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Abstract

Revisionist integral deferred correction (RIDC) methods are time parallel predictor-

corrector methods used to solve initial value problems (IVPs). The prediction and

the correction formulae are designed in such a way so that the prediction and the

correction steps can be computed simultaneously. More than one computing core can

be used at a time to correct the approximate solutions at different correction levels.

The multi-core implementation can improve the efficiency of the methods in terms of

runtime.

In our thesis, we ultimately wish to solve parabolic partial differential equations

(PDEs) numerically by combining the spatial adaptive moving mesh method with the

time parallel revisionist integral deferred correction (RIDC) method. To do so, we

expand an existing RIDC library to handle systems of IVPs of the form L(t, y)y
′
=

f(t, y), y ∈ Rn. Discretization of a physical PDE by the moving method of lines

coupled with a semi-discretized moving mesh PDE results in a system of IVPs of

the form L(t, y)y
′
= f(t, y), where y(t) is a vector consisting of the physical solution

u ∈ Rn and the mesh x ∈ Rn, and L(t, y) is a state dependent square matrix. We

achieve a RIDC implementation for this family of IVPs by systematically expanding

the existing RIDC formulation and software. We have verified our derived formulae

and software with relevant examples.
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Lay summary

Many mathematical models of physical systems are written as partial differential

equations (PDEs). Analytic solutions of many partial differential equations (PDEs)

are either not available or are computationally very complicated. For this reason,

numerical approximations to the solution of PDEs are of great importance in applied

and computational mathematics. The numerical solution of a PDE is computed at

some discrete points known as mesh points. If the mesh points are fixed and uniformly

spaced then the mesh is called uniform mesh. Solutions of many physical PDEs using

uniform mesh have rapid variations in the solutions. In order to mitigate those solution

variations, mathematical formulae are designed so that the mesh points can move in

response to the changes in physical solution. That is mesh points automatically move

towards the regions with high solution variations. A mathematical formulation of

producing such movable mesh is called moving mesh method.

The efficiency of a numerical method greatly depends on how long it takes to

compute the solution. The computational time can be reduced if several steps or parts

of the method can be computed in parallel on a parallel computer. The revisionist

integral deferred correction (RIDC) method is such a time parallel method for the

numerical solution of initial value problems (IVPs).

In our thesis, we discretize a PDE by finite difference method on moving mesh

and obtain a coupled system of IVPs. We then solve the resulting system of IVPs by

the time parallel RIDC method and extend the existing RIDC library to system of

IVPs of that form.
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Chapter 1

Introduction

This chapter provides an overview of different families of numerical methods for solv-

ing ordinary differential equations (ODEs) and partial differential equations (PDEs).

At the beginning of the chapter, we focus on the well-known sequential time stepping

methods used to solve ODEs followed by a brief discussion on parallelism and adap-

tivity used to improve the efficiency and accuracy of numerical methods. The last

part of the chapter provides background on the integral deferred correction methods

and the revisionist integral deferred correction (RIDC) methods which are the focus

of this thesis. The chapter concludes by giving the objectives and an outline of the

remainder of the thesis.

We start with the following initial value problem

y′(t) = f(t, y(t)), t ∈ [t0, T ], y(t0) = y0, (1.1)

where y ∈ Rn and f is a vector-valued function f : R×Rn → R. We first discuss some

of the well known sequential time stepping methods used to solve (1.1) numerically.

The discussion is based on the books by Ascher and Petzold [1], and by Randall J.

LeVeque [34].

Let y0, y1, . . . , yN be the approximate solutions of the initial value problem (1.1)

at time nodes t = t0, t1, . . . , tN = T respectively, with a given initial value y0, where

N is the total number of the time intervals.

The sequential time stepping methods for the numerical solution of (1.1) are

classified as



(i) One-step methods: In a one-step method, yn+1 is approximated using only one

previously computed value yn , for n = 0, 1, . . . , N − 1. Euler’s method, Taylor

series methods and Runge-Kutta methods are examples of one step methods.

(ii) Linear multi-step methods: In a r-step linear multi-step method, yn+r is approx-

imated using one or more previously computed values yn+r−1, yn+r−2, . . . , yn, for

n = 0, 1, . . . , N − 1. Adams methods and Backward Differentiation Formulas

(BDF) are examples of linear multi-step methods.

The most elementary one-step method for the solution of the initial value prob-

lem (1.1) is Euler’s Method. To construct Euler’s method, we discretize the given

time domain [t0, T ] into N equally spaced intervals. We assume that t0, t1, . . . , tN are

the time nodes and h = T−t0
N

is the uniform stepsize, and the function f is sufficiently

smooth. Using Taylor’s expansion of y(t) about t = tn, we have

y(tn+1) = y(tn) + hy′(tn) +
h2

2
y′′(tn) +O(h3), (1.2)

where O(h3) means that in the limit h → 0, the dominant term is of the form ch3

for some constant c. Taking the first two terms of (1.2) and ignoring the remaining

terms, we have the approximation

y(tn+1) ≈ y(tn) + hy′(tn). (1.3)

Replacing y′ by f , we obtain the explicit Euler or Forward Euler method given as

yn+1 = yn + hf(tn, yn), n = 0, 1, . . . , N − 1. (1.4)

Similarly, from the Taylor’s expansion

y(tn) = y(tn+1)− hy′(tn+1) +
h2

2
y′′(tn+1) +O(h3), (1.5)

we obtain the implicit Euler or backward Euler method given by

yn+1 = yn + hf(tn+1, yn+1), n = 0, 1, . . . , N − 1. (1.6)

From equations (1.4) and (1.6) we notice that a forward Euler method requires only

a single function evaluation whereas backward Euler method requires the solution of

2



a non-linear system of equations (if f is non-linear) at each time step. The backward

Euler method is computationally more expensive per step when it is implemented

for non-linear problems. However, the backward Euler method can give significant

advantages over forward Euler method in terms of stability and stepsize selection for

the same problems.

Euler’s method has a very simple structure and per-step it is quite inexpensive.

However, Euler’s method is only first order accurate and this limitation leads us to

find a method that can provide greater accuracy for the same step size.

Taylor series methods are a family of one-step methods which can provide high

order solutions to initial value problems. An arbitrary order Taylor series method can

be derived (shown in [1]) from the following Taylor series approximation

y(tn+1) ≈ y(tn) + hy′(tn) +
h2

2
y′′(tn) + · · ·+

hp

2
y(p)(tn). (1.7)

In the approximation (1.7), the Taylor series remainder term is neglected. From

equation (1.1), we have

y′(tn) = f(tn, y(tn)). (1.8)

Differentiating (1.1), we have

y′′(tn) = [ft + fyy
′](tn,yn) = [ft + fyf ](tn,yn), (1.9)

where the subscript (tn, yn) indicates that the expression to the left is evaluated at

t = tn and y = yn. Continuing this process, we have

y′′′(tn) = [ftt + 2ftyf + ftfy + fyyf
2 + f 2

y f ](tn,yn), (1.10)

and so on.

Substituting the derivatives y′(tn), y
′′(tn), . . . , y

(p)(tn) in equation (1.7) we can

obtain the Taylor series method of order p.

One of the major problems with Taylor series methods is that we need to eval-

uate higher order derivatives of f , and finding the derivatives of f is difficult for

many practical problems [1]. This leads us to find high order, derivative free, one-step

3



methods called Runge-Kutta methods. An r-stage Runge-Kutta method is given by

ki = f(tn + cih, yn + h

r∑
j=1

aijkj), i = 1, 2, . . . , r,

yn+1 = yn +
r∑

i=1

biki.

(1.11)

The method (1.11) is determined by its coefficients, which are collected in a Butcher

tableau [1] as

c1 a11 a12 . . . a1r

c2 a21 a22 . . . a2r
...

...
...

cr ar1 ar2 . . . arr

b1 b2 . . . br

, where ci =
r∑

j=1

aij, i = 1, 2, . . . , r.

The Runge-Kutta method (1.11) is explicit if aij = 0, whenever j ≥ i, otherwise it is

implicit. One of the drawbacks of Runge-Kutta methods is that an r-stage Runge-

Kutta method requires r function evaluations per step. This may create difficulties

if function values are difficult or expensive to evaluate. High order Runge-Kutta

methods can also be expensive particularly for the implicit case [34]. In general,

calculation of ki in (1.11) is a sequential process.

These drawbacks of Runge-Kutta methods motivate us to use a multistep method

where only one function evaluation is required per time step. Previously computed

function values are used to obtain higher order accuracy.

An m-step linear multistep method [1] applied to the initial value problem (1.1)

is given
m∑
j=0

αjyn+j = h

m∑
j=0

βjfn+j, (1.12)

where αj, βj are the method coefficients, fj = f(tj, yj), tj = t0 + jh, h = T−t0
N

and αm ̸= 0. For an m-step linear multi-step method, we require m starting values

yj = y(tj), j = 0, 1, . . . ,m − 1. In equation (1.12), if βm = 0, then the method is

explicit, otherwise it is implicit. The value yn+m is computed from this equation in

terms of the previous values yn+m−1, yn+m−2, . . . , yn.

4



If αm = 1, αm−1 = −1, and αj = 0 for j < m − 1, we get the Adams methods

(given in [34]) of the form

yn+m = yn+m−1 + h
m∑
j=0

βjfn+j. (1.13)

If βm = 0, the formula (1.13) is called explicit Adams method or Adams-Bashforth

(AB) method. An m-step AB method can alternatively be derived by interpolating

f through the m points t = ti, ti−1, . . . , ti+1−m [34]. Since m interpolation points are

used, an m-step AB method is expected to be mth order accurate.

If βm ̸= 0, formula (1.13) is called implicit Adams method or Adams-Moulton

(AM) method. Anm-step AM can alternatively be derived by interpolating f through

the m+1 points t = ti+1, ti, ti−1, . . . , ti+1−m [34]. Since m+1 interpolation points are

used, an m-step AM method is expected to be m+ 1 order accurate.

Another family of linear multistep method is the Backward Differentiation For-

mulas (BDF). For anm-step BDF method we evaluate f at the right end of the current

step, (ti+1, yi+1), and construct an interpolating polynomial of y passing through the

points t = ti+1, ti, ti−1, . . . , ti+1−m, and finally differentiate the interpolation polyno-

mial to obtain the BDF formula. A BDF method derived using m interpolation points

gives an implicit method of order m [1].

All of the methods mentioned above are typically implemented in a sequential

way. For example, yn−1 is needed before yn is computed. The function values fn or

stage values are also generally computed sequentially.

We now describe the commonly used parallel methods for solving ODEs. Bur-

rage [4, 5] classifies parallel methods for the numerical solution of ODEs into the

following three categories:

(a) Parallelism across the system: The original system is subdivided into a number

of smaller systems so that the resulting subsystems can be solved in parallel.

Waveform relaxation methods [42,43] are examples of this parallelism technique.

(b) Parallelism across the method : Parallelism across the method allows concurrent

function evaluations on different processors. This kinds of parallalism approach

can be found in predictor–corrector based RIDC methods [9,13], and Runge-Kutta

methods [30].
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(c) Parallelism across the step: In this approach, the time domain is divided into

subdomains and the equations are solved in parallel over steps. The parareal

method [23] is an example of this approach.

A survey of parallel numerical methods for finding the roots of nonlinear equa-

tions, solving the differential equations, and solving systems of linear equations was

carried out by Miranker [37]. Another survey on parallel numerical methods, specifi-

cally for IVPs, was performed by Jackson [29]. In 2015, Gander [20] wrote an article

on time parallel methods for numerical time integration and divided the time parallel

methods into the following four categories:

(i) Domain decomposition methods in space-time: In this type of time-parallel meth-

ods, the given space and time domains are decomposed into subdomains. Solu-

tions in each subdomain (in space) are computed in parallel (over time). Over-

lapping and non-overlapping Schwarz waveform relaxation methods [19, 21] are

examples of this class of time parallel methods.

(ii) Shooting type time parallel methods : An example of this class is the multiple

shooting method, in which time interval [t0, tf ] is divided into n subintervals

and shooting technique is carried out on each subinterval [ti−1, ti], i = 1, . . . , n.

The shooting method applied to each subinterval results in a nonlinear system

of equations, F (u) = 0, which can be solved by Newton’s method. At each

iteration of Newton’s method, the evaluation of the function value F (u) and its

Jacobian F
′
(u) can be computed in parallel. This type of parallelism is studied

in [3, 6, 38].

(iii) Multigrid methods in space-time: Parallel space-time multigrid methods for

parabolic problems are introduced by Gander and Neumuller [22] and Horton

and Vandewalle [25]. Further space-time parallel multigrid methods can be found

in [15, 20]. Multigrid reduction in time algorithm (MGRIT) [17, 18] is another

parallel-in-time multigrid method.

(iv) Direct solvers in space-time: Time parallel predictor-corrector methods fall in

this category, where prediction and correction steps can be computed concur-

rently. RIDC methods developed by Christlieb, Macdonald and Ong [13] are

examples of this direct time parallel approach.
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RIDC methods fall in category (iv), and will be the focus of the thesis. In

order to introduce the RIDC methods, we start with the spectral deferred correction

(SDC) methods for the numerical solution of ordinary differential equations (ODEs)

introduced by Dutt, Greengard and Rokhlin [14].

The ODE (1.1) is converted into the equivalent Picard integral equation

y(t) = y0 +

∫ t

t0

f(τ, y(τ))dτ. (1.14)

The residual function r(t) is obtained by substituting an approximate solution, u(t),

in the integral equation (1.14)

r(t) = y0 +

∫ t

t0

f(τ, u(τ))dτ − u(t). (1.15)

Combining (1.14) and (1.15) and some algebraic calculation allows us to show that

the error e(t) = y(t)− u(t) satisfies the following integral form

e(t) = r(t) +

∫ t

t0

(
f(τ, u(τ) + r(τ))− f(τ, u(τ)

)
dτ. (1.16)

The Picard integral equation (1.14) and the error equation (1.16) may be approxi-

mated by the Euler method at m + 1 nodes: t0 < t1 . . . tm < tm+1 = T . At each

time point the error equation is solved and the approximate solution is corrected by

u[l] = u[l−1]+e[l], where l is the number of corrections requested by the specific method.

To approximate the definite integral in the error equation, Gaussian quadrature nodes

in the interval [−1, 1] are used. It was shown that each correction of the SDC method

using a first order integrator improves the order of accuracy of the solution by one

order. Further studies on SDC methods, including convergence and stability of the

methods, can be found in [2, 24, 32, 35, 36]. Semi-implicit SDC methods for solving

ODEs were developed by Minion et al. in [36]. The choice of quadrature nodes and the

choice of predictors for the semi-implicit SDC methods were studied in [33] and [31].

Christlieb, Ong and Qiu, in [10, 11], experimented with spectral deferred cor-

rection (SDC) methods with high order integrators and various choices of quadrature

points. In those papers they re-constructed SDC methods using high order integrators

and equally spaced quadrature points, and named them integral deferred correction
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(IDC) methods. In fact when IDC methods are constructed using non-uniform Gaus-

sian quadrature the methods coincide with SDC methods. In [11], IDC methods

were formulated using high order Runge-Kutta (RK) integrators and equally spaced

quadrature points instead of Gaussian quadrature points, and [10] formulated IDC

methods with several high order integrators including multi-step methods. A com-

parative study of IDC methods and Runge-Kutta (RK) methods was also given in [10].

Semi-implicit IDC methods were developed in [8].

Later in 2010, Christlieb, Macdonald and Ong [13] showed that they were able

to compute the prediction and correction steps of IDC methods in parallel and they

named the resulting parallel-in-time method a revisionist integral deferred correction

(RIDC) method. According to [13], the formulation of RIDC method is similar to that

of the IDC method except for the variation in the choice of number of subintervals in

each group and the way the computation is completed in the correction loop.

The time interval [0, T ] is divided into N equally spaced intervals, and the

resulting N intervals are further partitioned into J groups of intervals Ij, j = 1, . . . , J ,

so that each group Ij contains K(K >> M) subintervals, where M(= p − 1) is the

number of corrections required by a pth-order RIDC method. For a pth-order RIDC

method the number of subintervals K in each group can be much larger than M ,

whereas, in IDC methods K is always equal to M . The time loop in each group Ij,

j = 1, . . . , J , is split into two separate loops. One loop runs from m = 1, . . . ,M ,

and another loop runs from m = M + 1, . . . , K. The two individual loops enable the

correction loop to be executed in parallel. Like other deferred correction methods,

RIDC methods work sequentially over group of intervals, Ij, j = 1, . . . , J , starting

with the initial group of intervals, I1. The solution obtained at the end of the group

I1 is used as the initial solution for the group I2, the solution obtained at the end of

the group I2 is used as the initial solution for the group I3, and we proceed this way

until we reach to the last group IJ . The available choice of integrator and quadrature

formulae for RIDC methods are similar to those available for IDC methods. See

Chapter 2 for more details.

For the solution of stiff problems explicit RIDC methods are no longer good

numerical schemes unless the time step is very small. Implicit RIDC methods, that

is RIDC methods constructed using backward Euler (for example) as the predictor

and corrector, were further developed by Christlieb and Ong in [9]. This method
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can handle both stiff and non-stiff problems. Convergence and stability analysis of

the implicit RIDC methods can also be found in [9]. Semi-implicit RIDC method

was developed in [39]. In 2012, Christlieb, Haynes and Ong [12] combined the time

parallel RIDC methods with the space parallel domain decomposition (DD) methods

and named it RIDC-DD.

One of the most important features of a RIDC method is its parallel compu-

tation of prediction and correction loops. In a recent paper [40], Ong, Haynes and

Ladd developed RIDC software aiming at parallel-in-time solution to the initial value

problems of the type (1.1). They built an explicit and implicit RIDC library using

forward Euler and backward Euler respectively.

There are many partial differential equations (PDEs) whose solutions change

very fast over time and space, and these quick variations in the solutions have a

negative impact on the efficiency of the methods. In such situations, adaptive mesh

methods can be much more efficient than uniform mesh methods. In moving mesh

methods, mesh points automatically cluster in the regions where solution changes very

rapidly. Adaptive mesh methods for PDEs are classified using the following three cat-

egories: h-refinement, p-refinement and r-refinement. In h-refinement strategies, the

number of mesh points or the number of elements (in the case of Finite Element Meth-

ods (FEMs)) is increased or decreased keeping the order of the numerical methods or

the order of the polynomials (in the case of FEM) fixed. The p-refinement strategies

change the order of the numerical methods or the order of the polynomials keeping

the number of mesh points or the number of elements fixed. In r-refinement technique

(moving mesh method), the number of mesh points is kept fixed but their positions

are changed or redistributed over time.

Falgout, Manteuffel, Southworth and Schroder [16] apply a rezoning type mov-

ing mesh method to 1D diffusion PDEs. A physical PDE and a moving mesh PDE

are discretized and combined together to obtain a coupled system of equations. The

coupled system of equations is solved by the parallel-in-time multigrid reduction in

time algorithm (MGRIT). In our work, we combine a moving mesh method with the

time parallel RIDC method for the solution of one dimensional parabolic PDEs.

To motivate the need for moving mesh methods, consider the non-linear Burgers’

equation ut = ϵuxx − (u
2

2
)x, x ∈ [0, 1], t > 0, with initial condition u(x, 0) = sin(2πx)

and boundary conditions u(0, t) = u(1, t) = 0. Fig. 1.1(a) shows that the numerical
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solution using a uniform mesh changes very fast in the region near the point x =

0.5. Fig. 1.1(b) illustrates the mesh points clustering towards the point x = 0.5 and

Fig. 1.1(c) shows the solution, using an adaptive mesh. The rapid change in the

solution is efficiently resolved using the moving mesh (see Fig. 1.1(c)).
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Fig. 1.1: (a) Solutions of Burgers’ equation on a uniform mesh with N = 41 spatial
mesh points and ϵ = 10−3 (b) Mesh clustering towards the point x = 0.5 (c) Solutions
of Burgers’ equation on an adaptive mesh with N = 41 spatial mesh points and
ϵ = 10−3.

