆)                             (2.12) 

 

where, 

𝜆 = √
3(1 − 𝜈2)𝑙4

𝐷2𝑡2

4

 

𝑓𝑒(𝜆) = extensionl coefficient 

𝑓𝑏(𝜆) = bending coefficient 

𝜒(𝜆) =
𝜎𝑏𝑒𝑛𝑑𝑖𝑛𝑔

𝜎ℎ𝑜𝑜𝑝
 

When the cylindrical shell is subjected to the internal pressure only, the simplified 

expression of the factor is reduced to Equation 2.13.  

𝑀 = √1 + 0.317𝜆2                                    (2.13) 

The Folias factor was investigated by several researchers to apply it for the 

determination of the remaining strengths of corroded pipelines. The expression of the 
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Folias factor was modified and incorporated in the design codes (e.g., modified ASME 

B31G, DNV-RP-F101, BS 7910, CSA Z662-15). The modified ASME B31G, CSA Z662-

15 and RSTRENGTH codes define the corrosion defects into two types, such as short 

defects and long defects. The expressions of the Folias factor recommended in these codes 

for the short and the long defects are given by Equations 2.2 and 2.3, respectively. The 

DNV-RP-F10 and the BS 7910 codes do not distinguish the short defects and long defects. 

A single equation is recommended for the Folias factor (Equation 2.6). 

2.2.2 Evaluation of Burst Pressure Models 

The burst pressure models discussed above have two components in general: one 

component is outside the bracket and the other component is inside the bracket. The 

component outside the bracket indicates the burst pressure of an intake pipeline and the 

component inside the bracket, known as burst pressure reduction factor (BPRF), measures 

the reduction of a burst pressure due to the presence of defect in the pipe wall. The burst 

models vary from each other with respect to the burst pressure of the intake pipeline (the 

term outside the bracket) and the burst pressure reduction factor (the term inside the 

bracket).  As a result, different burst pressure models provide significantly variable failure 

probabilities of corroded pipelines even with the same defect dimensions (Hasan et al. 

2011). Researchers are working to identify the limitations of the existing models and to 

develop the improved burst pressure models. Based on experimental results of 460 mm 

diameter and 8 mm thick pipelines, Chen et al. (2015) reported that the ASME B31G and 

the DNV-RP-F101 methods underestimate the failure pressures of corroded pipelines. 

However, Swankie et al. (2012) reported the results of 80 full-scale burst tests for a number 
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of pipelines with diameters ranging from 88.9 mm to 168.3 mm, where the modified ASME 

B31G method provided un-conservative estimations for 35% of the pipelines and 

conservative estimations for 50% of the pipelines tested. Majority of their predictions using 

the LPC-1 method was also found to be un-conservative with respect to the test results. 

Using FE analysis, Mondal and Dhar (2015) have found that a pipeline designed using the 

modified ASME B31G method would provide a factor of safety less than the design factor 

of safety.  The modified ASME B31G method was found to provide un-conservative burst 

pressures for pipelines with multiple corrosion patches as well (Dhar and Mondal 2015). 

The model errors in several existing models were found to affect the burst probability 

assessments by several order of magnitudes (Zhou and Zhang 2015). An improved burst 

pressure model is therefore required for the assessments of the remaining strengths of 

corroded pipelines. 

In this research, the key parameters contributing to the discrepancies in the existing 

models are identified and an improved burst pressure model has been developed. It has 

been identified that the expressions for the Folias factor do not include the defect depth, 

whereas defect depth was found to influence the factor. Figure 2.1 compares the Folias 

factors calculated using the equations in the modified ASME B31G and DNV-RP-F101 

codes with those calculated using FE analysis (After Mondal and Dhar 2016). Figure 2.1 

plots M2 as a function of l2/(Dt), since the factors in the design codes are expressed as a 

square root of a function of l2/(Dt). In this figure, the FE method calculates different M for 

different d/t ratios with the same l2/(Dt). For l2/(Dt) of around 90, two data points are widely 
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scattered, one with M2 = 53.15 for d/t = 0.2 and the other with M2 = 156 for d/t=0.7. An 

improved equation for the Folias factor is developed from the current study.  

 

Figure 2.1: Comparison of Folias factors obtained from FE analysis and design codes  
 

2.3 Interaction of Multiple Corrosion Defects 

Corrosion in a pipeline may occur in a single patch or in multiple patches. For 

multiple corrosion patches, strength of the pipeline can be assessed considering a single 

patch only, if the corrosion patches are farther apart and do not interact with each other.  

For interacting defects, the burst pressure is calculated based on an entire corroded area 

inclusive of the corrosion patches. Different design codes such as DNV-RP-F101 (2015), 

CSA Z662-15 (2015), ASME B31G (2012) provide different interaction rules to determine 
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the limit of interacting distance using different criteria (Table 2.1). The maximum distance 

between the patches up to which the patches interact with each other is termed as the limit 

of interacting distance.  

The interaction rules state about the limiting distances along the circumferential 

direction and longitudinal direction, (Sc)lim and (Sl)lim, respectively, between two successive 

corrosion patches beyond which the effect of interaction of the adjacent patches is 

negligible. Three basic types of interacting corrosion defects are generally considered, 

which are termed as Type 1, Type 2 and Type 3, respectively (Kiefner and Vieth 1990). 

All of the three types of interactions are described in details in Chapter 6. The 

following definitions are consistently used in the interaction rules.  

Sl: longitudinal spacing between adjacent corrosion patches 

Sc: circumferential spacing between adjacent corrosion patches 

(Sl)lim: maximum longitudinal spacing between adjacent corrosion patches above which the 

corrosion patches are treated as single  isolated patches 

(Sc)lim: maximum circumferential spacing between adjacent corrosion patches above which 

the corrosion patches are treated as single  isolated patches 

The current design codes (e.g. DNV-RP-F101, modified ASME B31G, CSA Z662-

15) recommend the limiting distances (spacing), (Sc)lim and (Sl)lim, in terms of different 

parameters. The DNV-RP-F101 code expresses the spacing in terms of pipe dimensions 

(diameter and thickness). The modified ASME B31G and CSA Z662-15 codes express the 
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spacings in terms of pipe wall thickness and the dimension of corrosion patches, 

respectively.  

 Table 2.1: Interaction Rules  

Source 

Longitudinal limit 

(Sl)lim 

Circumferential limit 

(Sc)lim 

Criteria for 

interaction 

DNV-RP-F101 (2015) 2√𝐷𝑡 360√
𝑡

𝐷
   (𝑑𝑒𝑔𝑟𝑒𝑒) 

𝑆𝑙 ≤ (𝑆𝑙)𝑙𝑖𝑚 

𝑆𝑐 ≤ (𝑆𝑐)𝑙𝑖𝑚 

ASME B31G (2012) 3𝑡 3𝑡 

𝑆𝑙 ≤ (𝑆𝑙)𝑙𝑖𝑚 

𝑆𝑐 ≤ (𝑆𝑐)𝑙𝑖𝑚 

CSA Z662-15 (2015) Minimum(𝑙𝑚 𝑡𝑜 𝑙𝑛) Minimum(𝑙𝑚 𝑡𝑜 𝑙𝑛) 

𝑆𝑙 ≤ (𝑆𝑙)𝑙𝑖𝑚 

𝑆𝑐 ≤ (𝑆𝑐)𝑙𝑖𝑚 

Kiefner and Vieth (1990) Minimum(6𝑡, 𝑙𝑚 𝑡𝑜 𝑙𝑛) Minimum(6𝑡, 𝑤𝑚 𝑡𝑜 𝑤𝑛) 

𝑆𝑙 ≤ (𝑆𝑙)𝑙𝑖𝑚 

𝑆𝑐 ≤ (𝑆𝑐)𝑙𝑖𝑚 

Pipeline Operator Forum 

(2005) 

25.4 mm (1 inch) 6𝑡 

𝑆𝑙 ≤ (𝑆𝑙)𝑙𝑖𝑚 

𝑆𝑐 ≤ (𝑆𝑐)𝑙𝑖𝑚 

 

The interacting corrosion defects are treated as a single defect for calculating the 

burst pressure. The ASME B31G (2012) code recommends using a length equals to the 

total length of corrosion group, lmn, and a depth equals to the maximum depth in the group, 

dmax. The width of the corrosion defect is not included in the ASME B31G model. The 

DNV-RP-F101 code also uses the length similar to that recommended in the ASME 

method.  The depth for the corrosion group in the DNV-RP-F101 code is calculated using 

Equation 2.14.  
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𝑑𝑚𝑛 =
∑ 𝑑𝑖𝑙𝑖

𝑖=𝑛
𝑖=𝑚

𝑙𝑚𝑛
                        (2.14) 

 

Here, di and li are the maximum depth and length, respectively, of the ith corrosion of the 

interacting corrosion group (as shown in Figure 6.3).   

Li et al. (2016) reported that, for same defect sizes and configurations, the different 

design codes provide different results of interactions between corrosion defects. They 

revisited the interaction rules for a pipeline of 458.8 mm diameter with multiple corrosion 

patches using finite element analysis. Based on the study, the new interaction rules were 

proposed. Al-Owaisi et al. (2016) investigated the interaction of two shapes of corrosion 

defects for a 508 mm diameter pipe using finite element analysis. It was concluded that the 

shapes and locations of the defects influence the burst pressures of pipelines containing 

interacting defects.    

Most of the studies on the interactions of corrosion patches focused on pipelines 

with diameters of around 460 mm (Fu and Batte 1999, Silva et al. 2007, Benjamin et al. 

2016, Li et al. 2016). The limiting distances for interactions are expressed in terms of pipe 

diameter and/or wall thickness of the pipeline. The effect of the depth of corrosion is not 

included in the interaction rules. Silva et al. (2007) however showed that corrosion depths 

may affect the interaction rules. In this research, the interaction rules for a wide range of 

pipe diameters and corrosion depths are examined to develop the new interaction rules for 

pipelines with multiple corrosion patches. 
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2.4 Pipelines Subjected to Axial force and Bending Moment 

Although the primary load for a pipeline is the internal pressure, the pipelines 

particularly in offshore environment are subjected to additional loads causing axial forces 

and longitudinal bending moments (Liu et al. 2009). The additional loadings could be the 

result of formation of free spans, specially for unburied pipeline, and temperature 

difference. The free span can impose bending moment, whereas the temperature difference 

can causes axial force and bending moment in the pipe wall. The burst pressure of a 

pipeline is affected by the axial forces and the bending moments. Wang et al. (2016) 

demonstrated that the burst pressure for a flawless pipeline is reduced due to the presence 

of bending moment. Axial tension was also found to reduce the burst pressure of defect 

free stainless steel pipes (Lasebikan and Akisanya 2014). Chen et al. (2015) and Ye et al. 

(2016) developed semi-empirical equations for the pipelines with an infinitely long 

corrosion defect. The solutions would underestimate the capacities of the pipelines with 

shorter corrosion patches. 

Liu et al. (2009) investigated the burst pressures of pipelines with corrosion patches 

subjected to bending moment or axial compressive force using finite element analysis. 

Using the results of analysis, interaction diagrams were developed to relate the internal 

pressure (burst pressure) with bending moment or with the axial force for pipelines with 

diameters of 203.2 mm to 914.4 mm. Chauhan and Swankie (2010) also examined the burst 

pressures of corroded pipelines subjected to compressive forces or bending moments and 

developed interaction diagrams for pipelines with defect depths of 20% to 80% of wall 

thickness. For an example, Figure 2.2 shows the interaction diagrams when the pipelines 
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are subjected to bending moments and internal pressures. In the figure, MA indicates the 

applied moment to the corroded pipeline and PA indicates the burst pressure of the corroded 

pipeline with MA, whereas M0 and P0 indicate the moment capacity and burst pressure of 

defect-free pipeline, respectively. The figure shows that the bending moment capacity is 

not affected by the corrosion defect when the pipeline is subjected to bending moment only 

(i.e., MA/M0 = 1), even with the defect depth of 80% of wall thickness that may not be 

consistent with the test result, specially for larger corrosion width. The figure also shows 

that when the pipeline is subjected to internal pressure only, the pipeline with d/t of 20% 

has the burst pressure similar to that of intake pipeline (i.e., PA/P0 = 1) and the pipeline 

with d/t of 50% has the burst pressure equals to 95% of burst pressure of the intake pipeline 

(i.e., PA/P0 = 0.95). These burst pressures are significantly different from the burst 

pressures obtained by the burst pressure models available in the literatures (e.g., ASME, 

CSA, DNV, BS). Moreover, the studies conducted by Liu et al. (2009) and Chauhan and 

Swankie (2010) did not consider the effect of simultaneous axial force and bending 

moment on the burst pressure.  

The DNV-RP-F101 (2015) accommodated the effect of axial force and bending 

moment on the burst pressures of corroded pipelines by applying an additional factor (H1) 

to the burst pressures of the pipelines without axial force and bending moment. The factor 

is defined by Equation 2.15, where ξ, γm, γd, σL, εd and StD[d/t] indicate usage factor, partial 

safety factor for longitudinal corrosion, partial safety factor for corrosion depth, total 

longitudinal stress, fractile factor for corrosion depth and standard deviation of the 

measured corrosion depth, respectively. The effect of bending moment is accounted in 
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calculating the total longitudinal stress. The ratio of hoop stress to longitudinal stress, due 

to burst pressure, was assumed as 2 during developing the equation (Bjornoy et al. 2001).  
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Figure 2.2: Failure Locus for Combined Internal Pressure and Bending Moment 

(Chauhan and Swankie 2010) 

 

The DNV provides the H1 for three safety classes, such as Low Safety Class, 

Medium Safety Class and High Safety Class. Two safety classes, Medium Safety Class and 

High Safety Class, are evaluated here using the information about the pipe dimensions and 

material properties, given in Table 2.2. The evaluations are shown in Figure 2.3, where H1 

is evaluated with respect to different longitudinal compressive stresses. The longitudinal 

stresses are expressed in terms of material ultimate strength, σu.  For any axial compressive 
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stress, the H1 should be less than one. But, Figure 2.3 shows that when the pipeline is 

subjected to low compressive stress (i.e., σL/σu = 0.31 and 0.34 for high safety class and 

medium safety class, respectively), the H1 becomes greater than one.  The H1 greater than 

one indicates that the burst pressure of the pipeline under the axial compressive stress is 

greater than the burst pressure of the pipeline without axial compressive stress. Therefore, 

the DNV recommendation, specially under low compressive stress, should be applied 

carefully for the determination of burst pressures of pipelines subjected to combined 

loadings.     

Table 2.2: Parameters for calculating H1 

Parameter Safety Class: Medium Safety Class: High 

Material Ultimate Strength, σu (MPa) 563.8 563.8 

Pipe Diameter, D (mm) 762 762 

Wall Thickness, t (mm) 17.5 17.5 

Defect Depth, d (mm) 8.75 8.75 

Defect Length, l (mm) 100 100 

Defect Width, w (mm) 50 50 

Usage Factor, ξ 0.85 0.80 

Partial Safety Factor, γm 0.88 0.82 

Partial Safety Factor, γd 1.28 1.32 

Standard Deviation, StD[d/t] 0.08 0.08 

Fractile Value, εd 1.0 1.0 
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Figure 2.3: Evaluation of H1 (DNV-RP-F101 2015) 

 

In this research, the burst pressures of corroded pipelines subjected to axial forces 

and bending moments are investigated to develop a simplified design method. The axial 

forces and bending moments experienced by the offshore pipelines are first investigated 

considering the seabed conditions of offshore Newfoundland.  The interaction diagrams 

between internal pressures and bending moments with different constant axial forces are 

then developed.  

2.5 Application of Fracture Mechanics  

Pipelines with corrosion defects are generally analyzed using the continuum 

mechanics approach. In the continuum mechanics approach, the failure of a pipeline is 
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assumed when the equivalent von Mises stresses through the ligament (i.e., minimum 

thickness at the corroded zone) of the pipeline reach to the ultimate strength of the pipe 

material. The von Mises stress at the outer surface of the ligament reaches the ultimate 

strength first, particularly for a large depth of corrosion, which then extends to the inner 

surface (Liu et al. 2009, Mondal and Dhar 2018). When the von Mises stress on the outer 

surface reaches to the ultimate strength, the stress is assumed to remain constant at this 

point while the stress increases at every other point in the pipe wall with the increase of 

internal pressure. However, when the von Mises stress at any point exceeds the ultimate 

strength, a crack might initiate at that point where the stress will be reduced to zero. The 

crack initiation and its propagation are not considered in continuum modelling. Thus, the 

continuum modelling approach may over-predict the pipeline strength. The crack initiation 

and crack propagation during loading can be better modelled using fracture mechanics.   

In fracture mechanics, the strength of a material against cracking is determined by 

the fracture toughness of the material. The fracture toughness can be defined by four 

parameters, such as stress intensity factor (K), strain energy release rate (G), J-integral (J) 

and crack tip opening displacement (δ). All of these terms are explained in Chapter 8 in 

details. The critical values of the above four parameters corresponding to crack initiation 

are knows as fracture toughness (i.e., Kc, Gc, Jc and δc, respectively). For a beam subjected 

to concentrated load at the center, K is given by Equation 2.16 where P, B, W, a, and f(a/W) 

indicate the applied load, specimen thickness, specimen width, crack length and geometry 

function, respectively (Zhu and Joyce 2012). The expression of geometry function depends 

on the types of specimens and loading.   
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𝐾 =
𝑃

𝐵√𝑊
𝑓 (

𝑎

𝑊
)                                              (2.16) 

The strain energy release rate, G, is defined as Equation 2.17, where π indicates the 

potential energy under the applied loading (Gdoutos 2005). It measures the energy 

available for an increment of a crack. The J-integral is given as in Equation 2.18, where Γ 

is an arbitrary curve around the tip of a crack, w is the strain energy density, Ti is the 

components of the traction vector, ui is the displacement vector components, ds is the 

length increment along the contour, and x and y are the rectangular coordinates with the y 

direction taken normal to the crack line and the origin is at the crack tip (Zhu and Joyce 

2012). The crack tip opening displacement, δ is the gap between the crack surfaces 

measured at a certain distance behind the crack tip. The above terminologies are described 

in details in Chapter 8. 
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Γ

 

The stress intensity based fracture toughness, Kc, is generally used for brittle 

materials that follows linear elastic fracture mechanics principles. The nonlinear fracture 

mechanics are used for ductile materials where the critical point of the structure undergoes 

significant yielding before the stress intensity factor reaches to Kc. The existing design 

practices for cracked pipelines are based on stress intensity factor. But the effects of 

yielding, due to plastic properties of ductile pipeline, on the fracture toughness are not 
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considered separately. Using the equation of failure assessment curve (FAC) provided by 

Milne et al. (1988), Yang et al. (2016) developed an analytical model of elastic fracture 

toughness by quantifying the Kc of ductile pipeline. Using this model, the linear elastic 

fracture mechanics can be applied to determine the failure criteria of ductile pipelines.  

However, the determination of the stress intensity factor and the J-integral for pipelines 

subjected to corrosion defects are the most critical components of applying the fracture 

mechanics. In this research, XFEM (Extended Finite Element Method) features available 

in Abaqus have been used for the assessment of crack propagation in corroded pipelines.  
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CHAPTER 3 

Loading Conditions Experienced by Surface-Laid Offshore Pipeline 

3.1 Introduction 

Pipelines traversing large distance are often subjected to axial force and bending 

moments in addition to the internal pressure. The magnitude of the axial force and bending 

moments may be significant which has not been extensively investigated. Particularly, the 

offshore pipeline transporting oil with high internal pressure and high temperature (HPHT) 

experiences high compressive force normal to the pipe cross-section when the pipeline is 

constrained along longitudinal direction. The pipeline buckles laterally, vertically or 

obliquely when this compressive force exceeds the critical buckling force. As a result, high 

bending moments may be caused in the longitudinal direction. Theory and laboratory-scale 

experiments demonstrate that the high internal pressure alone can cause upheaval buckling 

(Palmar and King 2008) which may induce longitudinal bending moment. The surrounding 

soil offers resistance to buckling of the pipeline, which is greater against lateral buckling 

than the upheaval buckling (Liu and Yan 2013, DNV-RP-F101 2007 and Wang et al. 2011). 

Thus, upheaval buckling are sometimes expected to occur. The objective of the study 

presented in this chapter is to investigate the axial forces and bending moments in pipelines 

considering a case of upheaval buckling of an offshore pipeline. A site of offshore 

Newfoundland is selected where the installation of a surface laid pipeline is proposed by 

an offshore oil company (i.e. Husky Energy).  
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The upheaval buckling of a subsea pipeline is greatly affected by the initial 

imperfection (out-of-straightness) of the pipeline (Wang et al. 2011, Zeng et al. 2014, Shi 

et al. 2013, Karampour et al. 2013 and Liu et al. 2012). The initial imperfection may be 

due to the imperfection of the existing seabed, manufacturing defect, or installation of the 

pipelines. The imperfection of the seabed may be influenced by trenching during 

installation. The behavior of the pipeline during buckling is governed by the amplitude 

(Liu et al. 2015, Karampour et al. 2013, Liu et al. 2012 and Run et al. 2013) and the shape 

(DNV-RP-F101 2007, Zeng et al. 2014 and Karampour et al. 2013) of the imperfection. 

For the structural stability assessments of pipelines subjected to upheaval buckling, 

several analytical solutions were developed for critical buckling forces using beam 

formulations with assumed shapes of localized imperfections (Zeng et al. 2014, Liu et al. 

2012, Hobbs 1984, Palmer and King 2008 and Zhang and Duan 2015). For simplicity in 

analysis, different idealized shapes of initial imperfections were assumed in the 

development of the analytical solutions. The idealized shapes include those of Taylor and 

Tran (1996), who developed empathetic models from mathematical reasoning for three 

different types of imperfections, such as “basic contact undulation”, “isolated prop” and 

“infilled prop”. Palmer and King (2008) employed sinusoidal imperfection shape for a 

pipeline, and defined it using two parameters such as imperfection height and imperfection 

length. However, researchers have demonstrated that the imperfection geometry of a 

pipeline in the seabed is much more complex than the idealized shapes, which has 

significant effect on the critical buckling load.  Zeng et al. (2014) investigated the pipelines 

with sinusoidal and other polynomial shaped imperfections using finite element analysis 
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and showed that the imperfection shapes significantly influence the critical buckling force 

where the critical buckling force is defined by the force that results the initiation of 

buckling of the pipeline. The study indicates the necessity of considering realistic 

imperfection shape for the assessment of upheaval buckling for a subsea pipeline. 

Mondal and Dhar (2016) conducted a two-dimensional (2D) finite element (FE) 

analysis to investigate the effect of a seabed condition on the upheaval buckling behavior 

of a surface laid offshore pipeline using a commercially available software “Abaqus”. The 

pipeline is modeled using 2D pipe element (Abaqus element type “PIPE21H”) and the 

seabed is modeled using plane strain element (Abaqus element type “CPEG8R”). The 

node-to-surface interaction with frictional coefficient of 0.40 is applied between the 

pipeline and the seabed. The frictional coefficient is selected from literature based on soil 

type (Liu et al. 2014). As the pipeline is modeled using 2D element, the internal pressure 

could not be applied directly during the FE analysis. The effect of the internal pressure is 

incorporated indirectly through increasing an equivalent amount of pipe temperature 

calculated using Equation 3.1 (after Karampour et al. 2013).  

 

∆𝑇𝑝 =
𝑝𝐷(1 − 2𝜈)

4𝑡𝐸𝛼
                                                     (3.1) 

 

Where ∆Tp is the temperature change required to result in the same effect as that of an 

internal pressure of p. The other parameters in the equation such as D, t, E, α and ν 

correspond to pipe outer diameter, pipe wall thickness, modulus of elasticity, coefficient 

of thermal expansion and Poisson’s ratio, respectively. Equation 3.1 is based on the 
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assumption of fully restrained longitudinal expansion of the pipeline, which is expected for 

pipelines undergoing upheaval buckling. The longitudinal expansion of an offshore 

pipeline is inhibited by the friction between the pipeline and the seabed soil (Taylor and 

Gan 1986 and Craveiro and Neto 2016). The pipelines are also anchored using rock dump 

over a length that restrains the axial movement (Palmer and King 2008). Mondal and Dhar 

(2016) revealed that the local seabed condition affects the upheaval buckling behavior. The 

initial shape of the pipeline with the local seabed profile was different from the idealized 

shapes recommended in the design codes. The temperature required to initiate upheaval 

buckling (i.e., critical buckling temperature/force) was also found to be less for the pipeline 

affected by the local seabed profile, implying that the critical buckling temperature based 

on the idealized initial shapes might be unconservative with respect to the 2D FE 

calculation.  It is however to be noted that the two-dimensional idealization in FE analysis 

is unable to account for the 3D settlement of the pipeline into the foundation soil that may 

occur during upheaval buckling. The applicability of idealization of the internal pressure 

with an equivalent temperature also requires evaluation. As a result, the predications using 

2D idealization remain questionable. Liu et al. (2014) earlier reported discrepancies in the 

results of 2D and 3D analyses for global buckling in offshore pipelines. Three-dimensional 

(3D) analysis is therefore employed in this study. 

In the current study, 3D FE analysis is used to the upheaval buckling and the 

internal forces (axial forces and bending moments) in offshore pipelines. The initial shape 

of an unburied pipeline laid on an imperfect seabed is developed by the FE modelling. The 

developed shape is compared with the existing models for the initial imperfection 
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(Karampour et al. 2013 and Taylor and Tran 1996). The upheaval buckling behavior of the 

pipeline subjected to pressure and temperature is then investigated. A parametric study is 

conducted to investigate the effects of imperfection geometry, pipe cross-sectional 

property and seabed soil conditions on the upheaval buckling and the internal forces. A 

remedial measure against upheaval buckling is also considered through management of 

seabed imperfection. 

