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Abstract 

Reservoir souring is a widespread phenomenon in reservoirs undergoing seawater 

injection. During this process, the sulfate in the seawater promotes the growth of sulfate 

reducing bacteria and archaea generating hydrogen sulfide. However, other reactions 

involving formation of different sulfur species with intermediate valence states such as 

elemental sulfur, sulfite, polysulfide ions, and polythionates can occur. These sulfur 

species have implications in both chemical and microbial processes and impact the 

treatment approaches for soured reservoirs. A predictive reactive model was developed in 

this study to investigate the chemical reactivity of sulfur species and their partitioning 

behaviour as a function of temperature, pressure, and pH in a seawater-flooded reservoir.  

The presence of sulfur species with different oxidation states impacts the amount and 

partitioning behaviour of H2S. The model predicts at pH values less than 5, sulfur is 

predominantly in the form of sulfate, polysulfide, hydrogen sulfide and approximately 

10% of the total sulfur is thiosalts. There is also elemental sulfur precipitation. At pH 

above neutral, the bulk of the sulfur is sulfate and thiosalts and less than 10% polysulfide 

is formed. The amount of sulfur deposited as elemental sulfur is also less compared to pH 

lower than 5. Without considering sulfur speciation and assuming that all the initial 

sulfate in the injected seawater (2454 mg/L) is converted to H2S microbially and the 

formed H2S partitions between phases, the gas phase under test separator conditions on 

the surface contains 1080 ppm H2S which is in equilibrium with the oil phase containing 

295.7 ppm H2S and water phase with H2S content of 8.8 ppm. These values are higher 

than those obtained from reactivity analysis (i.e., H2S content of the gas, oil, and aqueous 
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phases are 487 ppm, 134 ppm, and 4 ppm, respectively). Therefore, ignoring sulfur 

speciation in investigating reservoir souring leads to over-prediction of H2S content of 

reservoir fluid. The developed reactivity model enables one the investigation of sulfur 

chemistry when injection of sulfate-containing seawater is used in recovery processes. 

This model can be used as a tool to study sulfur speciation and H2S amounts as a function 

of reservoir temperature, pressure and pH and therefore, could be used in developing 

souring mitigation measures. 

 

Keywords: Chemical reactions, Hydrogen sulfide partitioning, Seawater injection, Sulfur 

speciation, Thermodynamic model 
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1.1. Overview 

The formation of hydrogen sulfide (H2S) in originally sweet reservoirs is known as 

reservoir souring. The amount of hydrogen sulfide in the gas phase under test separator 

conditions is an indicator of the extent of souring. Typically, a reservoir with a produced 

gas stream containing more than 3 ppmv H2S (measured at 0°C and 1 atm) is considered 

soured (Eden et al., 1993). Hydrogen sulfide is a malodorous and toxic gas that is 

harmful to human health. The presence of H2S in reservoirs or in topside processing 

facilities lowers the value of the products, increases corrosion rates, presents a safety risk, 

and creates issues of sulfur deposition in near wellbore (blocking pores and reducing 

permeability) and in production equipment, decreasing oil productivity (Hua et al., 2013; 

Shedid and Zekri, 2002). These issues and the limited space for equipment to treat or 

mitigate souring on offshore platforms represent a cost and logistical problem. 

 Thermochemical sulfate reduction, thermal hydrolysis of organic sulfur 

compounds, hydrolysis of metal sulfides, and desorption of H2S from the aqueous phase 

could cause an increase in the concentration of H2S in produced fluids. H2S could also be 

generated due to the activity of some bacteria and archaea. This biogenic H2S generation 

is a widespread phenomenon in reservoirs undergoing seawater injection and is of major 

concern to the oil industry. The injection of sulfate-containing seawater into an oil 

reservoir, for increasing the recovery and/or pressure maintenance, promotes the growth 

of sulfate reducing bacteria (SRB) and archaea near the injection wells, leading to the 

reduction of sulfate to sulfide (Khatib and Salanitro, 1997; Machel, 2001; Voordouw et 

al., 2007; Kaster et al., 2007; Hubert, 2010; Holubnyak et al., 2011; Stemler, 2012). 
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Subsequent biologically and chemically mediated reactions result in the formation of 

elemental sulfur as well as other reduced sulfur compounds. 

 The analysis of produced water samples has shown the presence of other sulfur 

species such as sulfur oxyanions, sulfite, and polysulfides along with sulfide (Witter and 

Jones, 1998; Boulegue et al., 1981). The average oxidation state of these sulfur species is 

between that of sulfate (+6) and sulfide (-2) and therefore, they are usually referred to as 

intermediate sulfur species (Witter and Jones, 1998; Miranda-Trevino et al., 2013; 

Miranda-Trevino, 2013). These intermediate sulfur species have implications in both 

chemical and microbial processes (Hissner et al., 1999; O'Reilly et al., 2001; Warren et 

al., 2008; Tang et al., 2009; Reid and Warren, 2016); the reduced forms of sulfur take 

part in various oxidation-reduction (redox) reactions influencing the souring/scaling 

process. The level and types of sulfur species (i.e., sulfur speciation) is a function of 

temperature, pressure, pH, and composition, therefore, as conditions change within 

flowlines and unit operations, these species could degrade to corrosion causing and health 

and safety problematic compounds (Xu and Schoonen, 1995; Xu et al., 2000; Druschel et 

al., 2005; Miranda-Trevino et al, 2013). The distribution of sulfur compounds is 

important to determine the effectiveness of souring mitigation measures in either 

preventing the formation of sulfide or lowering the amount of sulfide already presents. 

1.2. Motivation and Objectives 

The role of intermediate sulfur species in biological activity is well documented (e.g. 

Tang et al., 2009). However, the chemical reactivity, which would affect the chemistry of 

the reservoir, topsides, and methods to control reservoir souring (e.g. nitrite injection) is 
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less well understood. There is a gap in knowledge in sulfur chemistry (beyond the 

formation of hydrogen sulfide and some common sulfur species) in seawater-flooded 

reservoirs. Therefore, identifying the origins, reactivity, and the partitioning behaviour of 

these compounds is a critical step in developing promising souring control strategies. 

 The focus of this work is to study sulfur speciation in reservoirs undergoing 

seawater injection in an attempt to assess the relative impact of different sulfur species on 

hydrogen sulfide formation and, therefore on the extent of reservoir souring. This study 

could be used as a screening tool for evaluating the sulfur chemistry in seawater-flooded 

reservoirs and incorporated into existing reservoir simulators, enabling one to estimate 

the sulfur speciation and hence souring of the produced fluid as a result of seawater 

injection. The following approach is followed in this study to investigate sulfur chemistry 

in a reservoir undergoing sulfate-containing seawater injection: 

- Identification of key sulfur compounds involved in reservoir souring through 

literature review and equilibrium analysis to predict their partitioning behaviour in 

the reservoir fluid. 

- Investigation of the chemical reactivity of sulfur species in a seawater-flooded 

reservoir as temperature, pressure, and pH change during production through 

development of a predictive reactive model including both equilibrium and kinetic 

reactions. 

First a general overview of the known reservoir souring mechanisms during recovery 

methods is provided in Chapter 2. The focus of this section is, however, souring at 

temperatures  below 100oC where sulfide is generated as a result of microbial activity to 
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highlight the importance of understanding the sulfur chemistry in these types of 

reservoirs.  

 The major sulfur species in the reservoir fluid/seawater mixture are then identified 

through a comprehensive literature review and Gibbs energy analysis and their behaviour 

is studied as a function of temperature, pressure and pH in the system at equilibrium 

(Chapter 3). Sulfur chemistry in a soured reservoir (due to seawater injection) is then 

assessed through a predictive reactive model considering equilibrium and kinetic 

chemical reactions involving sulfur species (Section 3.3). The chemical reactivity of 

intermediate valence state sulfur species is studied through this reactive model, 

considering the reacting system as a plug flow reactor under steady-state conditions with 

constant velocity. This approach simplifies the flow regime and decouples the complex 

transport phenomena within the reservoir from the chemical reactions and phase 

behaviour, allowing the reacting system to be studied. The effects of the secondary 

dehydrogenation and oxidation reactions of sulfide with organic compounds and their 

impact on distribution of sulfur between oil and water are not taken into account. The 

developed model was validated against the analytical MIN3KIN model. 

 Upon formation, H2S could partition to the gas, water or oil phases depending on 

pressure, temperature and/or composition. As such a 3-phase flash partitioning model is 

developed to study the phase partitioning behaviour of H2S in a multi-phase system. The 

details of the developed model are outlined in Chapter 4. During oil production, both 

temperature and pressure decrease resulting in a change in sulfur solubility in the aqueous 

phase and therefore, possible sulfur deposition. An equilibrium analysis is therefore 
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performed to investigate the partitioning behaviour of elemental sulfur (Chapter 4). The 

results of equilibrium analysis and chemical reactivity could be found in Chapters 4 and 

5, respectively. 
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2.1. Introduction 

A general overview of the known reservoir souring mechanisms including, 

thermochemical sulfate reduction, thermal hydrolysis of organic sulfur compounds, 

bacterial sulfate reduction, hydrolysis of metal sulfides, redox reactions involving oxygen 

scavengers, and desorption of H2S from aqueous phase is presented in this chapter. The 

main focus of this chapter is reviewing sulfur speciation as a result of injection of sulfate-

containing seawater at low to moderate temperatures (i.e., below 100°C). 

2.2. Mechanisms of reservoir souring 

2.2.1. Thermochemical sulfate reduction 

Aqueous sulfate, derived from seawater, pore water, or from dissolution of solid calcium 

sulfate (mainly gypsum and anhydrite), can be reduced by a variety of organic 

compounds such as alcohols, polar aromatic hydrocarbons, and saturated hydrocarbons at 

temperatures above 250°C (Toland, 1960; Kiyosu and Krouse, 1990; Krouse et al., 1988; 

Machel, 1987; Orr, 1977; Belkin et al., 1985; Worden and Smalley, 1996). This thermal 

redox reaction, or thermochemical sulfate reduction (TSR) can result in high 

concentrations of H2S in the reservoir fluid (more than 10% of reservoir fluid). Other 

reduced sulfur compounds, carbonate minerals such as calcite and dolomite, carbon 

dioxide, elemental sulfur, and water are also formed during TSR. The Devonian Nisku 

Formation in Western Canada (Anderson and Machel, 1988), Devonian and 

Mississippian sour gas fields in Western Canada (Krouse et al., 1988; Hutcheon et al., 

2009), the Jurassic Smackover Formation of the United States (Orr, 1977; Heydari and 

Moore, 1989; Sassen, 1988), and the Permian Khuff Formation of Abu Dhabi (Worden 
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and Smalley, 1996; Worden et al., 1995) are examples of reservoir souring as a result of 

TSR. 

 TSR is well documented in the field and experiments have been conducted to 

investigate the reactions involved, possible products, and the effect of temperature, type 

of oxidants, presence of sulfur species and metal cations, and the pH on the TSR rate (e.g. 

(Krouse et al., 1988; Orr, 1977; Worden and Smalley, 1996; Anderson and Machel, 1988; 

Hutcheon et al., 2009; Heydari and Moore, 1989; Sassen, 1988; Worden et al., 1995; 

Ligthelm et al., 1991; Goldstein and Aizenshtat, 1994; Worden et al., 2000; Chen et al., 

2009; Zhang et al., 2007; Amrani et al., 2008; Zhang et al., 2008; Tuan et al., 2013)). 

 During TSR, sulfur is reduced from S6+ to S2- through the formation of sulfur with 

intermediate valence states in the form of elemental sulfur, polysulfides, thiosulfate, and 

sulfite. Although TSR is thermodynamically possible at temperatures as low as 25°C (due 

to large negative free energy changes of reaction), the reaction rates at temperatures 

below 100-140°C (i.e., a minimum temperature range determined for TSR) are relatively 

slow compared to other souring mechanisms (Machel, 1998a; Mougin et al., 2007). 

Based on thermodynamic calculations, significant accumulations of H2S due to TSR 

requires temperatures higher than 150°C (Goldhaber and Orr, 1995; Machel, 1998a). 

 Once generated, H2S acts as a catalyst in TSR and its catalytic effect is enhanced 

at low pH values (i.e. pH~3-3.5) where the sulfate ion is activated and bisulfate ion is 

generated for reaction with hydrocarbon (Orr, 1974; Worden and Smalley, 1996; Zhang 

et al., 2008; Chen et al., 2009; Marriott et al., 2016). It is proposed that elemental sulfur 

is first generated from the reaction between calcium sulfate and H2S (associated with 
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reservoir) and then oxidizes hydrocarbons to carbon dioxide leading to the generation of 

H2S and water (Worden and Smalley, 1996; Marriott et al, 2016). Since the TSR 

environments are often hydrodynamically closed, the generated water (by-product of 

TSR) may dilute the formation water which in turn impacts the rate of TSR as well as 

gas/oil ratio (Worden and Smalley, 1996). The water catalyzes the TSR reaction as it 

results in a decrease in salinity and hence, an increase in the solubility of hydrocarbon 

and hydrogen sulfide. 

2.2.2. Thermal hydrolysis of organic sulfur compounds 

Thermolysis and/or aquathermolysis of organosulfur compounds such as thiophene and 

tetrahydrothiophene in heavy oil also produces H2S (Clark et al., 1983, 1984; Clark and 

Hyne, 1984; Marcano et al., 2013; Hoffmann and David, 2018). Aquathermolysis 

reactions between oil and steam are dominant at temperatures below 240°C, while 

thermolysis (i.e., in the absence of water) dominates at higher temperatures. The amount 

and kinetics of H2S production by thermal decomposition of oil is proportional to the 

sulfur content of the oil. Thiols, sulfide, disulfides, polysulfides, thiophenes, 

benzothiophenes, and dibenzothiophenes are typical sulfur species in bitumen with 

disulfides and thiols as the most reactive and benzothiophenic compounds as the most 

stable sulfur species. Due to the limited organic sulfur compounds, typically less than 5% 

H2S is produced during aquathermolysis. 

 The reactivity of organosulfur compounds, the possible reaction products, and the 

effect of metal cations on decomposition of these compounds during in-situ steam 

injection in heavy oil recovery has been studied extensively by Clark et al. (Clark et al., 
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1983, 1984, 1987; Clark and Hyne, 1984). Hydrolysis of thiophene-type organic 

compounds, produces significant quantities of carbon dioxide with the water as the 

source of oxygen in the system, whereas in thermolysis (i.e. higher temperature than 

hydrolysis and in the absence of water), the formation of small molecular weight 

compounds is favoured and no CO2 detected (Figure 2.1). 