Adaptive mesh techniques can provide better solutions using a smaller number

of mesh points compared to the uniform mesh methods. Fig: 1.2 compares the solution

of Burgers’ equation using a fixed mesh and a moving mesh with different numbers of

mesh points. The initial condition and the boundary conditions are the same as in the

previous example. Uniform mesh methods typically require more mesh points. It is

noticed that a large variation in the solution is still visible using 31 and 81 mesh points

in the Fig: 1.2(a) and Fig: 1.2(b) respectively. In contrast, the same solution using

an adaptive mesh (see Fig: 1.2(c)) needs only 21 mesh points and is much smoother

than the uniform mesh case.

One of the major tasks involved with using a moving mesh method is to for-

mulate an efficient moving mesh partial differential equations (MMPDEs). Details of

the derivation of MMPDEs can the found in the book [28] by Huang and Russell. See

Chapter 4 for details of how moving mesh solutions are achieved.

In our thesis, we apply the RIDC method to the system of IVPs which arises in

the moving mesh technique for the solution of partial differential equations. We dis-

cretize a given PDE and a chosen moving mesh partial differential equation (MMPDE)
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(a) Solution at t = 0 and
t = 1 on fixed mesh using
31 mesh points.
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(b) Solution at t = 0 and
t = 1 on fixed mesh using
81 mesh points.

Number of Mesh Points N=21
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(c) Solution at t = 0 and
t = 1 on moving mesh using
21 mesh points.

Fig. 1.2: (a) Solutions of Burgers’ equation on the uniform mesh with N = 31 and
ϵ = 10−3, (b) Solutions of Burgers’ equation on the uniform mesh with N = 81 and
ϵ = 10−3 and (c) Solutions of Burgers’ equation on adaptive mesh with N = 21 and
ϵ = 10−3.

by the (moving) method of lines, and obtain two systems of ODEs. The combina-

tion of the two coupled ODE systems gives a 2n × 2n system of ODE of the form

L(t, y)y
′
= f(t, y), where, y consists of the physical solution u ∈ Rn and the mesh

x ∈ Rn, and L(t, y) is a state dependent non-singular square matrix. We derive the

RIDC formulation for this type of IVP and expand the existing RIDC software library

to make it compatible with our derived formulae.

The organization of the remainder of this thesis is as follows. In Chapter 2,

we review the formulation of the RIDC method for IVPs with ODEs of the form

y
′
(t) = f(t, y), y ∈ Rn, and derive the RIDC formulae for IVPs consisting the ODEs

of the forms (i) Ly
′
(t) = f(t, y), y ∈ Rn where, L is a constant non-singular square

matrix, and (ii) L(t, y)y
′
(t) = f(t, y), y ∈ Rn, where L(t, y) is a state dependent non-

singular square matrix. In Chapter 3, we describe the existing RIDC software library,

and show how it can be expanded to IVPs of the form (i) or (ii) above. In Chapter 4,

we review the adaptive moving mesh method including the moving mesh formulation,

choosing a monitor function and discretizing PDEs by the moving method of lines.

We then apply the RIDC method to the moving method of lines for the solution of

non-linear partial differential equations. In Chapter 5, we check the efficiency and the

accuracy of the RIDC formulas given in Chapter 2 (on fixed meshes) and Chapter

4 (on moving meshes) by way of several numerical examples. Chapter 6 provides a

concluding summary of the thesis.
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Chapter 2

Revisionist Integral Deferred

Correction methods

A class of time parallel integral deferred correction methods used to solve initial

value problems (IVPs) is the family of revisionist integral deferred correction meth-

ods (RIDC). The RIDC algorithm is designed so that the prediction and the correction

steps can be computed in parallel. More than one processor can be used simultane-

ously to correct the approximate solutions. The number of processors required is

equal to the order of the method. For instance, using four processors a fourth order

solution to an IVP can be obtained in approximately the same wall clock time as

the first order approximation. This chapter will focus on formulating RIDC formu-

las for three different types of IVPs along with a detailed discussion on the parallel

implementation of the RIDC algorithm.

2.1 RIDC for the ODEs y′(t) = f (t, y)

The RIDC method described in [13] presents the approach for the initial value prob-

lems of the form

y′(t) = f(t, y), t ∈ [0, T ], y(0) = y0, (2.1)

where y ∈ Rn.

The key factors needed to construct a RIDC algorithm are the formulation of

error equation, and a suitable choice of predictor, corrector and quadrature formula.



This section will talk about these choices.

2.1.1 Error Equation

Let y(t) be the exact solution and u(t) be the approximate solution to the system of

IVPs (2.1). Using the approximate solution u(t) in (2.1), we form the residual

r(t) = u′(t)− f(t, u). (2.2)

The actual error is given by

e(t) = y(t)− u(t). (2.3)

The derivative of the error equation is then

e′(t) = y′(t)− u′(t)

= f(t, y(t))− f(t, u(t))− r(t)

= f(t, u(t) + e(t))− f(t, u(t))− r(t).

(2.4)

Taking the residual term in (2.4) to the left hand side we have

e′(t) + r(t) = f(t, u(t) + e(t))− f(t, u(t)). (2.5)

Equation (2.5) can be written in the integral form as

(
e(t) +

∫ t

0

r(τ)dτ

)′

= f(t, u(t) + e(t))− f(t, u(t)). (2.6)

Again from (2.2) we have∫ t

0

r(τ)dτ = u(t)− u(0)−
∫ t

0

f(τ, u(τ))dτ. (2.7)

Combining (2.6) and (2.7) we arrive at

(
e(t) + u(t)−

∫ t

0

f(τ, u(τ))dτ

)′

= f(t, u(t) + e(t))− f(t, u(t)). (2.8)
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Equation (2.6) is used to find the discrete form of the error equation and equation

(2.8) is used to find the correction formula for the RIDC method.

2.1.2 Partitions of the Time Domain

We discretize the time domain [0, T ] into N intervals so that the uniformly spaced

time points are given by

tn = n∆t, n = 0, 1, . . . , N, (2.9)

where ∆t = T
N

is the uniform step size. The resulting N intervals are further par-

titioned into J groups so that each group Ij, j = 1, . . . , J contains K (K >> M)

subintervals, where M (= p− 1) is the number of corrections required by a pth order

RIDC method. The time nodes in each group of intervals are labelled as

tj,m =
(
(j − 1)K +m)

)
∆t, m = 0, 1, . . . , K, j = 1, 2, . . . , J. (2.10)

Each group of intervals

Ij = {tj,0, tj,1, . . . , tj,K}, j = 1, 2, . . . , J,

contains K + 1 nodes.

The grouping scheme is illustrated in Fig. 2.1.
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t2K
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...
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t(J−1)K
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...

tN−1

tJ,K−1

tN
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I1 I2 IJ

Fig. 2.1: Labeling of nodes used in the RIDC method.
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RIDC methods solve over each group of intervals Ij sequentially, starting with

the initial group of intervals I1. The solution at the end of the current group is taken

as the initial solution for the next group and it continues until we reach at the last

group IJ .

2.1.3 Choice of Predictor and Corrector

The predictors and the correctors used in RIDC methods are chosen based on the

nature of the physical problem. For example, an explicit integrator is often sufficient

as a predictor and a corrector for the solution of a non-stiff ODE. On the other hand,

for the solution of a stiff ODE, a RIDC method requires an implicit integrator as

the predictor and the corrector. A lower order integrator is usually chosen for the

predictor and the corrector within the RIDC formulation. However, higher order

integrators can also be used [11]. In this section we deduce the explicit and the

implicit RIDC formulae using the forward Euler and the backward Euler respectively

as the integrator.

Discretizing the IVP (2.1) by forward Euler we get the prediction formula of

the explicit RIDC method, written as

u
[0]
j,m+1 = u

[0]
j,m +∆tf(tj,m, u

[0]
j,m), (2.11)

where m = 0, 1, . . . , K − 1. The subscript in u
[0]
j,m denotes an approximate solution at

time tj,m and the superscript [0] indicates that this is approximate solution given by

the predictor.

Discretizing the IVP (2.1) by backward Euler we get the prediction formula of

the implicit RIDC method, written as

u
[0]
j,m+1 = u

[0]
j,m +∆tf(tj,m+1, u

[0]
j,m+1), (2.12)

where m = 0, 1, . . . , K − 1.

In each iteration of the correction loop we solve error equations and update the

most recently computed approximate solutions. Since e(0) = 0, the error equation

(2.6) is an IVP. A forward Euler discretization of the error equation (2.6) gives the
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approximation

e
[l]
j,m+1 = e

[l]
j,m +∆t

(
f(tj,m, u

[l−1]
j,m + e

[l]
j,m)− f(tj,m, u

[l−1]
j,m )

)
+

∫ tj,m+1

tj,m

r(t)dt, (2.13)

where u
[l−1]
j,m denotes the approximate solution of the given IVP at the (l− 1)th correc-

tion level at time tj,m and e
[l]
j,m denotes the error in the approximate solution, u

[l−1]
j,m ,

at time tj,m.

Similarly, a backward Euler discretization of the error equation (2.6) gives the

approximation

e
[l]
j,m+1 = e

[l]
j,m +∆t

(
f(tj,m+1, u

[l−1]
j,m+1 + e

[l]
j,m+1)− f(tj,m+1, u

[l−1]
j,m+1)

)
+

∫ tj,m+1

tj,m

r(t)dt.

(2.14)

The definite integrals in (2.13) and (2.14) can be approximated by any appropriate

quadrature rule. The approximate solution can then be updated as

u
[l]
j,m+1 = u

[l−1]
j,m+1 + e

[l]
j,m+1, l = 1, 2, . . . ,M, (2.15)

where m = 0, 1, . . . , K − 1.

Discretizing the IVP (2.8) by the forward Euler method and using (2.15) we

obtain the correction formula of the explicit RIDC method as

u
[l]
j,m+1 = u

[l]
j,m +∆t

(
f(tj,m, u

[l]
j,m)− f(tj,m, u

[l−1]
j,m )

)
+

∫ tj,m+1

tj,m

f(t, u[l−1](t))dt. (2.16)

Discretizing the IVP (2.8) by the backward Euler method and using (2.15) we obtain

the correction formula for the implicit RIDC method as

u
[l]
j,m+1 = u

[l]
j,m +∆t

(
f(tj,m+1, u

[l]
j,m+1)− f(tj,m+1, u

[l−1]
j,m+1)

)
+

∫ tj,m+1

tj,m

f(t, u[l−1](t))dt.

(2.17)

Equations (2.16) and (2.17) give the lth order corrections in terms of the (l − 1)th

order approximation. The definite integrals in (2.16) and (2.17) can be evaluated by

a suitable quadrature rule as discussed next.
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2.1.4 Choice of Quadrature Rule

The efficiency of the RIDC method greatly depends on the right choice of quadrature

formula. We use the approximation

∫ tj,m+1

tj,m

f(t, u[l−1](t))dt ≈
M∑
i=0

f(tj,i, u
[l−1]
j,i )Wmi, (2.18)

where quadrature nodes are the uniform mesh points tj,0, tj,1, . . . ,tj,M and the quadra-

ture weightsWmi are the integrals of theM
th degree Lagrange interpolating polynomi-

als passing through the points tj,0, tj,1, . . . , tj,M . Since the mesh points tj,0, tj,1, . . . , tj,M

are uniformly spaced and the length of the interval in (2.19) is uniform, the weights

computed by (2.19) are identical for all groups. Therefore, quadrature weights are

computed only once. We drop the group index j from tj,m, and hence we write

Wmi =

∫ tm+1

tm

M∏
k=0,k ̸=i

(t− tk)

(ti − tk)
dt. (2.19)

We can precompute the quadrature weights by transforming the mesh points

tj,0, tj,1, . . . , tj,M to equally spaced points in a fixed interval. This can be done in the

following two ways.

Method 1: Transforming the original mesh points t0, t1, . . . , tM to uni-

formly spaced mesh points in [0,M ].

Let t0, t1, . . . , tM be the uniformly spaced mesh points in the interval [t0, tM ]

with the uniform step size ∆t = ti+1 − ti, i = 0, . . . ,M − 1. To transform the

coordinates ti, i = 0, . . . ,M − 1 into the corresponding uniformly spaced coordinates

in the interval [0,M ] we use the following change of variables

t = tm +∆t(s−m).

Note that s = m when t = tm and s = m+1 when t = tm+1, and tk = tm+∆t(k−m),

for any k ∈ [0,M ].

Therefore,

dt = ∆tds,
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and

(t− tk) = (tm +∆t(s−m))− (tm +∆t(k −m)) = ∆t(s− k).

We also have

(ti − tk) = (tm +∆t(i−m))− (tm +∆t(k −m)) = ∆t(i− k).

Therefore the definite integral (2.19) for the quadrature weights can be re-written in

the compact form

Wmi = ∆t

∫ m+1

m

M∏
k=0,k ̸=i

(s− k)

(i− k)
ds. (2.20)

Hence, the explicit RIDC formula (2.16) and the implicit RIDC formula (2.17) take

the forms

u
[l]
j,m+1 = u

[l]
j,m +∆t

(
f(tj,m, u

[l]
j,m)− f(tj,m, u

[l−1]
j,m )

)
+∆t

M∑
i=0

Smif(tj,i, u
[l−1]
j,i ), (2.21)

and

u
[l]
j,m+1 = u

[l]
j,m +∆t

(
f(tj,m+1, u

[l]
j,m+1)− f(tj,m+1, u

[l−1]
j,m+1)

)
+∆t

M∑
i=0

Smif(tj,i, u
[l−1]
j,i ),

(2.22)

where m = 0, . . . ,M − 1 and the elements of the integration matrix S are given by

Smi =

∫ m+1

m

M∏
k=0,k ̸=i

(s− k)

(i− k)
ds. (2.23)

Method 2 : Transforming the mesh points t0, t1, . . . , tM to uniformly

spaced mesh points in [0, 1].

Let t0, t1, . . . , tM be the uniformly spaced mesh points in the interval [t0, tM ] with

the uniform step size ∆t = ti+1− ti,i = 0, . . . ,M −1. To transform the coordinates ti,

i = 0, . . . ,M − 1 into the corresponding uniformly spaced coordinates in the interval

[0, 1], we use the following change of variables

t = tm +M∆t(x− xm),
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where xi, i = 0, . . . ,M , are the uniformly spaced mesh points in [0, 1] and m =

0, . . . ,M − 1. Note that x = xm when t = tm and x = xm+1 when t = tm+1, and

tk = tm +M∆t(k − xm), for any k ∈ [0, 1].

Hence, we have

dt = M∆tdx,

t− tk = M∆t(x− xk),

and

ti − tk = M∆t(xi − xk).

So, the integrals in (2.19) can be written in the form

Wmi = M∆t

∫ xm+1

xm

M∏
k=0,k ̸=i

(x− xk)

(xi − xk)
dx. (2.24)

The correction formula (2.16) for the explicit RIDC can then be expressed as

u
[l]
j,m+1 = u

[l]
j,m +∆t

(
f(tj,m, u

[l]
j,m)− f(tj,m, u

[l−1]
j,m )

)
+M∆t

M∑
i=0

Smif(tj,i, u
[l−1]
j,i ). (2.25)

And the correction formula (2.17) for the implicit RIDC can also be expressed as

u
[l]
j,m+1 = u

[l]
j,m +∆t

(
f(tj,m+1, u

[l]
j,m+1)− f(tj,m+1, u

[l−1]
j,m+1)

)
+M∆t

M∑
i=0

Smif(tj,i, u
[l−1]
j,i ).

(2.26)

The elements of the integration matrix S for the correction formulae (2.25) and (2.26)

are given by

Smi =

∫ xm+1

xm

M∏
k=0,k ̸=i

(x− xk)

(xi − xk)
dx, (2.27)

where xi, i = 0, . . . ,M , are the uniformly spaced mesh points in [0, 1] and m =

0, . . . ,M − 1.

Equation (2.26) can be solved by Newton’s method. For the Newton’s solver we

compute the Jacobian numerically by the finite difference method. This is particularly

important when the analytic Jacobian for a given function is quite difficult to compute.

In the extended RIDC library (see Chapter 3) we provide a numerical Jacobian routine
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inside the Newton solver to approximate the Jacobian.

2.2 RIDC for the ODEs Ly′(t) = f (t, y)

In this section, we extend the work of [13] and form the error equation, and construct

RIDC formula for the system of ODEs of the form Ly′(t) = f(t, y), where L is a

constant invertible matrix. For the selection of the predictor, the corrector and the

quadrature formula, we refer the reader to Section 2.1.

2.2.1 Error Equation Formulation

Consider the following IVP consisting of a system of ODEs and initial condition

Ly′(t) = g(t, y), y(0) = y0, t ∈ [0, T ], (2.28)

where y ∈ Rn and L is an n×n constant non-singular matrix. Symbolically, equation

(2.28) can be rewritten as

y′(t) = L−1g(t, y), y(0) = y0, t ∈ [0, T ]. (2.29)

Let y(t) be the true solution and u(t) be the approximate solution of the system of

IVPs (2.29).

Using the approximate solution u(t) in (2.29), we form the residual

r(t) = u′(t)− L−1g(t, u). (2.30)

The actual error is given by

e(t) = y(t)− u(t). (2.31)

The derivative of the error equation (2.31) is given by

e′(t) = y′(t)− u′(t)

= L−1g(t, y(t))− L−1g(t, u(t))− r(t)

= L−1
(
g(t, u(t) + e(t))− g(t, u(t))

)
− r(t).

(2.32)
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Taking the residual term in (2.32) to the left hand side we have

e′(t) + r(t) = L−1
(
g(t, u(t) + e(t))− g(t, u(t))

)
. (2.33)

Since e(0) = 0, equation (2.33) can be written in the integral form as

(
e(t) +

∫ t

0

r(τ)dτ

)′

= L−1
(
g(t, u(t) + e(t))− g(t, u(t))

)
. (2.34)

Again from (2.30) we have∫ t

0

r(τ)dτ = u(t)− u(0)− L−1

∫ t

0

g(τ, u(τ))dτ. (2.35)

Substituting (2.35) into (2.34) and multiplying by L, we obtain the error equation

L

(
e(t) + u(t)− L−1

∫ t

0

g(τ, u(τ))dτ

)′

=
(
g(t, u(t) + e(t))− g(t, u(t))

)
. (2.36)

Equation (2.34) is used to find the discrete form of the error equation and equation

(2.36) is used to find the correction formula for the RIDC method.

2.2.2 The Predictor

Discretizing (2.28) by the forward Euler we get the predictor formula of the explicit

RIDC method as

L
(
u
[0]
j,m+1 − u

[0]
j,m

)
= ∆tg(tj,m, u

[0]
j,m), m = 0, . . . , K − 1, j = 1, . . . , J. (2.37)

The prediction equation (2.37) be rewritten as

u
[0]
j,m+1 = u

[0]
j,m +∆tL−1g(tj,m, u

[0]
j,m)

= u
[0]
j,m +∆tf(tj,m, u

[0]
j,m), m = 0, . . . , K − 1,

(2.38)
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where j = 1, . . . , J is the group index and f(tj,m, u
[0]
j,m) = L−1g(tj,m, u

[0]
j,m). The quan-

tity f(t, u) can be evaluated by solving the following system of linear equations

Lf(t, u) = g(t, u). (2.39)

Similarly, a backward Euler discretization of (2.28) gives the prediction formula of the

implicit RIDC method as

u
[0]
j,m+1 = u

[0]
j,m +∆tL−1g(tj,m+1, u

[0]
j,m+1)

= u
[0]
j,m +∆tf(tj,m+1, u

[0]
j,m+1), m = 0, . . . , K − 1,

(2.40)

where j = 1, . . . , J is the group index and f(tj,m+1, u
[0]
j,m+1) = L−1g(tj,m+1, u

[0]
j,m+1).