3.2 Seabed Profile 

A real seabed profile of offshore Newfoundland in Canada is first considered for 

this study. The seabed profile and the geotechnical information of the subsea soil along a 

potential pipeline project were obtained through a collaboration with Husky Energy. Figure 

3.1 shows the seabed profile over the length of 350 m from a reference point. A length of 

350 m is employed in the analysis based on a preliminary study revealing that this length 

is sufficient for the analysis of the upheaval buckling. Figure 3.1 represents profile with 

respect to the depth of water. The figure also shows elevation of the seabed profile with 

respect to an arbitrary datum located at 76 m below the water surface. It reveals that the 

seabed is irregular and has an upward prop of about 2.2 m height between the distance of 

150 m and 250 m. A pipeline laid on this seabed will develop an initial shape of 

imperfection that will be governed by the shape of the seabed, stiffness of the seabed and 

the flexural rigidity of the pipeline. 
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3.3 Shape of Initial Imperfection 

Several different idealized profiles for subsea pipeline exist in the literature to 

represent the initial shape of pipeline imperfection. Taylor and Tran (1996) proposed the 

shape of an initial imperfection for an isolated prop of the seabed imperfection (Equation 

3.2). 
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𝑞
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Where, 

y = height above the lowest point 

H = maximum height of imperfection 

Lo = wave length of imperfection = 5.8259 (𝐻
𝐸𝐼

𝑞
)

1

4
 

x = distance measured from the symmetric point of imperfection 

q = submerged otherwise self-weight of pipeline per unit length 

I = moment of inertia of pipe section 

E = modulus of elasticity of pipe material 

For an infilled prop imperfection where the pipeline is perfectly fitting with the 

seabed, the proposed shape of imperfection is as given by Equation 3.3 (Taylor and Tran 

1996): 

 

 𝑦 = 𝐻 [0.707 − 0.26176
𝜋2𝑥2

𝐿𝑜
2 + 0.293𝑐𝑜𝑠 (

2.86𝜋𝑥

𝐿𝑜
)]      (3.3) 
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Figure 3.1: Seabed profile from offshore Newfoundland 

 

 

Palmer and King (2008) employed the sinusoidal profile of an imperfection 

(Equation 3.4) to develop the universal design curve for upheaval buckling.  
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Karampour et al. (2013) used two other imperfection shapes (Equations 3.5 and 

3.6) to account for possible undulations of the seabed. 
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 The seabed profile shown in Figure 3.1 is assumed to result in the infilled prop 

type imperfection (or basic contact undulation) of the pipeline. The shapes given in 

Equation 3.3 to 3.6 would thus represent the idealized initial shape, which are investigated 

here for comparison. However, the initial shape given by Equation 3.4 is used to model the 

pipeline imperfection for the parametric study. 

In the above idealized imperfection shapes, only Equation 3.2 includes a term for 

flexural rigidity (EI) of the pipeline.  The effects of soil stiffness are not incorporated in 

any of the equations above. A FE modelling technique is used here to investigate the effect 

of pipe flexural rigidity and seabed soil stiffness on upheaval buckling of pipelines. 

3.4 FE Analysis 

The purposes of the FE analysis presented in this study are threefold. In step 1, the 

initial shape of imperfection of a pipeline is investigated. The pipeline is allowed to fall on 

an elastic continuum seabed under gravity to obtain the initial shape of imperfection. In 

step 2, the upheaval buckling associated with the increase of temperature and/or internal 

pressure is investigated. The effects of upheaval buckling on the pipeline with an initial 

shape of imperfection obtained from the FE analysis and those obtained from idealized 

imperfection shapes are compared. It is to be noted that the upheaval buckling prediction 

using the idealized imperfection shape neglects the residual stress in the pipeline resulting 

from pipeline installation. The effect of residual stress resulting from falling pipeline to the 

seabed under the gravity load is included in the analysis. In Step 3, a remedial measure 

against upheaval buckling is investigated. 
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A commercially available FE software “Abaqus” is used in this study. The pipeline 

and the seabed is modeled using 8-noded linear brick element with reduced integration and 

hourglass control option (Abaqus element type “C3D8R”). The outer diameter (D) and wall 

thickness (t) of the pipeline are 219.1 mm and 18.3 mm, respectively. A wall thickness of 

8 mm is also considered to study the effect of flexural stiffness of the pipeline. The 

sheathing on pipeline is not considered in this study. The seabed is extended sufficiently 

along the transverse direction to avoid the effect of boundary condition. The surface-to-

surface interaction between the pipeline and seabed is used. The seabed soil is generally 

assumed as an elastic material.  The effect of soil plasticity is found to be less significant 

on the upheaval buckling of the surface laid pipeline, as demonstrated in Figure 3.2. This 

is due to fact that the seabed soil does not undergo significant deformation during upheaval 

buckling of the surface laid pipeline. The pipelines mostly move in upward direction. 

Figure 3.2 plots the buckling amplitude against temperature considering an elastic and an 

elasto-plastic seabed. The Mohr-Coulomb model is used to account for the soil plasticity. 

The soil parameters are estimated based on the information from a geotechnical 

investigation report for the site. The soil at the site (very dense gravelly sand) is considered 

highly permeable and the drained condition is simulated. A study is conducted with a 

seabed domain thickness of 2 m and 3 m to investigate the effect of seabed domain 

thickness on the FE simulation of the pipeline responses. No significant difference on the 

upheaval buckling is found for the two thicknesses. A thickness of 2 m is therefore used in 

the FE modelling.  
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The bilinear elastic material model is used for the steel pipe material. However, the 

effects of bilinear material model is expected to be negligible for the study presented here, 

since the pipe stress during upheaval buckling is not significantly higher (often less) than 

the yield strength. The material parameters used in the general analysis are listed in Table 

3.1 based on typical values for steel and the soil encountered at the site of offshore 

Newfoundland (“Soil friction angle” 2013 and “Table of ultimate friction factors for 

dissimilar materials” 2017). However, a wide range of soil parameters are considered 

(numbers in parenthesis) to investigate the effect of these parameters. Since the effect of 

soil plasticity was insignificant on the pipe response, constant values of the angle of internal 

friction and the dilation angle are used.  

 

 

Figure 3.2: Effect of soil model on the upheaval buckling [H=1000 mm, t=18.3 mm] 
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Table 3.1: Material Properties 

Property Steel Soil 

Submerged Density, ρ′ (kg/m3) 6850 600 

Modulus of Elasticity, E (MPa)  207000 40 (10, 300)  

Poisson’s Ratio,  0.30 0.25 

Specified Minimum Yield Strength, σY (MPa) 450 --- 

Specified Minimum Tensile Strength, σU (Mpa) 535 --- 

Total strain at ultimate strength, ɛU 0.043 --- 

Thermal expansion coefficient, α (m/m/oC) 1.17x10-5 --- 

Friction angle (o) --- 42 

Dilation angle (o) --- 15 

Coefficient of friction      0.40 (0.20, 0.80) 

 

Analysis is performed in different steps using automatic time increment in each 

step. The dynamic implicit method is used for the analysis, which is computationally 

efficient (less time required) with respect to the dynamic explicit method. The implicit and 

explicit methods are found to provide similar results (Liu et al. 2014). The modelling 

approach used in each step of analysis is elaborated below. 

Step 1: The pipeline is first placed horizontally at the crest level of the upward prop 

on the seabed (Figure 3.3). The pipeline is then allowed to deform under gravity load. At 

this level of analysis, the pipe deformation at the crest of the prop is restrained. The 

nonlinearities in geometry and material are included in the analysis. Geometric nonlinearity 

using Abaqus command allows updating the equilibrium equations considering the 
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deformed state of the models. Material nonlinearity analysis from soil plasticity is also 

considered.  

Step 2: The temperature and/or pressure of the pipeline having an initial shape with 

imperfections at the seabed temperature is increased to investigate the upheaval buckling. 

Applied temperature is thus increased with respect to ambient seabed temperature. For the 

simulation, the pipe ends are fully restrained by maintaining the constant deformations 

developed by self-weight of the pipeline (i.e., the deformations developed by Step 1). The 

pipeline between the ends is set free to move and/or rotate. The initial shape obtained from 

the FE analysis in Step 1 is first investigated. A pipeline with an idealized imperfection 

(Equation 3.3 to 3.6) is also considered.  

Step 3: In this step, the relation of the prop height on the initiation of upheaval 

buckling is investigated under different temperature loads and pressure loads. 

 

Figure 3.3: Pipeline placed at the crest of the seabed prop 
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The result of dynamic analysis of snap-through buckling is often influenced by the 

time period used in each step (Wang et al. 2015). A preliminary study is carried out to 

determine the optimum step time. Based on the study, a time step is selected that 

corresponds to a loading rate of 0.25MPa/sec or 0.25oC/sec.   

3.5 Effects of Seabed Profile 

3.5.1 Initial Shapes of Pipelines 

Figure 3.4 compares the shapes of initial imperfections derived using the idealized 

shapes (Equation 3.3 to 3.6) and from FE analysis. For the idealized shapes, a wavelength, 

Lo, of 96 m is used for a height of imperfection, H, of 2.2 m. The wavelength is assumed 

from 144.5 m to 240.5 m along the length of the pipeline (Figure 3.1). 

The comparison in Figure 3.4 indicates that the differences of the initial shapes 

given by Equation 3.3 to 3.6 are not significant. However, the idealized initial profiles 

differ from that obtained from the FE analysis. The FE analysis accounts for the real shape 

of the seabed. The seabed profile is also included in the figure.  In Figure 3.4, the shapes 

from the FE analysis match the shape of the seabed except around the prop. The pipeline 

appears to be penetrated/ settled into the flexible seabed under the gravity load. The seabed 

embedment could not be simulated using 2D analysis (Mondal and Dhar 2016). 

3.5.2 Effect of Initial Shape  

Figure 3.5 shows the effects of seabed imperfection on the pipeline upheaval 

buckling due to temperature load. The results obtained based on an initial shape obtained 

from FE analysis and the one given by Equation 3.4 (idealized shape) are compared in the 
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figure. The idealized shape was obtained for an imperfection height of 2.20 m and 

wavelength of 96 m. The maximum longitudinal stress and the maximum deflection at the 

crest of imperfection are plotted in Figure 3.5. The compressive stress is plotted along the 

positive y-axis.  

 

 
 

Figure 3.4: Comparison of initial shapes of pipe  
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for pipe deflections become close to each other, indicating that the pipeline deformation is 

independent on the initial shape beyond that temperature.  However, the simplified 

idealization of the initial shape results in the calculation of a significantly high longitudinal 

stress in the pipe wall. The longitudinal stress calculated based on the idealized shape is 

consistently higher in Figure 3.5 (a) than the stress calculated using the FE based initial 

shape.  

In Figure 3.5 (a), no snap-through instability is observed, which is attributed to the 

high amplitude of initial imperfection (i.e., 2.2 m) for the pipelines investigated. Run et al. 

(2013) demonstrated that snap-through instability occurs for only small amplitudes of 

initial imperfection (i.e., up to 100 mm). They did not observe any snap type deformations 

for an initial imperfection of 300 mm height. However, the buckling amplitude increases 

with a higher rate at a temperature around 15oC to 20oC (Run et al. 2013), similar to that 

observed in the current study.   

Figure 3.5 (b) shows the vertical deflection along the length of pipeline at a 

temperature of 35oC, which is greater than the critical buckling temperature (10.25oC or 

25oC). Due to the presence of local undulations on the seabed, the shape of the pipeline 

profile obtained from the FE analysis is not symmetric about the crest. As a result, the 

location of the maximum deflection varies around the crest and is not always at the crest 

of the initial shape. The decrease in the longitudinal stress at the crest in Figure 3.5 (a) with 

temperature up to the critical buckling temperature (i.e., 25oC) is attributed to the variation 

of the location of the maximum deflection. The longitudinal stress increases consistently 
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with temperature beyond critical buckling temperature when the effect of the local seabed 

feature is insignificant. For analysis with an idealized initial shape, the profile is assumed 

to be symmetric about the crest. Therefore, the maximum deflection is always at the crest 

of the initial profile and the longitudinal stress increases consistently with temperature.  

 
(a) Longitudinal stress and vertical deflection 

 
(b) Vertical deflection along the length of pipeline at 35oC 

Figure 3.5: Effect of initial shapes on upheaval buckling  
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The above comparison implies that the initial shape of a pipeline influences the 

upheaval buckling behavior of the pipeline. The simplified idealization of the initial profile 

is found to provide conservative (lower) estimations of critical buckling temperature and 

unconservative estimations of the pipe wall stress.   

3.5.3 Installation Stress  

During installation of a subsea pipeline on an undulated seabed or an uneven 

trenched bottom, stresses develop in the pipe wall. The stress is defined herein as 

installation stress or initial stress.  The effect of the installation stress on the upheaval 

buckling behavior is often neglected when the pipeline is assumed to have an initial shape 

given in the simplified equation (i.e., Equation 3.4). 

The initial stress condition is simulated here using the FE analysis to investigate its 

effects. In order to account for the initial stress condition, an idealized seabed is first 

developed using Equation 3.4.  The pipeline is then laid on the seabed under gravity, as 

discussed in section 3.4. The resulting initial shape of the pipeline was found to match with 

the shape of the idealized seabed. The temperature and/or pressure load are then applied to 

the pipeline. To model a pipeline without installation stress (i.e. initially unstressed), the 

seabed and pipeline are modelled according to the shape given by Equation 3.4. The 

pipeline is then subjected to the loads. 

Figure 3.6 shows the maximum deflection of the pipeline due to temperature load 

or pressure load. The imperfection height of 2.2 m is considered to develop the idealized 

seabed. The initial non-zero (negative) deflection in Figure 3.6 is the penetration of the 
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pipeline into the seabed under the gravity load. It can be seen in the figure that the critical 

buckling temperature and the critical buckling pressure are influenced by the initial stress 

conditions. The critical buckling temperatures with initially unstressed and initially 

stressed conditions are 7.25oC and 10.25oC, respectively. The critical buckling pressures 

of the pipeline are 19.5 MPa and 27.0 MPa, respectively. The critical buckling temperature 

and pressure are thus underestimated for the pipelines with no initial stress. For the pipeline 

considered, the critical buckling temperature and the pressure are underestimated by 41% 

and 38%, respectively. Neglecting of the installation stress would thus provide over 

conservative estimation of the buckling behavior.   

 

Figure 3.6: Effect of installation stress on critical temperature and critical pressure  
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3.6. Parametric study  

A parametric study is conducted to identify the effects of flexural stiffness of the 

pipeline, soil conditions and the loading types on the upheaval buckling of the pipeline. 

The parametric study is conducted for an idealized seabed profile that is expected to 

provide an initial shape of the pipeline recommended in the design codes (i.e., Equation 

3.4).  The pipeline laying on the seabed is simulated to account for the installation stress 

on the pipe wall, as discussed above. An idealized profile with an imperfection height of 1 

m and wavelength of 96 m is considered.  

3.6.1 Flexural Stiffness of Pipeline  

Two different wall thicknesses (i.e., 8 mm and 18.3 mm) for a 219.1 mm diameter 

pipelines are considered to investigate the effects of the flexural stiffness of the pipeline. 

Moments of inertia for the pipelines are calculated to be 29.60x106 mm4 and 58.67x106 

mm4, respectively. Figure 3.7 shows the maximum deflection of the pipeline (at the crest 

of the imperfection) due to temperature load and pressure loads.  As seen in Figure 3.7 (a), 

the upheaval buckling behavior under temperature load is not affected by the pipeline 

stiffness for the two pipe thicknesses considered. However, under the loading of internal 

pressure, the critical buckling pressure is higher for the pipeline with higher flexural 

stiffness as shown in Figure 3.7 (b).  Due to the increase of the wall thickness from 8 mm 

to 18.3 mm (increase of the flexural stiffness from 29.60×106  mm4 to 58.67×106 mm4), 

the critical buckling pressure is increased from 16 MPa to 42.5 MPa (about 166%). 
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3.6.2 Seabed Soil Parameters 

The effects of stiffness and strength parameters of subsea soil on the upheaval 

buckling of pipeline are investigated using FE modelling. A seabed condition consisting of 

granular soil is considered. The granular soil condition is encountered at the seabed of 

offshore Newfoundland. The analysis was conducted with typical lower bound and upper 

bound values of the friction coefficients between the pipeline and the seabed soil (after, 

Hobbs 1984). 

 
 

(a) Temperature loading 

 
 

(b) Pressure loading 

Figure 3.7: Effect of flexural stiffness of pipeline  
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Figure 3.8 plots the maximum pipe deflections with temperature for a lower bound 

and an upper bound values of soil modulus, Es (i.e., 10 MPa and 300 MPa) and the interface 

friction, f (0.2 and 0.8) for granular soil. Two idealized imperfections obtained using 

Equation 3.4 with imperfection height (H) of 1000 mm and 400 mm and a wavelength of 

96 m are examined. In Figure 3.8, pipe deflection shows a sudden jump at the critical 

buckling temperature (around 35oC) for the imperfection height of 400 mm, while the rate 

of deflection suddenly increase at the critical temperature (around 15oC) for the 

imperfection height of 1000 mm. As discussed earlier, for the pipeline with high 

imperfection height (i.e., 1000 mm), no snap through buckling occurs. As a result, the 

sudden jump is not observed. For the pipe with 400 mm of imperfection height, a snap 

through buckling is expected.  The snap through buckling process involves transformation 

of the strain energy of the system into the kinetic energy that stabilized after a short period 

of fluctuation (Wang et al. 2015), which is seen at the deflection of around 1.25 m. Figure 

3.8 reveals that the critical buckling temperature is not affected significantly by the seabed 

soil conditions for the surface laid pipeline considered. The critical buckling temperature 

appears to depend predominantly on the height of imperfection.   

3.6.3 Temperature and Pressure Loads 

The upheaval buckling of an offshore pipeline is caused by the high pressure and 

high temperature during operation. The current practice of accounting for the effect of the 

internal pressure is to apply an equivalent temperature that is calculated from the pressure 

using Equation 3.1. However, the study presented above reveals that the behavior of the 

pipeline could be different under the temperature and the pressure loads. As a result, the 
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approach of using equivalent temperature for the pressure load may not always be 

applicable.  The effects of the temperature and pressure loads are studied here with 

applications of the temperature and the internal pressure to the pipe using 3D FE analysis. 

To date, the effect of high pressure on the upheaval buckling has not been studied with 

direct application of internal pressure. 

 
(a) Effect of friction between pipeline and soil 

 
(b) Effect of soil modulus 

 

Figure 3.8: Effect of foundation soil properties on upheaval buckling  
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The validity of the assumption of representing a pressure load by an equivalent 

temperature load is first examined. A pipeline subjected to 35oC of temperature and 20 

MPa of internal pressure is considered. The pipeline is subjected to an imperfection 

(Equation 3.4) with a height of 400 mm and wavelength of 96 m. The analyses are 

performed with the applications of each of the loads independently and with representation 

of the pressure by an equivalent temperature (Equation 3.1). The equivalent temperature 

corresponding to a pressure of 20 MPa is calculated to be 10oC that results in a total 

temperature load of 45oC for the pipe. The analysis is also performed with back-

representation of the temperature by an equivalent internal pressure using Equation 3.1.  

The total equivalent pressure of the pipeline is calculated to be 91 MPa. The results of 

analyses with the three approaches of idealization are compared in Figure 3.9. As shown 

in the figure, the maximum pipe deflections calculated using the different approaches of 

the idealization are different. The maximum deflection calculated using equivalent 

temperature is higher than the deflection calculated using actual loading condition with 

application of temperature and internal pressure. Idealization of the pressure load by an 

equivalent temperature would thus provide a conservative estimate of the pipeline 

behavior. On the other hand, idealization of temperature load by an equivalent pressure 

would provide unconservative estimation of the pipe deflection. The calculated maximum 

pipe deflection is significantly less when using the equivalent pressure (Figure 3.9). 
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Figure 3.9: Pipe deflection with different method of idealization  
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of the imperfection is high. The rate of pipe deflection suddenly increases at the pressures 

of 25 MPa, 45 MPa, 65 MPa and 90 MPa for the imperfection height of 2200 mm, 1000 

mm, 600 mm and 400 mm, respectively.  Thus, the critical buckling pressure increases 

with the decrease of the height of the imperfection (dashed line).  

 
 

Figure 3.10: Effect of imperfection height on upheaval buckling behavior  
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and pressure in order to minimize the upheaval buckling, if the method is economically 

viable.  In the following section, a method is proposed to optimize the height of 

imperfection as a measure to control upheaval buckling. 

3.7. Optimum Height of Imperfection 

The seabed profile along the route of the pipeline may include features (i.e., 

imperfections) of different heights that influence the shape of the initial imperfection of the 

pipeline. As demonstrated in the above study, the shape of the imperfection significantly 

affects the behavior of pipeline subjected to upheaval buckling. The critical buckling 

temperatures and/or pressures would be lower for the pipeline traversing over higher 

features. The pipelines traversing over higher features are therefore prone to upheaval 

buckling at lower temperatures and/or internal pressures. In this regard, the height of the 

features or imperfections could be reduced through excavation to increase the safety of the 

pipeline to a manageable level.  The design height of the imperfection would depend on 

the operating temperature and pressure of the pipeline. Pipelines under different operating 

conditions are investigated using 3D FE analysis to develop a design chart for selection of 

the optimum imperfection height based on the anticipated operating condition of the 

pipeline.  The critical buckling temperatures are calculated for different operating pressures 

of the pipeline under four different imperfection geometries. A pipeline with a diameter of 

219.1 mm and wall thickness of 18.3 mm is considered for this study. The geometry of the 

imperfection is expressed as the ratio of height (h) and wavelength (L) of the pipeline 

imperfection. 
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Figure 3.11 presents the design chart relating the critical buckling temperature with 

the operating pressure for the pipeline with four different conditions of imperfection. It 

reveals that the critical buckling temperature decreases linearly with the operating pressure 

of the pipeline for each of the imperfections. With reduction of h/L, the critical buckling 

temperature is increased.  The design chart in Figure 3.11 could be used to determine the 

optimum imperfection height to manage pipeline stability against upheaval buckling. 

 
 

Figure 3.11: Relation between temperature and pressure with respect to out of 

straightness   
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3.8 Internal Forces Developed during Upheaval Buckling  

3.8.1 Axial Force and Bending Moment  

Due to the upheaval buckling, bending moments and axial forces are developed in 

the pipe wall. The effect of upheaval buckling on the axial force and moment are 

investigated using an idealized seabed profile with the imperfection height or prop height 

of 2200 mm (Equation 3.4). The maximum bending moments and the axial forces 

developed in the pipe wall, located at the crest of seabed profile, with the increase of 

operating temperature are shown Figure 3.12. The results of analysis for pipelines with 

installation stresses and without installation stresses are plotted in the figure. The critical 

buckling temperature for the imperfection height of 2200 mm is 10.25oC (from Figure 

3.10). The Figure 3.12 shows that the significant amount of axial compressive force and 

bending moment are developed in the pipeline cross-section at the initiation of upheaval 

buckling (i.e., at 10.25oC). The figure also shows that the maximum axial force and the 

bending moment are affected significantly by the installation stress. For the operating 

temperature considered, the maximum axial compression of around 230 kN and the 

maximum bending moment of around 55 kN-m are calculated.    

In addition to installation stress, the height of imperfection also affects the axial 

force and bending moment developed in the pipe wall subjected to temperature load. The 

effect of imperfection height on the forces is shown in Figure 3.13 using three imperfection 

heights of 400 mm, 1000 mm and 2200 mm. The installation stress is considered for the 

results presented in this figure.  The critical buckling temperatures for the imperfection 

heights of 400 mm, 1000 mm and 2200 mm are 34.5o, 16o and 10.25o, respectively (Figure 



61 
 

3.10). The maximum axial compressive force corresponding to these critical buckling 

temperatures are 985 kN, 417 kN and 185 kN, respectively, whereas the maximum bending 

moment corresponding to these critical buckling temperatures are 11 kN-m, 30 kN-m and 

53 kN-m, respectively (Figure 3.13). 

3.9. Summery 

The subsea pipeline operated at HPHT is subjected to upheaval buckling. The 

upheaval buckling is influenced by several factors including initial imperfection, soil 

properties, loading type and pipe stiffness. The 3D FE models are developed using Abaqus 

software to study the upheaval buckling and its effects on developing axial forces and 

bending moments in the pipe cross-section. A real seabed profile of offshore 

Newfoundland in Canada is examined. The idealized shape of imperfections are also 

considered for comparison. A method is proposed to determine the optimum height of an 

imperfection for different load combinations. Based on the analysis, the following 

conclusions can be drawn: 

 The initial shape of pipeline subjected to gravity load depends on the shape of the 

seabed profile and differs from the idealized shapes recommended in the design 

codes/literature. The initial shape should be properly modelled to predict the pipeline 

behavior in upheaval buckling. 

 For the pipeline and seabed condition considered, the critical buckling temperature is 

underestimated by the idealized shape of imperfection. The installation stress on the 

pipeline is also found to influence the critical buckling loads on the pipelines. For the 
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pipeline with no installation stress, the critical buckling temperature and the critical 

buckling pressure are underestimated. 

 
(a) Axial Force 

 
(b) Bending Moment 

Figure 3.12: Forces in pipe wall at the crest of undulation 
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(a) Axial Force 

 
(b) Bending Moment 

Figure 3.13: Forces in pipe wall for different imperfection heights 
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 The effects of soil stiffness and pipe-soil interface friction on the upheaval buckling 

behavior of the surface-laid pipe are not significant. The flexural stiffness of the 

pipeline has less effect on the critical buckling temperature and has significant effect 

on the critical buckling pressure. Critical buckling temperature and critical buckling 

pressure decreases with the increase of the imperfection height. 

 Idealization of the pressure load using equivalent temperature and vice versa is not 

always applicable for the analysis of upheaval buckling of the pipeline. The 

temperature-pressure interaction diagram can be developed for the assessment of 

critical loads under the effect of combined loads. A design chart using the interaction 

diagram is developed to determine the optimum height of a seabed feature to control 

upheaval buckling. 

 The temperature increase in the offshore pipeline laid on an uneven seabed causes the 

development of internal forces in the pipe cross-section such as axial compressive force 

and bending moment. The internal forces are maximum at the location of maximum 

prop height or imperfection height.  

 As the offshore pipelines are operated at high temperature and high pressure, the 

pipelines will be subjected to the load combination of externally applied internal 

pressure and internally developed axial compressive force and bending moment. 

Therefore, the strength of the pipelines should be assessed considering the combined 

effects of axial compressive force, bending moment and the internal pressure.      
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CHAPTER 4 

Finite-Element Evaluation of Burst Pressure Models for Corroded 

Pipelines 

4.1 Introduction 

Pipelines play a very important role in the oil and gas industry through transporting 

the products from the wellheads to the platforms, between the platforms, and to the end 

users.  Steel pipelines have been widely used for these applications due to the high strength 

to weight ratio of the material, resulting in lower material cost.   Pipelines with diameters 

ranging from 100 mm to over 1500 mm are commonly used (Mohitpour et al. 2003).  The 

oil and gas pipelines are often operated at high internal pressures.  The burst pressure 

generally controls the structural design and safe operation for the high pressure pipelines.   

The predictive models for burst pressures for unflawed cylindrical vessels have 

been developed over the last several decades to accurately predict the failure pressures at 

plastic collapses of the pipelines.  Researchers are working toward improving the burst 

pressure model, since no single model was found to be accurate in general (Zhu and Leis 

2012). On the other hand, the steel pipelines those were laid many years ago are subjected 

to corrosion. Three common types of corrosion that occurs in the steel pipelines include 

local corrosion, general corrosion, and pitting corrosions. The corrosion results in different 

patterns of defects on the pipe wall. The types and the patterns of the corrosion defects 

significantly affect the internal pressure containment (i.e. burst pressure) of corroded 
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pipelines. A reliable burst pressure model for the corroded pipelines is required to ensure 

the structural integrity of the pipelines and avoid catastrophic failures. 

