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Abstract

Wetlands are amongst the most valuable natural resources that provide many ad-

vantages to the ecosystem and humans. Therefore, their mapping and monitoring is

crucial. In today’s dynamic world, where vast areas require observation with increas-

ing frequency, remote sensing is an accessible, cost effective way of environmental

monitoring.

This thesis proposes novel remote sensing methods for mapping and monitoring

wetlands and other complicated land covers and facilitates this by proposing alter-

native pre-processing or post-processing techniques. In Chapter 2, a comprehensive

literature review was conducted that elaborates on different aspects of wetland stud-

ies. Various methods for wetland classification, along with the benefits and limita-

tions of each, were provided, and areas which could be improved were highlighted.

In Chapter 3, an innovative filter was proposed for reducing speckle in Synthetic

Aperture RADAR (SAR) images, which is considered an important pre-processing

step for land cover classification using SAR data. The proposed filter applies window

sizes to each pixel based on the size of the object in which the pixel is placed. The

filter was applied to two simulated and two real SAR images in both single-channel

and full-polarimetric cases, and the filter results were comparable to several state-of-

the-art filters. In Chapter 4, wetlands in four pilot sites within Newfoundland and

Labrador were classified using multi-temporal RADARSAT-2 imagery by applying

the proposed method for segmentation of SAR images. The covariance matrix was

found to be a valuable feature, although textural and ratio features slightly increased

the overall accuracy of wetland mapping. Furthermore, August was determined to be
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the best month for wetland classification. In Chapter 5, an innovative dynamic clas-

sification scheme was proposed for mapping complicated land covers. In this method,

objects are not assigned labels simultaneously, but different classes are mapped us-

ing a separate feature selection and classification. The proposed method was applied

to wetlands in NL and increased the wetland accuracy by up to 25% compared to

the classic mapping scheme. Finally, in Chapter 6, a change detection scheme was

presented using full-polarimetric SAR data by considering neighbourhood informa-

tion, which proved effective in detecting changes in land covers and, therefore, can be

applied to various environments including wetlands.

Overall, the methods proposed herein offer novel and accurate techniques for the

classification of complex land cover types, such as wetlands in NL, Canada that may

be applied in other areas of the world in future studies.

iv



Acknowledgements

First and foremost, I wish to express my sincere gratitude to God Almighty, who

gave me the ability, knowledge, and opportunity to complete my PhD. Without God’s

blessings, I would never been able to achieve my goals.

I would like to thank my supervisory committee, Dr. Bahram Salehi, Dr. Weimin

Huang, and Dr. Brian Brisco, for their continuous support and guidance during my

PhD program. Without their encouragement and constructive criticisms, it would

have been difficult for me to accomplish this level.

I also would like to extend my appreciation to Dr. Cecilia Moloney, who compas-

sionately encouraged me throughout the course of my PhD and offered me sensible

advices in difficult situations.

My PhD research would not be possible without the collaboration of several orga-

nizations who assisted us with financial support, providing satellite imagery, collecting

field data, and giving valuable advice. These organizations include the Natural Sci-

ences and Engineering Research Council of Canada, the Canada Center for Mapping

and Earth Observation, Environment and Climate Change Canada, Ducks Unlimited

Canada, the Government of Newfoundland and Labrador Department of Environment

and Conservation, and Nature Conservancy Canada.

In addition, I wish to appreciate the kindness and support of my fellow graduate

students at Memorial University who accompanied me throughout my PhD.

I would also like to deeply thank my dear parents. With their ever-lasting, sincere

affection, they provided the opportunity for me to continue my studies in Canada

and have been always supporting me from a million miles away.

v



Finally, I would like to thank my husband, Meisam Amani, who inspired me during

the years I was away from home. Dear Meisam, the sweetest memory of my PhD is

receiving your love from God!

vi



Contents

Abstract iii

Acknowledgements v

List of Tables xv

List of Figures xviii

Nomenclature xxvi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Motivations and Objectives . . . . . . . . . . . . . . . . . . 2

1.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1.1 Overview and Problem Statement . . . . . . . . . . . 4

1.3.1.2 Contribution(s) to the Body of Knowledge . . . . . . 5

1.3.1.3 Overall Progress . . . . . . . . . . . . . . . . . . . . 5

vii



1.3.2 Speckle Filtering of SAR Images using Filters with Object-size

Adapted Windows . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2.1 Overview and Problem Statement . . . . . . . . . . . 5

1.3.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2.3 Contribution(s) to the Body of Knowledge . . . . . . 6

1.3.2.4 Overall Progress . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Object-based Wetland Mapping in NL Using Multi-Temporal

PolSAR Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3.1 Overview and Problem Statement . . . . . . . . . . . 6

1.3.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3.3 Contribution(s) to the Body of Knowledge . . . . . . 7

1.3.3.4 Overall Progress . . . . . . . . . . . . . . . . . . . . 7

1.3.4 A Novel Dynamic Classification Scheme for Mapping Spectrally

Similar Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.4.1 Overview and Problem Statement . . . . . . . . . . . 8

1.3.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . 8

1.3.4.3 Contribution(s) to the Body of Knowledge . . . . . . 8

1.3.4.4 Overall Progress . . . . . . . . . . . . . . . . . . . . 9

1.3.5 A Synthetic Aperture Radar change detection method based on

neighbourhood information . . . . . . . . . . . . . . . . . . . . 9

1.3.5.1 Overview and Problem Statement . . . . . . . . . . . 9

1.3.5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . 9

1.3.5.3 Contribution(s) to the Body of Knowledge . . . . . . 10

1.3.5.4 Overall Progress . . . . . . . . . . . . . . . . . . . . 10

viii



1.4 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Book Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.2 Journal Papers . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.3 Conference Papers . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.4 Conference Presentations . . . . . . . . . . . . . . . . . . . . . 14

1.4.5 A Software Package . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.6 A Website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Co-authorship Statement . . . . . . . . . . . . . . . . . . . . . . . . . 16

Bibliography 17

2 Literature Review 20

2.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Wetland Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Wetland Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Wetland Advantages . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Wetland Geographical Extent . . . . . . . . . . . . . . . . . . 27

2.5.3 Wetland Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.4 Wetland Inventories . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Wetland Classification Methods . . . . . . . . . . . . . . . . . . . . . 34

2.6.1 Traditional Wetland Classification . . . . . . . . . . . . . . . . 36

2.6.2 RS-based Wetland Classification . . . . . . . . . . . . . . . . . 37

ix



2.6.2.1 Limitations in RS-based Wetland Classification Meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.2.2 Wetland Classification Using Aerial Imagery . . . . . 40

2.6.2.3 Wetland Classification Using Multispectral Optical Im-

agery . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.2.4 Wetland Classification Using SAR Imagery . . . . . 45

2.6.2.5 Wetland Classification Using Other Resources . . . . 52

2.6.2.6 Multi-source Wetland Classification . . . . . . . . . . 56

2.6.2.7 Multi-temporal Versus Single Date Wetland Classifi-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.2.8 General Algorithms for Image Classification . . . . . 59

2.7 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.8 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 67

3 Speckle Filtering of Synthetic Aperture Radar Images using Filters

with Object-size Adapted Windows 96

3.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4.1 Average Filtering of Single-band SAR Data with Adaptive Win-

dow Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

x



3.4.2 MMSE Filtering of Single-band SAR Data with Adaptive Win-

dow Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4.3 Average Filtering of Polarimetric SAR Data with Adaptive

Window Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.4.4 Polarimetric Filtering of SAR Data with Adaptive Window Size 110

3.5 Dataset and Study Areas . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.6.1 Single-band Case . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.6.1.1 Simulated SAR Image . . . . . . . . . . . . . . . . . 113

3.6.1.2 Real SAR Image . . . . . . . . . . . . . . . . . . . . 118

3.6.2 Polarimetric Case . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.6.2.1 Simulated PolSAR image . . . . . . . . . . . . . . . 132

3.6.2.2 Real PolSAR image . . . . . . . . . . . . . . . . . . 135

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 141

4 Object-based Classification of Wetlands in Newfoundland and Labrador

Using Multi-Temporal PolSAR Data 148

4.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.4 Study areas and Datasets . . . . . . . . . . . . . . . . . . . . . . . . 155

4.4.1 Study Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xi



4.4.2 Field Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.4.3 Image Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.5 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.5.1 Extraction of Covariance Matrix . . . . . . . . . . . . . . . . . 165

4.5.2 Applying Speckle Filter . . . . . . . . . . . . . . . . . . . . . 166

4.5.3 Terrain Correction and Georeferencing . . . . . . . . . . . . . 167

4.5.4 Extraction of Different Features . . . . . . . . . . . . . . . . . 167

4.5.4.1 Polarimetric Features . . . . . . . . . . . . . . . . . . 167

4.5.4.2 Ratio and Textural Features . . . . . . . . . . . . . . 168

4.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.6.1 Evaluation of the Proposed Segmentation Method . . . . . . . 173

4.6.2 Comparison of Object-based Classification with Pixel-based Clas-

sification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.6.3 Classification Results . . . . . . . . . . . . . . . . . . . . . . . 175

4.6.3.1 The Avalon Area . . . . . . . . . . . . . . . . . . . . 178

4.6.3.2 Deer Lake . . . . . . . . . . . . . . . . . . . . . . . . 179

4.6.3.3 Goose Bay . . . . . . . . . . . . . . . . . . . . . . . 184

4.6.3.4 Gros Morne . . . . . . . . . . . . . . . . . . . . . . . 184

4.6.4 The Effect of Ratio and Textural Features . . . . . . . . . . . 189

4.6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Bibliography 197

xii



5 A Novel Dynamic Classification Scheme for Mapping Spectrally

Similar Classes: Application to Wetland Classification 205

5.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.4 Study areas and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.4.1 Study Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5.4.2.1 Satellite Data . . . . . . . . . . . . . . . . . . . . . . 211

5.4.2.2 Field Data . . . . . . . . . . . . . . . . . . . . . . . 217

5.5 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

5.5.1 Preprocessing and Feature Extraction . . . . . . . . . . . . . . 220

5.5.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

5.5.3 Extraction of Object Based Features . . . . . . . . . . . . . . 222

5.5.4 Determination of the Classification Order . . . . . . . . . . . . 223

5.5.5 Determination of the Merging Scheme . . . . . . . . . . . . . 225

5.5.6 Dynamic Feature Selection and Classification . . . . . . . . . 226

5.5.7 Accuracy Assessment and Comparison with Classic Method . 229

5.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 230

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Bibliography 244

6 A Polarimetric Synthetic Aperture Radar Change Detection Index

Based on Neighbourhood Information 252

xiii



6.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

6.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.4 Study Areas and Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 256

6.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

6.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 262

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Bibliography 268

7 Summary and Conclusion 272

7.1 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

7.2 Research Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . 274

7.3 Recommendation for Future Work . . . . . . . . . . . . . . . . . . . . 276

Bibliography 279

xiv



List of Tables

2.1 Various estimates of the global wetland extent . . . . . . . . . . . . . 28

2.2 Classification system of wetlands and deep water habitats of the United

States (see [57] for more details). . . . . . . . . . . . . . . . . . . . . 31

2.3 Wetland classes defined by the Canadian Wetland Classification Sys-

tem (see [22] for more details). . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Description of various SAR configurations for wetland mapping. . . . 53

3.1 Various metrics for evaluation of the proposed speckle filters on the

simulated SAR images . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.2 Various metrics for evaluation and comparison of the performance of

the proposed speckle filters on real SAR images. E{r} and σ{r} show

the mean and standard deviation of the ratio image, respectively. . . 124

4.1 General characteristics of the pilot sites. . . . . . . . . . . . . . . . . 158

4.2 The area of, and the number of training and test sites in, each pilot site.162

4.3 The characteristics of the RADARSAT-2 images used in this study . 164

4.4 Comparison between the pixel-based and object-based classification

accuracies using multi-resolution algorithm over the Avalon area. . . . 177

xv



4.5 Classification accuracies using multitemporal C31+T32 for the Avalon

pilot site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.6 Classification accuracies using multitemporal HAA1+HAA2+C31 for

the Deer Lake pilot site. . . . . . . . . . . . . . . . . . . . . . . . . . 182

4.7 Classification accuracies using multitemporal T31+C32 for the Goose

Bay pilot site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4.8 Classification accuracies using multitemporal C31+C32+Fr3 for the

Goose Bay pilot site. . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

4.9 Confusion matrices for the best classification result in a) The Avalon

area b) Deer Lake c) Goose Bay d) Gros Morne . . . . . . . . . . . . 190

4.10 The effect of ratio and textural features on classification accuracy and

the percentage of change relative to the best classification accuracy. . 192

5.1 data of acquisition for the satellite images used in the study as a func-

tion of the site and the type (optical or SAR) . . . . . . . . . . . . . 214

5.2 The characteristics of images used in this study - all available bands

of sensors were used unless otherwise mentioned. . . . . . . . . . . . . 215

5.3 The number and the area of the training and test data for each pilot

site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.4 Segmentation parameters and number of objects for all pilot sites. . . 230

5.5 The threshold values for the producer and user accuracies of each class

in all pilot sites of this study. . . . . . . . . . . . . . . . . . . . . . . 234

5.6 The individual and overall accuracies obtained for all pilot sites using

the proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

xvi



6.1 The characteristics of images used in this study. . . . . . . . . . . . . 257

6.2 Accuracy assessment of the change detection maps obtained by both

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

xvii



List of Figures

2.1 Cowardin Classification System (CCS, [57]) . . . . . . . . . . . . . . . 32

2.2 Canadian Wetland Classification System (CWCS, [59]) . . . . . . . . 33

2.3 Wetlands located in Newfoundland, Canada classified following the

Canadian Wetlands Classification System (a) Bog (b) Fen (c) Swamp

(d) Marsh (e) Shallow Water. . . . . . . . . . . . . . . . . . . . . . . 35

2.4 The electromagnetic spectrum [90] . . . . . . . . . . . . . . . . . . . 42

2.5 Radar bands [128]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Polarization types [135]. . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 The variation of the standard deviation with the change in the window

size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.2 Flowchart of the proposed algorithm . . . . . . . . . . . . . . . . . . 106

3.3 The issue near the edges of a target. . . . . . . . . . . . . . . . . . . 107

3.4 The selected subsets for applying the suggested filters. . . . . . . . . 112

3.5 The block diagram of the simulation method. . . . . . . . . . . . . . 114

xviii



3.6 Simulated SAR images: (a-b) The ground-truth images, (c-d) The

original intensity images, (e-f) The 5-by-5 average filtered images, (g-

h) The 5-by-5 MMSE filtered images, (i-j) Average filtered images with

Adaptive Window Size, (k-l) MMSE filtered images with Adaptive

Window Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.7 San Francisco: a) Original one-look HH intensity image. The rectangle

on the top and the bottom of the image show the regions used for

computation of ENL and Coefficient of Variation, respectively, b) The

5×5 average filtered image, c) The 5×5 MMSE filtered image, d) The

5×5 enhanced Lee filtered image, e) The 5×5 Gamma filtered image,

f) PPB filtered image with hw=20, hd=5, and 1 iteration, g) Average

filtered image with Adaptive Window Size, h) MMSE filtered image

with Adaptive Window Size. . . . . . . . . . . . . . . . . . . . . . . . 120

3.8 St. John's: a) Original one-look HH intensity image. The rectangle

on the top and the bottom of the image show the regions used for

computation of Coefficient of Variation and ENL, respectively, b) The

5×5 average filtered image, c) The 5×5 MMSE filtered image, d) The

5×5 enhanced Lee filtered image, e) The 5×5 Gamma filtered image,

f) PPB filtered image with hw=10, hd=3, and 4 iterations, g) Average

filtered image with Adaptive Window Size, h) MMSE filtered image

with Adaptive Window Size. . . . . . . . . . . . . . . . . . . . . . . . 121

3.9 The variation of standard deviation with the change of the filtering

window size. a) A homogeneous pixel, and b) A heterogeneous pixel. 123

xix



3.10 San Francisco: Ratio images resulted from: a) The 5×5 average filtered

image, b) The 5× 5 MMSE filtered image, c) The 5× 5 enhanced Lee

filtered image, d) The 5 × 5 Gamma filtered image, e) PPB filtered

image with hw=20, hd=5, and 1 iteration, f) Average filtered image

with Adaptive Window Size, g) MMSE filtered image with Adaptive

Window Size from the San Francisco image . . . . . . . . . . . . . . . 128

3.11 St. John’s: Ratio images resulted from: a) The 5 × 5 average filtered

image, b) The 5× 5 MMSE filtered image, c) The 5× 5 enhanced Lee

filtered image, d) The 5 × 5 Gamma filtered image, e) PPB filtered

image with hw=20, hd=5, and 1 iteration, f) Average filtered image

with Adaptive Window Size, g) MMSE filtered image with Adaptive

Window Size from the San Francisco image . . . . . . . . . . . . . . . 129

3.12 A small subset of the San Francisco image: a) Original one-look HH

intensity image, b) The 5×5 average filtered image, c) The 5×5 MMSE

filtered image, d) The 5× 5 enhanced Lee filtered image, e) The 5× 5

Gamma filtered image, f) PPB filtered image with hw=20, hd=5, and 1

iteration, g) Average filtered image with Adaptive Window Size, and h)

MMSE filtered image with Adaptive Window Size highlighting urban

areas from the San Francisco image. . . . . . . . . . . . . . . . . . . . 131

xx



3.13 A small subset of the St. John’s image: a) Original one-look HH

intensity image, b) The 5×5 average filtered image, c) The 5×5 MMSE

filtered image, d) The 5× 5 enhanced Lee filtered image, e) The 5× 5

Gamma filtered image, f) PPB filtered image with hw=20, hd=5, and

1 iteration, g) Average filtered image with Adaptive Window Size, h)

MMSE filtered image with Adaptive Window Size highlighting urban

areas from the San Francisco image. . . . . . . . . . . . . . . . . . . . 133

3.14 Polarimetric simulated SAR images: (a-b) The ground-truth images,

(c-d) The original polarimetric images, (e-f) The 5× 5 average filtered

images, (g-h) Images filtered with 5 × 5 refined PolSAR filter, (i-j)

Average filtered images with Adaptive Window Size, and (k-l) PolSAR

filtered images with Adaptive Window Size. . . . . . . . . . . . . . . 134

3.15 San Francisco: a) Original polarimetric image, b) Snapshot of the study

area from Google EarthTM, c) The 5 × 5 average filtered image, d)

Image filtered with 5 × 5 refined PolSAR filter, e) The 5 × 5 Lopez

filtered image, f) IDAN filtered image with window size row of 50, g)

Average filtering with Adaptive Window Size, h) PolSAR filtering with

Adaptive Window Size. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.16 St. John's: a) Original polarimetric image, b) Snapshot of the study

area from Google EarthTM, c) The 5 × 5 average filtered image, d)

Image filtered with 5 × 5 refined PolSAR filter, e) The 5 × 5 Lopez

filtered image, f) IDAN filtered image with window size row of 50, g)

Average filtering with Adaptive Window Size, h) PolSAR filtering with

Adaptive Window Size. . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xxi



4.1 Five representative pilot sites of Newfoundland and Labrador for wet-

land classification of the province (adapted from Google EarthTM). . . 157

4.2 Images of wetland classes described by the Canadian Wetland Classi-

fication System across the pilot sites: a) Bog in the Avalon, b) Fen

in Gros Morne, c) Marsh in Goose Bay, d) Swamp in the Avalon, e)

Shallow Water in Gros Morne. . . . . . . . . . . . . . . . . . . . . . . 159

4.3 A RADARSAT-2 C-band image depicted in false color composite (|Shh|2

as the red, |Shv|2 as the green, and |Svv|2 as the blue channel) with a)

Bog, b) Fen, c) Marsh, d) Swamp, and e) Shallow Water polygons

overlaid on that. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.4 The distribution of training and test sites in the Avalon area. . . . . . 163

4.5 The Flowchart of the method applied in this study. . . . . . . . . . . 165

4.6 Comparison between segmentation using only SAR layers over the

Avalon area versus segmentation using an optical image over the same

area: a) Segmentation using only SAR layers, b) Segmentation using

an optical image from the same area, c) Classification resulted from

segmentation depicted in part (a), and d) Classification resulted from

segmentation depicted in part (b). . . . . . . . . . . . . . . . . . . . . 174

4.7 Comparison between pixel-based and object-based classifications in the

Avalon pilot site: a) Pixel-based classification, and b) Object-based

classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

xxii



4.8 Single-date and multi-date overall and per-class accuracies for the Avalon

area. C3=Covariance Matrix, T3=Coherency Matrix, Fr=Freeman-

Durden Decomposition, HAA=H/A/Alpha decomposition. The right-

most number of each feature's abbreviation indicates the sequence of

acquisition. Example: C31=Covariance Matrix obtained from the first

acquired imagery over the pilot site. . . . . . . . . . . . . . . . . . . . 179

4.9 Map classified using multitemporal C31+T32 for the Avalon pilot site. 180

4.10 Single-date and multi-date overall and per-class accuracies for Deer

Lake. C3=Covariance Matrix, T3=Coherency Matrix, Fr=Freeman-

Durden Decomposition, HAA=H/A/Alpha decomposition. The right-

most number of each feature's abbreviation indicates the sequence of

acquisition. Example: C31=Covariance Matrix obtained from the first

acquired imagery over the pilot site. . . . . . . . . . . . . . . . . . . . 182

4.11 Map classified using multitemporal HAA1+HAA2+C31 for the Deer

Lake pilot site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.12 Single-date and multi-date overall and per-class accuracies for Goose

Bay. C3=Covariance Matrix, T3=Coherency Matrix, Fr=Freeman-

Durden Decomposition, HAA=H/A/Alpha decomposition. The right-

most number of each feature's abbreviation indicates the sequence of

acquisition. Example: C31=Covariance Matrix obtained from the first

acquired imagery over the pilot site. . . . . . . . . . . . . . . . . . . . 185

4.13 Map classified using multitemporal T31+C32 for the Goose Bay pilot

site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xxiii



4.14 Single-date and multi-date overall and per-class accuracies for Gros

Morne. C3=Covariance Matrix, T3=Coherency Matrix, Fr=Freeman-

Durden Decomposition, HAA=H/A/Alpha decomposition. The right-

most number of each feature's abbreviation indicates the sequence of

acquisition. Example: C31=Covariance Matrix obtained from the first

acquired imagery over the pilot site. . . . . . . . . . . . . . . . . . . . 187

4.15 Map classified using multitemporal C31+C32+Fr3 for the Gros Morne

pilot site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.1 The pilot sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

5.2 Optical images acquired over the five pilot sites in this study. . . . . . 213

5.3 Images of the wetland classes defined by the CWCS. Images were ac-

quired in the Avalon pilot site. . . . . . . . . . . . . . . . . . . . . . . 216

5.4 The flowchart of the dynamic classification scheme. . . . . . . . . . . 220

5.5 The classified image of five pilot sites using the proposed method. . . 231

5.6 The comparison between the proposed method and the classic method

in all five pilot sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.7 Several zoomed parts of the resulting maps along with the optical im-

ages over the same area. For viewing the legend, please refer to Figure

5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

5.8 The producer and user accuracies of each class versus the density of

the training data available for that class in the Avalon area. PA and

UA indicate the producer and user accuracies, respectively. . . . . . . 238

6.1 Two optical images over the study area, before and after a flood event. 257

xxiv



6.2 The color composite of the SAR images a) before, and (b) after the

flooding event. Red, green, and blue channels correspond to the HH,

HV, and VV intensity images, respectively. (c) The reference image. . 258

6.3 Change detection maps obtained by lnQ and PDI measures. . . . . . 262

6.4 Binary change detection maps obtained by lnQ and PDI measures. . . 264

6.5 Selected samples of image pairs and their corresponding change detec-

tion maps: the colour composite of the image (a-d) before, and (e-h)

after the flooding event, (i-l) The lnQ map, (m-p) The PDI map, (q-t)

The thresholded lnQ map; and (u-x) The thresholded PDI map. . . . 265

xxv



Nomenclature

Z̄ Average of the covariance matrices
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Chapter 1

Introduction

1.1 Background

“Wetland is a land transitional between terrestrial and aquatic systems, where

the water table is usually at or near the surface or the land is covered by shallow

water” [1]. Wetlands provide numerous advantages to the environment and humans,

such as purification of water, protection from natural hazards, and conservation of

soil and water [2–4]. Although wetlands cover about 7 million square kilometres

of the earth, they are degrading quickly [5] as a result of extensive ground water

extraction, irrigation, and drainage [6]. Therefore, mapping and monitoring wetlands

is important for their conservation.

Many wetland inventories have been developed since the value of wetlands and

the potential of Remote Sensing (RS) for wetland mapping have been realized. A

prerequisite for producing wetland inventories is developing classification methods

that can be widely applied to field-based and RS methods. RS, as a cost-effective and

1



timely option, has been popular among researchers considering the need for frequent

maps with large coverages [7].

Although RS methods have advanced considerably, wetland classification using

RS remains a challenging task [8,9]. There are several reasons for this, among which

are the high spectral similarity of wetlands with each other and with non-wetland

classes and the high spatial and temporal variability of wetlands [10–13]. However,

RS techniques are still preferred and, therefore, the development of innovative and

effective RS methods for the purpose of wetland mapping with minimal need of in

situ measurements is necessary.

1.2 Research Motivations and Objectives

With the above introduction, there are several motivations behind this research.

For example, although a number of review papers have been published on wet-

lands [7,11,14], there is a need for a comprehensive literature review which considers

various aspects of wetland studies, including different classification methods along

with benefits and limitations of each.

Moreover, considering that Newfoundland and Labrador (NL) is the only province

in Atlantic Canada that lacks a provincial wetland map [15] and approximately 14%

of Canada is covered by wetlands [16] many of which are located in remote locales, in

situ monitoring of wetlands is almost impossible due to issues of time and coverage

limitation, laboriousness, and cost. Therefore, RS is a valuable tool for practical and

operational mapping and monitoring of wetlands. However, due to the high number

of similarities among different wetland classes, wetland classification is a challenging
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task from a RS perspective. Therefore, few robust RS methods have been proposed

that specifically fit wetland characteristics. Moreover, freely available satellite images

have not been adequately used for this purpose.

At the same time, monitoring land covers including wetlands demands appropriate

change detection techniques. However, there are few SAR change detection techniques

for land cover monitoring which yield noiseless, connected changed areas, which are

necessary in order to make correct managerial decisions.

Based on the above discussion, the objectives of this research are to:

1. Conduct a comprehensive literature review of wetland classification using satel-

lite imagery that considers various aspects of wetland studies.

2. Propose a speckle reduction method as a preprocessing step for wetland classi-

fication that filters each pixel based on the size of the object in which the pixel

is located.

3. Evaluate the potential of multi-temporal Polarimetric SAR (PolSAR) data for

wetland mapping and determine the optimal feature and time for wetland clas-

sification using SAR data.

4. Propose a novel dynamic classification scheme for mapping spectrally similar

classes, including those of wetlands, using a combination of Synthetic Aperture

Radar (SAR), optical, and other types of RS data. This method also evaluates

the potential of freely available satellite data.

5. Detect changes in land covers by utilizing neighbourhood information using the

ratio of total power (span) of the images before and after the event.
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1.3 Research Methodology

In order to achieve the objectives described above, a number of studies with

methodologies specific to each were conducted. First, a literature review was per-

formed to gain a deeper understanding of wetland characteristics in terms of RS.

Second, an innovative method was introduced for speckle reduction in SAR images

as a preprocessing step for wetland classification using SAR imagery. Third, the

potential of multi-temporal PolSAR data for wetland mapping was evaluated. This

determined the most appropriate feature and month for conducting wetland studies.

Fourth, a dynamic classification scheme was proposed for mapping spectrally sim-

ilar classes, including those of wetlands. The proposed method is specially useful

for wetland classification and also utilizes freely available satellite data. Finally, a

change detection approach was suggested using neighbourhood information to mon-

itor changes in various land covers including wetlands. A summary of each segment

of the research is provided below.

1.3.1 Literature Review

1.3.1.1 Overview and Problem Statement

There are a number of literature review papers dealing with wetland classifica-

tion. Nevertheless, there is a need for a comprehensive review including wetland

importance, the requirement of wetland mapping and monitoring, and a complete

description of the methods for wetland classification. The aim of this part of the

research was to familiarize readers with different aspects of wetland studies. Initially,

the importance, characteristics, and challenges of wetlands were introduced. Then,
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a thorough discussion of various RS approaches for wetland classification along with

the drawbacks and benefits of each were provided.

1.3.1.2 Contribution(s) to the Body of Knowledge

This review provides novel insights on wetland classification through the use of

different techniques, such as optical, SAR, UAV, and hyperspectral imagery. The

existing research on wetland classification is either outdated or considers only a single

aspect of wetland classification.

1.3.1.3 Overall Progress

This task has been completed and a review paper, resulting from this work, has

been published in the GIScience & Remote Sensing journal.

1.3.2 Speckle Filtering of SAR Images using Filters with

Object-size Adapted Windows

1.3.2.1 Overview and Problem Statement

Speckle negatively affects the radiometric quality of a SAR image. Most previously

proposed filters for reducing speckle in SAR image have used a fixed size window for

filtering the entire image. This, however, might not be effective for land covers with

different sizes, such as wetlands. Therefore, in this part of research, a novel filter

was proposed by which the pixels within the image are filtered with a window size

proportional to the size of the object within which the pixel is located.
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1.3.2.2 Methodology

In the proposed method, the optimal window size was determined based on the

minimum standard deviation associated with the in-phase and the quadrature com-

ponents of the SAR images. Afterwards, the obtained window size for each pixel

was applied to filter that pixel in the intensity image. The proposed method was

presented for both single-channel and polarimetric SAR images, and the results of

several common filters were modified and presented.

1.3.2.3 Contribution(s) to the Body of Knowledge

The majority of previously proposed speckle filters use a fixed window size (see

Section 1.3.2.1 for details). Using the proposed method, however, all objects within

the image are filtered with a window size proportional to their area.

1.3.2.4 Overall Progress

This task is completed, and the resulting paper has been published in the Inter-

national Journal of Digital Earth.

1.3.3 Object-based Wetland Mapping in NL Using Multi-

Temporal PolSAR Data

1.3.3.1 Overview and Problem Statement

A considerable part of NL is covered by wetlands, but this province lacks a provin-

cial wetland inventory. In this study, multi-temporal SAR data were analyzed for

wetland classification at four pilot sites across NL using an alternative segmentation
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method, since the current segmentation methods of SAR images were not as effective

as those proposed for optical images.

1.3.3.2 Methodology

In this study, object-based classification using the proposed segmentation method

was compared to pixel-based classification. Next, the multi-temporal wetland classi-

fication was compared to the conventional single-date classification in each pilot site.

Finally, an evaluation of the ratio and textural features was also performed.

1.3.3.3 Contribution(s) to the Body of Knowledge

As mentioned before, NL is the only province in Atlantic Canada which lacks a

comprehensive wetland inventory. In this part of the work, four pilot sites within

NL were classified, which is the initial step for classifying the entire province. Addi-

tionally, an alternative segmentation method of SAR images was proposed based on

optical images. Moreover, the potential of ratio and textural features was evaluated

in this work, which is not common in previous studies of wetland classification.

