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Abstract

The permeation of gasotransmitter molecules, NO, CO and H2S, through phospholipid

bilayers were studied using molecular dynamics simulations in order to gain insight

into the process by which these solutes cross biological membranes. These simulations

require accurate representations of both lipids and water components of the simula-

tion. The CHARMM36 lipid model is generally effective at predicting the properties

of lipid bilayers, but this model was developed for use with CHARMM TIP3P water

model. This water model overestimates the dielectric constant and diffusion coefficient

of water, which introduces error into the permeability calculations. The TIP3P-FB

and TIP4P-FB water models are more accurate in predicting the dielectric constant

and transport properties of water, which could allow for more realistic simulations

of membrane permeation. To validate whether these water models are compatible

with the CHARMM36 lipid model, the lipid headgroup area, compressibility, order

parameters, and scattering form factors were calculated using these models and were

generally found to be in good agreement with the experimental values. This indi-

cates that the CHARMM36 model can be used with either of these water models

without modification. Using the TIP4P-FB water model and the CHARMM36 lipid

force field, the permeation of NO, CO, and H2S through a POPC lipid bilayer was

simulated. These simulations show that the Gibbs energy barriers to permeation are

modest for all three gasotransmitters, allowing them to permeate membranes readily.

High rates of permeation for NO and H2S were calculated using the inhomogeneous

solubility–diffusion model, in good agreement with experiments. Although no exper-

imental value has been reported, the rate of CO permeation was found to be similar

to that of NO. The effect of cholesterol content in the bilayer was also investigated

and was found to lower the rates of permeation modestly.
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Chapter 1

Introduction

Biological cells and the organelles within these cells are separated from their en-

vironments by thin membranes. These membranes are largely composed of am-

phiphilic lipid molecules, which contain a hydrophilic head group linked to hydropho-

bic tail groups. The most abundant types of biological lipids are phospholipids, which

have a phosphate-containing head group linked to two linear fatty-acid-derived tail

groups through a glycerol-derived group. These lipids self-assemble to form a bilayer-

structure composed of an upper and lower leaflet. The polar head groups of each

leaflet face the solution, while the tail groups of each leaflet form a fluid membrane

interior with properties that are similar to long-chain alkane fluids in some respects.

A schematic lipid bilayer is shown in Figure 1.1. Refs. [1] and [2] provide a more

detailed discussion of elementary membrane physiology.

1.0.1 Chemical Composition and Nomenclature of Lipids

A wide variety of lipids are present in biological membranes. The chemical composi-

tion of the headgroup, linkage, and tail groups can all vary. Phosphocholine, where

the phosphate group is bound to a −N(CH3) +
3 group, is one of the most common
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Figure 1.1: Schematic lipid bilayer. The water solution is represented by blue circles.
Lipid headgroups are shown as circles and the lipid tails are the lines extending from
these circles. The upper leaflet is shown in red and the lower leaflet is shown in green.
This figure is adapted with permission from Ref. [3].

types of lipid headgroups. The lipid tails can also vary in length and by partial un-

saturation of the chain. In addition to various phospholipids, membranes also contain

other components, including cholesterol and membrane proteins [4].

The complex composition of real membranes has led to the practice of developing

simpler membranes to serve as models [5]. Some of these model bilayers contain only

a single type of lipid that is considered representative of the membrane [6]. Popular

model membranes include 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Other model membranes

are more complex due to the inclusion of a second component, like cholesterol [7].

The chemical structures of these lipids are presented in Figure 1.2.

1.0.2 Physical Properties of Lipid Bilayers

The variety of chemical compositions, conditions, and environment can result in lipid

bilayers that have a wide range of structures and dynamics. These are characterised
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by a set of physical properties. The thickness of the membrane can be described by

the average distance between head groups or the average thickness of the acyl layer. In

biological membranes, the headgroup–headgroup distance is typically about 40 Å [8].

The lipid headgroup area indicates the average surface area per lipid (AL) of a bilayer.

The headgroup area of a given lipid depends on the interactions between head groups,

the hydration of the headgroups, and the packing and cohesion of the hydrocarbon

tails [9]. Beyond the general structural parameters of thickness and headgroup area,

NMR orientational order parameters, electron density profiles, compressibility, and

other properties can also be used to describe the structure and dynamics of lipid

bilayers [10]. The prediction of these properties is one way to test the validity of a

model for a lipid bilayer [11].

1.1 Membrane Permeability

Cellular processes, like metabolism and signaling, require the passage of solutes across

the membrane. Specialized membrane proteins selectively facilitate the passage of spe-

cific compounds, including ions [12] and sugars [13]. Other compounds can permeate

directly through the lipid bilayer [14]. The rate at which a compound can pass through

a bilayer can be described by the flux (J), which is the product of the concentration

gradient (∆C) across the bilayer and the permeability coefficient, Pm (Eqn. 1.1) [15].

J = −Pm ·∆C (1.1)

The permeability coefficient depends on the composition of the membrane, the

state of the system (e.g., temperature, T ), and the properties of the molecule perme-

ating. Models for understanding why bilayers are more permeable to some molecules
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than others go back to the Meyer–Overton rule, which was developed from the ob-

servation that more hydrophobic molecules permeate membranes faster [16, 17]. This

rule can be justified through a simple phase partitioning argument; to permeate a

membrane, a solute must be removed from the aqueous solution and partition into

the hydrophobic membrane interior. This partitioning will occur more readily for

hydrophobic compounds.

Quantitative calculations of membrane permeability are possible using the inho-

mogeneous solubility–diffusion model, which defines Pm in terms of the Gibbs energy

profile (∆G(z)) and the diffusivity (D(z)) of the permeating solute as a function of

its position, z, along the transmembrane axis, and L is the thickness of the bilayer

[18, 19, 20, 21]:

1

Pm
=

∫ L/2

−L/2

e∆G(z)/RT

D(z)
dz (1.2)

Here, R is the gas constant and T is the temperature. The Gibbs energy and

diffusivity profiles can be calculated using molecular simulations or estimated based

on experimental data [22, 23]. In this model, the rate at which solutes permeate

the membrane depends exponentially on the degree to which the solute can partition

inside the membrane (i.e., the ∆G term) and depends linearly on its rate of diffusion

inside the membrane, although both these terms can vary as a function of the bilayer

depth (z).

The rate of permeation of small molecules such as H2S across cell membranes is

an important parameter in drug design and toxicology [24]. The solubility–diffusion

model provides a means to calculate the membrane permeability coefficient of solutes

using molecular simulations.
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1.2 Permeation of Gases

Gas molecules play an important role in biochemistry. The most prominent exam-

ples are the gases O2 and CO2, which are involved in respiration. More recently,

other gases have been found as serving biological roles. CO, NO, and H2S have all

been found to have endogenous biochemical roles as signaling molecules [25]. They

are most significant as signalling molecules, so they have been termed “gasotrans-

mitters.” Although these gasotransmitters are highly toxic and hazardous in higher

concentrations, in trace amounts, they serve a range of functions, such as regulation

of the cardiovascular and nervous systems [26].

To serve their biological roles, gases must cross the biological membranes. Experi-

mental and computational studies have concluded that O2 and CO2 can permeate cell

membranes readily [27, 28, 29, 30, 31]. This is consistent with the solubility–diffusion

model for membrane permeability because these non-polar molecules have a low sol-

ubility in water, so they tend to partition into the interior of the lipid bilayer [20].

The permeability of gasotransmitters is more controversial. Some researchers have

concluded that gasotransmitters NO and H2S can permeate cell membranes passively

[22, 32, 33], while others have proposed that they pass through membrane-protein

facilitators [34]. The permeability of CO has received less attention, although a com-

putational study by Sugii et al. [35] concluded that it permeates membranes readily.

A rigorous computational study would help resolve this debate.

1.2.1 Computer Simulation of Lipid Bilayers

The inherent disorder of lipid bilayers makes it necessary to describe the dynamics of

these systems in order to capture the full complexity of their structure and dynamics.

Molecular Dynamics (MD) simulations have been a very effective method for modeling
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lipid-containing systems [36]. MD is used to simulate the motions of lipid, solvent,

and other components of the system. These simulations are used to calculate the

physical and transport properties of the system.

MD simulations rely on an integration algorithm that predicts the positions of the

atoms at a small increment of time in the future (time step, δt) given the past motions

of the system. The velocity Verlet algorithm is one popular MD algorithm [37]. The

Verlet equation approximates the position of particles one time step in future from

present time by using a Taylor series approximation [38]. This method predicts the

positions of the atoms of the system at time t+ δt based on the current positions (r),

velocities (v), forces on the atoms (F), and the atomic masses (m). The equations

to calculate the successive timesteps using the velocity Verlet algorithm are given in

Eqns. 1.3 and 1.4.

r(t+ δt) = r(t) + v(t) δt+
1

2m
F(t)δt2, (1.3)

v(t+ δt) = v(t) +
F(t) + F(t+ δt)

2m
δt. (1.4)

This type of finite-step integration of the equations of motion is inherently ap-

proximate and the magnitude of the error has a quartic dependence on the length of

the time step (i.e, O(δt4)). To limit this source of error, the time step for simulations

of molecular systems must be small (δt ≈ 1− 2 fs) [39].

Standard Verlet integration of the equations of motion will sample the Microcanon-

ical ensemble (NVE). For situations where it is necessary to sample the Isothermal-

isobaric (NpT) or an Isothermal-isochoric (NVT) ensemble, the integration must be

modified. To sample the canonical ensemble at a given temperature, T , the dynamics

are coupled to a thermostat. For example, a Langevin thermostat is often used in
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MD simulations of biomolecules [40]. Simulations of an isothermal-isobaric ensem-

ble couple the equations of motion for the MD to both a thermostat and a barostat

[41, 42].

To start a simulation, the atoms are assigned random velocities drawn from a

Maxwell–Boltzmann distribution for the chosen temperature [43]. The MD algorithm

is then iterated until a sufficient period has been calculated to provide sufficient sam-

pling of the configurations available to the atoms of the system.

1.3 Force Fields

In order to perform an MD simulation, there must be a way to calculate the potential

energy (V) and forces on the atoms comprising the system for a given configuration of

atoms. For large biomolecular systems, this is typically achieved by using molecular

mechanical models. These models provide a simple, computationally-efficient descrip-

tion of the system. Atoms are typically represented as single point masses with partial

atoms charges (q) assigned to represent the distribution of charge inside the molecules.

A force field is a mathematical description that is used to model how atoms and

molecules interact with each other at the atomic and molecular level. The mathemati-

cal form of the force field is developed to capture the essential intra and intermolecular

interactions that describe the relative potential energy of the possible conformations

and intermolecular arrangements of molecules in the condensed phase.