 

 

Fig. 2- 1 Reaction pathway for the hydrolysis of tetrahydrothiophene (Clark et al., 1983) 
 

 Hydrolysis of organosulfur compounds is influenced by the pH of the system 

(Clark and Hyne, 1984). Under acidic conditions, the rate of hydrolysis is dramatically 

increased compared to neutral conditions probably due to the presence of protons and the 

sulfate anion which acts as an oxidizing agent. The acidic hydrolysis of organosulfur 

compounds produced small quantities of soluble organics including alkylthiophene, 

dihyrothienylthiophene, alkyldihyrothienylthiophene, and butanethiol. 

 The H2S production during steam injected processes has been predicted from 

aquathermolysis experimental results and simulation (Freitag et al., 2006; Anaya et al., 

2010; Barroux et al., 2013; Lin et al., 2016). Kapadia et al. (Kapadia et al., 2010, 2012) 
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have developed a thermo-kinetic model for reservoir simulation of the H2S production 

during thermal recovery processes. A kinetic model assuming that H2S yield is mainly 

due to the steam-induced cracking of the organosulfur components of resin and 

asphaltene fractions has also been developed by Lamoureux et al. ( Lamoureux-Var and 

Lorant, 2007; Lamoureux-Var et al., 2010; Barroux et al., 2013). 

 Kinetic studies of aquathermolysis of heavy oils have shown the catalytic effect of 

the reservoir mineral components on the conversion of organosulfur components of 

heavy oil to CO2 and H2S (Fan et al., 2004; Guangshou et al., 2009). Aqueous solutions 

of first-row transition-metals, as well as aluminum cations, were used to investigate the 

effect of metal ions on decomposition of organosulfur compounds (Clark et al., 1987). 

2.2.3. Hydrolysis of metal sulfides 

Oxidative and reductive dissolution of metal sulfides under acidic conditions may also 

produce sulfate ions (a source for SRB growth) and H2S during water flooding or steam 

injection (Marsland et al., 1989; Hutcheon, 1998). 

Oxidative dissolution: xRHSOMxOOHMS   84 2
4

2
2

  (2- 1) 

Reductive dissolution: yOSHMyRHMS  
2

22    (2- 2) 

  MS represents sulfide mineral, M is the metal base, and O and R are some 

oxidized and reduced state of some appropriate redox couple, respectively. The acidic 

components come from the injection water or the degradation of injected biocides and 

corrosion and scale inhibitors (Khatib and Salanitro, 1997; Xu and Schoonen, 1995). Iron 

sulfides, such as pyrite and pyrrhotite are common metal sulfide minerals associated with 

reservoirs forming under reducing conditions (Rickard, 1995). Pyrite is oxidized to 
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sulfate and hydrogen reducing the pH of the environment (Hutcheon, 1998; Rimstidt and 

Vaughan, 2003). At pH values lower than 7, pyrite oxidation by dissolved oxygen 

produces tetrathionate and sulfate, while at higher pH values thiosulfate and sulfite are 

the major reaction products (Xu and Schoonen, 1995). An increase in temperature is 

accompanied with an increase in the rate of pyrite oxidation and sulfate concentration. 

The rate of pyrite oxidation at 25°C is rapid enough to be observed in a few years 

(Hutcheon, 1998). The most favourable decomposition reactions for pyrite at low pH 

values (pH<7) and under reducing conditions, generating H2S are (Peters, 1976): 

0
2

2
2 2 SSHFeHFeS           (2- 3) 

RSHFeRHFeS 2224 2
2

2         (2- 4) 

 Under basic conditions, pyrite is oxidized to sulfate and sulfide, while in the 

presence of an oxidant it is converted to elemental sulfur (Peters, 1976): 

OHSOSOFeOHFeS 2
2
4

2
432 26/16/113/14       (2- 5) 

OSFeOFeS 222 02
2           (2- 6) 

2.2.4. Redox reactions involving oxygen scavengers 

During water flooding oil recovery, surface water with dissolve oxygen is injected 

downhole, which can induce oxygen-related corrosion and pitting and increase in the 

deposition of iron oxides (Eden et al., 1993). As such, control of oxygen in oilfield 

applications is required to improve the environment, health and safety compliance, 

maximize throughput, improve water quality and operational reliability. Dissolved 

oxygen can be controlled in injected and produced water using oxygen scavengers 

including bisulfites and sulfites. Although the injected bisulfite is readily reduced to 
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sulfide, it is unclear if it could be the principal sulfur source for H2S. It is likely, however, 

that the bisulfite could either stimulate the growth of SRB or serve as a catalyst in the 

conversion of some other sulfur-containing substances, generating H2S (Eden et al., 

1993). Another possibility for the increase in the concentration of H2S as a result of 

injection of bisulfite could be the modification of the surface of the metal sulfides in the 

reservoir to making it more reactive in generating H2S. 

2.2.5. Desorption of H2S from aqueous phase 

Reservoir pores contain both water and hydrocarbons and as the hydrocarbons are 

produced, capillary forces result in water retention in the small pores of the reservoir 

rock. This initial water saturation in reservoir pores may vary from 5 to 50% (Katz, 1959; 

Standing, 1977; Eden et al., 1993). The in-situ formation water has the capacity to absorb 

(from soured reservoir fluids) and potentially store H2S. As reservoir pressure decreases 

during production, the solubility of H2S in water decreases. This ultimately leads to the 

liberation of H2S from the stationary aqueous phase into the produced fluids . This is a 

potential mechanism for souring the fluids, even if souring mitigation measures have 

been put in place upstream. Seto and Beliveau first proposed this as a potential 

mechanism for reservoir souring in the Caroline field where the other microbial or abiotic 

souring mechanisms seemed unlikely to explain the source of increased H2S in the 

production wells (Seto and Beliveau, 2000). This is an important phenomena, as it could 

in part explain the observation of H2S in produced fluids even after a reservoir had been 

treated to prevent souring (e.g. nitrate injection). 
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2.2.6. Microbial sulfate reduction 

Sulfate can be reduced bacterially by hydrocarbons in low-temperature diagenetic 

environments (commonly up to 60-80°C) (Worden and Smalley, 1996; Machel and 

Foght, 2000; Machel, 2001). Bacterial sulfate reduction (BSR), is a common and 

widespread process in shallow burial diagenetic settings, and considered “instantaneous” 

on a geological time scale leading to the generation of H2S. Biogenic sulfide production 

results in soured oil and gas in the reservoir and topside processing facilities including 

oil-water separation units, water storage tanks for produced water, and flowlines. There 

are various comprehensive reviews on the types of sulfate reducers (Orphan et al., 2000; 

Muyzer and Stams, 2008; Grigoryan et al., 2008; Fauque and Barton, 2009; Bodtker et 

al., 2008; Wei et al., 2010; Agrawal et al., 2010; Kumaraswamy et al., 2011), bioreaction 

mechanisms, products, and geochemical characteristics of BSR (Machel, 1987; Morse et 

al., 1987; Machel, 1992; Machel et al., 1995; Goldhaber and Orr, 1995; Noth, 1997). 

 Anaerobic microorganisms that reduce sulfate are either indigenous in deep 

subsurface reservoirs or can be introduced into a reservoir during drilling operations or 

water flooding (Gieg et al., 2011). The latter has been found to be a source of multiple 

components including sulfate, carbon sources, and sulfate reducing communities that 

influence oilfield souring. SRB are found in both acidic and basic environments where 

sulfate is present (Nilsen et al., 1996; Sen and Johnson, 1999; Knittel et al., 2003; 

Webster et al., 2006). The extent of microbial souring depends on the water-flooding 

operations (i.e. seawater injection or produced water re-injection) (Voordouw et al., 

2009; Lysnes et al., 2009), salinity (Stetter et al., 1993; Wilhelms et al., 2001), 
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temperature (Kaster et al., 2007; Voordouw et al., 2009;), and sources of carbon and 

other nutrients (Grigoryan et al., 2008). High salinities (more than 10%) and high 

temperatures (>100°C) in reservoirs limit microbial activity. The injection of sulfate rich 

seawater, cools the reservoir and alters the physical and chemical conditions of the 

produced water and the reservoir, creating a favourable environment for the growth of 

some mesophilic seawater bacteria. Scale and corrosion inhibitors, demulsifier, and wax 

inhibitors can provide nutrients to SRB. At temperatures above 80°C, almost all SRB 

cease to metabolize (Machel, 2001), however some hyperthermophilic SRB metabolize at 

temperatures as high as 100°C (Jorgensen et al., 1992; Stetter et al., 1993; Beeder et al., 

1994; Rees et al., 1995; Beeder et al., 1995; Dang et al., 1996; Lien et al., 1998; Feio et 

al., 2004). 

 Depending on the availability of reactants, formation water chemistry, and 

wettability, different species such as H2S, bisulfide, bicarbonate, carbon dioxide, calcite, 

and dolomite may be produced during bacterial sulfate reduction. The amount of H2S 

generated by SRB is limited by the availability of organic reactants, sulfate and the 

presence of base and transition metals, such as Fe, Pb, Zn, and Mn (Bailey et al., 1973; 

Orr, 1977). When the system runs out of reactive hydrocarbons, the elemental sulfur that 

is not reduced to sulfide, accumulates as the net reaction product. 

2.3. Oilfield souring control: chemical treatments 

Microbial activity offshore is managed by a number of different methods. Injection of 

biocides at the topside and/or to the injection water is the most common method. 

Biocides suppress microbial growth and activity, particularly in reservoirs where souring 
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is confined to the zone around injection well (Gieg et al., 2011). Common biocides for 

controlling microbial activity include glutaraldehyde, tetrakis (hydroxymethyl) 

phosphoniumsulfate (THPS), benzalkonium chloride, formaldehyde, and sodium 

hypochlorite (Videla and Herrera, 2005; Kaur et al., 2009). Biocides are relatively simple 

to administer however, continued use of them can lead to increase in biocide-resistant 

microbial communities. Biocides are potentially hazardous to oilfield personnel and the 

environment and difficult to inject deep into reservoir making treatment of SRB distant 

from injection well challenging. 

 Nitrate injection at the injection well or at the production well in the produced 

water treatment is an alternative to biocide treatment (Sunde et al., 2004; Sturman and 

Goeres, 1999; Dolfing and Hubert, 2017; Myhr et al., 2002). Unlike biocides, nitrate 

flows readily into an oil-bearing formation and shifts the microbial activity from SRB to 

nitrate reducing bacteria (NRB). The addition of nitrate into an injection well stimulates 

nitrate reducing bacteria (NRB), which are responsible for the reduction of nitrate to 

nitrite. The produced nitrite acts as an SRB inhibition agent. It is also an effective H2S 

scavenger as it reacts with sulfide resulting in the generation of elemental sulfur and 

nitrogen (Sturman and Goeres, 1999). Microbial competition between NRB and SRB for 

electron donors (oil-derived organics or H2) and nitrate-driven sulfide oxidation are the 

two mechanisms proposed for the NRB-facilitated souring control (Sunde et al., 2004; 

Dolfing and Hubert, 2017).  There are concerns that nitrate treatment shifts the corrosion 

risk from production to injection wells due to the oxidizing potentials of nitrate and nitrite 

(Martin, 2008; Hubert et al., 2005). Depending on the ratio of nitrate to sulfide, fully 
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oxidized sulfate or partially oxidized sulfur-polysulfides may be generated; Sulfide is 

oxidized to sulfate at high nitrate to sulfide ratios with the reduction of nitrate to nitrite, 

while at low ratios, sulfur-polysulfide formation is favored (Sturman and Goeres, 1999). 

The latter conditions can be encountered at oilfield topside at low temperatures (4-85°C) 

(Dolfing and Hubert, 2017). These intermediate sulfur species could also be formed 

rapidly by chemical reactions, when soured produced water containing substantial sulfide 

concentrations is exposed to air (Johnston et al., 2010). The oxidation of sulfide to sulfate 

is a kinetically slow reaction that requires a biological catalyst to occur at a significant 

rate. Therefore, partially oxidation of sulfide to elemental sulfur and other intermediate 

sulfur species is a more probable reaction pathway. The formed intermediate sulfur 

compounds may cause corrosion. The corrosive nature of these compounds has been 

well-documented (Dowling, 1992; Alekseev et al., 1990; Fang et al., 2011). Polysulfide, 

for example, acts as an oxidizer that receives electrons from steel surfaces to form sulfide 

(Ramo et al., 2003). Sulfur can react rapidly with metallic iron to form iron sulfide and 

other iron sulfur compounds such as greigite (Fe3S4) and pyrite (FeS2) (Johnston et al., 

2010; Dronen et al., 2014). The formed iron sulfide is essentially insoluble in aqueous 

solution leading to high local corrosion rates. Partially oxidized sulfur species can acidify 

natural waters (O'Reilly et al. 2001). Theses reduced forms of sulfur entering the 

environment can also influence the bioavailability of heavy metals due to complexation 

and precipitation (Witter and Jones, 1998). 

 These findings have implications for reservoir souring management strategies 

(Nemati et al., 2001). For example, under conditions encountered in oilfields, where there 
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is an abundance of electron donors, sulfate reduction to sulfide is more favourable than 

sulfide oxidation to elemental sulfur. Sulfide oxidation to intermediate sulfur species is, 

on the other hand, most problematic in oil/water topside separation tanks where nitrate 

levels are low. The occurrence and behaviour of these intermediate sulfur species and 

their impact on souring/scaling process need to be investigated for developing souring 

control strategies. This could be achieved through identifying the possible compounds 

involved and studying the thermodynamic and reaction rate data with respect to these 

species present. 