1.3.3.4 Overall Progress

This task is completed, and the resulting paper has been published in the Canadian

Journal of Remote Sensing.
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1.3.4 A Novel Dynamic Classification Scheme for Mapping

Spectrally Similar Classes

1.3.4.1 Overview and Problem Statement

Feature selection is necessary for classification of complicated land covers when

numerous features are available. Although high overall accuracies can be obtained

when selected features are used for mapping spectrally similar classes, such as wet-

lands, some poor individual class accuracies may also exist. One reason might be that

a single feature subset may not be useful for the discrimination of all pairs of classes.

Moreover, overall accuracy can be influenced by the accuracy of a few classes that

are spectrally distinct. In this part of the research, a novel method for classification

of complicated land covers was proposed that maps each class individually using a

separate feature selection and classification.

1.3.4.2 Methodology

In this study, the classes were not mapped simultaneously, but were classified

individually with a different feature selection associated with each. For determining

the order of the classes and the merging scheme introduced in the paper, spectral

analysis was utilized. The proposed method was applied to wetland classification

using data from five pilot sites throughout NL, Canada.

1.3.4.3 Contribution(s) to the Body of Knowledge

Determining a classification order, a merging scheme, and, in general, mapping

various classes separately are unprecedented in the RS community, and proved very
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useful for wetland classification.

1.3.4.4 Overall Progress

This task is completed, and the yielded paper has been submitted, and is currently

under review.

1.3.5 A Synthetic Aperture Radar change detection method

based on neighbourhood information

1.3.5.1 Overview and Problem Statement

Change detection using SAR images is valuable because of their all-weather, day

and night acquisition capabilities. As a result of the presence of speckle, considering

neighbourhood information in SAR images is recommended for more accurate change

detection. Based on this fact, a polarimetric change detection index was proposed

which uses the ratio of span (total power) values to detect changes between two

full-polarimetric SAR images.

1.3.5.2 Methodology

In this study, a single-channel index based on neighbourhood information was

extended to full polarimetric SAR data. In the proposed index, the ratio of span

(total power) was considered for both the central pixel and its neighbourhood, and a

weight parameter was used to adjust the effect of central versus surrounding pixels.

Since a long-term dataset of SAR images from NL was not available at the time of

conducting this research, the proposed index was applied to detect changes caused
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by a flooding event in Dongting lake, Hunan, China.

1.3.5.3 Contribution(s) to the Body of Knowledge

While there are very few studies that consider neighbourhood information for SAR

change detection, this study proposed a full polarimetric SAR change detection index

based on neighbourhood information that produces less noisy and more connected

changed areas compared to other measures.

1.3.5.4 Overall Progress

This task has been completed, and the resulting paper has been submitted, and

is currently under review.

1.4 Achievements

The overall findings of this study have been presented in a number of formats in-

cluding a book chapter, peer-reviewed journal papers, conference papers and presen-

tations, a software package, and a website. The details can be found in the following

sections.

1.4.1 Book Chapter

� Salehi, B., Mahdianpari, M., Amani, M., Mohammadimanesh, F., Granger, J.,

Mahdavi, S., Brisco, B., 2018, “A collection of novel algorithms for wetland

classification with SAR and optical data”, under review, InTech Open.
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1.4.2 Journal Papers

� Mahdavi, S., Salehi, B., Granger, J., Amani, M., Brisco, B., Huang, W.,

“Remote sensing for wetland classification: a comprehensive review”, 2017, GI-

Science & Remote Sensing,55, 5, 623-658.

� Mahdavi, S., Salehi, B., Moloney, C., Huang, W., and Brisco, B. “Speckle fil-

tering of Synthetic Aperture Radar images using filters with object-size-adapted

windows”, 2017, International Journal of Digital Earth, 11, 7, 703-729.

� Mahdavi, S., Salehi, B., Amani, M., Granger, J., Brisco, B., Huang., W., Han-

son, A., “Object-based classification of wetlands in Newfoundland and Labrador

using multi-temporal PolSAR data”, 2017, Canadian Journal of Remote Sens-

ing, 43, 5, 432-450.

� Mahdavi, S., Salehi, B., Amani, M., Granger, J., Brisco, B., Huang, W.,

“A novel dynamic classification scheme for mapping spectrally similar classes:

application to wetland classification”, 2018, under review.

� Mahdavi, S., Salehi, B., Amani, M., Brisco, B., Huang, W., “A polarimetric

Synthetic Aperture RADAR index based on neighbourhood information”, 2018,

under review.

� Amani, M., Salehi, B., Mahdavi, S., Brisco, B., Shehata, M., “A Multiple

Classifier System to improve mapping complex land covers: a case study of

wetland classification using SAR data in Newfoundland, Canada”, 2018, Inter-

national Journal of Remote Sensing, In press.
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� Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Mahdavi,

S., Amani, M., Granger, J. E., “A novel approach for object-based wetland

classification of PolSAR data using Fisher-based Random Forest algorithm”,

2018, Remote Sensing of Environment, 206, 300-317.

� Amani, M., Salehi, B., Mahdavi, S., Granger, J., Brisco, B., “Wetland clas-

sification in Newfoundland and Labrador using multi-source SAR and optical

data integration”, 2017, GIScience and Remote Sensing, 54, 6, 779-796.

� Amani, M., Salehi, B., Mahdavi, S., Granger, J., Brisco, B., “Wetland Classi-

fication Using Multi-Source and Multi-Temporal Optical Remote Sensing Data

in Newfoundland and Labrador, Canada”, 2017, Canadian Journal of Remote

Sensing, 43, 4, 360-373.

� Amani, M., Salehi, B., Mahdavi, S., Brisco, B., “Spectral analysis of wet-

lands using multi-source optical satellite imagery”, 2018, ISPRS Journal of

Photogrammetry and Remote Sensing, 144, 119-136.

� Amani, M., Salehi, B., Mahdavi, S., Brisco, B., Separability Analysis of Wet-

lands Using Multi-source SAR data, 2018, under review.

1.4.3 Conference Papers

� Mahdavi, S., Salehi, B., Amani, M., Granger, J., Brisco, B., Huang., W., “A

dynamic hierarchical feature selection method for object-based classification of

wetlands”, 2017, in International Geoscience and Remote Sensing Symposium

(IGARSS) 2017 proceedings, Fort Worth, Texas, USA.
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in IGTF 2017, ASPRS Annual Conference proceedings, Baltimore, Maryland,
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� Mahdavi, S., Salehi, B., Moloney, C., Huang, W., and Brisco, B., “A new
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Canada”, 2017, in International Geoscience and Remote Sensing Symposium

(IGARSS) 2017 proceedings, Fort Worth, Texas, USA.
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� Amani, M., Salehi, B., Mahdavi, S., Granger, J., “An Operational Wetland

Classification Model in Newfoundland and Labrador using Advanced Remote

Sensing Methods”, 2017, in Newfoundland Electrical and Computer Engineering

Conference (NECEC) proceedings, St. John’s, Newfoundland and Labrador,

Canada.

1.4.4 Conference Presentations

� Mahdavi, S., Salehi, B., Amani, M., Brisco, B., Huang, W., “An operational

method for wetland classification in Newfoundland and Labrador using pub-

licly available satellite data”, 2017, Geomatics Atlantic Conference, St. John’s,

Newfoundland and Labrador, Canada.

� Mahdavi, S., Salehi, B., Amani, M., Granger, J., Brisco, B., Huang., W.,

2016, “Object-based, multi-Temporal SAR analysis for wetland classification in

Newfoundland and Labrador”, 37th Canadian Symposium on Remote Sensing

(CSRS), Winnipeg, Manitoba, Canada.

� Mahdavi, S., Salehi, B., Brisco, B., Huang., W., 2015, “Object-Based clas-

sification of wetlands using optical and SAR data with a compound kernel in

Support Vector Machine”, American Geophysical Union (AGU) Fall Meeting,

San Francisco, California, USA

� Mahdavi, S., Maghsoudi, Y., Salehi, B., “A Speckle filtering approach of SAR

data based on a coherent decomposition”, 2015, 37th Canadian Symposium for

Remote Sensing Conference (CSRS), St. John's, Newfoundland and Labrador,

Canada.
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1.4.5 A Software Package

The candidate contributed to developing a software package in C-CORE named

Advanced Remote Sensing Lab (ARSeL) which includes various RS algorithms for

wetland classification.

1.4.6 A Website

The candidate contributed to developing a website (http://nlwetlands.ca/) which

includes the final maps of pilot sites as well as other information about wetlands

in Newfoundland and Labrador. In fact, the maps illustrated on the website were

obtained during this research by using the novel dynamic classification scheme intro-

duced in Chapter 5.

1.5 Organization of the Thesis

This thesis is organized as follows. Chapter 2 provides a comprehensive literature

review of wetland classification using various RS methods. In Chapter 3, the speckle

reduction filter is elaborated upon. Wetland classification using multi-temporal Pol-

SAR data and the novel dynamic classification scheme are explained in Chapters 4

and 5, respectively. Change detection for land cover monitoring using neighbourhood

information is discussed in Chapter 6, before the concluding remarks are presented

in Chapter 7.
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Chapter 2

Literature Review

2.1 Preface

In this chapter, a complete literature review was conducted on various aspects

of wetland studies, and different algorithms for wetland classification using satellite

imagery. The paper resulted from this chapter has been published in the GIScience

& Remote Sensing Journal.

2.2 Abstract

Wetlands are valuable natural resources which provide many benefits to the envi-

ronment. Therefore, mapping wetlands is crucially important. Several review papers

on Remote Sensing (RS) of wetlands have been published thus far. However, there is

no recent review paper that contains an inclusive description of the importance of wet-

lands, the urgent need for wetland classification, along with a thorough explanation of

the existing methods for wetland mapping using RS methods. This article attempts
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to provide readers with an exhaustive review regarding different aspects of wetland

studies. First, the readers are acquainted with the characteristics, importance, and

challenges of wetlands. Then, various RS approaches for wetland classification are

discussed along with their advantages and disadvantages. These approaches include

wetland classification using aerial, multispectral, Synthetic Aperture Radar (SAR),

and several other datasets. Different pixel-based and object-based algorithms for

wetland classification are also explored in this study. The most important conclu-

sions drawn from the literature are that the red edge and near infrared bands are the

best optical bands for wetland delineation. In terms of SAR imagery, large incidence

angles, short wavelengths, and HV (horizontal transmission and vertical reception)

polarization are best for detecting herbaceous wetlands, while small incidence angles,

long wavelengths, and HH (horizontal transmission and reception) polarization are

appropriate for mapping forested wetlands.

2.3 Introduction

“Wetland is a land transitional between terrestrial and aquatic systems, where

the water table is usually at or near the surface or the land is covered by shallow

water” [1], and provide vital habitats for several unique species of flora and fauna.

Some of the benefits associated with wetlands are water purification, protection from

natural hazards, conservation of soil and water, as well as recreational values [2–4].

According to [5], wetlands cover at least 7 million square kilometers of the earth.

Unfortunately, however, wetlands are prone to an accelerated degradation [6] due to

extensive irrigation practices, extraction of ground water, and drainage [7]. Further-
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more, many wetlands have been changed to urban or agricultural lands. In fact, thus

far up to 57% of the world's wetlands have been converted or lost [8]. Therefore,

mapping and monitoring wetlands is of crucial importance.

Many stakeholders have realized the value of wetlands as well as the high po-

tential of Remote Sensing (RS) for mapping these valuable natural resources, and

consequently have developed different wetland inventories for this purpose. Wetland

inventories can be defined as maps illustrating the area and the distribution of wet-

lands over geographical regions, and are useful tools for evaluating the effectiveness

of wetland polices. Producing wetland inventories, however, demands developing

classification schemes to describe the type of wetland classes to be mapped. Conse-

quently, for implementation of classification schemes numerous classification methods

were generated, which can be widely divided to field-based and RS methods. Unlike

field-based methods, RS is a cost-effective tool which is capable of acquiring frequent

measurements from inaccessible places and providing timely information. Given the

current need for up-to-date information, as well as the wide spread coverage of wetland

maps, satellite RS has been demonstrated to be the most efficient and cost-effective

method for this purpose [9].

Despite many advances in RS technology, wetland classification is still a chal-

lenging task from the RS perspective [10, 11]. A major reason for this difficulty is

that although each of the wetland classes have several distinctive characteristics, they

share some ecological similarities with each other [12], and with other non-wetland

classes [13]. For example, the vegetation within bog and fen are very similar to each

other. However, bog’s only source of water is precipitation, while fen has other water

sources as well. This fact sometimes make their shape different. Therefore, different
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wetlands exhibit similar spectral and/or backscattering information in RS imagery.

In addition, wetlands vary significantly in space and time [14, 15]. Despite these

difficulties, RS approaches are preferential, especially since field work is the poten-

tial alternative, which is a laborious, comparatively costly, and time-consuming task.

Therefore, many studies have attempted to develop innovative and effective RS meth-

ods for the purpose of wetland mapping with minimal need of in situ measurements.

There are several review papers published on wetland classification and various

challenges associated with this task. For instance, [9] conducted an inclusive review

on various sensors used for wetland mapping and monitoring, in which SAR sensors

were covered in a small section. Different methods for the classification of wetlands,

including aerial photo interpretation, and unsupervised and supervised classification

methods, were also investigated in this review paper. [13] also presented a comprehen-

sive review on wetland detection using Synthetic Aperture Radar (SAR) sensors. This

review provides the readers with considerable insights on the benefits and limitations

of SAR sensors for wetland detection. Besides, it advises the users on choosing the ap-

propriate sensor configuration. In another paper, [16] reviewed wetland classification

using multispectral and hyperspectral RS sensors, and explored spectral characteris-

tics of various vegetation within wetlands. Similarly, [17] did a thorough and useful

literature review on object-based wetland classification and explored object-oriented

mapping of wetlands in terms of its pros and cons, and the elements which affect its

accuracy. Additionally, [14] explained RS methods briefly for wetland classification

and investigated the challenges of mapping wetlands. Finally, [18] investigated the

SAR RS methods for mapping and monitoring surface water and wetlands.

Each of the mentioned reviews has explored wetland classification from a specific
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point of view. Therefore, there is a need for a more inclusive literature review, which

contains an introduction to wetland importance and the reason for the need on wet-

land mapping and monitoring, as well as a diverse description of the various methods

for classifying and monitoring wetlands using RS. In this review, the aim is not to

simply report the method and results of each study, but rather, to recapitulate the

research on a variety of subjects and present the benefits and limitations associated

with each. This review is especially useful for the users who intend to become familiar

with characteristics and importance of wetlands, and also need a general knowledge on

the classification of wetlands to decide what approach conforms to their requirements

in the best way.

This paper is organized as follows. First, various definitions of wetlands are pro-

vided. Then, the benefits and extent of wetlands, and the threatening rate of wetland

loss are reviewed. Wetland inventories and classification schemes are discussed in the

next section.

Wetland classification methods and their features are then presented on an indi-

vidual basis. Readers are also referred to several studies, which have utilized each

method of wetland classification. In addition, the benefits of object-based compared

to pixel-based classification are presented in this section. Further, various classifiers

for wetland mapping are explored and reviewed. Finally, the summary and conclu-

sions, along with some recommendations for the future, are provided.

24



2.4 Wetland Definition

Although wetlands share many similar characteristics, they are highly variable in

terms of size, location and hydrology [19], they often constitute transitional zones on

the edge of explicit terrestrial and aquatic regions [19]. This fact creates difficulty

in defining these natural resources, and is the reason for the existence of various

definitions of wetland in the literature [19, 20].

One of the most commonly used definitions of wetland is provided by the Ramsar

Convention [21]: “areas of marsh, fen, peatland or water, whether natural or artificial,

permanent or temporary, with water that is static or flowing, fresh, brackish or salt,

including areas of marine water the depth of which at low tide does not exceed 6m”.

Although this definition suffices for the majority of international purposes, most

nations have their own definition of wetland developed for various scientific, man-

agerial, and governmental purposes. The United States Fish and Wildlife Service

(USFWS), for example, defines wetland as follows [1]: “Wetland is a land transi-

tional between terrestrial and aquatic systems, where the water table is usually at

or near the surface or the land is covered by shallow water. For the purposes of this

classification, wetlands must have one or more of the following three attributes: (i)

at least periodically, the land supports predominantly hydrophytes; (ii) the substrate

is predominantly undrained hydric soil; and (iii) the substrate is non-soil and is satu-

rated with water or covered by shallow water at some times during the growing season

of each year”. Another well-known definition applied in Canada is defined by the Na-

tional Wetland Working Group [22]. The group describes a wetland as: “an area

that is saturated with water long enough to promote wetland or aquatic processes as
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indicated by poorly drained soils, hydrophytic vegetation and various kinds of biolog-

ical activities that are adapted to a wet environment”. To summarize, wetlands can

be described as occupying zones where terrestrial and aquatic regions meet [23], and

share some characteristics of both ecosystems. Notably, wetlands contain water for

some parts of a year [23]. [20] provided a simple definition of wetlands by introducing

three main features by which wetlands can be described: the presence of (i) water;

(ii) hydric soil; and (iii) specific vegetation adapted to a wet environment. It is worth

noting that artificial water bodies are not usually considered as wetlands by many

classification systems [24].

2.5 Wetland Importance

Since the realization of the potential of RS for various applications, many re-

searchers have exploited RS for wetland classification/monitoring. Wetland classifi-

cation has attracted much attention amongst RS experts for several reasons, including

the numerous advantages associated with wetlands, the considerable global coverage

of wetlands which can be estimated using RS tools, and vulnerability of wetlands to

loss and degradation which can be similarly estimated by application of RS methods.

Therefore, in this section, each of those reasons are described so that the readers are

acquainted with the significance of wetland classification at the current time.

2.5.1 Wetland Advantages

Wetlands are one of the most important natural resources which provide many

advantages to the environment and humans. Purification of water, reduction of flood
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risk, protection of shorelines, conservation of soil and water, filtration of sediment,

removal of pollution, as well as aesthetic and recreational values are only some of the

benefits associated with wetlands [2–4]. Wetlands are also a great habitat for hundreds

of plants and animals, including one-third of all species at risk [9,25,26]. Due to their

vital biological services, wetlands have been called the kidneys of nature [27], and are

important indicators of environmental health [28]. Other than the countless natural

benefits of wetlands, the local economy is dependent on wetlands for fisheries and

grazing [29]. Therefore, monitoring wetlands is of vital significance, and the first step

in monitoring is mapping.

2.5.2 Wetland Geographical Extent

Currently, there are only a few studies which have estimated the global coverage

of wetlands. Referenced global estimates are often compiled from numerous localized

wetland inventories or are predicted using models that apply various types of data

inputs. Table 2.1 introduces these studies and illustrates a summary of their obtained

results. There are, however, disagreements in total estimates of global wetland extent

among various studies. These disagreements are due, at least in part, to the difficul-

ties in obtaining accurate and cohesive wetland distribution estimations from around

the world [30]. Most of the predicted global wetland extents may be considered as

minimum estimates, as several countries have not yet completed or even initiated the

collection of wetland inventories [31]. More accurate and improved global wetland

estimates could be theoretically obtained through the creation and implementation

of a global standardization for conducting wetland inventories [30]. This is an ideal
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case, however, and the creation of such standardization is a substantial challenge

that requires the availability of data sets, methods, and funding in all countries on

the earth.

Table 2.1: Various estimates of the global wetland extent

Estimated Wetland

Extent (million km2)

Main Wetland

Locations
Study

7-9 N/A [1]

6.8 Asia and North America [32]

8-10 Asia and North America [33]

7.1-26.9 N/A [5]

2.5.3 Wetland Loss

Despite the numerous services provided by wetlands, they were frequently drained

to be replaced with other types of human land use, such as urban space and agri-

culture, since they had excellent soil for farming [4, 6, 27, 34–37]. Other than land

use, climate change also affects the integrity of wetlands [4,12,38]. Furthermore, wet-

lands have been and continue to be seriously affected by exhaustive land irrigation,

groundwater extraction, and draining [7]. Drought, salinization, eutrophication, and

pollution also negatively affect wetlands [39–41].

While the statistics regarding destruction of wetlands worldwide are concerning,
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they are challenging to estimate. This is, in part, due to the lack of historical doc-

umentation, in addition to the multitude of wetland definitions and the temporal

variability of these ecosystems [35]. However, there are some old documents used by

the USFWS to report on wetland loss between the 1780s to the 1980s, stating that

approximately 53% of wetlands were lost in the lower 48 states within 200 years [42].

Documentation of wetland destruction in Canada dates back as early as the 1600s,

during which time at least 85% of salt marsh habitats in the Bay of Fundy (between

Nova Scotia and New Brunswick) were drained and dyked by settler Acadians [43].

Other than the few described studies, most research estimated wetland loss during

the last century, when aerial photographs, satellite imagery, and detailed documen-

tation were extensively available [44–47]. In an assessment of 189 published scientific

studies and reports covering various time periods and geographies, [8] reported that as

much as 54 to 57% of the world's wetlands have been converted or lost and was most

accelerated during the 20th and early 21st centuries. Other studies have occasionally

reported various amounts of wetland loss. For example, more than half of the total

mangrove area in the world was destroyed in recent decades [6]. By the same token,

more than 60% of the wetlands in Europe and North America have been drained and

transformed for agricultural use [6].

2.5.4 Wetland Inventories

Since the value of wetlands along with the great potential of RS for wetland

mapping/monitoring have been well realized, the concept of wetland inventory was

developed. Assessing the effectiveness of wetland policies requires an understanding
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of the extent of current wetland resources as well as a basis for trend analysis of

wetland distribution and extent change. A way that this can be done is through

the creation and maintenance of wetland inventories [48, 49]. A wetland inventory

is a map that displays the extent and distribution of wetlands over a geographical

area. Inventories around the world have been carried out, all with varied purposes,

methods, and geographical coverages ranging from local to nation-wide [49–51].

One example of a nation-wide inventory is the National Wetland Inventory (NWI).

The NWI was established in 1975 by the USFWS and was mainly conducted via the

manual interpretation of aerial images [52] along with the inclusion of other data

types, such as soil data and topographic maps [53,54]. Since its implementation, the

NWI has mapped wetlands throughout the United States. Another example is the

Canadian Wetland Inventory (CWI). Although Canada had several prior attempts

for provincial-based inventories, the lack of a national inventory was not addressed

by Canada until 2002 upon the establishment of the CWI partnership between Ducks

Unlimited Canada, the Canadian Space Agency, the North American Wetlands Con-

servation Council, as well as various other institutions [50].

The initiation of wetland inventories was followed by the development of wet-

land classification systems. Examples of classification systems range from the early

peatland classifications of Europe and North America [27, 55] to the globally ap-

plied and conservation-based Ramsar Wetland Classification System [56]. Several

classification systems address only a specific wetland type, and are designed for ap-

plication in specific situations, and localized geographic contexts, while others are

developed for country-wide use [22,57,58]. A major purpose behind the development

of these country-wide classification systems is the creation of national inventories of
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wetlands. For example, country-wide classification systems applied in the context

of North American wetland inventories include the Cowardin Classification System

(CCS, Figure 2.1) and Canadian Wetland Classification System (CWCS, Figure 2.2).

CCS and CWCS are applicable to the United States NWI and the CWI, respectively.

Table 2.2: Classification system of wetlands and deep water habitats of the United

States (see [57] for more details).

System Description

Marine
Open ocean and associated coastline which are: exposed to waves and currents,

influenced by tides and winds, and have high salinities.

Estuarine

Tidal deep water and wetland habitats open partially to the ocean and

influenced by some freshwater runoff. Salinity levels can vary depending on

the circumstances.

Riverine
Wetlands and deep water habitats contained within a channel, a channel being

an open conduit which contains periodically or continually moving water.

Lacustrine
Wetlands and deep water habitats found in topographic depressions or dammed

river channels which occur in sizes greater than 8 hectare.

Palustrine
Non-tidal wetlands dominated by trees, shrubs, and persistent emergent

vegetation.

The classification of wetlands and deep water habitats of the United States (CCS)

was developed in 1979 for use in a nationwide inventory, and was designed for resource

managers. Like many other national classification systems, the CCS is structured
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Figure 2.1: Cowardin Classification System (CCS, [57])
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hierarchically, beginning with a broadly defined system level, and moving towards

more specificity at the subsystem and class levels. The classes can be further divided

into subclasses and dominance types. Brief descriptions of each system level in the

CCS are provided in Table 2.2.

Table 2.3: Wetland classes defined by the Canadian Wetland Classification System

(see [22] for more details).

Class Description

Bog Ombrotrophic peatland dominated by sphagnum moss species.

Fen Minerotrophic peatland dominated by graminoid species and brown mosses.

Swamp Peatland or mineral wetland dominated by woody vegetation.

Marsh
Minerotrophic wetland with periodic standing water or slow-moving water,

dominated by graminoids, shrubs, forbs, and emergent plants.

Shallow Water
Minerotrophic wetland where water is up to 2m deep for most of the year and,

where there is less than 25% of emergent plants or woody plants.

Figure 2.2: Canadian Wetland Classification System (CWCS, [59])
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In a similar vein, though developed some time later, the CWCS was published

in 1987 by Environment Canada and was last updated in 1997. This system was

specifically designed for practical use by both specialists and non-specialists, as well

as for use in both local and regional contexts [22]. Due to its overarching geographical

application, CWCS was selected as the official classification system of the CWI [60].

The CWCS defines a 3 level hierarchy of class, form, and type. Categories within the

class level are defined on the basis of broad descriptions of soil, vegetation, hydrology,

and chemistry. Variations in these characteristics designate a wetland as being bog,

fen, swamp, marsh, and shallow water wetland classes (Figure 2.3), the specifics of

which are summarized in Table 2.3.

2.6 Wetland Classification Methods

Wetland classification grew out of a managerial need [27] to describe these highly

diverse ecosystems in a systematic manner, as well as to create baseline references

for the exchange of wetland information across space, time and disciplines [61]. The

process of wetland classification is carried out by grouping wetland ecosystems into

categories on the basis of sharing several common ecological characteristics [62] which

are usually described by a classification system, as explained in the previous section.

During the past few decades, diverse approaches have been applied for mapping and

monitoring wetlands, in which they can be generally divided into traditional (i.e. in

situ) and RS methods.
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Figure 2.3: Wetlands located in Newfoundland, Canada classified following the Cana-

dian Wetlands Classification System (a) Bog (b) Fen (c) Swamp (d) Marsh (e) Shallow

Water.
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2.6.1 Traditional Wetland Classification

Wetland identification and classification in the field may variably involve the ap-

plication of previously established wetland classification systems [22,57], wetland field

guides [63, 64], delineation manuals, and the use of tools and sampling methodolo-

gies [52]. In situ methodologies have long been used to delineate and monitor ecosys-

tem structure, function, and condition [65, 66]. Many wetlands can be identified by

their characteristic vegetation. This serves as a major basis for in-field wetland iden-

tification and classification [52]. Both the CWCS and CCS apply vegetation-based

descriptions of wetlands. However, vegetation alone cannot always identify and clas-

sify a wetland, and assessments of hydrology and hydric soils is also necessary for this

purpose [52].

Although in situ methodologies are important and necessary for effective wetland

management, at large managerial scales [60], the techniques have many disadvan-

tages for wetland mapping. In situ methods are infeasible given the cost and time

requirements, as well as the difficulties of accessing many wetlands. A large num-

ber of wetlands are located in remote areas, where topography, vegetation cover,

and hydrology make field visitation challenging and costly [17,67–70]. Therefore, re-

liance on field methodologies alone would mean disregarding many large and diverse

wetland areas [17]. Moreover, given the temporal variability of wetlands over time,

repeated in-field visitation is necessary [13, 14]. Additionally, classification using in

situ information often requires cover percentage to be estimated visually, or needs

other sources of data [14,16]. Consequently, in situ method can be feasibly practiced

only in a small geographical context [14–16], despite the current needs of wetland
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information at wider ranges, such as at watershed, continental or global scales [14].

On the other hand, RS methods resolve these issues of cost, time, accessibility, and

repeatability effectively.

2.6.2 RS-based Wetland Classification

In the context of this paper, RS includes using any Earth Observation (EO) data

such as aerial photos, satellite imagery, and so on. RS provides numerous advan-

tages over the previously described traditional approach. RS is a comparatively cost-

effective and timely method for the collection of data over a wide area at the same

time. It also allows for repeated measurements in short time intervals [9, 17, 71].

Likewise, RS is capable of acquiring images from inaccessible places, where many

wetlands are located. Additionally, RS can provide information on the landscapes

surrounding wetlands and their variation over time and, therefore, can give the users

information about wetland loss [9]. Another benefit of RS for monitoring wetlands is

that RS products can be conveniently imported into Geographical Information Sys-

tem (GIS) to be combined with other types of information [9]. Additionally, many

researchers have mentioned that since wetlands appear in various sizes, their map-

ping should also be performed at several spatial scales, which can be easily carried

out using RS tools [3, 4, 17]. As a result of these advantages, many researchers have

reported that RS is effective in terms of the operational classification and monitoring

of wetlands [72–75].

However, although RS methods reduce the need for detailed on-site based methods

considerably compared to the ground-based methods, they do not completely elimi-
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nate this requirement. In terms of wetland classification and inventory, in situ data

are needed to train and validate the RS methods. For instance, there is a need for

a sufficient number of field-validated measurements to conduct accuracy assessments

on classified RS images [76]. Thus, most wetlands classification schemes require the

application of both RS and in situ data [77].

2.6.2.1 Limitations in RS-based Wetland Classification Methods

Though RS provides efficient tools for wetland mapping and monitoring, there are

various technical limitations in wetland classification using RS data. These limitations

are briefly outlined and discussed below.

� Wetland morphology is a considerable difficulty of wetland mapping using RS

data [14, 20]. Wetlands of one type, which lay in one class according to most

classification systems, can be forested, shrubby, or herbaceous [20,71]. This fact

causes a single wetland class to demonstrate different spectral and/or backscat-

tering signature in RS data [14, 78]. On the other hand, some specific wetland

types, which should be classified separately according to the mapping systems,

share some ecological characteristics. For example, swamp and forest are similar

to each other from RS perspective, but swamp’s substrate includes water. This

fact causes these classes to have similar spectral and/or backscattering behavior

in optical and SAR data. Consequently, high confusions are observed when clas-

sifying these wetland types [13]. In summary, wetlands have high intra-class,

and low inter-class variability, which makes their mapping challenging.

� Although the presence of water is a common feature of all wetland types and
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is expected to alleviate distinguishing them, it does not make the detection of

wetlands easier. The reason is that the water in wetlands can often be under

the earth's surface, where the plant roots are located [14]. To further com-

plicate matters, the water level in wetlands can change seasonally, sometimes

rapidly resulting from snowmelt or precipitation, or gradually as a result of

anthropogenic activities [1, 14, 15, 57, 79].

� Wetlands normally lack a defined boundary and their border is almost always

fuzzy, since they gradually transit from wetland to other land cover classes,

such as upland or open water, or even other types of wetlands [17]. In addition,

the ecotones in and around wetland areas are sometimes very narrow, which

makes their detection difficult [14]. The ecotones might also have some charac-

teristics of each biological community between which the ecotone exist, which

makes their identification even more difficult. Therefore, the quality of image

interpretation and feature extraction methodologies in wetland mapping, and

generally in all types of land cover classification, should also be considered [17].

