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Abstract 

Given of the impossibility of exposing trainees to hazardous scenarios for ethical, 

financial and logistical reasons, virtual-environment (VE) based simulation training has 

been adopted in various safety-critical industries. Through simulation, participants can be 

exposed to a variety of training scenarios to assess their performance under different 

conditions. Along with performance measures, physiological signals may provide useful 

information about trainees’ experience. The objective of this research is to investigate the 

ability of physiological measurement to provide information on trainees’ experiences by 

assessing their physiological arousals in a simulation-based training environment. 

In this study, 38 participants used a VE-based program called AVERT (All-hands 

Virtual Emergency Response Trainer). This program was developed for training 

emergency response procedures for the offshore petroleum industry. Signals of the 

autonomic nervous system (ANS), specifically electrocardiography (ECG), electrodermal 

activities (EDA), and respiration (RSP), were used to assess physiological arousal levels 

for 8 different conditions of an emergency evacuation task. 

On average, neutral and training conditions could be distinguished with an 82.4% 

average accuracy by a subject-specific machine learning classifier. Most importantly, 

arousal levels in different training scenarios provide useful information that performance 

measures alone do not reveal. 

Keywords: Human Factors · Physiological Signal · Machine Learning · Virtual 

Environment · Emergency Response Training · Training Design  
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Chapter 1: Introduction 

1.1 Relevance of work 

On-site workers in a variety of disciplines are exposed to hazardous environments, 

where quick and incisive decisions must be made in the event that an emergency situation 

arises. Therefore, it is critical for such personnel to receive comprehensive training in the 

proper performance of emergency response procedures. However, exposing workers to 

realistic emergency conditions for the purposes of training is impossible for ethical, 

financial, and logistical reasons. Therefore, virtual environments (VE) are often used to 

simulate safety-critical conditions, allowing participants to experience those situations 

without actually being exposed to hazards. It is important that training scenarios be 

designed to have different difficulty levels in order to help trainees acquire skills 

effectively, as well as confirm their ability to respond to a variety of situations. The 

method of scoring trainees’ performance through a rubric has been employed to assess 

the difficulty of a particular training scenario (Smith & Veitch, 2015). However, this 

approach is not comprehensive because it only assesses the number and type of errors the 

individual performs during the scenario and ignores their cognitive and affective 

experience of the scenario. For example, a participant could achieve similar performance 

scores in two different scenarios, but could have experienced significantly different levels 

of stress and/or mental workload while performing them. This would indicate a 

difference in difficulty level between the scenarios that performance levels alone would 

not reveal.  
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Physiological signal changes - particularly those of the autonomic nervous system 

(ANS), including electrocardiography, electrodermal activities, and respiration - have 

been shown to be good indicators of mental workload and stress in a variety of domains 

(Sharma & Gedeon, 2012). In addition, physiological signal arousal could also be used to 

assess users’ engagement during an activity, especially in VR-based platforms. This 

capability is possible as a result of the physiological signal changes that occur when an 

individual is either concentrating on what he/she is doing, or being stressed by a 

simulated safety-critical situation (Vrijkotte, et al., 2000). 

Electrocardiography (ECG)  

ECG is the process of recording electrical activity of the heart over a period of time 

using electrodes placed on the skin. These electrodes detect electrical changes on the skin 

that arise from the heart muscle's electrophysiologic pattern of depolarizing during each 

heartbeat. It is a very commonly performed cardiology test. As shown in Fig. 1, there are 

a variety of features that can be observed in an ECG signal. In this work, we focused on 

QRS complexes, which provide information about the heart beat. Heart rate can be 

determined from the time between successive QRS complexes. Heart rate variability 

(HRV) can also be extracted (Malik, et al., 1996), which is a combination of a number of 

features in both the time and frequency domains. Generally, with increased emotional 

arousal, the heart rate tends to increase, and heart rate variability decreases (Vrijkotte, et 

al., 2000). 
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Figure 1. A single QRS complex from a normal ECG, representing one heart beat. 

Electrodermal activity (EDA) 

Electrodermal activity is a measure of skin conductance. It is affected by sweat gland 

activity, which is controlled by the sympathetic nervous system – a branch of the 

autonomous nervous system. If the sympathetic nervous system is aroused, there is an 

increase in sweat gland activity, leading to higher skin conductance (Conesa, 1995; 

Carlson, 2013; Figner & Murphy, 2010; Nagai, et al., 2004; Loggia, et al., 2011). 

Therefore, EDA is an indication of emotional arousal. 

Respiration (RSP) 

Respiration (RSP) signal tracks the movement of the ribcage over time due to 

breathing. From this signal, respiration rate (RR) can be extracted, which indicates how 

fast or slow one is breathing. Literature has shown that our mental states have an effect 

on the way we respire (Tovian, et al., 2018). Specifically, stress can make us breath 

harder or might cause rapid breathing. 
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VE-based simulation training 

In terms of VE-based simulation training, these measures have been applied to 

investigate how immersive a VE is, or the effectiveness of a training simulation in 

helping trainees better cope with the real situations in terms of mental state. In this study, 

we investigate the use of autonomic nervous system signals in providing information on 

the user experience in various emergency response training scenarios completed by naive 

trainees (i.e., trainees who had neither known or experienced the experiment, nor been 

offshore on a vessel) in a simulation-based training environment. The study was 

conducted using a VE-based program called AVERT (All-hands Virtual Emergency 

Response Trainer) (House, et al., 2014), which was developed for training emergency 

evacuation procedures for the offshore petroleum industry. AVERT is a software-based 

training program, where participants use a standard video game controller to direct an 

avatar through emergency evacuation procedures on a realistic offshore oil platform 

under various conditions (Figure 2). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 2. AVERT training application: (a) participant is using the software (b)(c) simulated 

spaces on a vessel (d)(e)(f) simulated subjects on a vessel 

1.2 Objectives 

The purposes of this work are to: 

1. Use physiological signals to assess stress levels induced by different scenarios in 

AVERT 

2. Use physiological signals to assess which performance shaping factors (PSFs) 

significantly affect stress levels during different scenarios in a virtual training 

environment  

3. Investigate whether there is any correlation between stress level and performance 

in the training scenarios 

4. Investigate whether there is any correlation between objective and subjective 

measures of participants’ stress during training session 
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1.3 Thesis structure 

Following the introduction, the literature review is presented to outline existing work 

in the field. This is followed by the Methods section, where detailed information 

regarding how the study was designed and implemented is described. Thereafter, the 

Results and Discussion are provided, before the key Conclusions are presented in the last 

section. 
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Chapter 2: Literature review 

This literature review will discuss the main aspects of applying physiological signals 

for stress detection in virtual training environments. An overview of research in the field 

will be provided, including two main points: 

1. The advantages, developments and challenges of virtual training environments 

for simulated hazardous workplace training. 

2. The assessment of human stress by physiological measures and its 

applications in VE-based training platforms. 

In this chapter, insight into the virtual training field is first presented, including 

benefits, developments, and the challenges it is currently facing. This is followed by a 

brief summary of studies about ANS signals. Research on detecting stress from 

physiological signals is then outlined alongside a discussion of current applications. 

2.1 Virtual reality-based training: advantages, developments, and challenges 

Virtual training has proved its capability of providing users with a simulated 

hazardous environment to practice skills needed to stay safe while working in the real 

workplace. It is necessary to train personnel to respond to emergency conditions because 

in these situations it is critical to take appropriate actions as quickly as possible under a 

time constraint and under high stress conditions (Jones, et al., 1981; Rosenbaum, et al., 

1981; Merién, et al., 2010; Chang, et al., 2010; Mantovani, et al., 2003). In order to do 

this, people need to master the necessary skills and be able to use these skills comfortably 

even under high stress conditions. Because lecture-based training does not offer realism, 

and real-life practice is costly and might impose dangers, virtual reality-based training 
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comes into play as a potential alternative that balances realism and cost-effectiveness 

(Hsu, et al., 2013). Specifically, VR-based programs provide trainees with more 

interactive scenarios compared to lecture-based method, and these programs are less 

expensive than real-life practice. In addition, VR-based training offers adaptiveness to 

various industries, consistency in different trials, incorporation of varied stimuli, instant 

feedback, individual and group-orientation, the ability to create complicated scenarios, 

and an effective evaluation process (Seymour, et al., 2002; Gurusamy, et al., 2009; 

Gallagher, et al., 1999; Ahlberg, et al., 2007; Mantovani, et al., 2003; Aoki, et al., 2007; 

Andreatta, et al., 2010).  

Because of its assets, virtual training has been adopted in a variety of industries, 

especially those involving hazardous work places like nuclear power plants, offshore oil 

rigs, spaceships, and airplanes, where one mistake from a worker could lead to severe 

accidents. For example, Erren-Wolters, et al., (2007) conducted a review on VR-based 

training applications. Five studies were reviewed in this paper were related to training 

driving skills, one study was related to physical exercise training and one to leisure 

activity. The review suggested that VR could be a useful method to improve the control 

of a mobility device or to keep up the physical condition, or a means of leisure activity. 

Van Wyk and De Villiers (2009) provided information about VR-based program applied 

in safety training in mines in Africa, including contextual requirements and difficulties. 