2.4. Sulfur chemistry and reservoir souring 

Most studies use hydrogen sulfide concentration in production fluids to indicate the rate 

and type of reservoir souring. However, other sulfur species including sulfite, 

polysulfides, and sulfur oxyanion compounds has been detected in several produced 

water samples (Witter and Jones, 1998; Druschel et al., 2003). The average oxidation 

state of these sulfur species is between that of sulfate (+6) and sulfidic (-2) and therefore, 

they are usually referred to as intermediate sulfur species (Figure. 2.2). These sulfur 

species could affect the microbial communities (e.g., microbially-influenced corrosion) 

and will impact the effectiveness of any souring treatment process. In addition, the 

presence of these sulfur species can result in operational, environmental and treatment 

problems. These sulfur compounds not only impact the amount of H2S in the various 

phases but also the overall reactivity of the produced fluids in terms of sulfur. Sulfur 

oxyanions may also play a role in the transport of metals (Druschel et al., 2003). 
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Fig. 2- 2: Oxidation reduction reactions in sulfur cycle from (Miranda-Trevino et al., 
2013) with modification 

 

 The presence of intermediate sulfur species in produced fluids indicates that there 

are microbial and chemical reactions occurring as the reservoir fluids flow from injection 

to production wells. The possible origins of these compounds have been studied under 

different temperature and pH conditions (Muyzer and Stams, 2008; Orphan et al., 2000; 

Gieg et al., 2011; Tang et al., 2009; Takano et al., 1994; Zhang and Millero, 1993; Chen 

and Morris, 1972; Xu et al., 2000; Barrett and Clark, 1987; Moura et al., 1997; Dalsgaard 

and Bak, 1994). The incomplete redox reactions involving H2S, sulfur dioxide, or sulfate 

are likely causes of the generation of sulfur oxyanions (Machel, 1987, 2001; Takano et 

al., 1994; Zhang and Millero, 1993; Chen and Morris, 1972; Xu et al., 2000). Partial 

reoxidation of H2S to sulfur may occur in low-temperature aerobic environments, where 
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molecular oxygen presents, and in high-temperature anaerobic environments, excess 

sulfate acts as the oxidant. Intermediate sulfur species can also be reduced to sulfide due 

to the SRB activity. Some sulfate reducers can reduce sulfur compounds such as thiosalts, 

sulfite, and sulfur (Muyzer and Stams, 2008; Barrett and Clark, 1987; Moura et al., 1997; 

Dalsgaard and Bak, 1994) and thermophilic sulfur reducers and thiosulfate reducers have 

been isolated from produced water at temperatures ranging from 60-90°C (Orphan et al., 

2000; Gieg et al., 2011). A mesophilic SRB has been detected in oil fields at 

temperatures of 30°C and pH 7 and reduced sulfate, sulfite, and thiosulfate in the 

presence of lactate (Gieg et al., 2011). 

 The intermediate sulfur species have implications in both biology and geology 

and, therefore, understanding the mechanism of chemical reactions involving these 

compounds is critical. The chemical reactivity of these sulfur compounds under different 

temperature and pH conditions is reviewed in the following. 

Hydrogen sulfide is a weak acid in water and depending on the pH of the environment, it 

may exist as bisulfide or sulfide ions: 

H2S
 
↔ H++HS-         (2- 7) 

HS-  
↔ H++S2-          (2- 8) 

 Rate constants for the oxidation of sulfide in seawater and formation of sulfite, 

sulfate, and thiosulfate were determined as a function of pH, temperature, and salinity. 

The reactions are overall second-order reactions, first-order with respect to both sulfide 

and oxygen. The kinetic model accounting for the distribution of the reactants and 

products is based on the following reactions (Zhang and Millero, 1993): 
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 The rate constants of the distribution of products from the oxidation of sulfide in 

seawater as a function of pH are obtained as follows: 

2
1 0289.0914.071.4ln pHpHk        (2- 16) 

2
2 103.051.187.3ln pHpHk         (2- 17) 

2
3 177.001.309.9ln pHpHk         (2- 18) 

 In low-temperature diagenetic settings (T<100°C), where oxygen is available and 

pH conditions are favourable, sulfide can be oxidized to elemental sulfur. It is believed 

that the dissolution of elemental sulfur in aqueous sulfide solutions is the precursor for 

the formation of polysulfide anions (Petre and Larachi, 2006): 

OHSOHHSS nn 2

2

1 



        (2- 19) 

 The distribution of the resulting anions reaches equilibrium rapidly which leads to 

the formation of different chain lengths: 

52)1( 2

22

1 


 nOHnSOHHSSn nn    (2- 20) 
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 In the presence of  oxygen, the autoxidation of the polysulfides also occurs 

rapidly which results in thiosulfate formation: 

8

2

322

2
]8/)2[(2/3 SnOSOSn 


      (2- 21) 

 If the formation of thiosulfate is not suppressed, it can be oxidized to 

polythionates. Under alkaline conditions, hydrogen sulfide reacts with polythionates and 

forms polysulfides (Steudel, 1996). 

 High temperatures and pressures favour polysulfide formation. Polysulfides are 

relatively unstable and are easily decomposed to elemental sulfur and H2S when exposed 

to water and temperature and pressure change. A decrease in temperature and pressure 

also leads to the decomposition of polysufides (Bojes et al., 2010). Polysulfides are also 

known to play a key role in the formation of volatile sulfur compounds in natural aquatic 

systems (Petre and Larachi, 2006). 

 Polysulfide ions can react with H+ to form protonated polysulfides which near or 

below pH 7 lead to the formation of homocyclic molecule S8. The formed elemental 

sulfur can precipitate as a solid and cause plugging in the reservoir, well-bore, or surface 

facilities (Millero, 1986): 

8

2
]8/)1[( SnHSHSHS nn  

      (2- 22) 

 Protonated polysulfides have relatively strong acidities in the gas phase which 

correlate with the chain length. They can react with basic species such as bicarbonate 

ions in the formation water and produce water-soluble ionic polysulfides as follows: 

)(2232 gnn COOHHSHCOSH 


      (2- 23) 
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 Sulfur can also be oxidized to other sulfur oxyanions such as sulfate, sulfite, 

polysulfides, and thiosulfate. As pH of the solution increases through neutral conditions, 

the rate of oxidation of sulfide increases, and decreases in more alkaline solutions 

(Machel, 1992; Wang et al., 2013): 

  OHnOHSOnnHS n )2(2/)1( 2

2

2      (2- 24) 

8

2

322
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8/)2(2/3 SnOSOSn 


      (2- 25) 
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      (2- 26) 




2
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2

3 2/1 SOOSO         (2- 27) 

 In the presence of a transition metal, like Fe3+, the overall process of sulfide 

oxidation may be represented as: 

  )1(0 22 nn MHSMHS        (2- 28) 

 Thiosalts are other forms of intermediate sulfur species which are undesirable in 

the environment as they can acidify natural waters (Witter and Jones, 1998; Druschel et 

al., 2003a; O'Reilly et al., 2001; Millero, 1986; Wang et al., 2013; Miranda-Trevino et 

al., 2013; Kuyucak and Yaschyshyn, 2007). Their reactivity is dependent upon 

temperature, pH, and the presence of oxygen and other thiosalts, metals and 

microorganisms (Miranda-Trevino et al., 2013). Strong oxidants and biological and/or 

chemical catalysts, such as Fe3+, catalyze the chemical breakdown of polythionates to 

thiosulfate and sulfite (Schippers and Sand, 1999). Thiosalts formed in the reservoir 

could rapidly react to form H2S or other sulfur species on the topsides (i.e. in produced 

water systems). Thiosalts can also be produced from the oxidation of pyrite. The two 

common oxidants are ferric ion and oxygen. The former is the main oxidant at low pH 



27 
  

values (reaction 2-29), and the latter is more important at neutral pH (reaction 2-30) 

(Schippers and Sand, 1999; Schippers et al., 1996).  

 
2

32
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2 6736 OSHFeOHFeFeS      (2- 29) 
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4
2

222 222/7 SOHFeOHOFeS      (2- 30) 

 In acidic aqueous solutions at temperatures between 4-30oC, thiosulfate is further 

oxidized to tetrathionate as follows (Takano et al., 1994; Zhang and Millero, 1993; Chen 

and Morris, 1972; Xu et al., 2000; Miranda-Trevino et al., 2013): 

OHOSOHOS 2
2
642

2
32 2/122         (2- 31) 

  22
64

32
32 222 FeOSFeOS        (2- 32) 

 The decomposition of thiosulfate under both acidic and basic conditions are 

determined as follows: 
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 Pyrite has been shown to act as a catalyst in the tetrathionate formation reaction 

under both acidic and basic conditions (Xu and Schoonen, 1995): 

SHFeSOSFeSOS 2
2
642

2
323  

      (2- 35) 

 Tetrathionate is stable in acid solutions and degrades to thiosulfate and sulfite at 

neutral pH. At low pH values, however, tetrathionate is decomposed to sulfate if the 

ferric ion presents: 

  HFeSOOHOFeOS 9345.475.234 22
422

32
64

   (2- 36) 
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 In the presence of a strong alkaline media, trithionate is a probable intermediate of 

tetrathionate reduction (Xu and Schoonen, 1995): 

CTpHOHOSOSOHOS   304:,9:32564 2
2
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2
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  (2- 38) 

 At pH 3.5 to 4 and temperatures between 20 and 70°C, trithionate and 

pentathionate are formed from tetrathionate decomposition through a second order 

reaction (Miranda-Trevino, 2013; Zhang and Jeffrey, 2010): 
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 Trithionate is stable in neutral and acidic conditions and its reactivity increases 

with pH (Miranda-Trevino et al., 2013): 

2

2

48

2

64
2
63 228/13 SOSOSOSOS 

      (2- 41) 

CTpHOSs
dt

OSd
 



35:,4:][102.3
][ 2

63
12

2
63     (2- 42) 

 At high temperatures, between 70 and 150°C, the proposed reaction for 

degradation of trithionate is as follow: 

  HSOOSOHOS 22
4

2
322

2
63       (2- 43) 

CTpHOSs
dt

OSd
 



15070:,42:][106.2
][ 2

63
12

2
63   (2- 44) 

 The presence of ferric ion promotes the oxidation of trithionate at pH near to 

neutral (Wang et al., 2013; Zhang et al., 2011). 

CTpHFeSOOSOFeOS   30:,97:42/12 22
4

2
322

32
63  (2- 45) 
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 The oxidation of trithionate at pH below 7 and in highly basic solutions (pH 

around 12) follows the same reaction (reaction 1-46). However, in acidic conditions, the 

produced thiosulfate is further oxidized to tetrathionate and sulfite. At pH between 3.5 

and 4 and temperatures between 20 and 70°C, trithionate is first decomposed to 

tetrathionate and sulfate and then to sulfur dioxide and sulfur. 

OHSOOSOHOS 2
2
4

2
32

2
63 22         (2- 46) 

 As indicted previously, thiosalts are also active intermediates in bacterial 

reactions but not discussed in detail here. However, it is clear from the discussion above 

that the type of sulfur compound can vary significantly within the reservoir and topsides 

processing facilities depending on the temperature, pressure, and pH. These same 

compounds can act as growth promoters or inhibitors of bacterial growth and corrosion. It 

is therefore important that a more complete understanding of how sulfur partitions and 

chemically reacts is required to control reservoir souring and topsides damage/safety 

concerns. 

2.5. Summary 

Reservoir souring may be originated from microbial and non-biogenic mechanisms which 

are of importance in producing excessive amounts of H2S in oil field reservoirs. Other 

combination of sulfur species including sulfite, polysulfides, polythionates, and 

thiosulfate has also been detected in some produced water samples, likely a result of 

phase partitioning, and chemical and microbial reactions. These intermediate sulfur 

species have implications in both biology and geology and could impact the effectiveness 

of treatment approaches for sour reservoirs. The presence of sulfur species in produced 
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oil and gas results in operational, environmental and treatment problems. Not only do 

these sulfur compounds impact the amount of H2S in the various phases but also they 

affect the overall reactivity of the produced fluids in terms of sulfur. The incomplete 

redox reactions involving H2S, sulfur dioxide, or sulfate are likely causes of the 

generation of sulfur oxyanions. The isolation of some sulfur and thiosulfate reducing 

bacteria from produced waters indicates that although H2S is mostly generated by SRB 

and archaea close to the injection well, and as the reservoir fluids flow from injection to 

production wells, formation of sulfur species with valence states between those of sulfate 

and sulfide occurs due to changes in temperature, pressure, and pH of the environment.  

 Managing the formation of sulfide or lowering the amount of sulfide already 

present due to the microbial activity requires a more comprehensive understanding of the 

sulfur compound reactivity and partitioning behaviour as a function of the temperature, 

pressure, and pH at reservoir conditions associated with SRB activity. An assessment of 

the sulfur speciation is also necessary for evaluating topsides handling of oil, gas, and 

produced water. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 
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3.1. Overview 

Sulfur speciation is critical in assessing the potential problems associated with the 

injection of sulfate-containing seawater within oil reservoirs and also for developing the 

promising treatment approaches for soured reservoirs. In the first part of this study, the 

major sulfur species present in a system containing reservoir fluid and injected seawater 

and the corresponding reactions involving these species will be identified through 

literature and equilibrium analysis; and in the second part, the reactivity will be analyzed 

through developing a predictive model based on both equilibrium and kinetic reactions.  

3.2. Equilibrium analysis for determining sulfur species equilibrium 

concentration 

In order to determine the type and equilibrium amount of sulfur species present/reacting 

in the reservoir and topsides, the partitioning behaviour of the various species in a multi-

phase system must be determined as a function of temperature, pressure, and pH. This is 

accomplished through equilibrium analysis (Eden et al., 1993; Burger et al., 2005; Burger 

and Jenneman, 2009). 

 Management of soured reservoirs to control corrosion and improve production, 

requires identification of the major sulfur species in the sulfur cycle (i.e., reduction of 

sulfate to sulfide and oxidation of sulfide to sulfate). The focus of this work is on sulfur 

speciation in an oil reservoir where sulfate-containing seawater is injected and where 

sulfate reducing bacteria and archaea are present. Equilibrium analysis is a useful tool in 

identifying and screening key reacting species and end products, and the respective 

phases involved. 
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 There are two approaches to analyzing equilibrium reactions: Gibbs energy 

minimization and Gibbs reaction minimization. In the former, no reaction mechanism is 

given and only the feedstock and possible products are known. The Gibbs energy is then 

minimized for the system and species concentrations are determined based on their 

relative Gibbs free energies. The advantage of this approach is that the knowledge of the 

specific reactions is not required, which is useful for systems where the mechanisms are 

either too complex or unknown. The disadvantage is the need for information about the 

major products; if products are not included in the phase, the concentration will not be 

calculated. In the second approach, the reactions must be known and Gibbs energy of 

each reaction calculated and based on these values concentrations of various products are 

determined. The two approaches for minimizing Gibbs energy are introduced here. In the 

first part of this study, the major sulfur species present in the system will be identified 

through Gibbs energy minimization method and in the second part, where the chemical 

reactivity of sulfur species is studied, the Gibbs reaction minimization method is used in 

combination with the kinetic study. 