A number of design models currently exist to determine the remaining strengths of 

corroded pipelines (e.g. Modified ASME B31G, CSA Z662-15, DNV, LPC-1, Shell 92). 

The remaining strength in these models is expressed as the burst pressure as a function of 

pipe diameter, non-corroded wall thickness, depth of corrosion, longitudinal length of 

corrosion, and the original strength of the pipe material. Hasan et al. (2011) evaluated 

several burst pressure models using statistical methods and revealed that different burst 

models in the design standards/codes provide significantly variable failure probabilities 

even with the same defect dimensions. Evaluation of several design models using finite 

element analysis and laboratory burst tests also showed inconclusive results. As mentioned 

earlier, Chen et al. (2015) revealed, based on experimental results of 460 mm diameter and 

8 mm thick pipelines, that the ASME B31G and DNV-RP-F101 methods underestimate 

the failure pressures of corroded pipelines. However, Swankie et al. (2012) reported the 

result of 80 full-scale burst tests for a number of pipes with diameters ranging from 88.9 

mm to 168.3 mm where the modified ASME B31G method provided unconservative 

estimation for 35% of the pipes and conservative estimation for 50% of the pipes tested. 

Majority of their predictions using the LPC-1 method was also found to be unconservative 

with respect to the test results. Mondal and Dhar (2015) have recently evaluated the 

modified ASME B31G design model using three-dimensional finite element analysis and 

found that a pipeline designed using the modified ASME B31G method would provide a 

factor of safety less than the design factor of safety.  The modified ASME B31G method 
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was found to provide un-conservative burst pressures for pipelines with multiple corrosion 

patches as well (Dhar and Mondal 2015).  

The objective of this study is to identify the strengths and limitations of different 

existing burst pressure models toward developing an improved burst pressure model for 

corroded pipelines. Three-dimensional finite element (FE) method is used to investigate 

the failure mechanism of pipelines and to evaluate the burst pressures models. 

4.2 Burst Pressure Models 

The burst pressure is defined as the internal pressure causing plastic collapse of the 

pipeline. As discussed earlier, a number of burst pressure models were developed for 

unflawed and corroded pipelines those are incorporated in different design 

codes/standards. The models in the modified ASME B31G (2012), CSA Z662-15 (2015), 

DNV-RP-F101 (2015), LPC-1 and Shell 92 (Hasan et al. 2011) codes are discussed earlier 

(see section 2.2), as these are evaluated in the current research. These models express the 

burst pressures as a function of the material flow stress, the defect area projected on the 

longitudinal plane through the pipe wall thickness direction and the Folias factor as well 

as pipe geometric parameters (i.e. diameter and wall thickness).  

The burst pressure models discussed in Chapter 2 (section 2.2) reveal that the 

models vary from each other in terms of the definitions of the flow stresses, corrosion 

depths and Folias factors. For an idealized thin-wall pipeline with uniform corrosion 

thickness and elastic-perfectly plastic material, all terms in the burst pressure equations in 

different design codes would be the same except the Folias Factor. Thus, the definition of 
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the Folias factor is likely to be the major cause of variability of the burst pressures predicted 

by various methods. The finite element analysis is used in this research to investigate the 

variability in the burst pressure models.  

4.3 Finite Element Modeling (FEM) 

A commercially available finite element (FE) software, Abaqus/Explicit, is used 

for the analysis of the corroded pipelines. Abaqus/Explicit is effective in modelling the 

problems with large nonlinearity. Large non-linear stress distribution is expected in the 

wall of corroded pipelines.  

4.3.1 Geometry and Boundary Conditions 

For the analysis, the length of the pipeline was chosen sufficiently long with respect 

to the corrosion dimensions and the pipe diameter to avoid any boundary effects. Fekete 

and Varge (2012) revealed that the boundary effects of a corroded pipeline are minimized 

if the boundary is located at a distance of Lmin from the corrosion location, where Lmin is 

expressed in terms of pipe diameter, wall thickness and corrosion dimensions as below 

(Fekete and Varga 2012): 

𝐿𝑚𝑖𝑛 =
𝑙

2
+

𝑑

𝑡
√𝐷 ∙ 𝑡 ∙ 𝑙                                              (4.1) 

The lengths of the pipelines in the finite element models are chosen to be longer 

than Lmin. The analyses with fully-restraint boundary condition (fixed support) and only 

longitudinal restraint at the pipe ends were carried out to investigate the effects of boundary 

conditions on the behaviour of corroded pipelines. The analyses showed insignificant 
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variations in the stresses within the corroded zone for the two types of boundary conditions. 

The stress/strain within the corroded zone is expected to be influenced less significantly by 

the boundary conditions at the pipeline ends than by the restraint offered by the uncorroded 

part of the wall near the corroded zone (Diniz et al. 2006). Fully restraint boundary 

conditions are used at the ends of the pipeline for this study.  

The corrosion is represented as a rectangular patch of thin area on the outer surface 

located at the mid-length of the pipelines (Figure 4.1). The elliptical shapes with a ratio of 

the major to minor axis of 2 are fitted at the edges of the corrosion zone to provide smooth 

interface (Figure 4.1 (c)), since high stress concentration is expected for corrosion defects 

with sharp edges (Figure 4.1 (d)). The analyses are also carried out for corroded pipelines 

with sharp edged defects to investigate the extents of the stress concentration.  

Four pipe sizes (pipes A, B, C and D) are selected for the analysis. The burst test 

information for these pipelines are available in the literature (DNV-RP-F101 2015, Diniz 

et al. 2006 and Oh et al. 2007). The finite element model is first validated through 

simulation of the burst test result.  The model is then extended for a parametric study.  For 

the parametric study, the depth of corrosion (d) is varied from 20% to 70% of pipe wall 

thickness. The length of corrosion (l) is varied from 0.262 to 1.63 times the outer diameter 

of pipeline. Two circumferential widths (c) of corrosion (i.e.  95.3 mm and 50 mm) were 

selected based on the information of test samples which give c/t ratio 2.857 to 9.78. The 

details of pipeline information and corrosion geometries considered in this study are 

provided in Table 4.1.   The numbers to A, B and C are used to indicate a corrosion 

geometry used for the parametric study. 
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(a) Corrosion on pipe surface (b) Cross-section with smooth edge 

 

 

(c) Longitudinal section (X-X) with smooth 

edge 

(d) Longitudinal section (X-X) with sharp edge 

Figure 4.1: Idealization of corrosion 
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For the finite element mesh, fine mesh is used within the zone where stress 

concentration was expected and coarse mesh is used where uniform stress was expected. 

Stress concentration is generally expected within and around the corroded area of the 

pipelines. Thus, the fine mesh is applied within and in the vicinity of the corroded zone 

and the coarse mesh is applied away from the corroded area. Figure 4.2 shows a typical 

finite element mesh used in the analysis. The pipe domain was modelled using eight-node 

continuum element (Abaqus element “C3D8R”). Automatic time increment was chosen 

for the solution process in Abaqus. 

Table 4.1: Pipe geometry and corrosion dimensions 

Pipe Identification D (mm) t (mm) d/t l/D c/t L (mm) Shape of edge 

A1 324 9.74 0.70 1.63  9.785 1500 Elliptical 

A2 324 9.74 0.70 0.926 9.785 1500 Elliptical 

A3 324 9.74 0.70 0.463 9.785 1500 Elliptical 

A4 324 9.74 0.20 1.63 9.785 1500 Elliptical 

B1 508 14.6 0.70 0.984 6.527 2000 Sharp 

B2 508 14.6 0.70 0.591 6.527 2000 Elliptical 

B3 508 14.6 0.70 0.295 6.527 2000 Elliptical 

C1 762 17.5 0.50 0.394 2.857 2300 Sharp 

C2 762 17.5 0.50 0.262 2.857 2300 Sharp 

C3 762 17.5 0.25 0.262 2.857 2300 Sharp 

D 914.4 25.4 0.40 0.328 3.752 2000 Elliptical 

 

4.3.2 Material Modeling  

The material model for the analysis is determined from the test results of stress–

strain relations for the pipe materials reported in the literature. Mechanical parameters such 

as yield strength, ultimate tensile strength, modulus of elasticity, failure strain for these 
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materials (pipes A, B, C and D) are available in DNV-RP-F101 (2015), Diniz et al. (2006), 

Fekete and Varga (2012) and Oh et al. (2007). This information is used to develop elastic-

perfectly plastic, non-linear and/or bilinear stress–strain models for the FE analysis. The 

pipe material parameters are shown in Table 4.2.  Corresponding stress–strain relations for 

pipes A, C and D are shown in Figure 4.3. 

 

 

 

(a) Full pipe (b) Zone around corroded area 

Figure 4.2: Finite element mesh 

 

Table 4.2:  Mechanical properties of pipe materials 

Pipe ID Steel Grade σy(MPa) σu(MPa) E (GPa) ν εu Reference 

A, D API X60 452 542 210 0.3 0.043 
Fekete and Varga (2012), 

Diniz et al. (2006)  

B API X60 414 600 210 0.3 0.095  Diniz et al. (2006)  

C API X65 465 564 210.7 0.3 0.061 Oh et al. (2007) 

 

Fine mesh 

Coarse mesh 

Corroded area 
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(a) Pipe A, D  (API 5L X60) (b) Pipe C (API 5L X60) 

Figure 4.3: Stress-strain relations for pipe materials (Pipe A, C and D) 

 

4.3.3 Validation of FEM 

Figure 4.4 shows a comparison of the results of finite element analysis with the 

burst test results for pipe “A”. The finite element analyses with non-linear material model, 

bilinear elastic material model and elastic perfectly plastic material model are included in 

the figure.  For the elastic perfectly plastic model, yield strength of the material is taken 

same as the ultimate tensile strength to simulate the experimental burst pressure, which 

corresponds to ultimate failure of the pipeline.  

Figure 4.4 plots the pipeline internal pressure and the maximum plastic strain on 

the pipe wall as a function of lateral deflection of pipe wall (a point on the outer surface) 

at the centre point of the corroded area. In the figure, the maximum internal pressure with 

the non-linear material model is reached at a plastic strain equal to the failure strain of the 
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material (plastic strain corresponding to true ultimate tensile strength) (i.e. 0.041), as 

expected. The internal pressures corresponding to the failure strain of the material are taken 

as the burst pressures from the analyses with the non-linear and the bilinear material 

models. The burst pressures of the pipelines are calculated to be 11.63 MPa, 11.43 MPa 

and 11.61 MPa with non-linear, bilinear and elastic-perfectly plastic material models, 

respectively. The burst pressure for the pipe from full-scale laboratory test is 11.30 MPa 

(Diniz et al. 2006), which is within 3% of the finite element calculations. The bilinear 

material and elastic perfectly plastic models appear to provide almost the same burst 

pressure (within 2%) as that of non-linear material model.  The bilinear model is used for 

the rest of the analysis presented here to avoid the additional computational time required 

for the non-linear based model.  The burst pressures from the finite element analysis and 

those from full-scale laboratory tests (DNV-RP-F101 2015, Diniz et al. 2006 and Oh et al. 

2007) are given in Table 4.3 for comparison.  

Table 4.3:  Validation of burst pressure calculations 

Pipe ID D 

(mm) 

t 

(mm) 

d 

(mm) 

Ptest (MPa) PFEA (MPa) 

A1 324 9.74 6.818 11.30 (Diniz et al. 2006) 11.43 

B1 508 14.6 10.220 14.60 (Diniz et al. 2006)  13.26 

C1 762 17.5 8.750 19.80 (Oh et al. 2007) 18.11 

C2 762 17.5 8.750 21.76 (Oh et al. 2007) 20.44 

C3 762 17.5 4.375 24.11 (Oh et al. 2007) 24.33 

D 914.4 25.4 10.160 ---  25.12 
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Figure 4.4:  Burst Pressure Calculation using FEM (Pipe A1) 

 

In the analysis presented in Figure 4.4, smooth elliptical edge is considered for the 

corrosion defect. Analysis is also performed to investigate the burst pressure for a pipeline 

with the sharp edged defect (Figure 4.5). However, the effect of the edge shape is found to 

be insignificant on the burst pressure.  The smooth-edge corrosion is therefore used for the 

analysis presented herein. 

Figure 4.5 presents the results of analysis for a 324 mm diameter pipe with 9.74 

mm wall thickness (Pipe A). The corrosion dimensions are d = 3.896 mm, l =528 mm and 
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c = 95.3 mm. The burst pressures of 22.50 MPa and 22.44 MPa are obtained for sharp-

edged and smooth-edged (elliptical) corrosions, respectively.  

 

Figure 4.5:  Effect of the edge shape of corrosion [D=324mm, d/t=0.40, l=528mm] 

 

4.4 Stress/Strain Localization  

The deformations of the cross-section of a corroded pipeline (pipe A) at the mid-

section of the corroded area (and pipe) are plotted in Figure 4.6.  The deformations are 

plotted at an internal pressure of 7.5 MPa (66% of the burst pressure) at which plastic strain 

initiates for this pipeline (Figure 4.4).  

Figure 4.6 shows non-uniform deformation of the pipe cross-section, while a 

uniform cross-sectional deformation is expected for defect free pipelines. The deformation 
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localization/concentration within that zone. The stress/strain localization resulted in the 

development of plastic strains at few elements within the corroded area of the pipeline 

under the internal pressure of 7.5 MPa.  Figure 4.7 shows the contour of von Mises stresses 

and maximum plastic strains at that internal pressure. As shown in Figure 4.7, the 

maximum von Mises stress is located near the edges of the corroded area. The plastic strain 

thus initiates on the elements at the edges that extends to the other elements with increase 

of the internal pressure.  

  

Figure 4.6:  Deformation of cross-section at the mid-section of 

corroded area [Deformation is exaggerated by 50 times] 
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(a) von Mises Stress (N/m2) (b) Maximum Principal Plastic Strain 

Figure 4.7:  Contours of von Mises stress and principal plastic strain (D=324mm, 

d/t=0.70, l/D= 1.63 and internal pressure = 0.66Pburst) 

 

4.5 Comparison of Burst Pressures  

A comparison of the burst pressures calculated using different design codes and the 

finite element methods with the test results from published literature are shown in Table 

4.4.  Figure 4.8 plots the experimental burst pressures and those given by design codes 

against the burst pressure obtained from the finite element analysis. The finite element 

analysis appears to provide a lower bound of the experimental burst pressures in Figure 

4.8.  The DNV-RP-F101 code provides an upper bound estimations of the experimental 

burst pressures for a range of burst pressures (from 13.3 MPa to 20.4 MPa) and 

unconservative estimations beyond that range. The burst pressures from the LPC-1 method 

are close to the 1:1 line in Figure 4.8, indicating that the method matches with the finite 

element calculations, particularly for burst pressures less than 25 MPa. At the burst 

pressure of 30 MPa, the LPC-1 method provides a conservative estimations. The modified 
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ASME method provides unconservative estimations for burst pressures less than 12.7 MPa 

and conservative estimations for higher burst pressures. The CSA Z662-15 and Shell 92 

codes generally provide overly conservative estimations.  

 Table 4.4: Summary of burst pressures 

Pipe ID Pressure capacity (MPa) 

Ptest PFEA PASME PCSA PDNV PLPC-1 PShell 92 

A1 11.30 11.43 13.41 9.46 12.18 11.60 9.89 

A2 --- 12.71 14.21 10.21 13.62 12.97 10.59 

A3 --- 16.64 16.33 12.28 17.37 16.54 12.43 

A4 --- 29.59 25.52 24.35 29.32 27.93 24.78 

B1 14.60 13.26 12.31 10.67 14.10 13.43 11.05 

B2 --- 16.96 13.40 11.93 16.47 15.68 12.20 

B3 --- 24.65 16.34 15.59 22.48 21.41 15.42 

C1 19.80 18.11 16.65 14.96 19.45 18.52 14.87 

C2 21.76 20.44 18.05 16.61 21.75 20.71 16.37 

C3 24.11 24.33 21.16 20.73 25.46 24.25 20.70 

D --- 25.12 22.37 20.83 26.71 25.44 20.84 

 

The LPC-1 method appears to provide most reasonable calculations of the burst 

pressures among the methods discussed above for the ranges of pipelines investigated. The 

modified ASME and the DNV-RP-F101 methods are less reliable since the methods can 

provide both conservative and unconservative burst pressures.  However, Swankie et al. 

(2012) demonstrated that the LPC-1 method provides both conservative and 

unconservative burst pressures for small diameter pipes.  They recommended not using the 

LPC-1 method and the modified ASME method to assess the remaining strength for small 

diameter pipes (diameter < 150 mm). 
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Figure 4.8:  Comparison of burst pressures 

 

The differences in the estimations of burst pressures by the different codes are 

attributed to the terms within parenthesis in the burst pressures equations (i.e. Equations 

2.1 to 2.9), since the terms outside the parenthesis correspond to the burst pressures of 

flawless pipelines. The term within the parenthesis is herein called as “burst pressure 

reduction factors”. The burst pressure reduction factors from different methods are 

compared in Figure 4.9. The factors from the finite element analysis are calculated as the 

ratio of the burst pressures of defected pipelines to the burst pressures of flawless pipelines. 
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Figure 4.9:  Comparison of burst pressure reduction factors 
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as 1.05u, in calculation of burst pressure. The method with flow stress equal to u might 
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the burst pressures obtained using the method (Figure 4.8).  The LPC-1 method uses 
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burst pressures (Figure 4.8). The under-estimations of the burst pressure for higher burst 

pressure range may be attributed to the flow stress used in this method.  As discussed 

earlier, the flow stress in the modified ASME method is taken as 1.1y, which is less than 

the ultimate tensile strength, u, of the material.  The CSA Z662-15 and Shell 92 codes 

provide the burst pressure reduction factors close to the 1:1 line, except for few points 

where the factors are below the 1:1 line. The under-estimation of burst pressure in these 

methods is likely due to the use of the flow stress of 0.9u, which is less than the ultimate 

tensile strength.   

4.6 Folias Factor  

The comparison presented above reveals that the discrepancies in the calculated 

burst pressures by different codes are likely due to the difference in the definitions of the 

flow stress and the burst pressure reduction factor.  The flow stress is a strength parameter 

of the pipe material whereas the burst pressure reduction factor is a geometric parameter, 

which is related to the geometries of the defects.  Individual contribution of the strength 

parameter and the geometric parameter need to be identified in order to develop improved 

burst pressure prediction models.  However, laboratory burst tests provide burst pressures 

of the test pipes under the combined effects of material strength, defect geometry and any 

internal flaws, if presents.  It is not possible to separate the contribution of each parameter 

from the results of laboratory tests.  In this regard, finite element analysis could be used to 

determine the individual contribution of each parameter through a parametric study. 
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In the finite element analysis presented in this study, material parameters of the 

actual pipe materials are used that are obtained from published literature.  The geometric 

parameter is separated from the results of finite element analysis as discussed below. 

The equations for the burst pressure in different codes appear to follow a general 

form as in Equation 4.2. 

𝑃 = 𝑃0 [
1−

𝑑

𝑡

1−
𝑑

𝑡∙𝑀

]                                                (4.2) 

Where ‘P’ is the burst pressure of corroded pipeline, “P0” is the burst pressure for flawless 

pipeline, “d” is the depth of defect, “t” is the pipe wall thickness and “M” is the Folias 

factor.  

As mentioned earlier, Folias factor is likely the major parameter causing the 

variability in the burst pressures predicted by various methods.  Different equations are 

used in different codes to define the Folias factor.  Equation 4.2 can be rearranged to obtain 

an expression for the Folias factor as below (Equation 4.3): 

𝑀 =

𝑃𝑑

𝑡𝑃𝑜

𝑃

𝑃𝑜
+

𝑑

𝑡
− 1

                                             (4.3) 

Equation 4.3 is used to calculate the Folias factor from the result of finite element 

analysis.  The Folias factor, M, from finite element analysis are compared with those 

obtained from various codes in Figure 4.10.  Figure 4.10 plots M2 as a function of l2/(Dt), 

since the factors in the design codes are expressed as a square root of a function of l2/(Dt). 
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Figure 4.10:  Folias factors 

 

As expected, a linear correlation is observed in Figure 4.10 for all of the design 

codes including the modified ASME code that include a second order term in the equation 

for the Folias factor (i.e. l4/(Dt)2).  The contribution of the second order term appears to be 

negligible for the analysis presented.  

The data from the finite element calculations are scattered in Figure 4.10. It appears 
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current design codes.  Further research is therefore anticipated in this regard to develop an 

improved burst pressure model for corroded pipelines. 

4.7 Summary 

Several burst pressure models recommended in the design codes/standards are 

evaluated in this study using finite element analysis.  Laboratory test results from published 

literature are used for validation of the finite element models.  The study reveals that the 

calculated burst pressures using different codes/standards vary significantly.  Among these, 

the DNV-RP-F101 code provided upper bound estimation of the experimental burst 

pressures for a range of burst pressures (from 13.3 MPa to 20.4 MPa) and unconservative 

estimations beyond that range. The burst pressures from the LPC-1 method are close to the 

finite element calculation. The modified ASME method provided conservative and 

unconservative estimations of the burst pressures.  The modified ASME method showed 

conservative results for higher burst pressures. The CSA Z662-15 and Shell 92 codes 

provided overly conservative estimations.  The LPC-1 method thus appears to provide most 

reasonable calculation of the burst pressures among the methods discussed herein for the 

ranges of pipes investigated. 

The discrepancies in the calculated burst pressures by different codes are attributed 

to the different definitions of the flow stress and the burst pressure reduction factor in the 

codes.  The flow stress is a strength parameter of the pipe material, whereas the burst 

pressure reduction factor is a geometric parameter.  While it is difficult to separate the 

contribution of strength parameters and geometric parameters from the results of laboratory 
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tests, the finite element analysis could be used to determine the individual contribution of 

each parameter.  

The Folias factor is identified as the major parameter contributing to the geometric 

parameter (i.e., burst pressure reduction factor).  A finite element evaluation of the Folias 

factor revealed that the factor depends on other parameter such as defect depth in addition 

to the parameters currently considered in the design codes (i.e. l2/(Dt)). Further research is 

recommended to incorporate the effect of defect depth in the calculation of the Folias 

factor.  
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CHAPTER 5 

Improved Folias Factor and Burst Pressure Models for Corroded Pipelines 

5.1 Introduction 

Pipelines are extensively used as the most economic means of transporting oil and 

gas. Steel pipelines have been widely used for these applications due to the high strength 

to weight ratio of the material, resulting in lower material cost.  These pipelines are 

subjected to corrosion over the service life, resulting in the reduction of wall thickness. The 

prediction of the remaining strength of a corroded pipeline is required for fitness-for-

purpose assessment. For the prediction of the remaining strength, different models were 

developed based on simplified results of analysis and/or empirical fits to limited 

experimental data. A few of these models were developed through industry specific study, 

e.g. RSTRENGTH (Kiefner and Vieth 1989), and are not readily available in the public 

domain. The established design codes i.e. ASME B31G (2012), DNV-RP-F101 (2015), BS 

7910 (2013), CSA Z662-15 (2015) adopt simplified design equations for the prediction of 

remaining strengths of corroded pipelines. The equations adopted in different codes are 

summarized in Table 5.1. However, researchers have demonstrated that pipeline strengths 

predicted using the existing design methods are not consistent with the burst test results 

and results obtained from rigorous finite element (FE) analysis.  

Mondal and Dhar (2016) critically investigated different existing burst pressure 

models to demonstrate the differences among the models and to identify the source of the 
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inconsistencies in the prediction of the burst pressures. It is revealed that the burst pressures 

in these models (Table 5.1) are expressed in general in terms of the maximum stress 

capacity of material expressed as a flow stress, flow, the defect area projected on the 

longitudinal plane through pipe wall thickness and the Folias factor, in addition to pipe 

geometric parameters (i.e. diameter and wall thickness), as shown in Equation 5.1.  

Table 5.1: Models of Burst Pressure provided by codes  

Code Burst Pressure Model 
Depth of 

defect 
Equation for M 

ASME B31G (2012) 𝑃 =
2𝑡

𝐷
𝜎𝑓𝑙𝑜𝑤 (

1 − 0.85
𝑑

𝑡

1 − 0.85
𝑑

𝑡𝑀

) d = dmax Equation 5.4 or 5.5 

DNV-RP-F101 (2015) 𝑃 =
2𝑡

𝐷 − 𝑡
(1.05𝜎𝑢) (

1 −
𝑑

𝑡

1 −
𝑑

𝑡𝑀

) d = dmax Equation 5.6 

BS 9710 (2013)  𝑃 =
2𝑡

𝐷 − 𝑡
𝜎𝑟𝑒𝑓 (

1 −
𝑑

𝑡

1 −
𝑑

𝑡𝑀

) d = dmax Equation 5.6 

CSA Z662-15 (2015) 𝑃 =
2𝑡

𝐷
𝜎𝑓𝑙𝑜𝑤(= 0.90𝜎𝑢) (

1 −
𝑑

𝑡

1 −
𝑑

𝑡𝑀

) d = davg Equation 5.4 or 5.5 

 

 

𝑃 =
2𝑡

𝐷
𝑓𝑙𝑜𝑤 [

1−
𝑑

𝑡

1−
𝑑

𝑡∙𝑀

]                           (5.1)    

As seen in Table 5.1, the burst pressure models in the design codes differ from each 

other in the definitions of flow stress, depth of corrosion defect and the Folias factor. For 

example, the flow stress in the Modified ASME B31G code uses 1.1y or average of y 

and u to account for the strain hardening effects, while the DNV-RP-F10 code use 1.05 
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u. It is to be noted that the flow stress (the maximum stress capacity of material) is 

independent of the shape of the corrosion defect and is also applicable for a pipeline 

without any corrosion defect (flawless pipe). Mondal and Dhar (2016a) expressed the terms 

outside the parenthesis in Equation 5.1 as the burst pressure of flawless pipes and the terms 

within parenthesis as “burst pressure reduction factor” that account for the reduction of the 

burst pressure due to corrosion. They proposed to consider these terms separately toward 

developing an improved burst pressure model. 

For the burst pressure reduction factor, the Modified ASME B31G code 

recommends using of the depth as 0.85 times the maximum depth (dmax), while the DNV-

RP-F101 recommends using the maximum depth. However, for a corrosion defect with a 

uniform depth (which is most commonly used in the laboratory burst test and in FE 

modelling), the depth recommended in each of the codes is necessarily the same. Thus, the 

only parameter contributing to the burst pressure reduction is the Folias factor. 