The potential energy terms in a force field consist of both bonded (Vbonded) and

non-bonded (Vnon−bonded) terms [44]:

Vtotal = Vbonded + Vnon−bonded. (1.5)

The bonded term describes interactions of atoms that are linked by covalent bonds.
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Bond stretches (Vbond) and bond-angle bending (Vangle) are typically represented as

simple harmonic oscillators. Rotations around dihedral angles (Vdihedral) are repre-

sented using a sum of periodic functions:

Vbonded =
bonds∑
ij

kb,ij(rij − req,ij)2 +

angles∑
ijk

kθ,ijk(θijk − θeq,ijk)2+

dihedrals∑
ijkl

∑
m

kφ,ijkl,m cos (nm(φ− τm)) ,

(1.6)

where req,ij is the equilibrium bond length, θeq,ijk is the equilibrium angle, kb,ij and

kθ,ij are the force constants, nm is the number of periods in the potential for the

complete rotation of this angle (i.e., its multiplicity), φijkl is the torsional angle, and

τm is the phase angle for torsional parameters.

The non-bonded component of the potential energy,

Vnon−bonded =

pairs∑
ij

[
4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

+
1

4πε

qiqj
rij

]
, (1.7)

consists of two components. The first is the 12-6 Lennard-Jones potential [45], which is

intended to capture the repulsive and van der Waals interactions between atoms. The

second term is Coulomb’s law, which is intended to represent electrostatic interactions

between partial atomic charges (q).

Here σ and ε are the Lennard-Jones well depths and radii for a given pair of

atoms respectively, qi is the partial charge of atom i, and ε is the vacuum permittivity

constant. The equations used to describe the forces on the atom are collectively

referred to as the force field [46].
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1.4 Force Field Parameterization

Although most popular force fields calculate the potential energy of the system using

an expression like Eqn 1.7, there are many definitions of the parameters required by

this equation. A force field defines parameters for each atom type, chemical bond,

dihedral angle, etc. Accurate parameters are very important in MD simulations be-

cause parameters that do not provide realistic predictions of the potential energy of

the system will sample an incorrect distribution of conformational states.

Several molecular mechanical parameter sets for lipids have been developed, in-

cluding the GROningen MOlecular Simulation (GROMOS) [47], Slipids [48], and

Chemistry at HARvard Macromolecular Mechanics (CHARMM36) [49] parameters.

Several studies have evaluated the ability of these models to predict the physical prop-

erties of lipid bilayers in order to validate these models. The CHARMM36 lipid force

field has performed well on assessments of lipid headgroup areas, orientational order

parameters, scattering data, etc.[11]

Simulations of water–lipid systems also require the selection of a molecular me-

chanical model for water. The solvation of the lipid head group has a significant

effect on the properties of the lipid bilayer. The solubility difference that determines

the rate of permeation is dependent on the solvation energy of the permeating so-

lute. As a result, an accurate and robust model for water is essential for quantitative

calculations of lipid systems. The CHARMM36 lipid model was developed for use

with the CHARMM-modified variant of the Transferable Intermolecular Potential

with 3 Points (TIP3P) water model. This modified model is denoted in this thesis as

mTIP3P. The original TIP3P model was developed by Jorgensen et al. in 1983 [50].

This model has an anomalously high dielectric constant and self-diffusion coefficient,

which limits its accuracy in the calculation of quantities like permeability coefficients
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[51, 52]. TIP4P-FB and TIP3P-FB are two water models that are optimized using

the ForceBalance (FB) software [53]. These reparameterized water models are more

accurate in terms of the dielectric constant and transport properties, which could

allow for more accurate simulations of systems containing water and lipids, although

these models have not been validated for use with the CHARMM36 lipid force field.

1.5 Calculation of Gibbs Energies

The relative Gibbs energies of configurational states are not immediately available

from a conventional MD simulation. Instead, Gibbs energies are often calculated

using specialized simulation algorithms. The methods used in this thesis are briefly

summarized here.

1.5.1 Umbrella Sampling

Calculation of membrane permeability using the solubility–diffusion model requires

the Gibbs energy profile of the translocation of the solute along the transmembrane

axis (z). Conventional MD simulations sample the Boltzmann distribution of states,

where the probability (P ) that the solute will be located at position r is exponentially

dependent on the potential energy (V) of that configuration:

P (r) ∝ exp

(
−V(r)

RT

)
. (1.8)

As the probability a state is sampled decreases exponentially with its potential

energy, higher energy configurations will only be sampled rarely. As a consequence,

higher energy portions of the Gibbs energy profile, such as the reaction barriers, may

not be sampled sufficiently in a conventional MD simulation.

Umbrella sampling is a simulation method that allows complete Gibbs energy
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profiles to be calculated efficiently [54, 55]. These calculations use the combined data

of multiple equilibrium MD simulations where the solute is restrained to different

positions along the z coordinate. Commonly, harmonic restraints are employed, where

krest is the spring constant and the reference position of the restraint is z0,i so that

Vumb,i(r) =
1

2
krest (z − z0,i)

2 . (1.9)

Simulations using this biased potential will yield a biased probability distribution,

Pbiased,i(r) ∝ exp

(
− [V(r) + Vumb,i(r)]

RT

)
. (1.10)

The unbiased probability distribution can be deduced from this biased probability

distribution by using the rules of exponents to separate the exponential distribution

in Eqn. 1.10:

Pbiased,i(r) ∝ exp

(
−V(r)

RT

)
· exp

(
−Vumb,i(r)

RT

)
. (1.11)

The first exponential factor on the the right hand side of this equation is the unbiased

probability distribution, so the biased probability distribution can be related to the

unbiased distribution,

Pbiased,i(r) ∝ Punbiased,i(r) · exp

(
−Vumb,i(r)

RT

)
. (1.12)

A range of methods can be used to combine these probability distributions into a

single Gibbs energy profile. In this thesis, the Weighted Histogram Analysis Method

(WHAM) is used [56]. This method generates histograms describing the biased proba-

bility distributions into discrete bins along the profile. WHAM calculates the relative

Gibbs energy offset of each of these distributions on the profile using an iterative,

self-consistent algorithm, which provides an unbiased probability distribution of the
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full profile (Punbiased). The Gibbs energy of bin k (∆Gk) can be calculated from this

probability distribution using the relation,

∆Gk = −RT lnPunbiased,k. (1.13)

1.5.2 Free Energy Methods

Umbrella sampling can be used to calculate the Gibbs energy profile along a coordi-

nate, but the solvation of a solute requires a different approach. Molecular solvation

energies are generally calculated by an “alchemical” decoupling scheme, where the

Gibbs energy required to “turn off” the molecule–solvent intermolecular interactions

is calculated. This is effected by defining two equations for the potential energy of

two states, V0 and V1. A new potential, Vλ, is defined as a linear combination of these

two potentials where λ is a scalar coupling parameter that ranges between 0 and 1:

Vλ = (1− λ)V0(r) + λV1(r). (1.14)

In this context, V0 is the potential energy of the system for a state where a mode

of interaction is at its normal strength (e.g., electrostatic, dispersion...) and V1 is the

potential energy of the system when the strength of the interaction is zero.

The relative Gibbs energies of these states can be calculated by the process of

thermodynamic integration [57], where the derivative of Vλ is integrated with respect

to the coupling parameter λ:

∆Gλ=0→λ=1 =

∫ λ=1

λ=0

〈
∂Vλ
∂λ

〉
λ

dλ. (1.15)

Alternatively, the relative Gibbs energies of the two states can be calculated using

the free energy perturbation (FEP) technique [58]. In this method, an MD simulation
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is performed using the potential energy function of the first state and the relative

Gibbs energy is calculated from an ensemble average of the Boltzmann-weighted dif-

ference of the potential energy in the two states:

∆Gλ=0→λ=1 = −RT ln

〈
exp

(
−[Vλ=1 − Vλ=0]

RT

)〉
0

. (1.16)

These methods can be used to calculate the solvation energy of a solute by defining

two states of the system. In first state, the solute interacts with the solvent through

the standard intermolecular interactions. In the second state, these interactions are

entirely absent. This procedure can be divided into stages where the electrostatic,

dispersion, and repulsive components of the solvation energy are calculated in succes-

sive steps. The sum of the Gibbs energies of each component yields the total solvation

energy:

∆G = ∆Gelec. + ∆Gdisp. + ∆Grepul.. (1.17)

The electrostatic component can be performed through a straightforward TI cal-

culation where the solute charges are their standard values in the beginning state but

are set to zero in the final state.

Calculation of the dispersion and repulsive components is more complex because

conventional force fields combine these force into the Lennard-Jones potential. One

popular route is the Weeks–Chandler–Andersen decomposition [59]. In this decom-

position, the original Lennard-Jones potential is recast as the sum of repulsive and

dispersion components:

VLJ(r) = Vrep.(r) + Vdisp.(r). (1.18)
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The dispersion interaction is defined by the shifted potential:

Vdisp.(r) =


−εij, r ≤ R∗ij

εij

[(
R∗ij
r

)12

− 2
(
R∗ij
r

)6
]
, r > R∗ij

(1.19)

In this equation, R∗ij is the average of the radii of the minima of the Lennard-Jones

interaction of like pairs i and j (i.e., R∗ij = (R∗ii+R∗jj)/2). The Gibbs solvation energy

corresponding to this interaction can also be calculated by a standard TI calculation

where the magnitude of dispersion term is scaled to zero, leaving only the repulsive

potential.

The solvent–solute repulsive interactions require special attention. These inter-

actions cannot be continuously scaled to zero because the polynomial form of the

Lennard-Jones 1/r12 repulsive term becomes infinite as r → 0. Instead, free energy

perturbation (FEP) techniques can be used, where the Gibbs energy of decoupling

the repulsive component of the solute from the solvent is calculated by calculating the

sum of the Gibbs energies to increase a scaling parameter, s, from 0 (non-interacting)

to 1 (fully-interacting). The potential energy for pairwise interactions is rewritten to

depend on s such that it decreases to zero continuously as s→ 0 (Eqn. 1.20).