3.2.1. Gibbs energy minimization 

The Gibbs energy minimization method is used to find the most probable chemical 

speciation at steady state. The total Gibbs energy of a reacting system is a function of the 

composition of the system. Based on the fact that at equilibrium the total Gibbs energy of 

the system has its minimum value, the problem is to find the composition that minimizes 

the total Gibbs energy (Gt) for specified temperature and pressure. The solution is based 

on the method of Lagrange's multipliers which lead to a system of non-linear equations. 
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These equations can be solved numerically by Newton-Raphson method (Mougin et al., 

2007; Smith et al., 2005): 

The first step is to write the material balance on each element k: 

),...2,1(  kAan k
i

iki        (3- 1) 

Where ω is the total number of elements comprising the system and subscript k identifies 

a particular atom. Ak is defined as the total number of atomic masses of the kth element in 

the system. Further, aik is the number of atoms of the kth element present in each 

molecule of chemical species i. Next, the Lagrange's multipliers λk are introduced for 

each element: 
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Summation of these equations over k gives: 
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Then a function F is formed by: 
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By differentiating this equation and setting the result equal to zero one would obtain: 
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The first term on the right side is the definition of the chemical potential. The chemical 

potential is also given by: 
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)/ˆln( oo
iiii ffRTG          (3- 6) 

if̂  is fugacity of component i in solution, fi
o is the standard-state fugacity, R is the 

universal gas constant, T is temperature, and Gi
o is the standard-state Gibbs energy of 

species i. 

For the liquid phase, the fugacity is eliminated in favour of the activity coefficient (γi). 

Therefore, equation (3-5) can be written as: 

),...,2,1(0)/ln( NiaffxRTG
k

ikkiiiifi
  oo     (3- 7) 

In multiphase reacting systems, the numbers of moles of each species in all coexisting 

phases should be considered in the previous equations. In addition, in the presence of 

ionic species, the electroneutrality constraint should also be taken into account. 
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In this approach, the number of phases at equilibrium needs to be known in advance. The 

calculations are initiated with γi = 1 for all species. A preliminary set of {xi} is then 

provided by solving Eq. 3-7. An activity model is used together with calculated 

composition to give a new set for γi for use in Eq. 3-7. Then a new set {xi} is determined. 

The process is repeated until successive iterations produce no significant change in {xi}. 

In the first part of equilibrium analysis, the HSC Chemistry 9.0 is used for solving the 

system of nonlinear equations (Eq. 3-8). 

3.2.2. Gibbs reaction minimization 
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When two or more independent reactions proceed simultaneously, the equilibrium mole 

fractions of (xi) of the species present are related to the reaction coordinate () by: 
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Where, 
j  applies to each reaction and 

ji ,  designates the stoichiometric number of 

species i in reaction j. Summation over all species yields: 
i

jij , . ni0 is the initial 

concentration of species i and n0 is the initial concentration of the reacting system. 

The equilibrium constant for a reaction can be evaluated as follow: 

∆Gr
° = ‒ RT lnK          (3- 10) 

Where, the standard molal Gibbs free energy of the reaction ( 0
rG ) is defined by Eq. (3-

11) (Smith et al., 2005): 

∆Gr
°=∑ νi,rΔGi

°
i          (3- 11) 

where, i  is the stoichiometric coefficient and 0
iG  is the Gibbs free energy of formation 

for species i. The standard Gibbs free energy change of reaction vary with the 

equilibrium temperature and can be evaluated as follow: 
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The standard enthalpy change of reaction ( H ) is related to temperature: 
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Similarly, the standard entropy change of reaction is developed as follow: 
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Finally, based on the definition of the Gibbs free energy (Eq. 3-15), the standard Gibbs 

free energy change of reaction would be as Eq. 3-16: 
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The equilibrium constant is also related to the composition of the reacting system. The 

uniformity of temperature, pressure and chemical potential of each component 

throughout all the coexisting phases at equilibrium leads to (Smith et al., 2005): 

0
i

ii           (3- 17) 

According to the definition of the fugacity of a species in solution: 

iii fRTT ˆln)(           (3- 18) 

For pure species i in its standard state at the same temperature, this equation reduces to: 


iii fRTTG ln)(          (3- 19) 

The difference between these two equations gives: 
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Combining the Eq. (3-17) with Eq. (3-18) and using the definition of equilibrium 

constant (Eq. (3-10)), result in: 

Kff
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Defining the fugacity as Eq. (3-22), Eq. (3-21) is written as Eq. (3-23) for a gas phase, 

provided that the standard state for a gas is the ideal-gas state of the pure gas at the 

standard-state pressure P° of 1 bar. 

Pyf iii ̂ˆ            (3- 22) 
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For a reaction occurring in the liquid phase, the fugacity of a species in solution is related 

to its fugacity (fi) in the pure state at the temperature and pressure of the equilibrium 

mixture as follow: 

iiii fxf ˆ           (3- 24) 

The fugacity ratio in Eq. (3-21) can now be expressed as: 
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Where, this ratio is approximated as: 
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Finally, combining equations (3-25) and (3-26) with Eq. (3-21) yields: 
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 When there are two or more independent chemical reactions in a system, the 

equilibrium composition can be found by extension of the methods developed for single 

reactions. In this case, a separate equilibrium constant is evaluated for each reaction j: 
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j
i

ii Kff ji  ,)/ˆ(
          (3- 28) 

 In equations (3-23) and (3-27), the mole fractions may be eliminated in favour of 

the equilibrium value of the reaction coordinate according to equation (3-9). This results 

in a system of non-linear algebraic equations where the number of equations needed to be 

solved is equal to the number of reactions considered in the system. 

 It should be noted that while equilibrium analysis is useful and has broad 

applicability, particularly where there is no kinetic data available, the assumption of 

chemical equilibrium may skew the predictions. As such, in addition to equilibrium 

analysis, a simulation of the reaction rates of published reactions involving the species of 

interest is performed in the developed model. This is combined with the equilibrium 

analysis of the reacting species to give a more complete picture of the reaction pathways 

in the reservoir. Ideally, only the kinetic rates would be necessary to model the system, 

however, given the lack of reaction rate data on key species identified by field and lab 

data, the inclusion of both types of analyses is necessary. 

3.3. Analysis of sulfur species reactivity 

The type of the chemical interactions between substances in a reacting system is essential 

as they control the development of the chemical composition of the system. Some of 

these reactions occur quickly resulting in the reacting system being under local chemical 

equilibrium. These reactions are handled through a set of nonlinear algebraic equations 

(Grove and Wood, 1979; Miller and Benson, 1983; Yeh and Tripathi, 1989). Other 

reactions, however, occur at a slower rate. Under these conditions, kinetically-controlled 
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reactions become important when they are fast enough to change the composition of the 

environment, but cannot be assumed to reach chemical equilibrium. 

 Various reactive-transport models that consider both equilibrium and kinetic 

reactions have been developed for simulating subsurface aqueous reacting systems 

(Grove and Wood, 1979; Miller and Benson, 1983; Walsh et al., 1984; Yeh and Tripathi, 

1989; Steefel and Lasaga, 1994; Wernberg, 1998; Robinson et al., 2000; Yeh et al., 

2001b; Regnier et al., 2002; Steefel et al., 2005; Zhang et al., 2007; Berk et al., 2015). 

The kinetic reactions are modeled on the principle of conservation of mass resulting in a 

system of partial differential equations (PDEs), while the equilibrium reactions are 

modeled based on equilibrium expression governed by mass action equilibrium equations 

resulting in a system of non-linear algebraic equations (AEs). These reactive models can 

be solved through different approaches (Yeh and Tripathi, 1989; Wernberg, 1998; 

Regnier et al., 2002): 1) considering the system as a set of simultaneous mixed 

differential and algebraic equations, 2) direct substitution of non-linear chemical 

reactions into the differential equations and reducing the system to a set of non-linear 

PDEs, and 3) treating the system as two coupled sequential sets of linear PDEs and non-

linear AEs. It has been shown that the last method uses less CPU time and memory (Yeh 

and Tripathi, 1989). The elimination of equilibrium reactions from the partial differential 

equations also allows for robust and efficient numerical integration (Zhang et al., 2007). 

The partial differential equations can be discretized in space to result in a set of ordinary 

differential equations. The concentration of each species at all nodes is then obtained 

through applying the non-linear AEs to the spatial nodes. 
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 The behaviour of a multi-component reacting system could be studied through 

considering the system as a plug flow reactor within which the concentration of species 

vary with time and position (Figure 3.1). Assuming that the fluid is perfectly mixed in the 

radial direction, the fluid flowing through a plug flow reactor is considered as a series of 

infinitely thin plugs travelling in the axial direction. 
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Where, ri is the rate of chemical reaction of species i and Ji is the molar flux of species i 

which specifies the diffusion of each species. Under steady-state conditions and assuming 

that the composition of the reacting system is mainly controlled by convection, the above 

equation would be as: 
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Finally, the mole balance for each component in a plug flow reactor model, assuming 

constant velocity, is given by the following differential equation: 

i
i r

dx

Cd
u 

)(
          (3- 31) 

Where, u is the fluid velocity. 

 Assuming that the sulfur reactions occur only in the aqueous phase, this equation 

leads to a system of ordinary differential equations for each species which can be solved 

numerically. Solving the system of differential equations requires the knowledge of rates 

of reactions for each chemical species in the reacting system. The chemical reactions 
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associated with souring as a result of injection of sulfate-containing seawater at low to 

moderate temperatures are introduced in Chapter 2. 

 

 

Fig. 3- 1: A schematic diagram of a plug flow reactor 

 

 The distance between injection and production is represented as a series of 

elements and within each element the temperature and pressure are varied. Concentration 

of each component is calculated by solving the system of differential equations in the first 

element. However, not all reactions that could occur have published reaction rate 

equations, therefore where there are reaction rate data gaps, it is assumed the reaction is 

governed by equilibrium. This ensures we include compounds present in the fluid. After 

the reaction rate equations are solved, the equilibrium-governed reactions are modeled 

through solving the system of non-linear equations to get the final concentrations exiting 

the first element. The equilibrium and kinetic reactions are outlined in Tables 3-1 and 3-

2, respectively. These reactions were selected based on first a comprehensive literature 

review followed by a screening based on equilibrium analysis. 

  

Fi,x 
Fi,x+dx 

x = L 

dx 

x = 0 
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Table 3- 1: Equilibrium reactions of sulfur-containing compounds considered in this 
study (Miranda-Trevino et al., 2013; Wilkin and Barnes, 1996; Moses et al., 1987; Lin et 
al., 2004; Machel, 1987; Heinen and Lauwers, 1996; Zhang and Millero, 1993, 1991; 
Zhao et al., 2007; TengShui et al., 2009; Zhang and Jeffrey, 2010) 

 pH 
Temperature 

(oC) 

  HSHSH 2  5-8 - 

  2SHHS  >7 - 

  2
422

2
32 SOSHOHOS  12 >70 

  HSOOHOOS 222 2
422

2
32  >7 25 

2
2

2
2 )1()1(2)1(2 HnOHnSOHnnS n    >7 >70 

  2
8

3 28/12 FeHSFeHS  5-8 - 

8

2

322

2
]8/)2[(2/3 SnOSOSn 


 - - 

OHSOOSOHOS 2
2
4

2
32

2
63 22    >7 - 

  OHOSOSOHS 2
322

2
3 5.0  5-8 - 

  OHnOHSOnnHS n )2(2/)1( 2

2

2
 - - 

  HSOOSOSOHOS 8644
2

4

2

63

2

322
2
64

 <7 25-70 

 
2

3

2

642
2
32 SOOSOOS  <7 25 

2

2

48

2

64
2
63 228/13 SOSOSOSOS 

  4 35 

  HSOOHS
2

422
 

8 10 
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Table 3- 2: Kinetically-controlled reactions of sulfur-containing compounds considered 
in this study (Miranda-Trevino et al., 2013; Wilkin and Barnes, 1996; Moses et al., 1987; 
Lin et al., 2004; Machel, 1987; Heinen and Lauwers, 1996; Zhang and Millero, 1993, 
1991; Zhao et al., 2007; TengShui et al., 2009) 

Kinetic reaction 
Rate 

coefficient 
Rate order 

  22
4

2
322

32
63 2/1 FeSOOSOFeOS  3.2×10-2 s-1 [ ] 

OHOSOSOHOS 2
2
63

2
32

2
64 32564    6.1×10-3 s-1 [ ] 

OHSOOSOHOS 2
2
3

2
32

2
64 32362    5.1×10-3 M-1 s-1 [ ]2 

  HSOOSH 25.1 2
322

 k1
* [ ][ ] 

  HSOHOSO 25.0 2
422

2
3

 k2
** 

[ ]2[ ]0.5 

OHOSOSOSH 2
2
322

2
32 5.0    k3

*** [ ] [ ][ ] 


 22

64
32

32 222 FeOSFeOS  0.66 M-1 s-1 [ ]2 

OHOSOHOS 2

2

642

2

32 5.022 


 1.48×10-3 s-1 [ ] 

  HSOOSOHOS 22
4

2
322

2
63  2.6×10-2 s-1 [ ] 

  HFeSOOHOFeOS 9345.475.234 22
422

32
64

 
4.4×10-2 M-1 s-1 [ ]2 

  2
63

2
65

2
642 OSOSOS  0.4×10-2 s-1 [ ] 

*  (M-1 s-1) 

**  (M-1.5 s-1) 

***  (M-2 s-1) 

 

 It should be noted that the purpose of this study is not to mimic reservoir 

conditions as a function of distance, but rather to observe the effects of temperature and 

pressure at reservoir conditions on the speciation of the products. As such, initially two 

sets of studies are performed. One where temperature is held constant at the production 

well condition (i.e., 65°C) and pressure varied from 15-35 MPa and repeated at 

temperature of injection well (i.e., 85°C). These temperatures and pressures are chosen 

for as they represent the range of conditions in the reservoir (Stemler, 2012). The 

2
63OS

2
64OS

2
64OS

SH 2 2O

2
3SO

2O

SH 2

2
3SO 2O

2
32OS

2
32OS

2
63OS

2
64OS

2
64OS

2
1 0289.0914.071.4ln pHpHk 

2
2 103.051.187.3ln pHpHk 

2
3 177.001.309.9ln pHpHk 
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methodology proposed can be modified based on specified conditions. A second set of 

studies is conducted where the pressure is held constant at 35 MPa and temperature 

varied from 65-85°C, then the pressure is decreased to 15 MPa and the simulation 

repeated. Based on these results, a determination of the relative impact of temperature 

and pressure can be assessed. The same procedure is followed at lower temperature and 

pressure values (down to 15°C and 1 MPa) to investigate sulfur speciation from wellbore 

to surface facilities. 