� Wetlands, in both boreal and arctic regions, are located in areas which are less

accessible for collecting field samples. Furthermore, even with having Global

Positioning System (GPS) points determining a few points on wetland areas,

delineating exact wetland boundaries surrounding the point using fine spatial

resolution imagery is challenging, and there are always chances of overlapping

with other wetland types. This fact sometimes results in having insufficient

training samples for a specific wetland type.

� RS images are also restricted to a specific spatial resolution, which might limit
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detection of small wetlands [4, 9]. For example, if we consider a cluster of

three-by-three pixels as the minimum detectable size of wetlands in an image,

Landsat TM would only be able to delineate wetlands which are larger than

approximately 0.01 km2.

To recapitulate, it is quite challenging to reach a high overall accuracy for wetland

mapping using only RS techniques (Dronova 2015), and the ecological characteris-

tics of wetlands cause many difficulties in wetland classification using RS methods

(Cordeiro and Rossetti 2015; Gallant 2015).

2.6.2.2 Wetland Classification Using Aerial Imagery

One common method for the delineation of wetlands is the interpretation of aerial

images, which was the first RS method for mapping wetlands [52, 80–82]. Aerial im-

ages usually have a higher spatial resolution compared to that of satellite imagery and,

consequently, allow for the recognition of small or narrow wetlands [9]. Furthermore,

aerial images can be useful when detailed mapping of wetlands is required [9, 14].

However, applying aerial images for wetland monitoring can be expensive and more

time-consuming when compared to the application of space-borne imagery. Satellite

RS is more appropriate when the budget is limited and the area is rather unknown

in terms of wetland and non-wetland areas [9]. In addition, most aerial images have

limitations in spectral and temporal resolutions [16,83], which hinders differentiation

between the spectrally similar wetland classes, as well as the ability to frequently

update the maps.

Despite the above-mentioned difficulties, several researchers still prefer to interpret

aerial images rather than applying optical or SAR satellite images [84–87]. Moreover,
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there are a number of aerial sensors which are rich in terms of spectral bands, including

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Compact Airborne

Spectrographic Imager (CASI). Several programs, such as the United States Natural

Agriculture Imagery Program, also support more frequent flights over some areas in

the recent years [14]. Nevertheless, using satellite images along with aerial photos

will probably provide more useful information than either image type alone [9], for

example in a sampling strategy such as regression estimators.

2.6.2.3 Wetland Classification Using Multispectral Optical Imagery

Generally, multispectral sensors are especially useful in analyzing the spectral

characteristics of wetlands, since they acquire information in various spectral bands,

including the visible and near infrared, shortwave infrared, and thermal infrared parts

of the electromagnetic spectrum (Figure 2.4) [14,39,83,88,89]. Although optical im-

agery sometimes need atmospheric correction, most optical data have already been

geometrically and radiometrically corrected, and is ready to be used in the classifi-

cation. Therefore, pre-processing optical satellite data is easier than most other RS

data, including SAR, Light Detection and Ranging (LiDAR), and Unmanned Aerial

Vehicle (UAV). Several prepared products of optical data are also freely downloadable

for users (e.g. various products of MODIS and Landsat 8).

However, optical sensors provide poor information regarding the vegetation's phys-

ical characteristics, such as morphology and height [14], and are hindered by the

inability to penetrate through clouds [91–93]. As a result, some of the information

that would otherwise be obtainable using satellite optical imagery is lost when the

weather is cloudy. This is a common problem when monitoring wetlands, and is a
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Figure 2.4: The electromagnetic spectrum [90]
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drawback in the applicability of optical imagery given the operational need for con-

tinuous monitoring [94]. This problem can be partially addressed through the use of

optical imagery with higher temporal resolution providing the users with the ability

to select cloud-free images [14]. It should also be noted that the penetration depth of

optical sensors is so low that detection of the water beneath trees/dense vegetation

is not possible [14, 72]. As a result of the mentioned disadvantages of optical data,

several studies have reported that the sole use of optical sensors is not sufficient for

accurate classification of wetlands [9, 20].

Nevertheless, there are many studies that have attempted to map wetlands with

the sole use of optical images. [34] evaluated both supervised and unsupervised clas-

sification methods (i.e Linear Discriminant Analysis and ISODATA, respectively) for

wetland classification using multi-temporal IKONOS-2 imagery. The Normalized Dif-

ference Vegetation Index (NDVI) and several texture features were used to identify

22 different vegetation classes, as well as shallow water, deep water, and road in the

study. Comparing the obtained accuracies in different seasons, the highest accuracy

(Overall Accuracy=96%) was obtained using the fused IKONOS imagery captured

in May and July, plus the texture information. Moreover, [95] used multi-temporal

satellite images obtained by different Landsat satellites (Landsat 2, 3, 4, 5, and 7)

for long-term change detection of wetlands in Ontario, Canada. Two different meth-

ods, including post classification comparison and multi-temporal data clustering were

evaluated to detect the changes in the Long Point wetlands over a 23 year period. [96]

also used SPOT-4 images for wetland classification in the context of greenhouse gases

emissions. In their study, the multiscale object-based method based on the CWCS was

used to estimate a regional carbon budget. They also reported that SPOT-4 images
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with finer spatial resolution compared to those of Landsat and RADARSAT-1 data

were more suitable for identifying various wetland classes. As another example, [3]

used SPOT images in a decision tree algorithm to classify wetlands based on two dif-

ferent classification schemes (i.e. CWI and DU) in five different scales. Incorporating

texture information into the classification also improved the results. Finally, [4] inves-

tigated wetlands in different scales using SPOT imagery. First a general maximum

likelihood classification was applied on the images to detect large wetland areas, and

then, a knowledge-based classification was used to fine-tune the identified regions.

The authors reported that the knowledge-based classification method improved the

results.

Currently, there are many operating optical sensors which could be applied for

wetland classification. The most important difference between these sensors is the

spectral resolution (the range and number of spectral bands) which the sensors em-

ploy. As mentioned before, the optical bands include: red, green, blue, red edge,

near infrared, shortwave infrared, and thermal infrared. The role of visible bands in

classification is not central, which is not surprising, because wetlands are difficult to

distinguish visually. The red edge band is located between the red and near infrared

bands, where the reflectance value of green vegetation significantly rises from the red

band to the near infrared band. The red edge band, although not available in all sen-

sors, provides additional information for the studies that investigate vegetation and

quality of inland water bodies with relatively high phytoplankton content [97,98]. The

reflectance value in this band is related to vegetation biochemical parameters (e.g.

chlorophyll content), biophysical parameters (e.g. leaf area index), and water deficit

in vegetation biomass [99–101]. Consequently, the red edge band is a useful spectral
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band for wetland classification [16, 101–103]. Many studies have reported that veg-

etation in different wetland classes show the greatest variation in the red edge and

near infrared bands. Therefore, these two bands are the most useful optical bands for

the detection of wetlands [16,78,102,104–107]. The shortwave infrared bands are sen-

sitive to soil moisture and vegetation moisture. Thus, they are important bands for

obtaining moisture characteristics of both soil and vegetation in wetlands [108–111].

Thermal infrared bands collect the energy emitted by land surfaces and, there-

fore, are useful for obtaining Land Surface Temperature (LST) information. Several

studies have illustrated that there is a correlation between the water temperature

acquired by thermal sensors and different types of vegetation within water [71, 112].

Thermal bands are useful in discriminating water areas from dense vegetation, as well

as inundated regions of wetlands [113]. A problem associated with thermal bands,

however, is the coarse spatial resolution of these bands. Both visible, and infrared

(near, shortwave) bands usually have finer spatial resolution than thermal bands and,

therefore provide more detailed information about wetlands.

2.6.2.4 Wetland Classification Using SAR Imagery

SAR images are capable of penetrating through the clouds and can therefore pro-

vide imagery in any weather conditions [103,114]. SAR data with various sensor con-

figurations and all-weather capability are useful in operational monitoring when the

information about the extent, location, and conditions of wetlands is necessary [13].

At the same time, SAR sensors are able to acquire valuable information regarding the

ground conditions under vegetation canopies [72, 103]. Several studies have reported

significant improvements in accuracy of wetland classification, especially for swamps,

45



when utilizing SAR imagery [13].

Water bodies, if calm, can also be easily detected by SAR sensors. This is due

to the fact that backscattering energy from the calm water is mostly specular as the

water surface is flat and, consequently, the backscattered energy is very small [74].

Many studies have also reported that SAR images are successful in the delineation of

flooded areas, as a result of the double-bounce scattering between the flooded surface

and tree trunks and tall vegetation [13, 15, 103, 115, 116]. Likewise, the coefficient of

variation has been reported useful for distinguishing between swamp and upland [117].

An important feature to be used for discriminating between various wetland types is

the dominant scattering type phase φas, which has been introduced by [118] and [28].

This parameter is especially useful for distinguishing between bog and fen at C-band.

The reason is that this parameter is able to detect water beneath the vegetation at

various depths, as explained in [117]. By the same token, the dominant scattering

type phase is able to differentiate conifer-dominated treed bog from deciduous forest

in leafy conditions [117]. As reported by [117], none of the other polarimetric features,

including entropy or phase difference have such a capability. However, it should be

considered that both the dominant scattering type phase and magnitude are needed

for the unambiguous characterization of wetlands [28].

Despite the advantages of SAR data for wetland classification, it should be noted

that pre-processing of SAR data is more time-consuming than optical images, and

sometimes requires knowledge in this field. Equally important, during pre-processing

performed by an operator, various uncertainties might be involved in the generation

of the final image. For instance, one of the most obvious problems associated with

SAR data is the presence of speckle. Speckle degrades the radiometric quality of the
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image and, therefore, hinders image segmentation and classification [119]. Another

issue that results from the presence of speckle on a SAR image is that the training

samples must be several times larger than that required for the optical data [13].

The first attempt to classify wetlands using SAR images began in the late 1960s

and early 1970s [13]. Subsequently, a host of studies have utilized SAR data for

wetland mapping and monitoring. In [120], JERS L-band SAR imagery was applied

for the generation of a wetlands thematic map. [28] investigated the potential of full-

polarimetric C-band images for wetland mapping using Convair-580 data. Several

polarimetric parameters extracted from the Touzi decomposition [118], illustrated a

high potential for distinguishing bog and fen. Similarly, [121] evaluated several po-

larimetric decompositions, including Freeman-Durden [122] and Cloude-Pottier [123]

decompositions, for wetland mapping using Convai-580 data. After separability anal-

yses, the authors concluded that full-polarimetric data are more informative than the

other data sources for wetland mapping using a maximum likelihood classifier. Ad-

ditionally, a study that was conducted by [124], applied RADARSAT-2 image time

series to investigate the sensitivity of different polarimetric parameters to the change

in water level in saturated wetlands. They found that the Shannon Entropy is the

most useful parameter for the detection of saturated wetland areas. Likewise, a com-

prehensive study was carried out by [89], who investigated the potential of several

polarimetric features, such as the Touzi decomposition, for wetland mapping using

a decision tree classifier. Finally, [125] investigated the capability of RADARSAT-2

full polarimetric images for wetland classification in the Canadian province of NL.

The SAR system configuration plays a pivotal role in the capability of a SAR

system for wetland classification [73,88,89,121,126,127]. An appropriate SAR config-
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uration should be adopted such that there is maximum distinction between wetlands

and uplands, as well as between different types of wetlands [20]. Therefore, the effects

of each sensor specification are reviewed in the following subsections.

Figure 2.5: Radar bands [128].

Wavelength SAR sensors operate in various bands. These bands, among other

SAR bands, include P-, L-, S-, C-, and X-bands with wavelengths of approximately

100cm, 25cm, 11cm, 6cm, and 3cm, respectively (Figure 2.5). L-band was the most

used band in early studies for wetland mapping, and was frequently cited as the

best wavelength for wetland mapping [13,15]. Several studies have also reported that

longer wavelengths are more appropriate for the separation of forested or densely veg-

etated wetlands (e.g. swamp) from non-flooded ones [13, 72, 103, 120, 129, 130]. The

reason is that the penetration depth of P- and L-band signals is high [72]. Conse-

quently, these signals can pass through the woody vegetation canopy and detect the

water beneath the flooded trees and/or dense vegetation. On the other hand, several

studies have mentioned the potential of short-wavelength SAR images for charac-

terizing herbaceous wetlands (e.g. bog, fen, and marsh), as well as detecting water
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beneath the short vegetation [13, 17, 72, 103]. Short wavelengths are also able to dis-

tinguish between emergent wetlands and agricultural fields/herbaceous uplands [20].

However, it is worth mentioning that there is still a considerable confusion between

different short vegetated wetlands, such as bogs and fens in wetland classification

using SAR imagery [72, 131].

Polarization SAR sensors can be single-, dual-, or quad (full)- polarized. Each

polarization channel is represented in the form of PQ, where P is the transmitting,

and Q is the receiving polarization. Both P and Q can either be horizontal (H) or

vertical (V) (Figure 2.6).

Single-polarization SAR data are not very effective for wetland classification, be-

cause the received energy in a SAR image consists of several different backscattering

types, which cannot be distinguished using a single channel [15, 28, 121]. Single-

polarized data, however, have been reported to be effective for the detection of calm

open water bodies [15].

Generally, HH polarization is the most useful for wetland delineation [20]. More-

over, L-HH and C-HH are especially effective in the detection of flooded forest, and

are more sensitive to inundation than vertical polarization [13, 15, 132, 133]. In addi-

tion, the correlation between C-band backscatter and inundation is stronger in leaf-off

season [133]. For vertically oriented vegetation, the HH-polarized wave has more pen-

etration into the canopy relative to the VV-polarized wave and, thus, is more sensitive

to soil conditions [94]. HV polarization is also effective in the discrimination between

woody and herbaceous wetlands as a result of its sensitivity to biomass [20]. Although

less than the HH-polarized wave, VV polarization is also sensitive to soil moisture
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and flood conditions [20, 134]. When interacting with vertically oriented vegetation,

the VV-polarized wave has the most response, and therefore the penetration into the

vegetation is reduced [94].

Co-polarized waves (HH and VV) are more effective in the detection flooded from

non-flooded wetlands and generate higher contrast between dry forest and flooded

swamp compared to cross-polarized waves. The reason for this is that the signal re-

sponse from like-polarized waves is enhanced in flood conditions [13]. Cross-polarized

waves, however, are more appropriate for distinguishing swamp from marsh [13]. Dual

co-polarized data are also successful in the characterization of flooded vegetation map-

ping.

Polarization ratios, which include HH backscatter, are also useful for distinguish-

ing flooded versus non flooded vegetation [121]. In addition, the ratio of L-HV and

L-HH bands have proved promising for the discrimination of non-forested wetland

types [20].

Phase difference between HH and VV channels also helps in the discrimination

of swamp and upland, or flooded from non-flooded vegetation [13,115,117]. Further-

more, this phase difference was recognized as the most useful parameter for natural

target characterization [117].

Incidence Angle To detect water bodies under vegetation, steep incidence angles

(smaller than 35 degree) are the most appropriate [20, 136], as low incidence angles

have more penetration depth. Several studies have reported that short wavelengths

with low incidence angles can be applied for the delineation of forested wetlands in

leaf-off conditions [13]. However, some studies have shown no specific correlation
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Figure 2.6: Polarization types [135].

between incidence angle and the vegetation type/structure [13, 115, 137]. According

to [13], moderate incidence angles do not seem to provide much useful information

for wetland detection, especially if the image has fine resolution. Further, fine beam

modes of RADARSAT-2, because of having a high incidence angle, are not suggested

for the discrimination and classification of wetlands, but are appropriate in terms of

spatial details [136] also investigated various RADARSAT-2 beam modes (incidence

angles) for the discrimination of different wetland types. The main difference was the

dynamic range of backscatter for wetland sites, which was the largest in S5 mode and

the smallest in F1 mode (refer to [138] for more information about RADARSAT-2

beam modes). However, it should be considered that the range in incidence angle

is small in the Fine mode of RADARSAT-2. Another result of [131] was that a

significant difference was not observed between the backscatter of bog and fen in any

of the incidence angles. Finally, [131] reported that low incidence angles can penetrate

into both shrubby and herbaceous wetlands, while high incidence angles are only able
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to pass through low-density vegetation.

Orbit SAR sensors are capable of acquiring images in both ascending and descend-

ing modes. The ascending mode for SAR imagery is recommended for wetland map-

ping, since at the time when the descending image is acquired, dew on vegetation can

decrease the contrast between wetlands and non-wetlands [2].

According to the studies described above, the effects of SAR configuration are

summarized in Table 2.4.

2.6.2.5 Wetland Classification Using Other Resources

Digital Elevation Model (DEM) Data The Digital Elevation Model (DEM)

has proved useful for distinguishing wetland classes. At the same time, many studies

have reported that the topographic features extracted from DEM, were also effective

for finding the distribution and location of wetlands [17, 51, 51, 72, 121, 139–142]. For

example, the Topographic Position Index (TPI, [143]), Compound Topographic Index

(CTI, [144]), slope, and orientation of the DEM have been used in several studies for

wetland classification [51,68,139,145,146]. DEMs can also be included in the wetland

mapping procedure to correct the areas of misclassification as a result of layover and

shadowing [120, 141]. However, it should be noted that the applied DEM should

have a resolution high enough for deriving precise topographic information. DEMs

obtained from EO images and LiDAR data can yield spatial resolutions up to 1 m

and 15 to 30 cm, respectively.
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Table 2.4: Description of various SAR configurations for wetland mapping.

Wavelength
Short Best for characterizing herbaceous wetlands

Long Most appropriate for detection of frosted or

densely vegetated wetlands

Polarization
Co-polarization HH: useful for detection of flooded forest and

inundation - more effective for wetland

classification than VV

Cross-polarization HV: useful for discrimination between herbaceous

and woody vegetation- e.g. discrimination of

swamp from marsh

Incidence Angle
Small useful for detection of water body under

vegetation

Large useful for detection of shrubby and herbaceous

wetlands

Orbit
Ascending recommended for wetland mapping

Descending not recommended for wetland classification

because of presence of dew at the time of image

acquisition
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LiDAR Data LiDAR can be effectively used for the extraction of topographic

information and structural indices [17]. Since topographic information is capable of

predicting the location and distribution of wetlands, LiDAR has also been applied in

wetland mapping in many studies [142,147–151]. In general, information derived from

LiDAR are applied as ancillary information in addition to the spectral and textural

data [17]. For instance, [147] applied DEMs derived from LiDAR instead of the typical

DEMs, and observed 8% improvement in the accuracy of wetland mapping. [148]

combined IKONOS imagery with LIDAR data to classify wetlands in Wisconsin, and

achieved an accuracy of 75%, which was superior to the accuracy of the existing map

for that region. Furthermore, [149] observed a considerable improvement in wetland

detection when using LiDAR for mapping streams.

Hyperspectral Data Hyperspectral data have high spectral resolution, which is

particularly useful for the detection of detailed variations between various wetland

vegetation species [16]. The data, containing hundreds of bands, have many advan-

tages in assessing the biochemical and biophysical properties of wetlands (e.g. leaf

water content, Leaf Area Index, as well as chlorophyll and biomass concentrations).

However, it should be noted that the number of bands should be reduced using sta-

tistical methods, such as Principal Components Analysis (PCA) or Minimum Noise

Fraction (MNF), to omit the redundant information. Furthermore, hyperspectral

images are rather expensive, and tedious to process, which hinders their application

in wetland studies [16]. Nevertheless, there are several studies that have used hy-

perspectral imagery for wetland monitoring and classification [67, 102, 152–154]. For

example, [152] mapped wetlands in the San Francisco Bay using both Spectral Mix-
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ture Analysis (SMA) and Multiple Endmember Spectral Mixture Analysis (MESMA)

and AVIRIS images, and concluded that both methods can be applied for investigat-

ing the structure of wetlands. Moreover, [153] did a laboratory-based study to see if

mangrove species are distinguishable, using numerous spectral channels between 350

nm and 2500 nm. They introduced four bands of 720 nm, 1277 nm, 1415 nm, and

1644 nm as bands which guarantee 80% of overall accuracy.

UAV Data UAV has only recently been applied in natural landscapes, including

wetlands [19]. Images acquired by UAVs contain great advantages over the typical

aerial images given that UAV is capable of acquiring images below the cloud cover

[155]. In addition, UAV images provide a great level of detail as a result of their

fine spatial resolution [19, 155]. Consequently, there are several studies which have

explored the possibility of using this technology for wetland mapping [19, 155–157].

For example, [156] processed UAV images using both automatic and manual methods

to map wetlands in the Honghe National Nature Reserve, and found UAV images

useful for this purpose. In a similar study, [157] combined UAV data with a new

classification algorithm to map wetlands in Utah with an accuracy of 95%. However,

it is worth noting that many UAVs are limited to acquiring images in the visible and

near infrared domain, and only a few UAVs can provide rich spectral information

[155]. Moreover, images taken by UAV are prone to many radiometric and geometric

errors [155, 158]. Geometric errors, however, can be corrected using ground control

points.

55



2.6.2.6 Multi-source Wetland Classification

Combining several types of RS data is very common in classification procedures,

and has also proved useful in wetland classification [2, 7, 13, 103, 131]. By combining

various types of imagery, it is possible to take advantages of each type of data and

improve wetland classification. However, a problem with multi-source classification

is the large volume of various datasets, many containing different spatial resolutions

[140]. By the same token, there is an inconsistency regarding which combination of

data sources yields the best results [13].

[159] combined GIS and RS data to map wetlands in Florida. [51] also used a

combination of PALSAR data, aerial imagery, and DEM data in an attempt to update

the NWI. The authors also applied other data, such as the soil water regime and the

percentage of hydric soil for wetland classification. Similarly, [140] applied ASTER,

ALOS, and DEM data for the object-based mapping of wetlands in North Brazilian

Amazonia. Finally, [142] conducted a study in northern Canada using RADARSAT-

2, Landsat-8, and geomorphometric information extracted from LiDAR data. In

general, the accuracy which was obtained using multi-source data was superior to

using SAR or optical data individually.

Fusion of optical and SAR data is one of the most common, yet most auspicious

types of data combination for wetland mapping and monitoring [2,7,13,103,160–162].

For example, [2] used a combination of RADARSAT-1 and Landsat data for mapping

wetlands at several scales. This was performed by applying various scale parameters

in the segmentation process. The classification began at a coarse level using mem-

bership functions. Then, the identified areas were masked, and the remaining areas
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were segmented and classified with a finer scale. This process continued until all

the desired areas were detected. Additionally, [163] combined Global Boreal Forest

Mapping (GBFM) JERS-1 SAR data with MEdium Resolution Imaging Spectrome-

ter (MERIS) optical data for wetland mapping on a continental scale. In their study,

an object-based classification was applied to the images. Furthermore, [20] combined

SAR and optical data to map wetlands in several regions in Alberta, Canada. [103]

also combined RapidEye images and various SAR decompositions extracted from

TerraSAR-X images for classification of wetlands in Florida Finally, [162] mapped

wetlands over five pilot sites across the Canadian province of Newfoundland and

Labrador, using a combination of optical and SAR imagery, achieving the accuracy

of up to 96%.

Another common type of multi-source combination for wetland classification is

the use of multiple SAR sensor configurations (e.g. multiple wavelengths or multiple

incidence angles). For instance, [13] reported that using multiple wavelengths is use-

ful for the detection of both forested and herbaceous wetlands. According to their

results, multi-frequency data are as good as or better than multi-temporal data for

wetland detection. Multi-incidence angle data, however, are not expected to improve

the classification accuracy considerably. [103] reported that using a combination of

polarimetric SAR configurations holds great promise for distinguishing wetland veg-

etation types. Other studies that have used different configurations of SAR sensors

for mapping wetlands are: [131], [136], and [164].
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2.6.2.7 Multi-temporal Versus Single Date Wetland Classification

A characteristic feature of wetlands is their dynamicity, which is a result of inter-

actions and feedback between climate, weather, geomorphology, biota, and hydrology

and anthropomorphic effects [22,27]. The dynamic nature of these ecosystems causes

wetland features, such as water, vegetation, and chemical characteristics to change

over time. Consequently, a wetland may look different over years, months, or even

days [22, 165]. For example, seasonality influences the availability of water, affecting

the growth and lushness of vegetation, resulting in wetland vegetation looking differ-

ent from summer to winter [166,167]. In the short term, rain can cause flooding and

briefly fill depressions, which can change the appearance of wetlands within days. On

the other hand, in the long term, wetlands can change from one type to another, as

demonstrated by the climate-driven fen-bog transitions of the Holocene [168].

As a result of the ever-changing nature of wetlands, the use of multi-temporal

images has been found to improve wetland classification accuracy [9,15,20,34,72,89,

94,95,125,169,170]. It should be noted that the selection of the appropriate acquisition

date for images applied for wetland mapping is crucially important, even more-so

than the number of images. This is because wetland morphology and water level

vary considerably throughout a year [13, 20]. However, an optimum range of image

acquisition has not been yet determined [13]. [13] reported that adding images from

multiple dates can increase the accuracy only to a certain extent. This is because once

a certain accuracy is reached, the accuracy does not change, or in some cases may even

decrease. Typically, summer images are the best for wetland classification [125, 171].

The images acquired in spring or fall can be also helpful, but the combination of the
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high water level/leaf off an low water level/leaf on images hold the greatest promise.

2.6.2.8 General Algorithms for Image Classification

Object-based Versus Pixel-based Wetland Classification Pixel-based clas-

sification methods analyze the value of each pixel in an image without considering

the spatial or contextual information of the surrounding pixels. Generally, classifying

fine spatial resolution imagery using pixel-based methods results in a salt and pepper

effect and, consequently, the accuracy of classification is reduced [172–174].

On the other hand, Object Based Image Analysis (OBIA) is the process of seg-

menting an image into spectrally and spatially homogeneous objects, and then in-

corporating the spectral, geometric, and other features of those objects into a clas-

sification process [3, 141, 175–177]. OBIA has several advantages some of which are

reviewed below:

� By applying OBIA, it is possible to include many object-based features, such as

textural, geometrical, and morphological features into classification in addition

to the spectral features [17, 21, 159].

� The result of object-based classification has a more ecologically meaningful in-

terpretation compared to that of pixel-based classification [142, 159].

� OBIA can facilitate the processing of a large volume of multi-source data [140],

and can be efficiently combined with supplementary datasets without a compli-

cated data fusion process [17].

� OBIA minimizes the effect of unusual pixels, such as shadows or isolated ele-

ments [17, 159].
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� By applying OBIA it is possible to work with images on several scales, which

can be nested in each other.

Because of the mentioned advantages, OBIA has been widely used for wetland

classification compared to pixel-based methods [2, 3, 20, 96, 140, 142, 178].

However, choosing the optimum scale for segmentation in an object-based clas-

sification is difficult [17]. Besides, mismatching image layers and errors in their co-

registration might influence OBIA [17]. Another difficulty associated with object-

based classification is that there are many object-based features, and an expert needs

to know what features result in the best accuracy [140]. It should be considered that

spectral features in classification are much more important than other object-based

features [17]. Geometric objects are also less commonly used in wetlands, as wetlands

rarely exhibit a regular or consistent shapes and sizes [17]. The most commonly used

contextual variables for the identification of wetland classes are also distance, prox-

imity, adjacency, and relative border to specific classes, such as water bodies [17].

Different Algorithms for Wetland Classification

Supervised Classification There are many classification algorithms, most com-

monly used of which are K Nearest Neighbours (KNN, [179]), Maximum Likelihood

(ML, [180]), Support Vector Machine (SVM, [181]) , Decision Tree (DT, [116]), and

Random Forest (RF, [116]). In each of the classifiers there are factors which can

greatly affect the classification accuracy. The image segmentation phase, selection of

training samples, feature selection, and the setting of tuning parameters are amongst

the most important factors [182]. It is important to bear in mind that classification
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accuracy is not the only thing to be considered about the classifier, if the classifier

can be used for operational monitoring purposes is also important [94]. In summary,

there is no single classification method considered to be optimal for all applications

and, thus, the desired algorithm should be selected based on the objectives and study

area [16]. The most famous classification algorithms are explained below.

K Nearest Neighbours (KNN) The KNN classifier is based on the distance

of unknown pixels/objects from training samples in a feature space. The K nearest

training sample(s) determine the class of an unknown pixel with a majority vote [179].

Because of several limitations of the KNN algorithm, only a few studies have utilized

this classifier for wetland mapping [103, 178].

Maximum Likelihood (ML) The ML algorithm is based on Bayesian statis-

tics, and assumes that feature vectors of each class are normally distributed [178].

Based on the normal distribution, a discriminant function is defined for each class,

and the unknown pixel is assigned to the class with the highest value of the dis-

criminant function for that pixel [183]. An advantage of the ML algorithm is that

it adopts a tangible and clear statistical approach for classification, and does not

contain a black box as in RF or SVM [15]. The algorithm was the most widely used

classifier selected for wetland classification in the early years of the 2000s [9]. As a

result of the advantages of the ML algorithm, there are many studies that have used

the classifier for wetland classification [83, 88, 89, 121].

Support Vector Machine (SVM) The SVM classification method is a non-

parametric algorithm. The algorithm defines a hyperplane, which maximizes the

61



distance between the training samples of two classes, and then, classifies the other

pixels/objects based on this hyperplane [178]. SVM is also less sensitive to the amount

of training samples, and can result in a higher classification accuracy given a relatively

small number of samples compared to other classification algorithms [178]. However,

it should be noted that SVM needs a kernel function, defining which is time-consuming

and subjective [178, 184]. Several studies, including [182], [178], and [185] have eval-

uated the accuracy of the SVM classifier for wetland classification.

Decision Tree (DT) The DT classifier, belonging to the category of classi-

fication and regression trees (CART), includes several nodes, by which the input

data are divided into mutually exclusive groups based on their attributes, such that

each group has the most homogeneous objects. The division recursively continues

into increasingly homogeneous subsets until each node represents one of the desired

classes [72,140,186]. DT is a fast, simple, and flexible classification method, which is

more effective in the prediction of class labels when the boundary between classes is

not linear. The DT algorithm does not need any assumption regarding the distribu-

tion of the classes [3,16,72,140,176]. A problem associated with DT, however, is that

it cannot be adapted to regional or national scales, because the algorithm overfits the

training samples [2]. There are several recent studies which have adopted the DT

algorithm for wetland classification [3, 89, 178, 187].

Random Forest (RF) The RF algorithm, also belonging to in the category

of classification and regression trees (CART), is actually an extension of DT. RF

consists of an ensemble of decision trees, in which each tree is constructed using a
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subset of training samples with replacements. Only a subset of features is used for

finding the best split at each node, which is a constant number over all nodes and

all trees. After training, the input feature vector is ingested into every single tree.

and then, is assigned a class label to each pixel/object at the terminal node based

on the majority of votes [116]. Like the SVM and DT algorithms, RF is also a non-

parametric classifier. Non-parametric methods do not require any assumptions for

the distribution of the data sets and, therefore, have several advantages compared

to the parametric algorithms, such as the ML classifier. It is also worth mentioning

that the RF algorithm has recently gained increasing attention in wetland monitoring

[101, 120, 141, 142, 188].

2.7 Recommendations

In this section, several recommendations are provided which can contribute to the

improvement of wetlands management:

� The creation of more specialized classification systems which are compatible

with the nation-wide classification system [61] would be an asset. This would

create a common baseline and facilitate the exchange of information across dif-

ferent wetland classifications. An example of such a system is the Ducks Unlim-

ited Enhanced Wetland Classification System [189]. This classification system

was developed for the purpose of inventorying and addressing the diversity of

wetlands [189, 190].