The study showed that VR-based training helped improving the safety culture and 

awareness of the mining employees and recommended VR-based training program as a 

promising method to be applied to the mining industry in Africa. After reviewing a 
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number of papers related to VR applications in simulating medical scenarios, Rizzo, et 

al., (2009) concluded that VR could provide identical simulation environments where 

performance can be measured and rehabilitated, which would be helpful in treatment or 

rehabilitation purposes. In another study, Chan, et al., (2011) proposed a virtual reality 

dance training system using motion capture technology, where a student can follow a 

simulated teacher’s motions. The results proved that the system can successfully instruct 

trainees to enhance their skills.  

Although applied in various fields, VR-based training platforms are facing challenges 

that prevent it from becoming more effective (Shaw, et al., 2015; Waycott, et al., 2018; 

Roth, et al., 2015). Firstly, not everyone is familiar with the virtual reality technology, 

thus the ability to finish a virtual training session varies among individuals (Hsu, et al., 

2013). Secondly, although implementing VR-based training is relatively cost-effective, 

developing a highly immersive environment still consumes a significant amount of 

resources. Last, but not least, because of the limitation of technology, there is experience 

available in real practice that could not be simulated accurately in a VE. Nevertheless, it 

is believed by experts that technology’s continuous development will overcome these 

challenges (Hsu, et al., 2013). One of the approaches that researchers have investigated 

and proved the applicability to help overcome these challenges is measuring user’s 

stress/mental work load during virtual training session. The following section will 

provide more insight into this approach. 
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2.2 Assessing stress by physiological measures and application in VR-based training 

Stress is a state of mental or emotional strain or tension resulting from situations 

which are difficult and require a significant amount of mental resources. When a person 

is doing a task, a reasonable amount of stress might result in better performance, because 

he or she is concentrating. However, if the stress level is too high, the result might be 

negatively affected (Yerkes & Dodson, 1908). Physiological signal changes - particularly 

those of the autonomic nervous system (ANS), including electrocardiography, galvanic 

skin response, and respiration - have been shown to be good indicators of mental 

workload and stress in a variety of domains (Sharma & Gedeon, 2012). For example, 

Plarre, et al., (2011) proposed an approach to detect people’s daily stress and send an 

early warning to them, which applies two different models: physiological classifier and 

perceived stress model. The first model provides information about the variation in 

physiological states, while the other uses this information to calculate the probability of 

stress. The authors applied wearable devices to participants, which provides 

electrocardiography (ECG) and respiratory inductive plethysmography (RIP). The result 

reveals that subjects were stressed in 35.14% of time in terms of physiological aspect, 

while that number is 26.61% and 28.08% in terms of perceived stress model and self-

report, respectively. Ultimately, they concluded that there were three main points they 

had drawn from the study, including correcting the differences between individuals, the 

fact that respiration features provided high discrimination, and a new model mapping 

physiological stress to perceived stress. Xu, et al., (2015) suggested a cluster-based 

method to detect stress level, where they focus on solving the problem of variability in 
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stress response among people. In this study, electroencephalography (EEG), ECG, 

electromyography (EMG), and galvanic skin response (GSR, also acknowledged as 

EDA) were employed. They concluded that when using the cluster-based method, the 

stress detection accuracy increases significantly compared to previous methods without 

clustering. Ollander, et al., (2016) compared how the stress detection performance of the 

Empatica E4 wrist band compared to that of stationary sensors, using ECG and EDA 

signals. Results showed that although there was a noticeable loss in inter-beat intervals, 

the wrist band retained high accuracy in time-domain features like mean and standard 

deviation of heart rate, which provides more information regarding levels of stress. In 

another study, Smets, et al., (2016) aimed to find the most efficient algorithm for 

detecting stress based on physiological signals. The data that were used were ECG, GSR, 

skin temperature and respiration rate. Six different machine learning algorithms were 

applied to the data to detect the stress level. It was found that personalized Bayesian 

networks and generalized support vector machines derived the highest average stress 

detection results with 84.6% and 82.7% respectively. Most recently, Huysmans, et al., 

(2018) proposed a method of applying unsupervised learning, specifically Self-

Organizing Maps (SOM) for stress detection. Skin conductance (SC, also acknowledged 

as EDA) and ECG were used as input data. It was concluded that the SOM-based 

technique was capable of detecting stress, with a comparable accuracy to previous 

methods. 

Stress detection has been applied in a number of studies to learn more about the VR-

based training environment, as well as how trainees performed in terms of mental 
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workload/stress. For example, Patton and Gamble (2016) developed and tested an 

immersive VE to train soldiers. They measured participants’ physiological arousal 

through heart rate variabilities (HRV) and showed that it could be used as an indicator of 

the level of stress or immersion the simulation caused. In another study, Lackey, et al., 

(2016) conducted research to evaluate virtual reality’s effectiveness, where they 

investigated the stress and workload that participants experienced in a real training 

scenario after being trained virtually. It was found that participants who reported a 

positive experience in virtual training performed better in real training, which was 

inferred from lower stress and workload. Meanwhile, Egan, et al., (2016) suggested a 

measure of heart rate (HR) and EDA as an objective method to assess quality of 

experience (QoE) for immersive VR environments. Results from this research show that 

while there was not a significant change in participant’s HR between VR and non-VR 

environments, there was a significant effect of environment on both EDA and subjective 

ratings, as well as a significant correlation between EDA and subjective ratings results. It 

was concluded that EDA might be more effective than HR in indicating how one 

experienced VR environments, and how the VR environment brought to users a different 

experience compared to the non-VR environment. Bian, et al., (2015) built a VR-based 

program to train young people with autism spectrum disorder (ASD) to drive. In order to 

investigate the effects of various feelings (engagement, enjoyment, frustration, and 

boredom) on performance, physiological signals were collected during training sessions 

before being analyzed by six different classifiers. It was suggested by the results that the 

method developed in this study could reliably recognize physiological arousals in 
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teenagers with ASD and provide the basis for physiological-related affect-sensitive 

driving skill training system. 

These studies along with a number of others (Panju, et al., 2015; Garcia-Ceja, et al., 

2016; Cho, et al., 2017; Rizzo, et al., 2012; Basdogan, et al., 2001) have shown the 

possibility of applying physiological measure to access human’s mental workload/stress, 

particularly in VR-based environments. 

Knowledge gap: Although there are studies about performance in virtual emergency 

training environment, the potential of applying physiological changes detection to assess 

trainees’ experiences during various virtual emergency training sessions with different 

difficulty levels remains unknown.  
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Chapter 3: Methodology 

3.1 Experiment design 

3.1.1 Participants 

Data from 38 participants (28 males and 10 females) were collected during the 

experiment. Participants’ ages ranged from 18 to 65 years old. Participants were excluded 

if they had any prior experience with the experimental procedure, or with the real-life 

offshore petroleum platform on which it is based. This exclusion was made to ensure all 

participants started the learning process from the same position, which provided the 

objectiveness to the data. The subjects were asked not to consume alcohol within 24 

hours of the experimental session. Also they were asked to refrain from exercising, 

consuming food or caffeinated beverages, and smoking within 2 hours of the 

experimental session. This was asked of participants to ensure the physiological signals 

of interest would not be affected1. Approval of the experimental protocol was obtained 

from the appropriate research ethics board at Memorial University of Newfoundland 

(ICEHR #20171099) prior to study commencement. All participants provided written, 

informed consent prior to participation. 

3.1.2 Experimental protocol 

The experiment consisted of one session, divided into two phases. In Phase 1, the 

participants were first trained to be competent in basic emergency evacuation skills using 

AVERT. Specifically, they went through a series of modules consisting of instructional 

                                                 
1 The full recruiting information is provided in Appendix A 
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material and practice trials to become familiar with tasks such as recognizing various 

alarms, travelling to an appropriate muster station from their cabin, and selecting 

appropriate personal protective equipment. Training involved the completion of four 

scenarios addressing different learning objectives (House, et al., 2014): 

(1) Establish spatial awareness of environment 

(2) Alarms recognition: understand role of alarms and urgency of situation 

(3) Routes and mapping: determine primary and alternative routes to muster stations 

(4) Perform muster station protocol and individual responsibility 

(5) Safe practices 

(6) First actions – taking appropriate equipment from cabin 

Participants were required to re-attempt each training scenario until they could 

complete it error-free before moving on to the next module and training scenario (i.e., a 

mastery learning approach (Block & Burns, 1976) was taken). 

After the participants were trained in the basic evacuation procedures, and 

demonstrated a minimum level of competence, they were given a short break and then 

began the second phase of the experiment. In this phase, participants were asked to 

perform the evacuation procedures they had learned in Phase 1, but this time under 

various new conditions. A 23 factorial design (Montgomery, 2013) was employed: 38 

participants completed eight (8) scenarios based on three (3) performance shaping factors 

(PSFs), each varied at two levels (low and high). A description of the PSFs is provided in 

Table 1. The aim of this design was to create scenarios with different levels of difficulty.  
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Before completing each of the eight training scenarios, participants completed a five-

minute rest interval in order to give them a break, and to get a baseline measure of their 

physiological signals. The average duration of one training scenario was 237 s +/- 138 s. 

Participants had a limit of ten minutes to complete a scenario. There was considerable 

variation in the duration of scenarios across conditions and participants, the average 

duration of one training scenario being 237 s +/- 138 s. The limit for a participant to 

finish a scenario was ten minutes; the scenario ended after this time if the participant was 

not able to finish. The order in which the scenarios were performed was randomized for 

each participant. Figure 3 shows the trial sequence for Phase 2 of the experiment. Note 

that the ith scenario can be any scenario from 1 to 8, the sequence of scenarios to be 

completed for each participant was randomly generated.  