A few different equations are currently used to calculate the Folias factor in the 

design codes (Table 5.1) where it is expressed in terms of l2/(Dt).  Mondal and Dhar (2016a) 

revealed that none of the expressions is capable of predicting the burst pressure reduction 

correctly. They identified that the expressions for the Folias factor do not include the defect 

depth, whereas defect depth was found to influence the factor. Figure 5.1 compares the 

Folias factors calculated using the equations in ASME B31G and DNV-RP-F10 codes with 

those calculated using FE analysis (After Mondal and Dhar 2016a). Figure 5.1 plots M2 as 

a function of l2/(Dt), since the factors in the design codes are expressed as a square root of 

a function of l2/(Dt). In this figure, the FE method calculates different M for different d/t 
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ratios with the same of l2/(Dt). For l2/(Dt) of around 90, two data points are widely 

scattered, one with M2 = 53.15 for d/t = 0.2 and the other with M2 = 156 for d/t=0.7. The 

study demonstrates the necessity of developing an improved model for correctly 

calculating the Folias factor.  

  

 

Figure 5.1: Comparison of Folias factors obtained from FE analysis and design 

codes (After Mondal and Dhar 2016a) 

 

In this study, an improved burst pressure model for corroded pipeline is developed 

considering the components of the burst pressure of flawless pipe and the Folias factor 

separately. The new model is proposed for the Folias factor accounting for the effects of 

d/t ratio. The model constants (i.e., coefficients and exponents) are determined based on a 

database developed using FE analysis. A series of FE analyses are conducted with different 

pipe dimensions and different defect geometries to develop the database. A revision of the 
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existing model for the component of burst pressure of flawless pipeline is also proposed 

that provides a better estimation of the burst pressure for the corroded pipelines with 

respect to the results of finite element analysis and laboratory burst tests.    

5.2 Folias Factor 

The term “Folias Factor, M” is used to describe the bulging effect of a shell surface 

that is thinner in wall thickness than the surrounding shell. It measures the stress 

concentration at the tip of a crack with expansion under internal pressure. The factor was 

first derived analytically by Folias (1964) considering a surface crack along the axis of a 

cylindrical shell. The general form of the factor is given by Equation 5.2 (Folias 1973).  

 

𝑀 = 𝑓𝑒(𝜆) + 𝑓𝑏(𝜆)𝜒(𝜆)                             (5.2) 

Where, 

𝜆 = √
3(1 − 𝜈2)𝑙4

𝐷2𝑡2

4

 

𝑓𝑒(𝜆) = extensional coefficient 

𝑓𝑏(𝜆) = bending coefficient 

𝜒(𝜆) =
𝜎𝑏𝑒𝑛𝑑𝑖𝑛𝑔

𝜎ℎ𝑜𝑜𝑝
 

When the cylindrical shell is subjected to internal pressure only, the simplified 

expression of the factor is reduced to Equation 5.3.  

 

𝑀 = √1 + 0.317𝜆2                                    (5.3) 
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The Folias factor was investigated by several researchers to apply it to the 

determination of the remaining strength of corroded pipelines. The expression of the Folias 

factor was modified and incorporated in the design codes (e.g., ASME B31G 2012, DNV-

RP-F10 2015, BS 7910 2013, CSA Z662-15 2015). The ASME B31G and CSA Z662-15 

codes define the corrosion defects into two types such as short defects and long defects. 

Different expressions of the Folias factor are used for the short and the long defects, 

separately. Equation 5.4 and Equation 5.5 present the expressions recommended in the 

ASME B31G and CSA Z662-15 codes. 

 

For 
𝑙2

𝐷𝑡
 ≤ 50 

𝑀 = √1 + 0.6275
𝑙2

𝐷𝑡
− 0.003375

𝑙4

𝐷2𝑡2
                     (5.4) 

 

For
𝑙2

𝐷𝑡
> 50 

𝑀 = 0.032
𝑙2

𝐷𝑡
+ 3.30                                                         (5.5) 

 

The DNV-RP-F10 and BS 7910 codes do not distinguish short and long corrosion 

defects. A single equation is recommended for the Folias factor (Equation 5.6). 
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𝑀 = √1 + 0.31 (
𝑙

√𝐷𝑡
)

2

                                           (5.6) 

 

The structures of the equations used in different codes for Folias factor are thus 

different from each other. The equations are expressed in terms of l2/(Dt) and do not include 

the depth of the defect. Keeping the similarities in the structures of equations, two new 

models for Folias factor, M1 and M2, are proposed in this study, as shown in Equation 5.7 

and 5.8, incorporating the depth of corrosion defect. 

 

𝑀1 = √1 + 𝑘1 (
𝑙2

𝐷𝑡
)

𝑘2

(
𝑑

𝑡
)

𝑘3

                                                           (5.7) 

 

𝑀2 = √1 + 𝑘1 (
𝑙2

𝐷𝑡
)

𝑘2

(
𝑑

𝑡
)

𝑘3

+  𝑘4 (
𝑙4

𝐷2𝑡2
)

𝑘5

(
𝑑2

𝑡2
)

𝑘6

                   (5.8) 

 

In Equation 5.7 and 5.8, the constants k1, k2 and k3 or k1, k2, k3, k4, k5 and k6 are 

known as model parameters (ki). The optimum values of model parameters are determined 

through the application of Least Square Estimation method using the FE database 

developed in this study. 
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5.3 FE Model Development 

The Abaqus/Standard module is used in this study for the calculation of burst 

pressures of corroded pipelines. The Abaqus is one of the commonly used software for the 

analysis of pipelines. It has the capability of modelling the non-linear deformation during 

yielding of corroded pipeline under high pressure.  

A rectangular area with constant depth (flat at the bottom) located on the outer 

surface of a pipeline is considered for idealization of the corroded area (corrosion patch). 

The edges of the corrosion patch are perpendicular to each other and/or to the pipe surface 

(i.e., sharp edge). Mondal and Dhar (2016a, 2016b) showed that the burst pressures with 

different edge conditions (i.e. smooth edge or sharp edge) of corroded areas are not 

significantly different. However, the development and analysis of the FE model of a 

corroded pipeline with smooth edge of corroded area is complicated and time consuming.  

The existing literature reveals that the failure behavior of corroded pipelines mainly 

depends on the maximum depth and the longitudinal extent of the corroded area.  The 

length and the depth of corrosion defect are therefore varied for the study presented here. 

The length of the defect is varied from 60 mm to 580 mm and the depth is varied from 20% 

to 80% of the wall thickness. A constant circumferential extent (c) of the defect subtending 

an angle of 20o at the centre of pipe cross-section is considered. This circumference extent 

is arbitrarily chosen from a range of corrosion widths commonly considered in published 

literature (Diniz et al. 2006, Li et al. 2016 and Oh et al. 2007). However, the circumferential 

width has negligible effect on the burst pressures of defected pipelines (Chiodo and 
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Ruggieri 2009). The pipe sizes are varied over a wide range from 300 mm to 914.4 mm of 

diameter. Only the pipelines under the load of internal pressure are considered.  

Eight-noded continuum element with reduced integration (Abaqus element 

“C3D8R”) is used to model the pipe domain. A mesh sensitivity analysis is conducted to 

determine the optimum size of mesh to have no significant change of the burst pressure for 

further reduction of mesh size. The fine mesh is applied within and around the corroded 

area where stress concentration is expected. The coarse mesh is applied away from the 

corroded area where uniform stress is expected. An appropriate gradient is used in the 

transition zone of coarse to fine mesh that yields the mesh sizes from 4 mm to 17.75 mm. 

Three layers are applied through the minimum thickness at the corroded area of the 

pipelines. Figure 5.2 shows a typical finite-element mesh used in the analysis.   

 

 

 

 

(a) Full Pipe (b) Zone around corroded area 

Figure 5.2: Typical Finite Element Mesh 

 

Corroded area 

Fine mesh Coarse mesh 
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Sufficiently long pipeline models are developed for the analysis to avoid the effects 

of boundaries on the pipe response. Fekete and Varge (2012) demonstrated that the 

minimum length of the pipeline required to avoid the boundary effects depends on the 

corrosion dimensions and the pipe diameter. The length of a pipe model is chosen to be 

longer than the minimum length recommended in Fekete and Varge (2012). Table 5.2 

summaries the geometric parameters of the FE models. Further detail of the FE modelling 

approach is available elsewhere (Mondal and Dhar 2016a, 2016b).  

Table 5.2:  Geometric Parameters of FE models 

Outer diameter, 

D (mm) 

Thickness, 

t (mm) 

Defect length, l 

(mm) 

Defect depth, 

d/t (%) 

Minimum 

length (mm) 

Length in FE 

model, L (mm) 

300 10 60-580 20-80 2691 3000 

324 9.74 150-528 20-70 2335 2500 

500 15 60-580 20-80 3917 4000 

762 25.4 60-580 20-80 5941 6000 

762 17.5 150-528 20-70 4243 4500 

914.4 25.4 300 40 2412 2500 

 

The stress–strain relation for ductile steel is non-linear beyond the yield stress. The 

non-linear response is often expressed using a bilinear response in FE modelling to save 

computational time. Mondal and Dhar (2016a) investigated the effect of non-linear and 

bilinear stress–strain relationship of a pipe material on the burst pressure of a corroded 

pipeline. They have shown that the FE model with non-linear material properties provides 

only 2% higher burst pressure than the FE model with bilinear material properties. A 

bilinear stress–strain relationship of the pipe material is used in this study to avoid 
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additional computation time required for the analysis with non-linear stress–strain relation. 

The material properties of API 5L X60 grade steel is considered (Table 5.3).   

Table 5.3: Material Parameters used (API 5L X60 grade steel) 

Property Value 

Density, ρ (kg/m3) 7850 

Young’s Modulus, E (GPa) 210 

Poisson’s Ratio, ν   0.30 

Yield Strength, σY (MPa) 452 

True Ultimate Tensile Strength, σU (MPa) 542 

Total strain at failure, εU 0.043 

 

The failure of the pipeline is assumed when the von Mises equivalent stress 

throughout the wall thickness reaches the true ultimate strength of the pipe material. The 

pressure corresponding to this level of stress is defined as the burst pressure. The von Mises 

stress around the corroded zone for a pipeline is examined as shown in Figure 5.3. Figure 

5.3 plots the contour of von Mises stress corresponding to failure of a 300 mm diameter 

pipeline with the corrosion dimensions of l = 60 mm, c=20o and d/t of 0.50. It shows that 

the von Mises stress reaches to the ultimate strength of the pipe material (i.e., 542 MPa) 

along a line almost parallel to the edge of the corrosion patch in longitudinal direction. This 

is similar to the failure mechanism observed in a full-scale pipe test with an artificial 

corrosion patch (Benjamin et al. 2005). The von Mises stress along the failure plane is 

almost the same (as the ultimate strength) on the inner and outer surface of the pipe. 
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Figure 5.3: von Mises stress and the location of failure 

 

Test results on the burst pressures of corroded pipelines with parameters (Table 5.2) 

for specific pipe materials are not available in the literature for a wide range of pipe 

dimensions for validation of the FE models. Diniz et al. (2006) conducted a burst test of a 

corroded pipe and determined the parameters of the pipe material using laboratory tests. 

The burst test results and material parameters of Diniz et al. (2006) were used to validate a 

FE model for burst pressure prediction of the corroded pipeline (Mondal and Dhar 2016a). 

The validated FE model is used here to develop the database of burst pressure presented in 

this study (Table 5.4). The burst pressures from FE models of un-corroded pipelines, 

developed in this study, are also compared with those obtained from thin-wall pressure 

vessel theory. The results are in agreement within about 3.5%. Corrosion defects are then 

applied to the pipelines in the validated FE models. 
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5.4 Folias Factor from FE Analysis 

Folias factor is a geometric parameter used to account for the geometry of wall 

defects on the reduction of burst pressure. To obtain the Folias factor from the burst 

pressure, the burst pressure of a corroded pipeline is expressed as (after Mondal and Dhar 

2016a): 

 

𝑃 = 𝑃𝑜 (
1 −

𝑑

𝑡

1 −
𝑑

𝑡𝑀

)                                 (5.9) 

 

Where ‘P’ is the burst pressure of a corroded pipeline, “P0” is the burst pressure for the 

flawless pipeline, “d” is the depth of defect, “t” is the pipe wall thickness and “M” is the 

Folias factor. The equation can be rearranged to obtain an expression for the Folias factor 

as below (Equation 5.10): 

𝑀 =

𝑃𝑑

𝑡𝑃𝑜

𝑃

𝑃𝑜
+

𝑑

𝑡
− 1

                                      (5.10) 

 

Figure 5.4 shows the Folias factors calculated from the results of FE analysis using 

Equation 5.10 against the defect depths for three pipe sizes (i.e., 300 mm, 500 mm and 762 

mm) and two defect lengths (i.e., 60 mm and 120 mm). The figure indicates that the Folias 

factor is higher for the pipelines with smaller diameters. For the pipelines with the same 

diameter, the factor is higher for longer defects. The Folias factor decreases in general with 
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the increase of defect depth. However, existing design codes do not include the defect depth 

in calculating the Folias factor, which has been addressed in the current research.     

 

  

Figure 5.4: Variations of the Folias factor 

 

5.5 Determination of Model Constants/Model Parameters 

The value of constants (model parameters) for the Folias factor in Equation 5.7 and 

5.8 are determined using a database developed using FE analysis. A database of 95 burst 

pressures with different pipe dimensions and defect geometries is developed as shown in 

Table 5.4. The table includes burst pressure data available in Phan et al. (2017). The 

database covers a wide range of pipe diameters, defect lengths including short defect, long 

defect and ultra-long defect as per Li et al. (2016).   
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Table 5.4: FE database of burst pressures for corroded pipelines 

D  

(mm) 

t  

(mm) 

d  

(mm) 

l  

(mm) 

d/t P  

(MPa) 

D  

(mm) 

t  

(mm) 

d  

(mm) 

l  

(mm) 

d/t P  

(MPa) 

300 10 2 60 0.2 36.87 500 15 3 420 0.2 30.31 

300 10 2.5 60 0.25 36.47 500 15 3 500 0.2 30.10 

300 10 4 60 0.4 34.07 500 15 3 580 0.2 29.91 

300 10 5 60 0.5 32.07 500 15 7.5 300 0.5 21.35 

300 10 6 60 0.6 30.87 500 15 7.5 420 0.5 20.00 

300 10 7.5 60 0.75 25.25 500 15 7.5 500 0.5 19.50 

300 10 8 60 0.8 24.87 500 15 7.5 580 0.5 19.20 

300 10 2 120 0.2 35.47 500 15 10.5 300 0.7 14.30 

300 10 3 120 0.3 33.07 500 15 10.5 420 0.7 12.70 

300 10 4 120 0.4 30.80 500 15 10.5 500 0.7 12.20 

300 10 5 120 0.5 27.90 500 15 10.5 580 0.7 11.85 

300 10 6 120 0.6 24.73 762 25.4 5.08 60 0.2 38.41 

300 10 7 120 0.7 20.73 762 25.4 7.62 60 0.3 37.57 

300 10 8 120 0.8 17.93 762 25.4 10.16 60 0.4 36.85 

300 10 2 300 0.2 33.60 762 25.4 12.7 60 0.5 35.85 

300 10 2 420 0.2 33.25 762 25.4 15.24 60 0.6 35.73 

300 10 2 500 0.2 33.17 762 25.4 17.78 60 0.7 35.13 

300 10 2 580 0.2 33.10 762 25.4 20.32 60 0.8 33.29 

300 10 5 300 0.5 21.90 762 25.4 5.08 120 0.2 37.09 

300 10 5 420 0.5 21.15 762 25.4 7.62 120 0.3 36.09 

300 10 5 500 0.5 20.95 762 25.4 10.16 120 0.4 35.05 

300 10 5 580 0.5 20.85 762 25.4 12.7 120 0.5 33.69 

300 10 7 300 0.7 13.80 762 25.4 15.24 120 0.6 32.41 

300 10 7 420 0.7 13.05 762 25.4 17.78 120 0.7 29.97 

300 10 7 580 0.7 12.60 762 25.4 20.32 120 0.8 25.81 

300 10 7 500 0.7 12.80 762 25.4 5.08 300 0.2 35.50 

324 9.74 6.82 528 0.7 11.43 762 25.4 5.08 420 0.2 34.75 

324 9.74 6.82 300 0.7 12.71 762 25.4 5.08 500 0.2 34.35 

324 9.74 6.82 150 0.7 16.64 762 25.4 5.08 580 0.2 34.05 

324 9.74 1.95 528 0.2 29.59 762 25.4 12.7 300 0.5 27.00 

324 9.74 3.90 528 0.4 22.44 762 25.4 12.7 420 0.5 24.60 

324 9.74 3.90 300 0.4 23.30 762 25.4 12.7 500 0.5 23.55 
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Table 5.4: Continued 

D  

(mm) 

t  

(mm) 

d  

(mm) 

l  

(mm) 

d/t P  

(MPa) 

D  

(mm) 

t  

(mm) 

d  

(mm) 

l  

(mm) 

d/t P  

(MPa) 

324 9.74 3.90 150 0.4 25.40 762 25.4 12.7 580 0.5 22.85 

500 15 3 60 0.2 33.66 762 25.4 17.78 300 0.7 20.15 

500 15 3.75 60 0.25 33.31 762 25.4 17.78 420 0.7 17.50 

500 15 6 60 0.4 31.87 762 25.4 17.78 500 0.7 15.65 

500 15 7.5 60 0.5 30.77 762 25.4 17.78 580 0.7 14.80 

500 15 9 60 0.6 30.47 762 17.5 12.25 528 0.7 9.99 

500 15 11.25 60 0.75 27.35 762 17.5 7 528 0.4 17.77 

500 15 12 60 0.8 27.01 762 17.5 3.5 528 0.2 22.95 

500 15 3 120 0.2 32.67 762 17.5 12.25 300 0.7 12.84 

500 15 4.5 120 0.3 31.27 762 17.5 7 300 0.4 19.52 

500 15 6 120 0.4 29.46 762 17.5 3.5 300 0.2 23.76 

500 15 7.5 120 0.5 27.36 762 17.5 12.25 150 0.7 17.60 

500 15 9 120 0.6 25.03 762 17.5 7 150 0.4 22.25 

500 15 10.5 120 0.7 22.63 762 17.5 3.5 150 0.2 24.66 

500 15 12 120 0.8 19.43 914.4 25.4 10.16 300 0.4 25.12 

500 15 3 300 0.2 30.95 - - - - - - 

 

The Folias factors from the burst pressures are then calculated using Equation 5.10, 

which are used in Equation 5.7 and 5.8 to determine the model constants (or model 

parameters). The model parameters are determined through minimization of the sum of the 

square of errors using Differential Evolution (DE) method. In this method, the material 

parameters are obtained through a direct search approach to improve the candidate 

solutions with regards to the objective function (Storn and Price 1997). The method is 

suitable for optimization of discontinuous function or problems with more than one local 

minimum (Vincenzi et al. 2013). Details of DE algorithm are available in Phan et al (2017). 

Table 5.5 shows the values of constants for two different models for the Folias 

factor (i.e., M1 and M2) along with the coefficient of determination (i.e. R2). The values of 
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coefficient of determination are very high (≈ 0.97), indicating that the models fit well with 

the FE database. The resulting models of Folias factors obtained from this investigation are 

shown in Equation 5.11 and 5.12, respectively. 

 

𝑀1 = √1 + 0.523 ∙ (
𝑙2

𝐷𝑡
)

1.324

× (
𝑑

𝑡
)

0.845

                                                      (5.11)  

 

𝑀2 = √1 + 0.278 ∙ (
𝑙2

𝐷𝑡
)

0.447

× (
𝑑

𝑡
)

−0.718

+ 0.337 ∙ (
𝑙4

𝐷2𝑡2
)

0.717

× (
𝑑2

𝑡2
)

0.504

     (5.12) 

 

Table 5.5: Model Parameters 

Model k1 k2 k3 k4 k5 k6 R2 

M1 0.523 1.324 0.845 - - - 0.9667 

M2 0.278 0.447 -0.718 0.337 0.717 0.504 0.9725 

 

5.6 Evaluation of the Developed Models for the Folias Factor 

Figure 5.6 plots the Folias factors calculated using Equation 5.11 and 5.12 against 

those obtained from FE analysis. In the figure, the data points lie on and around the 1:1 

line with a root-mean-square-deviation (RMSD) coefficient of determination of 

0.54269667 and 0.49299725, indicating a good correlation between the developed models 

of Folias factor and the FE calculations.  Thus, both equations (M1 and M2) appear to 

calculate similar values of the factor. However, due to the higher coefficient of 
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determination, model M2 is proposed in this study and hence only used for the comparison 

presented below.   

The capability of the proposed model in capturing the effect of corrosion defect 

depth is demonstrated in Figure 5.6 (drawn on Figure 5.1). The Folias factors calculated 

using different methods are compared in the figure for different defect geometries. As the 

equations for the Folias factor in the existing design codes do not include a term for the 

depth of defect, M2 calculated using this equation increases linearly with l2/(Dt) for DNV-

RP-F10 code and almost linearly for ASME B31G and CSA Z662-15 codes. For a 

particular l2/(Dt), M2 is constant and independent of the defect depth. However, results of 

the FE reveal that M2 can be different for the same l2/(Dt), depending on the defect depth. 

The proposed model for M reasonably simulates the M calculated using FE analysis. For 

l2/(Dt) of around 90, M2 calculated for two d/t ratios from the FE analysis and the proposed 

model are closer.    

5.7 Revision of Burst Pressure Model  

The generalized burst pressure model for corroded pipeline (Equation 5.9) includes 

a term corresponding to the burst pressure of intake pipe (Po) and a term corresponding to 

burst pressure reduction due to the corrosion defect. The existing design codes employ 

Barlow’s thin wall pressure vessel theory to calculate the burst pressure of an intake 

pipeline. The burst pressure for the intake pipeline is revised here based on the theory of 

thick-wall cylinder (Hearn 1997). The maximum circumferential stress for a thick-wall 

cylinder subjected to an internal pressure is given by (Equation 5.13): 
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Figure 5.5: Comparison of Folias factors 

 

 

𝜎 = 𝑃𝑜

𝐷𝑜
2 + 𝐷𝑖

2

𝐷𝑜
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2                                       (5.13) 

 

Where Po is the internal pressure, Do is the outer diameter, and Di is the inner diameter of 

the pipeline.  Denoting the outer diameter as D and expressing the inner diameter as D-2t, 

Equation 5.13 can be rewritten as (Equation 5.14):  

 

𝜎 = 𝑃𝑜

2𝐷2 − 4𝐷𝑡 + 4𝑡2

4𝐷𝑡 − 4𝑡2
                              (5.14) 
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Equation 14 can be rearranged as (Equation 5.15): 

 

𝜎 = 𝑃𝑜

2𝐷2 {(1 − 2
𝑡

𝐷
) + 2 (

𝑡

𝐷
)

2

}

4𝐷2 {
𝑡

𝐷
− (

𝑡

𝐷
)

2

}
                  (5.15) 

 

  

 
Figure 5.6: Folias factors with depth of corrosion defect 

  

Neglecting the higher order terms of t/D, the equation can be written as (Equation 
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𝜎 = 𝑃𝑜

1 − 2
𝑡

𝐷

2
𝑡

𝐷

 = 𝑃𝑜

𝐷 − 2𝑡

2𝑡
                    (5.16)  

 

Considering the hoop stress at failure equal to the ultimate strength of the material, 

σu, the expression of burst pressure for an intake pipeline is (Equation 5.17):  

 

𝑃𝑜 =
2𝑡

(𝐷 − 2𝑡)
𝜎𝑢                                    (5.17) 

 

Including the burst pressure reduction factor in Equation 5.17, the burst pressure of 

a corroded pipeline can be expressed as (Equation 5.18):  

 

𝑃 =
2𝑡

(𝐷 − 2𝑡)
𝜎𝑢 (

1 −
𝑑

𝑡

1 −
𝑑

𝑡𝑀

)                                      (5.18) 

 

The proposed burst pressure model for a corroded pipeline is evaluated through 

comparison with the burst pressure calculated using the model and FE analysis, as shown 

in Figure 5.7. In Figure 5.7, the data points lie around 1:1 line, indicating that the proposed 

model predicts the burst pressure very closely to FE results. The model provides lower 

bound values of burst pressures with respect to FE results.    



108 
 

5.7.1 Comparison with Design Codes  

Burst pressures calculated using different codes are compared with FE calculations 

in Figure 5.8. The figure shows that the DNV-RP-F10 code over-predicts the burst pressure 

with respect to FE calculations, while the CSA Z662-15 and BS 7910 codes consistently 

under-predict the burst pressures. The ASME B31G over-predicts up to a burst pressure of 

around 20 MPa, beyond which it under-predicts the burst pressure. The proposed model 

consistently provides lower bound estimation of the burst pressure. 

  

    

Figure 5.7: Comparison of burst pressure predicted using the proposed model 

and FE results 
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of Figure 5.8. The proposed model is found to provide the lowest RMSD indicating that 

the model performs better than the existing models. Among the existing codes, the DNV-

RP-F101 provides the lowest RMSD value while the CSA Z662-15 code provides the 

highest RMSD value. The DNV-RP-F101 code is therefore expected to provide better 

estimation of the burst pressure for corroded pipelines.         

5.7.2 Comparison with Burst Test Results 

To evaluate the proposed burst pressure model with the test results, a database of 

burst test of intake and corroded pipe is developed using the test result of burst pressure 

available in the public domain. Table 5.6 shows a database of 86 burst tests obtained from 

different sources. The sources of data are provided in the last column of the table. The 

material properties presented in the table such as yield strength and ultimate strength are 

apparently based on limited tests and were not determined from the specimen extracted 

from pipe samples. The information about the yield strength of pipe material is not 

available for the data collected from Ma et al. (2013). The test data covers a wide range of 

steel strength from low to high grades of steel (i.e. X42 to X80 grade).  

The comparison of burst pressures predicted by the proposed burst pressure model 

with the test results are shown in Figure 5.9. The burst pressures of the test samples are 

calculated using the pipe dimensions and corrosion dimensions as given in Table 5.6. The 

data points are scattered in the figure, indicating that the test results are variable. The 

variability in test results may be attributed to material non-homogeneity, non-uniform wall 

thickness and pipe diameter.   
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Figure 5.8: Comparison of burst pressure obtained from different models 
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lower bound (conservative) estimate of the burst pressures with respect to the test results.  
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incorporating the defect depth in the equation. The equations for the Folias factor in current 

design codes do not include the defect depth. However, the authors’ earlier research 

demonstrated the importance of including the defect depth in the calculation of the Folias 

factor.  

