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Abstract 

Evolving process operations in harsh environments and stringent safety regulations have 

created increasing complexity in the assessment and management of risks.  This demands 

an advanced approach to monitor and manage the process system's risk profile. This thesis 

presents two contributions: i)a model for dynamic risk-based inspection planning, and ii)a 

predictive model for the ice-accumulation rate for operations in extremely cold conditions.  

The traditional risk-based inspection (RBI) guidelines assume that the system is safe for 

operation throughout the planned interval. This assumption has led to several unfortunate 

accidents. A novel dynamic RBI model has been proposed in this study to monitor the 

system’s degradation rate and estimate its impact on the risk profile. The results were 

compared with the risk profile obtained industrial guideline: API-581. It is demonstrated 

that the use of this framework would provide a better understanding and monitoring of the 

system's risk. This will help to plan for optimal inspection intervals rendering the maximum 

cost savings possible while ensuring the system’s safety. 

A new model is developed to predict the ice accumulation rate on sea vessels and offshore 

rigs operating in harsh and cold regions. This model use Bayesian approach to predict the 

icing rate. It be easily be applied to a wide range of vessels and rigs and can include several 

parameters. The model was tested and validated using an experimental setup designed to 

simulate the spray-icing observed on sea vessels. It was concluded that the ice 

accumulation rate predicted using the proposed model was reasonably close to the values 

observed in the experiment.  
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1. Introduction 

In spite of developments in methods to predict industrial hazards, unfortunately, we still 

fail to foresee many accidents. The real question is: are the techniques adequate to detect 

the changes in complex and dynamic systems? Today, industries have adopted 

sophisticated procedures for inspection and maintenance to ensure the system’s safe 

operation. Complex probabilistic models are developed to predict and prevent accidents 

accurately. However, to ensure a safe operation or prepare for unavoidable consequences, 

updating of estimated parameters is equally essential. In a fast changing system, the 

efficiency of a probabilistic model depends on how quickly it responds to variations in the 

operation. There is a need for a system that can not only monitor the process but also 

calculate and predict the effects of the changes happening in the process in real time. 

1.1 Evolution of Dynamic Risk Assessment: 

Risk assessment is the process of quantifying the risk associated with hazards, which 

includes calculating the entailed probabilities and consequences(Crowl & Louvar, 2011). 

Risk estimation is one of the most critical tasks to be performed by management. Several 

methodologies have been developed in the last three decades by scholars and industrialists. 

These methodologies can be classified into two main principal groups: i) qualitative 

methods and ii) quantitative methods. Qualitative methods are used to estimate the risks 

and hazards of a large group of systems. The risk calculated is relative and the analysis is 

usually performed as a screening process to plan for detailed analysis. Quantitative 

methods involve comprehensive analysis conducted over a limited number of components 

that are identified as high risk. The risk is quantified with an absolute value of 
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consequences and probability of failure. The methodologies can also be classified as 

deterministic and probabilistic methods. Deterministic analysis focus on the impact of the 

hazards on the environment, personnel and equipment. Probabilistic methods center around 

estimating the frequency of occurrence of a potential accident (Tixier, Dusserre, Salvi, & 

Gaston, 2002). Modern risk analysis includes both probabilistic and deterministic 

approaches.   

 In conventional risk analysis, the probability of failure (POF) is often calculated based on 

mean failure frequencies observed across the process industries. Also, the approaches are 

static; the complete analysis has to be redone to update the risk estimation (Meel & Seider, 

2006). To have a better understanding of risk and use it to make an operational decision, it 

is necessary to update the risk continuously with the variations in the process parameters 

(Hashemi, Ahmed, & Khan, 2014). Even though the idea for modelling risk based on the 

dynamic situation has existed for a long time (Swaminathan & Smidts, 1999), it was not 

until the last decade that (Meel & Seider, 2006, 2008) developed a unique approach to 

provide a real-time failure frequency for a system. Based on this framework, (Kalantarnia, 

Khan, & Hawboldt, 2009) developed a model for Dynamic Risk Assessment (DRA) using 

Bayesian theory to update the likelihood of failure.  A detailed case study was provided 

and it was claimed that using the DRA method, accidents like the BP Texas City refinery 

explosion and fire could have been predicted and prevented (Kalantarnia, Khan, & 

Hawboldt, 2010).  
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DRA is a recent approach to define the risk as a function of time and other critical 

parameters; the value of risk changes in real time upon observing any change in the system. 

In a heterogeneous system, the occurrence of specific events may alter the risk value from 

initial calculations. This difference can be more extensive with a combination of certain 

critical events. It is not reliable to use the risk estimated initially to decide on the safe 

operation of the system. Hence, there is a need for an approach that can update the initially 

calculated risk with the availability of new evidence from the process monitoring system, 

accident/near miss data or inspection activities. 

1.2 Risk-based Inspection and Maintenance Optimization 

To ensure the reliability and continuous operation of equipment, proper inspection and 

maintenance are necessary. The goal is to maintain the safety of the system employing 

minimal resources. Risk-Based Inspection and Maintenance (RBIM) is a concept of 

prioritizing the inspection of high-risk equipment. RBIM can be considered as an extension 

of risk assessment to plan for inspection and maintenance process.  

Simply increasing the frequency of inspection and maintenance (IM) is not sufficient to 

decrease the risk of failure. Figure 1.1 Comparison of risk profile using RBI and interval-

based approach displays a simplified comparison between two scenarios, as identified by 

(API, 2016), where inspection and maintenance activities are carried out using i) interval 

based planning ii) risk-based planning. It is established that increasing the frequency of IM 

decreases the risk initially up to a point where it cannot be reduced any further. However, 

there is a significant difference in the reduction of risk depending on the approach followed. 

The solid curve indicates that the risk-based approach with the same number of inspection 
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and maintenance activities reduces risk more substantially. This is because the RBIM 

program focuses on prioritizing high-risk components. Based on risk ranking, the 

equipment with the highest risk in the industry will be the primary focus for risk mitigation 

activities which delivers a significant reduction in risk with minimal investment(API, 

2016). 

 

Figure 1.1 Comparison of risk profile using RBI and interval-based approach 

The earliest attempts of RBIM, as reviewed by (Thodi, 2011), was made to plan inspections 

of steel structures in offshore industries (Fujita, Schall, & Rackwitz, 1989) (Madsen, 

Sørensen, & Olesen, 1990). Several innovative works to develop RBIM for process 

industries were completed in the early 21st century (Geary, 2002). A model was proposed 

that employs a Bayesian decision model to choose an optimal inspection plan constructed 
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with the uncertainty of degradation mechanism (Kallen & van Noortwijk, 2005). The 

application of this method was demonstrated on a pressurized steel vessel. A similar 

approach of using Bayesian updating was combined with a gamma distribution model to 

define a risk function (Khan, Haddara, & Bhattacharya, 2006).  The optimal interval was 

calculated using this risk function and it was subsequently used for integrity inspection. In 

the last few years, attempts have been made to develop RBIM methodology to calculate 

risk with greater precision; however, there is no verified model that can calculate the risk 

in real time and update the inspection interval dynamically. While industries are 

implementing Risk-Based Inspection (RBI) codes like API-581, which is expanding its 

scope to include various equipment and material, they still lack an ability to make use of 

real-time data to update risk dynamically.   

1.3 Risk-Based Approach for Winterization 

Winterization is defined as the modification of conventional sea vessels or oil rigs for 

operation in extreme cold and harsh offshore conditions. Such conditions are found at oil 

basins in arctic regions. With increasing oil explorations in the Arctic region, there is a 

need for adopting winterization approaches to operate safely in an extremely cold 

environment. The major issues of operating in these climates centers around ice 

accumulation causing slippery decks and unsafe conditions for workers to maintain the 

system's integrity. In harsh conditions, the systems are functioning close to the designed 

limit, which means there is a significantly higher risk compared to that for similar 

equipment operating onshore (Yang et al., 2013). Hence, it is necessary to have a proper 

framework to design vessels and rigs to operate safely in these conditions. 
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To enable equipment to operate safely several methods are employed to maintain the 

operating temperature and infrastructure including heat tracing, insulation, ice-repellant 

coating, de-icing chemicals etc. However, such techniques often require certain resources 

and constant observation. It is also not economical to apply winterization techniques to all 

the equipment on the vessel. There is a lack of proper guidelines for selecting the proper 

winterization method for the right equipment. A reliability and performance-based 

approach is proposed to correctly identify the extent of winterization required for the 

operation in an artic environment (Khan et al., 2015). Risk-based winterization; prioritizes 

the winterization process based on the risk ranking of the equipment. 

To perform any Risk-Based Winterization, it is necessary to understand the underlying 

phenomena and parameters that may affect the safety of the equipment. One such 

parameter is the estimation of the correct design temperature. Type and category of 

material are selected based on the design temperature; hence, an incorrect assumption of 

design temperature may lead to a poor design of the system. Climate data may not directly 

give precise indications of design temperature and the current standards provide very 

limited guidance to accurately predict it (Sulistiyono et al., 2014). A statistical model has 

been developed to accurately evaluate this cold region design temperature (Sulistiyono, 

Khan, Lye, & Yang, 2015).  

Another serious obstruction for safe operation in a cold offshore environment is ice and 

snow buildup on the equipment and working area. Slippery ice surfaces along with falling 

ice are hazardous for workers. In the event of an emergency, the hazardous conditions may 

obstruct the access to safety systems such as lifeboats (Khan et al., 2015). To properly 
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design a system to operate under such condition it is crucial to understand the ice 

accumulation phenomenon in the Arctic regions. 

Intriguingly, a plethora of scholarly research shows that humidity, condensation, snow, rain 

and drizzle accounts for very little ice accumulation on sea vessels (Makkonen, 1984) 

(Lozowski, Szilder, & Makkonen, 2000) (Zakrzewski, 1987) (Dehghani, Muzychka, & 

Naterer, 2016). The most significant cause is the freezing of water droplets formed due to 

waves splashing the vessel. When a wave collides with a vessel or rig, the water disperses 

and rises upwards in the form of small droplets. These droplets are then carried by the wind 

over various parts of the vessel or rig. Cooling of these droplets starts as soon as they are 

formed and continues until they are in contact with the vessel’s structure. While the 

droplets that have not frozen will disperse as runoff, based on the conditions, a significant 

amount of droplets will keep freezing and accumulate on the surface of the structure.  

Even though years of efforts have been made to investigate and predict the ice 

accumulation on sea vessels, there are still several knowledge gaps in the understanding of 

this phenomenon (Fein & Freiberger, 1965; Hay, 1956; Lackenby, 1960; Sutherby, 1951). 

Several numerical and experimental methods were reviewed by (Dehghani-Sanij, 

Dehghani, Naterer, & Muzychka, 2017); however, since ice accumulation involves several 

complex modeling for spray generation, calculation of droplets trajectory, freezing of salt 

water and formation of ice layer, it was concluded that the models available may not 

provide a reliable prediction of Ice accumulation. There is a need for a predictive model 

that can be easily modified for application in a wide range of environmental conditions. 
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Moreover, the climate in a harsh environment can change rapidly, so the model must be 

robust and dynamic to update the estimation with the availability of new data. 