� Applying advanced automatic or semi-automatic methods, specific to wetlands,
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for the purpose of wetland mapping is valuable. For example, for the wetland

classes which are very similar to each other, fuzzy classification can be applied.

In the fuzzy method, the object/pixel is not strictly classified into one of the

wetland classes, but a certain probability is assigned to the membership of the

object/pixel to each wetland class.

� The method and the applied dataset for wetland mapping should be wisely

selected according to the target classes and the required accuracy. Usually,

multi-source, and multi-temporal data yield the best accuracy.

� The need for field data collection should be reduced with advanced RS tech-

niques which give reasonable accuracy with a small amount of training samples.

� Instead of concentrating over a small area over a short period of time for wetland

classification, the proposed methods should be operational over large geograph-

ical regions. Moreover, researchers should make the most of the freely available

satellite images, because these images provide the possibility of producing maps

over large regions with frequently updating it. In the case of wetland mapping,

the operationality and the cost of the method is often as important as the

accuracy of the final map.

� The potential of quad-polarimetric or compact-polarimetric images should be

fully exploited in wetland mapping.
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2.8 Summary and Conclusion

This review is an attempt to acquaint readers with wetland definition, benefits,

extent, and loss. Wetland inventory and classification schemes are also defined and

examples are provided. Furthermore, various RS methods for wetland classification

along with their values and limitations were reviewed. There are also sections de-

scribing object-based classifications and the characteristics of various classifiers.

Although some studies have estimated the global wetland coverage, a more up-to-

date and precise estimation is required, because for the most part, the current esti-

mation for the global wetland coverage is not accurate. The reason for the inaccurate

global wetland estimation might partly lay in the fact that several wetland inven-

tories are usually incomplete, out-of-date, or imprecise. The Cowardin and CWCS

classification systems are designed to be general enough so that the classifications

are relevant across geographically large areas and, thus, ecologically, climatologically,

and geologically diverse areas. As a result, these country-wide classification systems

often do not contain enough information for addressing more specific wetland-related

questions [61].

Considering the advantages of the satellite RS methods, including its cost-efficiency,

timeliness, and potential to be applied with regular frequency at the global level, it

is the best method for generating and updating wetland inventories. Based on the

literature it can be concluded that the red edge and near infrared bands are the most

useful bands in optical imagery for wetland classification. In terms of SAR imagery,

generally steep incidence angles and long wavelengths are suitable for the detection of

shrubby or forested wetlands, while large incidence angles and short wavelengths are
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proper for the detection of herbaceous wetlands. Full polarimetric images are ideal

for wetland mapping, but HH polarization is the best amongst other polarizations

for this purpose. Additionally, multi-source and multi-temporal classifications are

promising for the delineation of wetlands. At the same time, Random Forest (RF)

classifier has proved most promising for wetland mapping, since various types of data

with different sources can be utilized in RF and reasonable accuracies can be achieved

without the problem of overfitting to the training samples. It is hoped that the cur-

rent review helps researchers to adopt a method, which provides the opportunity for

accurate mapping of wetlands, as well as continuously monitoring them.
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Chapter 3

Speckle Filtering of Synthetic

Aperture Radar Images using

Filters with Object-size Adapted

Windows

3.1 Preface

In this chapter, a pre-processing method which is important for land cover clas-

sification using SAR imagery, namely a speckle reduction approach, was presented.

The paper resulted from this chapter has been published in the International Journal

of Digital Earth.

96



3.2 Abstract

Speckle degrades the radiometric quality of a Synthetic Aperture Radar (SAR)

image. Previous methods for speckle reduction have used a fixed size window for

filtering the entire image. This, however, may not be effective for the entire image,

as land covers of different sizes require different filtering windows. In this paper, a

novel method is proposed by which each pixel in the image is filtered with a window

appropriate for the size of object within it. The real in-phase and the imaginary

quadrature components of the SAR images determine the best window size and the

pixels in the intensity image are filtered using their own optimal windows. The

proposed method is presented for both single- and multi-polarized SAR images, and

the results of several common filters that were modified are presented. This approach

is applied to two RADARSAT-2 images: one over San Francisco, California, USA

and the other over St. John's, Newfoundland and Labrador, Canada, producing

results that were similar to, or outperformed, comparable filters while retaining details

and suppressing speckle effectively. While the method was successful for single-look

intensity data, it offers great potential for multi-look and amplitude data as well.

3.3 Introduction

Synthetic Aperture Radar (SAR) images are valuable assets for various applica-

tions because of their all-weather and day and night acquisition capability. However,

these valuable resources are blemished with the presence of speckle. An intrinsic

feature of SAR images, speckle originates from the coherently recorded pulses return-
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ing from the earth surface. Speckle degrades the radiometric quality of the image,

thus hindering image interpretation and reducing the accuracy of image segmenta-

tion and classification [1]. Consequently, since the advent of SAR images, there has

been a host of studies addressing the issue of speckle reduction. Early on, starting

from a study by Lee [2], it was understood that the typical techniques applied for

image noise suppression are not effective for SAR images. Lee's research proposed

filters that exploit local statistics of the image, namely adaptive filters. He suggested

that speckle acts as multiplicative noise and, based on that, he proposed a filter by

minimizing the Mean Square Error. the filter was known as the MMSE filter [2, 3]

and became the basis of many other algorithms. The MMSE filter, however, fails to

suppress speckle effectively close to edges [2], and hence Lee refined it by using edge-

aligned, non-square windows [3]. He also proposed the sigma filter [4,5] based on the

sigma probability of a Gaussian distribution. As sigma filter was insufficient in main-

taining strong targets and produced biased estimation, an improved version of that

was proposed in [6]. Besides Lee's filters, other similar techniques were proposed for

speckle reduction in single-band SAR images while preserving image sharpness. Frost

et al. [7,8] calculated the impulse response of the filter by solving the MMSE problem

using a different error measure. [9] also dealt with the MMSE problem and reached

the same general form as [2], but with a different weight function for balancing the

role of pixel reflectance and that of the local statistics.

In subsequent years, single-band SAR filters were further improved. [10] noted

that there are different regions in a SAR image, namely homogeneous, heterogeneous

and point targets. He stated that speckle should not be reduced by the same amount

in the three different regions, and suggested measures for distinguishing between the
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three different areas. He modified the commonly used filters based on his idea. A few

years later, in 1993, [11] also proposed a filter which was known as the Gamma filter,

in which homogeneous regions, edges, lines, and point targets are detected using more

robust measures. There have also been a few other innovative studies. In [12], for

example, a method was proposed for filtering which exploited local statistics to change

the filtering window in a range. A growing regional method based on a statistical

measure was applied for selection of window sizes in an approach suggested in [13].

Other filtering algorithms that have been proposed include [14], [15], and [16]. A

more comprehensive review can be found in [17], [18], and [19].

With the advancement of SAR sensors, Polarimetric SAR (PolSAR) images be-

came available, and this development was followed by the need for filters for PolSAR

images. [20] pioneered in this field by developing the Polarimetric Whitening Filter

(PWF). In the PWF all elements of the scattering matrix are combined optimally

to form a single, speckle-reduced image. In [21], the MMSE filter was extended to

the diagonal elements of the covariance matrix, but the off-diagonal elements were

ignored. While speckle for the diagonal terms can be modelled as multiplicative noise,

a multiplicative noise model is not effective for off-diagonal terms. Consequently, off-

diagonal terms should be modelled by a combination of multiplicative and additive

noise [1]. [22] continued Lee's work by MMSE filtering of all terms in the covariance

matrix. [22] developed another filter for PolSAR data focusing on image texture. [23]

suggested a filter useful for interferometric applications in forested areas. [24] also ex-

tended the improved single-band sigma filter to PolSAR data. In the proposed filter,

the authors attempted to maintain the strong point targets and to preserve the scat-

tering mechanisms. However, preliminary attempts for speckle filtering in PolSAR
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images fail to preserve polarimetric features i.e. they introduce cross-talk between

channels and/or alter the cross-correlation between bands, although they can be use-

ful in some applications such as target detection [1]. Therefore, polarimetric filters

such as those used in [25] and [26] were proposed to maintain polarimertric informa-

tion. In polarimetric filters, all elements of the covariance matrix are filtered by the

same amount and in the same way, and the filtering is performed independently on

each term to avoid cross-talk, i.e. altering correlation between channels.

In recent years, some other valuable works have been also proposed on speckle

reduction. For example, in [27], a three-step filter was proposed for speckle reduction

in SAR images. First, the authors developed a line and edge detector, based on which

they defined a homogeneity measure. Subsequently, they exploited the homogeneity

measure to adjust the shape and size of filtering, and obtained promising results.

Moreover, in [28], a speckle filtering approach was proposed that exploits the nonlocal

means and stochastic distances to reduce speckle. [29], [30], and [31] also proposed

non-local approaches for speckle reduction. Non-local filters define the weights based

on the distance between the reference patch and similar neighbouring patches [32].

Although the speckle reduction methods described in the publications reviewed

above perform reasonably well both in single-band and multi-polarized cases, selection

of window size is almost always a challenging task. In fact, choosing a fixed window

size for filtering the entire image has a proper outcome only if all the targets in

the image are of the same size, which is not a valid assumption for most real world

images. Thus as the weights of the filtering window for each pixel are adaptive, the

window size should also be adaptive. The main objective of this paper is to introduce

a method for automatically selecting the filtering window size for each pixel. This
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approach is presented in both single-band and multi-polarized versions. Common

filtering methods such as the box-car and MMSE filters have been adjusted using our

proposed adaptive window size approach and the results are presented.

3.4 Method

When working with SAR images, it is the real value of the backscatter coefficient

that is of interest. For distributed targets, this value is altered by the effect of

interference [33]. The aim of speckle filtering is therefore to average the returned

values from all the scatterers which contribute to the same distributed target in order

to achieve a more accurate estimation of the backscattering coefficient. For this task,

a fixed-sized rectangular window is not effective, for several reasons. First, the actual

shape of a target might not be rectangular. Thus a rectangular window includes

either fewer or more scatterers than the correct number which causes the estimated

backscattering coefficient to be inaccurate. The defect can be observed by noting the

smeared boundaries of the target near its edges. Second, not all the distributed targets

in an image are of the same size. Hence a window size which can be appropriate for

one part of the image might not be applicable for the targets in another part.

The first problem has been addressed extensively in the literature and much of it

was mentioned in Section 1. Different adaptive filters have been introduced to exploit

the local statistics in an attempt to include only the scatterers from the same target

in the filtering process over that target. The second issue, however, has not been

investigated as much as the first one. The main objective of this paper is to address

this issue.
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3.4.1 Average Filtering of Single-band SAR Data with Adap-

tive Window Size

Speckle can be regarded as the fluctuation of pixel values around a mean which is

the desired backscattering coefficient of the target [33]. Naturally, the best possible

estimation of the true mean is achieved when all the scatterers from the target are

involved in the averaging process, and no scatterer from another neighbouring object

is included in filtering. This is the definition which can specify the best filtering

window for each pixel within the target as will be presented below.

Although in practice there is correlation between the neighbouring pixels of a

SAR image [1], in principle each sample (resolution cell) in a target, here referred

to as A, can be considered as an independent observation for estimating the true

backscattering coefficient of target A. Thus, a rectangular window which lies entirely

within the target includes n independent observations:

Θn = Θ(M1,M2, ...,Mn) (3.1)

In Equation 3.1, Θ is an arbitrary parameter, which can be considered the real

backscattering coefficient of the target in this context. Θn is the parameter to be

estimated from n observations, which is the backscattering coefficient estimated from

n resolution cells. Mi is the ith observation made for estimating Θ which is assumed

to be the pixel value of a SAR image. SAR images are provided in different formats:

real and imaginary (in-phase and quadrature, respectively), amplitude and phase, and

intensity images [33]. We assume that n observations are in real and imaginary format

indicating that the pixel value consists of in-phase and quadrature components, i.e.:
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Mi = Xi + jYi (3.2)

where j =
√
−1. It has been shown that the real and imaginary components in

SAR images, when considered individually, tend to have a normal distribution [33].

For normally distributed data, the mean is an efficient estimator [34]. This means

that if Θn is the average of the real or imaginary part of the observations, i.e.:

Θn,real =
1

n

n
∑

i=1

Xi

Θn,imaginary =
1

n

n
∑

i=1

Yi

(3.3)

Then, considering Θn as a random variable, n pixels result in a smaller standard

deviation than n− 1 pixels, and a greater standard deviation than n + 1 pixels [35].

This means that if the window containing the observations to be averaged grows

larger, the standard deviation will tend to decrease until the window also begins to

contain outliers, i.e. observations from other targets. Therefore, the window which

yields the minimum value for standard deviation will include a maximum number

of observations from target A, but a minimum of observations from neighbouring

objects. It should be noted, however, that while Θn is used to assign the optimal

window size for each pixel, it cannot be applied for speckle reduction, since averaging

real or imaginary data individually does not convey any useful information for SAR

data analysis. In fact, averaging them is a coherent vector summation and has no

effect on speckle reduction [1] while for speckle reduction an incoherent summation

is needed. Consequently, while the real and imaginary data are exploited for the

determination of the best window size for each pixel, it is the intensity image that is
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to be used for averaging the samples using that optimal window size.

Figure 3.1: The variation of the standard deviation with the change in the window

size

Figure 3.1 schematically shows the standard deviation of pixels (either from the

real or the imaginary part of the image) with different window sizes. The smallest

window contains limited pixels from target A which have standard deviation sd1.

With the explanation above, it is expected that as the number of samples for com-

putation of the average increases, the value of standard deviation will decrease. This

reduction continues until the window begins to overlap pixels of adjacent objects.

Once the window contains pixels from two different objects, the standard deviation

will tend to increase. Thus, the optimum window size is the one which corresponds to

the minimum standard deviation, computed using the real or imaginary components

of the samples in the window. Then, this window size is used in the intensity image

to reduce speckle of the pixel at the center of the window. Based upon the above

discussion, the filtering process can be outlined as follows:

1. A range of window sizes is selected by investigating the SAR image. This range
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must contain appropriate filtering sizes for all the objects of the image, from

the smallest target to the largest. An appropriate range of window sizes can be

3 to 21.

2. Both the real and imaginary parts of the image are averaged separately using

the windows covering the entire range of sizes, thus computing the standard

deviation corresponding to each window in the size range for all pixels.

3. The appropriate filter size for each pixel is selected as the one which corresponds

to the minimum standard deviation for that pixel over the whole range of stan-

dard deviations (i.e. window sizes). If the optimal size obtained from the real

and imaginary parts is different for any pixel, their average is considered as the

optimal window size. When the standard deviation monotonically increases,

this means that there is likely a point target in the image with a high amount

of backscatter, and likely the best window size for filtering is the smallest. A

monotonic decrease in standard deviation indicates that the area is likely com-

pletely homogeneous, and the largest window size is the best. In the events

of two minimums, it is probable that the first minimum has occurred when all

the samples from the first target have been taken into account and the second

minimum has likely occurred when all the samples from the first targets and

the other neighbouring (and similar) target(s) have been considered. Therefore,

the first minimum standard deviation is the best choice.

4. Using a common method, a speckle-reduced intensity image is acquired by filter-

ing each pixel with its corresponding optimal window. The simplest method is

obviously averaging, which is the topic of this section. Other common methods,
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however, can also be used and will be elaborated.

These steps are schematically illustrated in Figure 3.2.

Figure 3.2: Flowchart of the proposed algorithm
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3.4.2 MMSE Filtering of Single-band SAR Data with Adap-

tive Window Size

Figure 3.1 shows the ideal case, i.e. when the pixel to be filtered is almost in

the center of the target. Apart from that, especially for the pixels near the edge of

the target (see Figure 3.3), Average Filter with Adaptive Window Size might not

perform best, a common problem of a simple averaging filter. The proposed method,

therefore, can be combined with the MMSE filter [2] in order to solve this problem.

Figure 3.3: The issue near the edges of a target.

The MMSE filter, proposed by [2], has the following form:

R̂ = W (x, y) ∗ I(x, y) + (1−W (x, y)) ∗ Ī(x, y) (3.4)

In Equation 3.4, R(x, y) is the estimated intensity of the pixel (x, y), I(x, y) is the

observed intensity for the pixel (x, y) and Ī(x, y) is the average intensity in a local

window. W (x, y) is a weight parameter which is computed by the following formula

(obtained by the concept of MMSE):
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W (x, y) =
σ2
R(x, y)

σ2
I (x, y)

(3.5)

where σ2
I is the variance of the intensity in the local window and

σ2
R =

σ2
I − Ī2σ2

u

(1 + σ2
u)

(3.6)

σ2
u is a characteristic of speckle which is the ratio of the standard deviation to the

mean in a homogeneous area; its value for single-look SAR data is 1 [36].

The weight parameter W (x, y) in Equation 3.5 will tend to be small in homoge-

neous regions and large in heterogeneous regions. Therefore, according to Equation

3.4, when using square-shaped windows the role of the local mean is minor when

filtering the pixels near edges, while it is significant when the central pixel is located

around the middle of the target. The local statistics in the Lee filter of Equation 3.4

are traditionally computed in a window of fixed size. However, Ī(x, y) in Equation

3.4 can be replaced with the optimal mean value computed over the optimal window

for each pixel as described in the previous section. Moreover, σ2
I (x, y) in 3.5 can be

replaced by the variance of the values included in the optimal window. By making

these two changes, the MMSE filter with Adaptive Window Size is obtained.

3.4.3 Average Filtering of Polarimetric SAR Data with Adap-

tive Window Size

A full-polarimetric radar sensor records a scattering matrix of each target which

is defined as below:
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S =







Shh Shv

Svh Svv






(3.7)

where for each term Shh, p and q represent transmitted and received polarizations,

respectively. Using a well-known result in [37], for monostatic SAR Shv = Svh and

hence the target can be characterized entirely by the 3-D Lexicographic feature vector:

k =

[

Shh

√
2Shv Svv

]T

(3.8)

where superscript T denotes matrix transpose. Then the polarimetric covariance

matrix and its span (total power) can be obtained using the target vector with Equa-

tions (9) and (10), respectively; i.e.

C = kk∗T =















|Shh|2
√
2ShhS

∗
hv ShhS

∗
vv

√
2ShvS

∗
hh 2|Shv|2

√
2ShvS

∗
vv

SvvS
∗
hh

√
2SvvS

∗
hv |Svv|2















(3.9)

span = k∗Tk = |Shh|2 + 2|Shv|2 + |Svv|2 (3.10)

where the superscript * represents the complex conjugate. A filter must have

the following characteristics to preserve polarimetric features and be known as a

polarimetric filter [25]:

1. All terms of the covariance matrix must be filtered in the same way and by the

same amount;

2. Each term of the covariance matrix must be filtered independently to avoid

cross-talk between polarization channels;
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3. The filtering should be adaptive so that scattering characteristics are main-

tained.

The simplest way for filtering polarimetric images is to average the neighbouring

covariance matrices in a window of specific size. Although this filter is not adaptive,

it preserves polarimetric features and the correlation between channels, and can be

adequate for some applications [1].

The idea proposed for using adaptive window sizes is extendable to the average

filtering of covariance matrices. The feature vector in Equation 3.8 contains three

real and three imaginary components from the three polarimetric channels. For the

polarimetric case, all six components can be used to select the optimum window size

for each pixel following the same procedure as described in Section 3.4.1, since the

definition of target is the same in all bands, even if they might appear visually different

in each band. If the optimal window sizes obtained from six images differ from each

other, their average is used as the best window size. Then, the covariance matrices in

the window selected for each pixel are averaged to form the speckle-reduced matrix

for that pixel.

3.4.4 Polarimetric Filtering of SAR Data with Adaptive Win-

dow Size

[25] extended his refined filter [38] to PolSAR data. Let Z be the covariance

matrix of the pixel to be filtered. Then, the filtered covariance matrix, Ẑ can be

estimated by the following expression [25]:
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Ẑ = W ∗ Z + (1−W ) ∗ Z̄ (3.11)

In Equation 3.11, Z̄ is the average of the covariance matrices in a non-square,

edge-aligned window chosen using the span image (see [25] for more details), and W

is the same weight parameter in Equation 3.4.

In this paper, six real and imaginary images for all three channels are used for

computing the optimal window as described in Section 3.4.1, and the obtained size

per pixel from each image is averaged to achieve the final optimal size. Then, W is

computed from the span image in the optimal window. After that, Equation 3.11 is

applied to estimate the speckle-reduced polarimetric covariance matrix for each pixel.

3.5 Dataset and Study Areas

For testing the performance of our algorithm, two separate datasets were selected.

The first one is a RADARSAT-2 full-polarimetric image over San Francisco, Califor-

nia, USA located at approximately 37°45′N and 122°26′W . This image was acquired

in FQ9 beam mode and Single Look Complex (SLC) format in 2008. This area con-

tains divergent land covers such as vegetation, ocean and built-up areas, and has long

been used for testing the performance of different SAR speckle reducing filters. The

selected subset in the entire image is illustrated in Figure 3.4, a.

For the purpose of illustrating the robustness of the algorithm, the proposed fil-

ters were also applied to another image. This RADARSAT-2 full-polarimetric image

was acquired in 2015 over the Avalon Peninsula near St. John's, Newfoundland and

Labrador, Canada, at approximately 47°33′N and 52°32′W , in FQ4 beam mode and
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(a) San Francisco (b) St. John's

Figure 3.4: The selected subsets for applying the suggested filters.
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SLC format. This image also covers natural, urban (including an international air-

port), and ocean areas. The study area specified in the whole image is displayed in

Figure 3.4, b.

For a more precise visual inspection, a Google EarthTM image from San Francisco,

and a 2008 Very High Resolution (VHR) image from Avalon Peninsula have also been

used. For the purpose of emphasizing the details, in this paper the results of the filters

have been shown on selected sub-images. All odd numbers between and including 3

and 21 were considered as the range of window sizes to be applied on the images.

This range was selected by visual inspection of both images.

3.6 Results

3.6.1 Single-band Case

For single-band case, the proposed method was applied on both simulated and

real SAR images. The obtained results along with their validation are presented in

the following sections.

3.6.1.1 Simulated SAR Image

In order to evaluate the performance of the proposed method, simulated images

with and without speckle were applied. Here, the simulated, without speckle images

are referred to as the ground-truth images. The simulation procedure of the speckled

images is illustrated in Figure 3.5. As mentioned before, the real and imaginary

parts of a SAR image have normal distribution with mean of zero and variance of σ2

2
.
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Then, the intensity images were generated by combining the components to simulate

a one-look SAR image (Figure 3.5).

Figure 3.6 shows the result of simulation. The left simulated SAR image shows a

region containing two different classes, and the right simulated SAR image illustrates

two objects within a clutter [33]. Different filters, including the proposed ones, were

applied to these two images and the performance of those filters was evaluated using

with-reference metrics. The details are presented below.

Figure 3.5: The block diagram of the simulation method.

Evaluation of the performance of different filters can also be done using with-

reference metrics. One of the most well-known ones is Mean Square Error (MSE),

which is defined as below:

MSE = E
[

(f̂ − f)2
]

(3.12)

where f̂ and f are despeckled and ground-truth images, respectively. The ideal

value for this metric is zero. Another useful measure is peak signal-to-noise ratio

114



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.6: Simulated SAR images: (a-b) The ground-truth images, (c-d) The original

intensity images, (e-f) The 5-by-5 average filtered images, (g-h) The 5-by-5 MMSE

filtered images, (i-j) Average filtered images with Adaptive Window Size, (k-l) MMSE

filtered images with Adaptive Window Size.
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(PPSNR) which is shown in Equation 3.13:

PSNR = 10.log
[V ar[f ]

MSE

]

(3.13)

where f is the ground-truth image. the ideal value for PSNR is 1.

As MSE and PSNR are for evaluation of the general performance of a filter [32],

Structural Similarity Index Measurement (SSIM) [39] can be used for estimating the

amount of feature preservation in the image. This metric is defined as:

SSIM = 10.log
[ 2.E[fp].E[f̂p] + C1

E[f 2
p ] + E[f̂ 2

p ] + C1

2.Cov[fp, f̂p] + C2

V ar[fp] + E[f̂ 2
p ] + C2

]

(3.14)

where C1 and C2 are suitable constants which were chosen as 0.01 and 0.03 in this

work. Moreover, fp and f̂p are the ground-truth and despeckled images, respectively.

The three above-mentioned metrics were computed for images filtered by the 5-

by-5 average and MMSE [2] filters (for the sake of comparison) and their adaptive

window size counterparts and the results are shown in Table 3.1. MSE is smaller

for the fixed-size Average and MMSE filters than their adaptive-size counterparts

which in turn causes PSNR to be larger for them. This means that the fixed-size

filters introduced less bias to the image compared to the proposed ones. SSIM is also

relatively larger for the fixed size filters, which means that they are more suitable in

retaining the structures.

It should be noted that the result of filtering on the synthetically speckled SAR

images is not enough for drawing conclusions about performance of filters on real

SAR images [32], because the selected ground-truth image and the real ground-truth

reflectivity can differ significantly [32]. Moreover, a simulated SAR image cannot
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Table 3.1: Various metrics for evaluation of the proposed speckle filters on the simu-

lated SAR images

Filter MSE PSNR SSIM

1st Image 2nd Image 1st Image 2nd Image 1st Image 2nd Image

Average Filter 0.0537 0.0556 -1.2773 -3.3865 0.7086 0.6503

MMSE Filter 0.0565 0.0567 -1.5007 -3.4727 0.6905 0.6408

Average Filter

with Adaptive

Window Size

0.0815 0.0686 -3.0921 -4.2946 0.6519 0.6208

MMSE Filter

with Adaptive

Window Size

0.0813 0.0685 -3.0775 -4.2894 0.6429 0.6151
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be consistent with a real SAR image in terms of image formation and acquisition

process [32]. Therefore, the experiment should be done on real SAR images as well.

3.6.1.2 Real SAR Image

For the implementation of the single-band version of the method, the HH channel

was selected from both full-polarimetric images introduced in Section 3. For com-

parison, the average, MMSE [2], enhanced Lee filter [10], and Gamma filter [11] with

a fixed window size (5 × 5 window), and a non-local filter, the Probabilistic Patch-

Based filter (PPB, [40]), were also applied to the image. The PPB filter has various

user-defined parameters, namely half sizes of the search window width, half sizes of

the window width, and number of iterations, and the value of each is described in

the figure caption corresponding to both study areas. Figure 3.7 illustrates the re-

sults for a sub-image of the San Francisco area. The original one-look HH intensity

image is blemished with the effect of speckle. Although the 5 × 5 average filter has

improved the images visually in homogeneous regions, boundaries and subtle objects

are smeared. The MMSE filter outperformed the average filter in retaining the edges

and details; a fair amount of speckle, however, is still present in the image and occa-

sional isolated pixels with higher intensity can be viewed in homogeneous regions. The

enhanced Lee filter preserved even more details. However, in some parts, for example

the urban area in the bottom right of the image, the objects seem rather noisy and

have not been evenly filtered. Moreover, isolated points, i.e. the points brighter than

their surrounding parts, are still present in the image. The Gamma filter had almost

the same performance as the enhanced Lee filter, with isolated points being present

sporadically. In addition, the objects in urban areas are also not completely clear in
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the filtered image. It should be noted that in practice, usually larger window sizes

are used for filtering, which causes more blurring. The PPB filter effectively reduced

speckle although the urban area was slightly blurred. The proposed Average Filter

with Adaptive Window Size shows a significant improvement, both by suppressing

speckle in homogeneous areas and maintaining the object boundaries. Some details,

however, are blurred as a result of overfiltering. This downside is not observed in

the proposed MMSE filter with Adaptive Window Size. The result using adaptive

window size shows that details were well preserved as seen in Figure 3.7, E and F,

while speckle was successfully suppressed in homogenous regions.

Similar results were obtained for the St. John's image as depicted in Figure 3.8.

The effect of speckle can be discerned in the original image and as expected, the

average filter indiscriminately filtered all parts of the image by the same amount.

The MMSE filter maintained the details but isolated points can be clearly noted. A

similar outcome can be observed in the enhanced Lee filtered image, but some features

were better preserved, such as the urban part near the bottom right of the image. The

Gamma filter has also retained the details, but still there are many isolated bright

points throughout the image and some parts not being filtered completely. The PPB

filter effectively reduced speckle, but some subtle structures remain obscured. The

proposed Average Filter with Adaptive Window Size, on the other hand, filtered the

homogeneous areas reasonably well, while it has maintained the details. Isolated

points cannot be observed anymore. Even better results have been achieved using

the MMSE filter with Adaptive Window Size, where the smaller objects are preserved

better.

Figure 3.9 demonstrates the variation of standard deviation with the change of
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.7: San Francisco: a) Original one-look HH intensity image. The rectangle

on the top and the bottom of the image show the regions used for computation of

ENL and Coefficient of Variation, respectively, b) The 5×5 average filtered image, c)

The 5×5 MMSE filtered image, d) The 5×5 enhanced Lee filtered image, e) The 5×5

Gamma filtered image, f) PPB filtered image with hw=20, hd=5, and 1 iteration,

g) Average filtered image with Adaptive Window Size, h) MMSE filtered image with

Adaptive Window Size.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.8: St. John's: a) Original one-look HH intensity image. The rectangle on the

top and the bottom of the image show the regions used for computation of Coefficient

of Variation and ENL, respectively, b) The 5×5 average filtered image, c) The 5×5

MMSE filtered image, d) The 5×5 enhanced Lee filtered image, e) The 5×5 Gamma

filtered image, f) PPB filtered image with hw=10, hd=3, and 4 iterations, g) Average

filtered image with Adaptive Window Size, h) MMSE filtered image with Adaptive

Window Size. 121



filtering window size for a pixel located in a homogeneous and a heterogeneous area

from the San Francisco image, respectively. The homogeneous region was selected

from the ocean on the top right of Figure 3.7 and the heterogeneous area was cho-

sen from the urban area on the bottom right of Figure 3.7. Theoretically, as proven

in Section 3.4.1, a large window size is needed in a large, homogeneous area. This

is the case in the represented homogeneous region in which the minimum standard

deviation corresponds to the largest possible window size. On the other hand, in a

heterogeneous area a small window size suffices. This fact was realized in the repre-

sentative heterogeneous area in which the minimum standard deviation corresponds

to the smallest possible window size. It should be noted that these examples are just

two extreme instances amongst many other possible cases.

Assessment of the Results An ideal speckle filter should reduce the amount

of speckle in homogeneous regions while it preserving the details of the image in

heterogeneous areas. Moreover, it should not introduce any bias into the image

after filtering. To evaluate the performance of the image from the various mentioned

aspects, therefore, computation of some metrics is necessary.

For the assessment of the performance of the filter in homogeneous regions, the

common measure for estimation of speckle level in the image, namely Equivalent

Number of Looks (ENL) was selected. Number of looks is an appropriate measure for

estimating the amount of speckle in the image, which is proportional to the speckle

standard deviation to mean ratio [1]. For an intensity image, the ENL is defined as

below [1]:
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(a)

(b)

Figure 3.9: The variation of standard deviation with the change of the filtering window

size. a) A homogeneous pixel, and b) A heterogeneous pixel.
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Table 3.2: Various metrics for evaluation and comparison of the performance of the

proposed speckle filters on real SAR images. E{r} and σ{r} show the mean and

standard deviation of the ratio image, respectively.