A revision of the burst pressure for flawless pipe is developed based on the theory 

of the thick-wall cylinder. The proposed burst pressure model with new equations for the 

burst pressure of the flawless pipeline and Folias factor reasonably simulates the burst 

pressure from FE analyses and full-scale burst tests.  The following conclusions are also 

drawn from this study: 

 The Folias factor decreases with pipe size and increases with the increase of corrosion 

defect length. The factor also decreases with the increase of defect depth. The proposed 

equation for the Folias factor can reasonably capture the effect of pipe size, defect 

length and defect depth. 

 The burst pressure equation developed based on the theory of thick-wall cylinder 

provides an improvement in the burst pressure model for pipelines. 

 For the pipelines considered, the DNV-RP-F10 code over-predicts the burst pressure 

with respect to the FE calculation. The CSA Z662-15 and BS 7910 codes under-

predicts the burst pressure. The ASME B31G code over-predicts the burst pressure up 

to a pressure of around 20 MPa and under-predict beyond this pressure. The proposed 

model provides reasonable lower bound estimations of the burst pressures obtained 

from FE analyses. 
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 The laboratory burst test results can be scattered due to material non-homogeneity, a 

non-uniform wall thickness and pipe diameters.  

 Although the proposed model has been developed based on the data developed using 

finite element analysis for the particular type of pipe material, the model provides a 

lower bound estimation of the burst pressure obtained from laboratory tests for a wide 

range of pipe materials.  

 

  

Figure 5.9: Comparison of proposed burst pressure model with test results 
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Table 5.6: Database of Burst Test of Corroded Pipes  

 

 

 

 

 

 

 

 

 

 

Grade 
D 

(mm) 

t 

(mm) 

d 

(mm) 

l 

(mm) 

σy 

(MPa) 

σu 

(MPa) 

PTest 

(MPa) 
Source 

X46 323.6 8.5 0.0 0.0 356.4 469.3 25.1 

Cronin and 

Pick (2000) 

X46 323.6 8.6 0.0 0.0 356.4 469.3 24.4 

X46 324.1 8.5 0.0 0.0 356.4 469.3 25.0 

X46 321.6 8.3 0.0 0.0 356.4 469.3 22.5 

X46 323.6 8.7 0.0 0.0 356.4 469.3 23.9 

X46 324.1 8.4 0.0 0.0 356.4 469.3 23.3 

X46 323.9 8.6 0.0 0.0 356.4 469.3 24.5 

X52 273.1 5.3 0.0 0.0 388.7 502.2 17.2 

X46 323.3 8.6 2.2 63.5 356.4 469.3 24.4 

X46 323.1 8.6 3.0 203.2 356.4 469.3 23.1 

X46 323.1 8.6 2.7 61.0 356.4 469.3 25.2 

X46 323.6 8.6 3.3 144.8 356.4 469.3 23.9 

X46 323.6 8.6 2.7 127.0 356.4 469.3 21.7 

X46 323.1 8.5 2.2 50.8 356.4 469.3 21.6 

X52 273.1 5.2 1.9 408.9 388.7 502.2 16.7 

X52 273.1 5.3 1.7 139.7 388.7 502.2 18.1 

- 273.1 8.3 4.0 241.3 409.3 481.1 21.2 

X52 611.4 6.6 3.3 901.7 402.5 534.5 9.4 

X52 612.5 6.4 3.6 1432.6 402.5 534.5 7.9 

X52 611.5 6.4 2.6 1371.6 402.5 534.5 9.8 

X42 273.3 5.0 3.3 182.9 350.6 453.8 13.7 

X42 273.0 4.7 2.6 48.3 350.6 453.8 13.8 
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Table 5.6: Continued  

 

 

 

 

Grade 
D 

(mm) 

t 

(mm) 

d 

(mm) 

l 

(mm) 

σy 

(MPa) 

σu 

(MPa) 

PTest 

(MPa) 
Source 

X42 273.5 4.8 1.6 30.5 350.6 453.8 13.7 

Cronin and 

Pick (2000) 

X42 273.1 4.9 2.2 101.6 350.6 453.8 15.2 

X42 273.9 4.9 1.6 45.7 350.6 453.8 15.0 

X42 274.1 5.0 2.2 124.5 350.6 453.8 13.3 

X42 274.4 4.6 2.7 66.0 350.6 453.8 12.7 

X42 274.1 5.0 2.7 38.1 350.6 453.8 14.8 

X42 274.5 4.8 2.1 157.5 350.6 453.8 12.6 

X46 323.9 5.1 3.7 99.1 372.7 472.4 9.7 

X55 506.7 5.7 3.0 132.1 462.3 587.3 10.7 

X55 505.0 5.7 3.3 462.3 462.3 587.3 8.1 

X55 508.0 5.7 3.8 619.8 462.3 587.3 8.6 

X55 508.0 5.7 3.8 533.4 462.3 587.3 9.9 

X55 508.0 5.7 3.0 416.6 462.3 587.3 10.9 

X55 508.3 5.6 3.4 596.9 462.3 587.3 8.0 

X55 508.0 5.6 2.5 170.2 462.3 587.3 11.5 

X46 863.6 9.6 3.6 213.4 400.2 508.0 10.8 

X46 863.6 9.5 3.0 185.4 400.2 508.0 10.6 

X46 863.6 9.4 4.6 91.4 400.2 508.0 9.2 

X60 324 9.79 6.99 500 452 542 11.99 

Diniz et al. 

(2006) 

X60 324 9.74 7.14 528 452 542 11.3 

X60 324 9.8 7.08 256 452 542 14.4 

X60 324 9.66 6.76 306 452 542 14.07 

X60 324 9.71 6.93 350 452 542 13.58 

X60 324 9.71 6.91 395 452 542 12.84 

X60 324 9.91 7.31 433 452 542 12.13 

X60 324 9.94 7.22 467 452 542 11.92 

X60 324 9.79 6.99 484 452 542 11.91 

X60 508 14.8 9.7 500 414 600 15.8 

X60 508 14.6 10.35 500 414 600 14.6 
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Table 5.6: Continued  

 

 

Grade 
D 

(mm) 

t 

(mm) 

d 

(mm) 

l 

(mm) 

σy 

(MPa) 

σu 

(MPa) 

PTest 

(MPa) 
Source 

X65 762 17.5 4.375 200 464.5 563.8 24.11 

Oh et al. 

(2007) 

X65 762 17.5 8.75 200 464.5 563.8 21.76 

X65 762 17.5 13.125 200 464.5 563.8 17.15 

X65 762 17.5 8.75 100 464.5 563.8 24.3 

X65 762 17.5 8.75 300 464.5 563.8 19.8 

X65 762 17.5 8.75 200 464.5 563.8 23.42 

X65 762 17.5 8.75 200 464.5 563.8 22.64 

X65 762 17.5 8.75 100 464.5 563.8 24.68 

X65 762 17.5 8.75 200 464.5 563.8 22.48 

X65 762 17.5 8.75 300 464.5 563.8 17.7 

X65 762 17.5 8.75 400 464.5 563.8 18.14 

X65 762 17.5 8.75 600 464.5 563.8 16.57 

X80 459 8 3.75 40 589 731 24.2 Freire et al. 

(2006) X80 457 8.1 5.40 39.6 601 684 22.7 

X65 762 17.5 8.75 50 464.5 563.8 27.5 Kim et al. 

(2004) X65 762 17.5 8.75 900 464.5 563.8 15 

X80 1219 19.89 15.41 605.72 641 740 9.3 

Chen et al. 

(2015) and 

Sadasue et 

al. (2004) 

X80 1219 19.89 7.44 605.72 641 740 17.7 

X80 1219 19.89 1.77 607.74 641 740 23.3 

X80 1219 13.79 10.78 588.37 641 740 5.2 

X80 1219 13.79 5.45 589.4 641 740 12 

X80 1219 13.79 1.54 586.42 641 740 16.1 

X42  272.97 4.67 2.62 48.26 - 453.86 13.79 

Ma et al. 

(2013) 

X42  273.53 4.78 1.63 30.48 - 453.86 13.71 

X42  529 9 4.7 350 - 415 8.83 

X42  529 9 4.7 160 - 415 15.7 

X42  529 9 5.3 150 - 415 14.2 

X60  508 6.6 2.62 381 - 598.9 11.3 

Ma et al. 

(2013) 

X60  508 6.7 2.66 1016 - 601 11.6 

X60  508 6.4 3.46 899.2 - 672.5 8 

X60  508 6.4 2.18 899.2 - 672.5 11.8 

X60  508 6.4 3.18 1000.8 - 672.5 8.4 

X60 720 8 4.3 180 - 535 10.3 

X60  720 8 4.4 320 - 535 8.83 

X60  720 8 6.2 180 - 535 7.55 
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CHAPTER 6 

Interaction of multiple corrosion defects on burst pressure of pipelines 

6.1 Introduction 

The pipelines are used for transporting hydrocarbons, municipal water and waste 

water, and for other industrial applications. The pipelines are often exposed to corrosive 

environments causing wall corrosions. The corrosion reduces the strength of the pipeline 

significantly and may lead to premature failure. A prediction of the remaining strength of 

a corroded pipeline is required to assess the structural integrity of the pipeline.    

The corrosion in pipeline may occur in a single patch or in multiple patches. The 

effects of corrosion patches on the strength of pipeline are extensively investigated (Ma et 

al. 2013, Oh et al. 2007, Diniz et al. 2006). The pipe strength is generally expressed in 

terms of the burst pressure which is the internal pressure at the plastic collapse of the 

pipeline. The researchers are still contributing to the improvement of the burst pressure 

model for determining the remaining strength of corroded pipelines more accurately for 

level-1 and/or level-2 assessments.  

For multiple corrosion patches, the burst pressure is calculated based on only a 

single patch if the patches are located further apart and do not interact with each other. For 

interacting defects, the burst pressure is conservatively calculated based on an entire 

defected area inclusive of the corrosion patches. In this regards, the interaction rules are 

employed to determine if the interaction between the defects occurs. Different interaction 
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rules are adopted in the design codes such as DNV (2015), CSA (2015), ASME (2012) and 

others. However, the criteria used in the codes are different from each other. Benjamin et 

al. (2016) and Li et al. (2016) reported that for same defect sizes and configurations, the 

design codes provide different results of interactions between corrosion defects. A revision 

of the interaction rules is therefore required to validate the interaction criteria used in the 

design codes. 

Li et al. (2016) have recently revisited the interaction rules for a pipeline with 

multiple corrosion patches using finite element analysis. The pipe diameter and wall 

thickness were 458.8 mm and 8.1 mm, respectively. They investigated three patterns of 

defect colonies (of a defect) with five different geometries. The defect lengths (l) 

considered were 36.9 mm, 272.6 mm and 436.1 mm to represent short and long defects. 

The widths (w) of the defects were 31.9 mm and 72.1 mm. The depths of the defects were 

30%, 50% and 66% of the pipe wall thickness. Based on the study, new interaction rules 

were proposed. The limiting distance between the corrosion patches in the longitudinal 

direction is expressed in terms of √(Dt), where D is the pipe diameter and t is wall 

thickness. The circumferential spacing is expressed in terms of pipe diameter or wall 

thickness depending on the length of corrosion defects.           

Al-Owaisi et al. (2016) investigated the interaction of two identical corrosion 

patches for a 508 mm diameter pipe and with 8.9 mm wall thickness. They studied the 

effects of two shapes of corrosion defects (circular and curved boxed) on the interaction of 

corrosion patches. The size of a circular defect was 35 mm in diameter and that of a curved 
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boxed defect was 35 mm × 35 mm. The study was limited to defects penetrating 50% of 

pipe wall thickness. It was concluded that the shapes and locations of the defects influence 

the burst pressure of pipelines containing interacting defects. However, the limiting spacing 

of interaction of the defects was not extensively investigated in this research.    

Most of the studies on the interactions of corrosion patches focused on pipelines 

with diameter of around 460 mm (Fu and Batte 1999, Silva et al. 2007, Benjamin et al. 

2016, Li et al. 2016). The limiting distances for interactions are expressed in terms of pipe 

diameter and/or wall thickness of the pipeline. The effect of the depth of corrosion is not 

included in the interaction rules. Silva et al. (2007), however, showed that the corrosion 

depths may affect the interaction rules.  

In this research, corrosion patches are investigated using finite element analysis for 

pipelines with different diameters considering the effects of corrosion depths. A parametric 

study based on finite element analysis is conducted to investigate the effects of interactions 

of multiple corrosion patches on the burst pressure of corroded pipelines. Based on the 

investigation, the new interaction rules are proposed incorporating the corrosion depths.    

6.2 Interaction Rule 

An interaction rule is employed to account for the interaction of multiple corrosion 

patches in the calculation of the burst pressure. The interaction rule states the limiting 

distances along the circumferential and longitudinal directions, (Sc)lim and (Sl)lim, 

respectively, between two successive corrosion patches beyond which the effect of 
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interaction of the adjacent patches is negligible. Three basic types of interacting corrosion 

defects are generally considered, which are termed as Type 1, Type 2 and Type 3, 

respectively (Kiefner and Vieth 1990). In Type 1 interaction, the projections of two or more 

corrosion patches overlap in the longitudinal direction when projected onto a longitudinal 

plane passing through the wall thickness, as shown in Figure 6.1.  The corrosion patches 

are separated in the circumferential direction (at distances of Sc1, Sc2 …Scn etc.). In Type 2, 

corrosion patches are separated in the longitudinal direction also (at distances of Sl1, Sl2… 

Sln etc.) as shown in Figure 6.2. The Type 3 corresponds to a larger corroded area with 

localized deeper zones as shown in Figure 6.3.  
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Figure 6.1: Type 1 Interaction (Redrawn after DNV-RP-F101) 
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The design codes (e.g. DNV, ASME, CSA) recommend the limiting distances 

(spacing), (Sc)lim and (Sl)lim, in terms of different parameters. The DNV code expresses the 

spacing in terms of pipe dimensions (diameter and thickness). The ASME B31G and CSA 
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Z662-15 codes express the spacing in terms of pipe wall thickness and the lengths of 

corrosion patches, respectively. The Table 6.1 provides a summary of different 

recommendations for the spacing and the criteria for interaction between the patches.   The 

effect of interaction between the defects occurs when Sl ≤ (Sl)lim or Sc ≤ (Sc)lim.  

Table 6.1: Interaction Rule  

Source Longitudinal limit, (Sl)lim 

Circumferential limit, 

(Sc)lim 

Criteria for 

interaction 

DNV RP-F101 (2015) 2√𝐷𝑡 360√
𝑡

𝐷
   (𝑑𝑒𝑔𝑟𝑒𝑒) 

𝑆𝑙 ≤ (𝑆𝑙)𝑙𝑖𝑚  

𝑆𝑐 ≤ (𝑆𝑐)𝑙𝑖𝑚 

ASME B31G (2012) 3𝑡 3𝑡 
𝑆𝑙 ≤ (𝑆𝑙)𝑙𝑖𝑚  

𝑆𝑐 ≤ (𝑆𝑐)𝑙𝑖𝑚 

CSA Z662-15 (2015) 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑙𝑚 𝑡𝑜 𝑙𝑛) 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑙𝑚 𝑡𝑜 𝑙𝑛) 
𝑆𝑙 ≤ (𝑆𝑙)𝑙𝑖𝑚  

𝑆𝑐 ≤ (𝑆𝑐)𝑙𝑖𝑚 

Kiefner and Vieth 

(1990) 
𝑀𝑖𝑛𝑖𝑚𝑢𝑚(6𝑡, 𝑙𝑚 𝑡𝑜 𝑙𝑛) 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(6𝑡, 𝑤𝑚 𝑡𝑜 𝑤𝑛) 

𝑆𝑙 ≤ (𝑆𝑙)𝑙𝑖𝑚  

𝑆𝑐 ≤ (𝑆𝑐)𝑙𝑖𝑚 

Pipeline Operator 

Forum (2005) 
25.4 mm (1 inch) 6𝑡 

𝑆𝑙 ≤ (𝑆𝑙)𝑙𝑖𝑚  

𝑆𝑐 ≤ (𝑆𝑐)𝑙𝑖𝑚 

 

The interacting corrosion defects are treated as a single defect for calculating the 

burst pressure. The ASME B31G (2012) code recommends using a length equal to the total 

length of the corrosion group, lmn and a depth equals to the maximum depth in the group, 

dmax. The width of the corrosion defect is not included in the ASME B31G model. The 

DNV code (DNV-RP-F101 2015) also uses the length similar to that recommended in the 

ASME method.  The depth for the corrosion group in the DNV code is calculated using 

Equation 6.1.  
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𝑑𝑚𝑛 =
∑ 𝑑𝑖𝑙𝑖

𝑖=𝑛
𝑖=𝑚

𝑙𝑚𝑛
                              (6.1) 

 

Here, di and li are the maximum depth and length, respectively, of the ith corrosion of the 

interacting corrosion group, as shown in Figure 6.1. 

6.3 Finite Element Analysis 

The FE analysis provides a powerful tool for modelling complex problems with 

non-linear material responses. Among the commercially available software for FE analysis, 

Abaqus is one of the commonly used software for analysis of pipelines. Abaqus has the 

capability of modelling the non-linear deformation during yielding of a corroded pipeline 

under high pressure. Abaqus/Standard module is used in this study for calculation of burst 

pressure of corroded pipelines with multiple corrosion defects.  

6.3.1 FE Model 

The pipe domain is modelled using eight-noded continuum element (Abaqus 

element “C3D8R”). Although the actual geometry of a corrosion patch is very complex, 

the existing literature shows that the failure behavior of corroded pipelines mainly depends 

on the maximum depth and the longitudinal extent of the corroded area. A rectangular area 

with a constant depth (flat at the bottom) is therefore considered, even though it is an 

idealized corrosion patch. The corrosion defects are created on the external surface of the 

pipe wall, as shown in Figure 6.4. The sharp edge and smooth (curved) edge (Figure 6.4) 

are considered for the investigation of the effects of the edge conditions of the corrosion 
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patchs on the burst pressure. An ellipse with a ratio of the major to minor axis of 2 is fitted 

to produce the curved edge (after Mondal and Dhar 2016a, Mondal and Dhar 2016c).  

 

  
 

Transverse section 
 

 

Transverse section 
 

  
 

Longitudinal Section 
 

 

Longitudinal Section 
 

(a) Sharp Edge (b) Round Edge 

 

Figure 6.4: Edge condition of corrosion patch 

 

To investigate the interaction of different corrosion patches, 154 numbers of 3D 

Finite Element Models are developed for pipelines with diameters of 300 mm, 500 mm and 

762 mm for analysis. The spacing between two identical sizes of patches is varied 

independently along the longitudinal, circumferential and oblique directions of pipelines. 

A pipeline with a single defect of that size is termed as the base defect (BD). The models 

with the base defects are called BD-1, BD-2 and BD-3 for 300 mm, 500 mm and 762 mm 
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diameter pipeline, respectively. The dimensions of the corrosion defects and the pipelines 

considered in the FE analysis are summarized in Table 6.2. The parameters are selected 

based on the typical values used in the previous research (Ma et al. 2013, Oh et al. 2007, 

Diniz et al. 2006).   

Table 6.2: Pipes dimensions and corrosion geometries 

Model  

ID 

Corrosion 

arrangement 

D 

(mm) 

t 

(mm) 
d/t 

l 

(mm) 

w 

(o) 

Sl 

(times t) 

Sc 

(times t) 

A Un-corroded 300 10 - - - - - 

BD-1  300 10, 15 0.20, 0.25, 0.30, 0.40, 

0.50, 0.60, 0.70, 0.75, 

0.80 

60, 120 20 - - 

C  300 10, 15 0.20, 0.25, 0.30, 0.40, 

0.50, 0.60, 0.70, 0.75, 

0.80 

60 20 0-14 - 

D 
 

300 10 0.50 60 20 0-10 0-10 

E 

 

300 10 0.50 60 20 

3 

(overlap

) 

0-10 

F 
 

300 10 0.50 60 20 - 0-6 

G Un-corroded 500 15 - - - - - 

BD-2  500 15 0.20, 0.25, 0.40, 0.50, 

0.60, 0.75, 0.80 

60, 120 20 - - 

H  500 15 0.20, 0.25, 0.40, 0.50, 

0.60, 0.75, 0.80 

60 20 0-14 - 

I 
 

500 15 0.50 60 20 - 0-6 

J Un-corroded 762 25.4 - - - - - 

BD-3  762 25.4 0.20, 0.30, 0.40, 0.50, 

0.60, 0.70, 0.80 

60, 120 20 - - 

K  762 25.4 0.20, 0.30, 0.40, 0.50, 

0.60, 0.70, 0.80 

60 20 0-16 - 

L  762 25.4 0.50 60 20 - 0-6 
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The efficiency of FE analysis could be achieved by applying simplified boundary 

conditions (such as symmetric condition) to the model. It is, however, difficult to apply 

simplified boundary condition to the pipelines containing unsymmetric corrosion patches 

such as Model D and E in Table 6.2. For this reason, fully-restrained boundary conditions 

at the ends of the pipelines are applied. To avoid the effect of boundary conditions within 

the corroded zone, the pipelines of sufficient lengths (longer than minimum length as 

recommended in Fekete and Varge 2012) are considered. Outward radial pressure is 

applied to the inner surface of the pipeline to simulate the internal pressure.  Automatic 

time increment is chosen for the solution process.     

6.3.2 Material Parameters 

The Stress–strain relation for ductile steel is non-linear beyond the yield stress. The 

non-linear response is often expressed using bilinear response in FE modelling to save 

computational time. Figure 6.5 shows the non-linear and bilinear relation of API 5L X60 

steel (Fekete and Varge 2012, Mondal and Dhar 2016a). To determine the effect of using 

the bilinear material model over the non-linear properties on the burst pressure, a finite 

element model of a pipeline with 300 mm of diameter and 10 mm wall thickness is 

analyzed. A corrosion with 60 mm of length, 20 degree circumferential extent and 0.50 of 

d/t ratio was considered. Figure 6.6 shows the variation of von Mises equivalent stress for 

the pipeline against internal pressure at two points, one on the outer surface and the other 

on the inner surface of the corroded area. An outer point and an inner point on the same 

section through the wall thickness were selected to represent the state of stress throughout 

the ligament. During analysis, the stress reached the true ultimate strength at these points 
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first. This condition is assumed as the failure criterion in this study, as discussed later. 

Beyond the yield limit, the stresses at these points are somewhat different for the two 

different material models (Figure 6.6). The stresses reach the true ultimate strength (i.e., 

542 MPa) of the material at the internal pressure of 32.50 MPa and 33.60 MPa for bilinear 

and non-linear material models, respectively. The internal pressures thus differ by about 

3.3% for the two material models. The error due to the material model will be further 

reduced by the normalization of results. The burst pressures of the pipelines with multiple 

corrosion patches are normalized with the burst pressure for a pipeline with single 

corrosion patch (termed herein as the burst pressure with base defect). The bilinear material 

model is therefore used in the FE models presented here to avoid additional computational 

time with the non-linear model. The material properties used in the analysis are shown in 

Table 6.3. 

Table 6.3: Material Properties 

Property Value 

Density, ρ (kg/m3) 7850 

Young’s Modulus, E (GPa) 210 

Poisson’s Ratio, ν   0.30 

Yield Strength, σY (MPa) 452 

True Ultimate Strength, σU (MPa) 542 

Total strain at failure, εU 0.043 
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Figure 6.5: Stress-strain relation of pipe material (API 5L X60) 

 

 

 

Figure 6.6: Effect of material model on burst pressure 

 

A mesh sensitivity analysis is performed to determine the optimum mesh size. The 

fine mesh is applied within and around the corroded area where stress concentration is 

expected. The coarse mesh is applied where uniform stress is expected. An appropriate 
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gradient between coarse and fine mesh is also considered. A typical finite element mesh 

used in this study is shown in Figure 6.7. 

 

  
 

(a) Full Pipe 
 

 

(b) Zoomed in near corroded area 
 

 

Figure 6.7: A typical finite element mesh 

 

An automatic time increment is chosen for the solution process in Abaqus. Only 

pipelines under the loading of internal pressure are considered.  

6.3.3 Validation of FE Model 

The test results on the burst pressures of corroded pipelines with parameters for 

specific pipe materials are not available in the literature for a wide range of pipe dimensions 

considered in this study.  Diniz et al. (2006) conducted burst test of a corroded pipeline and 

determined the parameters of the pipe material using laboratory tests. The burst test results 

and material parameters of Diniz et al. (2006) were used to validate the FE model for burst 

pressure prediction of the corroded pipeline (Mondal and Dhar 2016c). The validated FE 

model is used here to conduct a parametric study presented in this study. The burst 

pressures from FE models of un-corroded pipelines, developed in this study, are also 
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compared with the results those obtained from thin-wall pressure vessel theory.  The results 

are in agreement within about 3.5%. Corrosion defects are then applied to the pipelines in 

the validated FE models. The burst pressures for un-corroded pipelines, calculated using 

FE analysis, are 40 MPa, 35.9 MPa and 40 MPa for 300 mm, 500 mm and 762 mm diameter 

pipes, respectively. These burst pressures are comparable to those obtained using the thin-

walled pressure vessel theory (within about 3.5%). The thin-walled pressure vessel theory 

assumes a uniform stress distribution within the wall of the pipe, which might affect the 

burst pressure calculated using this theory.          

The von Mises stress around the zone of corrosion for a corroded pipeline is also 

reviewed to examine the failure mechanism and compared with the test results available in 

the literature. Figure 6.8 plots the contour of the von Mises stress corresponding to the 

failure of a 300 mm diameter pipeline with corrosion dimensions (smooth-edged) of l = 60 

mm, w=20 degree and d/t of 0.50. Figure 6.8 shows that the von Mises stress reaches to the 

true ultimate strength of pipe material (542 MPa) along a line almost parallel to the edge 

of the corrosion patch in longitudinal direction. This is similar to the failure mechanism 

observed in a full-scale pipe test with an artificial corrosion patch (Benjamin et al. 2005).  

Benjamin et al. (2005) conducted a burst test of a 458.8 mm diameter pipe with 8.10 mm 

wall thickness containing artificial corrosion of 39.6 mm length, 31.9 mm width and 0.665 

d/t ratio. Figure 6.9 indicates the location of failure plane observed in Benjamin et al 

(2005), which is not at the centre of the corrosion patch. The finite element model thus 

reasonably simulates the failure plane observed. The analysis was also performed for the 
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test pipe with material parameters available in Andrade et al. (2006). Similar failure plane 

was predicted with the burst pressure within 0.3% of the test result.  

  
 
 
 

Figure 6.8: Failure location of pipe containing single corrosion defect 

 

The von Mises stress along the failure plane is almost the same (the true ultimate 

strength) on the inner and the outer surface of the pipeline. A pipeline is assumed to burst 

when the von Mises equivalent stress throughout the thickness (the ligament) reaches the 

true ultimate strength of the pipe material. 