1.4 Research objectives of the thesis: 

Based on the research gaps identified in the previous subsections, the need for dynamic 

estimation approaches has been identified in two specific areas:  

i) Risk-based inspection methodologies 

ii) Risk due to ice accumulation on marine vessels and offshore rigs. 

Figure 1.2 shows two research objectives that are defined to address these identified 

research gaps. The first objective is to develop a model to calculate dynamic or real-time 

risk to help with inspection optimization. It includes a brief study of the industrial codes 

that are used as standard guidelines for risk-based inspections. Because most industries 

have already adopted several standard guidelines, it is necessary that the proposed dynamic 

model must be integrated with those standards and codes. This study is undertaken to 

provide a better decision-making tool for determining inspection intervals.  

The second objective of the thesis is to develop a dynamic tool for predicting ice 

accumulation in harsh and extreme cold artic conditions. From the literature reviewed in 

this chapter, it was identified that several numerical and experimental models failed to give 

reliable results. The second part of the research objective aims to overcome this by 

developing a dynamic statistical tool that can be updated instantly upon the availability of 

new data. The goal is to reduce uncertainty in estimation of the spray-icing in an extremely 

cold environment, to plan risk-based winterization activities. The scope includes the 
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identification of several factors affecting the icing rate. To test the accuracy of the model,  

once developed, an experimental setup is designed. This setup, constructed in a controlled 

cold chamber, consists of a spray atomizer connected with a programmable control system 

that can simulate the periodic spray identically to the spray formed by waves splashing an 

offshore structure of a vessel.  

With these identified research objectives, the thesis aims to demonstrate two novel 

approaches that will provide a foundation for developing dynamic models that can be 

integrated with current practices in i) Risk-based inspection and ii) Marine icing estimation. 

 

 

Figure 1.2 Representation of the research objectives 

 

Tools for Dynamic Estimation 

Dynamic Risk-

Based Inspection 

Dynamic 

estimation for 

Spray-Icing rate  

Research Objective I Research Objective II 
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1.5 Thesis Structure: 

The thesis is written in manuscript format. It includes two manuscripts submitted to peer-

reviewed journals: the manuscript in chapter 2 is submitted to the Journal of Loss 

Prevention in the Process Industries and the manuscript in chapter 3 is submitted to Ocean 

Engineering journal.  

Chapter 2 is based on the first research objective. It proposes a dynamic risk-based 

inspection (DRBI) technique which is developed using widely accepted industrial 

guidelines for RBI: API-581. It includes a brief review of several other industrial codes for 

RBI. The model's ability to provide a real-time risk estimation based on the systems 

monitored parameters is also discussed. The proposed module can be integrated with the 

current industrial framework for RBI without significant investment. A case study is 

provided to demonstrate the technique and is compared with the results obtained using 

API-581 guidelines. A sensitivity analysis is done to illustrate the impact of fluctuation of 

the system parameters on the risk profile, something that is ignored in conventional RBI 

methods.  

Chapter 3 provides a predictive method for wave generated marine ice estimation on 

vessels operating in arctic conditions. The framework identifies the influencing parameters 

for the ice accumulation. It employs a Bayesian belief network to estimate the icing rate 

based on the environmental parameters. This section provides steps to update the 

estimation in real time upon identifying the change in environmental conditions. Details of 

the experimental setup used to validate the model are also provided in the chapter, followed 
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by the comparison of the results obtained using the predictive model and the observed ice 

accumulation rate in the experiments.  

Chapter 4 summarizes the results of the research. Based on the conclusion of the work in 

chapter 2 and chapter 3, it provides several recommendations for future work. 
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framework concept was proposed by co-author Faisal Khan. Dr. Khan also reviewed the 

developed framework, its implementation and provided feedback for improvement. Dr. 

Khan also reviewed results and provided feedback. His valuable feedback helped me to 

improve the manuscript. The Co-author Hiralben Patel helped to implement the feedback 

and finalize the framework and drafting of the manuscript. Co-author Rouzbeh Abbassi 

reviewed the results and manuscript and provided constructive suggestions for improving 

the model its presentation in the manuscript.  

Abstract 

Inspection methodologies have evolved in the past decades to explore optimal interval and 

inspections methods. The American Petroleum Institute has published several standards 

such as API-510, API 653, API 570 and API-580 to assist in determining inspection 

intervals based on equipment life, consequences of failure, degradation rate, and 

environmental impact. The most recent approach is the Risk Based Inspection, API-580 

and API-581. The underlying assumption of this approach is that risk remains acceptable 

between two planned inspection or maintenance intervals. This condition may not hold true 
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in a complex, fast-changing or degrading engineering system.  This study presents an 

innovative method to assess risk for a dynamically changing system based on the system 

parameters that are continuously monitored. The calculated dynamic risk is used to plan 

optimal inspection and maintenance intervals. The proposed method is tested on different 

process systems. Efforts are also made to align and integrate the proposed method with 

API-581. This would help to implement a more accurate approach while maintaining the 

required industry standard to ensure safe operation with low uncertainty.  

Keywords: risk-based inspection; reliability; asset integrity, dynamic risk; risk-based 

maintenance 

2.1 Background: 

In recent years increasing regulations and accountability have made operational failure a 

major economic, political and public relations issue. Inspection and maintenance activity 

are necessary to ensure continuous operation and to avoid losses and damage to the 

reputation of the company. The maintenance methodologies can be classified as corrective 

maintenance and preventive maintenance. Basic preventive maintenance can be 

categorized as time-based maintenance and condition-based maintenance. In the 

competitive market, a major failure could cost an organization much more than just repair 

expenditure, and this has made industries lean towards predictive maintenance policies. 

Historically, inspection has been a vital tool to detect potential failures. Inspection intervals 

were scheduled on dates with prespecified duration or prescribed fitness for service life. 

With the improvement in inspection approaches, instead of duration or rule-based 

approaches, inspections are planned based on the equipment’s condition. The goal is to 
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obtain the right balance between the benefits of inspection and the cost of inspection and 

maintenance. These have led to the evolution of a new area of inspection-maintenance 

optimization called risk-based inspection (RBI). This is based on the logical concept that 

the majority of high-risk components are concentrated within a small portion of the plant. 

Hence, priority and extra investment must be made for the maintenance of this equipment, 

and this extra cost can be counterbalanced with reduced maintenance for other equipment 

with lower risk.  

In the1990s, the American Society of Mechanical Engineers published several guidelines 

which offered a foundation for organized RBI (ASME, 1991, 1996, 1997). The American 

Petroleum Institute (API) published API-580 in 2002, which provided a framework for an 

inspection methodology that ranks the inspection program based on its risk value (API, 

2002). It was rewritten in 2009 and further revised in 2016 (API, 2009, 2016a). The three 

fundamental goals of RBI are: i) to define and measure risk; ii) to allow the organization 

to review the risk thoroughly, and iii) to optimize inspection based on the probability of 

failure. Further, API 581 provides a comprehensive method to calculate the probability and 

consequences of failure, environmental impact, and inspection planning. It includes the 

consideration for thinning, stress corrosion cracking, high-temperature hydrogen attack, 

mechanical fatigue for pipe, long-term creep, short-term overheating, brittle fracture, 

damage to the equipment linings and external damage degradation models. It also provides 

a framework for assessment of environmental and financial consequences  (API, 2016b). 
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2.1.1 Risk-based inspection and maintenance approaches  

Apart from API and ASME, a great deal of research has been conducted in the past two 

decades to develop risk-based maintenance and inspection methodologies. A 

comprehensive and qualitative risk-based maintenance (RBM) method was developed 

which focused on all possible failure scenarios of the equipment. (Khan & Haddara, 2003). 

Another model that combines a reliability approach and RBM was developed and applied 

on an offshore process facility developed later (Khan & Haddara, 2004). A different 

approach for RBM planning is based on fitness-of-service criteria, where equipment is 

inspected critically to obtain the data for its reliability which is then converted to ascertain 

its remaining life. Application of this approach was demonstrated for offshore wind 

structures that are unmanned and not frequently monitored, compared to process plants 

(Brennan, 2013). A model that is driven by data to predict the probability and consequences 

of failure has been proposed for a cross-country oil pipeline (Dawotola, Trafalis, Mustaffa, 

Van Gelder, & Vrijling, 2012). RBI has also been applied to structural systems,  and 

involves a different approach by considering the entire system instead of planning to 

inspect a single component (Straub & Faber, 2005). RBI that uses historical data for 

accidents and near misses to estimate the risk at two specific stages in the maintenance 

activities, turnarounds and work order management, claims to provide improvements in 

maintenance quality in an oil refinery (Bertolini, Bevilacqua, Ciarapica, & Giacchetta, 

2009). Several RBI methods have been reviewed and classified based on input, output, 

modules and techniques (Arunraj & Maiti, 2007). Table 2-2 summarizes the recent RBI 
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and RBM approaches reviewed for this study. Their applicability and unique features are 

also summarized in the table. 
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Table 2-1 Recently proposed RBI methods and their application 

Model  Classifica

tion of the 

Model 

Demonstrated 

application in  

Data 

based 

modelling 

Experience

-based 

modelling 

Provides risk 

ranking/indexing 

Unit of risk 

Khan & Haddara 

(2003) 

Quantitati

ve  

Heating, ventilation, 

and air 

conditioning (HVAC) 

✓  ✓ Performance 

loss 

Abbassi, Bhandari, 

Khan, Garaniya, & 

Chai (2016) 

Quantitati

ve 

Thermal power plant 

 

✓ ✓  NA 

Pui, Bhandari, 

Arzaghi, Abbassi, & 

Garaniya (2017) 

Semi-

quantitativ

e 

Managed pressure 

drilling 

 ✓ ✓ NA 

Fujiyama et al. (2004)  Quantitati

ve 

Steam-turbine ✓  ✓ Financial 

loss 
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Model  Classifica

tion of the 

Model 

Demonstrated 

application in  

Data 

based 

modelling 

Experience

-based 

modelling 

Provides risk 

ranking/indexing 

Unit of risk 

Krishnasamy, Khan, 

& Haddara (2005) 

 Quantitati

ve 

Power-generating 

plant 

 

✓ ✓ ✓ Financial 

loss 

Dey (2001) Qualitativ

e 

 

Cross-country pipeline  ✓   

Financial 

loss 

Arzaghi et al. (2017) Semi-

quantitativ

e 

Subsea pipeline  ✓  NA 

Brennan (2013) Qualitativ

e 

Offshore wind 

structure 

✓   NA 
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Model  Classifica

tion of the 

Model 

Demonstrated 

application in  

Data 

based 

modelling 

Experience

-based 

modelling 

Provides risk 

ranking/indexing 

Unit of risk 

Bertolini et al. (2009) Semi-

quantitativ

e 

Oil refinery ✓  ✓ NA 

Khan & Haddara, 

(2004) 

Quantitati

ve  

Offshore process 

platform 

✓  ✓ Financial 

loss 

Hu, Cheng, Li, & 

Tang (2009) 

Semi-

quantitativ

e 

Petrochemical 

reforming reaction 

plant 

 ✓ ✓ Financial 

loss 

Khan, Sadiq, & 

Haddara (2004) 