Image San Francisco St. John’s

ENL Cf (Cf̂
) E{r} σ{r} ENL Cf (Cf̂

) E{r} σ{r}

Original Image 0.9233 2.6284 1 1 0.8919 0.8908 1 1

Average Filter 11.2384 1.7112 0.9663 0.9564 10.4493 0.7713 0.9653 0.9563

MMSE Filter 7.2548 2.8251 0.9100 0.7612 7.0836 0.9611 0.9086 0.7637

Enhanced Lee

Filter

6.0499 3.7046 0.9360 0.7528 5.7243 1.0963 0.9317 0.7572

Gamma filter 6.8299 4.0011 1.0051 0.8108 5.7897 1.1009 1.0062 0.8079

PPB filter 6.9235 2.4647 0.6149 0.5231 5.7930 0.7014 0.7760 1.5383

Average Filter

with Adaptive

Window Size

10.4822 1.003 1.1394 1.5280 10.2089 0.7065 1.1356 1.4085

MMSE Filter

with Adaptive

Window Size

9.3041 2.7543 1.0037 0.9078 9.3788 0.8479 1.0152 0.8793
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ENL =
(mean)2

variance
(3.15)

calculated over a large, homogenous area. A high value for ENL shows that speckle

was suppressed effectively. It should be noted that the value of ENL, estimated by

Equation 3.15 is usually less than the actual number of looks as a result of spatial

correlation [1].

For the images available for this paper, ENL was calculated over the ocean in the

top right of the San Francisco image (Figure 3.7) and over the large lake in the St.

John's image (Figure 3.8). The results are shown in Table 3.2. As can be viewed

in Table 3.2, the value of estimated ENL for both original images is less than but

close to 1, as expected. The average filtered images have the highest value of ENL

over all filtered images which shows the relatively effective suppression of speckle. The

MMSE, enhanced Lee, Gamma, and PPB filters have a lower ENL which indicates the

presence of speckle remaining in homogeneous parts of the images. By comparison,

the Average Filter with Adaptive Window Size reduced speckle almost as much as

the average filter; and the MMSE filter with Adaptive Window Size has a slightly

smaller ENL, while this value is still higher than the corresponding values for the

MMSE, enhanced Lee and Gamma filters.

For estimating the level of texture preservation in heterogeneous areas, a compar-

ison can be made between the coefficient of variation computed over the despeckled

image, namely Cf̂ , with its corresponding theoretical value, Cf , as mentioned in [19].

It can be concluded that loss of radiometric information leads to Cf < Cf̂ while

injection of impairments can yield Cf > Cf̂ [32]. Cf and Cf̂ are defined as:
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Cf =

√

C2
g − C2

u

1 + C2
u

(3.16)

Cf̂ =
V ar[f̂ ]

E[f̂ ]
(3.17)

where Cg and Cu are the coefficient of variation of the noisy image and speckle

noise, respectively, and f̂ is the de-speckled image [19]. Cf for the original image

and Cf̂ for all filtered images have been computed over a heterogeneous area in

both San Francisco (Figure 3.7) and St. John's (Figure 3.8) images and the results

are depicted in Table 3.2. As can be observed, average filter poorly preserved the

textural information in the images from both areas. MMSE, Enhanced Lee and

Gamma filters have larger coefficients of variation in comparison with the original

image which suggests that these filters introduced some impairment to the original

image. The PPB filter yielded a slightly lower coefficient of variation with respect to

the original image, which signifies a slight blurring in texture. Average Filter with

Adaptive Window Size resulted in a significantly lower coefficient of variation, which

implies that this filter performs poorly in maintaining textural patterns. MMSE filter

with Adaptive Window Size, however, has the closest coefficient of variation to the

original image in both areas, which shows that this filter had the best performance

in texture preservation amongst all examined speckle filters.

Another useful measure for evaluating the overall performance of a speckle filter

is the ratio image which is defined as:

r(n) =
g(n)

f̂(n)
(3.18)
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where g(n) is the noisy and f̂(n) is the despeckled image [33]. An ideal speckle

filter yields a purely random ratio image while a poor speckle filter causes some

patterns to be visible in the image [32]. The mean and standard deviation of the ratio

image should be as close as possible to the theoretical values of speckle statistics [32].

Both of these values are 1 for a single-look image [41].

Ratio images resulting from all filtered images for both the San Francisco and St.

John's areas are illustrated in Figure 3.10 and 3.11, respectively. Over both areas,

some structures are visible in the enhanced Lee, Gamma and PPB filters, while the

ratio images resulting from the Average filter with Adaptive Window Size and the

MMSE filter with Adaptive Window Size have an almost random pattern. For a more

accurate comparison, however, some numerical metrics are necessary.

The statistics were computed for the ratio image of all filtered images over both

areas and the results are illustrated in Table 3.2. The mean and standard deviation

of the ratio image resulted from the average filter is close to 1 which illustrates an

unbiased performance. The value of the ratio image's mean for MMSE, Enhanced Lee

and Gamma filters is close to 1. However, standard deviation of the ratio image of

these filters differs significantly from the expected theoretical value. This is also true

for the mean and standard deviation of the ratio image resulting from the PPB filter.

The mean and standard deviation of the ratio image resulted from the Average Filter

with Adaptive window size have a considerable difference with 1 which suggests that

the filtering process introduces some bias into the image. The statistics computed

from the ratio image of MMSE filter with Adaptive Window Size, however, have

almost the closest values to 1, which shows that this filter introduces a small amount

of bias to the image after filtering.

127



(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.10: San Francisco: Ratio images resulted from: a) The 5×5 average filtered

image, b) The 5× 5 MMSE filtered image, c) The 5× 5 enhanced Lee filtered image,

d) The 5 × 5 Gamma filtered image, e) PPB filtered image with hw=20, hd=5, and

1 iteration, f) Average filtered image with Adaptive Window Size, g) MMSE filtered

image with Adaptive Window Size from the San Francisco image
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.11: St. John’s: Ratio images resulted from: a) The 5 × 5 average filtered

image, b) The 5× 5 MMSE filtered image, c) The 5× 5 enhanced Lee filtered image,

d) The 5 × 5 Gamma filtered image, e) PPB filtered image with hw=20, hd=5, and

1 iteration, f) Average filtered image with Adaptive Window Size, g) MMSE filtered

image with Adaptive Window Size from the San Francisco image
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Also, for estimating the degree of details preserved visually, a small subset from

the urban area of both images is selected to be investigated more closely. These

subsets are represented in Figure 3.12 and Figure 3.13.

The original San Francisco small sub-image illustrated in Figure 3.12 is affected

by speckle and the buildings in the urban area seem disconnected. The average filter

almost reduced speckle but the small objects are severely blurred. The MMSE filter

balanced reducing speckle and retaining the details. However, the boundaries in the

built-up area are smeared. If a window size larger than 5 × 5 was used, this effect

would be more serious. The Enhanced Lee filter blurred the building boundaries in

some parts, and disconnected them in other parts. The Gamma filter has filtered the

image unevenly and the different parts of the urban area are either blurred or speckled.

The PPB filter reduced speckle with slight overfiltering in urban areas. The Average

Filter with Adaptive Window Size successfully maintained the shape of the buildings

and reduced speckle, except for some objects which have been overly filtered. Finally,

the MMSE filter with Adaptive Window Size has the best performance, preserving

the shapes in Figure 12 as well and reducing speckle effectively.

The small sub-image from St. John's shows similar results. The urban area is

severely affected by speckle in the original image in such a way that this part can

hardly be discerned visually; the average filter destroyed the details. The urban

area can be better distinguished from other parts in the images filtered by MMSE,

enhanced Lee and Gamma filters, but speckle and isolated points are still present.

The PPB filter successfully preserved the details, but a few subtle features are lost.

Although the Average Filter with Adaptive Window Size caused slight blurring, it

yielded a clear image for the urban area and reduced speckle evenly throughout this
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.12: A small subset of the San Francisco image: a) Original one-look HH

intensity image, b) The 5 × 5 average filtered image, c) The 5 × 5 MMSE filtered

image, d) The 5×5 enhanced Lee filtered image, e) The 5×5 Gamma filtered image,

f) PPB filtered image with hw=20, hd=5, and 1 iteration, g) Average filtered image

with Adaptive Window Size, and h) MMSE filtered image with Adaptive Window

Size highlighting urban areas from the San Francisco image.
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region. Finally, the MMSE filter with adaptive window size compensated for the

overly filtered parts in the Average filtered image with Adaptive Window Size, offering

an efficiently speckle reduced image.

3.6.2 Polarimetric Case

3.6.2.1 Simulated PolSAR image

In order to test the performance of the proposed method for polarimetric SAR

data, two PolSAR images without and with speckle (Figure 3.14, a and b) were

simulated using the Monte Carlo simulation explained in [1]. First, for a covariance

matrix, C
1

2 was generated such that:

C
1

2 (C
1

2 )∗T = C (3.19)

where ∗T denotes the conjugate transpose. Then, a complex vector, v, is simulated

which has a normal distribution with zero mean and an identity covariance matrix.

Then, the single-look vector u can be obtained using the following equation:

u = C
1

2 v (3.20)

Figure 3.14 illustrates the result of applying the proposed polarimetric filters to

two simulated PolSAR images. For the sake of comparison, the results of applying

the average polarimetric filter and the Lee PolSAR filter [25] on both images are

also shown in Figure 3.14 , c and d, respectively. As can be observed, the average

polarimetric filter blurred the boundaries. Moreover, the Lee PolSAR filter failed

to completely remove speckle, and left some bright point in the image. The two
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.13: A small subset of the St. John’s image: a) Original one-look HH intensity

image, b) The 5×5 average filtered image, c) The 5×5 MMSE filtered image, d) The

5×5 enhanced Lee filtered image, e) The 5×5 Gamma filtered image, f) PPB filtered

image with hw=20, hd=5, and 1 iteration, g) Average filtered image with Adaptive

Window Size, h) MMSE filtered image with Adaptive Window Size highlighting urban

areas from the San Francisco image. 133



proposed methods, however, suppressed speckle more effectively, and maintained the

boundaries successfully.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.14: Polarimetric simulated SAR images: (a-b) The ground-truth images,

(c-d) The original polarimetric images, (e-f) The 5× 5 average filtered images, (g-h)

Images filtered with 5 × 5 refined PolSAR filter, (i-j) Average filtered images with

Adaptive Window Size, and (k-l) PolSAR filtered images with Adaptive Window Size.
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3.6.2.2 Real PolSAR image

The proposed filtering algorithms for multi-polarized images, namely average fil-

tering and Polarimetric filtering with Adaptive Window Size, were implemented on

both full-polarimetric RADARSAT-2 images. For comparison, typical average fil-

tering and the Lee PolSAR filter [25], as well as more advanced methods, namely

Lopez [42] and Intensity Driven Adaptive Neighbourhood (IDAN) [26] filters, were

applied on the image. The results for the San Francisco image are depicted in Figure

3.15. A Google EarthTM snapshot for the San Francisco region was included in Figure

3.15 for a closer visual investigation. The original SAR image is represented in false

color composite, having |Shh|2 as the red, |Shv|2 as the green and |Svv|2 as the blue

channel which is clearly affected by speckle. The average filter, although reducing

speckle, caused severe blurring in the image. The refined PolSAR filter shows signif-

icant improvement, but small details, for example in the urban area in the bottom

right of the image, are smeared. The Lopez filter efficiently filtered the image, but

some occasional brighter points are visible in the image and the urban area is slightly

blurred. The IDAN filter has effectively reduced speckle while maintaining the de-

tails, which shows the value of the adaptive neighbourhood. The Average Filter with

Adaptive Window Size also retained the details, suppressing speckle effectively with

minimal over-filtering of some parts, although these parts cannot be easily distin-

guished. Finally, PolSAR filter with Adaptive Window Size performed very well, by

both reducing speckle and preserving the details.

Analogous results were achieved for the St. John's full-polarimetric image, as

represented in Figure 3.16. Aerial images have also been used for assistance in visual
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.15: San Francisco: a) Original polarimetric image, b) Snapshot of the study

area from Google EarthTM, c) The 5 × 5 average filtered image, d) Image filtered

with 5× 5 refined PolSAR filter, e) The 5× 5 Lopez filtered image, f) IDAN filtered

image with window size row of 50, g) Average filtering with Adaptive Window Size,

h) PolSAR filtering with Adaptive Window Size.
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inspection. The polarimetric average filter blurred the details. The refined PolSAR

and Lopez filters made a considerable improvement, but the details have been slightly

over-filtered, and an amount of speckle is still remaining. A non-speckled, clear image

indicates that IDAN filter performed effectively. The polarimetric average filter with

Adaptive Window Size offered a smooth part in terms of homogeneous regions, and

maintained the details of subtle points. The PolSAR filter with Adaptive Window

Size outputted almost the same image, preserving slightly more details in the urban

part.

3.7 Discussion

It was observed in previous sections that the proposed adaptive window approach

works well with single-band and multi-polarized SAR data. This method also can be

applied to partially-polarized data, using available real and imaginary channels for

estimating the best window size, and then applying the result to the intensity image.

A disadvantage of the proposed method is its computational complexity. In a

typical filtering process the filtering size is manually selected which causes the filter to

have a low computational complexity, but at the expense of either losing some detail,

or leaving speckle in the image. The proposed method looks for the best window

size for each pixel, and then applies the filter on it. For improving the computational

complexity of the method, narrowing the range of window sizes for filtering each pixel

based on a heterogeneity measure is suggested.

Some practical considerations are necessary when implementing the proposed al-

gorithm. In the range of window sizes which are selected for filtering the real and
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.16: St. John's: a) Original polarimetric image, b) Snapshot of the study

area from Google EarthTM, c) The 5 × 5 average filtered image, d) Image filtered

with 5× 5 refined PolSAR filter, e) The 5× 5 Lopez filtered image, f) IDAN filtered

image with window size row of 50, g) Average filtering with Adaptive Window Size,

h) PolSAR filtering with Adaptive Window Size.
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imaginary images, the minimum window size is more important than the maximum

one. If the minimum window size is too large, some details in the image might be

blurred. Thus care must be taken in selecting the minimal window size; the most

conservative choice for that is 3 × 3.

Computing the optimal window size using both real and imaginary images helps

to estimate the best window size more accurately, but using one of them suffices.

This is also true for the polarimetric filter, where all real and imaginary images are

used for estimating the most appropriate filtering size. Although the three channels

have different features, the definition of object is the same in all of them, although

they might appear diversely in each band. Accordingly, optimal window size for each

pixel must be the same for all channels.

3.8 Conclusion

Using a single fixed size rectangular window is not effective for speckle filtering of

SAR images, owing to the fact that objects with different sizes need different filtering

windows. To address this issue, the paper presents a novel technique for filtering with

Adaptive Window Size. The method applies windows with changing sizes throughout

the image based on local information (i.e. Standard Deviation) computed from neigh-

bouring pixels. To find an optimal window size for each pixel, windows with various

sizes are applied to real and imaginary SAR images separately, and the window with

minimum Standard Deviation is chosen as the optimum window size for filtering. It

was demonstrated that the window which yields the minimal standard deviation for

each pixel over the whole range of sizes has the optimal size for filtering that pixel.
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The method was applied to single-look intensity data but it can be applied to mul-

tilook and amplitude images as well. The filter has been proposed in single-band

and polarimetric versions, and average and MMSE filtering methods with Adaptive

Window Size have been provided in both cases. The proposed methods outperform

their fixed-size counterparts both in single-band and polarimetric versions. This ap-

proach can preserve the details of the image while suppressing speckle effectively.

The computational complexity of the proposed filters is greater than their fixed-size

counterparts because the suggested algorithms look for the appropriate window size

for each pixel, while in the typical filters the window size is fixed. The computational

complexity, however, may be reduced. Finally, adjusting other filters so that they

may be applied with adaptive window size is a valuable area of future study.
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Chapter 4

Object-based Classification of

Wetlands in Newfoundland and

Labrador Using Multi-Temporal

PolSAR Data

4.1 Preface

In this chapter, a multi-temporal object-based classification of wetlands using

PolSAR data was presented in which an alternative approach for segmentation of

SAR images was introduced. The paper resulted from this chapter has been published

in the Canadian Journal of Remote Sensing.
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4.2 Abstract

Despite the fact that vast portions of Newfoundland and Labrador (NL) are cov-

ered by wetlands, to date there is no provincial inventory of wetlands in the province.

In this study, we analyzed multi-temporal SAR data for wetland classification at four

pilot sites across NL. Object Based Image Analysis (OBIA) using a segmentation

method based on optical data (RapidEye image in this study), and well-adjusted to

SAR images, was first compared to pixel-based classification. Next, multi-date object-

based wetland maps using the random forest classifier were compared to single-date

classification. Finally, ratio and textural features were evaluated for wetland classi-

fication. The results showed that the OBIA method demonstrated superior results,

and the multi-date classification performed better than single-date classification with

accuracies ranging from 75 to 95 percent. The multi-date results showed that the

images acquired in August are the most appropriate for classifying wetlands, while

the October images are of less value. Also, covariance matrix is a valuable feature set

for wetland mapping. Besides, ratio and textural features slightly increase the over-

all accuracy when the initial overall accuracy is relatively low. It can be concluded

that multi-date SAR classification, with the proposed segmentation method, shows

great potential as a method for mapping wetlands and can be applied throughout the

province.
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4.3 Introduction

Wetlands have been defined as land that is saturated with water long enough

to promote wetland or aquatic processes as indicated by poorly drained soils, hy-

drophytic vegetation and various kinds of biological activity which are adapted to

a wet environment [1]. Wetlands are valuable natural resources and provide many

ecosystem services such as collecting and reserving runoff water, protecting soil from

erosion, purifying water and providing natural habitats for many animals and plants

[2]. Currently, wetlands cover approximately 14 percent of Canada [3]. However,

the development of agriculture, urbanization, industry, and recreation has resulted in

alteration of wetlands to other land uses [2]. For example, only about 30% of wet-

lands in southern Ontario and 25% of wetlands in Manitoba remain in existence [3].

Wetland destruction results in several environmental issues. For instance, it causes

the natural habitat of many animals and plants to be destroyed, reduces water sup-

ply and water storage within a wetland, and causes soil erosion [4]. Therefore, it is

crucially important to monitor the existence and health of wetlands.

Newfoundland and Labrador (NL) is no exception in this regard. Wetlands in

NL are important habitat for waterfowl, Canada geese, American black ducks and

green-winged teal [5]. Unfortunately, however, upwards of 85 percent of wetlands in

the coastal zones of Atlantic Canada have been altered or destroyed [6,7]. Currently,

NL is the only province in Atlantic that lacks a provincial wetland map [8, 9]. Also,

the maps for New Brunswick and Nova Scotia are not accurate [10, 11]. Although

some data has been collected through Environmental Impact Statements (EIS), they

are often out of date or not publicly available and hence many researchers have noted
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the need for a detailed, up-to-date provincial wetland inventory system [12].

Synthetic Aperture RADAR (SAR) images have been successfully used for wet-

land mapping [13–15]. SAR images have several features which make them ideal for

wetland mapping. They can be acquired independent of weather conditions, and thus

are not affected by cloud coverage, a particularly important feature in a place like NL,

where cloud cover is frequent. Unlike optical images, SAR images can also penetrate

through vegetation. This is especially useful for wetland classification as wetlands are

characterized by flooded vegetation. Moreover, textural information in SAR data is

an asset for classification purposes.

[13] evaluated the potential of RADARSAT-1 texture information for wetland

classification. In that study, texture information improved the classification accu-

racy slightly. [16], after observing the high potential of RADARSAT-2 images for

forest type discrimination, investigated the capability of RADARSAT-2 images for

wetland mapping. They used Convair-580 full-polarimetric C-band SAR data, ac-

quired in 1995, for this purpose. The authors noted the α parameter in Cloude and

Pottier decomposition [17] was not sufficient for wetland discrimination, and thus

the Touzi decomposition [18] parameters were developed instead. These parameters

showed high potential for wetland mapping and even proved useful for distinguishing

bogs from fens, both peatlands which, though different, share many similar ecological

charcteristics [7]. In fact, the vegetation within bog and fen are very similar to each

other. However, bog’s only source of water is precipitation, while fen has other water

sources as well. In [14], separability analysis and maximum likelihood classification

were exploited for wetland classification using Convair-580 images. As expected, it

was concluded that polarimetric data are more informative than dual or single po-
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larization data for wetland mapping, and that polarization ratios are adequate for

discrimination between flooded and non-flooded areas. A more comprehensive study

was carried out by [15], who evaluated the capability of Touzi decomposition for

wetland mapping. Nine RADARSAT-2 images were used from which polarimetric

features were extracted and evaluated for wetland mapping. Then, a decision tree

was adopted for the classification. Desirable results were obtained and the authors

concluded that SAR data hold great promise for wetland mapping.

As wetlands demonstrate a high level of temporal variability, multi-date sampling

is required to study them. For example, a study by [19], investigated full-polarimetric

RADARSAT-2 time series to detect and locate the seasonal change of saturated areas

in wetlands. The authors investigated the sensitivity of different polarimetric decom-

position parameters towards the variation of the water-table in marsh-flooded areas.

Shannon Entropy showed the strongest sensitivity to the changes. Then, this pa-

rameter was exploited for detection of marsh-flooded areas using a threshold method.

In [20], statistical methods and a decision tree classifier were used to detect areas with

a high degree of saturation using a time series of ENVISAT ASAR data. In [21], the

time series of TerraSAR-X dual-polarized data was also used for classifying wetlands

in Lac Bam of Africa. The authors pointed out that the accuracy of classification

was significantly higher when multi-temporal data was used, especially because of the

fact that the study area undergoes great fluctuations in water levels annually.

Object-based classification has proven useful for wetland mapping [22–26]. Object-

Based Image Analysis (OBIA) is a classification method which is not based on individ-

ual pixels, but which considers neighbourhood information to form objects. Objects

or segments are a group of homogeneous pixels whose homogeneity is based on mul-
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tiple measures, e.g. spectral, texture and shape. As wetlands occur in various sizes

and shapes, object-based classification is valuable for wetland mapping. [24] analyzed

aerial imagery to delineate wetlands by applying OBIA and reported an overall ac-

curacy of 89 percent. [23], analyzed RADARSAT-1 and Landsat images for mapping

wetlands using different levels of segmentation. SAR and Optical images were seg-

mented in various scales from large to fine and classified using membership function,

and in each level, only a part of the image which needed a finer classification was

segmented in a smaller scale. In [25], the authors used Advanced Spaceborne Ther-

mal Emission and Reflection Radiometer (ASTER) images along with other types of

datasets, including SAR images and Digital Elevation Model (DEM), to classify the

wetlands of northern Brazilian Amazonia in an object-based manner. An accuracy

of 88 percent was reported. Additionally, in [22] the authors combined RADAR im-

ages with medium resolution optical data to obtain wetland maps over a large area.

Segmentation was applied to the images and the derived images were classified using

an object oriented fuzzy method. Furthermore, the capability of RADAR texture in-

formation for improving the result of classification was examined. [26] also applied a

decomposition to TerraSAR-X data. Then, the decomposition layers were segmented

using the multiresolution algorithm. The authors achieved an accuracy higher than

85 percent for wetland classification.

The segmentation of imagery is the first step in object-based classification. So

far, many segmentation methods have been proposed some of which are specifically

applicable to SAR images. For example, [27] presented an algorithm for segmenta-

tion of SAR images based on nonlocal contour active model. Promising results were

obtained for various SAR images. [28] attempted to segment SAR images in a two
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phases by applying curvelet coefficient energy (KCE) and an unsupervised spectral

regression (USR) method. [29] modified simple linear iterative clustering (SLIC) to

segment SAR images. On the other hand, there are some segmentation methods

which are most effective is applied on the optical images. The most common one is

the multi-resolution algorithm which is a popular segmentation approach first pro-

posed by [30]. In this method, pixels or existing image objects are consecutively

merged until a homogeneity criterion, determined by the user as the scale parameter,

is satisfied. This homogeneity criterion is a combination of spectral homogeneity and

shape homogeneity, the contribution of each is determined by the user [31]. Higher

values for scale parameters yield larger image objects [31]. Since SAR images are

blemished with speckle, when applying segmentation methods specifically proposed

for SAR imagery, sophisticated algorithm have to be applied. Also, when utilizing

segmentation methods designed mainly for the optical imagery, most often results are

not as accurate as desired. For that reason, in this paper, an alternative method is

introduced to segment SAR images in which optical images are used for segmentation

of SAR data. The details of this method are provided in the Method section.

In recent years, Random Forest (RF) [32] has supplanted conventional classifiers

such as Maximum Likelihood (ML). RF classifier is an ensemble of regression trees

each of which is generated using a random vector, which is sampled independently

from the input vector. Each regression tree votes for a class for a given pixel/object,

and finally the most popular class is assigned to that pixel/object [32]. Features

from various sources with different ranges can be incorporated into RF. Moreover,

the RF classifier has the least sensitivity to the size of training samples and is the

least susceptible to noise [33]. Thus, RF is especially useful when insufficient training
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data is available. Many researchers in recent years have applied the RF algorithm in

wetland classification [33–35]. [35] applied the RF classifier to examine the potential

of SAR polarimetric decompositions and LiDAR derivatives for mapping wetlands

within Mer Bleue bog within southern Ontario. The authors remarked that RF is

not only useful in wetland classification, but also has the potential to prioritize var-

ious features in terms of their role in classification accuracy. In [34], JERS L-band

SAR imagery was used to produce a thematic map of wetlands using the RF algo-

rithm. Different polarimetric combinations and several polarimetric decompositions

were evaluated for wetland mapping. In [33], the performance of three different clas-

sifiers, namely ML, Classification and Regression Tree (CART) and RF were assessed

for wetland classification in Sanjiang Plain of China. In this work, RF produced the

highest accuracy.

The purpose of this study is to develop a wetland classification methodology for NL

and evaluate multi-date RADARSAT-2 polarimetric C-band SAR images for object-

based classification of four pilot sites using the RF classifier. This paper presents the

details of the pilot sites and data sets in the next section, followed by the methodology,

results and discussion sections. The paper ends with conclusions based on this study.

4.4 Study areas and Datasets

4.4.1 Study Areas

For the purpose of developing a methodology to map wetlands throughout the

entire province of Newfoundland and Labrador, five pilot sites were selected (Figure
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4.1). The Avalon, Grand Falls, Deer Lake, and Gros Morne pilot sites are all located

on the island of Newfoundland, and Goose Bay is located in Labrador. The charac-

teristics of the pilot sites are summarized in Table 4.1. The field data for one of the

pilot sites (Grand Falls) were not available at the time of processing, and hence we

performed our analyses on the other four pilot sites.

4.4.2 Field Data

The Canadian Wetland Classification System (CWCS) [7] was used for wetland

classification in this research. The CWCS divides the wetlands of Canada into five

main categories: Bog, Fen, Marsh, Swamp and Shallow Water. These classes are

defined on the basis of floral, hydrological, pedological, and physiochemical charac-

teristics. According to the CWCS National Wetlands Working Group (1997), the 5

classes are described as follows:

Bogs are peatlands (peat is poorly decomposed organic matter) that are om-

brotrophic, meaning that a bog's only source of water is precipitation [7]. As a result,

bogs are low in nutrients and are highly acidic, which influences the floral composition

of these wetlands: Sphagnum Moss species and ericaceous shrubs are dominant and

carnivorous plants are common [7]. Fens, like bogs, are peatlands. However, unlike

bogs, fens receive water from multiple sources including precipitation, underground

and surface water flow, which makes fens minerotrophic [7]. A fen's floral compo-

sition reflects the nutrient quality of its water sources, and thus may be considered

rich (dominated by sedge, grass species and brown moss species) or poor, in which

the floral composition is partly similar to bogs [36]. Swamps are wooded wetlands,
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Figure 4.1: Five representative pilot sites of Newfoundland and Labrador for wetland

classification of the province (adapted from Google EarthTM).
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Table 4.1: General characteristics of the pilot sites.

pilot

site

Center's

Approximate

Latitude

Center's

Approximate

Longitude

Area

(Km2)

Climate Ecoregion Dominant Land

Cover

Avalon 47°27′N 52°52′W 668 Oceanic Maritime Barren

Ecoregion

heathland

barrens, balsam

forests, urban

and agricultural

areas

Deer

Lake

49°16′N 57°15′W 700 Continental North Central

Ecoregion of

Newfoundland

extensive

peatlands and

balsam fir, and

black spruce

forests, minor

urban regions

Gros

Morne

49°55′N 57°42′W 700 Oceanic Northern Pen

Ecoregion of

Newfoundland

low-lying

peatlands, small

towns,

mountainous

areas dominated

by balsam fir and

black spruce

forests

Goose

Bay

53°18′N 60°19′W 700 Humid-

Continental

Lake Melville

Ecoregion

extensive forests

of balsam fir,

black spruce, and

white birch,

peatland covers,

permafrost
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(a) (b)

(c)

(d) (e)

Figure 4.2: Images of wetland classes described by the Canadian Wetland Classifica-

tion System across the pilot sites: a) Bog in the Avalon, b) Fen in Gros Morne, c)

Marsh in Goose Bay, d) Swamp in the Avalon, e) Shallow Water in Gros Morne.

159



meaning that at least 30% of the wetland is dominated by woody vegetation, be that

trees or tall shrubs [7]. Swamps can be located both on peat or mineral soils, and like

fens are minerotrophic [7]. Swamps experience more seasonal water level fluctuations

compared to that of bogs and fens [36] and may experience periods in which stand-

ing water is present. Marshes are located entirely on mineral soils and experience

high levels of potential daily, monthly, and seasonal water fluctuations. They also

can be noticeably affected by flooding, evapotranspiration and may completely dry

out during drought [7]. Nutrient availability in marshes is high and can support the

growth of vascular plants that are often partially submerged in water [36]. Marshes

are treeless and emergent aquatic plants are a common feature of them [7]. The final

class, shallow water, is a wetland where water is present and generally stable year

round at depths of 2 meters or less. However, in times of drought, there is a pos-

sibility that the substrate of shallow water wetlands may be exposed [36]. Shallow

water often occupies transitional zones between other wetlands and deep water and

are dominated by submerged aquatic vegetation [7]. Photographs of different classes,

acquired from the pilot sites in Newfoundland and Labrador, are illustrated in Figure

4.2. Also, these five wetland classes are superimposed on a SAR image in Figure 4.3.

For field data collection, high resolution aerial photographs were initially used for

the selection of potential wetland sites. Then, a team of biologists visited candidate

locations based on the convenience of accessibility, and also public or private own-

ership of the land. Finally, the visited sites were classified into one of the wetland

classes described by the CWCS. For each wetland site, in addition to the location of

the selected class, other information such as photographs, and field notes on the dom-

inant vegetation, hydrology and adjacent landscape were provided. The classification
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(a) (b)

(c)

(d) (e)

Figure 4.3: A RADARSAT-2 C-band image depicted in false color composite (|Shh|2

as the red, |Shv|2 as the green, and |Svv|2 as the blue channel) with a) Bog, b) Fen,

c) Marsh, d) Swamp, and e) Shallow Water polygons overlaid on that.
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categories, along with the ancillary information, were later processed to provide the

polygons for training the classifier, as well as the accuracy assessment of the classi-

fication. 50 percent of the processed field data were used for training the classifier

and the other 50 percent were used for the accuracy assessment. Table 4.2 shows the

area of, and the number of training and test sites in, each pilot site. Also, Figure 4.4

shows the distribution of training and test sites in the Avalon pilot site. It is worth

mentioning that at the time of writing this paper, only the first phase of in situ data

collection was conducted during September and early October, 2015.