Table 1. Factors and levels in the 23 factorial design 

PSF Low level High level 

1) Quality of information 

received over public 

announcement (PA) system 

during the scenario 

The PA announcement is clear, 

concise, and includes all relevant 

information 

The PA announcement is not 

clear and does not provide 

sufficient information 

2) Proximity to hazard 

 

There is no hazard (e.g., fire, 

explosion, smoke) 

There is close proximity to 

hazard (e.g., fire, explosion, 

smoke) 

3) Familiarity of 

environment 

Scenario starts in familiar 

location (i.e., from Phase 1), 

participants take known route, 

and there is potential for known 

re-route 

Scenario starts in unfamiliar 

location, there is potential for 

re-routing based on acquired 

information 
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Table 2. Scenario name and the corresponding PSF levels 

Scenario name PSF 1 PSF 2 PSF 3 

1 Low Low Low 

2 High Low Low 

3 Low High Low 

4 Low Low High 

5 High High Low 

6 High Low High 

7 Low High High 

8 High High High 

 

Figure 3. Experiment baseline-scenario sequence 

3.2 Performance scoring 

To evaluate each participant’s performance, the following information was collected 

for each scenario: 

(1) Alarm recognition: did the participant recognize the meanings of different alarm 

types and react accordingly? 

(2) Identification of mustering announcement: did the participant muster at the 

correct location and perform the correct task after reaching the muster station 

(e.g., put on immersion suit)? 

(3) Route selection: which route did the participant take in a given situation, and did 

they re-route appropriately when a hazard (e.g., fire, smoke) was encountered? 
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(4) Observation of general safety rules: did the participant close all safety doors, and 

walk, not run, on the platform? 

Based on this performance data, a performance score was calculated for each 

participant in each scenario (see Table 3 for an example of rubric for Scenario 12) 

(House, et al., 2014). 

                                                 
2 The other rubrics for the remaining scenarios could be found in Appendix B 
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Table 3. Performance scoring rubric for Scenario 1 

Learning Objectives Specific Tasks Performance Measure Weighting 

LO1. Establish Spatial 

Awareness of 

Environment 

Identify Primary Muster 

Station 

Correct location See LO2 

LO2. Alarms Recognition: 

Understand role of alarms 

and urgency of situation 

Identify General 

Platform Alarm (GPA) 

Correct location (GPA 

= Mess Hall, Proper 

Activity = Lifeboat) 

25 

LO3. Routes and 

Mapping: Determine 

Primary and Alternative 

Routes to Muster Stations 

Accommodation Cabin 

to Primary Muster 

Station 

Route selected (prim, 

second, or others) & off 

route 

15 points primary; 7.5 

secondary; 0 lost or off 

route 

15 

Primary Muster Station 

back to Cabin 

Route selected (prim, 

second, or others) & off 

route 

15 

LO4. Perform Muster 

Station Protocol and 

Individual Responsibilities 

Perform T-Card 

Procedure at Muster 

Station 

Correct location + 

Move t-card correctly 

12.5 

 
Un-muster 12.5 

LO5. Safe Practices Do not run on the 

platform 

Speed of trainee (% 

running) 

10 

Recognize and Use Fire 

Doors & Water Tight 

Doors 

Number of fire/water 

tight doors left open 

(closed) 

15 

LO6. First Actions - 

Taking proper equipment 

from Cabin 

Know to locate and 

bring the following: 

Grab Bag and 

Immersion Suit 

Takes Grab Bag and 

Immersion Suit 

10 

  
Total 115 

 

3.3 Physiological measure 

As an indicator of the level of stress or workload experienced by each participant in 

each of the eight scenarios, the classification accuracy of each scenario versus the 
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baseline interval that preceded it was used. The baseline was assumed to represent a low 

arousal state (e.g., low stress). Classification accuracy is a measure of the separateness of 

data, thus the higher the classification accuracy between a scenario and the baseline 

condition, the more the physiological signals changed during the scenario, indicating a 

higher arousal state (e.g., high stress/workload). In order to derive this classification 

accuracy, participant’s physiological signals were first recorded during the experiment, 

then they were preprocessed and useful features were extracted. Thereafter, the feature 

set dimensionality was reduced by selecting the most discriminatory ones from the full 

feature set before supervised machine learning algorithms were applied to classify the 

data between baseline and scenario. Unsupervised machine learning algorithms were also 

employed to investigate possible patterns in the data (see Figure 4). 

 

Figure 4. Physiological measure process 

3.3.1 Signal recording 

Three ANS signals - ECG, EDA, and RSP - were collected during both baselines and 

training scenarios. The signals were collected using the Nexus-10 MarkII data acquisition 

system with the accompanied Biotrace+ software (Mind Media Co., Herten, 

Netherlands). Sampling rates were 256 Hz for ECG and 32 Hz for EDA and RSP.  Two 
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ECG electrodes were placed on the left and right chest, just below the clavicles, and one 

ECG electrode was placed just below the last rib on the left side. The two EDA 

electrodes were placed on the middle phalanxes of the middle and ring fingers. The RSP 

sensor band was worn around the participant’s rib cage. See Figure 5 for sensor 

placement. 

 
(a) 

 
(b) 

Figure 5. Participant performing AVERT scenarios with physiological sensors placed on hands 

and chest. (a) electrodes 1, 2, 3 – ECG, sensor 4 – RSP belt (b) electrodes 5, 6 – EDA. 

3.3.2 Signal pre-processing 

The ECG, EDA, and RSP signals were first pre-processed to remove unwanted noise 

and to prepare them for feature extraction and classification: 

• The ECG signal was first filtered by a 5-15 Hz (Pan & Tompkins, 1985) 3rd-order 

Butterworth bandpass filter. As illustrated in Figure 6, the fluctuating raw ECG 

signal became flat (low frequency drift eliminated) after the bandpass filter was 

applied. The raw signal was not too noisy (did not contain unwanted high frequency 

components), and it was as clean as the filtered signal. This is because the recording 
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device contained hardware filters to eliminate high frequency noise while 

recording. 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Illustrations of the effects of the bandpass filter on the raw ECG signal (a) raw ECG 

signal (b) bandpass filtered signal (c) a closer look at the raw ECG data 

• The EDA signal was put through a 2nd-order Chebyshev lowpass filter with cut-

off frequency of 1 Hz (Panju, et al., 2015), then detrended to eliminate possible 
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linear trends. As can be seen from Figure 7, the filtered EDA signal was flatter, 

compared to the raw EDA signal. This shows that linear trends were eliminated 

from the raw signal. 

 
(a) 

 
(b) 

Figure 7. EDA signals (a) raw (b) pre-processed 

• The RSP signal was detrended to eliminate any linear trend. As in the sample data 

illustrated in Figure 8(a), the raw RSP signal had a minor linear trend, which 

slightly decreased the signal over time, and this trend was eliminated as in Figure 

8(b). 
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(a) 

 
(b) 

Figure 8. RSP signals (a) raw (b) pre-processed 

3.3.3 Feature calculation 

After pre-processing, all signals were segmented into 3-second intervals for feature 

extraction. All features were calculated from these 3-second segments. From the pre-

processed ECG, a heart rate (HR) signal was calculated using the Pan-Tompkins 

algorithm (Pan & Tompkins, 1985). From this HR signal, seven different features of 

HRV were calculated (Malik, et al., 1996). From the pre-processed RSP signal, a 

respiration rate (RR) signal was calculated via a peak detection method developed by 

(Yoder, 2011). Calculation of these features will be described in more detail in the 

following section. 
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Figure 9. Features extraction process 

The overall feature pool considered for classification consisted of the seven HRV 

measures, plus the following six characteristics calculated based on Picard et al.’s method 

(Picard, et al., 2001) for the pre-processed ECG, EDA, and RSP signals, as well as for the 

calculated HR and RR signals: 1) mean of the signal, 2) standard deviation of the signal, 

3) mean of the absolute value of the first difference of the signal, 4) mean of the absolute 

value of the first difference of the normalized signal, 5) mean of the absolute value of the 

second difference of the signal, and 6) the mean of the absolute value of the second 

difference of the normalized signal. The resulting feature pool comprised 37 features. At 

this point, the data was normalized by Equation 1 to scale from 0 to 1, thus facilitating 

the process of classification because all dimensions now had values from 0 to 1, avoiding 
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the case that the data was too skewed (some dimensions had a much larger or smaller 

scale than others). Figure 9 depicts the feature extraction process. 

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐷𝑎𝑡𝑎 =  
𝐷𝑎𝑡𝑎 − min (𝐷𝑎𝑡𝑎)

max(𝐷𝑎𝑡𝑎) − min (𝐷𝑎𝑡𝑎)
 (1) 

3.3.3.1 QRS complexes detection in ECG signal 

In order to calculate HR or HRV, QRS should be first detected from the ECG signal. 

QRS complexes were extracted from the preprocessed ECG signal through the following 

three steps (Pan & Tompkins, 1985): 

Step 1: The filtered signal was differentiated to provide the QRS-complex slope 

information. A five-point derivative was used. The transfer function is: 

 𝐻(𝑧) =
1

8
(−𝑧−2 − 2𝑧−1 + 2𝑧 + 𝑧2) (2) 

The frequency response of this derivative is nearly linear between 0 Hz (DC) and 30 Hz 

and its delay is 2 samples. A sample of ECG data following application of the derivative 

filter is shown in Figure 10(a). 