Semi-

quantitativ

e 

Molecular sieve tank, 

hydroterater, 

autoclave, methanol 

storage drum 

 ✓ ✓ Asset and 

environment

al loss 
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Model  Classifica

tion of the 

Model 

Demonstrated 

application in  

Data 

based 

modelling 

Experience

-based 

modelling 

Provides risk 

ranking/indexing 

Unit of risk 

Straub & Faber 

(2005) 

Qualitativ

e 

Generic engineering 

structures 

 ✓  NA 

Melani, Murad, 

Caminada Netto, 

Souza, & Nabeta 

(2018) 

Qualitativ

e 

Coal-fired power plant 

 

✓ ✓  NA 

Pui et al. (2017) Semi-

quantitativ

e 

Offshore process 

platform 

✓ ✓ ✓ Financial 

loss 

Mancuso, Compare, 

Salo, Zio, & Laakso 

(2016) 

Semi-

quantitativ

e 

Sewerage network  ✓ ✓ Financial 

loss 
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Model  Classifica

tion of the 

Model 

Demonstrated 

application in  

Data 

based 

modelling 

Experience

-based 

modelling 

Provides risk 

ranking/indexing 

Unit of risk 

Dawotola et al. (2012) Quantitati

ve 

Cross-country pipeline ✓  ✓ Financial / 

environment

al 

Mancuso et al. (2016) Quantitati

ve 

Power plant  ✓  NA 

Kamsu-Foguem 

(2016) 

Qualitativ

e 

Process production 

system 

✓ ✓  Production 

loss 

Wang, Cheng, Hu, & 

Wu (2012) 

Semi-

quantitativ

e 

Petrochemical 

catalytic reforming 

plant 

 ✓ ✓ Financial 

loss 
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2.1.2 Standards, Codes, and Recommend Practices 

Standards, codes and recommended practices for RBI for application in the offshore oil 

and gas industry include the DNV-RP-G101 by Det Norske Veritas. This relies heavily on 

the degradation mechanism and provides direction for predicting Probability Of Failure 

(POF) for a specific list of materials  under certain service conditions (DNV, 2010). RBI 

guidelines by ASME, PCC-3 provide a strategy and basic concepts for application in fixed 

pressure-containing equipment and components. This guideline provides a brief overview 

of RBI and can be compared with the API-580 recommended practice (ASME, 2007). 

Unlike the codes mentioned above, API-581 provides detailed and widely applicable RBI 

guidelines for the process industry. Several industries are now following these guidelines 

as they offer stepwise calculations for a wide range of fluids and materials. They provide 

two levels of consequences assessment: level 1 and level 2. For a predefined list of common 

fluids, straightforward lookup tables and charts are provided in level 1. Steps mentioned in 

level 1 provide relatively simple calculations based on certain assumptions. Level 2 offers 

a rigorous calculation for when data is not provided for the fluids mentioned in level 1, or 

when assumptions made in level one are not valid (API, 2016b). 

While reviewing the industrial guidelines for RBI, the calculation of the risk function is 

found to be derived from data, and the predicted value is established for the equipment’s 

age (API, 2016a, 2016b; ASME, 2007; DNV, 2010). There are three possible scenarios 

based on this prediction.  
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1) The value of risk is exceeding an acceptable risk value before the first RBI planned date. 

This is shown by curve A in Figure 2.1. In this condition, RBI is recommended before the 

planned date to employ risk mitigation plans.  

2) The value of risk is exceeding the acceptable risk between the RBI intervals. This is 

shown by curve B in Figure 2.1. In this case, the duration of RBI should be reduced to keep 

the risk at an acceptable level.  

3) The risk value stays below acceptable risk throughout both inspection intervals. This is 

shown by curve C in Figure 2.1. It is implied that if the risk values are below the acceptable 

risk value, then the equipment is safe to operate in that time period. 

Review of industrial RBI codes identifies various knowledge and technological gaps that 

need to be studied to have better optimization of inspection and maintenance activities: 

• Considering the rate for deterioration remains the same for years based on one 

inspection may give a false sense of security and may lead to an unpredicted failure. 

There is a need for a system that can track the changes in the risk profile in real 

time to ensure safe operation.  

• Guidelines like ASME-PCC-3 require the user to have effective management of the 

change in system parameters and initiate an inspection to update the risk value. 

They also present various key elements that can trigger a reanalysis of RBI. 

However, inspection and maintenance activities require significant resources, and 

a frequent reanalysis or inspection may not always be practical. There is a need for 
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a tool to have a continuous estimation of risk against an acceptable limit that can 

help make the decision for reinspection. 

• Despite having an RBI system in place, accidents such as that at the ConocoPhillips 

Humber refinery still occur. At the refinery, failure to understand the actual 

condition of the pipe led to an explosion just three months before  a planned RBI 

date. Such incidents can be avoided by having an accurate perception of risk in real 

time. (Carter, Dawson, & Nixon, 2006) 

 

Figure 2.1 Risk trend as calculated by traditional RBI 

2.1.3 The Concept of dynamic risk 

Dynamic risk is defined as a risk profile that provides the status of risk at any given time 

and can be updated upon the availability of new information. Several attempts have been 
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made to assess the risk in dynamic conditions. A detailed classification of risk assessment 

methodologies based on the approach followed has been reviewed by(Khan et al., 2016; 

Zio, 2018). To simplify this classification, dynamic risk models can be divided into three 

basic categories. Table 2-2 provides references for the dynamic risk-based approaches 

proposed in the past two decades. These approaches can be divided into three main 

categories:  

1. Data-based approach: In this approach, the risk is updated based on accident or near miss 

data. Once new data are available, they are integrated into the model to update the risk 

profile. This approach makes use of statistical tools such as fault tree, event tree and 

Bayesian belief networks to define relationships among the initiating events. The issue with 

statistical approaches is that they require failure data or accident precursor data to update 

the risk. The risk profile may only change after critical events have occurred, which is 

insufficient for risk mitigation. 

2. Process-based approach: Any deviation in the process parameters from its optimum 

condition is likely to increase the risk. Such changes are monitored to update the risk value. 

The magnitude and the duration of deviation of process parameters define the dynamic risk 

profile. Traditionally, mathematical tools are used to predict failure and provide an alert. 

To use different mathematical tools to predict risk requires having process failure 

information with multiple correlated marginal distributions (Khan et al., 2016). This is not 

feasible to apply to a complex process. 
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3. Degradation-based approach: The risk is defined based on the system's actual condition. 

If the degradation rate is continuously monitored, then the risk profile can be updated in 

real time. The degradation mechanism rate has to be estimated based on experience and 

available data. The efficiency of the model depends on the assumptions used to estimate 

the degradation mechanism. 

These above approaches could be used for asset integrity management, however, they 

need to improve for modelling inspection, maintenance activity and optimization of the 

inspection interval. In addition, these approaches need to be compatible with industry 

codes and standards. Substantial resource allocation is required for data collection to 

implement these methods. This study attempts to fill this gap by developing a novel 

dynamic risk-based inspection methodology that is compatible with RBI guidelines such 

as API-581. 
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Table 2-2 Dynamic risk models reviewed based on classification 

Data-driven approach Degradation-based approach 

Logic and probability based 

analysis  

Loss function Derivatives of Principal 

component analysis 

Kalantarnia, Khan, & Hawboldt 

(2009), Meel & Seider (2006, 

2008), Hashim, Hidekazu, Takeshi, 

& Ming (2014), Roy, Srivastava, & 

Sinha (2015), Khakzad, Khan, & 

Paltrinieri (2014), Khakzad, Khan, 

& Amyotte (2012), Pariyani, Seider, 

Oktem, & Soroush (2012),  

Abimbola, Khan, & Khakzad 

(2014), Zeng & Zio (2018) 

 

Hashemi, Ahmed, & Khan 

(2014), Pan & Chen (2013)  

 

Alrowaie, Gopaluni, & 

Kwok (2012), Zadakbar, 

Imtiaz, & Khan (2013), 

Zadakbar, Khan, & Imtiaz 

(2015), Baraldi, Mangili, & 

Zio (2012)  

 

 Kim et al., (2015), Lewandowski 

(2013), Zeng, Kang, & Chen 

(2016), Zhiguo, Yunxia, Enrico, & 

Rui (2017), Baraldi et al. (2012), 

Zeng & Zio (2018) 
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2.2 Dynamic risk-based inspection (DRBI) Methodology 

This study presents an approach that is built on the API-580, and 581 guidelines but 

expands further to continuously monitor the risk values, fulfilling the knowledge gaps 

identified in the previous  sections. The dynamic risk is calculated based on risk indicators 

of degradation mechanisms that are applicable for the given system. This would enable the 

user to monitor the risk profile of the plant in  realtime. Figure 2.2 shows an example of a 

typical scenario where risk is calculated using the proposed DRBI and plotted against time. 

The risk derived from and based on system parameters is presented with a solid line, and 

the risk calculated using traditional RBI is displayed with a dotted line for reference. At 

point x, the actual dynamic risk curve shown in the figure is exceeding the acceptable risk, 

which could not have been predicted using other RBI codes. This buildup in risk can be 

caused by a number of factors, including specific processes such as stem blowout, system 

flushing/cleaning etc. Management factors such as a change in operator or external 

environmental factors may also affect the risk value. 
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Figure 2.2 Comparison of risk trend of proposed DRBI with traditional RB 

This section provides a stepwise framework to implement this methodology. Figure 2.3 

provides a basic flowchart for application of the procedure. A comparison with API-581 

recommended guidelines has also been drawn in this section. These steps are shown with 

dotted blocks in Figure 2.3. 

2.2.1 Identify the system 

System identification is the first step in the calculation of the risk. This includes the 

classification of the fundamental factors that are critical for the safe operation of the 

system. The team responsible for performing the DRBI must collect relevant information 

about the components of the system and analyze it for the inspection plan. Proper care 

should be taken if the system’s integrity is contingent on other systems’ condition or any 

outside factors. Successful implementation of this step will ensure that the focal point of 
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the DRBI remains established throughout the process.  It will clarify the underlying issues 

and identify the crucial drivers for the risk. Organizations may already have a high-level 

summary of the process and its operation. Information such as corrosion circuit diagrams 

and their boundary conditions should be collected and studied in the initial stage.  

API-581 suggests similar steps to identify the system. However, API-581 has compiled 

data and provided a lookup table and charts to guide the identification process. The user 

must also decide between level 1 or level 2 of the consequences’ calculation for the RBI. 

If a level 2 calculation is to be  considered, plan for data collection must be established at 

this point while performing the API-581 prescribed approach.  
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Figure 2.3 Details of the proposed methodology 
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2.2.2 Identify the degradation mechanism 

Once the system is studied, the next step is to identify the degradation mechanism that 

poses a threat to the safe operation of the system. The effectiveness of the RBI depends on 

correct identification of the actual degradation mechanism. For the scope of the proposed 

DRBI, it is necessary to recognize a degradation mechanism that has the most influence on 

the system's safe operation. This degradation mechanism is used to calculate the POF. The 

next step is to prioritize the degradation mechanisms if more than one is present. This 

degradation mechanism is driven by several causal events, and the deterioration rate may 

change along with it. The state of the system may remain the same for several years or 

change drastically, based on variation in certain  operational and environmental conditions 

such as a change in pH, temperature, etc. The user should identify these parameters while 

studying the degradation mechanism. These parameters are discussed in the next step. If a 

corrosion control document for the equipment is available, it can provide a building block 

to identify the applicable degradation mechanism. Examples of basic degradation 

mechanisms can be, but are not limited to: 

-    Local, general or pitting corrosion leading to thinning of the wall thickness 

-    Change in material's strength due to process conditions 

-    Crack development or welding defects 

-    Loss of insulation that protects the material. 
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A similar method in API-581 provides steps for calculation of damage factors. These 

damage factors are derived from the applicable degradation mechanism present in the 

system. API-581 delivers a descriptive list of the degradation mechanisms, including steps 

to identify their rates. This includes corrosion, brittle failure, stress cracking due to sulfide, 

alkaline carbonate etc. Annex 2.B of API-581 gives a detailed description of calculating 

the corrosion rate in several conditions. 