The function value f(t, u) can be evaluated by solving the system of linear equations

(2.39). Equation (2.40) can be solved by Newton’s method, for example. Note L can

be refactorized (for all times) and the factors reused for all linear solves.

2.2.3 The Corrector

Discretizing (2.36) by the forward Euler and using the quadrature formula (2.24) we

get the correction formula of the explicit RIDC method written as

u
[l]
j,m+1 = u

[l]
j,m+∆t

(
L−1g(tj,m, u

[l]
j,m)−L−1g(tj,m, u

[l−1]
j,m )

)
+

∫ tj,m+1

tj,m

L−1g(t, u[l−1](t))dt

= u
[l]
j,m +∆t

(
L−1g(tj,m, u

[l]
j,m)− L−1g(tj,m, u

[l−1]
j,m )

)
+M∆t

M∑
i=0

SmiL
−1g(tj,i, u

[l−1]
j,i )

= u
[l]
j,m+∆t

(
f(tj,m, u

[l]
j,m)−f(tj,m, u

[l−1]
j,m )

)
+M∆t

M∑
i=0

Smif(tj,i, u
[l−1]
j,i ), m = 0, . . . ,M−1

(2.41)
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and

u
[l]
j,m+1 = u

[l]
j,m +∆t

(
L−1g(tj,m, u

[l]
j,m)− L−1g(tj,m, u

[l−1]
j,m )

)
+

M∆t

M∑
i=0

SM−1,iL
−1g(tj,m−M+i, u

[l−1]
j,m−M+i)

= u
[l]
j,m +∆t

(
f(tj,m, u

[l]
j,m)− f(tj,m, u

[l−1]
j,m )

)
+M∆t

M∑
i=0

SM−1,if(tj,m−M+i, u
[l−1]
j,m−M+i),

m = M, . . . ,K − 1, (2.42)

where l is the number of corrections required and j = 1, . . . , J is the group index.

For any t and u, f(t, u) = L−1g(t, u) and is evaluated by solving the system of linear

equations (2.39). The elements of the integration matrix S are obtained from the

formula given in (2.27).

Discretizing (2.36) by the backward Euler we obtain the correction formula of

the implicit RIDC method written as

u
[l]
j,m+1 = u

[l]
j,m +∆t

(
L−1g(tj,m+1, u

[l]
j,m+1)− L−1g(tj,m+1, u

[l−1]
j,m+1)

)
+∫ tj,m+1

tj,m

L−1g(t, u[l−1](t))dt

= u
[l]
j,m +∆t

(
L−1g(tj,m+1, u

[l]
j,m+1)− L−1g(tj,m+1, u

[l−1]
j,m+1)

)
+

M∆t
M∑
i=0

SmiL
−1g(tj,i, u

[l−1]
j,i )

= u
[l]
j,m +∆t

(
f(tj,m+1, u

[l]
j,m+1)− f(tj,m+1, u

[l−1]
j,m+1)

)
+

M∆t
M∑
i=0

Smif(tj,i, u
[l−1]
j,i ), m = 0, . . . ,M − 1 (2.43)
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and

u
[l]
j,m+1 = u

[l]
j,m +∆t

(
L−1g(tj,m+1, u

[l]
j,m+1)− L−1g(tj,m+1, u

[l−1]
j,m+1)

)
+

M∆t

M∑
i=0

SM−1,iL
−1g(tj,m−M+i, u

[l−1]
j,m−M+i)

= u
[l]
j,m +∆t

(
f(tj,m+1, u

[l]
j,m+1)− f(tj,m+1, u

[l−1]
j,m+1)

)
+

M∆t

M∑
i=0

SM−1,if(tj,m−M+i, u
[l−1]
j,m−M+i), m = M, . . . ,K − 1, (2.44)

where l is the number of corrections required and j = 1, . . . , J is the group index.

For any t and u, f(t, u) = L−1g(t, u) and is evaluated by solving the system of linear

equations (2.39). The elements of the integration matrix S are obtained from formula

(2.27). Equations (2.43) and (2.44) can be solved by Newton’s method.

2.3 RIDC for the ODEs L(t, y)y′(t) = f (t, y)

In this section, we form the error equation and construct RIDC formula for a system of

ODEs of the form L(t, y)y′(t) = f(t, y), where L(t, y) is a state dependent non-singular

square matrix. For the selection of the predictor, the corrector and the quadrature

formula we refer the reader to Section 2.1.

2.3.1 Error Equation Formulation

Consider the following IVP consisting of a system of ODEs and initial condition

L(t, y)y′(t) = g(t, y), y(0) = y0, t ∈ [0, T ], (2.45)

where y ∈ Rn and L(t, y) is a state dependent non-singular square matrix. Symboli-

cally, equation (2.45) can be rewritten as

y′(t) = L−1(t, y)g(t, y), y(0) = y0, t ∈ [0, T ]. (2.46)
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Let y(t) be the exact solution and u(t) be the approximate solution of the system of

IVPs (2.46). Using the approximate solution u(t) in (2.46), we obtain the residual

r(t) = u′(t)− L−1(t, u)g(t, u). (2.47)

Once again the actual error is

e(t) = y(t)− u(t). (2.48)

The derivative of the error equation (2.48) is

e′(t) = y′(t)− u′(t)

= L−1(t, y)g(t, y(t))− L−1(t, u)g(t, u(t))− r(t)

= L−1(t, u(t) + e(t))g(t, u(t) + e(t))− L−1(t, u)g(t, u(t))− r(t).

(2.49)

Taking the residual term in (2.49) to the left hand side we have

e′(t) + r(t) = L−1(t, u(t) + e(t))g(t, u(t) + e(t))− L−1(t, u)g(t, u(t)). (2.50)

Since e(0) = 0, equation (2.50) can be written in the integral form as

(
e(t)+

∫ t

0

r(τ)dτ

)′

= L−1(t, u(t)+ e(t))g(t, u(t)+ e(t))−L−1(t, u)g(t, u(t)). (2.51)

Again from (2.47) we have∫ t

0

r(τ)dτ = u(t)− u(0)− L−1(t, u)

∫ t

0

g(τ, u(τ))dτ. (2.52)

Substituting the equation (2.52) into (2.51) we have

(
e(t) + u(t)− L−1(t, u)

∫ t

0

g(τ, u(τ))dτ

)′

= L−1(t, u(t) + e(t))g(t, u(t) + e(t))−

L−1(t, u)g(t, u(t)). (2.53)

Equation (2.51) is used to find the discrete form of the error equation and equation

(2.53) is used to find the correction formula for the RIDC method. The key difference
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between the error equations (2.36) and (2.53) is that the residual term in (2.53) has

a multiplicative factor L−1(t, u) which depends on t and u. In error equation (2.36),

we have the term LL−1 will yields an identity matrix since L is a constant invertible

matrix.

2.3.2 The Predictor

Discretizing (2.45) by the forward Euler we have the prediction formula of the explicit

RIDC method given by

L(tj,m, u
[0]
j,m)
(
u
[0]
j,m+1 − u

[0]
j,m

)
= ∆tg(tj,m, u

[0]
j,m), m = 0, . . . , K − 1, (2.54)

where j = 1, . . . , J is the group index. Equation (2.54) can be rewritten as

u
[0]
j,m+1 = u

[0]
j,m +∆tL−1(tj,m, u

[0]
j,m)g(tj,m, u

[0]
j,m)

= u
[0]
j,m +∆tf(tj,m, u

[0]
j,m).

(2.55)

where j = 1, . . . , J is the group index and f(tj,m, u
[0]
j,m) = L−1(tj,m, u

[0]
j,m)g(tj,m, u

[0]
j,m).

The quantity f(t, u) can be evaluated by solving the following system of linear equa-

tions

L(t, u)f(t, u) = g(t, u). (2.56)

Discretizing (2.45) again by backward Euler we get the prediction formula of

the implicit RIDC method as

L(tj,m+1, u
[0]
j,m+1)

(
u
[0]
j,m+1 − u

[0]
j,m

)
= ∆tg(tj,m+1, u

[0]
j,m+1), m = 0, . . . , K − 1, (2.57)

where j = 1, . . . , J is the group index. Equation (2.57) can be rewritten as

u
[0]
j,m+1 = u

[0]
j,m +∆tL−1(tj,m+1, u

[0]
j,m+1)g(tj,m+1, u

[0]
j,m+1)

= u
[0]
j,m +∆tf(tj,m+1, u

[0]
j,m+1).

(2.58)

where f(tj,m+1, u
[0]
j,m+1) = L−1(tj,m+1, u

[0]
j,m+1)g(tj,m+1, u

[0]
j,m+1) and j = 1, . . . , J is the

group index. The quantity f(t, u) can be evaluated by solving the system of linear

equations (2.56). Equation (2.58) can be solved by Newton’s method.
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2.3.3 The Corrector

Discretizing (2.53) by the forward Euler we obtain the correction formula of the ex-

plicit RIDC method as

u
[l]
m+1 = u[l]

m +∆tL−1(tm, u
[l]
m)g(tm, u

[l]
m)−∆tL−1(tm, u

[l−1]
m )g(tj,m, u

[l−1]
m )+∫ tm+1

tj,m

L−1(t, u[l−1](t))g(t, u[l−1](t))dt

= u[l]
m +∆tL−1(tm, u

[l]
m)g(tm, u

[l]
m)−∆tL−1(tm, u

[l−1]
m )g(tj,m, u

[l−1]
m )+

M∆t
M∑
i=0

SmiL
−1(tj,i, u

[l−1]
j,i )g(tj,i, u

[l−1]
j,i )

= u[l]
m +∆tf(tm, u

[l]
m)−∆tf(tj,m, u

[l−1]
m )+

M∆t
M∑
i=0

Smif(tj,i, u
[l−1]
j,i ), m = 0, . . . ,M − 1 (2.59)

and

u
[l]
j,m+1 = u[l]

m +∆tL−1(tm, u
[l]
m)g(tm, u

[l]
m)−∆tL−1(tm, u

[l−1]
m )g(tj,m, u

[l−1]
m )+

M∆t
M∑
i=0

SM−1,iL
−1(tj,m−M+i, u

[l−1]
j,m−M+i)g(tj,m−M+i, u

[l−1]
j,m−M+i)

= u[l]
m +∆tf(tm, u

[l]
m)−∆tf(tj,m, u

[l−1]
m )+

M∆t
M∑
i=0

SM−1,if(tj,m−M+i, u
[l−1]
j,m−M+i), m = M, . . . ,K − 1, (2.60)

where the number of corrections required is l = 1, . . . ,M , and the group index j has

values j = 1, . . . , J . For any t and u, f(t, u) = L−1(t, u)g(t, u) and is evaluated by

solving the system of linear equations (2.56). The elements of the integration matrix

S are obtained from the formula (2.27).

Discretizing (2.53) by the backward Euler method we obtain the correction
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formula of the implicit RIDC method as

u
[l]
m+1 = u[l]

m+∆tL−1(tm+1, u
[l]
m+1)g(tm+1, u

[l]
m+1)−∆tL−1(tm+1, u

[l−1]
m+1)g(tj,m+1, u

[l−1]
m+1)+∫ tm+1

tj,m

L−1(t, u[l−1](t))g(t, u[l−1](t))dt

= u[l]
m +∆tL−1(tm+1, u

[l]
m+1)g(tm+1, u

[l]
m+1)−∆tL−1(tm+1, u

[l−1]
m+1)g(tj,m+1, u

[l−1]
m+1)+

M∆t
M∑
i=0

SmiL
−1(tj,i, u

[l−1]
j,i )g(tj,i, u

[l−1]
j,i )

= u[l]
m +∆tf(tm+1, u

[l]
m+1)−∆tf(tj,m+1, u

[l−1]
m+1)+

M∆t
M∑
i=0

Smif(tj,i, u
[l−1]
j,i ), m = 0, . . . ,M − 1, (2.61)

and

u
[l]
j,m+1 = u[l]

m+∆tL−1(tm+1, u
[l]
m+1)g(tm+1, u

[l]
m+1)−∆tL−1(tm+1, u

[l−1]
m+1)g(tj,m+1, u

[l−1]
m+1)+

M∆t

M∑
i=0

SM−1,iL
−1(tj,m−M+i, u

[l−1]
j,m−M+i)g(tj,m−M+i, u

[l−1]
j,m−M+i)

= u[l]
m +∆tf(tm+1, u

[l]
m+1)−∆tf(tj,m+1, u

[l−1]
m+1)+

M∆t
M∑
i=0

SM−1,if(tj,m−M+i, u
[l−1]
j,m−M+i), m = M, . . . ,K − 1, (2.62)

where the number of corrections required is l = 1, . . . ,M , and the group index j has

values j = 1, . . . , J . The elements of the integration matrix S are obtained from the

formula given in (2.27). For any t and u, f(t, u) = L−1(t, u)g(t, u) and is evaluated

by solving the system of linear equations (2.56). Equations (2.61) and (2.62) can be

solved by Newton solver.

2.4 RIDC Implementation Details

This section presents the RIDC method in a step by step algorithm for systems of

ODEs y
′
= f(t, y). For systems of ODEs of L(t, y)y

′
= g(t, y), evaluation of f requires

linear solves involving the matrix L(t, y) and the right hand side function g(t, y). It

also discusses the RIDC method with reduced stencils. A parallel implementation of
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the RIDC method will be shown at the end of the section.

2.4.1 RIDC Algorithm with Full Stencils

The RIDC algorithm constructed using the forward Euler method is shown in Algo-

rithm 1 (taken from [13]). As stated in Section 2.1.4, the set of quadrature weights

over each group of intervals, Ij , j = 1, . . . , J , is uniform. Therefore, the integration

matrix S (elements of S are the quadrature weights) is computed using the formula

(2.23) outside the time loop and is used over each group of intervals. The process

is reset after performing the computation in a group of K sequential intervals and

is restarted using the most recent approximate solutions as initial conditions for the

successive groups of intervals.
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Algorithm 1: RIDC algorithm constructed using the forward Euler with

full stencils [13]

Input : time interval [0, T ], N=number of intervals, y0 is the initial

condition, p is the order of the method, M(= p− 1) is the

number of corrections required to achieve the order p, J is the

number of groups, K is the number of subintervals in each group

(N should be divisible by K)

/* Variable Initialization */

1 u0 ← y0, ∆t← T−0
N

, M = p− 1, J = N
K

2 for m = 0 to M − 1 do

3 for i = 0 to M do

4 Smi =
∫ m+1

m

(∏M
k=0,k ̸=i

t−k
i−k

)
dt

5 for j = 1 to J do

6 u
[0]
j,0 = uj−1

/* Prediction loop */

7 for m = 0 to (K − 1) do

8 tj,m = (jK +m)∆t

9 u
[0]
j,m+1 = u

[0]
j,m +∆tf(tj,m, u

[0]
j,m)

/* Correction loop */

10 for l = 1 to M do

11 u
[l]
j,0 = u

[l−1]
j,0

12 for m = 0 to M − 1 do

13 u
[l]
j,m+1 = u

[l]
j,m +∆t

(
f(tj,m, u

[l]
j,m+1)− f(tj,m, u

[l−1]
j,m+1)

)
+

∆t
∑M

i=0 Smif(tj,i, u
[l−1]
j,i )

14 for m = M to K − 1 do

15 u
[l]
j,m+1 = u

[l]
j,m +∆t

(
f(tj,m, u

[l]
j,m+1)− f(tj,m, u

[l−1]
j,m+1)

)
+

∆t
∑M

i=0 SM−1,if(tj,m−M+i, u
[l−1]
j,m−M+i)

16 uj = u
[M ]
j,K
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2.4.2 RIDC Algorithm with Reduced Stencils

The definite integral in the RIDC method is approximated by a suitable quadrature

rule, and the quadrature weights are computed by integrating the Lagrange inter-

polating polynomial passing through a set of points. In Algorithm 1, at each level

of the correction loop an M th−degree Lagrange interpolating polynomial is used to

approximate the definite integral. However, it is possible to save computational time

by using the lth−degree Lagrange polynomial at the lth correction level [13]. RIDC

constructed using the lth−degree Lagrange polynomial at the lth correction level is

shown in Algorithm 2 (again taken from [13]). Using a lower-degree interpolating

polynomial reduces the start up cost of the correctors. Fig. 2.2 compares the start

up cost of the first corrector of a fourth order RIDC method with reduced stencils

and to that with full stencils. Using RIDC with full stencils (Fig. 2.2(a)) the first

corrector is lagged behind the predictor by three steps, whereas, if reduced stencils

are used (Fig. 2.2(b)) the first corrector starts computing immediately after one step

is computed by the predictor.

u
[1]
0 u

[1]
1 u

[1]
0 u

[1]
1

u
[0]
0 u

[0]
1 u

[0]
2 u

[0]
3 u

[0]
4 u

[0]
0 u

[0]
1 u

[0]
2

t0 t1 t2 t3 t4 t0 t1 t2

(a) RIDC with full stencils (b) RIDC with reduced stencils

Fig. 2.2: The startup of the first corrector of a 4th-order RIDC method (a) with full
stencils and (b) with reduced stencils. Input data needed to compute a nodal value is
shown by an arrow (→) pointing towards the node. The colored nodes in each figure
indicate that these nodes are computed simultaneously. Using full stencils the first
corrector has to wait three steps, whereas for the RIDC with reduced stencils the first
corrector has to wait only one step.
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Algorithm 2: RIDC algorithm constructed using the forward Euler with

reduced stencils [13].

Input : time interval [0, T ], N=number of intervals, y0 is the initial

condition, p is the order of the method, M(= p− 1) is the

number of correction required to achieve the order p, J is the

number of groups, K is the number of subinterval in each group

(N should be divisible by K)

/* Variable Initialization */

1 u0 ← y0, ∆t← T−0
N

, M = p− 1, J = N
K

2 for l = 0 to M do

3 for m = 0 to l − 1 do

4 for i = 0 to l do

5 Sl
mi =

∫ m+1

m

(∏l
k=0,k ̸=i

t−k
i−k

)
dt

6 for j = 1 to J do

7 u
[0]
j,0 = uj−1

/* Prediction loop */

8 for m = 0 to (K − 1) do

9 tj,m = (jK +m)∆t

10 u
[0]
j,m+1 = u

[0]
j,m +∆tf(tj,m, u

[0]
j,m)

/* Correction loop */

11 for l = 1 to M do

12 u
[l]
j,0 = u

[l−1]
j,0

13 for m = 0 to l − 1 do

14 u
[l]
j,m+1 = u

[l]
j,m +∆t

(
f(tj,m, u

[l]
j,m+1)− f(tj,m, u

[l−1]
j,m+1)

)
+

∆t
∑l

i=0 S
l
mif(tj,i, u

[l−1]
j,i )

15 for m = l to K − 1 do

16 u
[l]
j,m+1 = u

[l]
j,m +∆t

(
f(tj,m, u

[l]
j,m+1)− f(tj,m, u

[l−1]
j,m+1)

)
+

∆t
∑l

i=0 S
l
l−1,if(tj,m−l+i, u

[l−1]
j,m−l+i)

17 uj = u
[M ]
j,K
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2.4.3 Multi-core Implementation

For a fourth order RIDC method constructed using a forward Euler predictor, the

simultaneous computation using four processors is illustrated by Fig. 2.3. The illus-

tration is based on Algorithm 2. It shows that all processors cannot start computing

exactly at the same time. Each processor has to wait until necessary input data is

available from the previous processors. For example, in Fig. 2.3, the second processor

waits until the nodal values u
[0]
0 and u

[0]
1 are supplied by the first processor (predictor).

While the first processor is computing u
[0]
2 , the second processor starts computing u

[1]
1 .

That is, the second processor is always lagged behind from the predictor by one step.