Step 2: After differentiation, the signal was squared point-by-point to make all data 

points positive. This operation is non-linear and emphasizes the higher frequencies (i.e., 

predominantly the ECG frequencies). The equation of this operation is: 

 𝑦[𝑛] = 𝑥[𝑛]2 (3) 

A sample of the data after point-by-point squaring is shown in Figure 10(b). 
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Step 3: Peak detection. The process of peak detection is described as follows: 

Firstly, the signal was integrated by a moving-window to obtain waveform feature 

information in addition to the slope of the R wave. It was calculated by Equation 4 

below: 

 𝑦[𝑛] =
1

𝑁
[𝑥(𝑛 − (𝑁 − 1)) + 𝑥(𝑛 − (𝑁 − 2)) + ⋯ + 𝑥(𝑛)] (4) 

where N is the width of the integration window in samples. It is important to choose an 

appropriate value of N. Generally, the width of the window should be approximately the 

same as the widest possible QRS complex. If it is too wide, the integration waveform will 

merge the QRS and T complexes together. In contrast, some QRS complexes will 

produce several peaks in the integration waveform. These can cause difficulty in 

subsequent QRS detection processes. The width of the window is determined empirically. 

In this case, the window width was chosen to be 0.15 × (sampling rate), thus the window 

width was 0.15 × 256 = 39 samples. 

After integrating the signal by the moving-window, a dynamic thresholding technique 

was applied to detect the peaks of the signal. Specifically, the algorithm used two 

threshold values (one for the true peaks and the other for the noisy peaks) that 

continuously adapt to changing ECG signal quality. After searching for the first time, the 

algorithm searches back for missed QRS complexes. At the first time, if a peak is lower 

than the signal threshold, it would not be considered an R-peak. However, if there is an 

unreasonably long period of time between two consecutive identified R-peaks, the 
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algorithm will assume that an R-peak has been missed from the first scan. Therefore, at 

this time, the signal threshold and noise threshold are adjusted to capture those missing 

QRS complexes. 

A sample of ECG data following application of this process is shown in Figure 10(c), 

where the circles represent the detected peaks, the upper and middle dashed lines 

represent the first and second signal thresholds, respectively, and the lower dashed line 

represents the noise threshold. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Illustration of ECG peak detection process: (a) derivative of signal (b) squared signal 

(c) detected peaks 

3.3.3.2 Heart rate (HR) and heart rate variability (HRV) 

Heart rate (HR) 

HR is the information describing how fast a human’s heart is beating, which is 

defined as  thenumber of beats per minute. In this work, HR was calculated by the 

following equation: 

 𝐻𝑅 =  
𝑃𝑃 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
× 60 (5) 

where: 
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• PP interval is the peak-to-peak interval, the distance counted by number of samples 

between two consecutive R-peaks (QRS complexes) 

• Sampling rate is 256 samples/second 

Heart rate variability (HRV) 

HRV is useful when investigating the changes in the electrical activity of the heart 

over time (Malik, et al., 1996). HRV can be calculated in many different ways, both in 

the time and frequency domains. Some of these measures require a long duration of ECG 

signal for accurate calculation. Due to the relatively short duration of signals in this work, 

seven different measures of HRV that could be accurately determined have been 

considered as features: 1) VLF (power in very low frequency range), 2) LF (power in low 

frequency range), 3) LF norm (LF power normalized), 4) HF (power in high frequency 

range), 5) HF norm (HF power normalized), 6) LF/HF, and 7) RMSSD (the square root 

of the mean of the sum of the squares of differences between adjacent normal-to-normal, 

or peak-to-peak, intervals). 

3.3.3.3 Respiration rate (RR) calculation 

Unlike ECG, which has a complex shape with different peaks in a single complex 

(Figure 11), the RSP signal has a simpler shape, which facilitates the process of peak 

detection. Firstly, raw RSP signal was read (Figure 11(a)) before a detrending filter was 

applied to remove possible linear trend in the signal (Figure 11(b)). Thereafter, a peak 

finding function was applied to reveal the peaks. Finally, RR was derived by the 

following equation (Figure 11(c)):  
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 𝑅𝑅 =  
𝑃𝑃 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
× 60 (6) 

 
(a) 

  
(b) 

 
(c) 

Figure 11. (a) Raw RSP signal (b) Detrended signal (c) Sample illustration of respiration peak-

to-peak interval estimation 

3.3.3.4 Picard’s features 

To recognize human emotional states, Picard, et al., (2001) proposed a set of six 

features, which were extracted from human physiological signals. As mentioned, in this 

work these six features, described below, were calculated for the pre-processed ECG, 
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EDA, and RSP signals, as well as for the calculated HR and RR signals and included in 

the feature set for classification: 

• The mean of the raw signal: 

 𝜇𝑋 =
1

𝑁
∑ 𝑋𝑛

𝑁

𝑛=1

 (7) 

• The standard deviation of the raw signal: 

 𝜎𝑋 = (
1

𝑁 − 1
∑(𝑋𝑛 − 𝜇𝑋)2

𝑁

𝑛=1

)

1/2

 
(8) 

• The mean of the absolute values of the first differences of the raw signals: 

 𝛿𝑋 =
1

𝑁 − 1
∑|𝑋𝑛+1 − 𝑋𝑛|

𝑁

𝑛=1

 (9) 

• The means of the absolute values of the first differences of the raw signals: 

 𝛿𝑋 =
1

𝑁 − 1
∑|𝑋̃𝑛+1 − 𝑋̃𝑛|

𝑁

𝑛=1

=
𝛿𝑋

𝜎𝑋
 (10) 

• The means of the absolute values of the second differences of the normalized 

signals: 

 𝛾𝑋 =
1

𝑁 − 2
∑|𝑋𝑛+2 − 𝑋𝑛|

𝑁−2

𝑛=1

 (11) 

• The means of the absolute values of the second differences of the normalized 

signals: 
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𝛾𝑋 =
1

𝑁 − 2
∑|𝑋̃𝑛+2 − 𝑋̃𝑛|

𝑁−2

𝑛=1

=
𝛾𝑋

𝜎𝑋
 (12) 

3.3.4 Feature selection 

In order to automatically choose the best M-dimensional feature set from N-

dimensional data, a feature selection algorithm can be used. A feature selection algorithm 

generally requires a search algorithm to efficiently search the feature space, and a fitness 

criterion by which to evaluate “how good” each candidate feature set within the space is. 

In this work, the Fisher score and a greedy search algorithm were used. Figure 12 depicts 

the feature selection process. 
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Figure 12. Feature selection process 

3.3.4.1 Fisher criterion 

The feature selection is based on the Fisher criterion (Gu, et al., 2011), which is widely 

used in classification to help find the dimension where data in two classes are separated 

the most. The Fisher score is calculated by the formula (13) below: 
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 𝐹(𝑤) =
|𝑚1 − 𝑚2|

𝑠1
2 + 𝑠2

2  (13) 

where: 

• 𝑚1 is the mean of 𝑤𝑡ℎ dimension of the data (i.e., the 𝑤𝑡ℎ feature) for class 1 

• 𝑚2 is the mean of 𝑤𝑡ℎ dimension of the data for class 2 

• 𝑠1
2 is the variance of 𝑤𝑡ℎ dimension of the data for class 1 

• 𝑠2
2 is the variance of 𝑤𝑡ℎ dimension of the data for class 2 

 
(a) 

 
(b) 

Figure 13. (a) Illustration of how the Fisher criterion works (b) Example of feature selection 

based on the Fisher criterion 

From Figure 13(a), it can be seen that the Fisher criterion helps us choose the 

dimension that maximizes the distance between the mean of class 1 and 2, while 

minimizing the variance within one class. In other words, in the dimension recommended 

by the Fisher criterion, data in Class 1 and 2 are separated the most (maximum distance 

from two means), and data within a class are close to each other (minimum variance). 

This means data within a class do not spread out too much, thus reducing the chance that 

data from class 1 are mixed with data from class 2. Using this method, the best dimension 
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could be picked out for the sake of the classification process. For example, in Figure 

13(b), data in two classes 1 and 2 will be separated if they are projected to dimension 𝑤. 

Meanwhile, if projecting these data to dimension 𝑤’, the data would be mixed together. 

3.3.4.2 Greedy search procedure 

Now that the dimension that has the highest Fisher score has been derived, another 

problem arising is that the best 3-feature set needs to be chosen, instead of only one best 

feature. An intuitive approach is the ranking system, where three features are selected 

that have the three highest Fisher scores. That sounds reasonable in one way, but the fact 

is not quite simple in another. Specifically, three features might have the highest Fisher 

scores when considered individually, but together they may not be the best possible 

combination of three features. There might be another set, constituted from other 

dimensions, that has a higher three-dimensional Fisher score. Consider the formula (13), 

where  𝑚1 and 𝑚2 are three-dimensional means, with 𝑚1 is located at (𝑥1, 𝑦1, 𝑧1), and 

𝑚2 is located at (𝑥2, 𝑦2, 𝑧2), in a Cartesian coordinate system. The Fisher score is now 

calculated in a three-dimensional space. Therefore, the result is dependent on the three 

dimensions jointly, not independently. To achieve this, there is another intuitive 

approach, which is called “exhausted search”. This algorithm takes into account every 

possible combination of three features in the total number of features, calculating the 

Fisher score for each combination and selecting the one with the highest score. This 

method will result in the “best” possible feature set being selected, however is simply too 

costly in terms of computation when considering more than a modest number of 

candidate features. To compromise these two methods (ranking and exhaustive search), a 
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greedy search method was chosen in this work. This method saves computational cost 

significantly, while still considering the joint aspect of the features. The greedy search 

process is divided into three steps, and these steps are replicated in a number of times 

equal to the number of dimensions we would like to select: 

Step 1: Read the N-dimensional data 

Step 2: Assign i = 0 

Step 3: For each dimension: 

• Combine with the previous chosen dimension(s) to form an i-dimensional dataset 

(0-dimensional data = empty) 

• Calculate the linear coefficients of the classifier for i-dimensional data 

• Project the i-dimensional data to the linear classifier 

• Calculate Fisher score 

Step 4: Choose the dimension that results in the highest Fisher score 

Step 5: Increase i by 1 

Step 6: Repeat the actions from step 3 until i > M 

Step 7: Return the best M features (dimensions) 
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3.3.5 Classification 

Two classifiers were employed, linear discriminant analysis (LDA) and support 

vector machine (SVM), and the results were compared to see which method was better to 

solve the problem. Cross validation was applied to find the classification accuracy. 