2.2.3 Identify the Risk Indicators 

In this study, a risk indicator is defined as a continuously monitored parameter that would 

directly or indirectly affect the prevalent degradation mechanism of the equipment. 

Examples of system specific indicators could be pressure, temperature, oxygen or pH 

levels. External indicators such as atmospheric temperature, humidity, storm, or snow can 

also be considered for equipment exposed to varying climates. It is essential that these 

indicators are already being monitored in the system. If an extra inspection is required to 

measure the indicators that need additional resources, the goal of this methodology will not 

be met.  

Copious scholarly works have been conducted to identify the indicators of risk. Asset 

integrity indicators were classified into mechanical, operational and personnel indicators 

(Hassan & Khan, 2012). Another study proposes an approach of safety performance 

indicators which are based on UK’s health and safety executive (HSE) recommended 

framework (Khan, Abunada, John, & Benmosbah, 2010) (HSE, 2006). Indicators can be 

classified into leading and lagging types, based on their predictive nature. Methods to 
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identify the safety indicators for offshore facilities and nuclear plants are proposed by (LIU 

& WU, 2006), (Sharp, Ersdal, & Galbraith, 2008). 

While these models provide a foundation to identify the indicators, the majority of them 

are not continuously monitored, hence cannot be applied to the DRBI. Recommendations 

are provided here to distinguish the indicators correctly: 

The DRBI Indicators can be identified by asking the following questions: 

•    What will cause a change in the rate of the degradation? 

•    Is the identified parameter monitored continuously (directly or derived)?  

Once the indicators are known, their relationship with the degradation mechanism has to 

be recognized. It can be done by asking the following questions: 

•    How does the change in the value of indicator affect the degradation rate?  

•    What is the magnitude of this change? 

•    Does the magnitude have any boundary limits? 

The inclusion of the indicators makes the DRBI a unique approach compared to the API-

581, which assumes that the degradation rate calculated in the initial stage will remain valid 

for the entire inspection interval.  

2.2.4 Calculate POF and COF 

The risk value is a product of the probability and consequences of failure (POF × COF). 

The model proposed in this study provides a unique approach of employing the risk 
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indicators identified to calculate the POF. Since the risk indicators are based on factors that 

are monitored continuously, the POF becomes a dynamic value. The COF, however, is 

based on the same traditional concept: what the potential loss can be if the system fails. 

Since the identified possible outcome of the failure is established initially, COF will remain 

static throughout the period.  

To calculate the probability of failure, the first step is to develop a condition for failure 

based on the degradation mechanism. This can be done by static/dynamic reliability models 

or based on generic failure frequency. To implement the static reliability models, it is  

mandatory to establish failure criteria based on the monitored condition. It can be allowable 

stress for the given material, or the magnitude of the load applied. Another approach to 

calculating the POF can be based on the generic failure frequency (GFF), an approach that 

API-581 has implemented. A modifying factor has to be defined based on the risk 

indicators. Its value changes based on the deterioration and defined condition of failure. 

This damage factor is multiplied with the GFF to obtain the POF. 

Dynamic reliability models are applicable under certain conditions when the load is placed 

on the system repetitively over time (Ebeling, 1997). The numerical model developed 

based on this concept considers that the reliability of the system is not just a function of 

time, but also a function of the available wall thickness. For the fitness of service, a 

minimum wall thickness of 50% is assumed to be required. The reliability of the system is 

calculated based on the available thickness which is derived from the dynamic value of the 

corrosion rate. The failure condition is considered when more than 50% thickness of the 

pipeline is lost. The static reliability at a given time is determined by using Equation 1. 



39 

 

Here R is the static reliability at a given condition and s is the shape factor. The dynamic 

reliability is given by the Equation 2 where R is the static reliability when the system is 

operating calculated, using equation 1. Here t is the age of the system and 𝛼 is the frequency 

of operation per unit time. This process must be carried out in real time as the new corrosion 

rate is calculated based on the risk indicators. 

 
𝑅 =  𝜑 (

1

𝑠
𝑙𝑛

ℎ𝑚𝑖𝑛

ℎ
) (1) 

 𝑅(𝑡) = 𝑒−(1−𝑅)𝛼𝑡 (2) 

The other popular approach is to use a generic failure frequency (GFF) model. If the data 

for the failure is available for similar equipment, it can be modified to calculate an adjusted 

failure frequency. A modifier based on the corrosion rate and the available thickness is 

multiplied by the generic failure frequency to obtain the POF. A similar approach is applied 

in API-581 to define POF. The lookup table for the damage factor is provided in Part 2 of 

API-581: Table 4.7. In this study, an empirical equation is developed to fit the data 

provided in this table. This will enable the model to capture even smaller changes in the 

parameters in a continuous manner. For this case study, the empirical equation for damage 

factor (df) was defined by a third-degree polynomial equation (3) where x is the wall loss 

fraction estimated in the previous step. 

df =  980.11x3  +  470.76x2  −  61.457x +  2.2789 (3) 
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In API-581, the Probability of Failure (POF) is based on the generic failure frequencies of 

particular equipment. The API-581 provides several modification factors that change the 

failure frequency, based on the management system and several degradation mechanisms 

such as thinning (corrosion), insulation deterioration and stress cracking. Once these 

factors are identified, they are multiplied with the GFF to obtain the probability of failure. 

The next step is to calculate the consequences of failure (COF). As mentioned in the 

previous section, API-581 provides an option of level 1 or level 2 calculation for COF. The 

consequences categories can be flammable and explosive consequences, toxic 

consequences, non-flammable and non-toxic consequences and financial consequences. 

2.2.5 Calculate Risk as a function of time and indicators. 

Total risk is the combination of COF and POF, as defined in the previous step. There can 

be several ways to quantify the risk based on the consequences. The most common unit for 

risk is in terms of financial, casualties or the area involved dollar loss, death/injuries, or m2 

area affected. Whenever the equipment is operating, there is always some risk present. The 

risk value can be reduced using mitigation techniques, but it cannot be zero as long as the 

equipment is operating. To produce safe operation of the equipment, it is essential to have 

an acceptable risk limit such that if the risk value is higher than this limit, equipment is no 

longer safe for operation. This limit is often also necessary for regulatory and insurance 

purposes. The risk limit is normally defined by management based on the local regulations 

or the company's policy. While performing the DRBI, a constant comparison between 

current risk value and continuous risk value has to be carried out to ensure safe operation.   
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 In API-581 however, risk value for an entire inspection interval is predicted at the 

beginning. Based on the POF and COF, a risk value is obtained for the inspection interval 

dates. A risk curve is established based on the obtained values. API-581 provides three 

possible cases based on the predicted risk which was discussed in the previous section and 

in Figure 2.1. 

2.2.6 Perform DRBI and compare with the risk limit 

Once the risk function is developed, it can be implemented for the system to  perform a 

predictive DRBI analysis. Continuous data from the monitored system parameters must be 

provided to update the risk in real time. The risk calculated with DRBI is compared with 

the acceptable risk limit. Any unusual trend in the risk value must be identified and 

investigated for the cause, especially if the risk value is approaching the acceptable risk 

limit. If needed, a detailed RBI must be carried out using other established methods to 

check the accuracy of the defined risk function. Unlike API-581, the POF value calculated 

with DRBI will change dynamically with the change in the process parameters. API-581 

does not require a continuous input of data, since the POF trend is pre-established. 

Table 2-3 summarizes the main difference between the proposed DRBI and the API-581 

methodology based on the input/output, nature or risk, uncertainty due to inspection and 

data required. 
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Table 2-3 Comparison of API-581 and proposed DRBI method 

 API-581 recommended RBI Proposed DRBI 

Input type Data from inspection and 

manufacturer provided data. 

Real-time risk indicator value, the 

age of the equipment 

Output type Risk value as a function of time 

and other factors measured at the 

inspection date.  

Actual risk value as a function of 

continuously monitored indicators 

and time. 

Uncertainty Provides lookup table to address 

inspection uncertainty using an 

effectiveness factor 

Since the risk is a function of 

parameters that are monitored 

continuously, uncertainty due to 

data estimation is not present.  

Data required Based on the component type, 

fabrication material and fluid 

type, API-581 provides several 

lookup tables for the type of data 

required. 

Information about the applicable 

degradation along with 

continuously monitored parameter 

which is responsible for it. 

 

2.3 Implementation of DRBI framework  

This section provides a case study for the illustrative application of the DRBI. The 

predictive dynamic risk is calculated for a pipeline carrying a mixture of sulfuric acid. The 

framework mentioned in the previous section is applied to this system. The result is also 

compared with the values calculated by the guidelines provided in API-581.  
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2.3.1 Description of the scenario 

In this study, a 4-inch carbon steel pipeline carrying sulfuric acid is provided. The 

properties of the system are logically assumed to demonstrate the concept. Details of the 

system properties are summarized in Table 2-4. Sulfuric acid has a corrosive nature that 

can deteriorate carbon steel. Ferrous sulfate is formed as a byproduct of the corrosion and 

forms a layer over the metal, which prevents any further corrosion. Due to this 

phenomenon, the corrosion rate is low for a near stagnant flow rate. If the flow rate is high, 

it will increase the mass loss of the ferrous sulfate film and accelerate the corrosion rate. 

The corrosive nature of sulfuric acid also depends on its concentration: corrosion rate 

increases with the increase in concentration up to around 80%, higher concentration of 

sulfuric acid is less corrosive. Despite the corrosive characteristics of sulfuric acid with 

carbon steel, it is typically accepted as piping material. If the specified condition is 

maintained, then the corrosion rate is very low. In this simulation, the concentration, 

temperature and the velocity of the sulfuric acid mixture are set at optimum values, and 

they are continuously monitored. 

Table 2-4 Important equipment properties 

Age of Pipe at time of study 3 years 

Outside Diameter 4 in 

Inside diameter 3.213in 

Thickness 10 mm 

Pipe Material  ASTM 304 Grade A 

Length  40m 

Fluid density 1.67 kg/L 

Temperature set point 10 C 

H2SO4 concentration 75% 

Inspection period if acceptable risk target is not reached 3 years 
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2.3.2. Stepwise application of DRBI 

The following steps are considered to simply illustrate the application of the developed 

methodology on the aforementioned case study.   

Step 1. The first step for the DRBI is to summarize all the information necessary for the 

calculation. The integrity of the pipe is based on the wall thickness and it is necessary to 

have the data for the internal and external diameters in the initial stage. For this case study, 

generic data have been used to demonstrate the methodology. To mimic the continuously 

monitored data, a simulation approach  has been taken. 