The second correction u
[1]
1 (computed by the third processor) starts while the first

processor is computing u
[0]
4 and the second processor is computing the first correction

u
[1]
3 . The third processor starts its job after the completion of the first three steps

by the predictor. Similarly, the 3rd correction (by 4th processor) starts when the first

six steps are completed by the predictor. In general, each corrector waits l(l+1)
2

steps

after the predictor starts computing.

(l = 3) u
[3]
0 u

[3]
1

(l = 2) u
[2]
0 u

[2]
1 u

[2]
2 u

[2]
3 u

[2]
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(l = 1) u
[1]
0 u

[1]
1 u

[1]
2 u

[1]
3 u

[1]
4 u

[1]
5 u

[1]
6

(l = 0) u
[0]
0 u

[0]
1 u

[0]
2 u
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[0]
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[0]
6 u

[0]
7

t0 t1 t2 t3 t4 t5 t6 t7 t
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ct
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n
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ls
)

Fig. 2.3: Illustration of the parallel computation of a 4-processor 4th order RIDC
method with reduced stencils. The input data needed to compute a nodal value is
shown by an arrow (→) pointing towards the node. Nodes filled with the same color
indicate that these nodes are computed simultaneously.
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2.4.4 Runtime Analysis

To understand the running time of a RIDC method, we consider here the RIDC

method with reduced stencils from [13] (Algorithm 2 in this thesis). We partition a

given time domain [0, T ] into N equally spaced intervals. A single-processor forward

Euler method takes N steps to compute the approximate solution at t = T . As

described in Section 2.4.3 the RIDC lth corrector (with reduced stencils) is lagged

behind by l(l+1)
2

steps from the predictor. Therefore, a p-processor RIDC method

(pth order) based on Algorithm 2 using forward Euler as a predictor and a corrector

will give a pth order solution of an IVP at time t = T in N + JM(M+1)
2

steps, where

M = p− 1 and J = N
K
.

We assume that the per step cost of the predictor and the corrector are equal

and we define the ratio

µ =
number of steps required by the corrector

number of steps required by the predictor
= 1 +

1

K

M(M + 1)

2
.

Here µ gives a relative measure of the runtime of the predictor and the corrector. Let

us suppose that the number of time intervals n = 100. If we choose K = 100 then

J = 1, and µ = 1.06 for a 4th order RIDC method with reduced stencils. That is

theoretically we expect 6% longer runtime for the 4th order RIDC method (computed

using 4-processors) as compared to a single-processor forward Euler method.

If we keep N fixed and set K = 50, that is J = 2, then the runtime of the 4th

order RIDC method with reduced stencils will be 12% (i.e. µ = 1.12) longer than the

runtime of a single-processor forward Euler method. That is, the runtime of a RIDC

method increases as the value of K becomes smaller.
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Chapter 3

The RIDC Software Library and

New Extensions

The RIDC software introduced by Ong, Haynes and Ladd [40] was designed to solve

IVPs of the form y′(t) = f(t, y), where y ∈ Rn. In this chapter, we show how to extend

the RIDC library to solve systems of IVPs of the forms: (i) Ly′(t) = g(t, y), where

y ∈ Rn and L is a constant invertible square matrix, and (ii) L(t, y)y′(t) = g(t, y),

where y ∈ Rn, and L(t, y) is an invertible state dependent square matrix. The library

implementation process for both forms of the IVPs (i) and (ii) is identical. Hence, we

show the implementation of the RIDC library for IVPs of the form (ii) only.

3.1 The Existing RIDC Library

This section is a review of the instructions provided with the RIDC library from [40].

Here, we consider the following initial value problem

y′(t) = f(t, y), y ∈ Rn, y(0) = y0, t ∈ [0, T ]. (3.1)



3.1.1 Explicit RIDC Library

We recall from the Chapter 2 that the explicit RIDC formula applied to the IVP (3.1)

has the form

u
[l]
m+1 = u[l]

m +∆tf(tm, u
[l]
m)−∆tf(tm, u

[l−1]
m ) +

∫ tm+1

tm

f(t, u[l−1](t))dt. (3.2)

For simplicity we have omitted the group index j from u
[l]
m by assuming that the

formula holds for all groups of intervals. We write here the residual term in integral

form. For the computation of the correction formula (3.2) by explicit RIDC library

the integral term in (3.2) will be replaced with the quadrature formula of Section

2.1.4.

The library requires a user provided routine called step which takes the solution

at time tm as an input and gives a first order approximate solution at time tm +∆t,

where ∆t represents the step size, as output. For the explicit RIDC, using the forward

Euler integrator, the user provided step routine computes

u
[l]
m+1 = u[l]

m +∆tf(tm, u
[l]
m). (3.3)

That is, the step routine (3.3) takes u
[l]
m as an input and returns output u

[l]
m+1.

The explicit RIDC library automatically computes the first two terms of the

right hand side of the equation (3.2) by calling the step routine, and stores the output

as an temporary variable, w
[l]
m+1, given by

w
[l]
m+1 = u[l]

m +∆tf(tm, u
[l]
m). (3.4)

It then computes the last two terms of (3.2) and sums them together with w
[l]
m+1 to

get the final output, u
[l]
m+1, given by

u
[l]
m+1 = w

[l]
m+1 −∆tf(tm, u

[l−1]
m ) +

∫ tm+1

tm

f(t, u[l−1](t))dt. (3.5)

This is a post-processing step which is shown in the Fig. 3.1. The post-processing

finally gives the desired corrected solution u
[l]
m+1.
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Step routine Post-process
(tm, u

[l]
m) w

[l]
m+1 (tm+1, u

[l]
m+1)

Fig. 3.1: Computation of the correction formula in the explicit RIDC library with
post-processing.

3.1.2 Implicit RIDC Library

The subroutine step using the backward Euler predictor is able to solve

u
[l]
m+1 = u[l]

m +∆tf(tm+1, u
[l]
m+1) (3.6)

by Newton’s method or a fixed point iteration for given u
[l]
m, ∆t and tm+1.

We again recall from the Chapter 2 that the implicit RIDC formula applied to

the IVP (3.1) takes the form

u
[l]
m+1 = u[l]

m +∆tf(tm+1, u
[l]
m+1)−∆tf(tm+1, u

[l−1]
m+1) +

∫ tm+1

tm

f(t, u[l−1](t))dt. (3.7)

For the computation of the correction formula (3.7) by implicit RIDC library the

integral term in (3.7) will be replaced with the quadrature formula of Section 2.1.4.

The first term of the right hand side of (3.7) is known from the previous step

and at the lth correction step the 3rd and the 4th terms are known from the (l − 1)th

correction step. It computes these known terms, sums them together and stores them

as a temporary variable, wl
m, given by

wl
m = u[l]

m −∆tf(tm+1, u
[l−1]
m+1) +

∫ tm+1

tm

f(t, u[l−1](t))dt. (3.8)

Then the correction formula (3.7) requires the solution of

u
[l]
m+1 = wl

m +∆tf(tm+1, u
[l]
m+1). (3.9)

Now equation (3.9) is solved by calling the user provided step routine which takes

wl
m as an input and yields output, u

[l]
m+1, as the final result. Here the correction

terms in (3.8) are computed before calling the step routine or the predictor. This is

a pre-processing step which is shown in Fig. 3.2.

37



pre-process step routine
(tm, u

[l]
m) w

[l]
m (tm+1, u

[l]
m+1)

Fig. 3.2: Computation of the correction formula in the implicit RIDC library with
pre-processing.

(tm, u
[l]
m)

Step routine

Pre-process

Post-process

Step routine

(tm+1, u
[l]
m+1)

Explicit w
[l]
m+1

Implicit

w
[l]
m

Fig. 3.3: Computation of the correction formulae in the explicit and implicit RIDC
library with post-processing and pre-processing respectively.

The different ways of computing of the corrections for the explicit and implicit

RIDC methods are illustrated by the combined diagram Fig. 3.3.

3.2 Library Implementation of RIDC for IVPs of

the Form L(t, y)y′(t) = g(t, y)

3.2.1 Explicit RIDC

For system of ODEs L(t, y)y′(t) = g(t, y), the error equation given in Section 2.3 is

(
e(t) + u(t)− L−1(t, u)

∫ t

0

g(t, u(τ))dτ

)′

= L−1(t, u(t) + e(t))g(t, u(t) + e(t))−

L−1(u)g(t, u(t)). (3.10)
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Discretizing equation (3.10) by forward Euler we obtain the correction formula for the

explicit RIDC method given by

u
[l]
m+1 = u[l]

m +∆tL−1(tm, u
[l]
m)g(tm, u

[l]
m)−∆tL−1(tm, u

[l−1]
m )g(tj,m, u

[l−1]
m )+∫ tm+1

tj,m

L−1(t, u[l−1](t))g(t, u[l−1](t))dt. (3.11)

For the computation of the correction formula (3.11) by explicit RIDC library the

integral term in (3.11) will be replaced with the quadrature formula of Section 2.1.4.

The explicit RIDC library [40] can be adapted to (3.11) by providing a user

chosen linear solver to compute the values L−1(t, y)g(t, y) at (t, y). Users have to

provide the right hand side function g(t, y) of the given IVP and the mass matrix

L(t, y). Defining f(t, y) ≡ L−1(t, y)g(t, y) the linear solver solves the system of linear

equations

L(t, y)f(t, y) = g(t, y), (3.12)

to yield the function value f(t, y) at the point (t, y).

In order to make those changes, we provide a subroutine, gauss(A,B,X), a lin-

ear solver which takes a square matrix A and a vector B, and returnsX as the solution

of the system of linear equations AX = B. The linear solver gauss uses Gaussian elim-

ination. However, any other direct or iterative method can be used. We then modify

the subroutine rhs given in explicit.cpp (libridc-0.2/examples/explicit/explicit.cpp) as

void rhs(double t, double *u, double *f)

{

// rhs takes inputs t and u, and update f

g = g(t,u); // RHS of the given IVP to be input by users.

L = L(t,u); // Mass matrix from given IVP to be input by users.

n = length(u);

double *x = new double[n]; // constructor

gauss(L,g,x); // calling the linear solver

f = x;

delete [] x; // destructor

}
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The step routine computes the quantity

u
[l]
m+1 = u[l]

m +∆tL−1(tm, u
[l]
m)g(tm, u

[l]
m). (3.13)

The first two terms of the right hand side of the equation (3.11) are computed by

calling the step routine and the output is stored as an temporary variable, w
[l]
m+1,

given by

w
[l]
m+1 = u[l]

m +∆tL−1(tm, u
[l]
m)g(tm, u

[l]
m). (3.14)

The rest two terms of the right hand side of (3.11) are computed and are summed

together with w
[l]
m+1 to get the final output, u

[l]
m+1, given by

u
[l]
m+1 = w

[l]
m+1−∆tL−1(tm, u

[l−1]
m )g(tj,m, u

[l−1]
m ) +

∫ tm+1

tj,m

L−1(t, u[l−1](t))g(t, u[l−1](t))dt.

(3.15)

Finally, we add the member function gauss in the header file ridc.h(/src/ridc.h), and

compile the script explicit.cpp from the directory libridc-0.2/examples/explicit using

the command make explicit as given in [40].

3.2.2 Implicit RIDC

For system of ODEs L(t, y)y
′
(t) = g(t, y), equation (2.59) of Chapter 2 gives the

implicit RIDC formula using backward Euler as

u
[l]
m+1 = u[l]

m+∆tL−1(tm+1, u
[l]
m+1)g(tm+1, u

[l]
m+1)−∆tL−1(tm+1, u

[l−1]
m+1)g(tj,m+1, u

[l−1]
m+1)+∫ tm+1

tj,m

L−1(t, u[l−1](t))g(t, u[l−1](t))dt. (3.16)

For the computation of the correction formula (3.16) by implicit RIDC library the

integral term in (3.16) will be replaced with the quadrature formula of Section 2.1.4.

In the existing implicit RIDC library (examples/implicit/implicit.cpp), the step

routine computes the solution, u
[l]
m+1, of

u
[l]
m+1 = u[l]

m +∆tL−1(tm+1, u
[l]
m+1)g(tm+1, u

[l]
m+1), (3.17)

it passes the solution from tm to tm+1 using the backward Euler with a fixed point
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iteration method to solve system of equations. We provide a Newton’s solver in the

step routine to solve the system of nonlinear equations. To find the Jacobian matrix

for the Newton’s method, we provide a subroutine, jac, which computes the Jacobian

matrix for an arbitrary function, F (x), numerically. Changes also have to be made

in the subroutine rhs inside implicit.cpp (examples/implicit/implicit.cpp) to compute

function values of the form L−1(t, y)g(t, y) as described in Section 3.2.1.

Now the correction formula (3.16) can easily be computed using the implicit

RIDC library, even if the function g is nonlinear. The first term of the right hand

side of (3.16) is known from the previous step and at the lth correction step the 3rd

and the 4th terms are known from the (l− 1)th correction step. The library computes

these known terms, sums them together and stores them as a temporary variable, wl
m,

given by

wl
m = u[l]

m−∆tL−1(tm+1, u
[l−1]
m+1)g(tj,m+1, u

[l−1]
m+1)+

∫ tm+1

tj,m

L−1(t, u[l−1](t))g(t, u[l−1](t))dt.

(3.18)

Then the correction formula (3.16) requires the solution of

u
[l]
m+1 = wl

m +∆tL−1(tm+1, u
[l]
m+1)g(tm+1, u

[l]
m+1). (3.19)

Now equation (3.19) is solved by calling the user provided step routine which

takes wl
m as an input and yields the output, u

[l]
m+1, as the final result.
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Chapter 4

An Application: A RIDC Moving

Method of Lines

The chapter is divided into two sections. The first section deals with a brief discussion

on moving mesh technique using the equidistribution principle. In the latter section,

we show the semi-discretization of PDEs in space by the moving finite difference

method to obtain a system of ODEs. The resulting system of ODEs is then solved by

the time parallel implicit RIDC method described in Section 2.3.

4.1 Adaptive Moving Mesh Method

The basic idea behind the moving mesh method is to use mesh points with a variable

and time dependent spacing. At each time level mesh points are forced to concentrate

in the regions with large solution variations, steep fronts, or oscillations. This section

outlines the fundamental ingredients of moving mesh method along with a complete

step by step procedure of moving mesh generation.

4.1.1 Choice of Mesh Density Function

The quality of the computed adaptive mesh depends greatly on the right choice of

the mesh density function ρ(x). The mesh generated by ρ is concentrated in regions

where ρ is large and is scattered in regions where ρ is small. This property of the



adaptive mesh is shown in the Fig. 4.1(b). The most commonly used mesh density

functions are the arclength and the curvature based mesh density functions [28].

The arclength mesh density function for a given physical solution u is defined

by

ρ(x, u, t) =

√
1 + |ux|2, (4.1)

and the curvature mesh density function is defined by

ρ(x, u, t) = (1 + |uxx|2)1/4. (4.2)

In practice the derivative term in the arclength mesh density (4.1) is often scaled by

some parameter α, giving

ρ(x, u, t) =

√
1 +

1

α
|ux|2. (4.3)

The scaling factor α reduces the magnitude of ρ in the case when magnitude of the

derivative term ux is very large [41]. A similar scaling can be introduced for the

curvature mesh density function.

In this thesis, we use the smoothed arclength mesh density function and the

following curvature based mesh density function from [28] which is obtained by mini-

mizing the error between the solution and its interpolant on the equidistributing mesh

ρ(x, u, t) = (1 +
1

α
|uxx|2)1/3, (4.4)

where, α in a given interval [a, b] is given by

α =
[ 1

b− a

∫ b

a

|uxx|
2
3dx
]3
. (4.5)

4.1.2 Equidistribution Principle

The equidistribution principle [28] plays a major rule in adaptive moving mesh gener-

ation. In one spatial dimension it states that for a given mesh density function, ρ(x),

a mesh Th : a = x1 < x2 < · · · < xN = b in the interval [a, b] is to be selected so

that the integral value
∫ xi

xi−1
ρ(x)dx is uniform for i = 2, . . . , N , where N is the total
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number of mesh points. Mathematically, we write∫ x2

x1

ρ(x) dx = · · · =
∫ xN

xN−1

ρ(x) dx. (4.6)

That is, the integral value under ρ(x) is uniform in every subinterval [xi−1, xi] for

i = 2, . . . , N .

4.1.3 Adaptive Moving Mesh Generation By the Equidistri-

bution Principle

The integral form of the equidistribution principle given in (4.6) can be rewritten as∫ xj

a

ρ(x) dx =
j − 1

N − 1
σ, j = 1, . . . , N, (4.7)

where

σ =

∫ b

a

ρ(x) dx. (4.8)

Let us consider a coordinate transformation x = x(ξ) : [0, 1]→ [a, b], defined so that

xj = x(ξj) j = 1, . . . , N, (4.9)

where

ξj =
j − 1

N − 1
, j = 1, . . . , N, (4.10)

is a uniform mesh on [0, 1]. Then the equation (4.6) can be rewritten as∫ x(ξj)

a

ρ(x) dx = σξj, j = 1, . . . , N. (4.11)

In a continuous form, equation (4.11) can be written as∫ x(ξ)

a

ρ(x) dx = σξ, ∀ξ ∈ [0, 1]. (4.12)

Differentiating (4.12) with respect to ξ yields

ρ(x)
∂x

∂ξ
= σ. (4.13)
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Differentiating (4.13) with respect to ξ we have

∂

∂ξ

(
ρ(x)

∂x

∂ξ

)
= 0. (4.14)

The solution of the quasi-linear second-order differential equation (4.14) subject to

the boundary conditions

x(0) = a and x(1) = b, (4.15)

gives the equidistributing mesh xi(ξ), i = 1, . . . , N. Several other moving mesh PDEs

are shown in Section 4.2.1. In order to numerically solve (4.14) together with the

boundary conditions (4.15), we discretize (4.14) using central finite differences on a

uniform computational mesh ξj, j = 1, . . . , N. This gives for j = 2, . . . , N − 1,

2

ξj+1 − ξj−1

(ρ(xj+1) + ρ(xj)

2

(xj+1 − xj)

ξj+1 − ξj
− ρ(xj) + ρ(xj−1)

2

(xj − xj−1)

ξj − ξj−1

)
= 0, (4.16)

with boundary conditions

x1 = a and xN = b. (4.17)

The mesh density function ρ(x) is often nonlinear and the system of nonlinear equa-

tions (4.16) together with the boundary conditions (4.17) can be solved by Newton’s

method.

Alternatively, it can be solved by the linearization of the system of nonlinear

equations. We assume that the mesh density function at the current iteration, ρn, is

fixed. Then the linearized form of the nonlinear system (4.16) takes the form

2

ξj+1 − ξj−1

(ρ(x(n)
j+1) + ρ(x

(n)
j )

2

(x
(n+1)
j+1 − x

(n+1)
j )

ξj+1 − ξj

−
ρ(x

(n)
j ) + ρ(x

(n)
j−1)

2

(x
(n+1)
j − x

(n+1)
j−1 )

ξj − ξj−1

)
= 0. (4.18)

And the boundary conditions (4.17) become

x
(n+1)
1 = a and x

(n+1)
N = b. (4.19)

Now the system of linear equations (4.18) coupled with the boundary conditions (4.19)
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is equivalent to the system of linear equations

AX = F, (4.20)

where A is an N × N tridiagonal matrix whose entries, for j = 2, . . . , N−1, are given

by

A(j, j − 1) =
1

ξj+1 − ξj−1

.
1

ξj − ξj−1

(
ρ(x

(n)
j ) + ρ(x

(n)
j−1)

)
,

A(j, j + 1) =
1

ξj+1 − ξj−1

.
1

ξj+1 − ξj

(
ρ(x

(n)
j+1) + ρ(x

(n)
j )
)
,

and

A(j, j) = − 1

ξj+1 − ξj−1

.
1

ξj − ξj−1

(
ρ(x

(n)
j ) + ρ(x

(n)
j−1)

)
− 1

ξj+1 − ξj−1

.
1

ξj+1 − ξj

(
ρ(x

(n)
j+1) + ρ(x

(n)
j )
)
,

with

A(1, 1) = 1 and A(N,N) = 1.