3.3.5.1 Discriminant Analysis Classifiers  

After picking out the best feature set by the Fisher criterion, classifiers based on 

discriminant analysis were used to classify baseline and scenario data. In this method, 

data in each class are assumed to have a Gaussian mixture distribution. Weighted 

classifiers are constructed using a scheme described in (Fisher, 1936). The result is a 

linear or quadratic discriminant analysis (LDA or QDA) classifier (Figure 14). 

 

Figure 14. Illustration of linear and quadratic discriminant analysis classifiers 

3.3.5.2 Support vector machine (SVM) 

An SVM algorithm (Kecman, 2001; Suykens, et al., 2002; Scholkopf & Smola, 2002; 

Cristianini & Shawe-Taylor, 2000) with Gaussian kernel was also employed to classify 

the data between each baseline and scenario for every participant individually. By doing 

this, possible implementation errors could be avoided because results from two different 
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classifiers are derived and compared with each other. SVM is a widely-used machine 

learning algorithm, which offers a reserved space for the model, thus preventing the 

model from overfitting the trained data in the case that data in different classes are 

separable (Figure 15). 

 
(a) 

 
(b) 

Figure 15. (a) Illustration of SVM classifier (b) an example of consequences of not having 

reserved space for classifier when data in different classes are separable 

3.3.5.3 Cross validation 

In this work, 30 runs of 5-group cross validation (Christopher, 2016) were performed 

for each baseline versus scenario condition for each of the classification algorithms 

considered. Data in each class (baseline and scenario) is presented as a [𝑀 × 𝑁] matrix, 

where 𝑀 is the number of data points (i.e., the number of 3-second intervals) and 𝑁 is the 

number of features considered. These data points were randomly divided into five groups, 

with roughly equal numbers of each class in each group (the odd number of data were 

eliminated in case the total number of data was not a multiple of five). In the first group 

of the cross-validation, four of the groups were combined to be training data, while one 
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group was left out to be testing data. Feature selection was performed on the training data 

and a classifier was built and then tested on the test data to determine classification 

accuracy for this first iteration. In the next group of the cross-validation, a different group 

of data was left out to be used for testing, while the remaining four were combined to 

make up the training data. Classification accuracy was again determined for this iteration. 

This was repeated a total of five times to create five different training data sets and five 

corresponding testing data sets, such that each group of data was used as the test set one 

time. Following the five groups of the cross-validation, the mean classification accuracy 

was calculated. 30 runs of this 5-group cross-validation procedure was completed (with 

the data being randomly divided into groups at the beginning of each run), and the overall 

accuracy was calculated as the mean of the 30 runs. This process is illustrated in Figure 

16.  
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Figure 16. Cross-validation process 

Note that normally, when data from two classes are balanced, or have the same 

number of samples, accuracy is calculated by the formula below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
× 100 (14) 

where: 

• TP – True positive: number of testing data in class 2 (scenario) correctly 

classified as class 2 

• TN – True negative: number of testing data in class 1 (baseline) correctly 

classified as class 1 

• Total: total number of testing data points (baseline + scenario) 

However, in this work, data from the baseline were not at the same length as the ones 

from the scenario. Therefore, adjusted accuracy was calculated from sensitivity and 
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specificity to make up for the skewness of the data (Zeng, et al., 2002). Besides TP and 

TN denoted, let us denote FN as false negative – number of scenario data points 

incorrectly classified as baseline, and FP as false positive – number of baseline data 

points incorrectly classified as scenario. From that, sensitivity, specificity, and adjusted 

accuracy were defined as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (15) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (%) =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 (16) 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 (17) 

3.3.6 Clustering 

Along with supervised machine learning (discriminant analysis and SVM), 

unsupervised machine learning algorithms were also implemented to explore possible 

patterns in the data. In this method, principle component analysis was first applied to 

reduce the dimensionality of the data, then two unsupervised learning algorithms were 

employed to extract possible patterns. The algorithms included k-means clustering and 

Gaussian model clustering. 

3.3.6.1 Principle component analysis (PCA) 

In unsupervised machine learning, it is also necessary to reduce the number of 

dimensions of the data before conducting the classification process, in order to save 

computational cost, and also because not every feature is useful. Unlike the supervised 
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learning case, where we could use the Fisher criterion to select the feature combination 

that best separates data in two classes because we know which data points belongs to 

which class, we could not do the same for the unsupervised learning case because the 

information of classes is unknown. In this case, PCA is a possible solution. This method 

reduces the data dimensionality by projecting data into new dimensions – called 

principled components – that are calculated from the existing features (Figure 17). 

Generally, most of the information in the data is contained in a relatively small number of 

these new features. Thus the desired number of features can be retained and the rest 

discarded, resulting in a reduction in the dimensionality of the data. 

 

Figure 17. PCA components 

3.3.6.2 K-means clustering 

After a number of clusters (k) were assigned, the algorithm started grouping data to k 

groups. In order to achieve reasonable grouping results, k centroids were first initialized, 

then the Euclidian distance from each data point to the centroids was calculated. Each 

data point was assigned to be in the group where the distance from the data point to the 

centroid was smallest compared to the distances from the data point to the other 

centroids. After that, the total distance of all data points to their centroids were 

calculated, and by the optimization process, new centroids were created which minimized 
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the total distance. The process was iterated until new centroids were not significantly 

different from the previous one. Illustrations for the process are provided in Figure 18. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 18. K-means clustering process (a) randomly create initial centroids (b) assign data 

points into each group (c) move the centroids to minimize the total distance (d) iterate until 

reaching optimal point 

3.3.6.3 Gaussian model clustering 

While the k-means clustering method groups data based on optimizing the total 

distance from data to centroids, the Gaussian model-based method focuses on fitting data 

into multivariate Gaussian distribution. This method does not require information about 

the number of clusters, k. Instead, it tries to find the Gaussian distribution component(s) 

that best fit the given data (McLachlan & Peel, 2004). This method is capable of not only 

grouping data, but also detecting anomaly data points (Figure 19).     
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(a) 

 
(b) 

Figure 19.Gaussian model-based method’s applications (a) grouping data (b) anomaly detection 

3.4 Questionnaires 

The participant’s subjective rating of stress experienced during the performance of 

each scenario was recorded. In particular, following each trial, participants were asked a 

question, which was specifically made to fulfill the purpose of this research. The question 

was: “How did you feel during the scenario you just completed?”  and the participants 

were asked to provide a rating from 1 (very relaxed) to 7 (very stressed). 

3.5 Statistical analysis 

After the three measures of interest were calculated (performance score, subjective 

stress rating, and classification accuracy), a factor analysis was conducted to explore 

which of the three performance shaping factors, or interactions between them, had 

significant effects on the responses. Additionally, a repeated measures ANOVA was 

implemented to investigate whether there was a significant difference in responses among 

scenarios, which would indicate that different scenarios led to different experiences for 

trainees.  
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The order in which the eight scenarios were completed was randomized for each 

participant (Table 4). In this table, each row represents the sequence of scenarios taken by 

a participant. For example, participant number 1 went through the process of eight 

scenarios in the order of: scenario 7, scenario 8, scenario 6, scenario 1, scenario 3, 

scenario 4, scenario 2, and scenario 5. Note that in this work, the term “scenario 1” 

represents the name of a specific scenario with a specific combination of PSFs, while “1st 

scenario” represents the first scenario in terms of the time order that a participant 

experienced. 