Vrep (r; s) =


εij

{
(R∗ij)12

[r2+(1−s)2(R∗ij)2]
6 −

(R∗ij)6

[r2+(1−s)2(R∗ij)2]
3 + 1

}
, r ≤ R∗ij

√
1− (s− 1)2

0, r > R∗ij
√

1− (s− 1)2

(1.20)

Deng and Roux [60] found that 9 stages were sufficient to sample the repulsive com-

ponent of the Gibbs energy of solvation (s = 0.0 → 0.2, 0.2 → 0.3, 0.3 → 0.4, 0.4 →

0.5, 0.5→ 0.6, 0.6→ 0.7, 0.7→ 0.8, 0.8→ 0.9, and 0.9→ 1.0). Using these methods,

solvation energies of molecules in liquids can be calculated rigorously.
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A limitation of these methods is that the MD simulations may be inefficient in

sampling the configuration space because of large changes in the hydration struc-

ture that may accompany the decoupling of the solute from the solvent. This can

be addressed in part using replica exchange MD. In this method, the simulations of

all Thermodynamic Integration / Free Energy Perturbation (TI/FEP) windows and

stages are performed simultaneously on different computing processors. Periodic at-

tempts are made to exchange the configurations of neighboring “replicas”, which are

typically those with the most similar λ and s values. The potential energy change that

results from the exchange replicas i and j is calculated (∆V = Vj(ri) − Vi(rj)) and

used to calculate the acceptance probability of the exchange based on the Metropolis

criterion [61]:

Pacc(i←→ j) =

 1, ∆V < 0

exp
(−∆V
RT

)
, ∆V ≥ 0

(1.21)

The theory and methods of replica exchange MD is described in Refs. [62] and

[63].

1.6 Thesis Outline

An accurate, atomic-scale model would make it possible to better understand the

interactions between gasotransmitters and cell membranes. In this thesis, molecular

simulation methods are validated and then applied to model the membrane perme-

ation of the gasotransmitters. In Chapter 2 the evaluation of the CHARMM36 lipid

model with the TIP3P-FB and TIP4P-FB water models is presented. These water

models would resolve issues in membrane permeation simulations that stem from the

high dielectric constant and low viscosity that is present when the standard TIP3P
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water model is used. In Chapter 3, we make use of the water model validated in

Chapter 2 to perform more accurate calculations of the permeation of gasotransmit-

ters through model membranes. The effect of the cholesterol content of lipid bilayers

on the permeation of these compounds is also explored.



Chapter 2

Simulations of Lipid Bilayers Using

the CHARMM36 Lipid Model and

the TIP3P-FB and TIP4P-FB

Water Models

Some of the content of the chapter has been published in the journal PeerJ :

Sajadi, F., Rowley, C. N., Simulations of lipid bilayers using the CHARMM36 force

field with the TIP3P-FB and TIP4P-FB water models, PeerJ, 2018, e5472, DOI:

10.7717/peerj.5472

2.1 Abstract

The CHARMM36 force field for lipids is widely used in simulations of lipid bilayers.

The CHARMM family of force fields was developed for use with the mTIP3P wa-

ter model. This water model has an anomalously high dielectric constant and low
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viscosity, which limits its accuracy in the calculation of quantities like permeability

coefficients. The TIP3P-FB and TIP4P-FB water models are more accurate in terms

of the dielectric constant and transport properties, which could allow more accurate

simulations of systems containing water and lipids. To test whether the CHARMM36

lipid force field is compatible with the TIP3P-FB and TIP4P-FB water models, we

have performed simulations of DPPC and POPC bilayers. The calculated lipid head-

group area, compressibility, orientational order parameters, and X-ray form factors

are in good agreement with the experimental values, indicating that these improved

water models can be used with the CHARMM36 lipid force field without modification

when calculating membrane physical properties. The water permeability predicted

by these models is significantly different; the mTIP3P-model diffusion in solution and

at the lipid–water interface is anomalously fast due to the spuriously low viscosity of

mTIP3P-model water, but the Gibbs energy profile of permeation is higher for the

TIP3P-FB and TIP4P-FB models due to their high excess chemical potentials.

2.2 Introduction

Realistic molecular dynamics (MD) simulations of lipid-containing systems like bilay-

ers, vesicles, and membrane–protein systems require accurate molecular mechanical

force fields for lipids. A variety of lipid models have been developed, including the

Berger [64], Slipids [48], and the CHARMM models [49]. These models have been

carefully parametrized using ab initio data and the empirical properties of bilayers.

The performance of these models is evaluated based on their ability to predict empir-

ical data regarding the structure and dynamics of lipid properties.

A common practice in evaluating force fields has been to evaluate the ability of

these models to predict physical descriptors of lipid bilayers. The headgroup area (AL)
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corresponds to the average surface area occupied by one lipid in the bilayer. The area

compressibility (KA) of the bilayer indicates the energetic cost of an elastic expansion

of the bilayer surface area. Poger et al. [10] noted that these properties are inferred

from several different experimental techniques, so the range of reported experimental

values can be broad, including for lipids that are commonly used in simulations.

Scattering experiments have provided more direct data to validate the ability of

force fields to predict the structure of bilayers [65, 66, 67, 68, 69, 70]. Form factors from

X-ray scattering experiments can be used to infer the transmembrane electron density

distribution (ρ(z)), which is particularly sensitive to the position of phosphates of the

lipid headgroups. Neutron scattering can be used to calculate Neutron Scattering

Length Density (NSLD) profiles as a function of bilayer depth. The NSLD profiles

from neutron scattering experiments were performed with D2O because there is a

sharp difference between the scattering lengths of the aqueous deuterons and the lipid

protons, providing a measure of the hydrophobic thickness of the bilayer. The X-ray

and neutron scattering profiles calculated from MD simulations can be compared to

the profiles inferred from these experiments. The experimental and calculated form

factors can be compared directly [69].

Orientational order parameters are another method for validating lipid models

[71]. The orientational order parameters (SCH) of the head groups and acyl chains of

the lipid tails provide a measure of the configurational flexibility of the lipids tails as a

function of position along the lipid chain. These parameters can be determined from

the Nuclear Magnetic Resonance (NMR) coupling constants of lipids. This provides an

experimental test of the predicted conformational flexibility of the lipids as a function

of the bilayer depth.

The development of lipid models is ongoing because some properties of lipid bi-

layers have proven difficult to predict accurately using existing models. For example,
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established non-polarizable force fields typically overestimate the membrane dipole

potential (MDP, φ(z)) of lipid bilayers [72]. MDP arises from changes in the electro-

static potential between the solution and the various components of the bilayer, and

reflects the average strength of interaction of a test charge at different bilayer depths

[73].

The CHARMM36 lipid model has proven to be quantitatively accurate for lipid

bilayer properties such as thickness, headgroup area, orientational order parameters,

and form factors [49]. Simulations of lipids require the selection of a model for the

water molecules in the system. The CHARMM36 lipid model was parameterized for

use with the mTIP3P water model. This water model underestimates the viscosity of

liquid water [51], resulting in spuriously high rates of self-diffusion. This model also

overestimates the dielectric constant of water [52], so the physical description of the

partitioning of charged or polar solutes between the aqueous solution and the bilayer

interior is imperfect. These issues are sources of error in quantitative calculations

of some membrane processes, particularly for transport properties like the rate of

permeation of water and other solutes across a bilayer [23, 74, 75].

Table 2.1: Physical properties of water predicted by the mTIP3P, TIP3P-FB, and
TIP4P-FB water models (298.15 K, 101.325 kPa). TIP3P-FB and TIP4P-FB values
are reproduced from Ref. [53].

property expt. mTIP3P TIP3P-FB TIP4P-FB
density (ρ) / g cm−3 0.997 0.98 0.995 0.996
enthalpy of vaporization (∆Hvap)
/ kcal mol−1 10.52 9.81 10.71 10.80
dielectric constant (ε) 78.5 104 81.3 77.3
diffusivity (D) / 10−5 cm2 s−1 2.29 6.48 2.28 2.21

The predicted properties of liquid water vary significantly with how the molecular

mechanical model represents the structure and intermolecular interactions of water

molecules [76, 77]. The TIP3P model was developed in 1983 by Jorgensen et al. [50].
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This model features partial atomic charges centered on the hydrogen and oxygen

atoms and holds a rigid geometry that is consistent with water in the liquid phase

( 6 HOH = 104.5◦, rOH = 0.9572 Å). In the original TIP3P model, there is a single

Lennard-Jones interaction potential between oxygen atoms, but there is a popular

variant where there are also Lennard-Jones sites on the hydrogen atoms. This model

is referred to as the mTIP3P or CHARMM TIP3P model. The structures and param-

eters of these models are presented in Figure 2.1. The mTIP3P model has been used

in the development of the CHARMM force fields, so this model has been prescribed

for use in simulations using these force fields. To be consistent with this practice, in

this chapter, the properties of the standard CHARMM36 bilayer models are accessed

using the mTIP3P water model rather than the TIP3P model.

O
H

H

LPO
H

H

TIP4P-FBTIP3P-FBmTIP3P

O
H

H

qO = −0.834 e
σOO = 3.151 Å
εOO = 0.636  kJ/mol
σHH = 0.200 Å
εHH = 0.192  kJ/mol

qLP = −1.05 e
σOO = 3.166 Å
εOO = 0.749 kJ/mol 

qO = −0.848 e
σOO = 3.178 Å
εOO = 0.652 kJ/mol

Figure 2.1: Schematics of the mTIP3P, TIP3P-FB, and TIP4P-FB water models. The
electrostatic and Lennard-Jones parameters are listed beneath each model.

The TIP3P/mTIP3P models predate computational algorithms such as Particle

Mesh Ewald (PME) electrostatics, so these parameters are not optimal for use with

modern simulation methods. Although this simple model performs reasonably well
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for predicting the density and enthalpy of vaporization of water under ambient con-

ditions, its dielectric constant and diffusivity coefficients are anomalously high (Ta-

ble 2.1). Many alternative water models have been developed that describe the phys-

ical properties of water more realistically. In the TIP4P model, a 4th charge site is

added along the HOH bisector. The original TIP4P model has been reparameterized

several times, including the development of the TIP4P-Ew and TIP4P/2005 models

[78]. These models describe many of the physical properties of water with remark-

able accuracy, although the dielectric constants were systematically lower than the

experimental values (ε ≈ 60) [53]. More complex models with additional charge sites

have been defined (e.g., TIP5P), although they have not become widely adopted in

molecular dynamics simulations.

Despite the existence of models that describe the properties of water more accu-

rately, TIP3P and mTIP3P have remained the mainstay in biomolecular simulation.

This is because established force fields like CHARMM36 have not been comprehen-

sively validated for use with other water models and bilayer properties can be sensitive

to the water model used. Piggot et al. [11] found that DPPC lipid bilayers under-

went a phase transition to a tilted gel phase when simulated with the CHARMM36

force field, the TIP3P water model, and energy-based non-bonded switching func-

tions instead of the CHARMM-type force-based non-bonded switching functions with

mTIP3P water. This occurred in a simulation performed at 50 ◦C, where DPPC lipid

bilayers are experimentally known to exist in a fluid phase. This indicates that these

simulations resulted in an incorrectly high stability for the tilted gel phase relative to

the fluid phase. Recently, Javanainen et al. [79] showed that the CHARMM36 lipid

force field predicted the properties of POPC and DPPC monolayers accurately when

used with the four-point Optimal Point Charge (OPC) model, suggesting that it may

be possible to use the existing CHARMM36 lipid model with more accurate water
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models. The OPC water model is described in Ref. [80].