 
 
 
 
 
 
 
 
 

 

Figure 6.9: Location of failure observed in a full-scale 

pipe test (After Benjamin et al. 2005) 
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The effect of using sharp edge and smooth edge conditions (definitions are in Figure 

6.4) of the corrosion patches are examined using FE analysis. The Table 6.4 compares the 

burst pressures for different sizes of pipelines with various corrosion dimensions. The last 

column of the table shows the percent difference of the calculated burst pressures using the 

two models (i.e., sharp edge and smooth edge). It shows that the difference in burst pressure 

is insignificant for using either of the smooth edge or the sharp edge. However, the 

development of FE models and the analysis considering the smooth edge of the corrosion 

defects are more complicated and time consuming than those based on the sharp edge. The 

sharp edge condition is, therefore, considered for the rest of the analysis.  

6.4 Results and Discussions 

6.4.1 Interaction of corrosion patches 

Figures 6.10 and 6.11 plot the burst pressures of the corroded pipelines against the 

normalized spacing between successive corrosion patches. In these figures, Models C, D, 

E and F correspond to a 300 mm diameter pipe, Models H and I correspond to a 500 mm 

diameter pipe, and Models K and L correspond to a 762 mm diameter pipe. Models C, H 

and K consider the pipelines with corrosion patches on a same longitudinal line where the 

spacing between the patches are increased in the longitudinal direction (Sc = 0, Sl = 0 to 14t 

for Models C and H and Sc = 0, Sl = 0 to 16t for Model K, where “t” is the wall thickness). 

The Model D refers to a pipeline where the spacing (between the corrosion patches) in the 

longitudinal direction is equal to the spacing in the circumferential directions (Sc = Sl = 0 

to 10t). The patches are diagonally oriented. The Model E refers to a pipeline with a 
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constant spacing (between the corrosion patches) in the longitudinal direction while the 

spacing is varied in the circumferential direction (Sl=3t (overlap), Sc = 0 to 10t). The 

Models F, I and L correspond to the pipelines where the spacing between corrosion patches 

are varied along circumferential direction of the pipelines (i.e. fully overlapped in the 

longitudinal direction). The size of the base defect is assumed to be the same in each of the 

pipelines with length, width and d/t ratio of 60 mm, 20 degree and 0.50, respectively. 

Table 6.4: Burst pressures for different edge conditions 

D 

(mm) 

t 

(mm) 
d/t 

l 

(mm) 

w 

(degree) 

Edge 

condition 

Burst pressure 

(MPa) 

Variation 

(%) 

300 10 0.50 60 20 Elliptical  33.00 
2.82 

300 10 0.50 60 20 Sharp 32.07 

300 10 0.50 120 20 Elliptical  27.27 
0 

300 10 0.50 120 20 Sharp 27.27 

500 15 0.50 60 20 Elliptical  31.91 
1.10 

500 15 0.50 60 20 Sharp 31.56 

500 15 0.50 120 20 Elliptical  27.89 
1.90 

500 15 0.50 120 20 Sharp 27.36 

762 25.4 0.50 60 20 Elliptical  35.85 
1.20 

762 25.4 0.50 60 20 Sharp 35.42 

762 25.4 0.50 120 20 Elliptical  34.25 
2.14 

762 25.4 0.50 120 20 Sharp 33.42 

   

In Figures 6.10 and 6.11, the burst pressures of the corroded pipelines (P) are 

normalized with the burst pressures of pipelines with the base defect (PBD). The spacing 

are normalized using the pipe wall thickness and a dimensional parameter, √𝐷𝑡, in Figure 

6.10-6.11 (a) and 6.10-6.11 (b), respectively. In these figures, the normalized burst 
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pressures are less than unity (one) when interaction between the corrosion patches occurs. 

 
(a) Corrosion spacing in terms of pipe wall thickness 

 
(b) Corrosion spacing in terms of pipe dimensions 

Figure 6.10: Effect of interaction of longitudinally and diagonally spaced 

corrosion patches (l=60mm, w=20o, d/t=0.50) 
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(a) Corrosion spacing in terms of pipe wall thickness 
 

 
 

(b) Corrosion spacing in terms of pipe dimensions 
 

Figure 6.11: Effect of interaction of circumferentially spaced corrosion 

patches (l=60mm, w=20o, d/t=0.50) 
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6.4.1.1 Pipe Geometry 

Figure 6.10 and 6.11 show that the burst pressure of the corroded pipeline increases 

with the increase of the spacing between the patches. The limit of interacting spacing 

depends on the pipe dimensions along with other factors. For 300 mm and 500 mm 

diameter pipelines with corrosion patches spaced along the longitudinal direction (Model 

C and H), the increase of the burst pressure is stabilized i.e. the normalized burst pressure 

becomes unity (one) at the spacing of 12t or  about 2√(Dt). The spacing for 762 mm 

diameter pipeline (Model K) is 12.5t or 2.28√(Dt). Thus, the limiting spacing of interaction 

in general increases with the increase of pipe wall thickness. The spacing for the pipeline 

when the defects are spaced along diagonal direction (Sc = Sl) (Model D) is 8t or about 

1.50√(Dt). It is to be noted that the interaction of defects in longitudinal direction is 

independent on pipe diameter for pipelines of 300 mm and 500 mm diameters. The spacing 

is about 4% longer for the 762 mm diameter pipeline. The longer spacing for the 762 mm 

diameter pipeline is due to the distribution of stress over a thicker wall for the larger 

diameter pipe having the same D/t ratio. The stress distribution within the pipe wall is 

discussed later in the chapter. 

The limit of circumferential spacing is found to be independent of pipe diameter 

(Figure 6.11). The normalized burst pressure becomes unity for a circumferential spacing 

of 3t or 0.5√(Dt) when the defects are fully overlapped in the longitudinal direction 

(Models F, I and L). However, when the defects are partially overlapped in the longitudinal 

direction (Model E), the longitudinal limiting spacing is similar to the spacing for corrosion 

patches in the longitudinal direction (i.e., 12t or about 2√(Dt)).  
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6.4.1.2 Locations of Corrosion Patches 

The locations of the corrosion patches appear to influence the interaction of 

corrosion defects on the burst pressure and hence the limiting spacing (Figures 6.10 and 

6.11). The corrosion defects spaced along longitudinal and diagonal directions reduce the 

burst pressure more significantly compared to the corrosion defects spaced along the 

circumferential direction. The limit of interacting space is the largest for the corrosion 

defects spaced along the longitudinal direction (12t and 2√(Dt) for Model C and H, 12.5t 

and 2.28√(Dt) for Model K) followed by the spacing for defects spaced diagonally (8t and 

1.50√(Dt) for Model D) and defects spaced  circumferentially (3t and 0.52√(Dt) for Model 

I), respectively. The limiting spacing of the longitudinally spaced defects and the 

circumferentially spaced defects with overlapping in the longitudinal direction (overlap of 

3t is considered, Model E) are almost the same. The limit of longitudinal spacing is higher 

by about 14% and 300% than those recommended in the DNV code (i.e., 2√(Dt)) and  

ASME code (i.e. 3t), respectively. The ASME code recommends a spacing of 3t for 

corrosion patched both in longitudinal direction and circumferential direction.  The effects 

of using different interaction spacing rules are discussed later in this study. 

6.4.1.3 Depth of Corrosion Patches 

Figure 6.12 plots the normalized burst pressure of pipe Model C against the spacing 

between the corrosion patches for different corrosion depths. To cover the lower and upper 

limits of corrosion depths considered in the current design code (i.e., ASME), three values 

of normalized corrosion depths of 0.25, 0.50 and 0.75 are considered. The length and width 

of corrosion defect are 60 mm and 20 degree, respectively. Figure 6.12 (a) represents the 
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spacing in terms of wall thickness (t) and Figure 6.12 (b) represents the spacing in terms 

of the dimensional parameter, √(Dt). The limiting spacing of interaction appears to depend 

on the corrosion depth. For the normalized corrosion depths of 0.25, 0.50 and 0.75, the 

spacing are 14t, 12t and 10t or 2.5√(Dt),  2.0√(Dt) and 1.8√(Dt), respectively. The effects 

of interaction are minimized within a shorter distance for higher corrosion depths and vice 

versa due to the distribution of stresses within the pipe wall. Figure 6.13 plots the 

distribution of von Mises stresses on the inner surface and outer surface of pipe wall from 

the centre to the centre of two corrosion defects for a 762 mm diameter pipeline with d/t 

ratio of 0.2 and 0.8. The defects are spaced at a distance of 6t or 1.1√(Dt)). In this figure, 

the von Mises stress is high within the defects and at the space between the defects for d/t 

= 0.8 due to interaction of the defects. On the other hand, the von Mises stress between the 

defects is less for the pipeline with d/t = 0.2, indicating that the stress distribution within 

the defects are independent on each other for pipelines with a lower corrosion depth.   

However, the design codes do not consider the corrosion depth for calculating the spacing 

for the interaction of defects.  
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(a) Spacing in terms of pipe wall thickness 

 
 

(b) Spacing in terms of pipe geometry 

Figure 6.12: Effect of corrosion depth on interaction (D= 300 mm, l=60 mm, 

w=20 degree) 
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Figure 6.13: Distribution of von Mises stress through wall thickness  
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0.60, 0.75 and 0.80), 38 of Model C with 15 mm wall thickness (with d/t= 0.20, 0.30, 0.40, 

0.50, 0.60, 0.70 and 0.80), 39 of Model H (with d/t= 0.20, 0.25, 0.40, 0.50, 0.60, 0.75 and 

0.80) and 38 of Model K (with d/t= 0.20, 0.30, 0.40, 0.50, 0.60, 0.70 and 0.80). The length 

and width of defects in all models are 60 mm and 20 degree, respectively. A total of 26 

limiting interacting spacing are determined from these FE analysis. The interacting spacing 

are normalized with respect to pipe geometry (√(Dt)) and wall thickness (t) separately.  

The normalized limits of interacting spacing are plotted with respect to the 

normalized depths of corrosion in Figure 6.14. Figure 6.14 (a) shows the spacing in terms 

of pipe wall thickness (t) and Figure 6.14 (b) shows the spacing in terms of pipe geometry 

(√(Dt)). The solid lines in the figures are the trend lines showing the linear relationship 

between the interacting spacing and the depth of corrosion. The linear regression analyses 

are performed with variables s/t and s/√(Dt) against d/t to develop new interaction rules. 

From regression analysis, the following interaction rules are obtained in terms of wall 

thickness and √(Dt), respectively: 

 

(𝑆𝑙)𝑙𝑖𝑚 =  (15.91 − 7.69
𝑑

𝑡
) 𝑡                     (6.2) 

 

(𝑆𝑙)𝑙𝑖𝑚 =  (3 − 1.46
𝑑

𝑡
) √𝐷𝑡                        (6.3) 
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(a) Spacing in terms of pipe wall thickness 
 

 
 

(b) Spacing in terms of pipe geometry 

 

Figure 6.14: New Interaction Rule 
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pipeline (300 mm in this study). Figure 6.14 (a) indicates that the interacting spacing does 

not vary significantly with pipe diameter, if the distance is expressed in terms of t. It would, 

therefore, be reasonable to define the interacting rules using the pipe wall thickness. The 

limiting spacing of 3t in circumferential direction (recommended in ASME code) is found 

to be reasonable for the pipelines considered. 

The burst pressure calculated based on different interaction rules for a 762 mm 

diameter pipe with two corrosion defects at a spacing of 300 mm apart (12 times the wall 

thickness) are compared in Figure 6.15 for d/t of 0.2, 0.4, 0.5, 0.6 and 0.8. According to 

the proposed interaction rules, the spacing between the defects are less than the limiting 

spacing for a d/t of up to 0.6 and greater than the limiting spacing for d/t = 0.8. However, 

the spacing is greater than the limiting spacing (i.e., 3t) as per the ASME B31G 

recommendation, implying no interaction between the defects. As a results, the normalized 

burst pressure is over-predicted using the ASME B31G method with respect to the FE 

calculations (Figure 6.15). The burst pressure is normalized using a burst pressure of a 

pipeline with a single corrosion defect of the same size (called herein as “burst pressure for 

base defect, PBD”).  Since no interaction between the defects exists, the normalized burst 

pressure of 1 is obtained using the ASME B31G method. On the other hand, the spacing 

between the defects is less the limiting spacing (i.e., 2√(Dt) as per DNV-RP-F101 

recommendations. Thus, the DNV code provides similar results as those with the new 

interaction rule for a d/t of up to 0.6. The method under-predicts the burst pressure for d/t 

= 0.8, since no interaction between the defects are expected according to the new 

interaction rule. 
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Figure 6.15: Comparison of burst pressures with various interaction rules 
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 The interaction between corrosion patches was found to depend on pipe dimensions 

and corrosion depth. The limiting spacing for interaction is higher for larger pipe 

dimensions. The spacing is independent of pipe diameter for pipe diameters of 

300 mm and 500 mm, and is somewhat higher by about 14% for 762 mm diameter 

pipeline. The spacing is smaller for circumferentially spaced corrosion patches than 

the spacing for longitudinally spaced patches. The spacing for diagonal spaced 

patches is larger than circumferential spacing and smaller than longitudinal 

spacing.  

 The limiting spacing also depends on the depth of corrosion. The new interaction 

rules for longitudinally spaced corrosion defects are developed incorporating the 

depth of corrosion. The limiting spacing is expressed in terms of ‘t’ and (√(Dt). 

However, the spacing expressed in terms of ‘t’ showed better performance.  It is, 

therefore, reasonable to define the interaction rule using pipe wall thickness (t) 

rather than √(Dt)). 

 For circumferentially spaced patches, the ASME (2012) recommendation (i.e., 3t) 

is found to be reasonable.  

The new interaction rules presented here are developed considering two base 

defects (i.e., 60 mm and 120 mm) for 300 mm, 500 mm and 762 mm diameter pipelines 

with D/t ratio of around 30.  Further study is recommended to investigate the effects for 

pipelines with larger diameters with different D/t ratios and defect sizes. 
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CHAPTER 7 

Burst Pressure of Corroded Pipelines Considering Combined Axial 

Forces and Bending Moments 

7.1 Introduction 

The offshore or onshore energy pipelines are generally designed for internal 

pressure only. However, the pipelines are often subjected to axial forces and bending 

moments due to external loads (Liu et al. 2009, Mondal and Dhar 2016b). For onshore 

pipelines, the external loads result from landslides, mining subsidence or seismic activities. 

For offshore pipelines, the loads could be the result of the formation of free spans, 

especially for unburied pipeline, and temperature difference as well as submarine 

landslides. The axial force and the bending moment may affect the internal pressure 

capacity (i.e., burst pressure) of the pipelines. Taylor et al. (2015) demonstrated through 

finite element (FE) analysis that the burst pressure of an intake pipeline is reduced under 

load imposed bending. Earlier, Lasebikan and Akisanya (2014) demonstrated using 

experimental investigation with minipipes that the burst pressure of an intake pipeline is 

also reduced under an axial tensile load. To the knowledge of the authors, the combined 

effects of axial forces and bending moments on the burst pressures of pipelines have not 

been reported in published literature. Studies on the burst pressures of corroded pipelines 

subjected to axial forces and bending moments are also very limited.  
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Oh et al. (2008) analytically developed plastic limit load solutions for pipelines 

subjected to combined internal pressure and bending moment for pipelines containing part-

through surface cracks. They considered two shapes of defects, constant depth crack and 

circular crack. The solutions were validated for elastic-perfectly plastic material using 

finite element (FE) analysis. The solutions for part-through crack defects are found to 

provide lower bound plastic limit loads for pipelines with corrosion defects (Oh et al. 

2009). This study is limited to elasto-plastic material for corroded pipelines with part-

through surface cracks subjected to internal pressure and bending moments only. 

    Using FE analysis, Liu et al. (2009) examined the burst pressures of corroded 

pipelines subjected to internal pressure with either a bending moment or an axial 

compressive force. They developed some interaction diagrams for between the internal 

pressure and bending moment and between the internal pressure and axial force for some 

specific pipe sizes with specific materials. The combined effects of the axial force and 

bending moment on the burst pressure were not considered. The following failure criteria 

were considered in the development of an interaction diagram: 

i) The von Mises equivalent stress across the full remaining thickness reaches the 

true ultimate tensile strength of the pipe material.  

ii) The von Mises equivalent stress at a point 180° (i.e. diametrically opposite) from 

the corrosion defect reaches the yield strength of the pipe material. 

iii) The onset of local collapse or global instability/buckling. 

The minimum pressure obtained from these criteria was considered as the failure 

pressure/burst pressure.  As discussed in detail later in this chapter, it is observed that the 
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yield strength criterion governs the failure of the investigated pipeline. However, the 

ultimate strength criterion is preferably used for the assessment of burst pressure of an 

energy pipeline. 

Chen et al. (2014) developed an analytical solution for the residual bending moment 

capacity of a corroded pipeline subjected to internal pressure and axial loading for infinitely 

long corrosion with three different corrosion patterns, i.e., constant depth, elliptical and 

parabolic corrosion considering elastic-perfectly plastic pipe material. This idealized 

analytical model also showed that the bending moment capacity reduces with internal 

pressure and axial force regardless of the state of axial force, i.e., tensile force or 

compressive force.  

The DNV-RP-F101 (2015) recognized the effect of axial force and the bending 

moment on the burst pressure of corroded pipelines and accounted for the effect 

incorporating a factor, H1, to the burst pressure model of the pipeline without the axial 

force and bending moment. The factor is defined in Equation 7.1, where ξ, γm, γd, σL, εd and 

StD[d/t] indicate usage factor, partial safety factor for longitudinal corrosion, partial safety 

factor for corrosion depth, total longitudinal stress, fractile factor for corrosion depth and 

standard deviation of the measured corrosion depth, respectively. The effects of the 

bending moment and axial compressive force in the equation are accounted in terms of 

longitudinal stress. The ratio of hoop stress and longitudinal stress due to burst pressure is 

assumed as 2 during development of the equation (Bjornoy et al. 2001). Thus, the burst 

pressure model proposed in the DNV-RP-F101 code is applicable for the hoop stress to 

longitudinal stress ratio of 2. It is assumed that there is no effect of longitudinal tension on 



148 
 

the burst pressure, which is inconsistent with the findings reported in Lasebikan and 

Akisanya (2014) and Chen et al. (2014). 

𝐻1 =
1 +

𝜎𝐿
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The objective of the present study is to revisit the burst pressures of corroded 

pipelines subjected to axial forces and bending moments. A parametric study has been 

conducted to develop interaction diagrams for the burst pressures with axial forces, bending 

moments and simultaneous effect of the axial forces and the bending moments. The 

ultimate strength criterion is used for the failure assessments of the pipelines.  

7.2 FE Model 

The Abaqus/Standard module is used in this study for calculating the burst 

pressures of corroded pipelines subjected to axial forces and bending moments. The pipe 

domain is modelled using eight-noded continuum elements (Abaqus element “C3D8R”). 

The corrosion defect with a smooth edge is applied on the outer surface of the pipeline, as 

shown in Figure 7.1 (after Mondal and Dhar 2017).  
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Transverse section 
 

 
 

Longitudinal Section 
 

Figure 7.1: Typical sectional view of corrosion patch 

(after Mondal and Dhar 2017b) 

 

To save computation time, only a quarter of the full pipeline is modelled using the 

advantage of symmetry, as shown in Figure 7.2. The symmetric boundary conditions are 

applied at the plane of symmetry in the FE model. The top wall and bottom wall along the 

length of the pipeline are restrained to the X-direction and the left-end section is restrained 

to the Z-direction (Figure 7.2). The bottom point at the left end in Figure 7.2 is fully 

restrained to obtain the stability of the model.    
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Figure 7.2: Quarter Model of Pipe with Boundary Conditions 

 

In the FE model, the internal pressure is applied on the inner surface of the pipeline 

and axial force (tension or compression) is applied at the right-end cross-section of the 

pipeline, calculated using Equation 7.2, where σa, Do and Di indicate the applied axial 

stress, outer diameter and inner diameter of the pipeline, respectively. To apply the bending 

moment, a reference point is created at the centre point of the right-end cross-section. The 

right-end cross-section is connected to the reference point using the multi-point constraint 

option available in Abaqus. The bending moment is then applied to that reference point, as 

shown in Figure 7.3. Two types of bending moments are considered in this study: the 

opening bending moment when the corroded area is in tension under the bending moment 
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and the closing bending moment when the corroded area is in compression under the 

bending moment (Mohd et al. 2015).      

𝐹 = 𝜎𝑎

𝜋

4
(𝐷𝑜

2 − 𝐷𝑖
2)                 (7.2) 

 

  

(a) Closing Bending Moment (b) Opening Bending Moment 

Figure 7.3: Application of loadings on FE model 

 

During analysis, the stress concentration is expected around the corroded zone, 

whereas uniform stress is expected away from the corroded zone. Therefore, fine mesh is 

applied at and near the corroded zone and coarse mesh is applied away from the corroded 

zone. An appropriate gradient is applied in the transition zone of coarse to fine mesh that 

gives the mesh size with dimensions from 1.44 mm to 23 mm. After conducting a mesh 

sensitivity analysis for determining the optimum mesh size, six or five layers of element 

are applied over the thickness within the corroded zone. Figure 7.4 shows a typical finite-

element mesh used in the analysis.   

 

M 
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Figure 7.4: Typical meshing of FE model 

 

7.2.1 Material Model  

The nonlinear true stress–strain data of API X65 grade steel obtained from the 

published literature (Oh et al. 2007) are used in the FE model, as shown in Figure 7.5. The 

stress–strain data are inserted in the FE model using connected piecewise straight lines. 

Other properties of the steel pipe material are given in Table 7.1.   

 

Fine mesh 

Coarse mesh 
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Figure 7.5: True stress–strain data for API X65 steel (Oh et al. 2007)  

 

Table 7.1: Material parameters of API X65 Steel (Oh et al. 2007) 

Property Value 

Density, ρ (kg/m3) 7850 

Modulus of Elasticity, E (GPa)  210.7 

Poisson’s Ratio,  0.30 

Yield Strength, σY (MPa) 464.5 

Ultimate Tensile Strength, σU (Mpa) 563.8 

 

7.2.2 Failure Criteria  

In the conventional standard FE analysis, the node separation is not allowed. Hence, 

the crack initiation and its propagation in the pipeline cannot be simulated. The commonly 
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used approach for burst pressure assessment is to define failure when the von Mises 

equivalent stress throughout the thickness (the ligament) reaches the true ultimate strength 

of the pipe material (Li et al. 2016). This approach is employed in this study for the burst 

pressure assessment. 

7.2.3 Validation of FE Model 

The FE model is first validated through simulated burst pressure available in the 

literature (i.e., Oh et al. 2007). The pipe dimensions and corrosion dimensions given in 

Table 7.2 are obtained from Oh et al. (2007). The material properties given in Table 7.1 

and in Figure 7.5 are used. During the burst pressure test of a corroded pipeline, the ends 

of the pipeline are capped to apply internal pressure. The applied internal pressure causes 

axial tensile stress in the pipe wall at the ends. To simulate this end cap effect during FE 

analysis, an axial tensile stress equivalent to the internal pressure is applied to the right-

end section of the pipeline.  The axial tensile stress, σt, equivalent to any internal pressure, 

P, is calculated using Equation 7.3. The burst pressure of the pipeline calculated using FE 

analysis is then compared with the test result available in Oh et al. (2007). The burst 

pressure of the corroded pipeline is reported as 24.3 MPa from the test.   

𝜎𝑡 = 𝑃
𝐷𝑖

2

𝐷𝑜
2 − 𝐷𝑖

2                                     (7.3) 

Figure 7.6 shows the average von Mises equivalent stresses calculated through the 

ligament under different internal pressures determined from the FE analysis. The average 

von Mises stress increases with the increase of internal pressure (Figure 7.6) and becomes 
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constant at an internal pressure of around 18 MPa. The corresponding von Mises stress is 

the yield strength of the material (i.e., 464.5 MPa). The von Mises stress remains constant 

at the yield strength up to a pressure of around 23 MPa, beyond which the stress increases 

up to failure of the pipeline. While the FE model continues calculating the stresses beyond 

failure, the internal pressure corresponding to the ultimate tensile strength is taken as the 

burst pressure. In Figure 7.6, the internal pressure corresponding to the average von Mises 

equivalent stress of 563.8 MPa (the ultimate tensile strength) is 24.47 MPa, which is within 

0.69% of the test result of burst pressure (i.e.,24.30 MPa). Thus, the FE model reasonably 

represents the test condition.  

Table 7.2: Dimensions of pipe and corrosion for FEM validation (Oh et al. 2007) 

Parameter Value 

Pipe Diameter, D (mm) 762 

Wall Thickness, t (mm) 17.5 

Defect Depth, d (mm) 8.75 

Defect Length, l (mm) 100 

Defect Width, w (mm) 50 

 

This FE modelling approach is used to investigate the burst pressure of corroded 

pipelines subjected to axial forces and/or bending moments. Pipe dimensions in Table 7.3 

are considered for this investigation, after Liu et al. (2009). 
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Figure 7.6: Burst Pressure Calculation Using FEA  

 

7.3 Effects of Axial Force or Bending Moment  

To investigate the effect of states of axial forces (i.e. compressive or tensile) and 

bending moments on the burst pressure of the corroded pipeline subjected to combined 

loadings, FE analyses are conducted with an increase of internal pressure and with 

independent application of 200 kN of axial tension, 200 kN of axial compression, 20 kN-

m of opening bending moment and 20 kN-m of closing bending moment, respectively. 

Figure 7.7 shows the average von Mises equivalent stresses calculated through the ligament 

for different internal pressures. As seen in the figure, the average von Mises stresses are 
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higher for the pipelines with axial forces and bending moments than for the pipelines 

without these (i.e., internal pressure only), except during the yielding phase. The von Mises 

stress also reaches the yield strength and the ultimate strength at a lower internal pressure 

for the pipeline with axial forces and bending moments, indicating that the burst pressure 

is reduced due to the presence of an axial force and a bending moment. The ultimate tensile 

strength (i.e., 563.8 MPa) of the material is shown using a horizontal line and 

corresponding internal pressure is obtained as the burst pressure (Figure 7.7). The figure 

also reveals that the burst pressure reduction is higher for axial compression than for the 

axial tension. For the axial force and bending moment considered, the reduction of burst 

pressure for axial compression of 200 kN and closing bending moment of 20 kN-m is 

almost the same. Both the axial compressive force and closing bending moment cause 

compressive stress in the pipe wall in the corroded zone, which might be the reason for 

similar burst pressure reductions for these cases. The tensile axial force and opening 

bending moment cause tensile stress in the pipe wall at the corroded zone and provide 

similar burst pressure reductions (Figure 7.7), which is less than the burst pressure 

reduction due to compressive stress within the corroded area. The burst pressure reduction 

due to compressive stress within the corroded area is recognized in the DNV-RP-F101 

(2015) design code, where no effect of tensile stress is assumed. However, the current study 

reveals that axial tensile stress also contributes to the reduction of burst pressure. Since the 

burst pressure reduction is higher for axial compressive stresses within the corroded area, 

the compressive axial force and closing bending moment are further investigated to 

develop the interaction diagram for burst pressure with various axial forces and bending 
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moments. The design method recommended in the DNV-RP-F101 (2015) is first evaluated 

using the FE results. 