Table 4.2: The area of, and the number of training and test sites in, each pilot site.

pilot site Total

training

area (ha)

Total test

area (ha)

number of

training

sites

number of

testing sites

Avalon 413.80 385.29 113 109

Deer Lake 83.95 67.89 31 32

Goose Bay 326.74 228.77 30 29

Gros Morne 537.15 411.19 54 57

4.4.3 Image Datasets

RADARSAT-2, launched in 2007, is able to acquire full-polarimetric images in

C-band (5.405 GHz) with a revisit cycle of 24 days. RADARSAT-2 full-polarimetric

SAR images with Fine-Resolution Quad-Polarimetric (FQ) beam modes were used in

this study. Since the swath width of this type of imagery is small compared to that
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Figure 4.4: The distribution of training and test sites in the Avalon area.
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of other beam modes [37], more than one image was required to cover the pilot sites

for each pilot site. Moreover, as the purpose of this study is to compare the quality

of classification using multi-temporal images versus single-date ones, for each pilot

site at least two images from different dates were analyzed. The characteristics of the

applied RADARSAT-2 images are depicted in Table 4.3. In addition to RADARSAT-

2 images, optical satellite images (mainly RapidEye) were used for the purpose of

initial segmentation.

Table 4.3: The characteristics of the RADARSAT-2 images used in this study

Pilot Site Acquisition

Date

Mode Nominal

Range

Resolution

Incidence

Angle

Range

Acquisition

Date of the

Corresponding

RapidEye

Image

Avalon
2015/06/10 FQ4 13.8-12.7 22.1-24.1

2015/06/18
2015/08/21 FQ4 13.8-12.7 22.1-24.1

Deer

Lake

2015/06/23 FQ3 14.6-13.4 20.9-22.9

2015/06/182015/08/10 FQ3 14.6-13.4 20.9-22.9

2015/10/18 FQ16 9.0-8.6 35.4-37.0

Gros

Morne

2015/06/16 FQ2 15.4-14.1 19.7-21.7

2015/06/182015/08/03 FQ2 15.4-14.1 19.7-21.7

2015/10/14 FQ2 15.4-14.1 19.7-21.7

Goose

Bay

2015/06/30 FQ3 14.6-13.4 20.9-22.9
2015/06/18

2015/10/04 FQ3 14.6-13.4 20.9-22.9
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4.5 Method

A flowchart of the methods used in this study is represented in Figure 4.5 and

each section is briefly explained below.

Figure 4.5: The Flowchart of the method applied in this study.

4.5.1 Extraction of Covariance Matrix

SAR images are provided in the form of a Sinclair or Scattering matrix:
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S =







Shh Shv

Svh Svv






(4.1)

where SPQ is the complex scattering coefficient in the transmitting polarization

of P and the receiving polarization of Q [38]. The scattering matrix provides the

absolute phase recorded for each polarization channel, which can be distorted during

processing. Therefore, the scattering matrix should be converted to the covariance

matrix, as follows [38]:

C =












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∗
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2SvvS

∗
hv |Svv|2















(4.2)

where the superscript * implies the complex conjugate. This matrix contains

the relative phase information, which is not deformed during preprocessing steps.

Therefore, the covariance matrix was extracted from all available SAR images before

other kinds of processing.

4.5.2 Applying Speckle Filter

SAR images are blemished with the effect of speckle. Speckle is the salt-and-

pepper structure of SAR data, which occurs because of the coherent nature of SAR

images. This phenomenon hinders image segmentation and classification, and thus

should be reduced. For this purpose, a 7-by-7 Lee's Refined PolSAR filter [39] was

applied to the images after the extraction of the covariance matrix.
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4.5.3 Terrain Correction and Georeferencing

SAR imagery has a number of geometric distortions as a result of SAR side-looking

geometry. The most important geometric distortions are layover, foreshortening and

shadow (refer to [40] for more details) which should be removed by terrain correc-

tion. For this purpose, height information from a Digital Elevation Model (DEM)

is used to remove these deformations [41]. In this work, both terrain correction

and geocoding were carried out using the ASF MapReadyTM software and Canadian

DEMs (CDEMs), produced by Natural Resources Canada (NRCan) with the vertical

accuracy of 10 meters, and the horizontal resolution of 15 by 25 square meters.

4.5.4 Extraction of Different Features

4.5.4.1 Polarimetric Features

In the next step, several polarimetric features, including the covariance matrix,

coherency matrix, Freeman-Durden decomposition [42] and H/A/alpha decomposi-

tion [43] were extracted from the full-polarimetric SAR images to be evaluated for

classification of wetlands.

The coherency matrix is defined as below [44]:

T =
1

2















|Shh|2 + 2ℜ(ShhS
∗
vv) + |Svv|2 |Shh|2 − 2jℑ(ShhS

∗
vv)− |Svv|2 2ShhS

∗
hv + 2SvvS

∗
hv

|Shh|2 + 2jℑ(ShhS
∗
vv)− |Svv|2 |Shh|2 − 2ℜ(ShhS

∗
vv) + |Svv|2 2ShhS

∗
hv − 2SvvS

∗
hv

2ShvS
∗
hh + 2ShvS

∗
vv 2ShvS

∗
hh − 2ShvS

∗
vv 4|Shv|2















(4.3)

The summation of diagonal elements of the covariance and the coherency matrix
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is the same [44]. Also, eigenvalues of both covariance and coherency matrices are real

and the same [44]. However, the interpretation of physical scattering mechanisms is

performed easier using the coherency matrix [45].

Freeman-Durden decomposition divides the total power received from the sensor

into three types of scattering mechanisms. Volume scattering is the type of scat-

tering typically received from tree canopies and vegetation. Double bounce scatter-

ing represents scattering from surfaces with different dielectric properties. Finally,

odd scattering shows the scattering from a moderately rough surface [42]. Some re-

searchers have used Freeman-Durden decomposition for wetland classification, and

have reported promising results (e.g. [14]).

H/A/Alpha decomposition generates parameters which can characterize the mech-

anism of scattering, and which therefore distinguish various targets. H (entropy), A

(anisotropy) and Alpha are the parameters which are derived from the eigenvalues of

coherency matrix. Each of the scattering mechanisms (surface, double bounce, and

volume) has a specific range of entropy, anisotropy, and alpha. This fact helps in

the determination of scattering mechanisms for a specific object, which, in turn, can

determine a specific class for that object. H/A/Alpha decomposition has also been

applied in several papers for wetland classification (e.g. [46]).

4.5.4.2 Ratio and Textural Features

Using other object-based features in the classification in addition to the conven-

tional object mean can be useful [47–49]. Therefore, in this study we evaluated the

effect of several ratio and texture features on the classification.
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Ratio Features Although the absolute intensity values in each channel of a SAR

image are valuable in classification, the relative values have also proved important,

and might result in a higher distinction capability for a classifier. For this reason, the

potential of ratio features was assessed in this study for wetland classification. Three

types of ratio features that were applied in this study are illustrated in Equations 4.4

to 4.5.

|Shv|2
|Shh|2

(4.4)

|Shv|2
|Svv|2

(4.5)

|Shv|2
|Shh|2 + 2|Shv|2 + |Svv|2

(4.6)

The potential of the different combinations of the above features, for all available

dates, was evaluated for wetland classification in all four pilot sites.

Textural Features Grey Level Co-occurrence Matrix (GLCM) is one of the most

commonly used measures for evaluating texture [47]. This matrix is a tabulation of

the occurrence frequency of different combinations of pixel grey levels. The evalu-

ated combinations for the occurrence of pixel grey levels can be in various directions,

including vertical, horizontal, diagonal directions, or even the summation of all direc-

tions [31,50]. This matrix is the basis for estimation of many texture measures, such

as contrast, dissimilarity, homogeneity and so on. In pixel-based GLCM, a rectan-

gular neighbourhood is defined for each pixel based on which GLCM is constructed.

169



In object-based GLCM, this neighbourhood is actually the whole object in which

the pixel lies which causes the estimated texture measure to be of higher reliability.

As some of the texture measures proposed by [50] are strongly correlated with the

others [47], two measures were selected for the assessment of the role of texture mea-

sures in wetland classification: GLCM Dissimilarity and GLCM Entropy, which have

been reported popular in the literature [47]. In this paper, all GLCM criteria were

computed for various combinations of multi-date intensity layers, and in all directions.

GLCM Dissimilarity is a measure of the amount of variation in an object. This

measure is high if the local dissimilarity is high. Dissimilarity is computed from the

GLCM matrix using the following formula [50]:

N−1
∑

i,j=0

Pi,j|i− j| (4.7)

where i and j are row and column number, respectively, N is the total number of

rows or columns and Pi, j is the normalized value in the cell i,j of the GLCM matrix.

GLCM Entropy is a measure of spatial disorder. The value of Entropy is high if

a local region has a completely random distribution of grey levels. It has a low value

if the corresponding image layer has a solid tone [50]. It is defined as follows [50]:

N−1
∑

i,j=0

Pi,j(−lnPi,j) (4.8)

where ln is the natural logarithm. The two previously mentioned texture measures

were evaluated for wetland classification in all four pilot sites and the results are

reported in the following sections.
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Segmentation Our alternative method for segmentation of the SAR images was to

use an optical image covering the same geographical area as the SAR image and to

segment it using the multiresolution algorithm. Then, the result of the segmentation

of the optical image is superimposed on the SAR feature sets. Finally, SAR feature

sets are segmented using those results to generate object-based features. This method

is especially useful because as a result of the presence of speckle, individual pixel values

in SAR images are not meaningful even after applying filters. However, the average

of a group of pixels can be an accurate representative of a class for classification.

For each SAR image, an optical image over the same area was segmented using

the multiresolution algorithm by applying the eCognition DeveloperTM 9. The co-

registration accuracy for each of the four pilot sites was below half a pixel. After

trial and error based on visual assessment of the obtained objects, a scale of 300 and

a color weight of 0.9 (corresponding to a shape weight of 0.1) were selected for this

purpose. Then, the segmentation layer was superimposed on the layers obtained from

SAR features to generate object-based features. For each feature layer, the mean of

the pixel values per object was assigned to the whole object. Then, based on the

obtained objects, ratio and textural features were computed.

Random Forest Classification Finally, the RF classifier in eCognition DeveloperTM

9 was used for classification. RF was selected because a study done by [51] showed RF

outperforms several other classifiers such as Maximum Likelihood (ML) and Classifi-

cation and Regression Tree (CART) for wetland classification. The RF classifier has

various user-defined parameters. The depth of the tree is the level to which each tree

is grown. The minimum number of samples per node determines the smallest number
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of training samples which are used at each node to predict the label of an object.

The minimum tree number is the smallest number of trees which is used to make a

decision on the label of an object. The number of active variables is the number of

randomly selected features in each node to be used for finding the best split. After

experimenting with different values, the depth of the tree was set at 5, the minimum

number of samples per node was set at 3, the maximum tree number was set at 50,

and the number of active variables was set to the square root of the total number of

features.

Initially, single-date classification was carried out utilizing all available single-date

feature sets. Then, by analyzing the accuracy of all single-date classifications, the

best multi-date combination of the feature sets was selected and assessed in terms

of accuracy. Next, the results of single-date classifications were compared to that

of multi-date classification. Finally, the effect of ratio and textural features was

evaluated on the best classification result.

4.6 Results and Discussion

For wetland classification of each pilot site, five wetland classes (Bog, Fen, Marsh,

Swamp and Shallow Water) and three non-wetland classes (Upland, Urban, and Deep

Water) were initially considered for classification. However, depending on the avail-

ability of field data, the classes selected to be included in the classification differ in

each pilot site. The next sections are organized as follows: first, the performance

of the object-based method and the proposed segmentation method is investigated.

Then, the results of classification using multi-date polarimetric features are presented.
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Finally, the effect of ratio and textural features on the classification accuracy is eval-

uated.

4.6.1 Evaluation of the Proposed Segmentation Method

Two images, segmented with the multiresolution algorithm, along with the cor-

responding resulting maps are represented in Figure 4.6. In Figure 4.6 (a), the SAR

image is solely segmented using SAR layers. The segments clearly do not visually

match the real-world objects. That is because the segmentation algorithms devel-

oped for optical images are not appropriate for SAR images, as they do not take into

account the speckle phenomenon existing in SAR images. For segmenting the image,

initially an optical image covering the same geographical area as the SAR image, has

been segmented (Figure 4.6 (b)) and the result of segmentation from that area has

been superimposed on the SAR image. In object-based classification, the mean value

of each feature is assigned to the entire image object. This causes the resulting map

in Figure 4.6 (c), for which the segments do not conform to real-world objects, to be

of poor quality. The reason is that with the wrong segments, the mean calculated for

a given segment will be affected by several targets included in that object. However,

when the segments are consistent with real-world objects, as illustrated in Figure 4.6

(d), the calculated mean belongs to one object only and hence the resulting map is

of higher quality.
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(a) (b)

(c) (d)

Figure 4.6: Comparison between segmentation using only SAR layers over the Avalon

area versus segmentation using an optical image over the same area: a) Segmentation

using only SAR layers, b) Segmentation using an optical image from the same area, c)

Classification resulted from segmentation depicted in part (a), and d) Classification

resulted from segmentation depicted in part (b).
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4.6.2 Comparison of Object-based Classification with Pixel-

based Classification

For emphasizing the advantage of object-based classification over pixel-based clas-

sification, two corresponding resulting maps for the Avalon area are illustrated in

Figure 4.7. The object-based map (Figure 4.7 (b)) had greater homogeneous areas

identified. Moreover, the classified image is much cleaner and the classified areas are

visually more similar to real-world objects compared to pixel-based map (Figure 4.7

(a)). To compare the resulting maps quantitatively, the overall accuracy and per-class

accuracies for both maps are represented in Table 4.4. Not only is the overall accu-

racy of the object-based map higher, but also the per-class accuracies are higher than

those of the pixel-based map. The results clearly show the benefit of the object-based

map over the pixel-based map.

4.6.3 Classification Results

For all pilot sites, the overall classification accuracy using various sets of param-

eters is reported. For the objectives of evaluating efficiency of wetland classification,

overall accuracy alone is not sufficient for evaluating the quality of classification, as

the accuracy of non-wetland classes also affects the value of this parameter. Therefore,

the average producer and user accuracies of exclusively wetland classes are presented

in addition to the overall accuracy. For the best classification result, per-class accu-

racy is also reported.

Based upon the above discussion, for each pilot site, the first step was to perform

the classification using the available sets of features. On an individual basis, these
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(a) (b)

Figure 4.7: Comparison between pixel-based and object-based classifications in the

Avalon pilot site: a) Pixel-based classification, and b) Object-based classification.
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Table 4.4: Comparison between the pixel-based and object-based classification accu-

racies using multi-resolution algorithm over the Avalon area.

Pixel-Based Classification Object-Based Classification

Class Producer

Accuracy (%)

User

Accuracy (%)

Class Producer

Accuracy (%)

User

Accuracy

(%)

Bog 70 62 Bog 79 76

Fen 35 23 Fen 58 36

Marsh 69 26 Marsh 60 33

Urban 32 80 Urban 40 83

Upland 50 74 Upland 66 80

Deep Water 100 100 Deep Water 100 100

Pixel-Based Classification 71 Object-Based Classification 79
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features include C3 and T3 matrices and Cloude-Pottier and Freeman-Durden decom-

positions. Then, based on the obtained results, the best multi-date combination was

selected for the classification of the pilot site. As the number of training samples for

the wetland classes is rather small, using all the features from multiple available dates

causes the classification accuracy to decrease due to the Hughes phenomenon [52], and

consequently, is not recommended.

4.6.3.1 The Avalon Area

For both single-date and multi-date classifications, the overall accuracies along

with the wetlands average producer and user accuracies are depicted in Figure 4.8.

The overall accuracy and the wetlands average user accuracy is higher for the multi-

date classification than all single-date classifications, and the wetland's average pro-

ducer accuracy is lower than only one of the single-date classifications (T31). There-

fore, it can be concluded that overall, the presented multi-date classification (C31+T32)

had the best performance compared to the single-date cases. The best classification

map and the best classification accuracies are illustrated in Figure 4.9 and Table 4.5,

respectively. Bog, Urban, and Deep Water classes had acceptable accuracies, while

the producer accuracy for the Urban class and the user accuracies for the Fen and

Marsh classes are low. There is a considerable amount of commission error for Fen

and Marsh classes, i.e. some parts of other classes have been mistakenly classified

as Fen or Marsh. Conversely, there is a high omission error for urban areas indicat-

ing that significant parts of the urban area have been mistakenly classified as either

wetland or upland classes. This is also clear from Figure 4.9 because a considerable

section of urban region has been classified as Marsh. The low accuracy for the urban

178



area can be attributed to the lack of optical data. Optical data are commonly used

to accurately detect urban areas as a result of having a NIR band for distinguishing

between vegetation and man-made structures. One reason for the low accuracies of

wetland classes is suspected to be the small number of training samples available for

them.

Figure 4.8: Single-date and multi-date overall and per-class accuracies for the Avalon

area. C3=Covariance Matrix, T3=Coherency Matrix, Fr=Freeman-Durden Decom-

position, HAA=H/A/Alpha decomposition. The rightmost number of each feature's

abbreviation indicates the sequence of acquisition. Example: C31=Covariance Matrix

obtained from the first acquired imagery over the pilot site.

4.6.3.2 Deer Lake

Figure 4.10 illustrates the overall accuracy using a different set of polarimetric fea-

tures, as well as the average producer and user accuracies of wetland classes for both
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Figure 4.9: Map classified using multitemporal C31+T32 for the Avalon pilot site.

180



Table 4.5: Classification accuracies using multitemporal C31+T32 for the Avalon

pilot site.

Class Producer Accuracy User Accuracy

Bog 79% 76%

Fen 58% 36%

Marsh 60% 33%

Urban 40% 83%

Upland 66% 80%

Deep Water 100% 100%

Overall Accuracy 79%

single-date and multi-date cases. The results show that when we use some single-date

features, the overall accuracy is higher than that of the best multi-date combination

(HAA1+HAA2+C31). However, the multi-date combination has the largest aver-

age user and producer accuracies for wetlands (87% and 68%, respectively). Figure

4.11 and Table 4.6 show the result of the best classification accuracy for Deer Lake.

According to Table 4.6, with the exception of the Fen Class, which has a low user

accuracy, and consequently a high amount of commission error, other classes have

acceptable accuracies in spite of the low amount of training data. According to Table

4.9, which shows the confusion matrix for the best classification result of Deer Lake,

a considerable part of the Upland class has been recognized as Fen.
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Figure 4.10: Single-date and multi-date overall and per-class accuracies for Deer

Lake. C3=Covariance Matrix, T3=Coherency Matrix, Fr=Freeman-Durden Decom-

position, HAA=H/A/Alpha decomposition. The rightmost number of each feature's

abbreviation indicates the sequence of acquisition. Example: C31=Covariance Matrix

obtained from the first acquired imagery over the pilot site.

Table 4.6: Classification accuracies using multitemporal HAA1+HAA2+C31 for the

Deer Lake pilot site.

Class Producer Accuracy User Accuracy

Upland 74% 96%

Fen 85% 44%

Bog 97% 94%

Deep Water 100% 100%

Marsh 78% 65%

Overall Accuracy 85%
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Figure 4.11: Map classified using multitemporal HAA1+HAA2+C31 for the Deer

Lake pilot site.
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4.6.3.3 Goose Bay

The overall accuracy along with the average wetlands producer and user accu-

racies using various single-date parameter sets and the selected multi-date set are

demonstrated in Figure 4.12. Freeman-Durden decomposition for the first date has

performed better than all other feature sets. After that, however, the multi-date

combination is the only feature set for the map where all three accuracies (overall

accuracy, average wetlands producer accuracy and average wetland user accuracy)

are high. Moreover, in the multi-date combination average user and producer accura-

cies for wetlands are closer to each other compared to the first-date Freeman-Durden

decomposition, which shows that the resulting map is more reliable. Figure 4.13 and

Table 4.7 show the result of the best classification accuracy for Goose Bay. There

are a number of low accuracies reflected in Table 4.7. The producer accuracy for the

Urban class and user accuracy for the Upland class are both low which corresponds

to a high omission rate for the Urban and a high commission rate the Upland class.

Table 9 clearly shows the confusion between these two classes. Moreover, both user

and producer accuracies are low for the Fen class. We believe the low accuracies and

presence of unclassified parts of the pilot suites result from the low amount of training

data.

4.6.3.4 Gros Morne

For the Gros Morne pilot site the overall classification accuracies using single-date

feature sets are in the range of 80 to 85 per cent, while using the multi-date set the

accuracy was 95 per cent (Figure 4.14). Although the wetlands average producer
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Figure 4.12: Single-date and multi-date overall and per-class accuracies for Goose

Bay. C3=Covariance Matrix, T3=Coherency Matrix, Fr=Freeman-Durden Decom-

position, HAA=H/A/Alpha decomposition. The rightmost number of each feature's

abbreviation indicates the sequence of acquisition. Example: C31=Covariance Matrix

obtained from the first acquired imagery over the pilot site.

Table 4.7: Classification accuracies using multitemporal T31+C32 for the Goose Bay

pilot site.

Class Producer Accuracy User Accuracy

Deep Water 100% 100%

Urban 50% 85%

Bog 85% 95%

Upland 99% 44%

Fen 57% 36%

Overall Accuracy 76%
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Figure 4.13: Map classified using multitemporal T31+C32 for the Goose Bay pilot

site.
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accuracy is sometimes higher with the single-date feature sets than the multi-date

feature set, the multi-date feature set is the only situation in which both the producer

and user accuracies are high and are similar in value. The best classification results

for Gros Morne are reflected in Figure 4.15 and Table 4.8. All obtained accuracies

are reasonable except for the Swamp class, which has a low accuracy. According to

Table 9, a considerable part of the Swamp class has been recognized as Upland. This

is expected, because the C-band wavelength is not long enough to penetrate through

the canopy and detect the water beneath the trees, which would indicate a Swamp

class.

Figure 4.14: Single-date and multi-date overall and per-class accuracies for Gros

Morne. C3=Covariance Matrix, T3=Coherency Matrix, Fr=Freeman-Durden De-

composition, HAA=H/A/Alpha decomposition. The rightmost number of each fea-

ture's abbreviation indicates the sequence of acquisition. Example: C31=Covariance

Matrix obtained from the first acquired imagery over the pilot site.
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Figure 4.15: Map classified using multitemporal C31+C32+Fr3 for the Gros Morne

pilot site.
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Table 4.8: Classification accuracies using multitemporal C31+C32+Fr3 for the Goose

Bay pilot site.

Class Producer Accuracy User Accuracy

Upland 84% 83%

Deep Water 100% 100%

Bog 96% 99%

Swamp 57% 39%

Marsh 77% 63%

Overall Accuracy 95%

Also, for a more detailed analysis, the confusion matrices for the best classification

result of the all four pilot sites is represented in Table 4.9.

4.6.4 The Effect of Ratio and Textural Features

For each pilot site, the previously introduced texture and ratio features were added

to the mean feature set, which resulted in the best classification accuracy for that

pilot site. Different combinations of the ratio and texture features were evaluated for

this purpose and the one that generated the best outcome is presented in Table 4.10.

For the Avalon area, amongst the different ratio features evaluated, the ratio fea-

ture of Equation 4.4, for both available dates of the Avalon area, made a 2 percent

improvement in the overall accuracy. As a result of adding the mentioned features,

the classification accuracy of the Fen, Urban, and Upland classes increased, which

means the confusion between the Urban class and Wetland classes was reduced. Re-
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Table 4.9: Confusion matrices for the best classification result in a) The Avalon area

b) Deer Lake c) Goose Bay d) Gros Morne

Bog Fen Marsh Urban Upland Deep Water Total
Bog 79.28 19.61 0.26 12.9 1.53 0 14.64
Fen 19.61 57.68 15.11 15.7 18.57 0 13.35

Marsh 0.57 11.16 60.03 16.74 13.44 0.1 8.11
Urban 0.15 0.06 21.78 40.37 0 0.02 5.91
Upland 0.4 11.49 2.82 14.29 66.46 0 14.5

Deep Water 0 0 0 0 0 99.88 43.49
Total 100 100 100 100 100 100 100

(a)
Upland Fen Bog Deep Water Marsh Total

Upland 74.34 6.43 1.85 0 13.33 35.67
Fen 23.35 84.64 0.14 0 4.44 19.6
Bog 1.83 6.43 97.15 0.23 4.44 26.66

Deep Water 0 0 0 99.77 0 16.07
Marsh 0.48 2.5 0.86 0 77.78 1.99
Total 100 100 100 100 100 100

(b)
Deep Water Urban Bog Upland Fen Total

Deep Water 100 0 0 0 0 20.25
Urban 0 49.59 1.43 0.75 20.36 17.12
Bog 0 0.29 85.32 0 15.35 29.5

Upland 0 30.65 0.06 98.75 7.21 17.47
Fen 0 19.47 13.19 0.5 57.08 15.66
Total 100 100 100 100 100 100

(c)
Upland Deep Water Bog Swamp Marsh Total

Upland 84.5 0 1.31 38 17.66 11.24
Deep Water 0 100 0 0 0 27.25

Bog 2.33 0 96.27 4.4 5.71 55.47
Swamp 11.58 0 0.56 56.8 0 2.64
Marsh 1.6 0 1.86 0.8 76.62 3.41
Total 100 100 100 100 100 100

(d)
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garding textural features, using GLCM Dissimilarity of HH and VV layers for the

first available date raised the overall accuracy by 1 percent. The Fen and Upland

classes were better distinguished owing to the use of the discussed textural features.

The ratio features of Equation 4.6 for both available dates of Goose Bay made a 1

percent increase in the overall accuracy. Similar to the Avalon area, the accuracy of

the Fen, Urban, and Upland classes was slightly improved through using the specified

ratio features. Respecting textural features, GLCM Dissimilarity of the VV intensity

layer for the first available date of the pilot site increased the overall accuracy by 1

percent. The Fen and Upland classes were better distinguished using the mentioned

textural features.

According to Table 4.10, no improvement in classification accuracy can be ob-

tained by using object-based features in the Deer Lake and Gros Morne pilot sites.

Moreover, unlike GLCM Dissimilarity, GLCM Entropy did not have any positive

effect on the classification.

4.6.5 Discussion

By investigating the single-date accuracies of all pilot sites, it can be observed

that the images acquired in August yield the most accurate map for wetlands. The

images taken in June resulted in suitable classification accuracies as well. The SAR

images captured in October, however, do not seem to be as useful for wetland clas-

sification. Although the October imagery generated maps with an acceptable overall

accuracy, they resulted in overestimation of wetland areas, as the average wetlands

user accuracy associated with those images is rather low. The reason of this might
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Table 4.10: The effect of ratio and textural features on classification accuracy and

the percentage of change relative to the best classification accuracy.

Ratio Feature Texture Feature
Pilot

Site

Selected Feature Resulting

Overall

Accuracy

Change

(%)

Selected Feature Resulting

Overall

Accuracy

Change

(%)

Avalon Ratio feature of

Equation 4.4

81% +2% GLCM

Dissimilarity of

HH and VV

layers for the first

available date

80% +1%

Deer

Lake

No Useful

Feature

85% 0% No Useful

Feature

85% 0%

Goose

Bay

No Useful Ratio

feature of

Equation 4.6

77% +1% GLCM

Dissimilarity for

VV intensity

layer for the first

available date

77% +1%

Gros

Morne

No Useful

Feature

95% 0% No Useful

Feature

95% 0%
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lie in the fact that the growing season in Newfoundland and Labrador, generally, is

during the spring and summer. During this time, plants are able to grow tall, spread

their leaves, and become green. In June, the vegetation within wetlands is not at

its most mature. Later, in August however, the vegetation is completely grown, and

therefore the distinguishing features of wetlands are clearer. As summer ends, so does

growing season. During October, plants will stop growing, and begin to die and lose

their vitality. Moreover, increased precipitation may cause the presence of standing

water in non-wetland areas. This can be the reason the distinctive characteristics of

wetlands start to disappear and/or resemble other types of land cover.

The overall, wetlands average user, and wetlands average producer accuracies of

the Deer Lake and Gros Morne pilot sites were substantially higher than those of the

Avalon area and Goose Bay pilot sites. We believe higher classification accuracies

resulted from images from three different dates available for Deer Lake and Goose

Bay, while for the Avalon and Goose Bay, only images from two dates were used.

Therefore, having images from several dates can be an asset in classification, although

this higher accuracy can be accounted for by other factors.

The covariance matrix proved to be an appropriate feature for wetland classifi-

cation and was used in the best feature set for every pilot site. That is probably

because the covariance matrix not only contains intensity of the three main layers,

but also encompasses the phase difference between channels. Phase difference be-

tween polarimetric channels is useful for flood detection and therefore, for wetland

characterization [18, 53, 54].

Textural and ratio features slightly improved the classification accuracy in the

Avalon area and Goose Bay while they did not have any effect on the maps of Deer
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Lake and Gros Morne. However, it is important to keep in mind that these changes

might have happened because of other factors, and the improvement in the accuracy

might not be directly related to the aforementioned ratio and textural features.

[51] used the RF algorithm for wetland classification in the same pilot sites, but

using only optical data. They reached an overall accuracy ranging from 86% to 96%

and the average producer and user accuracies of 68% to 73%. This means that in

our study areas, the sole use of optical data is preferred to the sole use of SAR data.

Nevertheless, the fusion of the optical and SAR data is the most promising method.

For example, [55] applied both SAR and optical data in our study area, and obtained

the average producer and user accuracies of 71% and 72%, respectively over all pilot

sites.

It is also worth mentioning that since the training data for the current classifica-

tions were collected during the first phase of the project, the data were sometimes

not enough to provide the final classification results. Therefore, what is described in

this paper is the preliminary classification result of the pilot sites and the completed

version of classification will be presented in future work.

4.7 Conclusion

The purpose of this paper was to present preliminary wetland classification re-

sults for four pilot sites in Newfoundland and Labrador. Object-based classification

was initially compared with the pixel-based classification. The results indicated that

the object based method demonstrated superior performance both statistically and

visually. Besides, an alternative method was introduced in this paper for segmen-
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tation of SAR images. In this method, first an optical image over the same area

as the SAR image is segmented, and the result of the segmentation of the optical

image is then overlaid on the SAR image. This method worked well for the SAR

images and improved the results. Finally, multi-date object-based classification using

RADARSAT-2 data was compared with single-date classification for wetland map-

ping using the RF classifier. Four pilot sites within the province of Newfoundland

and Labrador were selected for this purpose. It was concluded that for all the pi-

lot sites, multi-date classification performed better than the single-date classification.

Overall accuracies ranging from 75 to 95 per cent were obtained. It was observed

that the images acquired in August yield the greatest accuracy for wetlands, while

images captured in October were not as appropriate for wetland mapping. Moreover,

it was concluded that when more acquisition dates are included in classification, the

overall, as well as wetlands, accuracies become substantially higher. The covariance

matrix proved useful as a wetland classification feature used in producing maps with

the highest wetland classification accuracies in the four pilot sites. Ratio and tex-

tural features improved the accuracy slightly in the Avalon and Goose Bay areas.