Recently, Wang et al. developed the ForceBalance (FB) code, which allows the

parameters of a molecular mechanical model to be optimized systematically [53]. This

code was used to develop the TIP3P-FB and TIP4P-FB water models, which were

parameterized to reproduce the enthalpy of vaporization, density, dielectric constant,

isothermal compressibility, heat capacity, and thermal expansion coefficient of liquid

water. Like the mTIP3P model, the TIP3P-FB model has partial atomic charges on

each of the nuclear centers, but the 6 HOH angle is increased from 103.5◦ to 108.1◦

and the O–H bond length is increased to 1.01 Å. The TIP4P-FB model holds the

same molecular geometry as TIP3P, but the charge on the oxygen atom is shifted to

a virtual site located on the bisector of the 6 HOH (Figure 2.1). For all three models,

there is a non-bonded interaction site that is centered at the oxygen atom. The

potential energy of this interaction (VLJ(r)) is calculated using the Lennard-Jones

equation,

VLJ(r) = 4εOO

[(σOO
r

)12

−
(σOO

r

)6
]

(2.1)

where εOO and σOO are the well-depth and atomic radius parameters and r is the

distance between the oxygen atoms. The mTIP3P model also has weakly-interacting

Lennard-Jones potentials for atomic pairs involving the hydrogen atoms.

TIP3P-FB and TIP4P-FB water models accurately describe many of the physical

properties of water, including viscosity and dielectric constant. Further, the TIP4P-

FB model predicts the variation of these properties with temperature more accurately

but does not underestimate the dielectric constant (ε = 78) like other 4-point water

models. Using the same procedure, the ForceBalance method can be used to develop

force field parameters for other components, providing a systematic route to develop

improved force fields that are based on the FB water models. Lipid simulations using
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improved water models, like TIP3P-FB or TIP4P-FB, could provide more accurate

descriptions of phenomena like transport properties and partitioning, but it has not

been shown that these models are compatible. Lipid bilayer properties are sensitive to

effects like headgroup solvation, so changing the water model could cause the bilayer

properties predicted by these simulations to be less accurate.

In this chapter, we report the physical and structural properties of lipid bilay-

ers described using the CHARMM36 lipid model, in combination with the mTIP3P,

TIP3P-FB, and TIP4P-FB water models. The lipid headgroup areas, electron density

profiles, X-ray form factors, membrane dipole potential, and orientational order pa-

rameters were calculated from these simulations and used to model the lipid bilayers.

DPPC, a saturated lipid, and POPC, an unsaturated lipid,il were used to test these

models (Figure 1.2). These lipids were chosen because they are commonly used in

simulation and experimental studies of model bilayers and there is extensive experi-

mental data on their properties. We also calculate the Gibbs energy and diffusivity

profiles of water molecules permeating across a POPC bilayer using these three water

models to calculate the membrane permeability.

2.3 Computational Methods

2.3.1 Lipid Bilayer Simulations

Pure DPPC and POPC bilayers were constructed using the Membrane Builder fea-

ture of the CHARMM-GUI interface [81, 82, 83, 84, 85]. All simulations were per-

formed using Nanoscale Molecular Dynamics (NAMD) 2.12 [86]. A 2 fs time step

was used. Properties were calculated from the average of three simulations that were

each 500 ns in length, following 100 ns equilibration simulations. Uncertainties of
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Figure 2.2: A rendering of the simulation cell used in the simulations of a POPC lipid
bilayer.

the calculated properties were calculated from the standard deviation of the calcu-

lated properties of these three simulations. The DPPC simulation cell contained 74

lipids and 4241 water molecules, while the POPC simulation cell contained 68 lipids

and 4253 water molecules. The approximate dimensions of the simulation cells were

44 Å×44 Å×110 Å. An example simulation cell is depicted in Figure 2.2. DPPC

bilayers were simulated at 323 K, while the POPC bilayers were simulated at 303 K.

Lennard-Jones interactions were scaled to zero at a distance of 12 Å. CHARMM-

style force-based switching was applied to the Lennard-Jones potential (i.e., the “vdw-

ForceSwitching on” option in NAMD). The CHARMM36 lipid models were developed
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using this switching function and simulations using different treatments of non-bonded

interactions can result in significant differences in lipid bilayer properties [11]. Long-

range electrostatic interactions were described using the Particle Mesh Ewald method

[87] with a grid spacing of 1 Å. Bonds containing hydrogen atoms were kept rigid using

the SHAKE algorithm [88]. The bilayers were simulated under NPT conditions (i.e.,

no applied surface tension) using a Langevin thermostat with a friction coefficient

of 1 ps−1 and a Nosé–Hoover Langevin piston barostat with a decay period of 50 fs.

The lipids were represented using the CHARMM36 parameters for DPPC and POPC,

while the water molecules were represented using the mTIP3P [50, 89, 90], TIP3P-FB,

and TIP4P-FB models [53]. Electron density and neutron scattering profiles were cal-

culated using the Density Profile extension [91] of Visual Molecular Dynamics (VMD).

These profiles were transformed into reciprocal space using the theory described by

Benz et al. [92] and atomic parameters of the SimToExp code [69].

These simulations are performed under isothermal-isobaric conditions (NPT) where

the X and Y lengths of the simulation cell are constrained to be equal. This allows the

simulation to sample the distribution of bilayer surface areas. From this distribution,

the average headgroup area (AL) was calculated from the average of the X-Y area

(calculated from the X and Y lengths of the orthorhombic simulation cell: LX and

LY ) and the number of lipids per leaflet (nL),

AL =
〈LxLy〉
nL

. (2.2)

The compressibility (KA) was calculated from the fluctuation of the headgroup

area in an equilibrium simulation,

KA =
kBT 〈AL〉
nL〈δA2

L〉
. (2.3)
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2.3.2 Orientational Order Parameters

The orientational order parameters (SCH) were calculated using the MEMPLUGIN

[93] extension of VMD 1.9.2 [94] and the calcOrderParameters script of the NMRlipids

project [95]. The orientational order parameters are calculated from the angle (θ)

formed between the designated C–H bond and a vector normal to the surface of the

bilayer using the relation,

SCH =

∣∣∣∣〈3 cos2(θ)− 1

2

〉∣∣∣∣ (2.4)

2.3.3 Membrane Dipole Potential

The MDP was calculated from the charge density along the transmembrane axis of

the simulation cell (ζ(z)) averaged over the length of the simulations. The MDP was

calculated numerically from these data using the relation [96]:

φ(z)− φ(0) = − 1

ε0

∫ z

z0

∫ z′

z0

ζ(z′′)dz′′dz′. (2.5)

The charge density was calculated from an average of the partial atomic charges

centered at the nuclei.

2.3.4 Permeability

The solubility–diffusion model was used to calculate the water permeability of the

POPC bilayer (Eqn. 1.2). The Gibbs energy profile was calculated using an umbrella

sampling simulation, where the position of one water molecule was restrained to a

designated position with respect to the center of mass of the bilayer along the z-axis. A

harmonic restraint with a spring constant of 2.5 kcal/mol/Å
2

was used to restrain the

solute. The initial windows were generated by placing the permeating water molecule
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at the designated position along the z-axis and a random position on the X-Y plane.

The bilayer structure for each window was selected from a random frame from the long-

timescale bilayer simulations. A 120 ns molecular dynamics simulation was performed

for each window, where the first 20 ns was discarded as equilibration. Although

the calculation of the Gibbs energy profile of permeation for charged solutes like

arginine requires extremely long simulations (e.g., µs) [97], the Gibbs energy profile

for permeation of small neutral solutes can be calculated from these comparatively

short simulations [98]. The Gibbs energy profile was calculated from these windows

using the Weighted Histogram Analysis Method (WHAM) [55, 56, 99]. The diffusivity

profile was calculated from the average of three 2 ns NVE simulations where the solute

was restrained using a 20 kcal/mol/Å
2

harmonic force constant. The diffusivity was

calculated from these time series using generalized Langevin analysis of the position

autocorrelation function of these time series [100, 101].

2.3.5 Calculation of Transfer Energies

The transfer energies and excess chemical potentials were calculated using the staged

thermodynamic-integration/free-energy-perturbation (TI/FEP) technique of Deng and

Roux [60] that was described in Chapter 1.5.2. The electrostatic component was cal-

culated by scaling the solute charges to zero through scaling factors of λ = [0.0, 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. The dispersion and repulsive components

were calculated using a Weeks–Chandler–Andersen decomposition of the Lennard-

Jones terms of the solute. The dispersion component was calculated by an 11-window

thermodynamic integration calculation with λ = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1.0]. The repulsive component was calculated using a 9-stage free energy per-

turbation calculation. Each window/stage of the simulation was simulated for 1 ns

for equilibration following by 2 ns of sampling. Replica exchange was used to allow
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exchanges between neighboring windows of the TI/FEP simulation at 2 ps intervals,

following the procedure described in Jiang et al. [63]. Gibbs energies were calculated

using WHAM [56]. A complete description of these methods is provided in Chapter

1.5.2.

2.4 Results

2.4.1 Headgroup Area and Compressibility

The headgroup areas and compressibilities of the bilayer models calculated from the

molecular dynamics simulations are presented in Tables 2.2 and 2.3, respectively.

Although all three water models give headgroup areas within a 1.2 Å range, a Student’s

t-test shows the distributions are statistically distinct (p < 0.0001) for all pairs of

distributions. The TIP3P-FB water model tends to predict smaller headgroup areas,

which puts it into closer agreement with experiment than the mTIP3P model for the

DPPC bilayer but worse agreement for the POPC bilayer. The mTIP3P and TIP4P-

FB models give similar headgroup areas. The DPPC compressibilites predicted by

the FB models are larger and in better agreement with the experimental value. The

POPC compressibilities are less systematic, as the TIP4P-FB model predicts a lower

compressibility than the mTIP3P model but the TIP3P-FB model predicts a higher

compressibility.