The right hand side function F is an N × 1 matrix whose entries are equal to zero,

for j = 2, . . . , N − 1, with the fixed boundary values F (1) = 1 and F (N) = 1.

Example 4.1: Consider the following mesh density function

ρ(x) = 1 + 20(1− tanh2(20(x− 0.25))) + 30(1− tanh2(30(x− 0.5)))

+ 10(1− tanh2(10(x− 0.75))), ∀x ∈ [0, 1]. (4.21)

Using the mesh density function (4.21) the system of linear equations in (4.18) together

with the boundary conditions (4.19) is solved for x by Gaussian elimination. The

convergence of iteration (4.18) with a stopping tolerance tol = 10−8 is shown by a

Fig: 4.1(a). The mesh differences are compared with the mesh density function values

ρ(xj), j = 1, . . . , N, in Fig: 4.1(b). The upper red curve in Fig: 4.1(b) represents the

consecutive mesh differences and the lower green curve indicates the function values

ρ at the corresponding mesh points xj, j = 1 . . . , N. We see that the mesh density

function ρ takes larger value where the mesh difference is small (i.e near x = 0.21 and

x = 0.45) and ρ takes smaller values where the mesh difference is large (i.e near the

points x = 0, x = 0.4, and x = 0.4). The method is repeated using different numbers
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of mesh points (N), and the number of iterations needed for convergence of iteration

(4.18) is shown in Table 4.1.
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(a) The infinity norm of the difference of two
consecutive iterations is plotted against the
iteration number.
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(b) Consecutive mesh differences are com-
pared with the corresponding function val-
ues of ρ(x) at the new mesh points.

Fig. 4.1: Using the mesh density function (4.21) the system of linear equations (4.18)
along with the boundary conditions (4.19) is solved for x iteratively with an iteration

tolerance of tol = 10−8 and 160 mesh points in the interval [0, 1]. (a) maxj∥x(n+1)
j −

x
(n)
j ∥ is plotted against the number of iterations required to achieve maxj∥x(n+1)

j −
x
(n)
j ∥ < 10−8. (b) Mesh spacing |xj+1 − xj| (upper figure) in the newly generated

mesh is compared with the corresponding values of the density function ρ(xj) (lower
figure).

Table 4.1: The number of iterations required to achieve maxj∥x(n+1)
j − x

(n)
j ∥ < 10−8

for the Example 4.1 with different numbers of mesh points N . The convergence rate
is faster for larger values of N . For the values of N up to 50 the method does not
converge (N.conv).

N 10 50 80 161 361
Iteration N.Conv. N.Conv. 89 39 40

4.2 Discretization of PDEs on a Moving Mesh

In this section, we introduce moving mesh PDEs. We then apply the (moving) method

of lines to a physical PDE and a moving mesh PDE. This semi-discretization results

in two N ×N systems of ODEs. The combination of these systems yields a 2N × 2N
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coupled system of ODEs involving the derivatives of physical solution u and the mesh

x.

4.2.1 Moving Mesh PDEs

In the time dependent coordinate case we introduce a time dependent coordinate

transformation

x = x(ξ, t), ξ ∈ [0, 1], (4.22)

which satisfies boundary values

x(0, t) = 0 and x(1, t) = 1. (4.23)

The equidistribution principle states∫ x(ξ,t)

0

ρ(x, t) dx = ξσ(t), (4.24)

where

σ(t) =

∫ 1

0

ρ(x, t)dx. (4.25)

Differentiating equation (4.24) with respect to ξ, we have

ρ(x, t)
∂x(ξ, t)

∂ξ
= σ(t). (4.26)

Differentiating (4.26) again with respect to ξ, we have

∂

∂ξ

(
ρ(x, t)

∂x(ξ, t)

∂ξ

)
= 0. (4.27)

Equation (4.27) does not contain the mesh speed ẋ(ξ, t) and is called a quasi-static

equidistribution principle (QSEP). The mesh speed ẋ(ξ, t) is particularly important

for regularizing the mesh movement. By introducing a time differentiation to the

above QSEP Haung, Ren and Russell [27] constructed the following moving mesh
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partial differential equations (MMPDEs);

MMPDE1:
∂

∂ξ

(
ρ
∂xt

∂ξ

)
+

∂

∂ξ

(
∂ρ

∂ξ
xt

)
= − ∂

∂ξ

(
∂ρ

∂t

∂x

∂ξ

)
,

MMPDE2:
∂

∂ξ

(
ρ
∂xt

∂ξ

)
+

∂

∂ξ

(
∂ρ

∂ξ
xt

)
= − ∂

∂ξ

(
∂ρ

∂t

∂x

∂ξ

)
− 1

τ

∂

∂ξ

(
ρ
∂x

∂ξ

)
,

MMPDE3:
∂2

∂ξ2
(ρxt) = −

1

τ

∂

∂ξ

(
ρ
∂x

∂ξ

)
,

MMPDE4:
∂

∂ξ

(
ρ
∂xt

∂ξ

)
= −1

τ

∂

∂ξ

(
ρ
∂x

∂ξ

)
,

MMPDE5: xt = −
1

τ

∂

∂ξ

(
ρ
∂x

∂ξ

)
,

Modified MMPDE5: xt = −
1

τρ

∂

∂ξ

(
ρ
∂x

∂ξ

)
and

MMPDE6:
∂2xt

∂ξ2
= −1

τ

∂

∂ξ

(
ρ
∂x

∂ξ

)
.

Derivations and the applications of the above mentioned MMPDEs can be found

in [27,28]. In this thesis, we use MMPDE6 for our mesh movement.

4.2.2 Moving Method of Lines

As an example of a nonlinear parabolic partial differential equation, we consider the

one dimensional Burgers’ equation

ut = ϵuxx −
(u2

2

)
x
, x ∈ [0, 1], t > 0, (4.28)

along with the boundary conditions

u(0, t) = 0 and u(1, t) = 0. (4.29)

We consider the time dependent coordinate transformation from the computational

domain Ωc ≡ [0, 1] to the physical domain Ω ≡ [0, 1]

x = x(ξ, t) : Ωc → Ω. (4.30)
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Then the coordinates of the new mesh points are given by

xj(t) = x(ξj, t), j = 1, . . . , N, (4.31)

where

ξj =
j − 1

N − 1
, j = 1, . . . , N (4.32)

is a uniform mesh in the fixed computational domain Ωc.

The solution of (4.28) in the transformed domain takes the form

û(ξ, t) = u(x(ξ, t), t). (4.33)

Since x = x(ξ, t), by the chain rule we have

ûξ =
d
dξ
(û) = du

dx
dx
dξ

= uxxξ. (4.34)

This implies that

ux =
ûξ

xξ

, (4.35)

and

uxx = (
ûξ

xξ

)x =
(
ûξ

xξ
)ξ

xξ

. (4.36)

We observe

ût =
d
dt
(û) = ut + uxxt. (4.37)

This implies that

ut = ût − uxxt

= ût − uxxt

= ût −
ûξ

xξ

xt.

(4.38)

(u2

2

)
x
=

1

xξ

(u2

2

)
ξ
. (4.39)
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Using equations (4.33)-(4.39) in (4.28), we have

ût −
ûξ

xξ

xt =
ϵ

xξ

( ûξ

xξ

)
ξ
− 1

xξ

( û2

2

)
ξ
. (4.40)

Using central finite differences in the computational domain, Ωc, we have

xξ =
xj+1 − xj−1

2∆ξ
, (4.41)

( û2

2

)
ξ
=

1

4

u2
j+1 − u2

j−1

∆ξ
, (4.42)

and ( ûξ

xξ

)
ξ
=

2

2∆ξ

[uj+1 − uj

xj+1 − xj

− uj − uj−1

xj − xj−1

]
, (4.43)

where

∆ξ =
1

N − 1
. (4.44)

Using equations (4.41)-(4.43) in (4.40), we have

duj

dt
− (uj+1 − uj−1)

(xj+1 − xj−1)

dxj

dt
=

2ϵ

(xj+1 − xj−1)

[uj+1 − uj

xj+1 − xj

− uj − uj−1

xj − xj−1

]
− 1

2

(u2
j+1 − u2

j−1)

(xj+1 − xj−1)
, j = 2, . . . , N − 1. (4.45)

The boundary conditions (4.29) can be rewritten as

du1

dt
= 0 and

duN

dt
= 0. (4.46)

Here, uj(t) is the approximation to û(ξj, t) and uj will be approximated based on

the mesh points xj. The mesh points xj can be determined by solving, for example,

MMPDE6 from Section 4.2.1.

∂2xt

∂ξ2
= −1

τ

∂

∂ξ

(
ρ
∂x

∂ξ

)
, (4.47)

together with the boundary conditions

x(0, t) = 0 and x(1, t) = 1, (4.48)
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where, ρ is the mesh density function and τ > 0 is a user-defined parameter which

controls the mesh movement due to the change in ρ(x, t). The mesh moves faster

when τ is small and the mesh movement becomes slow when τ is large.

The semi-discretization of (4.47) in the computational domain, Ωc, gives

(xt)j−1 − 2(xt)j + (xt)j+1

∆ξ2
= −1

τ

2

2∆ξ

[ρj+1 + ρj
2

(xj+1 − xj)

∆ξ
− ρj + ρj−1

2

(xj − xj−1)

∆ξ

]
.

(4.49)

Simplifying (4.49), we have

dxj−1

dt
− 2

dxj

dt
+

dxj+1

dt
= −1

τ

[ρj+1 + ρj
2

(xj+1 − xj)−
ρj + ρj−1

2
(xj − xj−1)

]
, (4.50)

and rewriting the boundary conditions (4.48) gives

dx1

dt
= 0 and

dxN

dt
= 0. (4.51)

Equations (4.45) and (4.50) together with the boundary conditions (4.46) and

(4.51) form a coupled system of 2N ODEs for the physical solution uj(t) and the mesh

xj(t), j = 1, . . . , N. The coupled ODE system can be written in the the following mass

matrix form

L(t, y)y
′
= g(t, y), (4.52)

where

y = [u1(t), . . . , uN(t), x1(t), . . . , xN(t)]
T , y

′
=

dy

dt
, (4.53)

g(t, y) is the right hand side function of the coupled system of ODEs and L(t, y) is a

2N × 2N matrix given by

L(t, y) =

(
M1 M2

M3 M4

)
,

whereM1, M2, M3 are sparse diagonal matrices, andM4 is a sparse tridiagonal matrix.

The matrices M1, M3 and M4 are given by

M1 =

⎛⎜⎜⎝
1

. . .

1

⎞⎟⎟⎠ , M3 =

⎛⎜⎜⎝
0

. . .

0

⎞⎟⎟⎠ and M4 =

⎛⎜⎜⎜⎜⎜⎝
2 −1

−1 . . . . . .
. . . . . . −1
−1 2

⎞⎟⎟⎟⎟⎟⎠ .
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M2 has diagonal elements−uj+1−uj−1

xj+1−xj−1
for j = 2, . . . , N−1, andM2(1, 1) = M2(N,N) =

1. The system of ODEs (4.52) can be solved by the RIDC-BE formula of Section 2.3.

To do this we need to choose a mesh density function first. In this thesis, we use the

curvature and arclength mesh density functions.

The scaled curvature based mesh density function [28] defined by

ρj =
(
1 +

1

αh

|uxx,j|2
) 1

3
, (4.54)

where

αh = max
(
1,
[ N∑

j=2

1

2
(xj − xj−1)

(
|uxx,j|

2
3+|uxx,j−1|

2
3

))]3)
, (4.55)

and the spatial derivatives are approximated by

uxx,j =
2

(xj+1 − xj−1)

[uj+1 − uj

xj+1 − xj

− uj − uj−1

xj − xj−1

]
, j = 2, . . . , N − 1. (4.56)

The values at the end points are given by

uxx,1 =
2
[
(x2 − x1)(u3 − u1)− (x3 − x1)(u2 − u1)

]
(x3 − x1)(x2 − x1)(x3 − x2)

, (4.57)

and

uxx,N =
2
[
(xN−1 − xN)(uN−2 − uN)− (xN−2 − xN)(uN−1 − uN)

]
(xN−2 − xN)(xN−1 − xN)(xN−2 − xN−1)

. (4.58)

In the case when u is not smooth, it is convenient to use a smoothed mesh density

function. An effective smoothing technique, see [28], uses

ρj =
1

4
ρj−1 +

1

2
ρj +

1

4
ρj+1, j = 2, . . . , N − 1,

with

ρ1 =
1

2
ρ1 +

1

2
ρ2,

and

ρN =
1

2
ρN−1 +

1

2
ρN .
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We will also test the arclength mesh density function

ρ(x, u, t) =

√
1 + |ux|2. (4.59)

Discretization of (4.59) in the computational domain gives

ρi =

√
1 +

(ui+1 − ui−1

xi+1 − xi−1

)2
, i = 2, . . . , N − 1. (4.60)

A smoothing scheme [26] for the arclength mesh density function (4.60) is given by

ρ̃i =

√ i+p∑
k=i−p

(ρk)2
( γ

1 + γ

)|k−i|
/ i+p∑

k=i−p

( γ

1 + γ

)|k−i|
, (4.61)

where γ is a positive constant called smoothing parameter and p is a nonnegative

integer called smoothing index. The choice of the parameters γ and p can be found

in [26].
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Chapter 5

Numerical Results

In this chapter, we provide a number of examples illustrating the efficiency and ac-

curacy of the RIDC formulae derived in Chapter 2 and Chapter 4. The results are

computed using the enhanced library described in Chapter 3. We begin by showing

the techniques by which the order of the accuracy of the methods are calculated.

5.1 Estimating the Order of Convergence

In this thesis, we use two types of methods to verify the order of accuracy of the RIDC

methods. The first method is used for the cases where true solution of a given IVP is

known and the second method is used for the cases where true solution of the IVP is

not known.

5.1.1 Method-1: (When True Solution is Known)

Let U be the exact solution to a given scalar IVP and Ū(h) be its numerical solution

at a fixed time T . The error obtained with a numerical method with step size h is

given by

E(h) ≡ U − Ū(h). (5.1)

For a pth order method, we expect

E(h) = Chp +O(hp+1), as h→ 0. (5.2)



When h is sufficiently small, we have

E(h) ≈ Chp. (5.3)

When step size h is halved we expect

E(h/2) ≈ C(h/2)p. (5.4)

Combining (5.3) and (5.4), we see

E(h)

E(h/2)
≈ 2p. (5.5)

Hence, p can be estimated by

p ≈ log2

( E(h)

E(h/2)

)
. (5.6)

5.1.2 Method-2: (When True Solution is not Known)

When the exact solution is not known the step size h is halved successively and

the order of accuracy is computed by taking the ratios of differences between two

computed solutions for successive h. Using the equations (5.1) and (5.2), we have

Ē(h) ≡ U(h)− U(h/2).

= (U(h)− U)− (U(h/2)− U).

= Chp −
(h
2

)p
+O(hp+1), h→ 0.

= C
(
1− 1

2p

)
hp +O(hp+1), h→ 0.

(5.7)

Hence, when h is sufficiently small, we have

Ē(h) ≈ C
(
1− 1

2p

)
hp. (5.8)
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By the similar argument, we get

Ē(h/2) = U(h/2)− U(h/4).

≈ C
(
1− 1

2p

)hp

2p
.

(5.9)

Taking the ratio of (5.8) and (5.9), we have

Ē(h)

Ē(h/2)
≈ 2p. (5.10)

Hence, p can be estimated by

p ≈ log2

( Ē(h)

Ē(h/2)

)
. (5.11)

5.2 Simple IVPs and a 1D Heat Equation on a

Uniform Mesh

The order of accuracy of the explicit and the implicit RIDC methods developed in this

thesis using forward euler and backward Euler predictors respectively, are tested here

for several initial value problems. We summarize our observations and conclusions for

all of these examples in Section 5.4.

Example 5.1: Let us consider the following IVP

y′(t) = y(t), y(0) = 1, t ∈ [0, 1], (5.12)

with the exact solution

y(t) = et.

The explicit RIDC (RIDC-FE) method and the implicit RIDC (RIDC-BE) method

of Section 2.1 are applied to the IVP (5.12). The methods are tested for different

time steps. The order of accuracy in both cases are computed by Method 1 given in

Section 5.1.1. The errors and the orders of accuracy of RIDC-FE and RIDC-BE are

shown in Table 5.1 and Table 5.2 respectively.
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Table 5.1: Errors and orders of accuracy of RIDC-FE method applied to the IVP
(5.12). The number of subintervals in each group is K = 20 and the step size is
∆t = 0.01.

Step size RIDC-FE-1 RIDC-FE-2 RIDC-FE-3 RIDC-FE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t 1.973E-2 — 7.517E-5 — 4.37E-7 — 2.207E-9 —
∆t/2 9.912E-3 0.9931 1.771E-5 2.086 4.908E-8 3.154 1.162E-10 4.248
∆t/4 4.968E-3 0.9965 4.289E-6 2.046 5.791E-9 3.083 6.591E-12 4.140
∆t/8 2.487E-3 0.9983 1.055E-6 2.024 7.023E-10 3.044 3.921E-13 4.071

Table 5.2: Errors and orders of accuracy of RIDC-BE method applied to the IVP
(5.12). The number of subintervals in each group is K = 20 and the step size is
∆t = 0.01.

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t 0.01372 — 5.293E-5 — 5.223E-7 — 1.672E-9 —
∆t/2 0.006827 1.007 1.227E-5 2.109 6.011E-8 3.119 8.378E-11 4.319
∆t/4 0.003406 1.003 2.949E-6 2.057 7.203E-9 3.061 4.631E-12 4.177
∆t/8 0.001701 1.002 7.225E-7 2.029 8.814E-10 3.031 2.696E-13 4.103

Example 5.2: Consider the following time dependent IVP

y′(t) = −2π sin 2πt− 2(y − cos 2πt), y(0) = 1, t ∈ [0, 1], (5.13)

with the exact solution

y(t) = cos(2πt).

The RIDC-FE and the RIDC-BE methods of Section 2.1 are applied to the IVP (5.13).

The methods are tested for different time steps. The errors and the orders of accuracy

of RIDC-FE and RIDC-BE are shown in Table 5.3 and Table 5.4 respectively.
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Table 5.3: Errors and orders of accuracy of RIDC-FE method applied to the IVP
(5.13). The number of subintervals in each group is K = 20 and the step size is
∆t = 0.01.

Step size RIDC-FE-1 RIDC-FE-2 RIDC-FE-3 RIDC-FE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t 0.02942 — 0.0005096 — 1.083E-5 — 5.084E-7 —
∆t/2 0.01614 0.8661 0.0001315 1.954 1.545E-6 2.809 3.159E-8 4.008
∆t/4 0.008057 1.002 3.441E-5 1.934 1.959E-7 2.98 1.969E-9 4.004
∆t/8 0.004025 1.001 8.664E-6 1.99 2.468E-8 2.989 1.233E-10 3.996

Table 5.4: Errors and orders of accuracy of RIDC-BE method applied to the IVP
(5.13). The number of subintervals in each group is K = 20 and the step size is
∆t = 0.01.

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t 0.00794 — 0.0003313 — 1.9E-6 — 2.982E-7 —
∆t/2 0.003948 1.008 8.278E-5 2.001 2.226E-7 3.094 1.836E-8 4.022
∆t/4 0.001968 1.004 2.083E-5 1.991 2.619E-8 3.087 1.139E-9 4.01
∆t/8 0.0009828 1.002 5.232E-6 1.993 3.149E-9 3.056 7.095E-11 4.005

Example 5.3: Consider the following one dimensional homogeneous heat equa-

tion

ut = ϵuxx, x ∈ [0, 1], t ∈ [0, 1.2], (5.14)

with the initial condition

u(x, 0) = sin(πx), (5.15)

and the boundary conditions

u(0, t) = u(1, t) = 0, t > 0, (5.16)

where ϵ is a positive constant.