 Table 3.3 summarizes the initial conditions used in the current model. It is 

assumed the initial H2S is the result of complete conversion of sulfate in the seawater (at 

average seawater value of 2454 mg/L) by sulfate reducing bacteria and archaea. Since the 

redox reactions involving sulfur species include electron transfer, the system needs to be 

electroneutral (Wernberg, 1998). As a result, the electron in each redox reaction is 

considered to be in the aqueous phase. The HSC Chemistry 9.0 database is used for heat 

capacity and critical data for each sulfur species (Roine and Anttila, 2006). 

 

Table 3- 3: Initial and reservoir conditions for studying H2S partitioning behaviour 
(Stemler, 2012) 

Pressure (MPa) 1 ‒ 35 

Temperature (°C) 15 ‒ 85 

Oil API gravity 34 

Gas-oil ratio 135 

Water-cut (%) 30 

Water production (m3/d) 20,000 
Distance from injection to producer (m) 600 
H2S (based on sulfate concentration in 
seawater concentration of 2454 mg/L) (mg/L) 

869 

Test separator pressure (kPa) 690 
Test separator temperature (°C) 65 



54 
  

Investigating the sulfur chemistry in reservoirs undergoing seawater flooding is 

conducted as summarized in Figure 3.2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3- 2: A schematic diagram of the algorithm followed in this study to investigate 
sulfur chemistry in a reservoir undergoing seawater injection process 

1) Equilibrium analysis 

2) Analysis of sulfur species reactivity 

Develop a reactive model consisting of both equilibrium and kinetic 

reactions of sulfur species to investigate the sulfur chemistry as 

result of injection of sulfate-containing seawater in reservoirs 

Gibbs reaction minimization 

to study the chemical 

reactivity of sulfur species in 

equilibrium reactions 

Gibbs energy minimization 

to identify key sulfur species involved in reservoir souring and 

perform equilibrium analysis for determining the types, 

concentrations and partitioning behavior of sulfur species present 

as a result of injection of sulfate-containing seawater in a 

reservoir as a function of temperature, pressure and pH 

Kinetic study to obtain the 

chemical composition of the 

reacting system in kinetic 

reactions 
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3.4. Model evaluation 

The numerical approach of coupling the chemical equilibrium and kinetic reactions was 

compared with a reactive-transport multicomponent multiple reactions MIN3KIN model 

developed by Wernberg (Wernberg, 1998). The MIN3KIN is a two-dimensional reactive-

transport model code coupled with chemical equilibrium and kinetic reactions code, 

however it does not include partitioning of compounds between phases. Therefore, as an 

example, a case study of groundwater with a composition with Ca2+ (3.55 mM), CO3
2- 

(0.0325 mM), SO4
2- (0.55 mM), and NO3

- (2.5 mM) at 10oC at 1 bar in a 10 m long 

vertical cross section was modeled based on the chemical reactions summarized in Table 

3-4. 
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Table 3- 4: Chemical equilibrium and kinetic reactions considered in the reacting system 
(Wernberg, 1998) 

Chemical kinetic reactions 
Rate 

Coefficient 

Rate order 

 103 mol-1yr-1 [NO3
-][S2O3

2-] 

 4.0 yr-1 [NO2
-][FeS2(s)] 

Chemical equilibrium reactions 

 

 

 

 

 

 

 

 

 

 

 

 

 The MIN3KIN results (Wernberg, 1998) are compared with our proposed model 

in Figure 3.3. The proposed model agrees well with MIN3KIN model. 
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(a) 

 

(b) 
Fig. 3- 3: Concentration profiles for a) nitrate and sulfate, b) nitrite and thiosulfate for the 

aquifer and comparison with MIN3KIN model (Wernberg, 1998) 
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The developed model is capable of predicting the overall concentration trends of 

chemical compounds considered in the system compared to the analytical MIN3KIN 

model with the maximum deviation calculated as 48% which could be due to the 

difference in the database used for the chemical compounds. It should also be noted that 

the transportation of chemical species is not considered in the current study. However, 

the overall trends match well and therefore the model was used to investigate the sulfur 

speciation in a soured reservoir considering the occurrence of chemical equilibrium and 

kinetic reactions associated with the sulfate-containing seawater at low to moderate 

temperatures. 
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4.1. Overview 

The first step in studying sulfur chemistry is to investigate the partitioning behaviour of 

the various sulfur species present as a function of temperature, pressure, and pH. This can 

be accomplished through equilibrium analysis to determine partition coefficients in a 

multi-phase, multi-component system. The equilibrium analysis assumes that all 

reactions go to completion and there is no kinetic limitations. 

4.2. Equilibrium analysis for investigating the partitioning behaviour of sulfur 

species 

Sulfur intermediates such as elemental sulfur, polythionates, polysulfides, and sulfite 

have been detected in several produced waters and are important as there is potential for 

H2S production, corrosion, and scaling. They can also be further oxidized to form sulfuric 

acid leading to low pH and increased corrosion rates (Salanitro and Khatib, 1997; Xu and 

Schoonen, 1995; Miranda-Trevino et al., 2013). These issues highlight the importance of 

studying sulfur chemistry in reservoirs undergoing recovery operations. 

 In order to identify the possible sulfur compounds that may be present during 

seawater injection and investigate their partitioning behaviour, sulfur speciation in an 

aqueous phase in the presence of a hydrocarbon-rich phase has been studied as a function 

of temperature, pressure and pH using Outotec's HSC Chemistry software. The Gibbs 

free energy minimization method, described in Chapter 3, is used to find the most 

probable chemical system at steady state. A sample seawater containing 2454 mg/L 

sulfate is considered in contact with an oil phase with API gravity of 34 (Table 3.3). 

Based on literature, sulfur species with different valence states including, sulfate, 
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elemental sulfur, sulfite, polysulfides (S2
2-, S3

2-, S4
2-, S5

2-), polythionates (S2O3
2-, S3O6

2-, 

S4O6
2-, S5O6

2-), and sulfides (H2S, HS-, S2-) are considered in this system to investigate 

sulfur chemistry during production as a function of temperature, pressure and pH.  

 It is assumed that the oil and water phases are flowing from injection to the 

production well and temperature and pressure vary accordingly. The temperature and 

pressure ranges considered are summarized in Table 3.3. These ranges are chosen for as 

they represent the range of conditions in the reservoir (Stemler, 2012). For the purpose of 

this study and to observe the effects of temperature and pressure on sulfur speciation, a 

simple linear relationship between temperature and pressure is considered as the reservoir 

fluid moves from injection well to topside processing facilities. Therefore, the relative 

impact of temperature and pressure can be assessed.  

 Above bubble point pressure (15 MPa), no separate gas phase is formed. The 

equilibrium composition of this system as temperature changes is shown in Figure 4.1. 
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(a) 

 

(b) 
Fig. 4- 1: Concentration profile of sulfur species under equilibrium conditions  a) above 

bubble point pressure (P: 25 MPa), b) below bubble point pressure (P: 1 MPa) 
(◊, ○, □, ∆ from right axis; ♦, ■, ▲, × from left axis) 
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 Above the bubble point pressure and at high temperatures (higher than the 

production well temperature), sulfate and polythionates are the dominant sulfur species in 

the aqueous phase (Figure 4.1(a)). Among polythionates, thiosulfate is the major 

component and a small amount of sulfur (less than 1%) is present as trithionate and 

teterathionate. Hydrogen sulfide is more soluble in oil than in water and therefore, is 

mostly found in the hydrocarbon-rich phase. A fraction of initial sulfur (approximately 

10%) is formed as elemental sulfur and is found as a separate solid phase. A similar 

speciation behaviour is observed below bubble point pressure and at low temperatures 

(below 60°C), where one would expect the formation of a gas phase (Figure 4.1(b)). 

Under these conditions, molecular H2S partitions between oil, water, and gas phases. 

 The equilibrium composition of this reacting system as a function of pressure is 

shown in Figure 4.2. 
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(a) 

 

(b) 
Fig. 4- 2: The effect of pressure on sulfur speciation a) no separate gas phase (T: 75°C), 

b) gas phase is formed (T: 25°C) 
(◊, ○, □, ∆ from right axis; ♦, ■, ▲, × from left axis) 
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 It can be concluded that the pressure does not have a significant effect on the 

equilibrium composition below the bubble point. Sulfate, polythionates, hydrogen sulfide 

in the oil phase, and elemental sulfur in the solid form are the major sulfur species above 

bubble point pressure (Figure 4.2(a)). At pressures lower than the bubble point pressure 

and at low temperatures, however, most of the initial sulfur is formed as hydrogen sulfide 

in the oil phase (Figure 4.2(b)). Based on the results, the presence of different sulfur 

species with different valence states affect the partitioning behaviour of H2S in a multi-

phase system in that a significant amount of aqueous H2S might be formed as sulfate and 

polythionates resulting in less H2S partitioning to other phases. 

 The effect of pH on the partitioning behaviour of sulfur species below and above 

the bubble point pressure is shown in Figure 4.3. 
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(a) 

 

(b) 
Fig. 4- 3: The effect of pH of the solution on sulfur speciation a) above bubble point 

pressure (T: 75°C, P: 20 MPa), b) below bubble point pressure (T: 25 °C, 1 MPa), (◊, ○, 
□, ∆ from right axis; ♦, ■, ▲, × from left axis) 
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 As was expected, sulfur speciation is significantly influenced by the pH of the 

solution. Increasing the pH from acidic to basic is accompanied with the formation of 

polysulfides. At low pH values, H2S exists in the molecular form and partitions between 

oil, water and gas phases below bubble point pressure. It is, however, dissociated to 

sulfide and bisulfide with increasing the pH resulting in the decrease in the H2S content 

of all phases in equilibrium. In addition, one would expect a decrease in the formation of 

solid elemental sulfur under basic conditions. Polythionates are the major sulfur species 

below and above the bubble point pressure. 

 Based on the equilibrium analysis, the sulfur oxyanions primarily remain in the 

aqueous phase, while H2S and elemental sulfur are distributed between phases. Therefore, 

there is a need to investigate the partitioning behaviour of these components in order to 

couple the results of equilibrium analysis with the reactivity model. 

4.3. Equilibrium analysis for studying H2S partitioning behaviour in a multi-

phase system 

Upon formation, H2S could partition to the gas, water or oil phases depending on 

pressure, temperature and/or composition. As such a 3-phase flash partitioning model is 

developed to study the phase partitioning behaviour of H2S in a multi-phase system. 

 Several models have been developed to predict the partitioning behaviour of H2S 

in reservoir fluids and to investigate the effects of temperature, pressure, fluids 

composition, ionic strength, and water pH on the H2S mass production rate (Eden et al., 

1993; Schofield and Stott, 2012; Ligthelm et al., 1991; Burger et al., 2005; King and Al-

Najjar, 1977; Sunde et al., 1993; Tyrie and Ljosland, 1993). Carroll and Mather presented 
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a model taking into account the non-ideality of the vapor phase to determine the 

solubility of H2S in water at pressures up to 1 MPa (Carroll and Mather, 1989). They did 

not, however, consider the non-idealities in the liquid phase and assumed that the Henry's 

law could be applied. This assumption is only valid at low pressures (usually less than 1 

MPa). Therefore, the extended form of Henry's law is used in this study. 

 The solubility of molecular H2S in water at high pressures and high solute 

concentrations is determined through a complete form of Henry's law as follow: 

 







 




RT

PPV
HxPy

sat
ii

iiiii expˆ         (4- 1) 

Where, H is the Henry's constant which is a function of temperature and the solute-

solvent pair. 

 For hydrogen sulfide, the partial molal volume at infinite dilution (


iV ) in water is 

approximately 35 cm3/mol. The Henry's law constant for H2S in water in the temperature 

range of 0 to 90°C, based on the study of Carroll and Mather (1989), was calculated 

according to the following equation used by Burger et al. (2013): 

TTTH waterSH ln7825.49/4.1222405303.0722.315ln ,2
   (4- 2) 

 The equality of fugacity of each species in all phases at equilibrium is also used 

for evaluating the distribution of H2S between oil and water phases and the SRK equation 

of state is used for calculating the fugacity coefficients of species in the non-aqueous 

phases (Burger et al., 2013). 

- Salting-out effect 
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The solubility of dissolved gases in a salt solution decreases as the ionic salts 

concentrations increase. This phenomenon, called the salting-out effect, may be 

characterized by Setschenow and formulated in terms of the ratio of solubilities in pure 

water and in an aqueous salt solution at a constant temperature (Burger et al., 2013): 

kI
S

S

S









0log           (4- 3) 

The salting-out coefficients for hydrogen sulfide in sodium chloride can be obtained as a 

function of temperature as follows (Millero, 1986): 

103k = 65.3214 - 0.41302T + 6.6066×10-4T2      (4- 4) 

- Ionization 

The dissolution of H2S in water involves a series of chemical reactions: the dissociation 

of the molecular H2S to bisulfide and sulfide ions and the self-ionization of water (Burger 

et al., 2013): 

H2S
(aq)

K1
↔ HS-+H+         (4- 5) 

HS- K2
↔ S2-+H+          (4- 6) 

H2O
K3
↔ OH-+H+         (4- 7) 

The equilibrium relation, the so-called "mass action" relations, for each of these reactions 

are given as: 

K1=
a

H+a
HS-

aH2S(aq)

=
γ
H+γ

HS-

γH2S(aq)

m
H+m

HS-

mH2S(aq)

        (4- 8) 
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        (4- 9) 

K3=
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H+a
OH-

aH2O
=

γ
H+γ

OH-

γH2O

m
H+m

OH-

mH2O
        (4- 10) 
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The activity coefficients in solution where the concentration of ionic species is low is 

estimated by Debye-Huckel's law: 

IzA ii ln          (4- 11) 

Where, A is the Debye-Huckel constant, zi is the charge on the ion and the ionic strength 

(I) is calculated as follow: 

 22/1 ii zmI          (4- 12) 

The Debye-Huckel constant is independent of the solute and is derived from the physical 

properties of the solvent. For water at 25°C its value is -1.17 (Burger et al., 2013). 