Step 2. Due to the corrosive nature of the fluid, the degradation mechanism is identified as 

corrosion. The integrity of the pipe is based on its available thickness. A low flow rate of 

the sulfuric acid will cause general corrosion or thinning of the carbon steel. The effect of 

other degradation mechanisms such as local corrosion or pitting will be negligible if the 

conservative approach is taken for general corrosion calculation.  

Step 3. The next step is to identify the indicators. As mentioned in the framework section, 

the factors that will affect the corrosion rate of the pipe are temperature, flow velocity, acid 

concentration, the presence of oxidants, atmospheric parameters such as moisture content 

and system vibration, etc. Of these parameters, fluid temperature, acidic concentration, and 

flow velocity are set and monitored by the control system. Hence, these three parameters 

are identified as indicators for the risk. The next step is to identify the relationship of the 

indicators with the degradation mechanism. NACE has provided data for corrosion caused 

by sulfuric acid as a function of temperature, concentration and flow velocity (NACE, 
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1985). Based on NACE data, API-581 has provided a lookup table in Table 2.B.5.2 in 

Annex 2.B along with brief details of the corrosion mechanism (API, 2016b). This table is 

used in this study to construct the corrosion rate as a function of the temperature, 

concentration and flow velocity.  

Step 4. Once the corrosion rate is obtained, the POF can be defined using several 

approaches. In this study, as discussed in section 2, dynamic reliability models and a 

generic failure frequency (GFF) model have been used to calculate the POF. The POF 

calculated by both approaches, reliability models and GFF models, are dynamic in nature. 

For reliability based DRBI model The POF(t) is calculated as 1- R(t). Whereas for GFF-

Based model POF is defined as the product of df and GFF. 

Step 5: To calculate the risk, possible failure scenarios have been identified. The underlying 

financial and area loss due to identified leakage scenario was calculated. The COF for the 

case study has been calculated using an API-581 level 1 approach. A detailed discussion 

of the calculation is out of the scope of this work and interested readers can refer to API-

581 part 3 for more details on this (API, 2016b). The risk is then calculated as a product of 

COF and POF. 

Step 6: The final step is the predictive analysis. In this case, a spreadsheet program is 

developed to simulate the value of the temperature, acidic concentration and the flow 

velocity. The simulation is carried out for three years, a typical inspection and maintenance 

period for the pipeline. The programme derives the value for the corrosion rate and the 

thickness lost based on the references discussed in the step 3 of this section.  This value is 
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fed into static reliability models and the GFF model. The output is in terms of the 

probability of failure. The results are discussed in more detail in the following section.  

2.4 Result analysis 

A DRBI is calculated based on the monitored parameters simulated for three years. For the 

simulation, it is assumed that the temperature of the fluid, acidic concentration and the 

velocity of fluid follow normal distributions with mean and standard deviations as 

mentioned in Table 2-5. This assumption is logical since process systems employ a 

proportional control system or a PID control system to regulate the system parameters. 

Values of these parameters are simulated for each day of operation between the inspection 

period. The graph in Figure 2.4 presents the daily variation of temperature. It reproduces 

the effect of a control system that is programmed to adjust the temperature to a set point of 

10C. The fluctuation in the value mimics the temperature regulator's on-off cycle. 

Similarly, the graphs in Figure 2.5 and Figure 2.6 provide the value of acid concentration 

and the flow velocity based on the simulation of the control system that has been set to 

75% concentration and 0.91 m/s respectively.  

Corrosion rate was calculated based on the result of simulation for each period. Even 

though the monitored parameters fluctuate frequently, the corrosion taking place due to the 

indicators may not change as rapidly. To correctly quantify the corrosion resulting from 

the indicator's value, a conservative corrosion rate is selected based on the moving 

percentile value of the observations in each month. Figure 2.7 shows the variation in the 

corrosion rate resulting from variation in the indicator's value. Based on the corrosion rate 

derived from the indicators, a wall thickness loss is estimated. Figure 2.8 shows the 
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available wall thickness as a function of the age of the system. This wall thickness, along 

with the corrosion rate, is used to calculate the POF based on i) Dynamic Reliability models 

ii) the GFF based model. 

Table 2-5 Set points of system parameters and variations 

 Fluid 

parameters 

Type of 

distribution 
Mean Std Dev 

Temperature Normal 10C 5C 

Acidic 

concentration 

Normal 

75% 5% 

Flow 

velocity 

Normal 

0.91 m/s 0.25 m/s 

 

 

Figure 2.4 Simulated temperature of the fluid measured continuously 
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Figure 2.5 Simulated acidic concentration of the fluid measured continuously 

 

Figure 2.6 Simulated velocity of the fluid measured continuously 

 

Figure 2.7 Real-time corrosion rate calculated from the Risk Indicators 
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Figure 2.8 Calculated thickness available as a function of time 

2.4.1 Dynamic Reliability model 

For the calculation of the POF using the reliability model, the failure of the pipeline based 

on the available thickness is assumed to follow a lognormal distribution. This provides an 

option to adjust the reliability trend specific to the system by changing the shape parameter. 

The wall thickness at a given time is h and minimum wall thickness, hmin, is 5 mm, which 

is based on a 50% thickness failure criterion. The graph in Figure 2.9 shows the result of 

the POF between two inspection intervals.  

 

Figure 2.9 Probability of failure calculated using DRBI- reliability based model. 
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2.4.2 Results of using GFF based model 

To calculate the POF using the GFF model, a failure frequency is determined for the pipe 

using generic data. The modifiers for the corrosion rate are defined based on the system's 

properties and experiential learning.   As the system parameters change, the value of 

modifiers will increase or decrease in accordance with the established conditions. The POF 

is determined as a product of the failure frequency and modifiers. POF, calculated using 

the GFF approach, is summarized in Figure 2.10. The graph shows the value of POF on 

the vertical axis and the duration between inspection intervals on the horizontal axis.  

     

Figure 2.10 Probability of failure calculated using DRBI- GFF model 
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obtained as a product of generic failure frequency 𝑔𝑓𝑓𝑡𝑜𝑡𝑎𝑙 , a damage factor, 𝐷𝑓(𝑡), and a 

facility management factor, 𝐹𝑀𝑆.  

In API-581 methodology, the 𝐷𝑓(𝑡) is obtained based on the Art value which is defined as 

the component wall thickness factor, calculated using the most recent inspection data. The 

inspection effectiveness of B is assumed for this study. POF is generated based on the 

𝐷𝑓(𝑡) determined by the Art value at the given age of the system. A summary of the 

calculation is provided in Table 2-6. Figure 2.11 shows the POF value obtained by API-

581 as a function of time. Note that since the Art value will only increase or remain constant, 

the POF will also show the same trend: it will increase in interval-based steps and never 

decrease.   

Table 2-6 Summary of API-581 recommended RBI values 

Generic failure frequency 3.06 E-05 

Management system factor 1 

Corrosion ate 0.55 mm/year 

Art value 0.165 

Thinning damage factor at 

inspection date 

8 

Thinning damage factor at 

next planned inspection date 

53 

POF at inspection date 0.00024 

POF at next planned 

inspection 

0.00162 
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Figure 2.11 Probability of failure calculated using API-581 recommended RBI 
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Figure 2.12 Effect of Risk Indicators on the initial probability of failure 

 

2.5 Discussion: 
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failure profile, as shown in Figure 2.9. The increase in the corrosion rate at around 600 

days from the initial inspection causes a rise in the POF calculated in the graph.  Since the 

thickness lost during this period is not recovered, the POF will not decrease even if the 

corrosion rate is brought under control.  

The POF calculated from the GFF model gives an active prediction of the probability. This 

POF calculation not only considers the available thickness, but also the recent indicator 

value and the corrosion rate. Due to the spike in the corrosion rate at around 600 days, an 

abrupt change is reflected in the POF value, as shown in Figure 2.10.  However, here the 

POF becomes stable as soon as the corrosion rate is brought under control. The API-581 

recommended RBI fails to capture this fluctuation and this will give a false sense of 

security if only API-581 is used. 

Further, to check the influence of the involved parameters in the calculation, a sensitivity 

analysis was carried out. The result is discussed in the previous section. It is observed that 

the increase in the indicator's value by one standard deviation causes a significant change 

in the POF value. Of the three indicators, the velocity of the fluid was found to be the major 

driver for the POF. An increase of one standard deviation caused the probability to increase 

over five times. This is due to the corrosion mechanism explained in section 3 which 

explains that at a higher velocity, the ferrous sulfate film will erode and accelerate the 

corrosion process.   

The probability curves obtained by API-581, the reliability-based DRBI model and the 

GFF-based DRBI model overlap for comparison in Figure 2.13. It is clear that the 
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probability value obtained by API-581 failed to identify the degradation due to the 

dynamically changing corrosion rate. After around 600 days, the actual POF value doubled, 

and this was registered in real time using GFF-based DRBI. Furthermore, in the proposed 

model, Risk is a product of POF and COF where only POF is modelled as a dynamic 

function. Due to this risk profile will be similar to that of POF and change dynamically 

with the system parameters. 

 

Figure 2.13 Comparison of POF obtained from DRBI and API-581 
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Table 2-7 Comparison of advantages of proposed DRBI 

API-581 Recommended 

RBI 

DRBI 

Reliability-based model GFF-based model 

A stepwise increase in POF 

with time is observed 

between inspections 

A continuous increase in 

POF with time is 

witnessed. 

A continuous increase or 

decrease in POF is 

observed with time. 

Changes in actual corrosion 

rate, available thickness or 

system parameter are not 

captured in the POF 

Change in actual thickness 

available and indirect 

influence of corrosion rate 

and system parameters are 

captured with real-time 

POF 

Changes in actual 

thickness available and 

direct influence of 

corrosion rate and system 

parameters are captured 

with real-time POF 

POF will always increase at 

a predefined rate regardless 

of the changes in system 

parameters. 

POF will always increase; 

however, the rate of 

increase will depend on the 

system parameters. 

POF will increase or 

decrease based on the 

actual condition of the 

system’s condition and its 

parameters. 

Ability to include effects of 

several process and 

management parameters to 

calculate the POF. 

POF is calculated based on 

the continuously monitored 

parameters. 

POF is calculated based on 

the continuously monitored 

parameters. 
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2.6 Conclusions and Recommendations 

This study presents a new approach that can be integrated with the current RBI practices 

to overcome several shortcomings discussed in section 2. A detailed stepwise framework 

along with a demonstrative case study for DRBI is presented for application in process 

systems. Upon analyzing the results of the case study, the following can be concluded: 

1) Confidence in safety of the system: The proposed DRBI model provides direct and real 

time insights nto the actual risk value of the system. This will decrease the uncertainty of 

risk estimation in real time and provide an accurate sense of safety of the system. 

2) Effective monitoring and alert system: The degradation rate may change drastically 

due to a certain combination of process fluctuations. The DRBI adequately captures this 

change, and the information can be combined with the monitoring system to provide an 

alert. This will give adequate time to prepare and implement risk mitigation plans. This is 

not possible with other traditional RBI methods. Even though advanced process systems 

have a monitoring system in place to provide alerts, if a certain parameter exceeds 

allowable limits, these systems do not consider its effect on the degradation mechanism. 

This study shows that a combination of certain fluctuations in the process parameters, even 

though within allowable limits, may increase the degradation rate significantly, leading to 

an increase in POF. 