Discretizing (5.14) by central finite differences on a fixed uniform mesh with

mesh size h, we obtain the following system of ODEs

duj

dt
=

ϵ

h2

(
uj−1 − 2uj + uj+1

)
, j = 2, . . . , N − 1, (5.17)
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where N is the total number of mesh points. Rewriting the boundary conditions

(5.16), we have
du1

dt
= 0 and

duN

dt
= 0. (5.18)

The system of ODEs (5.17) combined with boundary conditions (5.18) and the initial

condition (5.15) form a system of IVPs. This system is then solved by the RIDC-FE

and the RIDC-BE methods of Section 2.1. We first solve the system of ODEs (5.17)

by the Matlab ODE solver ode15s with a very small tolerance tol = 10−14 and we use

the solution obtained by ode15s is a surrogate for the exact solution of the system of

ODEs (5.17). We then compute the errors as the infinity norm of the errors at time

t = 1.2. For the order of accuracy computation, we refer to the Method 1 of Section

5.1.1. The errors and the orders of accuracy of the RIDC-FE and the RIDC-BE

methods are recorded in Table 5.5 and Table 5.6 respectively.

Table 5.5: Errors and orders of accuracy of RIDC-FE method applied to (5.17) with
N = 10, ϵ = 0.4, K = 5. The step size is taken as ∆t = 0.005 so that the stability
criterion of forward Euler method is satisfied. Errors are computed as the infinity
norm of the errors at time t = 1.2. The orders of accuracy are computed by Method
1 of Section 5.1.1.

Step size RIDC-FE-1 RIDC-FE-2 RIDC-FE-3 RIDC-FE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t 1.022E-4 — 1.184E-6 — 1.95E-8 — 2.103E-10 —
∆t/2 5.186E-5 0.9791 3.069E-7 1.947 2.561E-9 2.929 1.429E-11 3.88
∆t/4 2.611E-5 0.9897 7.803E-8 1.976 3.275E-10 2.967 9.277E-13 3.945
∆t/8 1.31E-5 0.9949 1.967E-8 1.988 4.14E-11 2.984 5.903E-14 3.974
∆t/16 6.563E-6 0.9974 4.937E-9 1.994 5.203E-12 2.992 3.6E-15 4.036

Table 5.6: Errors and orders of accuracy of RIDC-BE method applied to (5.17) with
N = 10, ϵ = 0.4, K = 5. The step size is taken as ∆t = 0.01. Errors are computed as
the infinity norm of the errors at time t = 1.2. The orders of accuracy are computed
by Method 1 of Section 5.1.1

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t 0.0002223 — 3.704E-6 — 1.868E-7 — 1.397E-9 —
∆t/2 0.0001082 1.039 1.09E-6 1.765 2.741E-8 2.768 1.583E-10 3.141
∆t/4 5.334E-5 1.02 2.943E-7 1.889 3.711E-9 2.885 1.249E-11 3.664
∆t/8 2.649E-5 1.01 7.641E-8 1.946 4.827E-10 2.943 8.687E-13 3.846
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Example 5.4: To test our newly developed RIDC formula in Section 2.2, we

consider the following IVP

Ly
′
(t) = g(t, y), t ∈ [0, 1.2], (5.19)

where y ∈ R2,

L =

[
4 −1
−1 4

]
,

and

g(t, y) = (y1 + 4y2,−4y1 − y2)
t.

The exact solution is given by y(t) = (sin(t), cos(t))T .

The RIDC-BE method given in Section 2.2 is applied to the ODE (5.19) with

initial condition y(0) = (0, 1)T . The RIDC-BE method up to the order 4 is tested

for different step sizes. Errors are computed as the infinity norm of the errors at the

final time t = 1.2. The orders of accuracy of the methods are computed by Method 1

of Section 5.1.1. The errors and the orders of accuracy of the RIDC-BE method are

shown in Table 5.7.

Table 5.7: The RIDC-BE method up to the order 4 is tested with K = 20, ∆t =
0.02. The numerical solution is compared with the exact solution, and the errors are
computed as the infinity norm of the errors at time t = 1.2.

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t 0.005945 — 6.337E-5 — 1.398E-6 — 9.421E-9 —
∆t/2 0.002986 0.9933 1.522E-5 2.058 1.717E-7 3.025 4.744E-10 4.312
∆t/4 0.001497 0.9967 3.764E-6 2.015 2.136E-8 3.007 2.758E-11 4.105
∆t/8 0.0007492 0.9984 9.384E-7 2.004 2.667E-9 3.002 1.691E-12 4.027

Example 5.5: To verify our developed RIDC formula in Section 2.3 we choose

the following IVP

L(y)y
′
(t) = g(t, y), t ∈ [0, 1.2], (5.20)

where y ∈ R2,

L =

[
y21 + 4 −1/2
−1/2 y22 + 4

]
,
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and

g(t, y) = (y21y2 + 4y2 + 1/2y1,−1/2y2 − y1y
2
2 − 4y1)

t.

The exact solution of the IVP (5.20) is given by y(t) = (sin(t), cos(t))T .

The RIDC-BE method given in Section 2.3 is applied to the ODE (5.20) with

initial condition y(0) = (0, 1)T . The RIDC-BE method up to the order 4 is tested

for different step sizes. Errors are computed as the infinity norm of the errors at the

final time t = 1.2. The orders of accuracy of the methods are computed by Method 1

of Section 5.1.1. The errors and the orders of accuracy of the method are shown in

Table 5.8.

Table 5.8: The RIDC-BE method up to the order 4 is tested with K = 20, ∆t =
0.02. The numerical solution is compared with the exact solution, and the errors are
computed as the infinity norm of the errors at time t = 1.2.

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t 0.01117 — 8.315E-5 — 1.59E-6 — 8.305E-9 —
∆t/2 0.00559 0.9992 1.978E-5 2.072 1.921E-7 3.049 4.966E-10 4.064
∆t/4 0.002796 0.9996 4.806E-6 2.041 2.342E-8 3.036 2.923E-11 4.087
∆t/8 0.001398 0.9998 1.184E-6 2.022 2.886E-9 3.021 1.755E-12 4.058

5.3 A Parabolic Nonlinear PDE on a Moving Mesh

We have seen from Example 5.5 that our new RIDC-BE formula gives expected results

for the small systems of ODEs L(t, y)y′ = f(t, y). We now consider a system of ODEs

of the form L(t, y)y
′
= f(t, y) which arises from the semi-discretization of a PDE by

the moving method of lines.

Example 5.6: We consider one dimensional Burgers’ equation with homoge-

neous Dirichlet boundary conditions

ut = ϵuxx −
(u2

2

)
x
, x ∈ [0, 1], t > 0, (5.21)
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along with the boundary conditions

u(0, t) = 0 and u(1, t) = 0, (5.22)

and the initial condition

u(x, 0) = sin(2πx) +
1

2
sin(πx), (5.23)

where ϵ > 0, is a physical parameter.

From the equations (4.45) and (4.50) of Chapter 4, we have the semi-discretized

form of 1D Burgers’ equation (5.21) on the non-uniform adaptive mesh given by

duj

dt
− (uj+1 − uj−1)

(xj+1 − xj−1)

dxj

dt
=

2ϵ

(xj+1 − xj−1)

[uj+1 − uj

xj+1 − xj

− uj − uj−1

xj − xj−1

]
− 1

2

(u2
j+1 − u2

j−1)

(xj+1 − xj−1)
, j = 2, . . . , N − 1, (5.24)

along with the discretized form of mesh equation (4.50) given by

dxj−1

dt
−2dxj

dt
+
dxj+1

dt
= −1

τ

[ρj+1 + ρj
2

(xj+1−xj)−
ρj + ρj−1

2
(xj−xj−1)

]
, j = 2, . . . , N−1,

(5.25)

where xj and uj are the mesh points and the solutions for the solution of (5.21). Here

ϵ > 0 and τ > 0 are positive constants, and ρ is the mesh density function.

The system of ODEs (5.24) and (5.25) along with the boundary conditions

du1

dt
= 0,

duN

dt
= 0, (5.26)

and
dx1

dt
= 0,

dxN

dt
= 0, (5.27)

form a coupled system of IVPs of the form

L(t, y)y
′
= f(t, y), (5.28)

where y = [u1, . . . , uN , x1, . . . , xN ] and y
′
=
[
u

′
1, . . . , u

′
N , x

′
1, . . . , x

′
N

]
. Here L(t, y) is
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a 2N × 2N matrix given in Section 4.2.2, and f(t, y) is the right side of the coupled

system of ODEs obtained by combining (5.24) and (5.25).

We begin by using the curvature based mesh density function given in Section

4.2.2 and we apply the RIDC-BE method of Section 2.3 to the system of IVPs (5.28).

We choose τ = 1
10

and the method is tested for different values the parameters N and

ϵ. The computed solutions at time t = 0.12, 0.6, and 1.0 are shown in Fig. 5.1.

To verify the order of accuracy of the solution, we solve the system (5.28) by

Matlab ODE solver ode15s with a very small tolerance tol = 10−14 and consider that

solution as the exact solution of (5.28). We then approximate the orders of accuracy

of the solution by the Method 1 of Section 5.1.1. The errors are computed as the

infinity norm of the errors at time t = 0.12. The errors and the orders of accuracy of

the RIDC-BE method for different values of N and ϵ are recorded in Table 5.9, Table

5.10, and Table 5.11.
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(a) Solution at t = 0.12,
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(c) Solution at t = 0.12,
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Fig. 5.1: Solution of Burgers’ equation (5.21) by adaptive RIDC-BE method at times
t = 0.12, 0.6, and 1.0 with (a) N = 21, ϵ = 0.01, ∆t = 0.01, (b) N = 21, ϵ = 0.001,
∆t = 0.01 and (c) N = 41, ϵ = 0.01, ∆t = 0.01.
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Table 5.9: The errors and the orders of accuracy of the RIDC-BE method applied to
the coupled IVP system (5.28) in the time interval [0, 0.12] with N = 21, ∆t = 0.01,
ϵ = 10−2 and τ = 1

10
. The errors are computed as the infinity norm of errors at time

t = 0.12 and the orders of accuracy are approximated by the Method 1 of Section
5.1.1

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t 0.01458 — 0.01215 — 0.003346 — 0.005664 —
∆t/2 0.008398 0.7958 0.002837 2.099 0.0002653 3.657 0.000814 2.799
∆t/4 0.004617 0.8631 0.000533 2.412 1.445E-5 4.199 7.517E-5 3.437
∆t/8 0.002442 0.9189 8.413E-5 2.664 9.659E-6 0.581 5.146E-6 3.869
∆t/16 0.001259 0.9556 1.198E-5 2.812 2.157E-6 2.163 3.037E-7 4.083
∆t/32 0.0006398 0.9767 2.0E-6 2.583 3.57E-7 2.595 1.712E-8 4.149

Table 5.10: The errors and the orders of accuracy of the RIDC-BE method applied to
the coupled IVP system (5.28) in the time interval [0, 0.12] with N = 41, ∆t = 0.01,
ϵ = 10−2 and τ = 1

10
. The errors are computed as the infinity norm of errors at time

t = 0.12 and the orders of accuracy are approximated by the Method 1 of Section
5.1.1

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t 0.02305 — 0.01093 — 0.002663 — 0.005308 —
∆t/2 0.01342 0.7801 0.002414 2.178 0.0001713 3.958 0.0007396 2.843
∆t/4 0.007493 0.841 0.0004282 2.495 2.248E-5 2.93 6.65E-5 3.475
∆t/8 0.003956 0.9216 6.052E-5 2.823 8.741E-6 1.363 5.272E-6 3.657
∆t/16 0.002022 0.9683 1.102E-5 2.457 1.932E-6 2.178 3.001E-7 4.135
∆t/32 0.001023 0.983 2.361E-6 2.223 3.238E-7 2.576 9.545E-9 4.974

We notice from Table 5.9-5.11 that the order of accuracy of the 3rd order RIDC

method using the curvature mesh density function is slightly different from our ex-

pectation.

To test this further we experiment with another mesh density function. We

repeat the computation using arclength mesh density function given in Section 4.2.2

with smoothing parameters γ = 2 and p = 2. The errors and the orders of accuracy

of the method for different values of t, ∆t and ϵ are recorded in Table 5.12 - 5.17. The

orders of accuracy of the solution are computed by the Method 2 of Section 5.1.1.
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Table 5.11: The errors and the orders of accuracy of the RIDC-BE method applied to
the coupled IVP system (5.28) in the time interval [0, 0.12] with N = 21, ∆t = 0.01,
ϵ = 10−3 and τ = 1

10
. The errors are computed as the infinity norm of errors at time

t = 0.12 and the orders of accuracy are approximated by the Method 1 of Section
5.1.1

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t 0.02754 — 0.01865 — 0.004729 — 0.007633 —
∆t/2 0.01587 0.7947 0.004398 2.084 0.0003511 3.751 0.001034 2.883
∆t/4 0.008516 0.8985 0.0008543 2.364 2.48E-5 3.824 8.983E-5 3.525
∆t/8 0.004443 0.9385 0.0001445 2.563 1.349E-5 0.8787 5.957E-6 3.915
∆t/16 0.002274 0.9663 2.368E-5 2.61 2.845E-6 2.245 3.499E-7 4.089
∆t/32 0.001151 0.9823 4.186E-6 2.5 4.572E-7 2.637 1.997E-8 4.131

Table 5.12: The errors and the orders of accuracy of the RIDC-BE method applied to
the coupled IVP system (5.28) in the time interval [0, 0.12] with N = 21, ∆t = 0.0012,
ϵ = 10−2 and τ = 1

10
. The errors are computed as the infinity norm of errors at time

t = 0.12 and the orders of accuracy are approximated by the Method 2 of Section
5.1.1.

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t — — — — — — — —
∆t/2 0.0017 – 6.695E-5 – 2.661E-6 – 1.610E-7 –
∆t/4 0.00085 0.967 1.686E-5 1.989 3.576E-7 2.895 9.746E-9 4.046
∆t/8 0.00043 0.984 3.264E-6 2.369 4.811E-8 2.894 5.823E-10 4.065
∆t/16 0.00022 0.992 5.848E-7 2.481 3.746E-9 2.834 3.856E-11 3.917

5.4 Runtime Comparison and Discussion of Re-

sults

In examples 5.1, 5.2, 5.4 and 5.5, RIDC methods are applied to the given IVPs. Both

the explicit and the implicit RIDC methods give the order of accuracy as expected

from the theoretical predictions. For example, a 3rd order RIDC method is supposed

to give a 3rd order accurate solution and a 4th order RIDC method is supposed to give

a 4th order accurate solution. For the examples 5.3 and 5.6, the physical PDEs are

discretized first by the method of lines and the moving method of lines respectively

to obtain systems of IVPs. RIDC methods are then applied to the resulting systems
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Table 5.13: The errors and the orders of accuracy of the RIDC-BE method applied to
the coupled IVP system (5.28) in the time interval [0, 0.12] with N = 21, ∆t = 0.0012,
ϵ = 10−3 and τ = 1

10
. The errors are computed as the infinity norm of errors at time

t = 0.12 and the orders of accuracy are approximated by the Method 2 of Section
5.1.1.

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t — — — — — — — —
∆t/2 0.0018 – 8.060E-5 – 3.082E-6 – 2.098E-7 –
∆t/4 0.00094 0.972 2.008E-5 2.004 4.008E-7 2.942 1.268E-8 4.048
∆t/8 0.00047 0.986 3.786E-6 2.408 5.247E-8 2.933 7.544E-9 4.071
∆t/16 0.00024 0.993 6.742E-7 2.489 4.647E-9 2.837 3.856E-11 4.021

Table 5.14: The errors and the orders of accuracy of the RIDC-BE method applied to
the coupled IVP system (5.28) in the time interval [0, 0.12] with N = 21, ∆t = 0.0012,
ϵ = 10−4 and τ = 1

10
. The errors are computed as the infinity norm of errors at time

t = 0.12 and the orders of accuracy are approximated by the Method 2 of Section
5.1.1.

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t — — — — — — — —
∆t/2 0.0019 – 8.487E-5 – 3.212E-6 – 2.172E-7 –
∆t/4 0.00095 0.972 2.097E-5 2.017 4.089E-7 2.973 1.311E-8 4.051
∆t/8 0.00048 0.986 3.942E-6 2.411 5.335E-8 2.938 7.804E-10 4.070
∆t/16 0.00024 0.993 6.864E-7 2.522 4.810E-9 2.840 4.827E-11 4.015

Table 5.15: The errors and the orders of accuracy of the RIDC-BE method applied to
the coupled IVP system (5.28) in the time interval [0, 0.12] with N = 21, ∆t = 0.0012,
ϵ = 10−5 and τ = 1

10
. The errors are computed as the infinity norm of errors at time

t = 0.12 and the orders of accuracy are approximated by the Method 2 of Section
5.1.1.

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t — — — — — — — —
∆t/2 0.0019 – 8.532E-5 – 3.226E-6 – 2.165E-7 –
∆t/4 0.00094 0.972 2.106E-5 2.017 4.097E-7 2.977 1.307E-8 4.051
∆t/8 0.00048 0.986 3.959E-6 2.411 5.343E-8 2.939 7.780E-10 4.070
∆t/16 0.00024 0.993 6.876E-7 2.525 7.460E-9 2.840 3.856E-11 4.016
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Table 5.16: The errors and the orders of accuracy of the RIDC-BE method applied
to the coupled IVP system (5.28) in the time interval [0, 1] with N = 21, ∆t = 0.001,
ϵ = 10−2 and τ = 1

10
. The errors are computed as the infinity norm of errors at time

t = 1 and the orders of accuracy are approximated by the Method 2 of Section 5.1.1.

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t — — — — — — — —
∆t/2 4.119E-4 – 6.606E-6 – 5.058E-7 – 4.910E-8 –
∆t/4 2.048E-4 1.008 1.477E-6 2.161 7.083E-8 2.836 3.090E-9 3.990
∆t/8 1.021E-4 1.004 2.110E-7 2.807 9.572E-9 2.887 1.952E-10 3.984
∆t/16 5.097E-5 1.002 5.848E-7 2.114 1.347E-9 2.828 1.265E-11 3.948

Table 5.17: The errors and the orders of accuracy of the RIDC-BE method applied
to the coupled IVP system (5.28) in the time interval [0, 1] with N = 21, ∆t = 0.001,
ϵ = 10−3 and τ = 1

10
. The errors are computed as the infinity norm of errors at time

t = 1 and the orders of accuracy are approximated by the Method 2 of Section 5.1.1.

Step size RIDC-BE-1 RIDC-BE-2 RIDC-BE-3 RIDC-BE-4

Errors Orders Errors Orders Errors Orders Errors Orders

∆t — — — — — — — —
∆t/2 4.360E-4 – 9.198E-6 – 4.244E-7 – 6.160E-8 –
∆t/4 2.178E-4 1.001 1.848E-6 2.315 6.408E-8 2.727 3.892E-9 3.984
∆t/8 1.088E-4 1.001 4.122E-7 2.164 8.824E-9 2.861 2.464E-10 3.981
∆t/16 5.439E-5 1.000 9.725E-8 2.084 1.530E-9 2.527 1.660E-11 3.892

of IVPs. The orders of accuracy of the RIDC methods for these examples are very

close to the expected theoretical results, and the orders of accuracy get closer to

the desired result as the time step size gets smaller. For instance, from the Table

5.5 we notice that the order of accuracy of a 4th order RIDC method gets closer

to 4 as the step size ∆t gets smaller. For the adaptive mesh example there is a

slight departure from the expected order of accuracy of the RIDC method. There

are several possible explanations. We do not have the exact solution for Burgers’

equation, and we consider the approximate solution computed by Matlab ode15s

with very small tolerance (tol = 10−14) as the exact solution. This might affect

the computed order of accuracy of the method. We note that when we repeat the

computation using the smoothed arclength monitor function and calculate the order

of accuracy of the method using approximate solutions (Method 2 of Section 5.1.1)

the order of convergence meets our expectation.
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In order to check the running time of RIDC method, we compute the average

running time of RIDC-BE method of Section 2.3 applied to the Burgers’ equation

(Example 5.6). Table 5.18 gives the results for the Burgers equation (5.21) on a

fixed mesh and Table 5.19 for the Burgers equation (5.21) on moving mesh using the

curvature based mesh density function.