The mentioned features had the most effect on the Fen, Urban, and Upland classes.

In Deer Lake and Gros Morne, however, ratio and textural features did not play a

considerable role.

The presented results demonstrate that multi-date SAR classification along with

the object-based method proposed in this paper, has the potential for accurate map-

ping wetlands throughout the province. The results in this study were obtained using

a small amount of field data for training. Thus, more robust results will be provided

in future work, after more field samples are collected in the next phase of the project.
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Chapter 5

A Novel Dynamic Classification

Scheme for Mapping Spectrally

Similar Classes: Application to

Wetland Classification

5.1 Preface

In this chapter, an innovative dynamic classification scheme was proposed which

has proved effective for classification of wetlands or other complicated land covers.

The paper resulted from this chapter has been submitted and is currently under

review.
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5.2 Abstract

Land cover classification is one of the most critical, yet challenging applications

of Remote Sensing (RS) technologies. Applying numerous features is common for

complex land cover classification, which makes feature selection necessary. Although

in the case of spectrally similar classes such as wetlands, selected feature subsets may

yield high overall accuracies, several individual accuracies are often low. One of the

reasons behind this phenomenon is that a single feature set used to separate one

specific class from the rest might not be appropriate for delineating another class,

because the nature of the classes is different from each other. An additional reason is

that while the overall accuracy is applied as the measure for evaluating the potential

of a feature subset, it may be influenced by a few high-accuracy classes which are

spectrally distinct, and for which collecting enough training data is feasible. In this

article, rather than simultaneously mapping all the classes, they were classified on

an individual basis with a different feature selection associated with each. Spectral

analysis was applied to determine both the order of the classes to be mapped and a

merging scheme which was applied to the remaining classes to increase the accuracy

of the target class. The proposed approach was applied to wetland mapping using five

pilot sites throughout Newfoundland and Labrador, Canada. The dataset available

for each pilot site differed in quality and quantity. However, the proposed method

functioned accurately in all pilot sites, even those with limited satellite and/or field

data, and outperformed the classic method by increasing the average producer and

user accuracies of wetlands by up to 22% and 25%, respectively. This classification

scheme can be applied for mapping any spectrally similar classes.
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5.3 Introduction

Since the advent of Remote Sensing (RS), land cover classification using satellite

imagery has been one of its most practical applications. Understanding land covers

and their transition over time are key elements for monitoring the environment and

surface energy balance, and are also principal inputs for other terrestrial processes,

including biogeochemical cycles, biomass distributions, and carbon budgets [1–3]. In

this regard, RS possesses numerous advantages over the classic ground-based method,

which make it ideal for classification. These benefits include extensive spatial cover-

age, high repetitivity, the availability of images from a wide electromagnetic spectrum

and various geometries, and a high potential for automation [4]. At the same time,

the availability of several open source satellite images in recent years in both opti-

cal and SAR domains, such as Landsat-8, ASTER (Advanced Space borne Thermal

Emission and Reflection Radiometer), and Sentinel-1 and -2, has provided the pos-

sibility of monitoring different land covers with minimal cost. This, in turn, has

stimulated a growing demand on improving the existing algorithms for classification

using remotely-sensed imagery.

With the advancement of the existing algorithms for image classification, and the

advent of state-of-the-art techniques, such as Object Based Image Analysis (OBIA),

mapping various land covers with acceptable accuracy is possible. However, distin-

guishing between some classes using remotely sensed imagery remains challenging,

as a result of the high level of spectral resemblance between them. Urban [5, 6],

crop [7, 8], sea ice [9], and wetland [10–12] classifications, for example, fall into this

category.
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Wetlands are highly beneficial to the environment and provide natural habitats for

several species of flora and fauna. Nevertheless, these valuable natural resources have

been drained and supplanted with other land uses [13, 14]. Therefore, it is pivotal

to monitor the status of wetlands as well as their variation over time. However,

wetland classification using remote sensing methods has always been a challenging

task, because they have high intra-class and low inter-class variability, and their

borders are difficult to determine [15,16]. Furthermore, wetlands are typically located

in difficult to reach locales, and, therefore, collecting enough training data for them

is often complicated and expensive [17]. Moreover, wetland have a high spatial and

temporal variability [18].

One of the solutions sought for mapping spectrally similar classes using remote

sensing methods is to apply various features from multiple sources, dates, and con-

figurations [12, 19, 20]. However, increasing the number of features makes using an

appropriate feature selection algorithm imperative. This is because the entire feature

set cannot be applied in the classification due to the resulting computational com-

plexity, and the classifier inability to sufficiently generalize the classification statistics

to all feature layers due to the inadequate amount of training data.

Thus far, numerous feature selection algorithms have been proposed and have

been applied in many studies [21–23]. In commonly-used feature selection methods

for remote sensing applications, a single feature subset is selected for executing the

whole process of classification. Usually, the measure for selecting a feature subset as

the suboptimal solution for classification is the level of the overall accuracy associ-

ated with that. When the accuracies of all or most classes matter equally, the overall

accuracy is one of the few measures which can be a representative of the classification
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quality. However, when some of the involving classes are spectrally similar to each

other, although the overall accuracy is acceptable after feature selection and clas-

sification, some individual class accuracies usually remain low. This is predictable,

because:

i A single feature subset does not suffice for separating each class from the rest of

the classes. The reason is that the nature of the classes and, consequently, the

required features for separating each, might be different.

ii The overall accuracy is affected by the accuracy of a few classes, for which ob-

taining an acceptable accuracy is not difficult. This is because these classes are

spectrally distinct from the rest of the classes. In addition, since these classes

can be recognized using high resolution imagery without the need of visiting the

field, their amount of training data is often large. On the contrary, the rest of

the classes are highly similar to each other, and collecting excessive field data for

them is often not feasible.

As a result, accuracy of the spectrally similar classes is unavoidably ignored in the

feature selection process, as other classes considerably influence the overall accuracy.

This problem is addressed in this study by proposing a method which does not

consider the feature selection and classification as two separate levels, but both steps

are parts of a dynamic process. Thus, the result of each step is an active input

for the other in a recursive loop, called a Dynamic Classification Scheme. In the

described approach, all the objects are not classified simultaneously, but the objects

belonging to each class are separated from the rest with a distinct feature selection and

classification. Determination of the classification order, i.e. the class to be mapped
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at each step (thereafter called the target class), is accomplished based on separability

analysis. While the target class is being mapped, the remaining classes which are

spectrally similar to each other are merged. Once the target class is mapped, it is

eliminated from the rest of the process, and then, the classified area corresponding

to the target class is masked.

Although the proposed method can be potentially applied to any challenging clas-

sification task, the suggested approach was applied to wetlands to evaluate its per-

formance. In this paper, it was attempted to exploit the maximum advantage of

full-polarimetric Synthetic Aperture RADAR (SAR), and also to utilize open source

and recently launched satellite imagery such as Sentinel-1 and -2.

This paper is organized as follows: Section 5.4 describes the study areas and data,

and Section 5.5 elaborates upon the proposed method extensively. Section 5.6 includes

the results of the suggested approach, the comparison with the classic method, and

some discussion regarding the applied procedure, before the paper is concluded in

Section 5.7.

5.4 Study areas and Data

5.4.1 Study Areas

Five pilot sites throughout Newfoundland and Labrador, rich in wetlands, were

selected in order to evaluate the proposed method for wetland classification (Figure

5.1). Figure 5.2 demonstrates the true colour composite of Landsat-8 image for Deer

Lake, and RapidEye image for the other pilot sites. The acquisition dates of RapidEye
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and Landsat-8 images have been mentioned in Table 5.1. Each pilot site covers an

area of approximately 700 to 1000 km2 and varies in terms of climate, location in

the province, and the dominant land covers. The Avalon area and Gros Morne have

oceanic climate, while the climate of Deer Lake, Grand Falls, and Goose Bay is mostly

continental [24,25]. As can be seen from Figure 5.1, the four pilot sites of the Avalon,

Deer Lake, Gros Morne, and Grand Falls are located on the island of Newfoundland,

while Goose Bay is located in central Labrador. Other than peatlands (bogs and

fens), which are the dominant wetland types in the pilot sites, the pilot sites are also

covered with balsam fir, black spruce, and other land covers. For more details about

these pilot sites, the interested reader can refer to [24, 25].

5.4.2 Data

5.4.2.1 Satellite Data

Table 5.1 describes the satellite data used for the classification of each study area.

Thus far, research shows that amongst optical bands, the Near Infrared and Red-

Edge bands are the most useful features for delineating wetlands [18]. Amongst vari-

ous SAR configurations, long wavelengths and small incidence angles are appropriate

for detection of woody wetlands such as Swamp, and short wavelengths and large

incidence angles are useful for delineating herbaceous wetlands such as Marsh [18].

Therefore, various features from a combination of optical and SAR data can be useful

for delineating wetlands. Therefore, in all five pilot sites, a combination of optical,

SAR, and DEM data was applied. It was attempted to also exploit freely available

satellite data, namely Landsat-8, Sentinel-2, ASTER, Sentinel-1, and ALOS PAL-
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Figure 5.1: The pilot sites.
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(a) Avalon (b) Deer Lake (c) Gros Morne

(d) Goose Bay (e) Grand Falls

Figure 5.2: Optical images acquired over the five pilot sites in this study.
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SAR. ALOS PALSAR stopped working on May 2011 and, consequently, the images

acquired by this satellite are outdated relative to the rest of the images. However,

ALOS PALSAR data were included in the feature selection process, because L-band

images have proved useful for the detection of woody wetlands [15]. Moreover, since

wetlands show a high temporal variability, using data from multiple dates can im-

prove the classification accuracy [10–12,26] and, thus, multi-date images were utilized

as far as possible (Table 5.1). Table 5.2 demonstrates the characteristics of images

used in this study.

Table 5.1: data of acquisition for the satellite images used in the study as a function

of the site and the type (optical or SAR)

Sensor Avalon Deer Lake Gros Morne Goose Bay Grand Falls
Optical Images

RapidEye
2015/06/18 N/A 2015/06/18 2015/07/01 2015/06/10

2015/10/04
Landsat-8 2015/06/19 2016/09/30 2016/09/30 2016/09/19 2015/06/10
Sentinel-2 N/A N/A 2016/06/25 N/A N/A
ASTER N/A N/A N/A N/A 2015/09/23

SAR Images

RADARSAT-2

2015/06/10 2015/06/23 2015/06/16 2015/06/30 N/A
2015/08/21 2015/08/10 2015/08/03 2015/10/04

2015/10/18 2015/10/14

Sentinel-1
2015/08/20 2015/08/15 2015/08/15 2015/08/20 2015/08/13

2015/08/18 2015/08/23
ALOS-2 2015/08/02 N/A N/A N/A N/A
ALOS PALSAR 2010/08/29 2010/09/25 2010/08/10 2009/08/12 2010/08/05

Canadian Digital Surface Model (CDSM)

Space shuttle Endeavor 2000
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Table 5.2: The characteristics of images used in this study - all available bands of

sensors were used unless otherwise mentioned.

Satellite and

applied bands

Mode/

Level of

processing

Incidence angle

range (degrees)

resolution (m)

(range resolution

for SAR images)

RapidEye 3A N/A 5

Landsat-8

(Bands 2-7 & 10)

L1T N/A 30

(Multispectral)

15 (Pan)

Sentinel-2

(Bands 2-12,

excl. 10)

L1B N/A 10 - 20

ASTER

(Bands 1-3)

L1T N/A 15

RADARSAT-2 Single Look Complex (SLC)

Fine Resolution Quad

Polarization

Depending on the FQ number. For

more information, refer to [27]

Sentinel-1 Interferometric Wide (IW) -

level 1A

30-45 10

ALOS-1 Fine Beam Double

Polarization (FBD) - level 1.5

7.9-60 20

ALOS-2 Fine Beam Double

Polarization (FBD) - level 1

8-70 9.1
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(a) Bog (b) Fen

(c) Marsh

(d) Swamp (e) Shallow Water

Figure 5.3: Images of the wetland classes defined by the CWCS. Images were acquired

in the Avalon pilot site.
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5.4.2.2 Field Data

The Canadian Wetland Classification System (CWCS), developed by Environment

Canada in 1987 and updated in 1997, is a classification system specifically applicable

to the Canadian Wetland Inventory (CWI) [28]. Accordingly, for the purpose of

wetland classification in Newfoundland and Labrador, five wetland classes of Bog,

Fen, Marsh, Swamp, and Shallow Water, defined by CWCS, were considered for

classification. These classes are depicted in Figure 5.3, and a brief description of

each, adapted from [28, 29], is provided below.

Bog is a type of peatland, the water within which comes only from precipitation.

Therefore, these highly acidic and low-nutrient environments are mostly covered with

Sphagnum moss and ericaceous shrubs. Fen is another type of peatland. However, its

water source is not only from precipitation, but also from underground and surface

flows. Sedges, brown moss, and grass species are dominant in rich fens, while poor fens

are similar to bogs in terms of land covers. Swamp is wooded wetland, the wood within

which can be from trees or shrubs. The water level fluctuation in swamps is larger

than that in bogs and fens and both peat and mineral soil can form the substrate

of swamps. Marsh, however, can only be found on mineral soil. Additionally, the

water level within marshes can vary seasonally, monthly, or even daily. They can be

influenced by flood and evapotranspiration, or can be parched during a dry season.

Marshes are rich in nutrients, and typically appear with aquatic plants. Shallow water

is a body of water which has a depth smaller than two meters. Occasionally, however,

this depth might reduce to a level at which the substrate below is exposed. Aquatic

submerged vegetation usually dominate this type of wetland.
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For the purpose of field data collection, a team of biologists and wetland ecologists

visited all five pilot sites in summer and fall 2015, summer 2016, and summer 2017.

Initially, potential wetland sites were selected by visually analyzing aerial photos and

satellite images covering the pilot sites. Afterwards, a part of the potential sites

were visited based on the ease of accessibility, publicity of ownership, and the level of

resemblance of the site to one of the classes defined by the CWCS. Subsequently, if

the spot was in fact a wetland, several in-site GPS points along with ancillary notes

and photographs would be collected. This information was later used along with

several types of remote sensing data to delineate wetland training and test polygons.

The minimum sampling unit was one hectare. A similar procedure was followed

for collecting field data for the upland class. For other non-wetland classes such as

Deep water Urban, Sand, and Lichen-Woodland an analyst selected the best spots

using high-resolution aerial imagery. 50% of data was used for training, and 50% for

validation in each pilot site. Table 5.3 demonstrates the quantity of training and test

data in all five pilot sites in terms of the number of polygons for and the total area

covered by each class.

5.5 Method

Figure 5.4 demonstrates a flowchart for the method. Various levels for implemen-

tation of the algorithm are elaborated below.
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Table 5.3: The number and the area of the training and test data for each pilot site.

Pilot Site

(Total Area

(km2))

Classes # of

Training

Polygons

Area of

Training

polygons

(km2)

# of

Test

Polygons

Area of

Test

polygons

(km2)

Avalon (783)

Bog 42 1.37 41 1.3
Fen 20 0.44 19 0.4
Marsh 25 0.33 25 0.3
Swamp 22 0.22 23 0.2
Shallow Water 20 0.55 20 0.6
Deep Water 7 1.85 8 2.3
Urban 36 1.82 33 1.6
Upland 29 1.99 29 2.2
Total 201 8.6 198 8.7

Deer Lake (982)

Bog 16 1.29 15 1.07
Fen 27 0.63 27 0.58
Marsh 12 0.10 12 0.09
Swamp 20 0.27 20 0.29
Shallow Water 11 0.25 12 0.43
Deep Water 3 0.56 3 0.52
Upland 12 0.41 11 0.37
Total 100 3.34 101 3.51

Gros Morne (572)

Bog 19 4.34 19 3.45
Fen 15 0.46 16 0.52
Marsh 16 0.37 15 0.12
Swamp 21 0.25 21 0.23
Shallow Water 13 0.29 14 0.23
Deep Water 7 1.79 2 1.47
Upland 42 1.24 43 1.34
Total 130 7.48 134 8.74

Goose Bay (676)

Bog 14 2.07 14 1.88
Fen 14 0.60 15 0.79
Marsh 11 0.54 10 0.24
Swamp 12 0.19 11 0.16
Shallow Water 5 0.07 6 0.12
Deep Water 4 0.73 4 0.48
Urban 7 0.63 6 0.51
Upland 10 0.53 11 0.60
Sand 4 0.72 4 0.53
Lichen-Woodland 5 0.47 5 0.69
Total 84 6.54 86 6.01

Grand Falls (949)

Bog 15 1.53 15 2.04
Fen 31 1.14 30 0.80
Marsh 22 0.42 23 0.60
Swamp 15 0.22 15 0.25
Shallow Water 11 0.32 10 0.20
Deep Water 4 1.07 3 0.60
Urban 27 0.76 28 0.86
Upland 9 0.90 9 0.76
Total 134 6.37 133 6.11
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Figure 5.4: The flowchart of the dynamic classification scheme.

5.5.1 Preprocessing and Feature Extraction

Optical images used in this study were geometrically and radiometrically cor-

rected (Table 5.2), and only clear-sky optical images were selected for this work,

for which the atmospheric effect was negligible. Therefore, the pre-processing steps

are predominantly described for SAR images. In the raw SAR data, the absolute

phase is recorded which can be easily distorted during speckle reduction or the geo-

referencing process. Consequently, data should be converted to a format in which

the relative phase is recorded. Therefore, for the full polarimetric data the scat-

tering matrix was converted to the covariance or coherency matrices, and intensity

layers were extracted for other types of SAR data. In the next step, a speckle re-

duction filter was applied to the SAR data. Full polarimetric data were filtered
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by a 7-by-7 PolSAR Lee filter [30], and other types of SAR data were filtered by

a 7-by-7 Lee enhanced filter [31]. Afterwards, SAR layers were terrain corrected

and georeferenced using the MapreadyTM toolkit, developed by Alaska Satellite Fa-

cility (ASF; https://www.asf.alaska.edu/data-tools/mapready/). Subsequently, SAR

features were extracted from full polarimetric SAR data using PolSARproTM (Polari-

metric SAR Data Processing and Educational Toolbox) developed by the European

Space Agency (ESA). In this paper, it was attempted to utilize various polarimet-

ric features, which could be extracted from full-polarimetric RADARSAT-2 images.

Therefore, Covariance and Coherency matrices [32], Freeman-Durden [33], H-A-α [34],

Krogager [35], Neumann [36], Touzi [37], VanZyl [38], and Yamaguchi [39] decomposi-

tions were extracted from all the RADARSAT-2 images using PolSARproTM. Various

polarimetric decompositions divide the total SAR energy received by the sensor to

different portions, each of which has a physical meaning, and is therefore useful for

wetland detection and classification. As an example, Freeman-Durden decomposition

divides the total energy into surface, volume, and double-bounce scatterings, the last

of which has been effective for detecting flooded vegetation [15, 40]. Similarly, other

polarimetric parameters have been reported useful for wetland detection [41,42]. The

effectiveness of SAR remote sensing for wetland classification have been extensively

reviewed in [18].

5.5.2 Segmentation

In recent years, Object Based Image Analysis (OBIA) has proven superior to the

traditional pixel-based classification method [10, 43, 44], although this might not be
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always the case. In OBIA, the image is segmented into spectrally and geometrically

homogeneous objects. Consequently, incorporating spectral, spatial, textural, and

other features of the objects into classification is desirable. OBIA was applied in

this work, for which segmentation is a prerequisite. In this level, only optical images

and field data were ingested into the eCognition DeveloperTM software to segment the

pilot sites using the multi-resolution algorithm [45]. Field data polygons were required

to be considered in segmentation such that the boundary of segments conforms the

shape of polygons. The multi-resolution algorithm applies a bottom-up approach in

which pixels are considered object seeds and iteratively grow by being merged with

neighbouring objects in a pair-wise manner, depending on the scale, colour, and shape

parameters defined by the user. The merging process continues until a user-defined

threshold, based on the mentioned parameters, is satisfied [45]. As described in [10],

as a result of speckle in SAR data, segmentation of SAR data is by far more difficult

and less accurate than for optical imagery. Consequently, only optical images were

used in segmentation. The result of segmentation was also overlaid on the SAR and

DEM data.

5.5.3 Extraction of Object Based Features

Next, several object based features, including mean and standard deviation of all

available bands as well as textural and ratio features of SAR intensity channels were

applied. Texture of the objects was evaluated using the Grey Level Co-occurrence

Matrix (GLCM), which is a common measure for this purpose [46, 47]. GLCM dis-

similarity, entropy, angular second moment, standard deviation, and correlation (all
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extensively described in [46]) were evaluated for the available SAR intensity bands.

Moreover, various ratio features were defined based on SAR intensity bands:

R1 =
IHH

IHV

R2 =
IV V

IHV

R3 =
IHH

IHH + 2IHV + IV V

R4 =
IV V

IHH + 2IHV + IV V

(5.1)

where Ipq is the intensity (power) in the channel with the transmitting polarization of

p and the receiving polarization of q which can be horizontal (H) or vertical (V). Note

that in R3 and R4 the denominator represents the total power. Ratio features are use-

ful for discriminating between the objects producing different amount of backscatter

in various polarimetric channels from those having similar backscatter in all chan-

nels. These features also convert the absolute values of intensity to relative values,

and therefore facilitate detection of different classes [48].

5.5.4 Determination of the Classification Order

One of the important steps in the proposed classification scheme is to decide

what order to use for mapping the classes present in the study area. If the analyst

is experienced and familiar with the nature of the classes, they can determine the

classification order. In this case, classification can be started with the most spectrally

distinguishable class (e.g. the Deep Water class in this study) and terminated with

the two most spectrally similar classes (e.g. Bog and Fen in this study). However,

often the analyst might not be acquainted with the spectral separability of the classes,
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or an automatic approach for the entire classification scheme might be required or

preferential. In that event, the separability analysis of the classes is necessary.

The Jeffries-Matusita (JM) [49] distance (Equation 6.2) was applied in this study

as the separability measure.

Jij = 2[1− exp(−Bij)] (5.2)

in which i and j show two arbitrary classes, and Bij is the Bhattacharyya distance,

defined as follows:

Bij =
1

8
(mi −mj)

T (
Σi + Σj

2
)−1(mi −mj) +

1

2

ln |Σi+Σj

2
|

√

|Σi||Σj|
(5.3)

wheremi and Σi are the mean and the covariance matrix for the ith class, respectively,

and T is the transpose of a matrix.

Since the above equation is obtained by assuming a Gaussian distribution for the

data, not all the bands can be applied for computing JM distance. The optical bands

of one single sensor (e.g. RapidEye or Landsat-8 layers in this study) are proper

bands to be used for this purpose. However, other channels which have the Gaussian

distribution, or other distance measures fitted to the distribution of available bands,

can be applied for this purpose.

Using these bands, when the JM distance between all class pairs was obtained,

the average separability of class i can be obtained as:

Ji =
1

N

N
∑

j=1

Jij (5.4)

where N is the number of classes. Then, the classification order is determined based
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on the average JM distance, such that the class with the greatest average JM distance

is classified first, while the class with the smallest average JM distance is classified

last. It is interesting to note that determination of classification order can be redone

after masking each class. However, this is not expected to change the classification

order, because the class which is removed in each step is the spectrally furthest class,

and has the greatest average JM distance compared to the rest of the classes.

As an example, the following classification order was considered for the Avalon

pilot site:

Deep Water, Urban, Upland, Shallow Water, Marsh, Swamp, Bog, Fen

5.5.5 Determination of the Merging Scheme

When the target class is being mapped according to the classification order, among

other classes, those which are spectrally similar should be merged. By merging, the

remaining classes become fewer and less similar. Therefore, the classification process

becomes less complicated.

Similar to the procedure of the order determination, the analyst can decide how

to merge the other classes while the target class is being mapped according to their

experience. However, if an automatic procedure is required, the following approach

can be taken.

The merging scheme starts from the most confused class, i.e. the class with the

smallest average JM distance, here referred to as A. Let the second most confused

class be called B. Classes A and B are merged if

225



JAB = average{JA, JB} < τ (5.5)

where τ is a user-defined threshold. If classes A and B are merged, then the third

most confused class, let it be called C, is merged with A and B if:

JABC = average{JAB, JC} < τ (5.6)

This process continues until the above equation no longer holds. It should be

noted that when the target class is being mapped, it should not be merged with any

other classes. For instance, assuming that classes A, B, and C are merged, C should

not be merged with the other two classes when the target class is C. If the analyst is

aware of the nature of the classes, the threshold can be selected by investigating the

obtained values of the average JM distance for individual classes, such that the classes

which are spectrally similar to each other are merged. Otherwise, or if an automatic

method for selecting the threshold is required, the third quartile of the average JM

distance of all classes can be chosen as the threshold.

As an example, for the Avalon pilot site, four wetland classes of Marsh, Swamp,

Bog, and Fen were merged during the classification process, before each of them in

turn was classified.

5.5.6 Dynamic Feature Selection and Classification

Once the order of the classes as well as the merging scheme are determined, the

target class is picked based on the specified order. Afterwards, the remaining classes

are merged according to the merging scheme, and the process of feature selection and
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classification begins.

In this article, the Genetic Algorithm (GA) [50] was used for feature selection,

although any other method can be potentially applied. The principles of the GA have

been fully described in many texts, such as [51], [52], and [53] to which interested

readers can refer. However, a brief explanation about the GA is also provided here

for the sake of completeness.

GAs lie in the group of evolutionary algorithms and can be applied in various

optimization problems, one of which is feature selection. In feature selection based

on GA, each feature corresponds to a gene which can either have the value of 0 (feature

not included in classification) or 1 (feature included in classification). A chromosome

is a binary string which is constituted by lying genes beside each other. In fact, each

chromosome is a feature subset or a solution for feature selection. Note that the

number of genes in a chromosome equals the total number of features. Each solution

in GA is associated with a fitness measure which illustrates the solution’s degree of

suitability to be selected as the final answer. Normally, in feature selection the fitness

measure is the overall accuracy. In this work, however, the overall accuracy is not an

appropriate measure, because each class is separately classified and both the producer

and user accuracies of each class are important. Consequently, the fitness measure

was selected as follows:

f = min{UA, PA} (5.7)

where UA and PA are the user and producer accuracies of the target class, re-

spectively. The minimum of the two accuracies is selected to guarantee that both
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accuracies associated with a solution are adequately high.

Feature selection using GA starts with a specific number of randomly generated

initial solutions. In the proposed method, each randomly generated solution is first

assessed in terms of the fitness measure (Equation 6.6), and is only allowed in the

rest of the algorithm if the fitness measure of the solution exceeds a user-defined

threshold. The reason for filtering the initial solutions is that sometimes, especially

when the existing classes are spectrally mixed, the classification accuracy resulting

from a random feature subset is too low. This can affect the accuracy associated

with the final feature subset yielded by the GA. The process of filtering the initial

solutions is illustrated in Figure 5.4. When enough initial solutions with a desired

level of accuracy for the target class are generated, the initial solutions are ingested

into the GA such that a final feature set is yielded for the target class. In the next

step, classification is carried out.

In this study, Random Forest (RF) [54] is selected as the classification method,

which has proved effective for wetland classification [10–12]. RF consists of an en-

semble of decision trees. A decision tree consists of several nodes, which divide the

input pixels/objects into mutually exclusive groups, each of which contains the most

homogeneous pixels/objects. This division continues into progressively homogeneous

groups until each node is representative of the one of final classes [55]. After training

the classifier, the pixel/object is passed through each single tree and the final class

label for the pixel/object is determined based on the majority of votes obtained by

the terminal node of the trees. RF has several tuning parameters which should be

determined by user. The depth of trees, minimum number of samples used per node,

minimum tree number, and number of selected features in each node are the most
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important user-defined parameters. These parameters can affect the classification

accuracy considerably [12].

Finally, the target class is classified using the optimum feature subset obtained

by the GA. When classification is terminated, the target class is masked and the

described process is reiterated with the next target class until no class remains. Ulti-

mately, all class polygons are combined into a single map and the accuracy is assessed.

5.5.7 Accuracy Assessment and Comparison with Classic Method

In this step, the accuracy of the resulting map is assessed using the test data,

and the result is compared with the so-called classic method both quantitatively and

qualitatively. In the classic method, the available feature set, and the training and

test data are entirely identical to the features and field data available for the proposed

method. The preprocessing, segmentation, and object-based feature extraction steps

are the same as those described for the proposed method. In the next step, however,

the initial solutions for GA are selected such that the overall accuracy is greater than

a threshold, and GA converges to a solution which maximizes the overall accuracy.

Next, that single feature subset is used to map all the classes simultaneously using

RF. A similar scheme has been widely used in the literature for feature selection

and classification [56, 57], and that is the reason the authors refer to this method as

theclassic method.
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5.6 Results and Discussion

The proposed classification scheme was applied on all pilot sites. Table 5.4 demon-

strates the segmentation parameters and the number of objects for all pilot sites.

Moreover, Table 5.5 illustrates the accuracy thresholds for all classes used in this

study. It is recommended that users select a reasonable accuracy as the threshold for

each class which is achievable considering the available training data and the spectral

nature of that class. It should be also mentioned that the merging threshold for each

pilot site was in the range of 1.75 to 1.8. For each pilot site, the map produced from

the proposed method along with the accuracies (class-based, average of wetlands,

and overall) are provided. Furthermore, charts are provided to compare the proposed

approach and the classic classification scheme (with a single feature selection and a

single classification) in terms of all three types of accuracies. The details for each site

are given below.

Table 5.4: Segmentation parameters and number of objects for all pilot sites.

Segmentation Parameters
Scale Shape Compactness
300 0.1 0.5

Number of Objects
Avalon Deer Lake Gros Morne Goose Bay Grand Falls
29,562 5,525 9,154 14,211 14,663

The resulting maps of five pilot sites using the proposed method are illustrated

in Figure 5.5, and the classification accuracies are displayed in Table 5.6. Further,

Figure 5.6 illustrates the results of the comparison between the proposed classification

scheme and the classic method. In all five pilot sites, not only the proposed method

has increased the overall accuracy, but also it has significantly raised the average
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(a) Avalon (b) Deer Lake

(c) Gros Morne (d) Goose Bay

(e) Grand Falls

Figure 5.5: The classified image of five pilot sites using the proposed method.
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(a) Avalon

(b) Deer Lake

232



(c) Gros Morne

(d) Goose Bay
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Table 5.5: The threshold values for the producer and user accuracies of each class in

all pilot sites of this study.

Bog Deep

Water

Fen Marsh Shallow

Water

Swamp Upland Urban Sand Lichen-

Woodland
Class

producer

accuracy

83 99.5 50 55 65 50 85 85 90 90

Class

user

accuracy

86 99.5 50 55 85 65 85 90 85 90

(e) Grand Falls

Figure 5.6: The comparison between the proposed method and the classic method in

all five pilot sites.
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Table 5.6: The individual and overall accuracies obtained for all pilot sites using the

proposed method.