2.4.2 C–H Orientational Order Parameters

The calculated acyl C–H orientational order parameters, and those determined ex-

perimentally, are plotted in Figure 2.3. The acyl C–H orientational order parameters

are generally insensitive to the water model and simulations using any of the three
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Table 2.2: Lipid headgroup areas for DPPC and POPC bilayers in Å
2
. Experimental

values are taken from Ref. [70]. The uncertainties of the calculated values are calcu-
lated from the standard deviation of the results from three independent simulations
of the bilayer.

water model DPPC POPC
mTIP3P 61.1 ± 0.1 64.6 ± 0.6
TIP3P-FB 60.3 ± 0.7 64.0 ± 0.6
TIP4P-FB 61.5 ± 0.1 65.2 ± 0.4
expt. 63.1± 1.3 64.3± 1.3

Table 2.3: Compressibility for DPPC and POPC bilayers in dyne/cm. The uncertain-
ties of the calculated values are calculated from the standard deviation of the results
from three independent simulations of the bilayer.

water model DPPC POPC
mTIP3P 189.8 ± 8.00 237.2 ± 10.60
TIP3P-FB 265.8 ± 38.39 264.8 ± 9.99
TIP4P-FB 230.5 ± 10.40 214.6 ± 10.23
expt. 231 a 180–330 b

a Ref. [66], b Ref. [102]

models predict orientational order parameters that are in good agreement with the

experimental values. This trend holds for the acyl groups in the upper region of the

chain that are close to the water layer, which indicates that the lipid–water interface

is similar for all three water models.
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Figure 2.3: NMR deuterium orientational order parameters (|SCD|) for the lipid tails
of the DPPC and POPC bilayers calculated from simulations of the bilayers with the
mTIP3P, TIP3P-FB, and TIP4P-FB water models. The upper plots show the profile
for the first chains (sn-1), while the lower plots show the profiles for the second chain
(sn-2). Experimental values are reproduced from Refs. [103, 104, 105, 106]. In most
cases, the values from the simulations are so similar that the points lie on top of each
other. The numbering of the positions on the acyl chains is illustrated in Figure 1.2.
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The orientational order parameters of the atoms in the lipid headgroups are pre-

sented in Figure 2.4. These positions tend to show a lower degree of order than the

acyl chains (i.e., |SCH | < 0.1). All models are in reasonably good agreement with the

experimental values. The results of the TIP3P and TIP3P-FB model simulations are

in close agreement, while the TIP4P-FB model predicts incrementally more negative

orientational order parameters for the POPC glycerol positions (i.e., g1, g2, and g3).
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Figure 2.4: NMR orientational order parameters (SCH) for the lipid headgroups of the
DPPC (left) and POPC (right) bilayers calculated from simulations of the bilayers
with the mTIP3P, TIP3P-FB, and TIP4P-FB water models. Experimental values for
DPPC are taken from Ref. [107]. Experimental values for POPC are taken from Ref.
[108]. The assignments of the orientational order parameters follow those presented
in Ref. [95]. The labeling of the positions of the headgroup is illustrated in Figure
1.2.

The sn-2 chain of POPC contains a double bond at the C9 position. This unsat-

urated segment introduces a significant degree of disorder in the membrane due to

the abrupt change in angle in the lipid tail that frustrates the orderly packing of the

chain. The qualitative trend of the decrease in order in the sn-2 chain is captured by

the CHARMM36 POPC lipid model using any of the three water models. This model
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underestimates the orientational order parameter of the C9 position but overestimates

orientational order parameter of the C10 position. The Berger lipid model performs

somewhat better for these positions [108], so revision of the CHARMM36 parameters

for unsaturated segments may improve the performance of this model for this type of

lipids.

2.4.3 Bilayer Electron Density and Scattering

The calculated electron density profiles for the three water models are presented in

Figure 2.5. The profiles are similar for all three water models, although for the DPPC

bilayer, the electron density maximum is slightly higher and occurs at a higher value

of Z for the TIP3P-FB model in comparison to the mTIP3P model. This indicates

that there is an incremental thickening of the bilayer by approximately 1 Å when

this water model is used. The headgroup peak of the experimental electron density

profile of the DPPC bilayer is broader with a maximum at a larger value (≈ 22 Å)

than electron density profiles calculated from the simulations. This indicates that

the CHARMM36 model underestimate the headgroup–headgroup thickness of DPPC

bilayers. The experimental electron density profile for the POPC bilayer shows that

the bilayer is incrementally thinner and has a lower maximum than the simulated

profiles, although the maximum occurs in a similar position.
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Figure 2.5: Electron density profile for DPPC and POPC bilayers calculated from
simulations using the CHARMM36 lipid force field and the three water models. The
experimental curves are reproduced from Refs. [67] and [109].
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calculated from the simulated electron density profiles. The experimental profile is
reproduced from Ref. [68].



37

The electron density profiles of the two bilayers were transformed into recipro-

cal space (F (q)) so that X-ray scattering curves could be compared directly to the

experimental profiles determined from oriented multilayers and unilamellar vesicles

[68]. The amplitudes of the scattering form factors (|F (q)|) were calculated from the

electron density profiles using the relation,

|F (q)| =

∣∣∣∣∣
∫ L/2

−L/2
[ρ(z)− ρw] (cos(qz) + i sin(qz)) dz

∣∣∣∣∣ (2.6)

where ρw is the electron density of the bulk solvent (i.e., water) and q is the z-

component of the scattering vector. These curves are presented in Figure 2.6. The

curves calculated using all three water models show only subtle differences, consistent

with the similar electron density profiles. In comparison to the experimental scattering

curves, the positions of the nodes are shifted to incrementally smaller values of q for

all three water models and both lipids, but otherwise, all three models are consistent

with the X-ray scattering data.

The NSLD profile of a membrane is dominated by the sharp difference in the

Neutron Scattering Length (NSL) of protons in the lipids (aH = −3.74 fm) relative

to the deuterons of the heavy water solvent (aD = 6.67 fm). As a result, the neutron

scattering curve is sensitive to the thickness of the hydrocarbon layer of the bilayer and

the depth of penetration of water into the bilayer [68]. The reciprocal-space neutron

scattering curves were calculated from the NSL density profiles calculated from the

simulations [69]. These curves are presented in Figure 2.7. For both lipid types, the

neutron scattering curves calculated using all three models are in good agreement with

the experimental scattering curves in the interval where reliable experimental data is

available (0.03 Å−1 < q < 0.2 Å−1). This is consistent with the density profiles, which

show only small variations in the bilayer thickness when the water model is changed.
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2.4.4 Membrane Dipole Potential

The calculated MDP profiles are presented in Figure 2.8. The membrane dipole po-

tential has not been measured as a function of membrane depth, so the calculated

depth-dependent MDP cannot be compared directly to experiment. Experimental

estimates of the maximum of the membrane dipole potential are deduced from the

relative membrane conductance of hydrophobic cations and anions that have similar

radii (e.g., tetraphenylborate vs tetraphenylarsonium) [73]. The conductance is as-

sumed to be limited by the magnitude of the MDP. This experimental maximum is

compared to the maxima of the calculated profiles.
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Figure 2.8: The membrane dipole potential (φ) calculated for the three water models.
The experimental MDP maximums for DPPC from Refs. [110], [111], and [112] are
indicated by the gray horizontal lines.

The CHARMM36/mTIP3P force field overestimates the MDP; for DPPC, the

maximum of the MDP is 0.73 V, while the experimental estimates range from 0.220

to 0.346 V. High MDPs are also predicted for the CHARMM36/mTIP3P force field.

The use of the TIP3P-FB and TIP4P-FB models result in a systematic increase in the
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MDP for both the DPPC and POPC bilayers, where the maximum for the MDP is

roughly 0.10 V and 0.05 V higher that the mTIP3P potentials, respectively. Most of

this difference originates from changes in the electrostatic potential at the lipid–water

interface, which is greater when the more polar FB models are used.

2.4.5 Water Permeability

The calculated Gibbs energy profiles and diffusivity profiles of water molecules per-

meating through the bilayer are presented in Figure 2.9. The water permeabilities of

the POPC bilayer calculated using these profiles are presented in Table 2.4.
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Figure 2.9: The Gibbs energy profile (top) and diffusivity profile (bottom) for a water
molecule permeating a pure POPC bilayer at 298 K.
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Table 2.4: Water permeability of a pure POPC bilayer using the CHARMM36 lipid
force field and the three selected water models. The experimental permeability is
taken from Ref. [113].

model Pm (×10−3 cm/s)
mTIP3P 4.37± 0.03

TIP3P-FB 0.76± 0.02
TIP4P-FB 0.88± 0.01

expt. 13.0± 0.44

The experimental value for the permeability of pure POPC membranes is taken

from a study by Mathai et al. [113] In that study, the permeability was measured by

subjecting unilamellar vesicles to a 50% increase in osmotic pressure using a stopped-

flow device. The volume change of the vesicles due to water permeation in response

to the increase in osmotic pressure was determined by measuring the rate of self-

quenching of the fluorescence of carboxyfluorescein encapsulated in the vesicle.

The effect of the water model on the diffusivity is apparent in the transmem-

brane diffusivity profile (|z| > 20 Å). The TIP3P water model has a viscosity co-

efficient that is much lower than the experimental value (ηTIP3P = 0.321 mPa·s vs

ηexpt = 0.896 mPa·s), so its rate of diffusion in the solution and at the lipid–water

interface is unrealistically fast (DH2O = 6.05 cm2/s). These results are in line with

previous simulations [21, 114]. The TIP3P-FB and TIP4P-FB water models have

viscosity/self-diffusion coefficients that are much closer to the experimental values,

and the diffusivity of the permeating water molecule is lower accordingly. Using these

more realistic water models, the water solute diffuses at a faster rate at the center of

the bilayer than in solution, opposite to the trend predicted using the mTIP3P model.

The permeabilities predicted by the mTIP3P simulations are in the closest agree-

ment with the experimental value, but still underestimate the permeability by a factor

of 3. The solubility–diffusion model used to calculate the membrane permeability is

an approximate model, which introduces a source of error. The equation assumes
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that there is an equilibrium distribution of the solute across the membrane, although

the experiments by Mathai involve a non-equilibrium osmotic pressure increase to

induce a flux of water out of the liposome [113]. The solubility–diffusion model also

assumes that the z-axis of the simulation cell is an ideal reaction coordinate [21], al-

though undulations and defects in the bilayer cause this approximation to be imperfect

[115, 116]. Some reports have suggested that solute permeation through membranes

is actually subdiffusive [117], with the membrane interior exhibiting fractional vis-

cosity like long-chain alkanes. This introduces an additional source of error into the

simulations.

The force field is another source of inaccuracy, due to limitations of parameteri-

zation or the neglect of effects like induced polarization. Notably, the permeability

depends exponentially on the height of the Gibbs energy barrier. As a consequence

of this, even a small difference in the calculated vs true Gibbs energy barrier would

result in a significant difference in predicted permeability. For instance, if the Gibbs

energy barrier for permeation of TIP3P-model water was lower by 10%, the predicted

permeability would increase by a factor of 2.9. Lee et al. [23] showed that errors of the

order of a factor of 10 are typical for membrane permeability calculations. Improved

theoretical models, simulation methods, and force fields will be needed to achieve

greater accuracy.