In Table 5.18, RIDC-BE-2, RIDC-BE-3 and RIDC-BE-4 are computed by two,

three and four computing cores respectively and RIDC-BE-1 is the backward Euler

method computed by a single computing core. We choose n = 500 time steps, the

number of subintervals in each group is chosen to be K = 500, and the number of

spatial mesh points is N = 21 and ϵ = 10−2. The actual time is the time taken by

each method to obtain the solution at the final time t = 1. The ratios (µ) of the time

taken by RIDC-BE-2, RIDC-BE-3, RIDC-BE-4 methods to the time taken by a single

core backward Euler method are shown in Table 5.18. The theoretical time and the

theoretical values of µ are calculated based on the theory discussed in Section 2.4.4.

Table 5.18: Theoretical and actual running time and the errors of the RIDC-BE
method applied to the Burgers’ equation (5.21) on a fixed mesh. Here we choose
N = 21 spatial mesh points, n = 500 time points, K = 500 subintervals in each
group, and ϵ = 10−2.

Method Error Theoretical Time Actual Time Theoretical µ Actual µ
RIDC-BE-1 4.18E-3 – 2.781s – –
RIDC-BE-2 1.84E-3 2.783s 3.032s 1.001 1.090
RIDC-BE-3 5.90E-6 2.789 s 3.149s 1.003 1.132
RIDC-BE-4 3.70E-8 2.798s 3.254s 1.006 1.170

Table 5.19: Theoretical and actual running time and and the errors of the RIDC-BE
method applied to the Burgers’ equation (5.21) on a moving mesh. We choose N = 21
spatial mesh points, n = 500 time points, K = 500 subintervals in each group, and
ϵ = 10−2.

Method Error Theoretical Time Actual Time Theoretical µ Actual µ
RIDC-BE-1 8.319E-4 – 21.155s – –
RIDC-BE-2 2.58E-5 21.176s 21.501s 1.001 1.0164
RIDC-BE-3 2.98E-6 21.218s 22.241s 1.003 1.051
RIDC-BE-4 7.580E-7 21.282s 23.928s 1.006 1.131

The above Tables 5.18 and 5.19 tell us that the actual values of µ are slightly

larger than the theoretical prediction. A good explanation of this issue is that the
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actual computation experiences inter-communication and latency, whereas the the-

oretical prediction does not include this additional cost [13]. The actual µ values

obtained here are similar to those reported in [13]. The reader will notice that the

actual cpu time is much larger for the moving mesh simulations than for the fixed

mesh case. It is important to notice that the error in the moving mesh case is less than

the error in the fixed mesh case except for the RIDC-BE-4 results. This suggests that

a fairer comparison of efficiency would require a larger number of fixed mesh points

which would increase the required cpu time. Also, further tuning of the moving mesh

code is most certainly possible. The purpose here was not to compare fixed mesh

simulations versus moving mesh simulations but use these examples to show that the

RIDC implementations work and scale as expected as the order increases.
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Chapter 6

Conclusion and Possible Future

Work

In this thesis, our ultimate goal was to apply the time parallel RIDC method to the

system of IVPs which arises from the semi-discretization of PDEs by the moving

method of lines. We show the necessary derivation, discussion and relevant examples

dividing them into several chapters.

In Chapter 1, we give a very introductory review of the numerical methods for

the solution of initial value problems, for ordinary differential equations and partial

differential equations. We briefly discuss the most commonly used sequential time

stepping methods, deferred correction methods, and different types of parallel methods

for ODEs. We also discuss the need for adaptive mesh methods for the numerical

solutions of partial differential equations.

In Chapter 2, we show the derivation of the RIDC method for three different

types of initial value problems : (i) y
′
(t) = f(t, y), y ∈ Rn (ii) Ly

′
(t) = f(t, y),

y ∈ Rn where, L is a constant n × n matrix, and (iii) L(t, y)y
′
(t) = f(t, y), y ∈ Rn

where, L(t, y) is square matrix. In each of the three cases the formulation of the error

equations are shown, the choice of the integrator and the quadrature rules are properly

addressed, and a step by step procedure of the method is presented in an algorithmic

approach. We also illustrate the multi-core implementation of the predictor and the

corrector.

In Chapter 3, we review the library from [40] which provides a time parallel



solution to an initial value problem of the form y
′
(t) = f(t, y), y ∈ Rn using RIDC.

We show how the computation of the correction formulas in the explicit and implicit

RIDC library are achieved. The main result of Chapter 3 is the demonstration of how

the RIDC library can be used to implement the formulas constructed in Chapter 2

for IVPs of the forms (ii) and (iii) given in the previous paragraph.

In Chapter 4, the adaptive mesh generation technique using the equidistribution

principle is discussed with an appropriate example. We briefly describe the equidis-

tribution principle, the choice of mesh density functions or monitor functions, and

the moving mesh partial differential equations (MMPDEs). Finally, we discretize the

physical PDE and moving mesh PDE by the moving method of lines which gives a

coupled system of ODEs. We then solve the coupled system of ODEs using the RIDC

method. Here, backward Euler is used as predictor and corrector.

In Chapter 5, we illustrate the efficiency and the accuracy of the developed

RIDC methods using several examples. For each of those examples, we investigate

the errors and the order of accuracy of the method and record the results in the

corresponding tables. The first three examples (Example 5.1-5.3) apply the RIDC

method to solve the initial value problem of the form y
′
(t) = f(t, y), y ∈ Rn. Example

5.4 and Example 5.5 are associated with the RIDC methods applied to the initial value

problems of types Ly
′
(t) = f(t, y), y ∈ Rn where, L is a constant square matrix, and

L(t, y)y
′
(t) = f(t, y), y ∈ Rn where, L(t, y) is a square matrix respectively. The last

example (Example 5.6) concerns applying the RIDC method to an adaptive mesh

example. We choose Burgers’ equation as an example of a nonlinear parabolic partial

differential equation. We verify the order of accuracy of the method for different

values of ϵ and different number of mesh points N .

In this thesis, we constructed a RIDC method with a spatial adaptive mesh using

backward Euler as predictor and corrector. In the future, we want to test the spatial

adaptive RIDC method using adaptive time stepping [7]. Adaptive time stepping is

usually the way the moving method of lines is implemented. We also wish to explore

(adaptive) higher order methods in space to match the high order methods in time

provided by RIDC. We may wish to provide an adaptive time parallel approach using

RIDC and moving meshes in two and three spatial dimensions.
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Appendix A

Computer Codes

A.1 Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% RIDC-FE %%%%%%%%%%%%%%%%%%%%%%%%

% Function Name : ridc_fe %

% Description : RIDC method method using forward Euler%

% for ODE of the form y’ = f(t,y) with appropriate IC %

% Inputs: %

% f = right hand side function %

% p = order of the method %

% y0 = initial condition %

% tspan = time interval %

% dt = step size %

% K = number of subintervals in group %

% Output : p^th order solution %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function rh=ridc_fe(f,p,y0,tspan,dt,K)

N=length(y0);

M=p-1; % number of corrections required.

T=tspan(1,2); % final time

W=int16(T/dt); % total time intervals



J=int16(W/K); % number of groups

% empty vectors

y=zeros(N,J+1);

u=zeros(N,K+1,M+1);

y(:,1)=y0; % initial condition

s=integration_matrix(p1);% integration matrix

t=zeros(K+1,1);

J=double(J);

t0=tspan(1); % starting time

for j=1:J

u(:,1,1)=y(:,j); % copying initial solution to each group

% prediction loop

t(1)=t0; % time initialization in each group

for m=1:K

t(m+1)=t(1)+m*dt;

u(:,m+1,1)= u(:,m,1) + dt*f(t(m),u(:,m,1));

end

% correction loop

for l=1:M

u(:,1,l+1)=u(:,1,l);

for m=1:l

s1=0;

for i=1:l+1

s1=s1+s(m,i,l)*f(t(1)+(i-1)*dt,u(:,i,l)); % residual part

end

u(:,m+1,l+1)=u(:,m,l+1)+dt*( f(t(m),u(:,m,l+1))-f( t(m),u(:,m,l)))+

l*dt*s1;

end

for m=l+1:K

s2=0;

for i=1:l+1

s2=s2+s(l,i,l)*f(t(m-l+i),u(:,m-l+i,l));

end

u(:,m+1,l+1)=u(:,m,l+1)+dt*( f(t(m),u(:,m,l+1))-f( t(m),u(:,m,l) ) ) +
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l*dt*s2;

end

end

y(:,j+1)=u(:,K+1,M+1); % updating solution for the next group

t0=t(K+1,1); % updating time for the next group

end

rh=y;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%% End ridc_fe %%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% RIDC-BE %%%%%%%%%%%%%%%%%%%%%%%%

% Function Name : ridc_be %

% Description: RIDC method method using backward Euler%

% for ODE of the form y’ = f(t,y) with appropriate IC %

% Inputs: %

% f = right hand side function %

% p = order of the method %

% y0 = initial condition %

% tspan = time interval %

% dt = step size %

% K = number of subintervals in group %

% Output : p^th order solution %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function rh=ridc_be(f,p,u0,tspan,dt,K)

N=length(u0);

M=p-1; % number of corrections required.

T=tspan(1,2); % final time

W=int16(T/dt); % total time intervals

J=int16(W/K); % number of groups

y=zeros(N,J+1);

u=zeros(N,K+1,M+1);

y(:,1)=u0; % initial condition
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t=zeros(K+1,1);

J=double(J);

M=double(M);

t0=tspan(1); % starting time

s=integration_matrix(p); % integration matrix

max_iter=100; % max iteration for Newton’s method

tol=1e-8; % stopping tolerance for Newton’s method

for j=1:J

u(:,1,1)=y(:,j); % copying initial solution to each group

t(1)=t0; % time initialization in each group

% prediction loop

for m=1:K

t(m+1)=((j-1)*K+(m-1))*dt;

v=u(:,m,1);

% start newton loop

for p=1:max_iter

Fn=fun_pred(v,u(:,m,1),t(m+1),dt,f);

% numerical Jacobian

Jn=jacobFD(@fun_pred,v,u(:,m,1),t(m+1),dt,f);

z=v-Jn\Fn;

if norm(abs(z-v),inf)<tol

break

end

v=z;

end

% end newton loop

u(:,m+1,1) = z;

end

% correction loop

for l=1:M

u(:,1,l+1)=u(:,1,l); % initial guess

for m=1:l

v=u(:,m,l+1);
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q=l;

s1=0;

% residual part

for n1=1:l+1

s1=s1+s(m,n1,l)*f(t(1)+(n1-1)*dt,u(:,n1,l));

end

% newton loop

for p=1:max_iter

Fn=fun_corr(v,u(:,:,:),t(m+1),dt,s1,m,q,f,l);

% numerical Jacobian

Jn=jacobFD(@fun_corr,v,u(:,:,:),t(m+1),dt,s1,m,q,f,l);

z=v-Jn\Fn;

if norm(abs(z-v),inf)<tol

break

end

v=z;

end

u(:,i+1,l+1) = z;

end

for i=l+1:K

v=u(:,i,l+1);

m=i;

q=l;

s2=0;

% residual part

for n1=1:l+1

s2=s2+s(l,n1,l)*f(t(m-l+n1),u(:,m-l+n1,l));

end

% newton loop starts

for p=1:max_iter

Fn=fun_corr(v,u(:,:,:),t(m+1),dt,s2,m,q,f,l);

% numerical Jacobian

Jn=jacobFD(@fun_corr,v,u(:,:,:),t(m+1),dt,s2,m,q,f,l);
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z=v-Jn\Fn;

if norm(abs(z-v),inf)<tol

break

end

v=z;

end

% end newton loop

u(:,i+1,l+1) = z;

end

end

y(:,j+1)= u(:,K+1,M+1);

t0=t(K+1,1);

end

rh=y;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End ridc_be %%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% Integration Matrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function Name : integration_matrix %

% Description: the function integration_matrix takes an input m %

% gives an integration matrix which contains the quadrature weights%

% Inputs: %

% m = an integer greater than 1 %

% Output : a matrix which contains the quadrature weights %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function rh = integration_matrix(m)

format compact, format long

syms x;

p=m;

M=p-1;

S=zeros(p-1,p,p-1);
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l=1;

while(l<=M)

u=linspace(0,1,l+1);

ln=length(u);

m=1;

while(m<=l)

for i=1:ln

y=1;

denom=1;

integrant=1;

for k=1:ln

if i~=k

y=y*(x-u(k));

denom=denom*(u(i)-u(k));

end

end

integrant=integrant*y;

S(m,i,l)=int (integrant,u(m),u(m+1))/denom;

end

m=m+1;

end

l=l+1;

end

rh=S;

end

%%%%%%%%%%%%%%%%%%%% End integration_matrix %%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% Numerical Jacobian %%%%%%%%%%%%%%%%%%%%

% Function Name : jacobFD %

% Description: the function jacobFD takes an arbitrary function g %

% and computes the numerical Jacobian by finite difference method %

% Inputs: %

% g = an arbitrary function %
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% x = initial guess %

% Output : Jacobian matrix J %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function J = jacobFD(g,x,varargin)

delx=1e-8;

m=length(x);

J=zeros(m,m);

for j = 1:m

xx = x;

xx(j) = x(j) + delx;

f1=feval(g,x,varargin{:});

f2=feval(g,xx,varargin{:});

J(:,j) = (f2-f1)/delx;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%% End jacobFD %%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Predictor %%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function Name : fun_pred %

% Description: the function fun_pred evaluates the function value %

% Inputs: %

% p = unknown parameter %

% u_old = known value from step %

% t = current time %

% dt = step size %

% f = current function %

% Output : Jacobian matrix J %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function F = fun_pred(p,u_old,t,dt,f)

F= p-dt*f(p)-u_old;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%% fun_pred %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% Corrector %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function Name : fun_corr %

% Description: the function fun_corr evaluates correction formula %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function F = fun_corr(p,u,t,dt,s1,m,l,f,M)

F= p-dt*( f(t,p) -f(t,u(:,m+1,l)) ) - u(:,m,l+1) - M*dt*s1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%% fun_corr %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% Right hand side functions %%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% for example 5.1 %%%%%%%%%%%%%%%%%%%%%%

function rh=f1(t,x)

rh= x;

end

%%%%%%%%%%%%%%%%%%%% for example 5.2 %%%%%%%%%%%%%%%%%%%%%%

function rh=f2(t,x)

rh=-2*pi*sin(2*pi*t)-2*( x-cos(2*pi*t) );

end

%%%%%%%%%%%%%%%%%%%% for example 5.3 %%%%%%%%%%%%%%%%%%%%%%

function F=f3(t,u)

ep=4e-1;

N=length(u);

h=1/(N);
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F=zeros(N,1);

F(1)=0; % boundary condition

for j=2:N-1

F(j)= (ep/h.^2)*( u(j-1) -2*u(j) + u(j+1) );

end

F(N)=0; % boundary condition

end

%%%%%%%%%%%%%%%%%%%% for example 5.4 %%%%%%%%%%%%%%%%%%%%%%

function rh=f4(t,x)

% Mass matrix

L=[4 -1;

-1 4];

f=[x(1)+4*x(2);

-4*x(1)-x(2)];

% linear solve

h=L\f;

rh= h;

end

%%%%%%%%%%%%%%%%%%%% for example 5.5 %%%%%%%%%%%%%%%%%%%%%%

function rh=f5(t,x)

% Mass matrix

L=[x(1)^2+4 -1/2;

-1/2 x(2)^2+4];

f=[x(1)^2*x(2)+4*x(2)+(1/2)*x(1);

-(1/2)*x(2)-x(1)*x(2)^2-4*x(1)];

% linear solve

h=L\f;

rh= h;

end
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%%%%%%%%%%%%%%%%%%%% for example 5.6 %%%%%%%%%%%%%%%%%%%%%%

function rh = f6(y)

neq=length(y);

N=neq/2;

ep=1e-2;

tau=1e-2;

u = y(1:N);

x = y(N+1:end);

x0 = 0.0;

u0 = 0.0;

xNP1 = 1.0;

uNP1 = 0.0;

g = zeros(neq,1);

for i = 2:N-1

dx = x(i+1) - x(i-1);

g(i) = (2*ep)/dx*((u(i+1)-u(i))/(x(i+1)-x(i))-(u(i)-u(i-1))/(x(i)-...

x(i-1)) )- 0.5*(u(i+1)^2 - u(i-1)^2)/dx;

end

dx = x(2) - x0;

g(1) = (2*ep)/dx*((u(2) - u(1))/(x(2) - x(1)) - (u(1) - u0)/(x(1) - x0)) -...

0.5*(u(2)^2 - u0^2)/dx;

dx = xNP1 - x(N-1);

g(N) = (2*ep)/dx*((uNP1 - u(N))/(xNP1 - x(N)) - (u(N) - u(N-1))/(x(N) -...

x(N-1)))/dx - (1/2)*(uNP1^2 - u(N-1)^2)/dx;

rho_sm=Rho(y);

for i = 2:N-1

g(i+N) = (rho_sm(i+1) + rho_sm(i))*(x(i+1) - x(i)) - ...

(rho_sm(i) + rho_sm(i-1))*(x(i) - x(i-1));

end

g(1+N) = (rho_sm(2) + rho_sm(1))*(x(2) - x(1)) - (rho_sm(1) + rho_sm(1))*

(x(1) -x0);
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g(N+N) = (rho_sm(N) + rho_sm(N))*(xNP1 - x(N)) - (rho_sm(N) + rho_sm(N-1))*

(x(N) - x(N-1));

g(1+N:end) = - g(1+N:end)/(2*tau);

rh = mass(y,N)\g;

end

%%%%%%%%%%%%%%%%%%%% mass matrix %%%%%%%%%%%%%%%%%%%%%%

function rh = mass(y)

N1=length(y);

N=N1/2;

u = y(1:N);

x = y(N+1:end);

% fixed boundary values

x0 = 0;

u0 = 0;

xNP1 = 1;

uNP1 = 0;

M1 = speye(N);

M2 = sparse(N,N);

M2(1,1) = - (u(2) - u0)/(x(2) - x0);

for i = 2:N-1

M2(i,i) = - (u(i+1) - u(i-1))/(x(i+1) - x(i-1));

end

M2(N,N) = - (uNP1 - u(N-1))/(xNP1 - x(N-1));

M3 = sparse(N,N);

e = ones(N,1);

M4 = spdiags([e -2*e e],-1:1,N,N);

rh = [M1 M2

M3 M4];

end

%%%%%%%%%%%%%%%%%%%%%%%% End mass %%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% Mesh Density Function %%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%% Curvature mesh density function %%%%%%%%%

function rh=Rho(y)

neq=length(y);

N=neq/2;

u = y(1:N);

x = y(N+1:end);

rho = zeros(N,1);

v = zeros(N,1);

for j=2:N-1

v(j)=2/(x(j+1)-x(j-1))*( (u(j+1)-u(j))/(x(j+1)-x(j))-(u(j)-u(j-1))/(x(j)-

x(j-1)) );

end

v(1) = 2*((x(2)-x(1))*(u(3)-u(1))-(x(3)-x(1))*(u(2)-u(1)))/((x(3)-x(1))*(x(2)-

x(1))*(x(3)-x(2)));

v(N) = 2*((x(N-1)-x(N))*(u(N-2)-u(N))-(x(N-2)-x(N))*(u(N-1)-u(N)))/((x(N-2)-

x(N))*(x(N-1)-x(N))*(x(N-2)-x(N-1)));

rho = rho + v.^2;

% alpha calculation

gamma = 1/3;

Alpha = 0.0;

for j=2:N

Alpha = Alpha + (1/2)*(rho(j)^gamma+rho(j-1)^gamma)*(x(j)-x(j-1));

end

Alpha = (Alpha)^(3);

% curvature mesh density function

rho = (1+(1/Alpha)*rho).^(1/3);

% smoothing mesh density function

rho_sm=zeros(N,1);

for j=2:(N-1)

rho_sm(j) = 1/4*(rho(j-1)+rho(j+1))+1/2*rho(j);

end

rho_sm(1) = 1/2*(rho(1)+rho(2));

rho_sm(N) = 1/2*(rho(N)+rho(N-1));
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rh=rho_sm;

end

%%%%%%%% Arclegnth mesh density function %%%%%%%%%

function rh=Rho(y)

N1 = length(y);

N=N1/2;

u = y(1:N);

x = y(N+1:end);

x0 = 0;

u0 = 0;

xNP1 = 1;

uNP1 = 0;

M = zeros(N,1);

for i = 2:N-1

M(i) = sqrt(1 + ((u(i+1) - u(i-1))/(x(i+1) - x(i-1)))^2);

end

M0 = sqrt(1 + ((u(1) - u0)/(x(1) - x0))^2);

M(1) = sqrt(1 + ((u(2) - u0)/(x(2) - x0))^2);

M(N) = sqrt(1 + ((uNP1 - u(N-1))/(xNP1 - x(N-1)))^2);

MNP1 = sqrt(1 + ((uNP1 - u(N))/(xNP1 - x(N)))^2);

% Spatial smoothing with gamma = 2, p = 2.