 The total hydrogen sulfide concentration in the aqueous solution is typically 

obtained from the summation of the concentrations of the various sulfide species: 

  2
)(2)(2 SHSSHSH mmmt

aqaq
       (4- 13) 

Finally, the concentration of H+ ion is obtained from the definition of pH of the solution: 

    
HH

mapH loglog        (4- 14) 

The Henley-Rosen algorithm is used to solve the above mentioned 3-phase flash 

separation. The overall mass balance in the system is given by: 

21 LLVF           (4- 15) 

F, V, and L are the flow rates of feed stream, vapor-phase, and liquid-phases, 

respectively. For each component the mass balance is: 

21
21 LxLxVyFz L

i
L
iii          (4- 16) 

The phase splits can be defined as equations (4-17) and (4-18): 

F

V
           (4- 17) 
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At equilibrium, the relationship between the components in the three phases are given by 

the equilibrium ratios as: 

1
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The composition of the three phases can then be calculated as follows: 
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Applying the summation rule ( 121  
i

i
i

L
i

i

L
i yxx ), the two Henley-Rosen 

equations should be solved are: 
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74 
  

0

)1)(1()1(

1

1

2

1

2

1
















i

i

i

i

i

i
i

K
K

K

K

K
z


      (4- 25) 

These two equations are solved simultaneously by Newton-Raphson method to calculate 

the two unknowns  and  . 

 The amount of molecular H2S in each phase can be determined based on the 

Henley-Rosen algorithm as shown in Figure 4.4. Once the amount of molecular H2S in 

each phase is obtained, the impacts of salting-out and ionization should also be taken into 

account to determine the total concentration of hydrogen sulfide (Figure 4.5). 
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Fig. 4- 4: The Henley-Rosen algorithm for studying H2S partitioning behaviour 

Is 

Ki
1
 = ϕi

L1
/ϕi

v
 

and 

Ki
2
 = ϕi

L2
/ϕi

v
 ? 

Calculate fugacity coefficient of each species 

from SRK EOS 

Calculate composition of phases from Eq. (4-21)-(4-23)  

Start 

Set all φi = 1.0 

Set all γi = 1.0 

Correct Ψ, ξ from Eq. (4-17), (4-18) 

Input data zi, T, P, 

component properties, 

guessed values for Ki
 

Results - xi
L1

, xi
L2

, yi, V, L1, L2 

End 

Yes 

No 



76 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4- 5: The general algorithm for studying H2S partitioning behaviour considering 

ionization reactions 
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 During oil production, both temperature and pressure decrease resulting in a 

change in sulfur solubility in the aqueous phase and therefore, possible sulfur deposition. 

An equilibrium analysis is therefore performed as follow to investigate the partitioning 

behaviour of elemental sulfur. 

4.4. Equilibrium analysis for determining elemental sulfur deposition 

The solubility of sulfur in solution is mainly controlled by temperature and pressure and 

it has been shown that high bottom hole temperatures and low wellhead pressures provide 

favourable conditions for sulfur deposition, which blocks the pores in the formation 

(Shedid and Zekri, 2002; Adesina et al., 2012). The influences of operational and 

reservoir parameters on elemental sulfur plugging in oil and gas reservoirs have been 

studied by several investigators (Shedid and Zekri, 2002; Abou-Kassem, 2000; Chernik 

and Williams, 1993; Roberts, 1997; Kuo and Colsmann, 1966). 

 In order to determine the amount of sulfur precipitated during recovery 

operations, there is a need to evaluate the maximum amount of sulfur dissolved in the 

aqueous phase at different reservoir temperatures and pressures. For this purpose, the 

equilibrium of a pure solid sulfur with a binary liquid mixture containing sulfur (species 

1) and water (species 2) was considered (Smith et al., 2005): 

ls ff 11
ˆ           (4- 26) 

The fugacity of the solid can be written as follow: 

RT

PPV
Pf

sats
satsats )(

exp 11
111


         (4- 27) 

Where, P1
sat is the saturation vapor pressure at temperature T and V1

s is the molar volume 

of the solid. The fugacity of the solute in the liquid phase is related to its mole fraction: 
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Pxf l
111
ˆˆ            (4- 28) 

Finally, the sulfur solubility in water can be calculated by combining the three preceding 

equations: 

1
1

1 F
P

P
x

sat

           (4- 29) 

Where, 

RT

PPV
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satssat )(
exp

ˆ
11

1

1
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        (4- 30) 

In this equation, the quantity 1̂  could be computed from a PVT equation of state such as 

PR: 

IqZZ
b

b
i

i
i  )ln()1(ˆln         (4- 31) 

Where: 
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j

jiji axaa 2          (4- 33) 

Evaluation of parameters ai and bi requires values for Tci, Pci, and ωi which can be found 

in a handbook or from literature. 
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Finally: 
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Written for species i as a liquid: 
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 Once the amount of sulfur generated during kinetic and equilibrium reactions is 

obtained, one would be able to compute the amount of sulfur deposited as temperature 

and pressure change during production through evaluating the solubility of sulfur in the 

aqueous phase and subtracting the value from the corresponding value of elemental sulfur 

formed. 

4.5. H2S partitioning behaviour in a multi-phase system 

The flash-partition model described in Section 4.2.2 is used to demonstrate the effects of 

temperature, pressure, and pH on the H2S partitioning between oil, water and gas. The 

amount of H2S in reservoir fluid as temperature and pressure change from reservoir to 

topside facilities can then be determined provided the H2S concentration in one phase is 

known (here, the amount of H2S in the gas phase under test separator conditions). The 

H2S partitioning behaviour is studied for a sample crude oil of Terra Nova offshore oil 

fields in Newfoundland and Labrador (Table 3.3) (Stemler, 2012). The H2S partition 

coefficients are calculated and the results are shown in Figures 4.6-4.8.  



80 
  

 

(a) 

 

(b) 
Fig. 4- 6: H2S oil-water partition coefficients for the conditions in Table 4.1 as a function 

of a) temperature, b) pressure 
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(a) 

 

(b) 
Fig. 4- 7: H2S gas-water partition coefficients for the conditions in Table 4.1, as a 

function of a) temperature, b) pressure 
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(a) 

 

(b) 
Fig. 4- 8: H2S gas-oil partition coefficients for the conditions in Table 4.1, as a function 

of a) temperature, b) pressure 

0

1

2

3

4

5

6

7

0 20 40 60 80 100

P: 1 MPa P: 5 MPa

P: 10 MPa P: 15 MPa

Temperature (°C)

K
go

(p
pm

/p
pm

)

0

1

2

3

4

5

6

7

0 5 10 15 20

T: 15°C

T: 45°C

T: 65°C

T: 85°C

Pressure (MPa)

K
go

(p
pm

/p
pm

)



83 
  

 First, the pH of the solution is assumed to be below neutral conditions, so all the 

initial H2S is in the molecular form and is distributed between phases. The bubble point 

pressure of the reservoir fluid was calculated to be approximately 15 MPa. Above this 

pressure, no separate gas phase is evolved and H2S partitions between oil and water. H2S 

solubility in the hydrocarbon-rich phase is higher than that in the aqueous phase and 

therefore, above the bubble point pressure, H2S is mostly found in the oil phase 

(���(���)). When pressure is decreased and temperature is increased, the gas phase forms 

and H2S partial pressure increases in the gas phase resulting in an increase in the Kgw and 

Kgo partition coefficients. Kgw was calculated as 10 (ppm in gas/ppm in water) at 15°C 

and 15 MPa, while at 85°C and 1 MPa it was 220 (ppm in gas/ppm in water). The H2S 

partition coefficient between oil and water is not significantly influenced by temperature 

and pressure and varies from 25 (ppm in oil/ppm in water) at 15°C/35MPa, to 35 (ppm in 

oil/ppm in water) at 85°C/1MPa. 

 The hydrogen sulfide partition coefficients between oil and water were compared 

with those measured by Eden et al. (1993) at atmospheric pressure and between 20-90°C 

(Table 4.1). The measured values of Kow were essentially independent of temperature. As 

shown in Table 4.1, The model predictions are in good agreement with experimental 

values. The small difference in K-values between the study of Eden et al. and the current 

study could be due to the difference in the type of organic compound used (API gravity 

of 46 in the study of Eden et al. vs. API gravity of 34 in the current study) which affects 

the solubility of H2S. 
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Table 4- 1: Partition coefficient for the distribution of hydrogen sulfide between oil and 
water, Kow in ppmw/ppmw, P=101.3 kPa 

T (°C) 30 50 70 90 

Experimental value (Eden et al., 1993) 3.00 3.00 3.1 3.20 

Model results 3.19 3.23 3.28 3.25 

 

 Once the pH of the solution is increased from acidic to neutral, H2S dissociates to 

bisulfide (HS-) and a small amount of sulfide (S2-). A further increase in the pH to basic 

conditions, is accompanied with an elevation in the proportion of sulfide. This 

dissociation process, reduces the amount of molecular H2S in the aqueous phase and 

therefore, less H2S is found in the oil and gas phases in equilibrium with the aqueous 

phase. The effect of pH on the amount of H2S one would expect in a multi-phase system 

under test separator conditions is shown in Figure 4.9. It should be noted that the amount 

of H2S in the aqueous phase is the summation of all the molecular H2S and HS- and S2- 

ions. 
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Fig. 4- 9: H2S partitioning behaviour as a function of pH (Test separator conditions) 
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Fig. 4- 10: H2S concentration in a 3-phase system as a function of temperature and 
pressure 

 

 Based on the equilibrium analysis, the K-values for H2S partitioning between oil, 

water, and gas phases were fit to a linear expression as a function of temperature and 

pressure: 

Kow(H2S)=4.717+0.3096T+0.6467P       (4- 40) 

Kgw(H2S)=11.886+1.1186T+1.2523P
 
       (4- 41) 

 Where, T is in °C and P is in MPa. The partitioning coefficients calculated in this 

section for H2S are then used in the plug flow model, described in Chapter 3, to obtain the 

H2S content of each phase and therefore, the composition of the reacting system at the 

end of each element. Figure 4.11 illustrates the general steps followed in the reactivity 

study. The results of sulfur chemistry study are discussed in the next Chapter. 
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Fig. 4- 11: A schematic diagram of the algorithm followed in this study to investigate 
sulfur reactivity in the plug flow reactor model 
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4.6. Conclusions 

The partitioning behaviour of sulfur species present as a result of seawater injection as a 

function of temperature and pressure was investigated in this study. The Gibbs energy 

minimization method was used to find the most probable chemical system at steady state. 

It was concluded that the pressure did not have a significant effect on the equilibrium 

composition below the bubble point. Sulfate, polythionates, hydrogen sulfide in the oil 

phase, and elemental sulfur in the solid form are the major sulfur species above bubble 

point pressure. At pressures lower than the bubble point pressure and at low 

temperatures, however, most of the initial sulfur is formed as hydrogen sulfide in the oil 

phase. Based on the results, the presence of different sulfur species with different valence 

states affect the partitioning behaviour of H2S in a multi-phase system in that a significant 

amount of aqueous H2S might be formed as sulfate and polythionates resulting in less 

H2S partitioning to other phases. 

 Sulfur speciation is significantly influenced by the pH of the solution. Increasing 

the pH from acidic to basic is accompanied with the formation of polysulfides. At low pH 

values, H2S exists in the molecular form and partitions between oil, water and gas phases 

below bubble point pressure. It is, however, dissociated to sulfide and bisulfide with 

increasing the pH resulting in the decrease in the H2S content of all phases in equilibrium. 

In addition, one would expect a decrease in the formation of solid elemental sulfur under 

basic conditions. 

 Although identifying key reacting species and the phases involved in a multi-

phase, multi-component reacting system could be accomplished through equilibrium 
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analysis, the assumption of chemical equilibrium may skew the predictions. As such, in 

addition to equilibrium analysis for identifying the possible sulfur species as a result of 

injection of sulfate-containing seawater in an oil reservoir, a simulation of the reaction 

rates of published reactions involving the species of interest is performed to investigate 

the full extent of sulfur speciation. This reactivity analysis is the scope of the next 

Chapter where a plug flow based reactor model is used for evaluating sulfur speciation in 

a multi-phase multi-component reacting system. The reactivity analysis is coupled with 

the results of equilibrium analyses of H2S partitioning and elemental sulfur deposition. 

This provides a more complete picture of the reaction pathways in the reservoir. 
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5.1. Overview 

The plug flow based reactor model developed in Chapter 3 is used to analyze the 

reactivity of sulfur species in reservoirs undergoing recovery operations by sulfate-

containing seawater injection. This chemical reactivity analysis could help one screen 

sulfur chemistry during production in soured reservoirs. 

5.2. Reactivity analysis for investigating sulfur speciation in reservoirs 

undergoing seawater injection 

According to the results of equilibrium analyses performed and based on the literature, 

the key reacting species and end-products identified are sulfate, sulfite, sulfide, bisulfide, 

polythionates including thiosulfate, trithionate, tetrathionate, and pentathionate, 

polysulfides (Sn
2-, n = 2-5) and hydrogen sulfide. These compounds have been found to 

participate in different oxidation-reduction reactions depending on temperature and pH. 

The equilibrium and kinetic reactions considered in the model are summarized in Tables 

3.1 and 3.2, respectively. The distance from injection to production, as will be discussed 

later, is divided into 3 elements. Within each element, temperature and pressure are 

varied to observe the effects of operating conditions on the speciation of products. 

Similar to the equilibrium analyses, and to observe the effects of temperature and 

pressure on sulfur speciation, a simple linear relationship between temperature and 

pressure is considered as the reservoir fluid moves from injection well to topside 

processing facilities. The plug flow based reactor model is used for simulating those 

reactions for which there is published kinetic data. Once the concentration of each 

component is calculated from solving the system of differential equations, the 
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equilibrium analysis is established by solving the system of non-linear equations to get 

the final concentrations at the end of each element. 

 It should be noted that the stability of the numerical method depends on the 

number of elements considered in the model. As the step sizes increase, the reliability of 

the results of combining kinetic with equilibrium model decreases. During equilibrium 

reactions, the concentration of some sulfur species decreases significantly and using these 

small values in the kinetic component of the model makes the system unstable. It was 

concluded that the maximum number of 3 elements could be used for simulating the 

distance from injection to the production. This also leads to less CPU time and memory. 