3) A reward for safe operation: Most traditional RBI uses a conservative approach when 

there is considerable uncertainty in the risk estimation. A risk-aversive approach is taken 

by increasing the inspection frequency due to this uncertainty in risk. It is shown in this 
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study that under certain conditions, the risk may decrease if the system parameters are 

optimized. With the DRBI, this can be recognized with minimal uncertainty and can be 

used for rescheduling inspection intervals. This can provide an immediate cost saving by 

extending planned inspection intervals and maintenance.  

4) Effective process optimization tool: The unique approach used to define the risk based 

on the indicators provides an ability to identify the actual cause for the sudden or gradual 

increase in the risk value in real time. Sensitivity analysis was performed in this study to 

identify the influence of the indicators. Based on this analysis, recommendations for 

optimization of the system parameters can be provided. 

Although the proposed DRBI provides numerous unique advantages over traditional RBI 

methods, it is heavily dependent on the system parameters and defined risk indicators. Due 

to the continuous requirements of data, factors such as management system parameters are 

not used in the calculation of POF. A solution to this would be to use the proposed DRBI 

along with well-established guidelines like API-581. Initial risk value from the DRBI can 

be adjusted or benchmarked with widely accepted API-581. This would  have the ability 

to include the benefits of both methods at the same time without making any significant 

extra investment. This study provides a foundation for the development of a new module 

that can be incorporated with the API-581 to enable dynamic risk calculation.  
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3. A Predictive model to estimate Ice Accumulation on Sea 

Vessels and Offshore Rigs 
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how to analyze and made conclusive observations. I have prepared the first draft of the 

manuscript and subsequent revisions. Co-author Faisal Khan has reviewed the manuscript 
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Abstract 

Ice accumulation on the ships and offshore rigs creates unsafe working condition and may 

damage the critical equipment. Several approaches have been developed in the past to 

predict the ice accumulation; this includes analytical models, experimental investigations, 

computational fluid dynamics simulations, empirical and statistical models. This work 

proposes a probabilistic causal relationship based model to predict the ice accumulation on 

the ships or offshore rigs. The model uses the Bayesian probabilistic approach to establish 

the relationship among the factors affecting the icing. The model is successfully tested on 
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an experimental setup designed to simulate the spray icing condition observed in the 

subzero environment on a sea vessel. The result of the experimental testing was compared 

with the outputs from the predictive model. It was observed that the predicted values gave 

the reasonably good match with the observed values.   

The proposed model considered a range of environmental and processes parameters that 

affect the ice accumulation. The model has the flexibility to include more parameters 

affecting icing based on the location and system. The model can be used for dynamically 

changing conditions with minimum computational load and time. 

Keywords: Ice load;  Ice conditions; Harsh environment; Ice accretion; Arctic conditions; 

Icing prediction 

3.1 Introduction  

Ice accumulation occurs on the sea goings vessels and offshore rigs that operate in subzero 

temperature. When water droplets come in contact with the cold object, it is necessary that 

process of heat extraction occur such that all or some of the water freeze before getting 

drained away. Also, if the surface is dry and the droplets freeze before coming in contact 

with the surface, the crystals with not stick to the surface and no ice accumulation will 

occur (Jessup, 1985). Icing can cause a severe threat to the stability of the vessel structure; 

this is more significant in the case of small ships. Many small ships still use manual deicing 

methods that involve Wooden or metal mallets, baseball bats to remove the ice layer. This 

traditional method is useful in some cases. However it can damage the equipment from 

being a strike by the mallets, and it also possesses a high risk to the person carrying out 
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this operation on the deck (Ryerson, 2011). Several deicing chemicals are now restricted 

as per the new regulation due to its environmental impacts. (Ryerson, 2013) 

Calculation of icing rate is a very complicated process. Several models are proposed to 

predict icing rate for various vessels and rigs. Most commonly used model is the one 

developed by (Overland, Pease, Preisendorfer, & Comiskey, 1986). This empirical model 

was based on several observations from Alaskan waters. It provides clear steps to calculate 

the value of icing predictor (PR) which can be categorized from light to extreme icing. 

Even though this model overcame several complexities involved in icing prediction, it 

considers only limited variables affecting icing rate and is based on many simplifying 

assumptions. The model proposed by (T. Myers & Hammond, 1999) focus on the growth 

of the ice accumulation and calculation of its thickness. Some research on the formation of 

saline icicles on the vessels has also been carried out (Chung & Lozowski, 1990). The 

results show very little difference in the growth of saline icicles concerning freshwater 

icicles.  A mathematical model developed by (T. G. Myers & Charpin, 2004) uses a 

modified model to show ice formation on various surfaces. However, it only considers 

fresh water in its calculation. (Kulyakhtin & Tsarau, 2014) develops a 3-dimensional time-

dependent model they named MARICE using calculations of freshwater icing by (T. G. 

Myers & Charpin, 2004) and salinity conservation equations used by (Ivar Horjen, 1990). 

(Shipilova et al., 2012) studied the effect of water droplet temperature, air temperature and 

wind velocity on the ice accumulation rate.  A more complex numerical model like 

ICEMOD (Ivar Horjen, 2013; I Horjen & Vefsnmo, 1986), RIGICE04 (Forest, Lozowski, 

& Gagnon, 2005) are also available. These models focus more on the spray generation 
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based on the splashing of waves with the vessel. Airflow and some heat transfer process 

are approximated for specific shapes. Recently model was developed for Norwegian Coast 

Guard by (Samuelsen, Edvardsen, & Graversen, 2017), this model was tested using data 

from the coast guard ship.  In real condition, the process is even more complicated: several 

other parameters affect the generation of spray and the heat transfer process which are very 

difficult to integrate. Another approach of using a numerical model based on computational 

fluid dynamics (CFD) simulation has been developed by (Kulyakhtin, Shipilova, & 

Muskulus, 2014) which simulates the icing rate over the whole vessel.  

Some models discussed models are developed and test based on a specific location or 

vessel type. The numerical models that are based on mass and heat transfer calculations or 

CFD simulation require much computational power which makes it less efficient for 

predictions on a dynamically changing environment(Dehghani-Sanij, Dehghani, Naterer, 

& Muzychka, 2017). Although the concern for icing problem exists for almost a century, 

there is still very little understanding on this topic (Dehghani-Sanij et al., 2017). This study 

aims to present a different approach for predicting Icing load. The uniqueness of this model 

is that it is dynamic such as it can be implemented in changing scenarios. Once the data 

has been converted in the form of the likelihood that is required for this model, the 

prediction of icing load can be made with minimum computational power. This can give 

the ability to predict the icing load in real time on a moving system. As observed in the 

previous models, (Jessup, 1985; Overland et al., 1986) only some parameters are 

considered necessary for icing rate calculation, and new parameters cannot be introduced 

without modelling from the beginning.  The model proposed here overcomes this 
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limitation. The additional parameters can be introduced without changing the entire model 

quickly and effectively. The model was further verified on an experimental setup designed 

to simulate the spray icing observed on a vessel.  

3.2 Model development  

This section gives descriptions of the method to estimate the ice accretion load on 

equipment on sea vessel or offshore platform. The main steps for developing the model is 

shown in Figure 3.1. The method starts with the identification of the factors affecting icing, 

and the final step is the interpreting the output into a numerical value. The steps also include 

the formulating of a predictive model, which is a crucial step for this model. Bayesian 

network is used as a predictive tool to develop the model.  
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Figure 3.1 Steps involved in the development of the model 
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3.2.1 Stage 1:  Identification of processes and factors affecting Marine Icing 

Several factors affect ice accumulation such as wave height, wind velocity, ambient air 

temperature, sea water temperature as well as vessel velocity(Fukusako, Horibe, & Tago, 

1989). Several complex processes are leading to ice accumulation.(Kulyakhtin, 

Kulyakhtin, & Løset, 2016) divides the process into four types including the generation of 

spray flux, the flow of spray cloud, impingement of droplets and freezing of the spray. The 

spray flux formation and heat transfer among the droplets are critical processes in ice 

accumulation hence it must be calculated very carefully(Lozowski, Szilder, & Makkonen, 

2000). In this study, two main processes are considered: 1) formation of spray flux, 2) 

droplet cooling. The goal is to predict the icing based on the observed data, so the dynamics 

of spray formation and icing is not considered here.  

Spray flux is defined by the amount of droplet of the cloud interacting with the structure 

(Kulyakhtin & Tsarau, 2014). It is mainly influenced by the wind velocity and the liquid 

water content (LWC) in the air. The LWC is dependent on wind velocity and waves 

splashing with the vessel which leads to the formation of droplets. As the vessel is in 

motion, it needs to consider the relative wind velocity.  This dependency can be shown in 

Figure 3.2a. The directional arrow signifies the influence of the factors on the directed 

phenomenon.  

Significant cooling of spray droplets is necessary to form ice on impacting. The droplet 

cools as it travels through the air. The temperature of the droplets approaches the 

temperature of the atmospheric air. In real conditions, this temperature will always be 
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higher than atmospheric temperature. The main parameters affecting the droplet cooling 

are atmospheric temperature, relative humidity of the air, and velocity (Hoes, 2016). The 

velocity in this study is approximated by the relative speed of the vessel. Figure 3.2b shows 

the relation of these factors. Finally, these factors leading to two phenomena of droplet 

cooling and spray flux causes the ice accumulation on the object as shown in the Figure 

3.2c.  

3.2.2 Stage 2: The Structure of the predictive model:   

Bayesian network (BN) is used as a probabilistic predictive tool for this study. In the BN, 

nodes represent the variables, and unidirectional arrows representing the dependencies 

connect them. The formation of the structure of the BN can be divided into three main 

steps: 1) mapping the factors into nodes 2) Connecting the nodes 3) defining the states of 

the nodes. 

1) After identifying different factors affecting the phenomenon, they can be defined as 

nodes in the BN. These nodes can be divided into evidence, intermediate nodes, and 

query nodes. The evidence is the inputs entered based on the observations made. 

Whereas the query nodes are the final node of the BN. This is also output nodes of the 

system. To establish proper relations between the evidence and terminal nodes 

intermediate nodes are defined based on the nature of the processes. This node connects 

the evidence nodes to the query nodes based on the logical relationships. The factors 

represented in Figure 3.2are considered as nodes in the BN. The BN predictive model 

is shown in Figure 3.3. The factors responsible for initiating the process of Flux 



75 

 

formation and droplet cooling are considered as the evidence. They act as input nodes 

to the Bayesian Network. Spray flux and droplet cooling are determined as an 

intermediate node. The intermediate nodes define the causes of the final node of ice 

accumulation, which is the output of the system.   

 

 

Figure 3.2  Relationship of factors and processes affecting Ice Accumulation 

2) The next step is to connect the nodes. Cause and impact relationship usually do this. 

To illustrate this process wind velocity, vessel speed and waves are considered as the 

inputs to the system as shown in Figure 3.2a. This is defined as evidence or primary 

input nodes in the BN in Figure 3.3. Note that the relative velocity is defined based on 

the wind velocity and the vessel speed. Hence node "relative velocity" becomes an 

intermediate node which is linked to wind velocity and vessel speed. Now Spray flux 

is dependent on the "waves" and the "relative velocity" so it is connected with the 
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directional arrows from waves and relative velocity. Finally, the flux and the droplet 

cooling are the prior distribution of the ice accumulation which is also the output of our 

system. This can be connected to the directional arrow shown in Figure 3.3.   