SM = zeros(N,1);

for i = 3:N-2

SM(i) = sqrt((4*M(i-2)^2 + 6*M(i-1)^2 + 9*M(i)^2 + 6*M(i+1)^2 +

4*M(i+2)^2)/29);

end

%SM0 = sqrt((9*M0^2 + 6*M(1)^2 + 4*M(2)^2)/19);

SM(1) = sqrt((6*M0^2 + 9*M(1)^2 + 6*M(2)^2 + 4*M(3)^2)/25);

SM(2) = sqrt((4*M0^2 + 6*M(1)^2 + 9*M(2)^2 + 6*M(3)^2 + 4*M(4)^2)/29);

SM(N-1) = sqrt((4*M(N-3)^2 + 6*M(N-2)^2 + 9*M(N-1)^2 + 6*M(N)^2 +

4*MNP1^2)/29);
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SM(N) = sqrt((4*M(N-2)^2 + 6*M(N-1)^2 + 9*M(N)^2 + 6*MNP1^2)/25);

%SMNP1 = sqrt((4*M(N-1)^2 + 6*M(N)^2 + 9*MNP1^2)/19);

rh = SM;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% matlab ode15s solution %%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function rh=ode15s_sol(T,N)

h = 1/(N+1);

% initial condition & guess

xint = h*(1:N)’;

uint = sin(2*pi*xint) + (1/2)*sin(pi*xint); % given initial condition

u0=[uint; xint];

tspan=[0 T];

% option setting

opts = odeset(’RelTol’,1e-14,’AbsTol’,1e-12,’Mass’,@mass_ode,’MaxOrder’,5);

sol= ode15s(@f_ode,tspan,u0,opts);

y = deval(sol,T);

rh=y;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% main code %%%%%%%%%%%%%%%%%%%%%%%%%%

% Function Name : main %

% Description:The function called will generate the Tables 5.1-5.8 %

% by default the main function is set to generate the Table 5.1. %

% In order to generate Table 5.2, we need to replace the function %

% call ridc_fe with ridc_be.

% Inputs: %

% p = order of the method. In our case p = 4 %

% t_int = start time %

% t_final = final time %

% y0 = initial condition %
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% Output : A table containing errors and orders %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function rh = main(p,t_int,t_final,y0)

tspan=[t_int t_final];

% step size

a=0.01;

K=p;

% time step is halved

dt_ar=[a;a/2;a/4;a/8];

n=length(dt_ar);

% error storing

er=zeros(n,1);

% dimension of vector

N=length(y0);

errors=zeros(n,1);

orders_st=zeros(n,p);

errors_st=zeros(n,p);

% exact solution at the right most point

u_ex=zeros(N,1);

u_ex(:,1)=exp(t_final); % u_ex is defined from the exact solution given for

% corresponding example, for the examples 5.3 and 5.6 exact solutions are

% considered the solutions obtained from the subroutine ode15s_sol

myf = @(t,x) f1(t,x); % for example 5.1, for examples 5.2, 5.3, 5.4, 5.5

% and 5.6 f1 is replaced with f2, f3, f4, f5 and f6 respectively.

m=1;

while (m<=p)

for k=1:n

dt=dt_ar(k);

u_st =ridc_fe(myf,m,y0,tspan,dt,K);

er(k)=norm( abs(u_st(:,end)-u_ex),inf);

end

p1=log2(er(n-3)/er(n-2));

p2=log2(er(n-2)/er(n-1));

p3=log2(er(n-1)/er(n));
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orders=[0;p1;p2;p3];

errors=er;

orders_st(:,m)=orders(1:n);

errors_st(:,m)=errors(1:n);

m=m+1;

end

% craeting talex table

Er=errors_st;

Or=orders_st;

format short g

digits(4)

A=zeros(n,2*p);

A(:,1)=Er(:,1);

A(:,2)=Or(:,1);

A(:,3)=Er(:,2);

A(:,4)=Or(:,2);

A(:,5)=Er(:,3);

A(:,6)=Or(:,3);

A(:,7)=Er(:,4);

A(:,8)=Or(:,4);

digits(4)

result=latex(sym(vpa(A)))

end

%%%%%%%%%%%%%%%%%%%%%%%% End main %%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% End %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.2 C++ Code

For the extension of the existing RIDC library to the moving mesh case we add the

following member functions to the class ImplicitOde of the RIDC library. RIDC soft-

ware and the user guidlines can be found from the link: http://mathgeek.us/software.html.

class ImplicitOde : public ODE

{

public:

ImplicitOde(int my_neq, int my_nt, double my_ti, double my_tf, double my_dt)

{

neq = my_neq;

nt = my_nt;

ti = my_ti;

tf = my_tf;

dt = my_dt;

}

////////////////////////////////////////////////////////////////////////////////

//////////////////////////// Mesh density function /////////////////////////////

////////////////////////////////////////////////////////////////////////////////

void Rho(double *y, double *rho_sm)

{

int N=neq/2;

vector<double> u(N);

vector<double> x(N);

for (int j=0;j<N;j++) {

u[j] =y[j];

x[j] =y[j+N]; }
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vector<double> rho(N);

vector<double> v(N);

for (int j=1;j<N-1;j++) {

v[j]=2.0/(x[j+1]-x[j-1])*( (u[j+1]-u[j])/(x[j+1]-x[j])-(u[j]-u[j-1])/(x[j]

-x[j-1]) ); }

v[0] = 2.0*((x[1]-x[0])*(u[2]-u[0])-(x[2]-x[0])*(u[1]-u[0]))/((x[2]-x[0])*

(x[1]-x[0])*(x[2]-x[1]));

v[N-1] = 2.0*((x[N-2]-x[N-1])*(u[N-3]-u[N-1])-(x[N-3]-x[N-1])*(u[N-2]-

u[N-1]))/((x[N-3]-x[N-1])*(x[N-2]-x[N-1])*(x[N-3]-x[N-2]));

for (int j=0;j<N;j++) {

rho[j]=rho[j]+pow(v[j],2); }

// alpha calculation

double gamma = 1.0/3.0;

double Alpha =0.0;

for (int j=1;j<N;j++) {

Alpha=Alpha+ 0.5*( pow(rho[j],gamma) + pow(rho[j-1],gamma) )*

(x[j]-x[j-1]); }

Alpha = pow(Alpha,3);

vector<double> rh(N);

for (int j=0;j<N;j++) {

rh[j]=pow( (1.0+(1.0/Alpha)*rho[j]),(1.0/3.0)); }

// smoothing mesh density function
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for (int j=1;j<N-1;j++) {

rho_sm[j] = 0.25*( rh[j-1]+rh[j+1] )+0.5*rh[j]; }

rho_sm[0] = 0.5*(rh[0]+rh[1]);

rho_sm[N-1] = 0.5*(rh[N-1]+rh[N-2]);

}

////////////////////////////////////////////////////////////////////////////////

////////////////////////////////// mass matrix /////////////////////////////////

////////////////////////////////////////////////////////////////////////////////

void mass(double t, double *y, double **M)

{

int N=neq/2;

vector<double> u(N);

vector<double> x(N);

for (int j=0;j<N;j++) {

u[j] =y[j];

x[j] =y[j+N]; }

/////// IC ///////

double x0,u0,xNP1,uNP1;

x0=0.0;

u0=0.0;

xNP1=1.0;

uNP1=0.0;
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vector< vector<double> > M1(N,vector<double>(N));

vector< vector<double> > M2(N,vector<double>(N));

vector< vector<double> > M3(N,vector<double>(N));

vector< vector<double> > M4(N,vector<double>(N));

// M1

for (int i=0;i<N;i++) {

M1[i][i]=1; }

// M2

M2[0][0]= -(u[1] - u0)/(x[1] - x0);

M2[N-1][N-1]=- (uNP1 - u[N-2])/(xNP1 - x[N-2]);

for (int i=0;i<N-1;i++) {

M2[i][i]= - (u[i+1] - u[i-1])/(x[i+1] - x[i-1]); }

// M3

for (int i=0;i<N;i++) {

for (int j=0;j<N;j++) {

M3[i][j]=0; } }

// M4

M4[0][0]=-2;

M4[0][1]=1;

for (int i=1;i<N-1;i++) {

M4[i][i]=-2;

M4[i][i-1]=1;

M4[i][i+1]=1; }

M4[N-1][N-1]=-2;

M4[N-1][N-2]=1;

for (int i=0;i<N;i++) {

for (int j=0;j<N;j++) {

M[i][j]=M1[i][j];

M[i][j+N]=M2[i][j];

M[i+N][j]=M3[i][j];
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M[i+N][j+N]=M4[i][j]; } }

}

//////////////////////////////////////////////////////////////////////////

/////////////////////////// Gaussian elimination /////////////////////////

//////////////////////////////////////////////////////////////////////////

void gauss(double *F, double **J, double *xn)

{

vector< vector<double> > A(neq,vector<double>(neq+1));

for (int j=0; j<neq; j++) {

for (int k=0; k<neq; k++) {

A[j][k]=J[j][k]; } }

for (int j=0; j<neq; j++) {

A[j][neq]=F[j]; }

///////// solving AX=B //////////

for (int i=0; i<neq; i++) {

// Search for maximum in this column

double maxEl = abs(A[i][i]);

int maxRow = i;

for (int k=i+1; k<neq; k++) {

if (abs(A[k][i]) > maxEl) {

maxEl = abs(A[k][i]);

maxRow = k; } }

// Swap maximum row with current row (column by column)

for (int k=i; k<neq+1;k++) {

double tmp = A[maxRow][k];

A[maxRow][k] = A[i][k];

A[i][k] = tmp; }
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// Make all rows below this one 0 in current column

for (int k=i+1; k<neq; k++) {

double c = -A[k][i]/A[i][i];

for (int j=i; j<neq+1; j++) {

if (i==j) {

A[k][j] = 0; }

else {

A[k][j] += c * A[i][j]; }

} }

} // end i loop

// Solve equation Ax=b for an upper triangular matrix A

vector<double> x(neq);

for (int i=neq-1; i>=0; i--) {

x[i] = A[i][neq]/A[i][i];

for (int k=i-1;k>=0; k--) {

A[k][neq] -= A[k][i] * x[i]; } }

for (int k=0;k<neq; k++) {

xn[k] = x[k]; }

}

////////////////////////////////////////////////////////////////////////////////

//////////////////////// rhs of the ode y’=L^{-1}g(t,y) ////////////////////////

////////////////////////////////////////////////////////////////////////////////

void rhs(double t, double *y, double *f)

{
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int N=neq/2;

double ep, tau, x0,u0,xNP1,uNP1;

ep=0.001;

tau=0.1;

vector<double> u(N);

vector<double> x(N);

for (int j=0;j<N;j++) {

u[j] =y[j];

x[j] =y[j+N]; }

/////// IC ///////

x0=0.0;

u0=0.0;

xNP1=1.0;

uNP1=0.0;

////////////////

double *g = new double[neq];

double dx;

for (int i=1;i<(N-1);i++) {

dx = x[i+1] - x[i-1];

g[i] = (2.0*ep)/dx*( (u[i+1] - u[i])/(x[i+1] - x[i] ) - (u[i] -

u[i-1])/(x[i] - x[i-1]) )- 0.5*(pow(u[i+1],2)-pow(u[i-1],2))/dx; }

dx = x[1] - x0;

g[0] = (2.0*ep)/dx*((u[1] - u[0])/(x[1] - x[0]) - (u[0] - u0)/(x[0] -
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x0)) - 0.5*(pow(u[1],2) - pow(u0,2))/dx;

dx = xNP1 - x[N-2];

g[N-1]=(2.0*ep)/dx*((uNP1 - u[N-1])/(xNP1 - x[N-1]) - (u[N-1] - u[N-2])/

(x[N-1] - x[N-2]))/dx - 0.5*(pow(uNP1,2) - pow(u[N-2],2))/dx;

double *rho_sm = new double[N];

Rho(y,rho_sm);

double *v = new double[N];

for (int i=1;i<(N-1);i++) {

v[i] =( (rho_sm[i+1] + rho_sm[i])*(x[i+1] - x[i]) - (rho_sm[i] +

rho_sm[i-1])*(x[i] - x[i-1]) ); }

v[0] = ( (rho_sm[1] + rho_sm[0])*(x[1] - x[0]) - (rho_sm[0] +

rho_sm[0])*(x[0] - x0) );

v[N-1] =( (rho_sm[N-1] + rho_sm[N-1])*(xNP1 - x[N-1]) - (rho_sm[N-1] +

rho_sm[N-2])*(x[N-1] - x[N-2]) );

for (int i=0;i<N;i++) {

g[i+N]=-1.0/(2.0*tau)*v[i];}

double **L = new double*[neq];

for (int j=0;j<neq;j++) {

L[j] = new double[neq]; }

mass(t,y,L); // calling mass matrix L(y)

double *w = new double[neq];
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gauss(g,L,w); // linear solve

for (int i=0;i<neq;i++) {

f[i]=w[i]; }

for (int i=0; i<neq; i++) {

delete [] L[i]; }

delete [] L;

delete [] g;

delete [] rho_sm;

delete w;

delete v;

}

//////////////////////////////////////////////////////////////////////////////

//////////////////// function in the form F(x)=0 ///////////////////////////

//////////////////////////////////////////////////////////////////////////////

void fun(double t, double *p, double *u, double *Fn)

{

double* frh = new double[neq];

rhs(t,p,frh);

for (int j=0;j<neq;j++) {

Fn[j]=p[j]-u[j]-dt*frh[j]; }
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delete [] frh;

}

////////////////////////////////////////////////////////////////////////////////

//////////////////// Numerical jacobian of F(x)=0 //////////////////////////////

////////////////////////////////////////////////////////////////////////////////

void jac(double t, double *x, double *xold, double **J)

{

double dx=0.00000001;

for (int i=0;i<neq;i++)

{

vector<double> xx(neq);

for (int j=0;j<neq;j++)

{

xx[j]=x[j];

}

xx[i]=x[i]+dx;

double *xn = new double[neq];

for (int j=0;j<neq;j++) {

xn[j]=xx[j]; }

double *fx = new double[neq];

fun(t,x,xold,fx);

double *fxx = new double[neq];

fun(t,xn,xold,fxx);
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for (int k=0;k<neq;k++) {

J[k][i]=(fxx[k]-fx[k])/dx; }

delete [] fx;

delete [] xn;

delete [] fxx;

}

}

////////////////////////////////////////////////////////////////////////////

////////////////////////// l2 norm of vector ///////////////////////////////

////////////////////////////////////////////////////////////////////////////

void l2_norm(double *w, int n,double *norm)

{

double accum = 0.0;

for (int i = 0; i < n; ++i) {

accum += w[i] * w[i]; }

norm[0]=sqrt(accum);

}

////////////////////////////////////////////////////////////////////////////

/////////////////////////// Newton’s Solver ////////////////////////////////

////////////////////////////////////////////////////////////////////////////

void step(double t, double *u, double *unew)

{

int max_iter=100;

double tol=0.00000001;
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int it_count=0;

vector<double> p(neq);

vector<double> z(neq);

for (int j=0;j<neq;j++) {

p[j]=u[j]; }

double *w = new double[neq];

for (int j=0;j<neq;j++) {

w[j]=u[j]; }

// Newton’s iteration starts here!

for (int l=0;l<max_iter;l++)

{

it_count=it_count+1;

double *v = new double[neq];

for (int j=0;j<neq;j++) {

v[j]=p[j]; }

double *Fn = new double[neq];

fun(t,v,w,Fn); // calling function F(X)=0

double **Jn = new double*[neq];

for (int j=0;j<neq;j++) {

Jn[j] = new double[neq]; }
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jac(t,v,w,Jn); // calling jacobian

double *x=new double[neq];

gauss(Fn,Jn,x); // calling linear solver for x=Jn/Fn

for (int j=0;j<neq;j++) {

z[j]=v[j]-x[j]; }

double *dv=new double[neq];

for (int j=0;j<neq;j++) {

dv[j]=abs(z[j]-v[j]);}

double *norm=new double[1];

l2_norm(dv,neq,norm);

if (norm[0]<tol) {

break; }

p=z;

delete [] x;

delete [] Fn;

delete [] v;

delete [] dv;

delete [] norm;

for (int i=0; i<neq; i++) {
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delete [] Jn[i]; }

delete [] Jn;

} // end newton loop l

for (int j=0;j<neq;j++) {

unew[j]=z[j]; }

delete [] w;

} // end step

};

////////////////////////////////////////////////////////////////////////////////

/////////////////////////////////////// main ///////////////////////////////////

////////////////////////////////////////////////////////////////////////////////

// By default main function will produce the running time of an arbitrary order//

// RIDC-BE method in moving mesh //

int main(int argc, char *argv[])

{

int start_s=clock();

int order, nt,N;

double *sol;

if (argc != 4) {

printf("usage: <executable> <order> <nt> > output_file\n");

fflush(stdout);

exit(1); }

else {

order = atoi(argv[1]); // order of method

nt = atoi(argv[2]); // number of time steps

N = atoi(argv[3]); } // number of spatial mesh points
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int neq = 2*N;

int ti = 0;

int tf = 1;

double dt = (double)(tf - ti)/double(nt); // compute dt

// initialize ODE variable

ImplicitOde *ode = new ImplicitOde(neq,nt,ti,tf,dt);

double h = 1.0/(N+1);

double *xint = new double[N];

double *uintv = new double[N];

for (int i=0;i<N;i++)

{

xint[i]=h*(i+1);

uintv[i]=sin(2.0*M_PI*xint[i]) + 0.5*sin(M_PI*xint[i]);

}

sol = new double[neq];

for (int i=0;i<N;i++)

{

sol[i]=uintv[i];

sol[i+N]=xint[i];

}

// call ridc

ridc_be(ode, order, sol);
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for (int i = 0; i < neq; i++) {

printf("%17.16f\n", sol[i]); }

delete [] sol;

delete [] xint;

delete [] uintv;

printf("Time taken: %.12fs\n", (double)(clock() - start_s)/CLOCKS_PER_SEC);

}
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