In addition, according to the literature, in high temperature anaerobic environments 

sulfate acts as the oxidant. Therefore, the oxidation reactions listed in Tables 3.1 and 3.2 

could take place in the reservoir and as the reservoir fluid moves to top sides.  

 The salinity of seawater was taken as 3.5% (Stemler, 2012). The operating 

conditions are summarized in Table 3.3. In order to study sulfur speciation in the sample 

seawater-flooded oil reservoir, the initial pH of the solution at the injection point was 

varied; Case 1: initial pH = 5 (acidic), Case 2: initial pH = 7 (neutral), Case 3: initial pH 

= 9 (basic). The pH of the solution, as the temperature and pressure change, was tracked 

to examine the reactivity/speciation effect on the pH. 

5.2.1. Sulfur species reactivity in the aqueous phase for Case 1 

 

A simple linear relationship between temperature and pressure is assumed to model the 

reservoir fluid from injection well to topside processing facilities. The results of the 

sulfur species reactivity analysis for case 1 (assuming an initial pH of 5) as a function of 
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temperature for the range of pressures (reservoir conditions to surface conditions) are 

shown in Figure 5.1. Figure 5.2 illustrates the sulfur speciation as a function of pressure 

for the range of temperatures. 
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Fig. 5- 1: Sulfur reactivity as a function of temperature from injection to top surface, 
initial pH: 5, a) P: 25 MPa, b) P: 1 MPa 

 
(a) 

 
(b) 

Fig. 5- 2: Sulfur reactivity as a function of pressure from injection to top surface, initial 
pH: 5, a) T: 75°C, b) T: 25°C 
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 As the figures outline, under these conditions molecular H2S, sulfate, and 

polysulfide ions (S2
2-, S3

2-, S4
2-, and S5

2-) dominate. A fraction of sulfide is converted into 

sulfur and thiosalts, predominantly thiosulfate, tetrathionate, and pentathionate. 

Thiosulfate, however, partially decomposes to sulfate at high temperatures and pressures. 

At temperatures below 70°C, tetrathionate is formed from thiosulfate and trithionate. 

Oxidation of hydrogen sulfide (in the presence of oxygen or Fe3+ as oxidant) results in 

the formation of sulfite and thiosulfate. However, sulfite is not stable in the system and is 

further oxidized to sulfate. This was also observed by Zhang and Millero (1993), where at 

pH values below 7, sulfate was the primary product of sulfide oxidation in an aqueous 

solution. Polysulfides form in aqueous solutions containing sulfide at low pH values 

(Chen and Morris, 1972). As the temperature and pressure decrease, oxidation of sulfide 

to elemental sulfur and subsequent reactions with sulfide yield polysulfides. At low pH 

values, degradation of polythionates also occurs leading to the formation of a small 

amount of elemental sulfur. As the pressure and temperature decrease, sulfate, thiosalts, 

and sulfide concentrations increase. The concentration of hydrogen ion was tracked to 

topside facilities to observe the variation in the pH of the solution in the reacting system. 

The pH of the solution varied slightly as the chemical reactions occurred. The initial pH 

increased from 5 to 5.2 as the pressure and temperature decreased from 35 MPa and 85°C 

to 1 MPa and 15°C. 

5.2.2. Sulfur species reactivity in the aqueous phase for Case 2 

 

Sulfur species reactivity analysis, assuming that the solution is initially at pH 7, is 

summarized in Figures 5.3 and 5.4. 
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(a) 

 
(b) 

Fig. 5- 3: Sulfur reactivity as a function of temperature from injection to top surface, 
initial pH: 7, a) P: 25 MPa, b) P: 1 MPa 
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(a) 

 
(b) 

Fig. 5- 4: Sulfur reactivity in the aqueous phase as a function of pressure from injection 
to top surface, initial pH: 7, a) T: 75°C, b) T: 25°C 
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 H2S dissociates to bisulfide and a small amount of sulfide at pH values close to 

neutral. This is followed by a limited number of reactions involving sulfide oxidation and 

intermediate sulfur species formation. However, sulfides and sulfate are still the 

dominant sulfur species. Direct oxidation of sulfide to thiosulfate and elemental sulfur 

occurs at pH values near neutral leading to an increase in the concentration of thiosalts 

and a decrease in the amount of polysulfide ions in the solution compared to acidic 

conditions. Chen and Morris (1972) observed this behaviour where the minimum in the 

rate of sulfide oxidation at near neutral pH values was attributed to the formation of 

thiosulfate. The pH of the reacting system increased very slightly  from 7 to 7.06 as the 

pressure and temperature change from 35 MPa and 85°C to 1 MPa and 15°C. 

5.2.3. Sulfur species reactivity in the aqueous phase for Case 3 

 

Sulfur species reactivity was also assessed for solution pH of 9. The corresponding 

results for the range of pressures and temperatures are shown in Figures 5.5 and 5.6, 

respectively. 
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(a) 

 
(b) 

Fig. 5- 5: Sulfur reactivity as a function of temperature from injection to top surface, 
initial pH: 9, a) P: 25 MPa, b) P: 1 MPa 
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(a) 

 
(b) 

Fig. 5- 6: Sulfur reactivity as a function of pressure from injection to top surface, initial 
pH: 9, a) T: 75°C, b) T: 25°C 
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 At high pH values, hydrogen sulfide dissociates to sulfide and bisulfide which are 

further oxidized to thiosalts and polysulfide ions and finally to sulfate. Increasing the 

temperature and decreasing pressure cause a decrease in the concentration of sulfate and 

an increase in the amount of thiosalts. Furthermore, due to H2S dissociation reaction 

under basic conditions, the amount of molecular H2S in the aqueous phase decreases. 

Thiosalts increase significantly at high pH values as more sulfite is formed and is 

oxidized to thiosalts. High temperatures and low pressures favour the formation of more 

thiosalts under basic conditions. The formed sulfite is oxidized to sulfate and also reacts 

with polysulfide ions leading to the formation of more thiosalts and a decrease in the 

concentration of polysulfide ions (Chen and Morris, 1972). At high temperatures and 

high pH values, thiosalts degrade to sulfite and sulfate and therefore, more sulfate is 

found in the solution under basic conditions than under acidic conditions. The pH of the 

reacting system decreases from 9 to 8.7 as the pressure and temperature change from 35 

MPa and 85°C to 1 MPa and 15°C. 

5.2.4. Sulfur speciation with coupled chemical equilibrium and kinetics as a 

function of temperature, pressure, and pH 

In order to investigate the impact of sulfur chemistry on key parameters such as the final 

H2S value on the topsides, the phase partitioning behaviour of H2S and elemental sulfur 

were studied. The K-values for H2S partitioning between oil, water and gas phases, 

obtained in the equilibrium analysis, are included in the reactivity analysis. The 

possibility of the formation of a separate solid phase of elemental sulfur is also 

considered where the amount of elemental sulfur formed in the reacting system is 
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obtained from the reactive model and then the solubility of sulfur as a function of 

temperature and pressure is calculated based on the equilibrium analysis to estimate the 

amount of sulfur precipitated. Figure 5.7 shows the results of sulfur speciation analysis as 

a function of temperature and pressure for initial pH of 5. 
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(a) 

 
(b) 

Fig. 5- 7: The effects of temperature and pressure on sulfur speciation, solid phase 
formation, and H2S partitioning, initial pH: 5, a) T: 25°C, b) P: 1 MPa, (Sulfur Species is 

the total concentration of sulfate, sulfite, polysulfide ions, and thiosalts) 
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 It should be noted that in these figures, sulfur species is the summation of the 

concentration of sulfide, thiosalts, polysulfide ions, sulfate, and sulfite in the aqueous 

phase. Decreasing temperature and increasing pressure increase the solubility of sulfur in 

the aqueous phase. In theory, as the reservoir fluid transfers from reservoir to surface, the 

temperature and pressure drop and a fraction of total sulfur is converted to elemental 

sulfur. The solubility of the formed sulfur in the aqueous phase under reservoir conditions 

is low and therefore, most of the sulfur forms as a separate solid phase and precipitates. 

An increase in temperature and a decrease in pressure increases the potential for 

elemental sulfur formation and therefore, sulfur deposition. Sulfur solubility in the 

aqueous phase also increases with a decrease in temperature. The combination of 

deposition of sulfur within the reservoir and increased sulfur solubility as the reservoir 

fluids move toward topsides, means that the amount of elemental sulfur deposited from 

reservoir to wellhead decreases. 

 The amount of H2S in the gas phase from the model at test separator conditions, is 

487 ppm, while the H2S content of oil is 134 ppm and that of water phase is 4 ppm. Other 

sulfur species including thiosalts, polysulfide ions, sulfate, and sulfite constitute 90 ppm 

of the total sulfur in the aqueous phase. Elemental sulfur in the form of a separate solid 

phase is also formed at 965 mg/L. Without considering the formation of other sulfur 

species (i.e., assuming that all the initial sulfate in the injected seawater is converted to 

H2S and partitions between phases), under test separator conditions, the gas phase would 

contain 1080 ppm, the oil phase contains 235 ppm and water phase contains 7 ppm H2S. 
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This large difference in the composition of produced fluid highlights the importance of 

studying sulfur speciation when investigating reservoir souring. 

 The impacts of temperature and pressure on sulfur speciation for Cases 2 and 3 

are summarized in Figures 5.8 and 5.9, respectively. Due to the dissociation of H2S to 

bisulfide at pH values near neutral, the amount of molecular H2S in the aqueous phase 

and therefore, the amount in oil and gas phases in equilibrium decreases. 
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(a) 

  
(b) 

Fig. 5- 8: The effects of temperature and pressure on sulfur speciation, solid phase 
formation, and H2S partitioning, initial pH: 7, a) T: 25°C, b) P: 1 MPa 

(Sulfur Species is the total concentration of sulfate, sulfite, polysulfide ions, and 
thiosalts) 
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(a) 

  
(b) 

Fig. 5- 9: The effects of temperature and pressure on sulfur speciation, solid phase 
formation, and H2S partitioning, initial pH: 9, a) T: 25°C, b) P: 1 MPa, (Sulfur Species is 

the total concentration of sulfate, sulfite, polysulfide ions, and thiosalts) 
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 As the reservoir fluid moves from reservoir to the surface, and the temperature 

and pressure decrease, elemental sulfur forms. As indicated in the discussion of Cases 1 

and 2, the solubility of the elemental sulfur in the aqueous phase decreases with a 

decrease in temperature and an increase in pressure and therefore, forms as a separate 

solid phase and precipitates. However, sulfur of oxidation state zero (S0) has low 

chemical stability at high pH values and therefore, less elemental sulfur is formed 

compared to acidic conditions. 

 At high pH values, the amount of H2S in the aqueous phase decreases as it 

dissociates to sulfide and bisulfide resulting in an overall decrease in oil and gas phases 

H2S content. The presence of sulfur species with different valence states influences the 

amount of molecular H2S in the aqueous phase and therefore, the amount formed in other 

phases in equilibrium. At pH values above 7, H2S dissociates to sulfide which could be 

oxidized to thiosulfate (Chen and Morris, 1972) initiating the formation of tetrathionate, 

polysulfide ions, and elemental sulfur. At these conditions, thiosulfate is converted to 

sulfide and sulfate (Lin et al., 2004). 

 The amount of H2S in the gas phase from the model at test separator conditions is 

7 ppm, while the H2S content of oil is 2 ppm and that of water phase is 0.06 ppm. Other 

sulfur species including thiosalts, polysulfide ions, sulfate, and sulfite make up 65 ppm of 

the total sulfur aqueous phase. Elemental sulfur in the form of a separate solid phase is 

also formed (845 mg/L).  
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Table 5.1 summarizes the results of sulfur speciation for the 3 cases. These results are 

compared to the base case study where no sulfur speciation is considered and all the 

sulfur is in the form of H2S.  
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Table 5- 1: Comparison of the results of sulfur speciation for 3 cases, T: 15 °C, P: 1 MPa 

pH Sulfur compounds concentration (ppm) 
Sulfur 

deposited 
(mg/L) 

 Polysulfides* Sulfate Thiosalts** H2S 
(aq) 

H2S 
(g) 

H2S 
(o) 

 

5 38.5 48.7 7.3 6 272.4 201.3 831 

7 22.7 60.8 16 5.29 240.4 177.3 835 

9 11.8 104.2 32.3 0.06 2.6 1.6 868 

Base 
case*** ‒ ‒ ‒ 12.5 567.5 420 ‒ 

* polysulfide ions is the summation of S2
2-, S3

2-, S4
2-, S5

2- 
** thiosalts is the summation of S2O3

2-, S3O6
2-, S4O6

2-, S5O6
2- 

*** base case: all the initial sulfate forms H2S, initial pH: 5 

 

 When the initial pH of the solution is above neutral conditions (case 3), less 

polysulfide ions form in the solution, while the amount of sulfate and thiosalts, especially 

thiosulfate and pentathionate, increase with the pH. H2S dissociates to sulfide and 

bisulfide and therefore, the amount of molecular H2S in the aqueous phase and that in the 

oil and gas phases decreases. Again, in this case, one might estimate 0.5 ppm H2S in the 

aqueous phase, 22.5 ppm H2S in the gas phase, and 13.4 ppm H2S in the oil phase with 

ignoring sulfur speciation which leads to over prediction of H2S in the reservoir fluid. 

In order to study the sensitivity of the model to the type of the reactions in the system, the 

equilibrium reactions are removed from the analyses and only are the kinetic reactions 

considered in the model. The results are summarized in the following section. 

5.3. Sulfur speciation with chemical kinetics as a function of temperature, 

pressure, and pH 

In the previous simulations, the gap in formation/consumption of sulfur compounds due 

to lack of kinetic rate expressions was filled assuming the reactions were governed by 
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equilibrium. To determine how sensitive the output was to ignoring these reactions, a set 

of simulations was conducted where only kinetic rate expressions were used in the model. 

The kinetics were solved separately from the non-linear algebraic equations and sulfur 

speciation was evaluated as a function of temperature and pressure for the initial pH of 5 

and 9 (Figures 5.10 and 5.11). It should be noted that in these figures, sulfur species is the 

total concentration of sulfate, sulfite, polysulfide ions, and thiosalts in the aqueous phase. 
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(a) 

  
(b) 

Fig. 5- 10: Sulfur speciation as a function of temperature and pressure as a result of 
kinetic reactions, initial pH: 5, a) T: 25°C b) P: 1 MPa 

(Sulfur Species is the total concentration of sulfate, sulfite, polysulfide ions, and 
thiosalts) 
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(a) 

  
(b) 

Fig. 5- 11: Sulfur speciation as a function of temperature and pressure as a result of 
kinetic reactions, initial pH: 9, a) T: 25°C b) P: 1 MPa 

(Sulfur Species is the total concentration of sulfate, sulfite, polysulfide ions, and 
thiosalts) 
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 According to the kinetic model, no polysulfide or elemental sulfur are formed. 