 

Figure 3.3 Bayesian network structure showing dependencies of the factors affecting ice 

accumulation 

 

3) Before defining the conditional relationships known as the conditional probability data, 

it is needed to develop the states in each node. The nodes in BN could have several 

states. This is dependent on the nature of the system.  

Each node can be divided into several states. However, if we define many states, the system 

will become very complicated, and the number of conditional interdependency for the next 

node will inherit longer multitudes. To keep the system consistent and straightforward, the 

nodes are defined to have three states. For instance, Atmospheric Temperature can be High, 
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medium and low, corresponding to more than -5, -5 to -12 and below -12 respectively. 

Similarly, the classification for all other nodes can be defined into three stages as shown in 

the Table 3-1. This classification of states is an essential step in this model. This 

classification is based on the observed range and experiential learning. This range can be 

tweaked for the different data set, once available. 

Table 3-1 Classification of states of the nodes 

Parameters Classification Range of parameters 

Air 

Temperature 

High 

Med 

Low 

Greater than -5 C 

-5.01C to -12 C 

Less than -12 C 

Wind velocity 

Low 

Moderate 

High 

up to 3 m/s 

3 to 12 m/s 

more than 12 m/s 

Humidity 

Low 

Med 

High 

0 to 50 % RH 

20 to 80 % RH 

80- 100% RH 

Vessel speed 

Normal 

Moderately Fast 

Fast 

up to 5 m/s 

5 to 10 m/s 

more than 10 m/s 

Wave Height 

Calm 

Moderate 

Rough 

up to 1.25 m 

1.26 to 4 m 

more than 4 m 

Relative Speed 

of vessel 

Normal 

Moderately Fast 

Fast 

up to 5 m/s 

5 to 10 m/s 

more than 10 m/s 
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Droplet cooling 

temp 

High 

Med 

Low 

Greater than -5 C 

-5.01C to -12 C 

Less than -12 C 

Spray Flux 

Low 

Med 

High 

up to 3.25 ml/m2 s 

3.26 to 5.44 ml/m2 s 

5.45 to 8.16 ml/m2 s 

Ice 

accumulated 

Low 

Med 

High 

0 to 0.149 g/s 

0.15 to .299 g/s 

0.3 to .499 g/s 

 

3.2.3 Stage 3: Defining Conditional Probability 

The third step is defining the conditional probability data table (CPT). The CPT is defined 

for every node other than the primary node. The marginal probability values in the CPT 

defines the relation between the prior and posterior nodes in the Bayesian Network. If 

enough data is available, then the data frequency can be converted to the marginal 

probabilities by dividing the frequency of occurrence of a given state by the total number 

of observations. If enough data is not available, then the empirical relationship, numerical 

simulation, or experience-based judgment can be used to construct the CPT. 

In this study, ten experimental runs have been done to create the data for ice accumulation. 

Details of the experimental setup are described in the next section. The frequency table has 

been generated based on the data available. In this study, experiential learning along with 

the experimental data was used in defining the conditional probabilities. These values are 
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used to define the Conditional Probability Table (CPT) and completes the Bayesian 

network. 

3.2.4 Interpretation of the output 

In the proposed model every node, including ice accumulation node, has three states. The 

Bayesian network will give an output based on the probability of occurrence of each state. 

For Icing, the states defined are Low, Med, and high. The output probabilities of each state 

must be converted to a specific value to get a proper estimation of accuracy in prediction. 

This can be done by two simple approaches using the Mean and Mode values of the 

distribution: 

1) Mode value: The mode value is defined as the mean value of classification with the 

highest probability multiplies by the probability of occurrence of the same class. 

For instance, if the probability of Medium comes highest of all three, the mode 

value will be the central value of the class, multiplied by the probability of that 

class. 

2) Mean value: The mean value is the weighted average of all the class. It can be 

defined as the average of the sum of the products of probabilities of occurrence of 

all class and its central value.  

3.3 The Experimental Setup 

In this section, the model proposed above has been applied to the experimental setup 

designed to study the spray icing. The experiment is designed to mimic a spray icing 

condition on a sea vessel. 
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3.3.1 Overview of the experimental setup: 

The spraying rig consists of a pump, compressor, sprayer, vales and pipes as shown in 

Figure 3.4. An air atomizing unit supplied with water and pressurized air is used to generate 

water spray. The nozzle height is adjustable to allow variations of spray directions. 

Pressurized air (~35 psi) is supplied from an air compressor. A blower is placed carefully 

behind the spraying rig to mimic wind. Water spray will be carried in the direction of wind 

and freezes due to low temperature and windy conditions. The icing object is placed inside 

an enclosure to minimize the effect of disturbances to the air flow (due to air flow created 

by the fans inside the cold room). The setup is built on two separate mobile trolleys: spray 

unit with the tank, pump and valves on one trolley and icing object with the enclosure on 

another. A temperature control system is adapted to control and maintain the temperature 

of the water tank. Stainless steel pipes are used to resist corrosion and withstand low 

temperatures. 

The test specimen object is a steel cylinder, which is a standard shape found on many vessel 

equipment and pipes. The Specimen is kept in a cuboidal glass tunnel. The tunnel is kept 

at a certain distance to allow proper formation of the spray cloud.  The blower blows the 

droplet cloud formed by the air atomizer uniformly into the tunnel. The specimen is 

positioned on two single point load cells sensors, which transmits the weight data to the 

data acquisition system. The amount of the ice deposited is calculated by calculating the 

difference in the weight observed at the end of each cycle. 
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3.3.2 Testing Protocol:  

Parameters considered in the experiment run: 

Temperature: The setup has several temperature sensors in the system including tank, in 

the cold room and at the side of the nozzle. In this study, only the data from the sensor next 

to the nozzle is considered. This will give a more accurate temperature of the spray cloud 

generated. 

Flux: The flux is calculated with some conditions. It is assumed that all of the discharge of 

water droplets from the spray nozzle generates the cloud and the flux is uniform across the 

cross-sectional area of the tunnel. The discharge per cycle is observed at the beginning of 

the experimental run. The amount of water droplets per cross-section area of the tunnel is 

obtained by dividing the discharge by the cross-sectional area of the tunnel. Based on the 

dimension of the cylindrical object the cross-sectional area is about 16.7% of the total area 

of the tunnel. This factor is multiplied by the tunnel flux to obtain the Flux.  

Wind: The blower used to produce air in this study operates at constant speed. In the 

experiment setup, an extremely delicate hot wire anemometer is used which is positioned 

along with the temperature sensor near the spray nozzle. Since the blower speed is constant 

the readings from the anemometer remains around 12 m/s. The nature of the flow generated 

is turbulent.  
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Figure 3.4 Experiment setup overview: the figure is not up to scale.  
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3.3.3 The test conditions:  

Periodic spray for the 3-second duration is carried out after an interval of every 3 seconds. 

This allows proper formation of spray cloud which is quite similar to conditions observed 

at sea due to the splashing of waves. The experiment is carried out for 100 cycles, which 

is about 600 seconds. The water discharge from the nozzle is monitored. Temperature and 

wind velocity is also monitored for the experiment from the digital sensors. At the end of 

the experiment, the weight of the ice deposited on the steel cylinder is obtained from the 

data accusation system connected with the setup. This test is carried out at a wide range of 

temperature and discharge of spray.  

3.3.4 Limitation of the Experimental Setup 

Even though the experimental setup creates a similar condition to spray cloud generated 

by the wave splashing, we cannot measure all the parameters defined in Figure 3.3. For 

example, waves height, vessel velocity, salinity, and humidity are not valid in this 

experiment. Flux is dependent on the wave height and the vessel speed, which is also not 

considered in this experimental setup.  

3.4 Testing of the model 

To validate the prediction capability of the model a simple method has been proposed. 

Same input parameters entered into the predictive model and the experimental system. The 

predictive model gave the result in term of the probability of the icing. These probabilities 

can be compared with the actual ice accumulation observed in the system. To estimate the 

quality of the prediction; it is necessary to convert the probability distribution obtained 
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from the of the Bayesian network into the measurable parameter. Based on the definition 

of the state of the output node the probabilities are converted to mean or mode state’s 

central value as described in section 2.4. Then these values are used for estimating the error 

in prediction. Necessary steps followed for the testing of this model are summarized in 

Figure 3.5. 

3.4.1 Equivalent model to adjust with a limitation: 

As discussed in the limitations of the experiment setup, several parameters cannot be 

measured in the experimental setup used for testing and validation. Experimental setup 

directly generates the spray cloud, making parameters like wave height, vessel speed 

invalid or not measurable in this setup. To demonstrate the procedure and validate the 

proposed method, only the atmospheric temperature and spray flux are considered as input 

in this model. Since the flux is dependent on the wave height and the vessel speed, which 

doesn’t exist in this experimental setup, the spray flux along with temperature is considered 

as direct input to the system.   
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Figure 3.5 Framework for the testing of the model 

To do this, the BN model has to be modified to consider only two inputs. Two primary 

nodes of Atmospheric temperature and Spray flux will act as input to the system. The 

Bayesian Network is modified as shown in Figure 3.6. Also, since, the parameter of wind 

is constant in the experiment, its effect is not considered in this study. The CPT of droplet 

cooling is defined as unity, meaning observing high, medium and low temperature will 

result in high, med, low droplet cooling respectively with a probability of 1.      
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Figure 3.6 Modified Bayesian network for the experiment setup’s limitations 

      

3.4.2 Testing: 

A different set of preliminary readings are taken for 11 independent conditions from the 

same experimental setup with varying temperature and flux values. It is to be noted that 

these 11 data sets are different from the ten data sets used in the construction of the CPT. 

Same values of the spray flux and temperature are entered into experimental setup and the 

predictive model. The experiment is carried out following the same testing conditions 

mentioned in section 3.3 and for the same duration of 100 cycles or 600 secs. The real icing 

observed in the experiment is compared with the predicted values obtained by the BN 

model. All other parameters including wind speed (blower speed) are kept same. These 

steps are repeated for all the observations taken in the experiment setup.  
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3.5 Results and Discussion 

Total of 21 data sets has been observed from the experimental setup. As mentioned earlier, 

along with experiential learning 10 data sets had been used to develop CPT. Other 11 data 

sets have been used for testing and validation of the model. Following the testing procedure 

mentioned in the above section, the same values of temperature and spray flux are entered 

into the predictive model and the experimental setup. The outputs from both have been 

summarized in Table 3-2. Temperature is given in the second column, followed by the 

corresponding state it is classified according to Table 3-1. Similarly, spray flux, and its 

states are mentioned in the 4th and 5th column. Next three column gives the predicted 

probability distribution for each state of Ice accumulation namely low, med and high. For 

comparison, the last two column shows observed ice accumulation along with its 

corresponding state. For each input values of Temperature and Flux, the BN model gives 

probabilities of occurrence of each class. For instance, for first reading, there is 60% 

probability of low icing, 30% chances of medium icing and 10% chances of high 

occurrence of ice accumulation of the corresponding classification. As described in the 

methodology section, these probabilities can be converted to a numerical value based on 

Mean and Mode of the probability distribution.   
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    Table 3-2 Comparision of results from the model and experiment 

 

Inputs 
Predicted (probability 

in percentage) 

Observe

d 

Average 

temperature 

(C) 

Class 

Spray 

Flux 

ml/sec 

Class 
P 

(low) 

P 

(med) 

P 

(high) 

Average 

Ice rate 

g/sec 

Class 

-13.6 Low 3.44 low 60 30 10 0.14 Low 

-11.5 med 6.74 med 30 60 10 0.09 Low 

-10.8 med 8 high 5 35 60 0.3 High 

-10 med 7.2 med 30 60 10 0.12 Low 

-9.3 med 6.44 med 30 60 10 0.22 med 

-8 med 6.67 med 30 60 10 0.13 Low 

-7.8 med 1 low 85 10 5 0.08 Low 

-7.8 med 9.1 high 5 35 60 0.22 Med 

-6.5 med 5.55 med 30 60 10 0.08 Low 

-4.5 High 8 high 10 40 50 0.27 High 

-4.44 High 5.2 med 15 85 0 0.2 Med 

 

The analysis of the testing of the model is discussed in this section.  