Table 4. The sequence of scenarios taken by each participant 

Subject 
1st 

scenario 

2nd 

scenario 

3rd 

scenario 

4th 

scenario 

5th 

scenario 

6th 

scenario 

7th 

scenario 

8th 

scenario 

1 7 8 6 1 3 4 2 5 

2 5 4 1 8 7 3 2 6 

3 6 2 8 7 3 5 1 4 

4 8 2 4 7 1 6 3 5 

5 3 7 8 2 1 5 6 4 

6 7 2 5 3 1 8 6 4 

7 4 6 7 3 1 5 2 8 

8 5 3 2 4 6 7 8 1 

9 6 7 5 3 1 2 4 8 

10 3 6 2 7 5 1 4 8 

11 5 8 7 4 1 2 6 3 

12 3 5 1 4 2 8 7 6 

13 4 8 2 5 6 7 1 3 

14 5 3 6 7 4 2 8 1 

15 4 8 3 1 5 7 6 2 

16 7 5 4 6 1 2 3 8 

17 4 1 5 7 3 6 2 8 

18 2 6 3 5 4 7 8 1 

19 7 5 8 6 4 2 3 1 

20 6 1 8 7 4 2 3 5 

21 2 5 3 4 1 6 7 8 
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22 2 5 6 7 4 8 1 3 

23 7 6 2 8 3 5 1 4 

24 7 3 8 6 2 5 4 1 

25 8 1 2 7 3 5 6 4 

26 1 5 6 4 7 8 3 2 

27 7 8 6 3 4 2 5 1 

28 5 4 7 8 1 3 6 2 

29 2 1 4 6 7 8 5 3 

30 3 1 4 5 2 6 7 8 

31 4 7 8 1 5 6 3 2 

32 4 2 1 3 6 5 8 7 

33 5 4 2 1 8 6 7 3 

34 6 8 7 2 5 3 4 1 

35 3 6 8 5 4 7 1 2 

36 2 8 1 6 4 7 5 3 

37 6 8 4 1 5 7 2 3 

38 4 1 6 7 2 8 3 5 

Considering the case that physiological arousal due to the scenarios could potentially 

decrease over the course of the experiment, for example as participants simply become 

used to the virtual environment and the being in an experimental setting, a linear 

regression was conducted to see whether there was a time trend for physiological changes 

in this experiment. The classification accuracy values from order based on scenario name 

(scenario 1, 2, 3, etc.) were re-arranged to order based on time (from the first scenario 

that a participant completed to the last one, in a chronological order). 

Finally, a correlation analysis was employed to find any relationships among the 

subjects’ performance scores, physiological arousal levels (as indicated by classification 

accuracy between baselines and scenarios), and subjective measures of stress. 
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Chapter 4: Results 

4.1 Performance measures 

All scores calculated from the rubrics were scaled to 100% as shown in Figure 203. 

The results are presented in the format of Box-Whisker plot. For example, in scenario 4, 

the minimum and maximum performance of 37 participants are 81% and 100%, 

respectively. There is one participant considered as an outlier, whose performance is 

about 17%. The first quartile is approximately 87%, and in this case the third quartile is 

equal to the median value, which is 95%. Recall that there were 8 different scenarios, and 

38 subjects completed the experiment. As can be seen in Figure 20, although there are a 

small number of outliers in some scenarios that have low performance (<40%), the data 

shows that participants performed well (>80%) most of the time. 

 

Figure 20. Performance score Box plot 

                                                 
3 Detailed results are provided in Table 19 - Table 26 
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4.2 Physiological measures 

4.2.1 Classification 

The adjusted accuracy calculated from the 3-feature LDA algorithm is provided in 

Figure 21(a)1. It can be seen that the average classification in each scenario is relatively 

high (between 78.3% and 83.0%, with mean 81.3% across scenarios). The results from 

the 3-feature SVM algorithm are presented in Figure 21(b)1. The average classification 

accuracies derived from this algorithm are generally lower than those from the 3-feature 

LDA (between 68.8% and 78.8%, with mean 74.6% across scenarios). In the case of 

utilizing full features, the results from LDA and SVM algorithms are presented in Figure 

21(c) and Figure 21(d), respectively4. There was an increase in classification of full-

feature LDA and SVM compared to the 3-feature ones. Specifically, the mean of 

accuracies derived by full-feature LDA ranged from 81.5% to 85.8%, with a mean of 

84.0% across scenarios, and for full-feature SVM mean accuracies ranged from 75.7% 

and 82.4% with a mean of 79.4% across scenarios. 

                                                 
4 Detailed results are provided in Table 27 - Table 30 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 21. Summary of classification results from (a) 3-feature LDA (b) 3-feature SVM (c) full-

feature LDA (d) full-feature SVM 

4.2.2 Clustering 

In clustering, participant data were analyzed both individually and combined. 

Specifically, the clustering algorithms were implemented on four forms of data: 

• Cluster all data (scenario and baseline combined) of each participant 

• Cluster all scenario data (excluding baseline data) of each participant 
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• Cluster all data (scenario and baseline combined) of all participants combined 

• Cluster all scenario data (excluding baseline data) of all participants combined 

Before clustering algorithms were applied, PCA was implemented to reduce the 

dimensions of the data to the number of dimensions where at least 99% of the 

information was retained. The number of PCA components chosen for each case is 

presented in Table 5: 

Table 5. Different cases of applying clustering 

Case Number of PCA 

components 

Cluster all data (scenario and baseline combined) of each 

participant 

9 

Cluster all scenario data (excluding baseline data) of each 

participant 

9 

Cluster all data (scenario and baseline combined) of all 

participants combined 
20 

Cluster all scenario data (excluding baseline data) of all 

participants combined 

20 

 

4.2.2.1 K-means clustering 

K-means clustering was conducted with K=4 and results from k-means clustering are 

presented in the form of the percentage of each scenario data that fell into a cluster. The 

author expected to see a pattern where some scenarios might have most of their data 

belonging to some clusters while other scenarios have most of their data belonging to the 

other clusters. 

• Case 1: Cluster all data (scenario and baseline combined) of each participant 
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In this case, physiological data collected from each participant through all sessions 

(baselines and scenarios) were combined and all labels were removed (unsupervised 

learning) before the algorithm was applied to separate data into four clusters. Thereafter, 

the number of data points from each scenario and baseline that belong to each cluster was 

counted and transferred into proportion (out of 100%), to see if there is any possible 

pattern. The outcomes are presented in Figure 225 (note that scenario 0 represents 

baseline). 

                                                 
5 Detailed results are provided in Table 31 - Table 38 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 22. Summary of data proportion of each participant in (a) cluster 1 (b) cluster 2 (c) 

cluster 3 (d) cluster 4 

• Case 2: Cluster all scenario data (excluding baseline data) of each participant 

The process of this case is the same as the first case, except baseline data were 

excluded. The results are illustrated in Figure 236. 

                                                 
6 Detailed results are provided in Table 39 - Table 46 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 23. Summary of data proportion of each participant in (a) cluster 1 (b) cluster 2 (c) 

cluster 3 (d) cluster 4 

• Case 3: Cluster all data (scenario and baseline combined) of all participants 

combined 

In this case, all data, including scenario and baseline data collected from each 

participant, were combined together before the clustering algorithm was applied to divide 

them into four different groups. The results are depicted in Figure 24 (note that scenario 0 
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represents baseline). The results in this case are presented in histogram form, instead of 

Box-Whisker plot. The reason is that the result for each scenario from all data from 38 

participants are now combined instead of individual as in previous cases. Then, there is 

only one output value for each scenario, instead of 38. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 24. Summary of data proportion of each participant in (a) cluster 1 (b) cluster 2 (c) 

cluster 3 (d) cluster 4 

• Case 4: Cluster all scenario data (excluding baseline data) of all participants 

combined 
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The process used in this case is the same as case 3, except baseline data were 

excluded. The results are shown in Figure 25. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 25. Summary of data proportion of each participant in (a) cluster 1 (b) cluster 2 (c) 

cluster 3 (d) cluster 4 
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4.2.2.2 Gaussian model clustering 

In addition to k-means clustering, Gaussian model clustering was also applied to find 

a possible pattern in the data. Unlike k-means clustering, which was applied to divide 

data into k (in this case, four) clusters, Gaussian model clustering was implemented to 

find anomaly points and count them. The results reported are the number of anomaly 

points detected in each scenario in four cases (Table 5). 

• Case 1: Cluster all data (scenario and baseline combined) of each participant 

 

Figure 26. Proportion of anomaly points detected from multivariate Gaussian distribution model 

In this case, a multivariate Gaussian distribution model of physiological data 

collected from each participant (including both scenario and baseline) was built and 

anomaly points were detected by a threshold of 10%. This means that any data point that 

fell into the region where the probability of data appearing was less than 10% and was 
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recognized as an anomaly point. The number of anomaly points was then counted and 

tracked back to the origin to see which scenario or baseline it belonged to. These numbers 

were then transferred into proportion to reflect how much of each scenario or baseline 

data fell out of the majority. The results are provided in Figure 267 (note that scenario 0 

represents baseline). 

• Case 2: Cluster all scenario data (excluding baseline data) of each participant 

This is the same as case 1, except the baseline data were excluded. The results are 

shown in Figure 278. 

 

Figure 27. Proportion of anomaly points detected from multivariate Gaussian distribution model 

                                                 
7 Detailed results are provided in Table 47 and Table 48 
8 Detailed results are provided in Table 49 and Table 50 
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• Case 3: Cluster all data (scenario and baseline combined) of all participants 

combined 

In this case, all data, including scenario and baseline data of all participants, were 

combined and a multivariate Gaussian distribution of this data set was estimated. 

Thereafter, anomaly points were detected by the threshold of 1% and tracked back to see 

which scenario or baseline they belonged to. It is noticed that the threshold in this case is 

1%, which is different than the other cases (10%). This is because when combining all 

data, the number of data points was very large and spreading, leading to the fact that the 

anomaly proportion was quite similar for every scenario. Therefore, reducing the 

threshold would provide more insight into the difference among scenarios in terms of 

anomaly proportion. These numbers were then transferred into proportion. The outcomes 

are illustrated in Figure 28. 

 

Figure 28. Proportion of anomaly points detected from multivariate Gaussian distribution model 
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• Case 4: Cluster all scenario data (excluding baseline data) of all participants 

combined 

The process of this case is the same as case 3, except baseline data were excluded. 

The results are shown in Figure 29. 