Avalon Deer Lake
Class Producer

accuracy

User

accuracy

Producer

accuracy

User

accuracy
Bog 83.41 86.61 96.36 92.46

Deep Water 99.85 99.97 100.00 100.00
Fen 70.36 54.78 84.03 84.88

Marsh 72.03 65.48 70.07 81.49
Shallow Water 93.32 89.67 97.65 99.15

Swamp 58.96 87.28 80.60 90.09
Upland 98.12 99.09 91.68 88.72
Urban 98.88 99.11 N/A N/A

Overall Accuracy 93.11 92.24
Average of Wetlands 75.62 76.76 85.74 89.61

Gros Morne Grand Falls
Class Producer

accuracy

User

accuracy

Producer

accuracy

User

accuracy
Bog 94.60 95.16 89.54 84.81

Deep Water 100.00 99.59 99.96 99.90
Fen 73.25 64.62 53.29 57.34

Marsh 62.52 55.11 75.52 84.17
Shallow Water 88.77 90.68 94.79 92.27

Swamp 53.33 69.55 80.34 87.29
Upland 92.75 94.26 99.51 95.31
Urban N/A N/A 92.22 93.69

Overall Accuracy 91.10 85.01
Average of Wetlands 74.49 75.02 78.70 81.18

Goose Bay
Class Producer

accuracy

User

accuracy
Bog 87.14 92.08

Deep Water 100.00 99.94
Fen 64.56 52.51

Marsh 84.70 65.63
Shallow Water 67.09 98.08

Swamp 61.05 76.61
Upland 86.82 92.19
Urban 82.37 99.86
Sand 99.35 85.62

Lichen-Woodland 99.36 98.73
Overall Accuracy 86.89

Average of Wetlands 72.91 76.98
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producer and user accuracies of wetlands in a range from 5% to 25%, depending

on the pilot sites. Several individual class accuracies are very low in each pilot site

using the classic method. By applying the proposed method, however, no individual

class accuracy is below 50%, and most of them are above 70%. For the purpose of

visual assessment, samples of zoomed areas from the resulting map along with the

corresponding optical images over the same area are depicted in Figure 5.7. It can

be observed that the resulting maps of all pilot sites are of high quality, and the

classes which can be discerned from the optical imagery of the area, including the

Deep Water and Urban classes, have been mapped accurately.

The selected study areas differed considerably in terms of the available datasets.

For example, there was no RapidEye image in Deer Lake, and Grand Falls also lacked

RADARSAT-2 full-polarimetric data. Additionally, the number of RADARSAT-2

image acquisitions per pilot site was different. Nevertheless, the results of the pro-

posed approach in all pilot sites were satisfactory, and the obtained accuracies were

all higher than those obtained using the classic method. This outcome is auspicious,

because it demonstrates that the needed dataset can be minimized by adopting a

proper approach, or even be restricted to freely available images. Consequently, hav-

ing inexpensive and up-to-date wetland maps with minimum need of field data would

be possible. Moreover, the classification of Goose Bay was more challenging com-

pared to other pilot sites, because other than typical classes, Goose Bay also contains

the Sand and Lichen-Woodland classes. Nevertheless, the proposed algorithm has

successfully mapped all wetland and non-wetland classes with high accuracies. These

results manifest in a way that as the classification becomes more complicated, the

classic method fails to map all classes successfully. The proposed method, however,
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(a) Avalon (classified) (b) Avalon (optical)

(c) Deer Lake (classified) (d) Deer Lake (optical)

(e) Gros Morne (classi-

fied)

(f) Gros Morne (optical)

(g) Goose Bay (classi-

fied)

(h) Goose Bay (optical)

(i) Grand Falls (classi-

fied)

(j) Grand Falls (optical)

Figure 5.7: Several zoomed parts of the resulting maps along with the optical images
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can be regarded as a robust classification method, even when many spectrally similar

classes are included in the classification process.

Figure 5.8 demonstrates the variation of producer and user accuracies of individ-

ual classes with the change in the density of training data for the Avalon pilot site.

As expected, the accuracies increase with the augmentation of training data. Intrigu-

ingly, although the density of training data is low for most of wetland classes, all the

accuracies are above 50% using the proposed method.

Figure 5.8: The producer and user accuracies of each class versus the density of the

training data available for that class in the Avalon area. PA and UA indicate the

producer and user accuracies, respectively.

The proposed algorithm is of a considerable flexibility. For instance, the fea-
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ture selection algorithm and the classifier can be conveniently supplanted with other

algorithms. Clearly, more advanced methods for feature selection are expected to

improve the results further. Moreover, although a great number of features were used

in most of the pilot sites, achieving high accuracy was possible using a fewer number

of features. This fact was reflected in the classification of Grand Falls, where no full-

polarimetric image was available, but the obtained accuracy remained reasonable. It

is also worth mentioning that this method is especially useful when a small amount of

training data is available. In this study the amount of training data for some wetland

classes at most pilot sites was not massive, such that the classic method failed to

map them accurately. However, the proposed method increased the accuracy of those

classes considerably.

The computational complexity of the proposed classification scheme is at the

most N-1 times greater than the computational complexity of the classic classification

scheme, where N is the number of classes. Since wetland classification is not a real-

time application, the accuracy of the final map as well as the cost of the adopted

approach are more important than the computational complexity of the method.

In the proposed scheme, when a class is mapped, all objects belonging to that class

are masked and are not considered in the classification process anymore. Therefore, it

is important that as far as possible, no pixel from the masked class is left for the rest

of the classification process. This corresponds to minimum omission or high producer

accuracy for that class. Likewise, it is important that as far as possible, no pixel

from the other classes exists in the masked class, which is equivalent to minimum

commission or high user accuracy for that class. As a result, one of the key points in

this classification scheme is to have high producer and user accuracies, especially for
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initially mapped classes. If the producer and user accuracies of the initially mapped

classes are high, there will be a greater probability that the accuracy for the rest of

the classes will also be high. Moreover, when some classes are highly confused with

each other, it is wise to map the class with a higher probability of underestimation

first. In addition, it is worth noting that violating the classification order does not

affect the accuracy considerably if the classes are completely separated from each

other. Also, when a class tends to be underestimated, it is preferable to map that

class before other classes. By doing so, there is a lower chance that pixels/objects

belonging to that class are misclassified and masked in the preceding classification

steps.

Another important point about the proposed classification scheme is the method

for accuracy assessment. If the number of test samples for two classes is not equiva-

lent, comparing their accuracy will not be useful. The reason is that if the number of

misclassified pixels/objects is the same for two classes, the accuracy of the class with

fewer test samples will be lower than that of the class with more test samples. In

other words, one of the shortcomings of the current method for accuracy assessment is

that the accuracies are highly dependent on the number and location of test samples,

while a robust assessment should be independent from the number of test samples.

Therefore, the visual assessment of the resulting map beside the quantitative assess-

ment, is an asset. The reason is that the quantitative assessment of the output map

is restricted to the test data, while the visual assessment is carried out by considering

the entire map. Therefore, some defects can only be found using visual assessment.
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5.7 Conclusion

In this article, a classification scheme was proposed which addresses the problem

of poor individual accuracies despite having a high overall accuracy when mapping

spectrally similar classes using a feature selection method. This usually happens be-

cause the features which are effective in distinguishing one class, are not necessarily

appropriate for delineating another class. Furthermore, the fitness measure is usually

the overall accuracy in a typical feature selection method. As a consequence, the

general approach guarantees the overall accuracy to be high, while some per-class

accuracies might remain low. In the proposed method, all the individual class ac-

curacies are attempted to be made acceptable using a hierarchical scheme. In this

scheme, all the objects are not mapped simultaneously, but those belonging to each

class are delineated in separate steps, and each step is associated with a distinct fea-

ture selection and classification. While mapping each class according to a pre-defined

order, the remaining classes, which are spectrally similar to each other are merged

such that the accuracy of the target class increases.

The suggested scheme was applied for wetland classification at five pilot sites

within the province of Newfoundland and Labrador, Canada. Wetland classification

was selected because not only do wetland classes highly resemble each other in various

remote sensing datasets, but also collecting field samples for them is arduous. This

is because wetlands are mainly located in remote and inaccessible places. Moreover,

aerial photo interpretation for wetland classification is not highly accurate, since some

wetland classes look quite similar in aerial imagery. These issues can also contribute

to low accuracies in wetland mapping, other than the inherently similar nature of
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wetland classes. Nevertheless, the suggested approach resulted in acceptable per-class

and overall accuracies compared to the classic method at all five pilot sites, regardless

of the quality and quantity of the applied dataset, which was above the accuracies

reported in similar studies. For example, [12] obtained the average producer and user

accuracies of wetlands ranging from 68% to 73% by the sole use of optical data in

the same study areas as the current study. Similarly, these accuracies were 71% and

72% by fusing optical and SAR data in [11] in the same study areas. Moreover, the

proposed method has a high potential for performing affordable and frequent mapping

when the involved classes are similar in remotely sensed data, with a computational

complexity comparable to that of the classic scheme. The proposed method also has

a considerable flexibility, having the capacity for a more advanced feature selection

method or other classifiers. Therefore, it is expected that this method will get further

attention in future studies.
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Chapter 6

A Polarimetric Synthetic Aperture

Radar Change Detection Index

Based on Neighbourhood

Information

6.1 Preface

In this chapter, a polarimetric index was introduced for SAR change detection

based on neighbourhood information. Since a long-term dataset of SAR images from

NL was not available at the time of writing this section, the method was applied on a

flooding event in Dongting lake, Hunan, China. The paper resulted from this chapter

has been submitted and it is currently under review.
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6.2 Abstract

Change detection using Remote Sensing (RS) techniques is valuable in numerous

applications, including environmental management and hazard monitoring. Synthetic

Aperture Radar (SAR) images have proved even more effective in this regard as a

result of their all-weather, day and night acquisition capabilities. In this study, a

polarimetric index based on the ratio of span (total power) values is introduced in

which the neighbourhood information is considered. The role of the central pixel and

its neighbourhood is adjusted using a weight parameter. The proposed index was ap-

plied to detect flooded areas in Dongting lake, Hunan, China, and was then compared

with the Wishart Maximum Likelihood Ratio (MLR) test. Results demonstrated that

although the proposed index and the Wishart MLR test provided similar accuracies

(accuracy of 94% and 93%, and Kappa Coefficient of 0.82 and 0.86, respectively),

inclusion of neighbourhood information in the proposed measure makes the objects

within the yielded map more connected and less noisy.

6.3 Introduction

Change detection in Remote Sensing (RS) is estimating the amount of change

between two images acquired on different dates over the same geographical area.

RS Change detection has been widely used for assessing the effect of natural hazards,

tracking environmental contaminations, monitoring water resources, monitoring crops

and vegetation, and other applications [1–4]. Change detection using SAR images

is advantageous as a result of their all-weather, day and night acquisition capability.
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Furthermore, with the growth in the number of active SAR satellites, the use of multi-

temporal images is facilitated. However, SAR change detection demands specific

techniques as a result of the presence of speckle in SAR images.

In general, SAR change detection algorithms can be divided into pre-classification

and post-classification methods. While post-classification methods are limited to

comparing the accuracy of two classified maps [5], in recent years a variety of pre-

classification approaches have emerged.

Among the pre-classification methods, quite a few are applicable to single-channel

SAR images. The most basic methods for single-channel SAR change detection in-

clude algebraic operations, such as computing the difference and ratio of images [6].

Ratio and log-ratio operations are popular for SAR images because of the reduc-

tion of speckle and changing the image distribution to Gaussian, respectively. For

example, [7] fused the complementary information in the mean-ratio and log-ratio

images to generate a difference image in which the changed areas are effectively high-

lighted. Moreover, [8] automatized thresholding the log-ratio image by analyzing a

cost function.

Other approaches which are also suitable for single- or dual-channel SAR images

include Principal Component Analysis (PCA) and Change Vector Analysis (CVA).

In [9], for example, PCA was used to reduce the dimension of a neighbourhood feature

vector proposed by the authors in the context of change detection. Similarly, in

[10], PCA was applied on non-overlapping blocks of difference image before they

were projected on eigenvector space. Furthermore, [11] combined CVA with post-

classification comparison to detect changes using RADARSAT-2 images.

At the same time, several change detection indices, derived from the covariance
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matrix, are utilized for polarimetric change detection. For instance, in [12], two

indices of Contrast Ratio and Ellipticity were compared with five other measures for

a change detection study. For deriving these two indices, eigen values of a matrix

generated from the covariance matrices of the two dates needed to be extracted.

Another successful method for polarimetric change detection is the Wishart Maximum

Likelihood Ratio (MLR) test proposed by [13] which has proved effective in this

regard. In this method, a test was performed for equality of two matrices with a

complex Wishart distribution, from which an index was proposed. The index image

was then thresholded to highlight the changed areas.

Moreover, there are several distance measures which can be used in change detec-

tion studies based on the covariance or coherency matrix. As an example, Wishart-

Chernoff distance was utilized in [11] for investigating the potential of compact po-

larimetric SAR data with the aim of monitoring wetlands. Moreover, [14] introduced

a new distance measure entitled Generalized Likelihood Ratio Test (GLRT) distance

for detecting changes in urban areas.

Most of the above mentioned methods have proved accurate in change detection

studies using SAR images. In order to make correct managerial decisions, however, it

is crucial to provide maps which are harmonious with real-world objects, and do not

suffer from the salt-and-pepper structure. This goal is facilitated by taking neigh-

bourhood information into account in the case of SAR images which are blemished

with the effect of speckle. Although there are a few studies which have considered

neighbourhood information in SAR change detection [15–17], most of them ignore

this valuable information.

In this paper, a single channel change detection index based on neighbourhood
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information is extended to polarimetric SAR data. This index uses span (total power)

values, and considers the ratio of the minimum to the maximum intensity values be-

tween two dates, such that the effect of backscatter variation among different classes,

noise, and errors are minimized. In this index, the role of the central pixel and its

neighbourhood is adjusted using a weight parameter. This index is then compared

with the Wishart MLR index, both quantitatively and qualitatively.

The paper is organized as follows. In Section 2, the dataset and study area are

explained. The methodology is outlined in Section 3, and Results are discussed in

Section 4, before the concluding remarks are provided in Section 5.

6.4 Study Areas and Dataset

Dongting lake in the Hunan province of China, located approximately at 29°19′N

and 112°57′E, was selected as the study area in this research. This area is prone to

flooding from July to September each year which makes it ideal for change detection

studies. Figure 6.1 shows two true color composite Landsat 5 images over the study

area before and after a flooding event. As can be observed, cloud cover is a common

problem of optical images which hinders change detection studies using these images.

Full-polarimetric SAR images used in this study are shown in Table 6.1 and their

corresponding colour composite is depicted in Figure 6.2. The reference image, ob-

tained by visual analysis of the SAR images, is also illustrated in Figure 6.2(c).
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(a) (b)

Figure 6.1: Two optical images over the study area, before and after a flood event.

Table 6.1: The characteristics of images used in this study.

Acquisition

date

Mode Polarization

Type

Incidence angle

range (degrees)

Nominal range

resolution (m)
2008/06/06

FQ16 Quad-pol 35.4-37 8.6-92008/08/17
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(a) (b)

(c)

Figure 6.2: The color composite of the SAR images a) before, and (b) after the

flooding event. Red, green, and blue channels correspond to the HH, HV, and VV

intensity images, respectively. (c) The reference image.
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6.5 Methodology

In the first step, the scattering matrix of each full polarimetric SAR image is

converted to the covariance matrix to avoid distorting the absolute phase informa-

tion during processing. Covariance matrices are subsequently filtered by a 7-by-7

PolSAR Lee filter [18] and are terrain-corrected and geocoded using the MapreadyTM

toolkit, developed by the Alaska Satellite Facility (ASF). Afterwards, the span image

corresponding to each date is calculated as follows:

Si = |SHH |2i + 2|SHV |2i + |SV V |2i i = {1, 2} (6.1)

where SPQ is the element of the scattering matrix recorded for the transmitting

polarization of P and receiving polarization of Q.

In the next step, a neighbourhood is considered for each pixel in the SAR image.

In this work, a 7-by-7 window is considered for this purpose, but this can change

depending on the level of noise in the image. Then, the difference image proposed

in [15] can be heuristically extended to the Polarimetric Difference Image (PDI) as

follows:

PDI(x) = δs ×
min{S1(x), S2(x)}
max{S1(x), S2(x)}

+ (1− δs)×

∑

i∈Ωx∧i 6=x

min{S1(i), S2(i)}
∑

i∈Ωx∧i 6=x

max{S1(i), S2(i)}

δs =
σs(x)

µs(x)

(6.2)

where Si(x) is the span image for the pixel x in the ith image, Ωx is the neighbourhood

of the pixel, and σs(x) and µs(x) are the standard deviation and the average of the

span image neighbourhood, respectively. δs is a weight measure which determines the
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effect of the pixel and its neighbourhood in the measure. When δs is large, the area is

heterogeneous and the role of central pixel is more important than its neighbourhood.

When δs is small, however, the area is homogeneous and the neighbourhood effect is

more significant [15]. Moreover, since there is the ratio of the minimum to maximum

intensity in both parts of Equation 6.2, the effect of the variation of intensity among

different classes, the level of noise, and the presence of errors on the change detection

map is minimized. After computing the PDI measure, an image is obtained in which

the magnitude of each pixel demonstrates the level of similarity between two images.

If the change of a specific class is of interest, the image can be thresholded to highlight

those changes. The aim of this work is the detection of flooded areas and therefore

the histogram of the PDI image is thresholded by Otsu’s method [19]. In Otsu’s

method, the threshold(s) of the histogram are determined by maximizing between

class variance or minimizing within class variance [19].

For comparing the proposed measure with another polarimetric index, the Wishart

MLR test is selected [13]:

Q =
(n+m)p(n+m)

npmmpm

|X|n|Y |m
|X + Y |n+m

(6.3)

where X and Y are the first and second covariance matrices, respectively, and n and

m demonstrate the number of looks in the first and second image, respectively, |.|

denotes the determinant of a matrix, and P is the size of the matrix which is 3 in

this study.

When m = n, which is the case in our work, lnQ can be defined as follows:
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lnQ = n (2p ln2 + ln|X|+ ln|Y | − 2 ln|X + Y |) (6.4)

Similar to the map produced by PDI, the lnQ image can be finally thresholded by

Otsu’s method to emphasize the areas of interest. Then, the measures are compared

both quantitatively and qualitatively. For quantitative comparison, the number of

False Negatives (FNs), False Positives (FPs), True Negatives (TNs), and True Pos-

itives (TPs) is computed. Then, the Overall Error (OE) and the Percentage Correct

Classification (PCC) are obtained by:

OE = FN + FP (6.5)

PCC = (TN + TP )/(TN + TP + FN + FP ) (6.6)

Moreover, if we consider a confusion matrix with two classes of change and no

change, Kappa coefficient can be calculated as follows [20]:

κ =

P
∑

k

xkk −
∑

k

xk+x+k

P 2 −
∑

k

xk+x+k

(6.7)

where P is the total number of elements in the confusion matrix, xij is the element in

the ith row and jth column, xi+ is the summation of the elements in the ith row, and

x+j is the summation of the elements in the jth column. Kappa is another measure

of the accuracy assessment which can take values in the range of [0, 1]. A value of 0

for Kappa means there is no agreement between the produced map and the reference

data, while a value of 1 for Kappa demonstrates the complete agreement between the

generated map and the reference data.
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6.6 Results and Discussion

Figure 6.3 demonstrates the yielded PDI and lnQ maps. It can be observed that

both measures have delineated the flooded areas effectively, and could be used to

locate and estimate the flooded regions accurately. However, it is clear that the

quantization of the changes in the PDI image is more detailed than lnQ image. For

example, the left part of the lnQ image near the top provides a rather homogeneous

area with small changes being missed. However, if we consider the same area in

the PDI image, we can see how different amounts of change have been effectively

quantized. A more important feature of the PDI map is that it provides objects

which are less speckled as a result of considering neighbourhood information. On the

contrary, some of the objects within the lnQ maps have a salt-and-pepper structure.

(a) lnQ map (b) PDI map

Figure 6.3: Change detection maps obtained by lnQ and PDI measures.

The histogram of the lnQ and PDI maps have been demonstrated in Figure 6.4
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(a-b). The fact that there are more quantizations in the PDI image than the lnQ

image is clear from their histograms as well. In the next step, the histogram of the

PDI and lnQ maps was thresholded using Otsu’s method to detect the flooded areas.

The range of data for the lnQ and PDI images was (-1461 , 0] and [0, 1], respectively.

The thresholds selected for binarizing the images were -160 for the lnQ image, and

0.118 for the PDI image.

Figure 6.4 (c-d) demonstrates the binarized lnQ and PDI images. At first, both

images look similar to each other. However, the objects produced by the lnQ map

appear more speckled and disconnected compared to PDI map. When examining

the maps more closely, several subsets of the images were selected and the zoomed

areas of the lnQ and PDI images, along with their corresponding binary maps, are

depicted in Figure 6.5. It is clear that while the zoomed regions in the lnQ map

(Figure 6.5, i-l) are slightly speckled, disparate, and unconnected, the regions in the

PDI map (Figure 6.5, m-p) are more homogeneous and linked. This fact has caused

the thresholded lnQ map to contain more discrete and noisy objects (Figure 6.5, q-t),

while the binary PDI map provides clean and connected regions (Figure 6.5, u-x).

For a quantitative assessment of both maps, the binarized maps were compared

with the reference image. Table 6.2 shows the comparison results. It is viewed that

both methods have generated a highly accurate map with the PCC of 93% and 94%,

and the Kappa coefficient of 0.82 and 0.86, respectively. However, the accuracies of

the PDI map are slightly greater as a result of including neighbourhood information.

Interestingly, the number of FNs is high in the lnQ map, while the number of FPs

is high in the PDI image. This shows that the lnQ index overestimates, while the

PDI index underestimates the amount of change.

263



(a) Histogram of the lnQ image (b) Histogram of the PDI image

(c) Thresholded lnQ map (d) Thresholded PDI map

Figure 6.4: Binary change detection maps obtained by lnQ and PDI measures.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure 6.5: Selected samples of image pairs and their corresponding change detection

maps: the colour composite of the image (a-d) before, and (e-h) after the flooding

event, (i-l) The lnQ map, (m-p) The PDI map, (q-t) The thresholded lnQ map; and

(u-x) The thresholded PDI map.
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Table 6.2: Accuracy assessment of the change detection maps obtained by both meth-

ods

Measures lnQ PDI
FN 556122 11057
FP 13325 464162
TN 5364371 4913534
TP 1822370 2367435
OE 569447 475219
PCC 0.927 0.938
Kappa 0.816 0.863
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6.7 Conclusion

In this study, a polarimetric index for change detection was introduced based on

the ratio of span (total power) which exploits neighbourhood information. The in-

dex was applied on a flooding event in Dongting lake, Hunan, China, and then was

compared with the Wishart MLR test, another measure for polarimetric change de-

tection. The results demonstrated that although both measures provide an accurate

change detecton map with comparable accuracies, the objects produced by the pro-

posed change detection measure are more homogeneous and less noisy. Also, the lnQ

map overestimates the amount of change, while underestimation occurs in the PDI

map. The result of this research shows the importance of including neighbourhood

information in change detection analyses.
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Chapter 7

Summary and Conclusion

7.1 Research Summary

This thesis proposed algorithms and solutions for wetland classification using Re-

mote Sensing (RS), and suggested pre-processing or post-processing techniques for

facilitating this procedure. This aim was divided into several research segments de-

scribed in this thesis in separate chapters. The first step for reaching the thesis

goals was to conduct a thorough literature review to gain a deeper understanding of

wetland characteristics, RS advances in the case of wetlands, and areas that could

be improved. To this end, Chapter 2 was devoted to a literature review on various

aspects of wetland studies and different approaches for wetland classification. The

comparison between pixel-based and object-based approaches and the role of several

classifiers in wetland classification was also provided. In Chapter 3, a novel method

for pre-processing SAR images, namely speckle reduction, was proposed, which plays

an important role in wetland mapping using SAR imagery. In this method, rather
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than adjusting the filtering window shape based on the pixel neighborhood charac-

teristics, the window size was also adapted to the object size in which the pixel was

placed. For selecting the best window size, the minimum standard deviation over a

range of window sizes in in-phase and quadrature components of a SAR image was

considered. Then, the pixel was filtered with its own optimal window size in the

intensity image. In Chapter 4, multi-temporal RADARSAT-2 data within four pilot

sites in Newfoundland and Labrador (NL) were classified in an object-based manner

using the proposed segmentation method. The study determined the optimal feature

and time for conducting wetland studies using SAR images, and proved the effec-

tiveness of using multi-temporal data for wetland mapping. In Chapter 5, a novel

dynamic classification scheme, well-fitted to the nature of wetlands and other com-

plicated land covers, was proposed. In this method, the objects are not all assigned

a label simultaneously; rather, the classes were mapped on an individual basis with

a separate feature selection and classification associated with each. This method was

applied to classify wetlands in five pilot sites of the province of NL, and increased the

wetland classification accuracy considerably compared to the classic method. Finally,

in Chapter 6, a full-polarimetric SAR change detection measure was introduced based

on neighborhood information as a postprocessing technique for monitoring land cov-

ers. Although data from a flood event in NL were unavailable, this measure produced

accurate, noiseless, and connected changed objects for a flood event in Dongting Lake,

Hunan, China, and can be applied for monitoring other types of land covers, including

wetlands.
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7.2 Research Achievements

In each of research segments conducted in this thesis several conclusions were

identified. A summary of the chapter-wise achievements of the dissertation follows.

In Chapter 2, by reviewing the literature, it is concluded that red edge and near in-

frared bands are the most appropriate optical bands for wetland delineation. In terms

of SAR imagery, different configurations should be selected depending on whether the

aim is to classify herbaceous or woody wetlands. For classification of herbaceous wet-

lands, short wavelengths and shallow incidence angles are more appropriate, while

long wavelengths and steep incidence angles are preferred for detecting shrubby or

forested wetlands. Full-polarimetric SAR data are favoured for wetland classifica-

tion, but HH is the most useful polarization for this purpose. Among the available

classifiers, RF is the best algorithm for delineating wetlands.

The adaptive window size speckle filters introduced in Chapter 3 outperformed

their fixed-size counterparts in both simulated and real images and in single-channel

and polarimetric cases. This shows the concept of adaptive window size is more fitted

to SAR images, and can in turn improve the performance of algorithms subsequent

to filtering.

In Chapter 4, by analyzing the results of classification using SAR data, it is con-

cluded that August is the best time for wetland classification. Features of wetlands

are most distinguishable in August, since the vegetation within wetlands is mature.

Although vegetation is not mature yet, June is also an appropriate time for classi-

fication, because the leaves are fairly fresh. The images obtained in fall or spring,

however, are not appropriate for wetland mapping in Canada, because during this
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time the vegetation within wetlands is dormant and cannot be applied for discrimi-

nating wetlands from each other, or non-wetlands. It should be also mentioned that

using images from several dates can increase the accuracy of wetland classification

considerably, as the significant dynamicity of wetlands can be used as a distinguish-

ing feature for their classification. One of the most optimal features for wetland

classification is the covariance matrix. In addition to intensity layers, covariance ma-

trix also includes phase differences between channels, which are useful for wetland

characterization [1–3].

The dynamic classification scheme proposed in Chapter 5 resolved the problem

of poor individual accuracies after feature selection despite having a high overall

accuracy. By applying the proposed method in wetland classification, the average

producer and user accuracies of wetlands increased by up to 22% and 25%, respec-

tively, compared to the classic method. This demonstrates that the proposed method

is appropriate for classifying wetlands and other complicated land covers.

The change detection measure proposed in Chapter 6 performs similar to another

commonly-used change detection index in terms of accuracy. In terms of visual as-

sessment, the proposed measure generates less noisy and more connected objects that

can facilitate making correct managerial decisions.

To recapitulate, in this thesis several innovative methods and solutions are pro-

posed to facilitate the study of wetlands and other complicated land covers, the most

important of which follow:

� A thorough literature review was provided on wetlands, which considers all

aspects of wetland studies;
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� A pre-processing method for the classification of land covers, namely a speckle

reduction method, was proposed which adjusts the filtering size based on the

area of the object. This is useful for study of wetlands as they can vary consid-

erably in size;

� A multi-temporal study was conducted in which the most appropriate time and

features for wetland classification were determined and an alternative method

for segmentation of SAR data was applied;

� A novel classification scheme was introduced that was well fitted to the nature

of wetlands and, therefore, increased wetland accuracy considerably; and

� A new change detection scheme was presented that delineated the changed areas

with a high accuracy and without noise, which can be applied for monitoring

various land covers.

7.3 Recommendation for Future Work

Based on the results achieved by this thesis, the following items are recommended

for future work:

� Developing up-to-date Canada-wide and Global wetland inventories.

Currently, there is no up-to-date and precise estimation of Canada-wide or

global coverages of wetlands. However, it is important to develop an opera-

tional global wetland mapping and monitoring scheme by which estimation of

global wetland coverage and frequent update of wetland conditions is possible.

For reaching this goal, wetland-related organizations all over the world need to
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collaborate in terms of field data collection and developing classification meth-

ods. Moreover, satellite data and RS algorithms should be provided such that

the cost and computational complexity of producing and updating maps is min-

imized. In fact, freely available satellite imagery should be utilized as much as

possible. Moreover, there should be an overall agreement on a unique classifi-

cation scheme that can be implemented globally or in most parts of the world.

An example of such a classification scheme is the Ducks Unlimited Enhanced

Wetland Classification System [4].

� Adjusting the common speckle filters to be applied with adaptive

window size. Currently, there are several common filters, such as the Lee’s

improved Sigma [5], Frost [6], and Kuan [7] filters, that use a fixed window

size for filtering SAR imagery. These algorithms, which have already proved

effective, can be adjusted to be applied with adaptive window size. This is

expected to further improve the performance of these algorithms.

� Utilizing the proposed alternative SAR segmentation scheme in other

applications. SAR images are speckled and this causes the segmentation of

SAR images to be less accurate than that of optical images. Therefore, in

Chapter 4 an alternative segmentation method was proposed in which the result

of the segmentation of an optical image was superimposed on the SAR image

of the same area. As a result of doing this, speckle is considerably reduced or

eliminated in SAR data, while their valuable characteristics remain preserved.

It is recommended that this method is applied in applications involving SAR

imagery other than wetland classification which is included in this thesis. Thus,
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researchers could benefit from the advantages of object-based classification over

the traditional pixel-based classification when SAR images are used in their

studies.

� Operational implementation of the proposed dynamic classification

scheme. As mentioned earlier, there is a need for robust classification algo-

rithms which can be used to map wetlands globally. The algorithm proposed in

Chapter 5, which has proved effective in NL, can be applied in different parts

of the world to examine its effectiveness. Moreover, as the proposed scheme

has a high flexibility, different parts of the algorithm can be replaced with more

advanced or less computationally complex methods to adjust its performance.

For example, the proposed feature selection method (i.e., GA) can be replaced

with a more advanced method like Particle Swarm Optimization (PSO) [8].

� Applying the proposed change detection scheme for wetland studies.

Although wetland classes are highly dynamic, changing permanently from one

wetland type to another takes several years. Unfortunately, a long-term dataset

(e.g. 10-year period) of SAR images from NL required for applying the proposed

change detection method was not available at the time of writing this thesis.

However, it is suggested that upon the availability of the required dataset, this

method is applied in wetland studies. For example, a pilot study in China

revealed this technique was useful in monitoring a dynamic short-term flood

event. Thus, the suggested method might facilitate monitoring of wetlands

using remote sensing data.
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