The Gibbs energy profile when the permeating water molecule is at the center

of the bilayer is 6.4 kcal/mol when the mTIP3P model is used but is approximately

7.4 kcal/mol for the TIP3P-FB and TIP4P-FB models. This can be connected to

the Gibbs energy of transfer of a water molecule between liquid water and liquid

hexadecane. The model for hexadecane uses the same non-bonded parameters as

the aliphatic sections of the lipid chains, making it an appropriate model for the

partitioning of a water molecule between the aqueous phase and the center of the
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bilayer. The results from the TI/FEP calculation of the Gibbs energy of transfer are

presented in Table 2.5. The electrostatic component of the Gibbs energy of transfer

is about 1 kcal/mol larger for the TIP3P-FB and TIP4P-FB water models. This

larger thermodynamic penalty for transferring a water molecule into hexadecane is

consistent with the FB models having higher Gibbs energy profiles of permeation

than for the TIP3P model. This ultimately reflects that the TIP3P water model

has a smaller excess chemical potential than the TIP3P-FB and TIP4P-FB models

(Table 2.6), resulting in a smaller thermodynamic penalty to remove a TIP3P-model

water molecule from the aqueous phase. The experimental estimates of ∆µH2O are

consistently lower than those predicted by the TIP3P-FB and TIP4P-FB models. The

data for the calculation of the transfer energies are included in Table 2.7.

Table 2.5: Gibbs energy of transfer of one water molecule from liquid water to liquid
hexadecane. All values are in units of kcal/mol. The experimental value is taken from
Ref. [118].

model mTIP3P TIP3P-FB TIP4P-FB expt.
electrostatic 8.19± 0.06 9.54± 0.04 9.45± 0.08
dispersion −0.68± 0.06 −0.89± 0.09 −0.82± 0.14
repulsive 0.00± 0.38 −0.07± 0.50 −0.17± 0.41
total 7.51± 0.50 8.58± 0.63 8.46± 0.63 5.98

Table 2.6: Calculated excess chemical potential of water. Values are in kcal/mol.

model electrostatic dispersion repulsive total
mTIP3P −8.41± 0.02 −2.72± 0.00 4.80± 0.05 −6.33± 0.07

TIP3P-FB −9.78± 0.02 −2.44± 0.00 4.76± 0.02 −7.46± 0.05
TIP4P-FB −9.68± 0.05 −2.77± 0.00 4.95± 0.02 −7.50± 0.07

expt. −6.32a , −5.74b

a Ref. [119], b Ref. [120].
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Table 2.7: Absolute solvation energy of a water molecule in liquid hexadecane. Values
are in kcal/mol.

model electrostatic dispersion repulsive total
mTIP3P −0.22± 0.04 −3.40± 0.06 4.80± 0.43 1.18± 0.53

TIP3P-FB −0.24± 0.02 −3.33± 0.09 4.69± 0.52 1.12± 0.63
TIP4P-FB −0.23± 0.03 −3.59± 0.14 4.78± 0.43 0.96± 0.60

2.5 Discussion

The calculated headgroup areas and compressibilities showed limited variation with

the water model. Experimental values of the headgroup area are typically derived from

a combination of estimates of bilayer properties, such as bilayer thickness, volume per

lipid, etc. As a result, a wide range of values has been reported for DPPC and POPC

lipids [10]. Although the uncertainty in the experimental values makes it difficult to

conclude that one water model yields improved headgroup areas and compressibilities,

we can conclude that these properties are similar for all three water models and are

within the margin of uncertainty of widely-used experimental values.

The calculations of the X-ray and neutron scattering profiles generally indicate

that all three water models yield structural distributions that are generally consistent

with the experimental form factors, although the nodes of the X-ray scattering profile

of the DPPC bilayer are at systematically smaller values of q for all three water

models. This suggests that the lipid model would have to be adjusted in order to

improve agreement between the simulated profiles and the computationally-predicted

profiles because there are only subtle differences in the scattering profiles calculated

using the three water models.

Botan et al. [95] had previously showed that the CHARMM36/mTIP3P model was

among the most effective force fields for predicting lipid headgroup orientational order

parameters. The lipid orientational order parameters calculated from the simulations
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presented here were generally insensitive to the water model and were all in reasonable

agreement with the experimental values determined using NMR. These data provide

some of the more direct measures of the structure of the bilayer, especially at the

lipid–water interface, so the success of the models employing the TIP3P-FB and

TIP4P-FB water models in calculating orientational order parameters is particularly

encouraging. The orientational order parameters of the acyl positions are essentially

the same for all three water models.

The membrane dipole potential was overestimated by all models. Simulations

with the FB water models overestimate the MDP to an even greater degree than

the mTIP3P model. This suggests that the description of the MDP calculated using

the CHARMM36 lipid force field cannot be significantly improved by using improved

water models. The CHARMM-Drude polarizable force field for lipids predicts more

moderate values for the MDP (≈ 0.56 V at the center of the bilayer) [106]. Harder and

Roux [72] attributed the improved performance of these polarizable force fields to the

polarization of the upper portions of the acyl chains by the water–headgroup interface,

which attenuates the increase in the profile in the lipid-headgroup region. This in-

duced polarization effect is not captured by non-polarizable models like CHARMM36;

however, the description of other physical properties of the bilayer does not appear

to be negatively affected by the neglect of this effect.

The water permeability of a lipid bilayer is notably sensitive to the water model.

The rate of permeation of water across a pure POPC bilayer has been measured at

13 × 10−3 cm/s [113], indicating that water molecules are able to cross a membrane

at a slow but significant rate. The permeability calculated using the mTIP3P model

underestimates this rate by a factor of 3, while the FB models underestimate the rate

by a factor of 15–17.
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There are several possible explanations for the difference between the permeabili-

ties calculated using the solubility–diffusion model and the experimental values. The

factor that affects the rate of permeation most significantly is the height of the barrier

in the Gibbs energy profile, which is significantly higher for the FB models than for

mTIP3P. All models significantly underestimate the experimental solubility of water

in hexadecane, although the FB models overestimate the water–hexadecane transfer

energy to a larger degree than the mTIP3P model. These appear to be rooted in

the spuriously large excess chemical potentials for the FB models, which we calcu-

lated to be −7.46 kcal/mol and −7.50 kcal/mol. In comparison, Shirts et al. showed

that the chemical potentials of Simple Point-Charge (SPC), Extended Simple Point

Charge model (SPC/E), TIP3P, TIP4P, and TIP4P-Ew ranged from −6.10 kcal/mol

to −7.05 kcal/mol, which are closer to the experimental estimates of −5.7 kcal/mol

and −6.3 kcal/mol [121]. Limitations of the force field combination rule and neglect

of induced polarization have also been proposed to cause the solubility of water in

alkane solvents to be underestimated [122, 123]. Reparameterization of the alkane–

water non-bonded parameters may be needed to capture the correct water perme-

ability of the bilayer using these models. Because this issue stems specifically from

the high excess chemical potential of water in the ForceBalance models, it is unlikely

to affect the permeability of other non-ionic solutes, although solutes that permeate

with water molecules in complex experience a higher barrier due to the high excess

chemical potential.

Piggot et al. [11] observed that simulations of DPPC lipid bilayers in GROMACS

using the TIP3P water model and a potential-based switching function resulted in a

transition to an ordered phase above the transition temperature for DPPC bilayers.
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This issue did not appear in our simulations, which used force-based switching func-

tions in NAMD. Despite our success, Piggot et al.’s results suggest that the TIP3P-

FB and TIP4P-FB models should still be used cautiously with the CHARMM36 lipid

model because subtle differences in simulation options can result in significant differ-

ences in bilayer properties, so our results may not apply when different non-bonded

cutoffs, switching options, etc. are used.

2.6 Conclusions

The DPPC and POPC lipid bilayers were simulated using molecular dynamics using

the TIP3P-FB and TIP4P-FB water models and compared to the results from simu-

lations using the mTIP3P water model. The headgroup area, compressibility, X-ray

and neutron scattering profiles, and acyl-chain orientational order parameters were

compared to experimental values. All three models yielded similar results, suggesting

that the CHARMM36 model can be used with any of these water models without

modification for the simulation of the structure and dynamics of lipid bilayers. This

could be advantageous in some instances, as the dielectric constant and viscosity of

water simulations using the TIP3P-FB and TIP4P-FB models are closer to the exper-

imental values than when the mTIP3P model is used. The temperature dependent

properties of TIP4P-FB model water are significantly better than the mTIP3P and

TIP3P-FB models, which could be an advantage in the simulation of temperature

dependent properties of water–lipid systems.

More significant differences were apparent in the water permeability of the bilay-

ers. The Gibbs energy profile and diffusivity of a permeating water molecule were

calculated along the transmembrane axes and these data were used to calculate the

permeability of the bilayer using the solubility–diffusion model. Although this model
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is approximate, the TIP3P model was in closer agreement with the experimental es-

timates than the TIP3P-FB and TIP4P-FB models. This difference stems from the

higher Gibbs energy profile when the permeating water molecule is in the middle of

the bilayer when the TIP3P-FB and TIP4P-FB water models were used. In turn,

this barrier reflects a spuriously low water–alkane partition coefficient for the TIP3P-

FB and TIP4P-FB models due to their high excess chemical potentials. This could,

in principle, be improved by modifying the water–acyl non-bonded parameters for

these models, but this issue is unlikely to be significant for simulations of most of the

structural and dynamic properties of lipid bilayers or the permeation of other solutes.



Chapter 3

Modeling the Permeation of

Gasotransmitters Through Lipid

Bilayers

3.1 Abstract

CO, NO, and H2S serve as endogenous signaling molecules. Prior experimental and

computational studies have shown that NO and H2S can permeate lipid bilayer mem-

branes at high rates without a facilitator. To provide systematic and consistent pre-

dictions on the permeabilities of these three molecules, all-atom molecular dynamics

simulations were used to model the permeation of CO, NO, and H2S through a POPC

lipid bilayer. New molecular mechanical models were developed for these three solutes

that correctly describe the solvation energy in liquid water and atomic radii consis-

tent with the solvation structure determined using ab initio molecular dynamics. The

Gibbs energy profiles of permeation through the bilayer were calculated using um-

brella sampling. There is no significant Gibbs energy barrier to the permeation of
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these molecules through the bilayer and these molecules tend to partition inside the

membrane due to their low aqueous solubility. Permeabilities calculated using the

solubility–diffusion model are in reasonably good agreement with the experimental

values. Simulations with cholesterol-containing membranes indicate a modest effect

on the Gibbs energy profiles, but with a net effect of lowering the rate of permeation

of NO and H2S due to a decreased concentration of the gasotransmitters at the center

of the bilayer.

3.2 Introduction

CO, NO, and H2S have been found to serve as endogenous signalling molecules that

inhibit their targets by binding to metal centers or through chemical modification of

proteins [25]. Through binding to metal centers or chemical modification of proteins,

these molecules signal in a wide range of cellular processes, including transcription,

apoptosis/proliferation, and inflammatory responses. This has led to the development

of probe molecules to observe gasotransmitters in their cellular environments and

prodrugs to release gasotransmitters [124, 125].