 

Figure 29. Proportion of anomaly points detected from multivariate Gaussian distribution model 

4.3 Subjective ratings of stress 

Results for subjective ratings of stress are provided in Figure 309, note that the rating 

scale was from one to seven. The most frequent responses for the questionnaires range 

from 1 to 4, which indicate low stressful levels during the experiment. 

                                                 
9 Detailed results are provided in Table 51 
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Figure 30. Box plot for subjective rating results 

4.4 Statistical analysis 

The summary of statistical analysis results of each measurement is illustrated in Table 

6. In this table, the first column represents all measurements in the study, including 

performance score, physiological changes from participants during the experiment 

(calculated by four different methods: 3-feature LDA, 3-feature SVM, full-feature LDA, 

and full-feature SVM), and subjective ratings of stress. The second column includes 

results from repeated measures of ANOVA, which is presented in terms of whether there 

was a significant difference among scenarios or not. The next column represents the 

number of significantly different pairs of scenarios from the Tukey post-hoc test. The 

fourth column shows results for factorial analysis, in the form of which factor or 

interaction had a significant effect on the responses. The second last column shows 

correlation analysis results. This column contains the measurement that has significant 
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correlation with the measurement in the first column. Presence of a time effect on the 

participants’ physiological changes is indicated in the final column. The results of these 

analyses are described in more detail in the following sections. 

Table 6. Summary of statistical analysis 

Measurement Significant 

difference 

among 

scenarios 

Number of 

significant 

different 

pairs from 

Tukey test 

Factor(s) 

had 

significant 

effect 

Significant 

correlation 

with 

Presence of 

time effect 

Performance score Yes 7 situation 

familiarity 

Full-feature 

SVM 

 

Classification accuracy 

from: 

     

• 3-feature LDA No None None None No 

• 3-feature SVM Yes None Situation 

familiarity 

Subjective 

ratings of 

stress 

Yes 

• full-feature 

LDA 

No None Situation 

familiarity 

None Yes 

• full-feature 

SVM 

Yes None Situation 

familiarity 

Subjective 

ratings of 

stress; 

performance 

score 

Yes 

Subjective ratings of 

stress 

No None None Full-feature 

SVM 

 

 

4.4.1 Repeated measures of ANOVA 

The summary of results from repeated measures of ANOVA is presented in Table 7. 

From Table 7, it can be seen that p-values from repeated measures of ANOVA were less 

than 0.05 for performance score, and classification accuracy from the 3-feature and full-

feature SVM. This means there were significant differences among scenarios in terms of 

participants’ performances and their physiological changes determined by 3-feature and 

full-feature SVM. Meanwhile, the results also show that there were no significant 
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differences among scenarios in terms of participant’s subjective ratings of stress and their 

physiological changes determined by 3-feature and full-feature LDA. 

Table 7. Results summary of repeated measures of ANOVA on the measurements 

 Performance 

score 

3-feature 

LDA 

3-feature 

SVM 

full-feature 

LDA 

full-feature 

SVM 

Subjective 

ratings of 

stress 

p-value 6.04×10-7 0.714 0.0004 0.873 0.0005 1 

 

4.4.2 Tukey test 

Results from the Tukey post-hoc test are illustrated in Figures 31-36. In each of these 

figures, the bars represent results for the Tukey test for each pair of scenarios. It can be 

seen that with eight scenarios, there are 28 comparison pairs. If a bar does not cross the 

zero line, the corresponding comparison pair shows a significant difference. In Figures 

31-36, there are seven bars that cross the zero line, and they are all in Figure 31, which 

depicts the results for the performance score. This means only the measurement of the 

performance score had pair-wise differences among scenarios, which are between 

scenarios: 8-1, 4-2, 6-2, 8-2, 8-3, 8-5, and 8-7. 
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Figure 31. Results from Tukey test for difference among scenarios in terms of performance scores 

 

Figure 32. Results from Tukey test for difference among scenarios in terms of 3-feature LDA 

classification accuracy 
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Figure 33. Results from Tukey test for difference among scenarios in terms of 3-feature SVM 

classification accuracy 

 

Figure 34. Results from Tukey test for difference among scenarios in terms of full-feature LDA 

classification accuracy 
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Figure 35. Results from Tukey test for difference among scenarios in terms of full-feature SVM 

classification accuracy 

 

Figure 36. Results from Tukey test for difference among scenarios in terms of subjective ratings 

of stress 

4.4.3 Factorial analysis 

The results of factorial analysis are derived from Design Expert 10 and are 

summarized in Table 8, where p-values for the factors that have significant effect on the 
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response are provided. In this table, it can be noticed that situation familiarity is the only 

factor that had a significant effect on the responses. Performance score, classification 

accuracy from full-feature LDA, and 3-feature and full-feature SVM are the responses 

that were significantly affected by situation familiarity, while classification accuracy 

from 3-feature LDA and subjective ratings of stress were not affected by any factor. 

Table 8. Summary of results from factorial analysis 

Response Factors that had significant 

effect 

p-value 

Performance score Situation familiarity < 0.0001 

Classification accuracy from:   

• 3-feature LDA None  

• 3-feature SVM Situation familiarity < 0.0001 

• Full-feature LDA Situation familiarity 0.027 

• Full-feature SVM Situation familiarity < 0.0001 

Subjective ratings of stress None  

 

4.4.4 Correlation analysis 

The summary of correlation analysis results is provided in Table 9, where X 

represents performance score, Y represents subjective ratings of stress, Z1 represents 3-

feature LDA classification accuracy, Z2 represents 3-feature SVM classification 

accuracy, Z3 represents full-feature LDA classification accuracy, and Z4 represents full-

feature SVM classification accuracy. 
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Table 9. Results summary of correlation analysis 

Correlation pair XY XZ1 YZ1 XZ2 YZ2 XZ3 YZ3 XZ4 YZ4 

Correlation rho -0.272 -0.162 0.246 -0.262 0.405 -0.249 0.253 -0.320 0.353 

p-value 0.099 0.330 0.136 0.112 0.012 0.132 0.126 0.050 0.030 

Significant No No No No Yes No No Yes Yes 

 

4.4.5 Linear regression 

Linear regression was conducted to find any possible trend in the results for 

classification accuracy from 3-feature LDA, 3-feature SVM, full-feature LDA, and full-

feature SVM, in time order. The results are presented in Table 10 and Figure 37. As can 

be seen from Table 10, only classification accuracy from 3-feature LDA was independent 

of time; all results from the other three methods were affected by the order of the 

scenarios. 

Table 10. Summary of linear regression results for time-order classification accuracy 

 Coefficient p-value Inference 

3-feature LDA -0.386 0.136 Insignificant trend 

3-feature SVM -0.946 0.013 Significant decreasing trend 

Full-feature LDA -0.478 0.043 Significant decreasing trend 

Full-feature SVM -0.738 0.014 Significant decreasing trend 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 37. Line fit plot of classification accuracy from (a) 3-feature LDA (b) 3-feature SVM (c) 

full-feature LDA (d) full-feature SVM 

4.5 Modification of physiological classification method 

For statistical analysis, it can be noticed that there are some discrepancies among 

classification accuracies calculated from different methods. Firstly, in repeated measures 

of ANOVA, while there were significant differences among scenarios in terms of 
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classification accuracy calculated from 3-feature and full-feature SVM, there were no 

significant differences found among scenarios in terms of classification accuracy 

calculated from 3-feature and full-feature LDA. Secondly, in factorial analysis results of 

classification accuracy, only 3-feature LDA showed no significant effect of any factor or 

interaction on the response, while all the other three methods revealed that situation 

familiarity had a significant effect on physiological arousals. A similar situation happens 

in the results of the linear regression, where three methods (3-feaure SVM, full-feature 

LDA, and full-feature SVM) derived the same results of a significant decreasing trend, 

the 3-feature LDA’s results suggested that there was no trend. Finally, in terms of 

correlation analysis, physiological measures from LDA methods had no significant 

correlations with either performance or subjective ratings of stress, whereas, 

physiological measures from 3-feature SVM had a statistically significant correlation 

with subjective ratings of stress, and physiological measures from full-feature SVM had a 

statistically significant correlation with both performance scores and subjective ratings of 

stress. There was only one test where physiological measures from all methods derived 

similar results, which was the Tukey-test, where results from all physiological measuring 

methods show no significantly different pairs of scenarios. From the aforementioned 

discrepancies, one method should be selected for measuring physiological arousal as the 

most reliable one to continue discussing. In this case, a joint method was applied (Figure 

38). This method was validated by (Smets, et al., 2016; Xu, et al., 2015), indicating that 

because of the different response of each person to stress, then their data’s pattern varies 

from person to person and a classification method that best fits this person at this time 
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might not best fit him/her at another time, or a classification method that best fits one 

person might not work well when applied to another person. 