3.5.1 Estimating error in prediction: 

To check the efficiency of the model, it is essential to calculate the error in the prediction. 

The error in prediction is defined as the difference in the predicted and the observed ice 

accumulation value divided by the observed value. It is calculated on both mode and means 

the value of the probability distribution from the output of the predictive model. 

1. Mode Table 3-3 shows the predicted value obtained from the BN, and it is compared 

with the observed value. The observed value is given in the first column, along with the 

class it falls in. The method mentioned in the methodology calculates the mode. For 
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example, for the first test, we have the highest probability of low icing, 60%. Hence the 

mode value is 60*(0.149/2)/100. 

 

Table 3-3 Calculation of mode value of icing rate (g/s) from the probability distribution 

 Observed Predicted 

  

Error in 

prediction 
 Value Class 

P(low

) (%) 

P(med) 

(%) 

P(high) 

(%) 
Mode 

Weight

ed 

mode 

value 

1 0.14 Low 60 30 10 Low 0.045 -0.683 

2 0.09 Low 30 60 10 med 0.135 0.494 

3 0.3 High 5 35 60 high 0.24 -0.197 

4 0.12 Low 30 60 10 med 0.135 0.126 

5 0.22 med 30 60 10 med 0.135 -0.391 

6 0.13 Low 30 60 10 med 0.135 0.016 

7 0.08 Low 85 10 5 Low 0.045 -0.461 

8 0.22 Med 5 35 60 high 0.24 0.088 

9 0.08 Low 30 60 10 med 0.135 0.611 

10 0.27 High 10 40 50 High 0.2 -0.262 

11 0.2 Med 15 85 0 Med 0.191 -0.069 

 

2. Similarly, the mean value is calculated considering all the classes. The result of the mean 

value analysis is summarized in Table 3-4. The mean value is calculated based on the 

definition given in the methodology section. For instance, the mean value for the first row 

will be:  

(
0 + 0.149

2
) ∗ 0.6 + (

0.15 + 0.299

2
) ∗ 0.3 + (

0.3 + 0.449

2
) ∗ 0.1.  
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     Table 3-4 Calculation of mean value of icing rate (g/s) from a probability distribution  

  Observed Predicted 
 

  Value Class P(low) P(med) P(high) 
Weighted 

mean value 

Error in  

prediction 

1 0.141 Low 60 30 10 0.15 0.06 

2 0.09 Low 60 30 10 0.195 1.157 

3 0.298 High 5 70 25 0.307 0.029 

4 0.12 Low 60 30 10 0.195 0.625 

5 0.221 med 60 30 10 0.195 -0.121 

6 0.133 Low 60 30 10 0.195 0.467 

7 0.083 Low 85 10 5 0.105 0.26 

8 0.22 Med 5 70 25 0.307 0.393 

9 0.084 Low 60 30 10 0.195 1.326 

10 0.27 High 10 40 50 0.285 0.052 

11 0.205 Med 15 85 0 0.202 -0.014 

 

In Table 3-4 the estimated error [(observed-weighted mean)/observe]}are reasonable 

except for two observations, second and the ninth observation. To analyze this, we may 

refer to the Table 3-2, for the same set of the input condition the observed icing is very 

low. The icing observed for these two sets of data (temperature and flux are medium) lesser 

compared to what is observed at high temp and low spray flux condition, which logically 

should not be. It was further discovered from the observation notes of the experiment, that 

there was clogging of the spray nozzle which could have led to lower flux then actual 

observation. This may explain the reason for the high error for this particular reading. 

Figure 3.7 shows the comparison of the icing load predicted based on mean and mode value 

with the observed value. 
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Figure 3.7 Comparison of predicted vs observed Icing Load for (a) mode and (b) mean values 

 

3.5.2 Quality check: 

To check the model's estimation, the mean square error (MSE) approached is used. The 

least squared residue (LSR) is calculated for each observation. LSR can be defined as the 

square of the difference in the observed and predicted values. These values are converted 

to MSE. It is defined as the average of the sum of squared errors. MSE represents the 

overall quality of the prediction of the model. The MSE should be as low as possible for 

the model to be acceptable. The MSE values obtained by mean and mode values are 

compared with each other. 
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Next step is to find the LSR. The LSR value for each observation is summarized in Table 

3-5 based on the mean and mode approach. Once the LSR value for each observation is 

obtained, its average is taken. This value is a MSE. MSE for mode values is obtained as 

0.003, and that for mean values is 0.004. The low value of MSE obtained from the results 

of this study signify that the model is robust and useful in predicting the icing load.  

 

Table 3-5 LSR value for each observation and total MSE 

Test runs: 

Observations 

LSR 

(Mode) 

LSR 

(Mean) 

1 0.009 0.000 

2 0.002 0.011 

3 0.003 0.000 

4 0.000 0.006 

5 0.008 0.001 

6 0.000 0.004 

7 0.001 0.000 

8 0.000 0.008 

9 0.003 0.012 

10 0.005 0.000 

11 0.000 0.000 

MSE 0.003 0.004 
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3.6 Conclusions 

A new probabilistic predictive model to estimate ice accumulation on the sea vessel or 

offshore rigs is proposed here. The model is built on a Bayesian network approach to 

represent causal dependence of the design, operational and environmental parameters on 

the ice accumulation. This study also presents the design of an experimental setup to test 

ice accumulation. The experimental setup is successfully used to run a range of ice 

accumulation tests. These test data is used to compare predicted results with the observed 

results. Below is the main observations: 

• Experimental results are in matching well with the predicted values by the proposed 

model. The low MSE vindicate the efficiency and robustness of the model. 

• The proposed model can analyze the relationship of the factors and its impact on 

Ice accretion based on several methods, including experiential learning, observed 

values, empirical relations or simply expert’s knowledge. It can also enable the 

combination of more than one parameter. 

• The model requires minimum computational load once it has been developed. This 

gives it the ability to predict icing load in the changing system.  

• The method gives the flexibility of adding or removing the factors affecting icing 

easily. The BN can be updated upon the availability of new evidence of the data. It 

can be tweaked easily for different environmental conditions, vessel types or rigs.  

• The experimental validation using atmospheric temperature and spray flux data to 

predict the amount of ice accreted provides foundation and motivation for further 
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testing to include other factors that might affect the ice accretion process like 

salinity and waves.  

• The model has the flexibility to include more parameters affecting icing based on 

the location and system. The model can be used for dynamically changing 

conditions with minimum computational load and time. 

This study presents a novel approach for icing prediction and demonstrates the accuracy 

using experimental observations. However, due to experimental limitations, several 

parameters such as vessel speed, wave height, salinity and humidity are not considered in 

the study. The current work proposes subsequent testing at field level to further 

development of the model including more parameters. Testing of ice accumulation under 

varying wind condition is important and may be considered for subsequent studies. Once 

the model is successfully field tested, it can provide a paradigm change in icing load 

prediction methods used on sea vessels and offshore structures.   
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4. Summary, Conclusions and Recommendations     

As oil and gas industries develop, the processes are becoming increasingly complex. 

Variation in the process parameters may rapidly change the state of the system. It is 

necessary to have an arrangement not only to monitor of the process, but also to estimate 

its impact on the long-term safety of the plant.  To address this need for dynamic estimation, 

the thesis presents two dynamic prediction tools that can be applied for risk-based decision 

making. The DRBI model is developed to provide a real-time risk estimation based on the 

degradation mechanism that can be applied along with industrial RBI codes like API-581. 

Another tool for the dynamic prediction of ice accumulation on marine vessels and oil rigs 

based on the climate and operational conditions is also developed in this study. 

Chapter 1 provides a background of RBIM methods that are developed to date. Concepts 

of dynamic risk assessment are also introduced in this chapter. It was identified that 

industrial RBI assumes that the risk profile will the remain same between IM intervals but 

the risk calculated based on the initial inspection may give a false perception of safety. The 

concept of Risk-based Winterization is also presented in the section. With increasing oil 

exploration in the extremely cold arctic region, this is an emerging field and relevent 

research is needed. Application of risk-based winterization has been discussed followed by 

the identification of the research objective of the thesis. 

Chapter 2 proposes a new model for dynamic risk-based inspection. The model is defined 

with system parameters that are continuously monitored, giving the ability of real-time 

updating. The model is tested for its efficiency using a simulation approach and the results 
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are compared with the risk profile generated using the API-581 recommended approach. It 

was found that due to several fluctuations in system parameters, even though the 

fluctuations were within the allowable limit, the actual degradation rate was higher than 

initially calculated. This caused the actual risk to deviate from the API-581 calculated risk. 

The results were plotted on the same graph for clarity. With successful validation of the 

proposed DRBI model, it can provide a better confidence in the system's safety and 

effective optimization of the inspection interval. 

Chapter 3 presents a unique method for predicting the ice accumulation on sea vessels and 

offshore rigs. A review of the existing models calculating the ice load is provided. The 

predictive model is developed to fill the gaps identified in the review. This model uses a 

Bayesian approach to construct the dependencies between the influencing parameters.  A 

stepwise guide is provided to implement the model for a wide range of vessels. The model 

was tested on an experimental setup designed to generate periodic spray in a controlled 

cold room. The test was carried out at various temperatures and spray flux. The observed 

ice accumulation was compared with the predicted value using the proposed model. A close 

comparison of the results showed that the predicted ice accumulation rate was reasonably 

close to the observed value. Unlike several numerical models reviewed for this study, the 

proposed predictive model requires a minimal computational load and has an ability to 

update dynamically with the availability of new data.   

Finally, this chapter provides a summary of the work and highlights the achievements of 

this research. The following recommendations are provided for future work to improve the 

dynamic tools presented in this thesis. 
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The proposed DRBI methodology could be extended for application in the process industry 

by updating both the probability and consequences of failure dynamically. Future study 

may focus on identifying ways to consider multiple degradation mechanisms to define the 

risk function.  

It was identified that further development of the predictive model for spray icing needs to 

be carried out using field data. Even though the effect of water salinity is negligible, future 

research could aim to verify this. As many factors affect the icing rate, a Copula Bayesian 

network will provide an interesting topic for future studies to capture the dependency in 

the predictions more accurately. 
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