The mechanism by which gasotransmitters cross cell membranes has been debated.

The membranes of some organisms that require high rates of gas transfer are enriched

with aquaporins, which are membrane protein channels that allow the selective per-

meation of water [126]. For example, Lee et al. [34] speculated that hydrogen sulfide

permeates through the transmembrane channel AqpM. This aquaporin is present in

archaeon Methanothermobacter marburgensis, which requires hydrogen sulfide as part

of its energy production pathway. Because the selectivity filter of this aquaporin dif-

fers from those that only facilitate the passage of water, Lee et al. [113] proposed this

channel could also facilitate the permeation of H2S [34].
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Other research has suggested that gasotransmitters can permeate membranes with-

out a facilitator. Subczynski et al. [32] measured the permeability of nitric oxide

(NO) through POPC lipid bilayers using Electron Paramagnetic Resonance (EPR)

spectroscopy and determined permeability rates of 93 cm/s. Mathai et al. [33] mea-

sured the membrane permeability of H2S through a bilayer composed of reconstituted

bacterial lipids at rates greater than 0.5 cm/s. These high rates of permeation sug-

gest that these membranes do not impede the permeation of gasotransmitters, so no

protein facilitator is necessary.

Computer simulations have been used extensively to model the permeation of

dissolved gases through membranes. Simulations of O2 permeation have generally

predicted these molecules to permeate biological lipid membranes readily [20, 29, 30,

31]. Sugii et al. [35] modeled the permeation of CO and NO and predicted them to

permeate at rates similar to O2. Riahi and Rowley [22] showed that there is only a

small barrier on the Gibbs energy profile for the membrane permeation of hydrogen

sulfide.

The effect of cholesterol on membrane permeability has also received attention.

Generally, the permeability of a membrane decreases by up to 50% as its cholesterol

content increases [127, 128, 129, 130, 131, 132]. This trend has also been observed

in gasotransmitter permeation; Subczynski found that the permeability coefficient

for NO permeation was 17% lower in a POPC bilayer containing 30% cholesterol in

comparison to the pure bilayer [32].

The membrane permeability of gasotransmitters has not been investigated system-

atically using modern simulation methods. Through this study, we hope to provide

a quantitatively-accurate model for the permeation of all three gasotransmitters to

elucidate their differences and similarities, predict rates of permeation, and compare

the results of our simulations to the available experimental data.
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3.3 Computational Methods

3.3.1 Permeation Simulations

A simulation cell with a bilayer composed purely of POPC lipids was constructed using

CHARMM-GUI [81, 82, 83, 84, 85]. This simulation cell contained 48 POPC lipids

and 2611 water molecules. A bilayer containing 30% cholesterol was also constructed,

which had a composition of 56 POPC lipids, 24 cholesterol molecules, and 3808 water

molecules. A representative simulation cell is illustrated in Figure 3.1. The POPC

lipids were represented by the CHARMM36 lipid force field [49]. The cholesterol

molecules were represented using the updated version of the CHARMM force field

developed by Lim et al. [133] Water molecules were represented using the TIP4P-FB

water model [53]. Custom force fields were developed for CO, NO, and H2S such that

the models matched the experimental Gibbs energy of hydration and atomic radii

based on ab initio molecular dynamics simulations.

All MD simulations were performed using NAMD 2.12 [86]. A 2 fs timestep was

used, and bonds containing hydrogen were constrained using the SHAKE algorithm

[88]. Electrostatic interactions were calculated using PME electrostatics with a 1 Å

grid spacing [87]. The temperature was regulated using a Langevin thermostat with

a frequency of 1 ps−1. The pressure was regulated by a Langevin barostat with a

period of 100 fs and a relaxation time of 50 fs. CHARMM-style force-based switching

functions were used for the Lennard-Jones interactions.

Umbrella sampling simulations were used to calculate the Gibbs energy profiles

[54, 55, 134]. In these simulations, the solute was restrained to a position along the

z-axis of the simulation cell relative to the center of mass of the lipids. The restraint

was a harmonic potential with a spring constant of 2.5 kcal/mol/Å2. The gasotrans-

mitters were placed at random positions in the plane of the bilayer to generate the
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Figure 3.1: Simulation cell for the 70:30 POPC:cholesterol bilayer simulations.

initial configuration of each umbrella sampling window. A 100-cycle minimization

was performed on these configurations to eliminate highly-repulsive contacts between

atoms placed in close proximity. A 50 ns equilibration was performed for each window,

followed by a 200 ns production simulation. This length of simulation has generally

been found to be sufficient for the calculation of permeation Gibbs energy profiles for

non-ionic solutes [23]. The Gibbs energy profiles were calculated from the umbrella

sampling data using WHAM [56, 135].
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3.3.2 Parameterization

Calculation of the dispersion coefficients was performed using the eXchange-hole

Dipole Moment model (XDM) [136, 137] using the postg postprocessing code [138]

based on a geometry-minimized PBE0/aug-cc-pVTZ calculation using Gaussian 09.

This density functional method has been shown to provide accurate molecular dipole

moments and polarizabilities [139] and provide an ab initio basis for dispersion coeffi-

cients [140, 141]. The Radial Distribution Functions (RDFs) calculated to determine

the atomic radii during the parameterization process were calculated using a 200 ps

equilibration simulation followed by a 500 ps sampling simulation. The RDFs of the

optimal parameters presented below were calculated using 1 ns equilibration simula-

tions and 2 ns sampling simulations.

TI calculations of the solvation energies were performed using CHARMM c40b2

according to the procedure described by Deng and Roux [60]. A 1 ns equilibration was

performed for each window followed by a 1 ns simulation to sample the distribution.

The electrostatic and dispersion components were each calculated from 11-window TI

simulations with values of λ ranging linearly from 0.0 to 1.0. The repulsive component,

corresponding to soft-sphere cavitation energy of the solute, was calculated using a

9-stage FEP simulation. These methods are described in detail in Chapter 1.5.2. The

diffusivities of the solutes were calculated from the average of three 5 ns simulations in

the microcanonical ensemble after a 1 ns equilibration simulation in the isothermal-

isobaric ensemble. Molecular mechanical simulations to calculate the solute RDFs

and diffusion coefficients were performed using NAMD 2.12 [86].
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3.4 Results and Discussion

3.4.1 Parameterization of Gasotransmitter Models

The optimal Lennard-Jones parameters for the NO, CO, and H2S models were de-

termined by a grid-search procedure over the Lennard-Jones parameter space. Pa-

rameters that yielded atomic radii that matched those determined through Ab Initio

Molecular Dynamics (AIMD) simulations and that yielded hydration energies that

were closest to the experimental values were selected as the optimal parameters. The

parameters for these models are presented in Table 3.1.

Table 3.1: Molecular mechanical force field parameters of gasotransmitter models.

solute parameter

CO

qC −0.0207 e
Rmin,C 1.7286 Å
εC -0.1682 kcal/mol
qO +0.0207 e

Rmin,O 1.7766 Å
εO −0.0532 kcal/mol
kC−O 1115 kcal/mol/Å2

req,C−O 1.128 Å

NO

qN −0.0288 e
Rmin,N 1.507 Å
εN -0.165 kcal/mol
qO +0.0288 e

Rmin,O 1.4375 Å
εO −0.2015 kcal/mol

kN−O 763.3 kcal/mol/Å2

req,N−O 1.1508 Å

H2S

qS −0.38 e
Rmin,s 2.07414 Å
εS −0.46949 kcal/mol

kS−H 398 kcal/mol/Å2

req,S−H 1.34 Å
kH−S−H 65.1 kcal/mol/degree2

θH−S−H 92 ◦
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The solvation energies of the solute and decomposition into interaction components

are presented in Table 3.2. The total hydration energies predicted by the molecular

mechanical models are within 1 kJ/mol of the experimental values.

Table 3.2: Solvation energies of gasotransmitters calculated using the molecular me-
chanical model in comparison to the experimental values. The experimental values
are derived from the Henry’s law coefficients reported in the National Institute of
Standard and Technology (NIST) Webbook. All values are in kJ/mol.

∆G CO NO H2S
electrostatic 0.0± 0.0 −0.1± 0.1 −7.5± 0.1
dispersion −17.2± 0.0 −19.3± 0.1 −23.6± 0.1
repulsive 25.9± 0.3 26.4± 0.1 29.0± 0.3

total 8.7± 0.3 7.1± 0.1 −2.1± 0.2
exptl 9.2 7.6 -2.3

The solvent–solute RDFs calculated using the AIMD and the force fields developed

for CO and NO are presented in Figure 3.2, while the RDFs for the H2S model are

presented in Figure 3.3. The location of the first peak of the RDF is consistent with

the AIMD values, which was a criterion of our parameterization. The shape of the

first minimum and second peak are in reasonable but imperfect agreement with the

AIMD values. The limited simulation time and known issues with AIMD predictions

of water structure may account for these differences.
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Figure 3.2: RDFs for the interaction of CO (top) and NO (bottom) with water for the
force field and ab initio molecular dynamics. The left panels show the distribution of
C—OH2/N—OH2 distances, while the right panels show the distribution of O—OH2

distances. The AIMD data for CO is taken from Ref. [142], whereas the AIMD data
for NO are from this work. The red line shows the AIMD data while the black line
shows RDFs of the optimized molecular mechanical model.

.
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Figure 3.3: RDFs for the interaction of H2S with water for the force field and ab initio
molecular dynamics. (a) The RDF for the distance between the S atom of the H2S
and the O atom of H2O. (b) The RDF for the distance between the S atom of the
H2S and the H atoms of H2O are shown on the right. The AIMD data (red) for H2S
is taken from Ref. [143]. The RDFs of the MM models are shown in black.

CO is the least soluble (∆Gsolv = 9.2 kJ/mol ), with NO being incrementally more

soluble (∆Gsolv = 7.6 kJ/mol). This generally reflects the low polarity of these com-

pounds and their inability to form hydrogen bonds with water. Decomposition of the

hydration energy shows that the electrostatic component of this solvation is nearly

zero. H2S is significantly more soluble than either solute, with a modestly-negative

solvation energy (∆Gsolv = −2.1 kJ/mol). In each case, the calculated Gibbs energy

of hydration matches the experimental values within statistical and experimental un-

certainty.

3.4.2 Gasotransmitter Permeation

The Gibbs energy profiles for the permeation of CO, NO, and H2S are presented in

Figure 3.4. In each case, the Gibbs energy profile varies only within a 2 kcal/mol

range, indicating that the membrane does not present a large barrier to any of these
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compounds. In comparison, the permeation of water through a DPPC bilayer has a

plateau at the center of the bilayer of roughly 6 kcal/mol [21, 22].
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Figure 3.4: Gibbs energy profiles for the permeation of CO, NO, and H2S through a
pure POPC bilayer.