Table 7.3: Dimensions of pipe and corrosion defect after Liu et al. (2009) 

Parameter Value 

Pipe Diameter, D (mm) 203.2 

Wall Thickness, t (mm) 8.2 

Defect Depth, d (mm) 4.1 

Defect Length, l (mm) 65.6 

Defect Width, w (mm) 65.6 

 

As mentioned earlier, the DNV RP-F101 (2015) introduces a factor, H1 (Equation 

7.1), to account for the axial compression and the bending moment in burst pressure 

calculation. An H1 value of less than one indicates that the axial force and bending moment 

reduce the burst pressure of a corroded pipeline and vice versa. The value of H1 depends 

on the resultant axial stress, σL, caused by the axial force and bending moment, expressed 

as a ratio of the ultimate strength of the material (Equation 7.1). The resultant axial stress 

can be calculated using elastic beam/column theories from the external axial force, Fz and 

the external bending moment, M.      
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Figure 7.7: Effects of axial force and bending moment on burst pressure  

  

The H1 from FE analysis is calculated as the ratio of burst pressure of the corroded 

pipeline with combined loadings, Pcom, to the burst pressure of the same pipeline with 

internal pressure only, P, which is compared with the parameter calculated using Equation 

7.1. The DNV-RP-F101 code, considers three safety classes (i.e., low, medium and high) 

with different values of usage factor and partial safety factor. The medium safety class with 

parameters listed in Table 7.4 is considered for comparison (Figure 7.8).  
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Table 7.4: Parameters for calculation of H1 

Parameter Safety Class: Medium 

Usage Factor, ξ 0.85 

Partial Safety Factor, γm 0.88 

Partial Safety Factor, γd 1.28 

Standard Deviation, StD[d/t] 0.08 

Fractile Value, εd 1.0 

 

Figure 7.8 shows that when the resultant axial stress is less than about 25% of 

ultimate material strength, the DNV-RP-F101 code provides higher H1 values than one 

(unit), indicating that the burst pressure under axial compressive stresse is higher than the 

burst pressure under internal pressure only. The H1 values from FE analysis are always less 

than one, indicating that the burst pressures under the load combinations are less. Thus, the 

DNV-RP-F101 code gives unconservative burst pressure at low compressive axial stress. 

However, for axial stress beyond 50% of the ultimate tensile strength, the DNV-RP-F101 

code provides a reasonable estimation of the reduced burst pressure. 

In the current study, a detailed investigation is conducted to develop failure loci of 

corroded pipelines subjected to internal pressure with an axial compressive and/or closing 

bending moment, as discussed below 
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Figure 7.8: Evaluation of DNV-RP-F101 (2015) 

 

7.4 Development of Failure Loci  

Liu et al. (2009) used FE analysis to develop failure loci of corroded pipelines 

subjected to internal pressure with axial compressive force and internal pressure with 

bending moment. They considered three different pipe sizes, (D=203.2 mm with t=8.2 mm, 

D=457.2 mm with t=5.6 mm and D=914.4 mm with t=12.7 mm) with different corrosion 

depths (d/t=0.20-0.80). Two different material grades (X42 and X65) were used in the 

analysis. In this study, they employed three different failure criteria (discussed earlier); the 

minimum of these three criteria was used to determine the failure pressure. In the current 
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study, the ultimate strength criterion is used for the burst pressure assessment. The effects 

of using the failure criteria used in Liu et al. (2009) are first evaluated through comparison 

with the results of FE analysis conducted in this study. In the FE modelling, the yield 

strength at the bottom fibre (a criterion used in Liu et al. 2009) and ultimate strength over 

the whole thickness of the corroded area (ligament) are used as the failure criteria.  

Figure 7.9 compares the failure locus obtained from the current FE analysis with 

the one obtained from Liu et al. (2009). The failure locus from the current study with the 

yield strength criterion matches the failure locus of Liu et al. (2009). Thus, the failure locus 

developed in Liu et al. (2009) is mostly governed by the yield strength criterion, for the 

pipeline investigated. However, the ultimate strength is commonly considered for the 

design of energy pipelines.  As shown in Figure 7.9, the failure locus obtained based on 

the ultimate strength criterion provides significantly higher capacity of the pipelines 

compared to the one given in Liu et al. (2009). The ultimate strength based criterion is 

employed in the current study to develop the failure loci.   

A parametric study is first conducted to identify the influencing parameters in the 

development of failure loci. The corrosion depth, corrosion length and pipe dimensions are 

considered for the parametric study.  
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Figure 7.9: Comparison of failure locus developed by current study with Liu et al. (2009) 

 

7.4.1 Corrosion Depth  

To investigate the effect of corrosion depths on the failure locus for combined 

loadings, the FE models with two d/t ratios of 0.2 and 0.5 are developed. Other model 

parameters used are given in Table 7.3. Analyses are performed with varying closing 

bending moments and internal pressures for a constant compressive axial force of Fz=200 

kN. The bending moments (Mcom) and internal pressures (Pcom) corresponding to failure 

under the combined loadings are calculated as discussed above. The bending moment and 

the internal pressure are normalized using the moment capacity (Mo) and burst pressure 
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(Pb) of the corroded pipeline without external loads, respectively. The Mo and Pb are 

obtained by performing FE analysis. 

Figure 7.10 shows the failure loci for two defect depths with the preceding load 

combinations. The figure shows that the defect depth influences the burst pressure of the 

corroded pipeline subjected to a bending moment. The reduction of burst pressure is higher 

for the pipeline with higher corrosion depth. The defect depth is therefore considered for 

the development of failure loci of the corroded pipelines.   

    

 

Figure 7.10: Effect of corrosion depth on failure locus 
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7.4.2 Corrosion Length  

To investigate the effect of corrosion length on the failure loci, the FE models with 

two different defect lengths are developed. The defect lengths, l, are 8 times and 16 times 

the wall thickness, t (l/t = 8 and 16). Analyses are performed with varying closing bending 

moments and internal pressures for a constant compressive axial force of Fz=200 kN. The 

normalized bending moments (Mcom/Mo) and internal pressures (Pcom/Pb) corresponding to 

failure of the pipelines are compared in Figure 7.11. The comparison shows that the 

influence of corrosion length on the failure loci expressed in terms of normalized bending 

moment and normalized internal pressure is insignificant. A constant length is therefore 

considered for the development of failure loci.  

 

Figure 7.11: Effect of corrosion length on failure locus 
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7.4.3 Pipe Dimensions  

The FE models with two different sets of pipe dimensions, shown in Table 7.4, are 

developed to investigate the effect of pipe dimensions on the failure locus. The dimensions 

of Pipe “A” are obtained from Liu et al. (2009) and those of Pipe “B” are obtained from 

Bedairi el al. (2012). The models are analyzed for the loading combinations considered in 

the investigation of corrosion depth and corrosion length, as mentioned above. The bending 

moments (Mcom) and internal pressures (Pcom) corresponding to failure of the pipelines 

under combined loadings are normalized using the moment capacity (Mo) and burst 

pressure (Pb) of the pipelines, respectively. 

Figure 7.12 compares the failure loci for the two pipelines. The figure reveals that 

the pipe dimensions do not have significant effect on the failure loci. Although the strength 

of corroded pipelines with different pipe dimensions can be different, the failure loci 

expressed in terms of normalized strengths are not affected. Thus, a constant set of pipe 

dimensions is considered in the following study.  

Table 7.4: Dimensions of Pipe “A” and Pipe “B” 

Parameter Pipe “A” Pipe “B” 

Pipe Diameter, D (mm) 203.2 508.0 

Wall Thickness, t (mm) 8.2 5.7 

 d/t  0.5 0.5 

l/t 8.0 8.0 

w/t 8.0 8.0 
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Figure 7.12: Effect of pipe dimensions on failure locus 
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loci of the combined bending moment and internal pressure are developed for different 

axial forces (Figure 7.13 to 7.15). The axial force (Fz), bending moment (Mcom) and internal 

pressure (Pcom) at failure under combined loadings are normalized using the strengths of 

the pipelines under each of the loads independently. For the development of the failure 

loci, the strengths of the pipelines under each of the loads are calculated using simplified 

equations to avoid the complexity of FE modelling during pipeline integrity assessment. 

The axial force capacity (Fo) and the bending moment capacity (Mo) of the intake pipeline 

are used, which are calculated using the classical failure of the short column and beam 

given by Equations 7.4 and 7.5, respectively. The burst pressure (Pb) of the corroded 

pipeline under internal pressure is obtained using the model proposed in Mondal and Dhar 

(2018) shown in Equation 7.6.  

 

𝐹𝑜 =  
𝜋

4
(𝐷𝑜

2 − 𝐷𝑖
2)𝑆𝑀𝑌𝑆                              (7.4) 

 

𝑀𝑜 =  
2𝐼(𝑆𝑀𝑌𝑆)

𝐷𝑜
                                                (7.5) 

where  

I = moment of inertia of pipe cross-section 

SMYS = Specified minimum yield strength of pipe material 

Do = Outer diameter of pipe 

Di = Inner diameter of pipe  
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𝑃𝑏 =
2𝑡

(𝐷 − 2𝑡)
𝜎𝑢 (

1 −
𝑑

𝑡

1 −
𝑑

𝑡𝑀

)                                      (7.6) 

where 

𝑀 = √1 + 0.278 ∙ (
𝑙2

𝐷𝑡
)

0.447

× (
𝑑

𝑡
)

−0.718

+ 0.337 ∙ (
𝑙4

𝐷2𝑡2
)

0.717

× (
𝑑2

𝑡2
)

0.504

     

σu = Ultimate tensile strength of pipe material  

Four normalized magnitudes of axial force, Fz/Fo=0.086, 0.171, 0.343 and 0.514 

are considered for the development of failure loci. Each figure of Figure 7.13 to 7.15 

contains four failure loci for four different axial forces and one failure locus for zero axial 

force. The figures reveal that the burst pressures and the moment capacities of the pipelines 

are reduced with the increase of axial compression. The burst pressure of the corroded 

pipeline subjected to a particular bending moment and/or an axial force can be predicted 

using the relevant failure locus shown in the figures.   

7.7 Summary  

The existing design codes, except the DNV-RP-F101, provide the models of burst 

pressure for corroded pipelines, assuming that the pipelines are subjected to internal 

pressure only. However, the pipelines are often subjected to different types of external 

loadings resulting in longitudinal bending moments and axial forces in addition to the 

internal pressure. The axial forces and the bending moments result in the reduction of burst 

pressure of the pipelines. 
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Figure 7.13: Failure Locus for d/t for 0.2 

 

 

Figure 7.14: Failure Locus for d/t for 0.5 
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Figure 7.15: Failure Locus for d/t for 0.8 
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moment are considered to develop failure loci of corroded pipelines subjected 

to axial forces and bending moments. 

 The DNV-RP-F101 (2015) design code recommends considering axial 

compressive stress for the assessment of burst pressure of corroded pipelines. 

However, the recommended method provides unconservative burst pressure 

when the ratio of the resultant axial compressive stress to the material ultimate 

strength is smaller than 0.25. The method is assumed to be applicable for the 

ratio of hoop stress to longitudinal stress of 2.  

 The failure locus for corroded pipelines subjected to combined loadings 

significantly depends on corrosion depths and load combinations. The corrosion 

length and pipe dimensions have insignificant effects. Therefore, the failure loci 

are developed for different corrosion depths and load combinations. 

 The developed failure loci can be used for assessing the burst pressure of 

corroded pipelines with known axial force and bending moment.  
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CHAPTER 8 

Burst Pressure Assessment of Corroded Pipelines using Fracture 

Mechanics Criterion 

8.1 Introduction 

 The pipelines with corrosion defects are generally analyzed using the theory of 

continuum mechanics. In the continuum modelling approach, the von Mises equivalent 

stress is calculated and then compared with a limiting value. The most commonly used 

approach is to calculate the average von Mises equivalent stress throughout the thickness 

(ligament) of the pipeline and compare it with the ultimate strength of the pipe material (Li 

et al. 2016). The von Mises stress at the outer surface of the ligament reaches the ultimate 

strength first, particularly for a large depth of corrosion, which then extends to the inner 

surface (Liu et al. 2009, Mondal and Dhar 2018). When the von Mises stress on the outer 

surface reaches to the ultimate tensile strength, the stress is assumed to remain constant at 

this point while the stress increases at every other point in the pipe wall with the increase 

of internal pressure. However, when the von Mises stress at any point exceeds the ultimate 

strength, a crack might initiate at that point where the stress can be reduced to zero. The 

crack initiation and its propagation are not considered in continuum modelling. Thus, the 

continuum modelling approach may over-predict the pipe strength. The crack initiation and 

crack propagation during loading can be better modelled using fracture mechanics 

approach.  
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In fracture mechanics approach, the strength of a material against cracking is 

expressed using the fracture toughness of the material. The fracture toughness is defined 

in terms of four parameters, the stress intensity factor (K), strain energy release rate (G), J-

integral (J) and crack tip opening displacement (δ) (Zhu and Joyce 2012). The critical 

values of these parameters corresponding to crack initiation are known as the fracture 

toughness (i.e., Kc, Gc, Jc and δc, respectively).  

The stress intensity factor, K, is a measure of the stress field near a crack tip, which 

combines far field stress and crack dimensions. For an infinite plate with a crack length of 

‘2a’ subjected to a far field stress of ‘σ’, the stress intensity factor is defined as in Equation 

8.1 (Irwin and de Wit 1983). The stress intensity factor, K, depends on crack geometries 

and loading conditions. The fracture toughness, Kc, is the critical value of K at which a 

crack initiates.     

𝐾𝐼 = 𝜎√𝜋𝑎                                             (8.1) 

The strain energy release rate, G, is a measure of energy available for an increment 

of a crack. It is defined as in Equation 8.2, where π indicates the potential energy under the 

applied loading (Gdoutos 2005).  

𝐺 = −
𝜕𝜋

𝜕𝑎
                                                  (8.2) 

The J-integral is a way of calculating the strain energy release rate and is equivalent 

to G for linear elastic material. The parameter is also applicable for non-linear elastic 

material. It is measured as the potential energy per unit fracture surface area over a region 
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bounded by an arbitrary surface extending from one face of the crack to the other face (as 

shown in Figure 8.1). The J-integral is given in Equation 8.3, where Γ is an arbitrary curve 

around the tip of a crack (Figure 8.1), w is the strain energy density, Ti is the components 

of the traction vector, ui is the displacement vector components, ds is the length increment 

along the contour, and x and y are the rectangular coordinates with the y direction taken 

normal to the crack line and the origin at the crack tip (Zhu and Joyce 2012). 

𝐽 = ∮ (𝑤 𝑑𝑦 − 𝑇𝑖

𝜕𝑢𝑖

𝜕𝑥
𝑑𝑠)                                     (8.3)

𝛤

 

The crack tip opening displacement, δ, is the gap between the crack-surfaces 

measured at a distance equal to the radius of the plastic zone, ry, behind the crack tip (Irwin 

and de Wit 1983). Due to the plastic property of the material, the crack tip deforms and 

makes a blunt notch before extending the crack further. Then, the crack tip opening 

displacement is determined by the distance between the intercepts of two 45o lines, drawn 

back from the crack tip to the deformed crack profile, as shown in Figure 8.2 (Zhang et al. 

2015).      

The stress intensity based fracture toughness, Kc, is generally used for brittle 

materials that follow linear elastic fracture mechanics principles. The non-linear fracture 

mechanics with the J-integral is used for ductile materials where the critical point of the 

structure undergoes significant yielding before the stress intensity factor reaches Kc. For 

nonlinear elasto-plastic material, the total J-integral comprises two components: an elastic 
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component, Jel, and a plastic component, Jpl, corresponding to elastic deformation and 

plastic deformation, respectively.  

   

  

 

 

 

 

 

 

 

Figure 8.1: Arbitrary contour for the definition of J-integral  

 

 

 

 

 

 

(a) Sharp crack tip before 

deformation 

(b) Blunt crack tip after deformation 

Figure 8.2: Measurement of crack tip opening displacement, δ 
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However, the existing design practices for crack assessment in pipelines are based 

on the stress intensity factor, likely due to the simplicity of the design (e.g., Yan et al. 2014, 

BS 7910 2013). The stress intensity factor, K, relates to the elastic component, Jel, using 

Equation 8.4, where E΄=E for the plane stress condition and E΄=E/(1-υ2) for the plane strain 

condition (Zhu and Joyce 2012).  

𝐽𝑒𝑙 =
𝐾2

𝐸′
                                                 (8.4) 

Using the failure assessment curve (FAC) in Milne et al. (1988), Yang et al. (2016) 

developed an analytical model for the elastic fracture toughness by quantifying the Kc of 

ductile pipeline material.  

Determination of the stress intensity factor and /or the J-integral for pipelines 

containing corrosion defects is the major challenge in applying fracture mechanics for a 

failure assessment of the pipelines. In FE model (such as Abaqus), the J-integral for a crack 

is generally calculated using the contour integral method (Gdoutos 2005). For the analysis, 

a crack is defined at the element boundary where the J-integral is calculated. Thus, 

modelling of a crack using conventional FEM requires the conformance of the mesh to the 

geometry of the crack. However, for a corroded pipeline, the location of the crack and the 

direction of crack propagation are often unknown in advance during developing the FE 

model. In this study, Extended Finite Element Method (XFEM) using Abaqus is first 

performed to identify the location of crack initiation and the direction of crack propagation. 
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The XFEM in Abaqus employs maximum principal stress criteria to determine the 

initiation and propagation of a crack. The use of a local enrichment function in XFEM to 

the nodal degree of freedom avoids the mesh conformance of the crack geometry. The 

enrichment function consists of a near-tip asymptotic function that captures singularity 

around the crack tip and a discontinuous function that represents the jump in the 

displacements across the crack surface.  

Through identification of the location of crack initiation from XFEM, the FE model 

is developed to calculate the J-integral at the location of the crack using the contour integral 

method to assess the burst pressure of the corroded pipeline. The pipelines containing 

corrosion defects and corrosion with a crack-like defects are considered in this study. For 

corrosion with a crack defect, a predefined location of a crack is considered. A parametric 

study is conducted to investigate the effects of corrosion geometries, crack geometries and 

pipe dimensions on the J-integral of the pipeline. 

Bedairi et al. (2012) used the J-integral method for assessing the burst pressure of 

a crack-in-corrosion (CIC) defect of a pipeline. They reported a higher burst pressure using 

the J-integral method than the one obtained from the experiment or calculated using the 

ultimate tensile strength of the material. In calculating the burst pressure using the J-

integral, Bedairi et al. (2012) estimated the fracture toughness of the material as 197 kJ/m2 

based on a specimen test, while the fracture toughness of the actual tested pipe material 

was unknown. In the current study, the fracture toughness of the pipe material is back-

calculated from the burst test results for failure assessment of pipelines. 
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8.2 FE Model Development 

8.2.1 Pipe Geometry 

The Abaqus/Standard module is used in this study for calculating the fracture 

parameters for pipelines containing a corrosion defect (C) and a crack-in-corrosion (CIC) 

defect subjected to internal pressure. For the development of FE modelling with validation, 

analyses and test conditions reported in Bedairi et al. (2012) are first simulated. Bedairi et 

al. (2012) reported an analysis and the results of a full scale rupture test of a pipeline with 

an artificial crack-in-corrosion defect, where a flat bottom and a uniform depth crack were 

applied at the centre of the corrosion. Dimensions of the pipeline and defects used in 

Bedairi et al. (2012) are modelled as shown in Figure 8.3. The crack width is uniform 

throughout the depth (Figure 8.3 c) except at the bottom where an arc of a circle with a 

radius of 0.0022 mm is fitted, (after Bedairi et al. 2012). This type of crack is called herein 

‘blunt tip’ crack. The corroded pipeline without the crack is also analyzed, as shown in 

Figure 8.4. In both cases, the corrosion is applied on the outer surface of the pipeline with 

smooth edges (Figure 8.3 and 8.4). Pipe dimensions and defect dimensions are summarized 

in Table 8.1. 

To save computation time and to take the advantage of symmetry, only half of the 

full pipeline is modelled, as shown in Figure 8.5. The advantage of symmetry of the cross-

section is not considered, to allow calculating the J-integral at unsymmetric crack 

locations. The symmetric boundary conditions are applied to one end (the left end in Figure 
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8.5) of the model. The bottom point at the left end is fully restrained to ensure stability of 

the model under the applied loading. The pipe domain is modelled using the eight-noded 

continuum element (Abaqus element “C3D8R”).  

Internal pressure is applied at the inner surface of the pipeline during analysis. For 

simulation of the test results reported in Bedairi et al. (2012), the end cap effect is simulated 

by applying an equivalent axial load at the other end of the FE model (right end in Figure 

8.5).  

The equivalent axial load is calculated using the axial tensile stress, as given in 

Equation 8.5: 

 

𝜎𝑡 = 𝑃
𝐷𝑖

2

𝐷𝑜
2 − 𝐷𝑖

2                                     (8.5) 

where 

P: internal pressure 

Do: outer diameter of pipe 

Di: inner diameter of pipe 

During analysis, the internal pressure and the axial tensile stress are increased 

linearly until failure. 
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(a) Cross-section 
 

 
 

(b)Longitudinal Section 

Figure 8.3: Sectional view of pipe with crack-in-corrosion (CIC) defect (Not to scale) 
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(c) Crack cross-section 
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(a) Transverse section through the centre of corrosion 
 

 
 

(b) Longitudinal section through the centre of corrosion 
 

Figure 8.4: Sectional view of pipe with corrosion defect (Not to scale) 

 

 

 

 

 

30 mm 

200 mm 3.477 mm 

508 mm 

5.7 mm 



183 
 

Table 8.1: Pipe dimensions and defect geometries  

Geometries Values 

Pipe diameter, D (mm) 508 

Wall thickness, t (mm) 5.7 

Corrosion depth, d (mm) 2.016 

Corrosion length, l (mm) 200 

Corrosion width, w (mm) 30 

Crack depth, dc (mm) 0.948 

Crack length, lc (mm) 100 

Crack shape Smooth 

 

   Since stress concentration is expected near the defect zone, fine mesh is applied 

at and near the corroded zone. The coarse mesh is applied away from the corroded zone 

where uniform stress is expected. An appropriate gradient is used in the transition zone of 

coarse to fine mesh. A mesh sensitivity analysis is conducted for determining the optimum 

mesh size. Five or six layers of elements are applied over the thickness of the pipeline (i.e., 

the ligament). Figure 8.6 shows a typical finite-element mesh used in the analysis.  The 

lengths (L) of the pipe models are selected in such a way that the applied boundary 

conditions do not affect the stress and strain at and near the corroded zone and thereby do 

not affect the failure pressure of the pipelines. The lengths are greater than the minimum 

length (Lmin) recommended in Fekete and Varga (2012) (Equation 8.6).  



184 
 

 

𝐿𝑚𝑖𝑛 =
𝑙

2
+

𝑑

𝑡
√𝐷 ∙ 𝑡 ∙ 𝑙                                             (8.6) 

where, 

 l: length of corrosion 

 d: depth of corrosion 

 t: thickness of pipe wall 

 D: diameter of pipe 

 

8.2.2 Material Model  

The true stress–strain behaviour of a pipe material from Bedairi et al. (2012) is 

incorporated in the FE analysis. The true stress–strain data are obtained using the Ramberg-

Osgood equation (Equation 8.7) from the engineering stress–strain data of test specimens.  

 

𝜀 =
𝜎

𝐸
+ 𝛽 (

𝜎

𝜎𝑦
)

𝑛−1

(
𝜎

𝐸
)                                           (8.7) 

 

Bedairi et al. (2012) employed β= 1.75 and n= 9. The true stress–strain curve 

obtained using Equation 8.7 is shown in Figure 8.7. The true stress–strain curve is inserted 

in the FE models using a linear connection method for the pieces. Other material 

parameters used in the analysis are presented in Table 8.2.  
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Figure 8.5: Half model of full pipeline with boundary conditions and loading 
 

Table 8.2: Properties of Pipe Steel (Bedairi et al. 2012) 

Property Value 

Density, ρ (kg/m3) 7850 

Modulus of Elasticity, E (GPa)  207 

Poisson’s Ratio,  0.30 

Yield Strength, σY (MPa) 435 

Ultimate Tensile Strength, σU (Mpa) 631 
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Figure 8.6: Typical meshing of FE model 

 

8.3 J-integral based Burst Pressure Assessment 

8.3.1 Crack-in-corrosion (CIC) defect 

For validation of the FE model in calculating the J-integral, the J-integral calculated 

in Bedairi et al. (2012) is simulated and compared. Bedairi et al. (2012) conducted an FE 

analysis to calculate the J-integral of a pipeline containing a CIC defect tested to failure 

under internal pressure. The test result of the J-integral for a corroded pipeline subjected 

to internal pressure loading is not available in the literature. 

Fine mesh 
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In the current study, an FE model is developed using the dimensions of the pipeline 

and the CIC defect like those used by Bedairi et al. (2012). The material properties are also 

similar to those in Bedairi et al. (2012). The maximum J-integrals at the deepest point of 

the crack are calculated using the contour integral method, available in the Abaqus. The 

calculated J-integrals are compared with those from Bedairi et al. (2012) in Figure 8.8. The 

figure shows that the J-integral obtained from the current study matches closely with those 

from Bedairi et al. (2012). 

 

 

Figure 8.7: True stress–strain curve of pipe steel, after Bedairi et al. (2012) 
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 Figure 8.8 demonstrates that the J-integral increases non-linearly with the increase 

of internal pressure of the pipeline, due to the use of a non-linear stress–strain relation. A 

crack starts to propagate if the J-integral is equal to or greater than the fracture toughness 

of the material, leading to failure. The pipeline with a CIC defect failed at an internal 

pressure of 7.74 MPa during the rupture test (Bedairi et al. 2012). The J-integral 

corresponding to the failure pressure is 87 kJ/m2 (Figure 8.8). Thus, the critical J-integral 

at the failure of the pipeline appears to be 87 kJ/m2. However, Bedairi et al. (2012) 

estimated the fracture toughness of 197 kJ/m2 for the pipe material from a single edge bend 

test corresponding to a 0.2 mm crack extension. The 0.2 mm crack extension criterion thus 

provides a higher J-integral at the failure of the pipeline than the one back-calculated from 

the burst pressure. Nevertheless, the burst pressure for the pipeline with a CIC can be 

obtained as the internal pressure corresponding to the critical J-integral. 