The H2S concentration decreases significantly and sulfate and a small amount of thiosalts 

form. At low pH values and as temperature and pressure decrease, the amount of 

trithionate and tetrathionate decreases, while pentathionate increases. Thiosulfate initially 

increases with a decrease in temperature and pressure and decreases with the formation of 

pentathionate. At high pH values, H2S dissociates to sulfide and bisulfide decreasing the 

molecular H2S content of aqueous phase. More sulfate is formed particularly at low 

temperatures and high pressures where sulfide exists in the aqueous phase. Considering 

only the kinetic reactions, the amount of H2S formed is 8.7 ppm in oil, 0.3 ppm in water, 

and 31 ppm in gas under test separator conditions. At high pH values, however, the 

concentration of molecular H2S decreases to 0.2 ppm, 0.006 ppm, and 0.7 ppm of the oil, 

water, and gas phases, respectively. It can be concluded that the inclusion of both types of 

analyses (i.e., equilibrium and kinetic), rather than only kinetic analysis, in sulfur 

chemistry study is necessary to provide a comprehensive picture of the system, 

particularly in the context of sparse kinetic data. 

5.4. Sulfur speciation with chemical equilibrium as a function of temperature, 

pressure, and pH 

The chemical composition of the reacting system containing sulfur species was also 

found by solving a set of non-linear algebraic equations assuming that the reactions 

involving sulfur species reach equilibrium (Figures 5.12 and 5.13). Again, the sulfur 

species is the total concentration of sulfate, sulfite, polysulfide ions, and thiosalts. 
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(a) 

 
(b) 

Fig. 5- 12: Sulfur speciation as a function of temperature and pressure as a result of 
equilibrium reactions, initial pH: 5, a) T: 25°C b) P: 1 MPa 

(Sulfur Species is the total concentration of sulfate, sulfite, polysulfide ions, and 
thiosalts) 
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(a) 

 
(b) 

Fig. 5- 13: Sulfur speciation as a function of temperature and pressure as a result of 
equilibrium reactions, initial pH: 9, a) T: 25°C b) P: 1 MPa 

(Sulfur Species in the total concentration of sulfate, sulfite, polysulfide ions, and 
thiosalts) 
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 Increasing temperature and decreasing pressure, causes the formation of a 

separate gas phase containing H2S below bubble point. It also increases the possibility of 

formation of a solid phase containing elemental sulfur. A significant amount of H2S 

dissolves in the oil phase leaving a small amount of molecular H2S in the aqueous phase. 

Under test separator conditions, more than 13% of the total sulfur content of the aqueous 

phase is thiosalts, while polysulfide ions form 4% of the sulfur content at low pH values. 

Once the pH of the solution is increased to basic conditions, the amount of polysulfide 

ions and sulfate increases and less thiosalts form. As the temperature and pressure are 

reduced, sulfide is formed as polysulfide ions and a small amount of thiosalts and 

elemental sulfur, which is precipitated as a separate solid phase due to its low solubility 

in the aqueous phase. 

 The results of the coupled equilibrium and kinetic reactions are compared with 

those obtained from solving the non-linear equations and differential equations 

separately. The equilibrium study more closely aligns with the coupled equilibrium and 

kinetic reactions, but still below the combined model. The results of all three scenarios 

are compared in Table 5.2. 
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Table 5- 2: Comparison of different scenarios; kinetic part, equilibrium part, coupled 
kinetic and equilibrium. P: 1 MPa, T: 15°C, the initial sulfide concentration: 869 mg/L. 

Scenario pH 
H2S concentration (ppm) 

Gas phase Oil phase Aqueous phase 

Kinetic 

5 150.4 115.7 3.47 

7 143 110.1 3.3 

9 0.26 0.2 0.006 

Equilibrium 

5 195.2 144.5 4.3 

7 181.6 134.4 4 

9 2.33 1.44 0.054 

Kinetic-Equilibrium 

5 272.4 201.3 6 

7 240.4 177.3 5.29 

9 2.6 1.6 0.06 

 

 

5.5. Comparing the results with experimental data 

Although produced water samples vary in composition depending on their origin, the 

results of the sulfur speciation obtained in this study were compared with published data 

of Witter and Jones (1998). Witter and Jones used different analytical approaches for 

identification and quantification of inorganic sulfur species present in a sample produced 

water generated during offshore oil production (Witter and Jones, 1998). In general, the 

measurements of individual sulfur species are influenced by coupled reactions involving 

sulfur species and polysulfide ions play an important role in these processes. In order to 

prevent H2S loss at low pH values, alkaline buffers were used in polarographic methods 

for sulfide determination. Sulfide, polysulfide ions, thiosulfate, sulfite, and sulfate were 

measured in the produced water sample. Elemental sulfur and polythionates were not 

considered. However, it was indicated that elemental sulfur is present in the produced 
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water sample in low concentrations (Witter and Jones, 1998). More than 39% of the 

measured inorganic sulfur compounds were sulfide (HS- and S2-) making it the second 

most abundant species after sulfate (56% of the total inorganic sulfur compounds). 

Polysulfide ions and thiosulfate formed 3% and 2% of the measured sulfur species, 

respectively. Sulfite accounted for less than 1% of sulfur in the produced water (Witter 

and Jones, 1998). 

 According to the proposed model, at atmospheric temperature and pressure and 

under basic conditions (similar to the conditions in the study of Witter and Jones, 1998), 

sulfate and thiosalts constitute 58% and 23% of the total sulfur, respectively. 

Pentathionate accounted for 17% of the total thiosalts. Thiosulfate, trithionate, and 

tetrathionate constitute 1.8%, 1.5%, and 2.7% of the total sulfur, respectively. 

Approximately, 4% of the total sulfur was polysulfide ions (S2
2-, S3

2-, S4
2-, and S5

2-). At 

high pH values, hydrogen sulfide dissociates to sulfide and bisulfide making up 

approximately 12% of the total sulfur in the reacting system. Elemental sulfur deposition 

was 880 mg/L or less than 3% of the total sulfur in the aqueous phase. 

 The reactivity analysis results are compared with the experimental data by Witter 

and Jones for a sample produced water (Table 5.3). 

Table 5- 3: Sulfur speciation at 25°C and 101 kPa, pH = 9 
 Sulfur content of aqueous phase (%)  
 sulfate Thiosulfate Polysulfides* 

HS-, S2- 

Experimental value 

(Witter and Jones, 1998) 
56 2 3 39 

Model results 58 1.8 3.7 31 

Deviation (%) 3.6 10 23.3 20.5 
* polysulfide ions is the summation of S2

2-, S3
2-, S4

2-, S5
2- 
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The difference in the concentration of sulfide and polysulfides in the proposed model and 

the experimental data could be due analytical method used for quantification of these 

sulfur species. Sample preservation impacts speciation and no quantification of 

intermediate sulfur species (especially thiosalts) was performed in the Witter and Jones 

study. 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 
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 The injection of sulfate-containing seawater into an oil reservoir, usually used to 

maintain the reservoir pressure, can promote the growth of sulfate reducing bacteria and 

archaea near the injection wells, leading to the reduction of sulfate to hydrogen sulfide. 

Upon formation, H2S could partition to the gas, water or oil phases depending on 

pressure, temperature and/or composition. However, depending on the pH, H2S could 

dissociate to bisulfide and sulfide ions which remain in the aqueous phase and do not 

partition between phases affecting the amount of H2S one would expect in the gas phase. 

In addition, the analysis of produced water samples has shown the presence of other 

sulfur species, with valence states between that of sulfidic-sulfur and sulfate-sulfur, such 

as polysulfide ions and polythionates. 

 The objective of this study was to investigate sulfur chemistry in reservoirs 

undergoing seawater injection. A predictive reactive model was developed for studying 

the reactivity of sulfur species and their partitioning behaviour as a function of 

temperature, pressure, and pH.  The first step in developing the model was to identify the 

key sulfur compounds involved in reservoir souring through equilibrium analysis. The 

key reacting species and end-products identified were sulfate, sulfite, sulfide, bisulfide, 

polythionates including thiosulfate, trithionate, tetrathionate, and pentathionate, 

polysulfides (Sn
2-, n = 2-5) and hydrogen sulfide. A 3-phase flash partitioning model was 

developed to study the phase partitioning behaviour of H2S in a multi-phase system. An 

equilibrium analysis was also performed to investigate the partitioning behaviour of 

elemental sulfur to predict the amount of sulfur deposition. 
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 Above the bubble point pressure and at high temperatures (higher than the 

production well temperature), sulfate and polythionates are the dominant sulfur species in 

the aqueous phase. Hydrogen sulfide is more soluble in oil than in water and therefore, is 

mostly found in the hydrocarbon-rich phase. A fraction of initial sulfur (approximately 

10%) is also formed as the elemental sulfur and is found as a separate solid phase. At 

pressures below the bubble point and at low temperatures (below 60°C), where one 

would expect the formation of a gas phase, molecular H2S partitions between oil, water, 

and gas phases. It was concluded that the presence of different sulfur species with 

different valence states affect the partitioning behaviour of H2S in a multiphase system in 

that a significant amount of aqueous H2S might be formed as sulfate and polythionates 

resulting in a lower overall amount of H2S. 

 Sulfur speciation was significantly influenced by the pH of the solution. 

Increasing the pH from acidic to basic is accompanied with the formation of polysulfides. 

At low pH values, H2S exists in the molecular form and partitions between oil, water and 

gas phases below bubble point pressure. It is, however, dissociated to sulfide and 

bisulfide with increasing the pH resulting in the decrease in the H2S content of all phases 

in equilibrium. In addition, one would expect a decrease in the formation of solid 

elemental sulfur under basic conditions. 

 In addition to equilibrium analysis, a simulation of the reaction rates of published 

reactions involving the species of interest was performed to investigate the full extent of 

sulfur speciation. At low pH values, sulfate, polysulfide ions, and hydrogen sulfide are 

dominant in the solution. Less than 10% of the total sulfur is formed as thiosalts, 
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predominantly as thiosulfate and pentathionate. Part of the total sulfur is present as 

elemental sulfur. The solubility of the formed sulfur in the aqueous phase, in the range of 

temperature and pressure considered in this study, is not high and therefore, it precipitates 

as the fluid moves to top surface such that approximately 960 mg/L solid sulfur is 

deposited at the producer (15 MPa, 65°C). H2S solubility in the hydrocarbon-rich phase is 

higher than that in the aqueous phase and therefore, above the bubble point pressure, H2S 

is mostly found in the oil phase. Using the developed reactive model for predicting the 

partitioning behaviour of sulfur species, under test separator conditions, a gas phase 

containing 487 ppm H2S forms, while the H2S content of oil and water phases in 

equilibrium is 134 ppm and 4 ppm, respectively. 

 When the pH of the solution is above neutral, most of the total sulfur is found as 

sulfate and thiosalts. Hydrogen sulfide dissociates to sulfide and bisulfide and less than 

10% polysulfide ions forms. The amount of sulfur deposited as elemental sulfur is 

slightly decreased from 965 mg/L at low pH values to less than 844 mg/L at higher pH 

values. In addition, at high pH values, the amount of molecular H2S which partitions 

between phases is decreased significantly. The sulfur reactivity results in the formation of 

7 ppm H2S in the gas phase, 2 ppm in the oil phase, and 0.06 ppm in the water phase. 

 Most souring models and management plans do not include sulfur speciation, 

making the assumption of microbially conversion of all the initial sulfate in the injected 

seawater to H2S. This results in the potential for over prediction of H2S in the reservoir 

fluids. For instance in this study, the gas phase under test separator conditions on the 

surface would contain 1080 ppm H2S, the oil phase contains 235 ppm H2S, and water 
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phase contains 7 ppm H2S without including sulfur chemistry. Comparison of the results 

of the sulfur speciation model in the current study with experimental data showed the 

ability of the developed model in predicting sulfur chemistry during recovery processes 

as a result of injection of sulfate-containing seawater. Therefore, this study contributes 

towards understanding sulfur chemistry in reservoirs undergoing seawater injection 

recovery process as it examined the reactivity, partitioning behaviour and therefore, 

relative impact of different sulfur species on H2S content of produced fluid and finally, 

on reservoir souring. 

 There has been no documentation on reservoir souring reactions and phase 

behaviour occurring at low temperature reservoir conditions associated with SRB 

activity. A new approach was followed in this study for studying sulfur chemistry in 

reservoirs undergoing seawater injection in an attempt to fill the gap in addressing 

reservoir souring-related issues in offshore operations. This study gives one more  

information on the chemistry, not just the transport, in these systems. Current reservoir 

models oversimplify the complex sulfur chemistry and developing effective souring 

control method requires the complete picture. Therefore, the major contribution of this 

study is identifying the key chemical compounds, reaction schemes, and developing a 

methodology to incorporate into a more comprehensive reservoir simulator, to model 

transport and transformation in reservoirs soured via seawater injection. 

 Some areas to expand on in future work include: 
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 The proposed model in this study could be incorporated into existing reservoir 

simulators, allowing the study of sulfur speciation as a function of not only 

temperature, pressure, and pH but also reservoir transport phenomenon. 

 Development of promising souring mitigation methods and also the analytical 

methods of identification and quantification of sulfur compounds could also 

benefit from the results of analysis of sulfur species chemical reactivity at 

different operating conditions.  

 During transportation, the reservoir fluid is in contact with the reservoir minerals. 

There could be some chemical reactions between sulfur species in the fluid and 

these minerals. H2S may be adsorbed on the surface of the reservoir minerals, 

especially iron-containing minerals. The scavenging effect of these minerals on 

sulfur speciation could also be included in the reactive model. 

 Those reactions for which no kinetic data was found in the literature, were 

assumed as equilibrium reactions in the current study. Determining the kinetics of 

these reactions, especially those containing polysulfides, could also be the focus 

of further sulfur chemistry studies. 

 A laboratory-scale experiment could also be designed to study sulfur chemistry 

under reservoir conditions during seawater injection. This could provide refined 

data to compare the model outputs with. 