There is a small increase (< 1 kcal/mol) in the Gibbs energy profile in the head-

group region (20 Å< |z| < 25 Å) for each gasotransmitter, but the Gibbs energy

profile of each permeant becomes negative when the solute is within the bilayer (|z| <

20 Å). This indicates that all three gasotransmitters will spontaneously partition into

the interior of the membrane. This Gibbs energy profile shape is typical of small,

non-polar solutes [115]. The tendency of NO to concentrate at the centre of a bilayer

is consistent with electron paramagnetic resonance (EPR) experiments by Nedeianua

et al. [144], who showed that the paramagnetic spin-relaxation enhancement due to

NO was the highest for spin labels at the center of a DMPC bilayer.

The Gibbs energy profile of H2S differs somewhat from those of CO and NO in that

its most probable position is in the lipid ester group region (10 Å < |z| < 15 Å) rather

than the bilayer centre. This difference can be attributed to the moderate ability of
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H2S to have electrostatic interactions with the ester carbonyls in comparison to the

very limited polarity of CO and NO (µCO = 0.112 D, µNO = 0.153 D). This profile

shape has been reported for polar solutes like chloroform and lidocaine [115, 145].

CO shows the strongest tendency to partition in the center of the bilayer, followed

by NO, then H2S. This order follows the hydrophobicity of these gases, with CO

being the least soluble in water and H2S the most. Although H2S is more polar than

CO and NO, its ability to form hydrogen bonds with water is limited, so it is only

sparingly soluble in water [143, 146]. This hydrophobicity favors partitioning of the

gasotransmitters from solution to the bilayer interior.

The permeability coefficients of the gasotransmitters were calculated using the

solubility–diffusion model (Eqn. 1.2). The calculated values are presented in Table

3.3. The permeability coefficients were estimated by assuming the rates of diffusion

of the compounds in the bilayer are equal to the experimental diffusivity in liquid

water determined by experiment. Previous simulation studies have shown that the

diffusivity of small molecules varies in a limited range during diffusion across the

membrane.

Table 3.3: Calculated and experimental permeability coefficients. All values are in
units of cm/s.

system method CO NO H2S

Pure POPC
calc. 26± 4 30± 3 38± 8
exptl. - 93 a (≥ 0.5± 0.4) b

70/30 POPC:cholesterol
calc. 26± 5 18± 4 25± 5
exptl. - 77 a (≥ 0.5± 0.4) b

a Ref. [32];
b The only experimental value for H2S permeation is for a bilayer re-
constituted from mixed bacterial lipids (Ref. [113]);

The high rates of permeability for these compounds is consistent with Overton’s

rule [16, 17]. This principle predicts that more hydrophobic solutes will permeate at
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faster rates due to their tendency to partition into the bilayer interior. CO shows

the strongest tendency to partition in the center of the bilayer, followed by NO, then

H2S. This order follows the hydrophobicity of these gases, with CO being the least

soluble in water and H2S the most. CO, NO, and H2S are all weakly polar gases that

are incapable of forming strong hydrogen bonds with water (Figure 3.5). This low

solubility in water results in a tendency to partition into the bilayer readily, resulting

in their high membrane permeability.

Figure 3.5: Representative configuration of the hydration structure of NO. As a hy-
drophobic solute, water molecules form a hydrogen-bonded network around the NO.

Although no experimental value for the membrane permeability of CO is available,

we predict that it permeates at rates comparable to NO and H2S. The high membrane

permeability appears to be a common feature of gasotransmitters that is distinct from

other signaling molecules. As small, hydrophobic molecules, the gasotransmitters can

diffuse rapidly in solution and cross membrane barriers readily. Their acute modes of

action also provide more immediate signals. This is in contrast to canonical signaling

molecules, like hormones or proteins, that act by binding to an extracellular receptor.
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3.4.3 Effect of Cholesterol on Permeability

The effect of cholesterol content of the bilayer was investigated by calculating the

Gibbs energy profile for permeation of the three gasotransmitters through a 70:30

POPC:cholesterol lipid bilayer (Figure 3.6). For all three gasotransmitters, the Gibbs

energy profiles for permeation are slightly lower in the glycerol region but is higher

in the lipid tail region in the cholesterol-containing membranes in comparison to the

pure POPC membranes. CO and NO are affected to a similar degree, but the increase

in profile for H2S in the tail is systematically about 0.5 kcal/mol higher than for

the other two permeants. The calculated permeability coefficients of the cholesterol-

containing bilayers show a small net decrease in the permeability of NO and H2S

through cholesterol-containing bilayers, but no net change is observed for CO. The

calculated permeability of NO decreases from 30 cm/s to 18 cm/s in the cholesterol-

containing membrane. This is consistent with the trend observed by Subczynski using

EPR spectroscopy, where the permeability of NO decreased from 93 cm/s in a pure

POPC bilayer to 77 cm/s in the 70:30 POPC:cholesterol bilayer [32].

The increase in the Gibbs energy barrier to permeation for cholesterol-containing

membranes was also observed in simulations by Wennberg et al., which they attributed

to the need for cholesterol and lipids in the bilayer to dissociate in order to allow

permeation, weakening the cholesterol–lipid London dispersion interactions [147]. The

increase in the Gibbs energy barrier for the permeation of NO through pure POPC vs

POPC:cholesterol bilayers is larger than we report here, although the force field and

simulation protocol used in our study is different.
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Figure 3.6: Gibbs energy profiles for the permeation of CO, NO, and H2S through
a pure POPC bilayer (top) and a 70:30 POPC:cholesterol bilayer (middle) and their
difference (bottom).

3.5 Conclusions

Molecular dynamics simulations were used to model the permeation of the gasotrans-

mitters CO, NO, and H2S through a pure POPC-lipid bilayer and a POPC lipid

bilayer containing 30% cholesterol. The Gibbs energy profiles have low barriers to

permeation and indicate a tendency for the gasotransmitters to partition inside the

bilayer. CO and NO preferentially partition into the center of the bilayer, while H2S

has increased concentration in the glycerol region.

Permeability coefficients calculated using the inhomogeneous solubility–diffusion

model are in reasonably good agreement with the reported experimental values, and



64

are consistent with rapid unfacilitated passage of these molecules through the bilayer.

This work is the first report of the permeability coefficient of CO, which is predicted

to permeate at rates of 26 cm/s.

The effect of cholesterol content of the bilayer on the membrane permeability

of gasotransmitters was also investigated. The Gibbs energy profiles of permeation

through a 70:30 POPC:cholesterol bilayer showed a decrease in solubility at the centre

of the membrane but an increase in solubility in the glycerol region. In the computed

rates, this resulted in an incremental net decrease in the permeability of NO and H2S,

but the permeability of CO showed no net change.



Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, molecular simulations were used to understand and predict the per-

meability of the gasotransmitter molecules NO, CO, and H2S through model lipid

bilayer membranes. In order to achieve a high level of accuracy in the calculations

of the rates of permeation, these simulations require accurate molecular mechanical

models of the solute, bilayer, and surrounding solution. One limitation of past simu-

lations is that they employ the mTIP3P water model to represent the solution phase

because the CHARMM36 lipid model was developed for use with this model. This

water model overestimates the dielectric constant and diffusion coefficient of water,

which introduce error into the permeation calculations.

In Chapter 2, CHARMM36 lipid force field was shown to be compatible with the

TIP3P-FB and TIP4P-FB water models. Simulations of DPPC and POPC bilayers

were performed and critical properties of these bilayers were calculated. The calcu-

lated headgroup areas, orientational order parameters, and X-ray form factors were

in good agreement with the experimental values, which shows that these improved
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water models can be used with the CHARMM36 lipid model without modification.

These models describe the physical properties of liquid water more realistically than

the mTIP3P that is the standard, so this work will allow the water component of

lipid–water systems to be modeled more realistically. One drawback of these models

is that they have anomalously high excess chemical potentials, so these models predict

lower membrane permeabilities than the conventional models.

In Chapter 3, rates of permeation for NO, CO, and H2S through a pure POPC-

lipid bilayer and a POPC lipid bilayer containing 30% cholesterol were calculated

using the solubility–diffusion model. The Gibbs energy profiles show a low barrier for

permeation of gasotransmitters through the lipid bilayer, showing that these gaseous

molecules partition inside the membrane easily. The effect of cholesterol in the bilayer

was also explored. The simulations were consistent with the experimental result that

solutes permeate cholesterol-containing bilayers as somewhat lower rates than the pure

bilayer. In this thesis, we have shown that gasotransmitter molecules, NO, CO, H2S,

permeate lipid bilayer membranes readily. These simulations used the CHARMM36

lipid force field in combination with the TIP4P-FB water model, which was shown in

Chapter 2 to be compatible.

4.2 Future Work

The accuracy of permeability simulations could be improved future by more accurate

force fields for lipids. Analysis in Chapter 2 indicated that there was some room for

improvement in the bilayer scattering profiles, membrane dipole potential, and some

orientational order parameters. Validation of force fields non-bonded parameters using

QM/MM MD [148, 149, 150, 151, 152], ab initio molecular dynamics [142, 153] would

help resolve if the non-bonded parameters are appropriate.
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One route to improve force fields and explore gasotransmitter permeation would

be to calculate the effects of induced polarization. All the simulations reported in

this thesis employed a model with fixed atomic charges, although induced polarization

could be significant in these simulations because the solute moves from a polar aqueous

solution to the non-polar membrane interior [22, 143, 146]. There are polarizable force

fields for biomolecules currently available, although the accuracy of these models for

calculating structures and energies still require improvement [106, 154, 155].

Additionally, the composition of the membrane could also be varied. In this the-

sis, simulations were performed simulations on a pure POPC-lipid bilayer and a 70:30

POPC:cholesterol bilayer. Real biological membranes contain a complex mixture of

lipids, including polyunsaturated chains, sphingomyelins, phosphatidylserines, and

phosphatidylethanolamines [156]. The development of models for these more com-

plex bilayers could allow for simulations of gasotransmitter permeation through lipid

bilayers that are better models of real biological membranes.
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[64] O. Berger, O. Edholm, and F. Jähnig. Molecular dynamics simulations of a fluid

bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure,

and constant temperature. Biophys. J., 72(5):2002–2013, 1997.



76

[65] B. A. Lewis and D. M. Engelman. Lipid bilayer thickness varies linearly with

acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol., 166(2):211–

217, 1983.

[66] J. F. Nagle and S. Tristram-Nagle. Structure of lipid bilayers. Biochimica et

Biophysica Acta (BBA) - Reviews on Biomembranes, 1469(3):159–195, 2000.
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[69] N. Kučerka, J. Katsaras, and J. F. Nagle. Comparing membrane simulations to

scattering experiments: Introducing the SIMtoEXP software. J. Membr. Biol.,

235(1):43–50, 2010.
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