8.3.2 Corrosion only defect  

As mentioned earlier, the J-integral, using the contour integral method, is calculated 

at the crack tip or crack line. The crack location (a point or a line) has to be assigned for 

determination of the J-integral. For a pipeline with a corrosion only defect, the crack 

location is not known. The XFEM is used to identify the crack location in the pipeline with 

the corrosion only defect. In XFEM, the material discontinuity due to cracking is modelled 

using a displacement jump function, H(x), where the nodal displacement vector is defined 

using H(x), as shown in Equation 8.8 (Belytschko and Black 1999).  

 

http://abaqusdoc.ucalgary.ca/v6.9/books/usb/pt04ch10s06at33.html#aenrichment-belytschko1999
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𝒖 =  ∑ 𝑁𝐼(𝑥) [𝑢𝐼 + 𝐻(𝑥)𝑎𝐼 + ∑ 𝐹𝛼(𝑥)𝑏𝐼
𝛼

4

𝛼=1

]             (8.8)

𝑁

𝐼=1

 

where NI(x) = nodal shape function 

 uI = usual nodal displacement vector 

 aI = nodal enriched degree of freedom vector 

 H(x) = displacement jump function across the crack surface 

                                   = {
1              if (𝑥 − 𝑥∗). 𝑛 ≥ 0

−1                               otherwise
           

 Fα(x) = elastic asymptotic crack-tip function 

                                    = [√𝑟𝑠𝑖𝑛
𝜃

2
, √𝑟𝑐𝑜𝑠

𝜃

2
 , √𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛

𝜃

2
, √𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠

𝜃

2
 ] 

bα
I = nodal enriched degree of freedom vector 

x = sample (Gauss) point 

x* = point on the crack closest to x 

n = unit outward normal to the crack at x* 

r, θ=  polar coordinate system with its origin at the crack tip  

 

Analyses are performed for the same pipeline as discussed above, but with the 

corrosion only defect; the corrosion dimensions are shown in Figure 8.4. The XFEM uses 

the maximum principal stress criterion for the assessment of crack initiation and its 

propagation. The ultimate tensile strength of 631 MPa (Table 8.2) is used for the crack 

analysis using XFEM. 
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Figure 8.8: Comparison of J-integral obtained from the current study and those from 

Bedairi et al. (2012)  

  

Figure 8.9 shows the crack growths obtained from the XFEM analysis for three 

different levels of internal pressures. The internal pressure of 6.53 MPa corresponds to the 

initiation of the crack, where the internal pressure of 6.64 MPa corresponds to the crack 

growth throughout the ligament. Figure 8.9 demonstrates that the crack is not located at the 

centre of the corrosion defect but close to the defect edge. Similar observations were 

reported from a burst test of a corroded pipeline (Benjamin et al. 2005) and FE analysis 
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calculation of the J-integral for a pipeline with a corrosion only defect using the contour 

integral method.    

   Figure 8.10 shows the J-integral values against internal pressure calculated using 

FE analysis. The internal pressure corresponding to the critical J-integral, Jc of 197 kJ/m2 

(Bedairi et al. 2012) is 9.33 MPa. The burst pressure for the pipeline from the test is 

reported to be 7.58 MPa (Bedairi et al. 2012), which is less than the internal pressure 

corresponding to Jc=197 kJ/m2. Bedairi et al. (2012) stated that Jc=197 kJ/m2 gives higher 

burst pressure for the pipeline, with respect to test results. The value of J-integral 

corresponding to the test burst pressure of 7.58 MPa of the pipeline is 51 kJ/m2 (Figure 

8.10). Thus, Jc=51 kJ/m2 is assumed to provide better estimation of the critical J-integral 

for the burst pressure assessment. This criterion is used for the assessment of different burst 

test results of corroded pipelines available in Bedairi et al. (2012). Table 8.3 gives the 

dimensions of four pipelines along with the defects which were tested to failure under 

internal pressure (Bedairi et al. 2012). These pipe tests are simulated using FE analysis to 

calculate the J-integrals against internal pressure.  

Table 8.3: Dimensions of pipe and corrosion geometries used (after Bedairi et al. 2012) 

Geometries Pipe C1 Pipe C2 Pipe C3 Pipe C4 

Pipe Diameter, D (mm) 508 508 508 508 

Wall thickness, t (mm) 5.7 5.7 5.7 5.7 

Corrosion depth, d (mm) 1.254 2.565 3.762 3.990 

Corrosion length, l (mm) 200 200 200 200 

Corrosion width, w (mm) 30 30 30 30 
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(a) Internal Pressure, Pi= 6.53MPa 

        

(b) Internal Pressure, Pi= 6.60MPa 

      

(c) Internal Pressure, Pi= 6.64MPa 

Figure 8.9: Crack growth in corrosion only defect from XFEM  
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Figure 8.10: J-integral for pipe with corrosion only defect under internal pressure  
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calculated internal pressures corresponding to Jc= 51 kJ/m2 (i.e., burst pressure) are 4.69%, 

1.04%, 4.98% and 1.31%, respectively, from the test burst pressures (Table 8.4). Thus, the 

fracture mechanics approach with Jc=51 kJ/m2 provides a reasonable estimation of the burst 

pressures measured during the tests. 

 

 

Figure 8.11: Burst pressure estimation based on J=51 kJ/m2 criterion  
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Table 8.4: Comparison of Burst Pressures 

Model ID  
PFEA (MPa) 

(at J=51 kJ/m2) 

PTest (MPa) 

(Bedairi et al. 2012) 

Deviation from test 

result (%) 

Model C1 13.40 12.80 4.69 

Model C2 9.60 9.59 1.04 

Model C3 6.96 6.63 4.98 

Model C4 6.04 6.12 1.31 

 

8.3.3 Comparison with Existing Burst Pressure Models 

The study presented above reveals that the fracture mechanics approach with the 

appropriate value of the fracture parameter (i.e., J-integral) could be used to assess the 

remaining strengths of corroded pipelines. However, the existing models for burst pressure 

were developed based on yield strength or ultimate strength of the pipe material. The 

existing models of burst pressure for corroded pipelines developed for corrosion only 

defects are compared here with the burst pressure determined using J-integral based 

fracture mechanics considering Jc=51 kJ/m2.  For the comparison, four pipelines, discussed 

above in Table 8.3, and four additional pipelines, described in Table 8.5, are considered. 

The burst pressures calculated using the modified ASME B31G (2012) and DNV-RP-F101 

(2015) codes and the one proposed in Mondal and Dhar (2018) are compared with burst 

pressures predicted using the fracture mechanics approach. Figure 8.12 shows the 

comparisons of burst pressures where the burst pressure predicted using design equations 

and those from the tests discussed above are plotted against the burst pressure from FE 
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analysis with the fracture criterion. The solid line (i.e., 1:1 Line) in Figure 8.12 corresponds 

to the equality line. Figure 8.12 shows that burst pressures from the tests lie almost on the 

equality line, indicating that the fracture mechanics based predictions of burst pressure are 

most accurate with respect to the experimental results. The burst pressures predicted using 

the DNV-RP-F101 model are higher than the experimental burst pressures and lie above 

the equality line. The DNV-RP-F101 method thus provides unconservative estimation of 

the burst pressure. The burst pressures calculated using the modified ASME B31G method 

are less than the experimental burst pressure and those from FE calculations, implying that 

the calculated burst pressures are conservative. The burst pressures predicted using the 

model proposed in Mondal and Dhar (2018) are less conservative, as shown in Figure 8.12. 

Figure 8.12 reveals that among different models the burst pressures calculated using FE 

analysis considering the J-integral provide the best match with the test results. While the 

fracture mechanics approach provides a better prediction of burst pressure, some of the 

existing models can be used for conservatively predicting the burst pressure of pipelines 

with corrosion only defects. However, care should be taken in assessing pipelines with 

crack-like defects using existing models; when the crack propagation can be better 

modelled using fracture mechanics.     

8.3.4 Pipeline containing Crack-Like Defect 

Note that the existing models for burst pressure prediction of a corroded pipeline 

employ the length and depth of corrosion in the calculation. Width of the corrosion is not 

used, since conventional FE analysis performed in developing the models showed no 

effects of defect width (Chiodo and Ruggieri 2009). However, the models may not be 
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applicable for crack-like defects, as the J-integrals for a crack-like defect and a corrosion 

defect are expected to be different. The J-integrals for a pipeline with a corrosion defect, 

presented in section 8.2, are calculated here considering a crack-like defect to examine the 

effect of the defect type on the fracture parameter (i.e., J-integral). The depth and length of 

the crack are the same as the depth and length of the corrosion for the pipeline (Figure 8.4), 

i.e., 3.477 mm and 200 mm, respectively. The crack-like defect is modeled using a sharp 

V-notch to avoid the complexity of modelling a uniform crack with a bottom arc, discussed 

earlier (Figure 8.3). The opening of the notch at the pipe surface is 0.01 mm. 

Table 8.5: Dimensions of pipe and corrosion geometries 

Geometries Pipe C5 Pipe C6 Pipe C7 Pipe C8 

Pipe Diameter, D (mm) 508 508 508 508 

Wall thickness, t (mm) 5.7 5.7 5.7 5.7 

Corrosion depth, d (mm) 2.565 3.477 3.762 3.990 

Corrosion length, l (mm) 100 100 100 100 

Corrosion width, w (mm) 30 30 30 30 

 

Figure 8.14 shows a comparison of the maximum J-integrals for a corrosion defect 

and crack-like defect for different internal pressures. It is observed that the J-integral is 

significantly higher for the pipe with a crack-like defect. Thus, although both defects have 

same defect depth and defect length, the pipeline with the crack-like defect is weaker than 

the pipeline with a corrosion defect under internal pressure. The internal pressures 

corresponding to 51 kJ/m2 for (i.e., burst pressure) the corroded pipeline and the cracked 
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pipeline are 7.55 MPa and 4.58 Mpa, respectively. The burst pressure calculated using the 

existing design equation available in the DNV-RP-F101 (2015) is 7.98 MPa. Thus, the 

existing design equation overestimates the burst pressure. Use of the J-integral is therefore 

recommended for the remaining strength assessment of a pipeline with crack-like defects. 

However, calculation of the J-integral remains the major challenge in applying the method 

for the assessment of pipelines. The following section presents a parametric study for 

calculation of the J-integral for different crack-like defects.  

 

 

Figure 8.12: Comparison of Burst Pressures  
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(a) Cross-section (b) Longitudinal section 

Figure 8.13: Schematic diagram of crack-like defect  

 

8.4 Parametric Study on CIC pipe 

As discussed in section 8.3.2, the FE modelling using the J-integral can successfully 

simulate the experimental burst pressure for a pipe with a CIC defect. The FE analysis is 

extended here to conduct a parametric study with various crack dimensions. However, a 

V-notch shaped crack is considered for simplicity in modelling the crack (Figure 8.15). 

The effect of considering a V-notch shaped crack is first examined through simulation of 

a CIC pipe, discussed in section 8.2.2. 

          

Crack-like defect 
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Figure 8.14: Comparison of J-integral for corrosion defect and crack-like defect  

 

Figure 8.16 compares the J-integrals obtained from the V-notch shaped crack and 

blunt tip crack with the same crack depth and crack width. As seen in Figure 8.16, the J-

integrals for the two shapes of cracks are not significantly different at a low stress level 

(i.e., lower internal pressure). However, at high stress levels, the integral for a blunt tip 

crack is much higher. The estimated burst pressures based on Jc=51 kJ/m2 are 7.28 MPa 

and 7.94 MPa, for the blunt tip crack and V-notch crack, respectively. Thus, the burst 

pressure for the blunt tip crack is around 9% less than the burst pressure for the V-notch 

crack. 
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(a) Transverse section (b) Longitudinal section 

Figure 8.15: Cross-section of pipe with CIC defect  

   

 

Figure 8.16: Comparison of blunt crack and V-notch crack in CIC defect 
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The effect of a smooth edge (Figure 8.15) and a sharp edge (Figure 8.17) of the 

crack on the J-integral is also investigated. The modelling of a smooth edged crack is 

complicated and requires a longer time to complete the analysis. However, as shown in 

Figure 8.18, J-integrals calculated using a smooth edged crack and sharp edged crack are 

very close to each other. The calculated burst pressures based on Jc=51 kJ/m2 for two edge 

shapes of the crack (7.94 MPa and 8.16 MPa, respectively) are within around 2.5% for this 

case. Thus, to account for the simplicity in modeling and less analysis time, the cracks with 

sharp edges are used in the parametric study.              

   

 

 

 

Figure 8.17: Crack-like defect with sharp edge  

   

8.4.1 Effect of Crack Depth 

To investigate the effect of crack depth (dc) on the burst pressure of a pipeline 

containing a CIC defect, FE models are developed with different crack depths ranging from 

0.50 mm to 2.00 mm. The length of crack (lc), depth of corrosion (d) and length of corrosion 

(l) are kept constant with a magnitude of 100 mm, 2.0155 mm and 200 mm, respectively. 

Figure 8.19 shows the variation of J-integrals with internal pressure for different crack 

Crack-like defect 

Sharp edge 
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depths. The figure indicates that the J-integral increases with the increase of crack depth. 

The increase of the J-integral with the increase of internal pressure is non-linear. Due to 

the increase of the J-integral, a pipeline with a deeper crack reaches the critical value (Jc=51 

kJ/m2) at a lower internal pressure. Thus, the burst pressure for the pipeline with a deeper 

crack is less. 

 

  

Figure 8.18: J-integral of CIC defect with sharp crack edge and smooth crack edge 
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corresponding internal pressure is also plotted in the figure. The internal pressures 

developed on the pipe wall are calculated using FE analysis. 

 

 

Figure 8.19: J-integral for pipe with CIC defect of different crack depths 

 

   Figure 8.20 shows that the ratio of J/P increases almost linearly with the increase 

of crack depth. The increase of the normalized J-integral is higher at the burst pressure than 

the increase of the parameter J at the yielding of the pipe.        
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Figure 8.20: Variation of J-integrals with crack depths of pipe with CIC defect  
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The burst pressures calculated using the von Mises criterion are higher than the burst 

pressures calculated using the fracture criterion. The differences are greater for higher 

crack depths. Thus, the errors in burst pressure calculations using the von Mises criterion 

are higher for pipes with deeper cracks.     

 

𝑃𝑏 =
2𝑡

(𝐷 − 2𝑡)
𝜎𝑢 (

1 −
𝑑

𝑡

1 −
𝑑

𝑡𝑀

)                                      (8.9) 

where 

𝑀 = √1 + 0.278 ∙ (
𝑙2

𝐷𝑡
)

0.447

× (
𝑑

𝑡
)

−0.718

+ 0.337 ∙ (
𝑙4

𝐷2𝑡2
)

0.717

× (
𝑑2

𝑡2
)

0.504

     

σu = Ultimate tensile strength of pipe material  

8.4.2 Effect of Crack Length 

Similar to the investigation of the effects of crack depths, to investigate the effect 

of crack lengths on the burst pressure of a pipeline containing a CIC defect, four FE models 

are developed with different crack lengths ranging from 50 mm to 190 mm. The depth of 

the crack, depth of corrosion and length of corrosion are assumed to be 0.948 mm, 2.016 

mm and 200 mm, respectively. 

Figure 8.22 shows the variation of J-integrals with internal pressure for different 

crack lengths. The figure indicates that the calculated J-integral is higher for a longer crack. 

However, the effect of crack lengths on the J-integral is not significant, particularly for a 

crack length greater than 150 mm for the considered corrosion dimensions and crack depth.  
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Figure 8.21: Effect of crack depth on burst pressure of pipe with CIC defects  

 

 Figure 8.23 plots non-dimensional burst pressure of the pipeline with a CIC defect 

against the crack depth to crack length ratio (i.e., dc /lc). The burst pressure of the pipeline 

with a CIC defect is normalized by the burst pressure of the pipeline with a corrosion only 

defect (Equation 8.9). The burst pressures calculated using the fracture criterion as well as 

von Mises criterion are compared in the figure. It reveals that the burst pressure decreases 

with the increase of dc /lc ratio. As before, the von Mises criterion provides higher burst 

pressure compared to the fracture criterion.  
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Figure 8.22: J-integral of pipe with CIC defect with different crack lengths 
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Figure 8.23: Effect of crack dimensions on burst pressure of a pipe with CIC defect  
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value of Jc, several other results of burst pressure tests have been successfully 

simulated. The calculated Jc value for X60 steel pipeline is found to be 51 kJ/m2, 

which is significantly less than the value reported in the literature. 

 The study reveals that the fracture mechanics approach used here provides a better 

estimation of the burst pressure observed in the rupture test. However, the 

conventional design equations can reasonably be used for the remaining strength 

assessment of corrosion only defects. Fracture mechanics should be used for 

pipelines containing crack-like defects and crack-in-corrosion defects. 

 The continuum based modelling with the von Mises criterion provides higher burst 

pressure than the J-integral based fracture mechanics criterion. The difference is 

higher for deeper cracks. Thus, the von Mises criterion may not be suitable for 

analysis of a pipe with deeper corrosion. 

 A parametric study with various crack depths and crack lengths indicates that a 

deeper crack significantly reduces the burst pressure. The effect of crack length on 

the burst pressure is found to be insignificant.     
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CHAPTER 9 

Conclusion and Future Work 

9.1 Overview 

The remaining strength assessment of a deteriorating pipeline is required to 

maintain structural integrity of the pipeline in service. The pipelines are often exposed to a 

corrosive environment, leading to wall corrosion during the service life. The remaining 

strength of the corroded pipeline is generally assessed in terms of burst pressure, which is 

the internal pressure at which the pipeline fails. The design codes (i.e., DNV-RP-F101, 

modified ASME etc.) have adopted equations for calculating the burst pressure of corroded 

pipelines. Researchers have identified the limitations of the design equations in the codes 

and are working toward developing the improved models for rationally assessing the burst 

pressure of deteriorating pipelines. Furthermore, the equations for burst pressure account 

only for the internal pressure of pipelines. However, the pipelines are often subjected to 

axial forces and bending moments resulting from external loading and boundary 

conditions. In this research, the improved models for burst pressure prediction for 

deteriorating pipelines are developed including consideration of axial forces and bending 

moments based on extensive finite element analysis using Abaqus. The axial forces and 

bending moments experienced by offshore pipelines are first examined. The burst pressure 

models are then developed for deteriorating pipelines under internal pressure only and with 

axial force and bending moment. The findings from the relevant chapters of the thesis are 

summarized in the following sections.    
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9.1.1 Forces Experienced by Surface-Laid Offshore Pipelines 

The Chapter 3 of the thesis presents a study on the internal forces experienced by 

an offshore energy pipeline. The study is conducted for a seabed condition observed 

offshore from Newfoundland and then a parametric study is conducted. The major 

conclusions from this study include:  

 The offshore energy pipelines laid on the imperfect/undulated seabed have different 

shapes, initial imperfections, depending on the shapes of the seabed profiles and 

material properties. During the development of the initial imperfection, the axial 

forces and/or bending moments develop in the pipe wall.  

 The axial compressive forces and/or bending moments are also developed in the 

pipe wall during operation at a high temperature and high pressure. These axial 

forces and/or bending moments along with internal pressure should be considered 

for structural integrity assessment of the pipelines.   

9.1.2 Existing Burst Pressure Models  

An evaluation of the existing burst pressure models such as the modified ASME, 

CSA Z662-15, DNV-RP-F101, LPC-1, Shell 92 etc. using detailed FE analysis is presented 

in Chapter 4. The major findings from this study are: 

 The DNV-RP-F101 design code provides unconservative burst pressure with 

respect to FE results. The modified ASME code provides both conservative and 

unconservative burst pressure with respect to FE calculation. The CSA and Shell 

92 codes provide overly conservative estimation of the burst pressures. The LPC-1 
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method appears to provide the most reasonable calculation of the burst pressures 

among the methods discussed herein for the ranges of pipelines investigated. 

 The discrepancies in the burst pressures provided by different methods are mainly 

due to the different definitions of the flow stress and the burst pressure reduction 

factor. The flow stress depends on the material strength and the burst pressure 

reduction factor depends on the geometric parameter. 

 The geometric parameter in the burst pressure reduction factor is defined in terms 

of the Folias factor, M, which is expressed in terms of corrosion length (l), pipe 

diameter (D) and wall thickness (t). However, the FE evaluation revealed that the 

Folias factor also depends on the defect depths. Therefore, further research is 

recommended to develop an improved model of the Folias factor.    

9.1.3 Improved Burst Pressure Models  

The Chapter 5 includes an improved burst pressure model developed for pipelines 

with a single corrosion defect under the load of internal pressure only. 

 The study reveals that the Folias factor decreases with pipe size, increases with 

defect length and decreases with defect depth. An improved equation of the Folias 

factor is developed as the function of pipe dimensions, corrosion length and 

corrosion depth, capturing the effects of the parameters influencing the Folias 

factor.  

 The revised burst pressure model is developed using the theory of thick walled 

cylinder and the Folias factor proposed in the current study.  The evaluation of the 
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proposed burst pressure model shows that the proposed model provides reasonable 

lower bound estimations of the burst pressures obtained from FE analyses. 

 The proposed burst pressure model has been evaluated using test burst pressures 

obtained from published literature and was found to provide a reasonable lower 

bound estimation of the test burst pressures. 

9.1.4 Interaction of multiple corrosion defects  

Corrosion in a pipeline often occurs in multiple patches those sometimes act as a 

single defect or as separate independent defects depending on the distance between the 

defects. The Chapter 6 presents an evaluation of existing codes of practice for multiple 

defects and proposes new interaction rules.  

 The existing design standards define interaction rules depending on the pipe 

dimensions and corrosion lengths. However, the FE evaluation of the interaction 

rules shows that the interacting distance depends not only on pipe dimensions and 

corrosion length but also on corrosion depth. Two new interaction rules have been 

developed including the effect of pipe dimensions and corrosion depth.  

 The new interaction rules are expressed in terms of wall thickness, ‘t’, and (√(Dt). 

However, the spacing expressed in terms of ‘t’ showed better performance.  It is, 

therefore, reasonable to define the interaction rule using pipe wall thickness (t) 

rather than √(Dt)). 



215 
 

 The new interaction rules presented here are developed considering two base 

defects (i.e., 60 mm and 120 mm) for 300 mm, 500 mm and 762 mm diameter pipes 

with a D/t ratio of around 30.   

9.1.5 Effects of Axial Forces and Bending Moments 

As mentioned earlier, offshore energy pipelines are subjected to axial forces and 

bending moments in addition to internal pressure. The burst pressure of a corroded pipeline 

is affected by the axial force and bending moment acting on the pipeline. The Chapter 7 

presents an investigation of the effects of axial force and the bending moment on the burst 

pressure of corroded pipelines using FE analysis. 

 The study shows that the axial compressive force and closing bending moment 

reduce the burst pressure more significantly than the tensile axial force and opening 

bending moment. Therefore, the compressive axial force and closing bending 

moment are considered to develop failure loci of corroded pipelines subjected to 

axial forces and bending moments. 

 The DNV-RP-F101 design standard recommends considering the effect of axial 

force and/or the bending moment for the prediction of burst pressure of a corroded 

pipeline. However, the recommended method provides unconservative burst 

pressure when the ratio of the resultant axial compressive stress to the material 

ultimate tensile strength is smaller than 0.25. The method is applicable for the ratio 

of hoop stress to the longitudinal stress of 2.  
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 A parametric study conducted here reveals that the normalized burst pressure of 

corroded pipelines depends on corrosion depths and load combinations. The 

corrosion length and pipe dimensions have insignificant effects. Therefore, the 

failure loci have been developed for different corrosion depths and load 

combinations. 

 The developed failure loci can be used for assessing the burst pressure of corroded 

pipelines with known axial force and bending moment.  

   9.1.6 Application of Fracture Criterion  

In the conventional method of FE modelling for the assessment of burst pressure of 

corroded pipelines, the von Mises stress along the pipe thickness is examined. However, 

this approach is unable to capture the effects of cracking of the pipe wall. In order to better 

model the cracking of a pipe wall, fracture mechanics is employed, which is discussed in 

the Chapter 8. 

 A J-integral based failure criterion considered is suitable for fracture assessment of 

corroded pipelines. The J-integral at a crack location is calculated using the contour 

integral method. The XFEM technique is used to determine the crack location.  

 The critical J-integral, Jc, (i.e., fracture toughness) back-calculated from the burst 

test result is found to be reasonable for the failure assessment of the corroded 

pipeline with a corrosion only defect, crack-in-corrosion defect and crack-like 

defect. 
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 The von Mises failure criterion provides a higher burst pressure of defected 

pipelines compared to the fracture mechanics criterion. The difference is greater for 

increased crack depth. 

 The study indicates that the fracture criterion should be a useful tool for the failure 

assessment of a corroded pipeline.  

9.2 Recommendations for Future Work 

9.2.1 Effect of Loads 

 In the current research, the effect of axial force and the bending moment on the 

burst pressure of corroded pipelines have been investigated using FE analysis. The 

FE model was validated using test burst pressure obtained from the published 

literature. Using that validated FE model, the failure loci for combined loading have 

been developed. The burst pressure of a corroded pipeline subjected to an axial 

force and a bending moment is not available in the literature. Therefore, laboratory 

tests are recommended to evaluate the developed failure loci using the test results. 

9.2.2 Interacting Defects 

 The proposed new interaction rules for pipelines containing multiple interacting 

defects have been developed considering one pipe material, two different corrosion 

lengths and one corrosion width. Further study is recommended to investigate the 

effect of material properties on the limiting interacting distance. A comprehensive 

investigation is recommended using different corrosion lengths and corrosion 

widths.  
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 Similar to the investigation of the effects of loading, the new interaction rules have 

been developed using FE analysis. Experimental investigation is recommended to 

validate the proposed interaction rules for predicting the burst pressure.   

9.2.3 Application of Fracture Mechanics 

 In the current research, pipelines containing crack-like defects have been 

investigated using the J-based fracture mechanics criterion. It was observed that the 

J-based fracture toughness determined by a single edge bent test is not same as the 

J-integral at failure of the pipelines subjected to internal pressure. The research is 

required to determine the fracture toughness of the pipe material. 

 This research introduces fracture parameters for the remaining strength assessment 

of pipelines. The fracture mechanics approach could extensively employed for 

failure assessment of pipelines. Particularly, the pipeline containing a crack-like 

defect or CIC defect are also subjected to combined loads of internal pressure, axial 

force and/or bending moment during operation. A study is required to develop the 

failure loci for pipelines with a crack-like defect or CIC defect subjected to 

combined loads of internal pressure, axial force and a bending moment.  

9.2.4 Study on Buried Pipelines 

 The current study has focused on the remaining strength of surface-laid pipelines. 

In reality, the pipelines are not always laid on the surface, but often buried in the 

ground. The remaining strength assessment for buried pipelines would be within 

the scope of future research. 
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