 

Figure 38. Modification of physiological classification method 

Following this method, the algorithms were combined into one where in every group 

of the cross-validation the adjusted accuracy was calculated by four algorithms and the 

best one was selected to contribute to the overall classification accuracy. The final results 

for physiological measures are provided in Figure 39 and Table 11. The average of 

classification accuracy across participants derived by this algorithm is between 79.6% 

and 84.5%, with mean 82.4% across scenarios. 
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Figure 39. Box plot for classification accuracy from the combined algorithm 

Table 11. Classification accuracy from the combined algorithm 

Subject Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

Scenario 

7 

Scenario 

8 

1 77.93 58.93 75.39 77.27 68.40 74.79 88.98 96.43 

2 98.84 93.27 92.83 88.83 99.18 90.14 90.21 92.08 

3 79.14 68.40 66.01 61.77 68.87 74.80 73.83 73.89 

4 84.02 73.18 86.78 90.95 88.02 88.48 84.34 92.38 

5 84.05 74.41 79.45 77.98 80.48 81.48 86.31 82.67 

6 78.57 87.53 87.94 87.36 87.28 78.49 92.85 83.88 

7 86.47 80.16 82.46 80.23 67.05 83.88 72.49 83.85 

8 88.91 93.26 81.45 88.85 96.33 73.25 75.23 82.68 

9 89.57 92.67 74.73 89.79 74.41 76.89 66.12 71.01 

10 91.39 79.82 76.15 92.62 67.54 85.53 83.99 76.80 

11 85.73 84.66 85.64 84.10 83.39 88.70 85.94 74.77 

12 82.70 76.07 72.37 87.70 56.72 97.22 83.87 85.23 

13 66.54 70.21 91.80 94.58 85.53 77.38 90.42 85.72 

14 69.88 83.06 79.84 80.73 82.98 76.36 95.15 75.61 

15 96.67 98.22 98.93 99.97 96.13 98.25 99.76 99.58 
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16 84.50 68.58 69.40 79.47 83.49 72.62 79.28 76.03 

17 91.65 81.08 70.62 97.28 75.28 87.47 93.42 76.57 

18 89.61 97.47 86.01 85.91 87.17 93.13 88.65 81.06 

19 97.34 94.22 94.15 99.98 97.79 99.11 99.62 100.00 

20 62.27 75.23 65.11 67.98 62.75 65.70 82.40 82.95 

21 78.56 80.34 79.73 93.30 78.48 91.77 90.19 87.43 

22 83.92 82.37 62.66 82.45 66.56 72.29 74.54 67.70 

23 77.03 81.64 65.62 76.92 86.32 79.02 91.45 82.53 

24 73.83 82.39 80.17 83.58 72.04 77.90 74.47 81.98 

25 66.38 84.83 74.24 77.12 62.72 84.98 71.00 69.03 

26 83.25 72.63 83.48 71.65 78.62 72.47 81.56 83.23 

27 89.53 66.61 65.12 74.76 69.75 89.30 71.12 99.47 

28 78.81 75.03 80.30 98.58 97.23 72.16 78.62 40.73 

29 86.90 83.31 89.03 83.30 69.89 80.46 83.27 83.83 

30 81.37 70.63 89.94 79.38 81.64 87.42 83.86 90.10 

31 80.10 81.07 86.82 75.93 73.30 72.14 68.85 83.97 

32 92.22 80.88 85.77 94.66 95.62 84.77 72.55 73.37 

33 83.43 84.57 86.05 91.62 69.82 91.79 83.34 81.65 

34 82.20 94.82 83.85 93.94 98.51 94.65 91.33 98.05 

35 77.03 76.59 95.55 72.89 65.58 85.98 94.52 84.40 

36 93.72 91.37 90.52 82.57 85.10 92.02 82.81 91.93 

37 85.21 70.54 77.16 80.13 69.56 90.29 80.70 81.78 

38 90.31 84.64 92.52 84.00 94.22 92.70 85.95 84.40 

Average 83.41 80.91 81.20 84.48 79.57 83.57 83.50 82.60 

Updated statistical analysis results for the measures of physiological arousals is 

presented in Table 12. 
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Table 12. Summary of results from statistical analysis of physiological changes calculated by the 

combined algorithm 

Measurement Significant 

difference 

among 

scenarios 

Number of 

significant 

different 

pairs from 

Tukey test 

Factor(s) 

had 

significant 

effect 

Significant 

correlation 

with 

Availability 

of time effect 

Physiological 

changes 

calculated from 

the combined 

algorithm 

No None Situation 

familiarity 

Subjective 

ratings of 

stress 

(marginally) 

Yes 

From repeated measures of ANOVA, the p-value was found to be 0.564, suggesting 

that there was no significant difference among scenarios in terms of participants’ 

physiological changes. Results from Tukey test are provided in Figure 40, indicating that 

there are no pairs of scenarios having a significant difference. Meanwhile, factorial 

analysis results suggested that situation familiarity is the only factor that had a significant 

effect on physiological measure (p-value = 0.0176). In addition, correlation analysis 

results show that physiological changes had no significant correlations with either 

performance scores (ρ = -0.251, p = 0.128) or subjective ratings of stress (ρ = 0.303, p = 

0.064). Linear regression results indicate that participants’ physiological changes were 

affected by time factor, with the classification accuracy decreasing over the course of the 

experiment (p-value = 0.045, see Figure 41 for regression plot). 
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Figure 40. Results from Tukey post-hoc test for comparing participant’s physiological changes 

among scenarios 

 

Figure 41. Regression plot of physiological changes in participants in time order 
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Chapter 5: Discussion 

In all scenarios, the classification accuracy of the ANS signals were significantly 

different from chance (mean 81.3%), indicating that all scenarios were effective in 

eliciting a physiological response. Furthermore, the classification accuracies were not 

correlated with performance scores (ρ = -0.251, p = 0.128), supporting the idea that this 

measure could provide results that performance scores alone do not reveal. This supports 

the hypothesis that was posed in the introduction: in training, especially in emergency 

situations, some people might derive the same results (performance scores), but their 

mental states during the situation might be different. From Figure 42(a) (scatter plot), 

most participants derived high performance in terms of scoring (mostly over 80%), but 

their physiological arousal levels vary over a wide range (from 68% to 99% of 

classification accuracy). Note that there are 38 data points in the figure. Those data points 

are the average of 8 data points from 8 scenarios for each participant. There are 

participants who had similar levels of physiological changes during training, but their 

performance was noticeably different. This is reasonable because it has been proved that 

high physiological arousals could mean either higher engagement in the environment or 

higher stress (Patton & Gamble, 2016; Lackey, et al., 2016; Bian, et al., 2015). While 

stress is related to a decrease in performance (Winslow, et al., 2015), environment 

engagement leads to better concentration, thus increasing the participant’s outcome 

(Patton & Gamble, 2016). 

Physiological arousal levels were marginally correlated to the results from subjective 

ratings of stress (ρ = 0.303, p = 0.064). As can be seen from Figure 42(b), there is a 
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pattern in the data, although not quite clear, suggesting there is a positive relation 

between subjective ratings of stress and physiological arousals measured objectively. 

This supports the claim that physiological measures can detect participants’ stress. 

 
(a) 

 
(b) 

Figure 42. Scatter plot of classification accuracy from physiological classification accuracy and 

(a) performance score (b) subjective ratings of stress 

Results from the factor analysis indicate that familiarity with the environment was the 

only factor that had a significant effect on the difficulty of the task and the user 

experience. This factor showed a significant effect on both the trainees’ performance 

scores (p < 0.0001 ) and their level of physiological arousal (p = 0.0176

), but not on the subjective ratings of stress. There were no significant 

interaction effects seen in any of the measures. Also, repeated measures of ANOVA 

showed significant differences in only the performance score (p = 6.04×10-7), further 

indicating that the scenarios are different in difficulty levels (measured by performance 

scores), but not in participants’ experiences (measured by physiological arousal). This 
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outcome re-assures us that physiological measures provide information about a scenario 

that may not be seen in performance scores. 

Although there was no significant difference in participants’ experiences on average 

(proved by repeated ANOVA results), there were differences in participants’ experiences 

individually. In other words, one participant might find a scenario more stressful than 

another, while another participant might find the opposite. For example, from Table 11, it 

can be seen that subject 1 had the physiological arousal level of approximately 59% for 

scenario 2, the lowest among other scenarios. Whereas, subject 9 found scenario 2 the 

most stressful compared to other scenarios, with 92.8% physiological arousal level. Or in 

another case, while participant 2 found scenario 6 the most stressful with 97.2% of 

physiological changes, participant 28 found it less stressful with only 72.2% of stress 

scale. Taking a closer look, it can be seen that participants’ physiological responses to a 

training scenario vary from one participant to another. Figure 43 depicts the histogram of 

the number of scenarios whose physiological changes are in certain ranges in each 

participant. It can be noticed that some participants have high stress levels in many of 

scenarios, while some other participants have the opposite pattern. This confirms that 

participants’ experiences were different from each other, although they did the same 

training scenario.  
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Figure 43. Histogram of number of scenarios whose physiological changes in certain ranges in 

each participant 

At the beginning of the experiment design, we predicted that all three performance 

shaping factors would have a significant effect on the responses.  However, the results 

showed that only familiarity with the environment significantly affected the participants’ 

performance and their level of physiological arousal or stress. There might be several 

reasons for this. For example, the gap between high and low levels of PSF 1 (quality of 

information received during scenario) and PSF 2 (proximity to hazard) may not have 
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been significant enough to make a difference, or those two factors might merely not be 

significant and should be ignored when designing training scenarios in the future. 

In the results from case 1 of k-means clustering, it could be noticed that baseline data 

disperse quite equally over four clusters, while scenarios’ data fluctuate from cluster to 

cluster (Figure 22). Another point to be noticed is that the boxes for baseline data are 

much smaller than the ones for scenario data, suggesting that baseline data do not vary as 

much as scenario data do over different participants (Figure 22). These two points 

support the idea that participants’ mental states are more stable during baseline sessions 

than during training sessions. Similarly, results from case 1 of Gaussian model clustering 

also show that the proportion of anomaly baseline data points varies slightly across 

different participants, while this amount varies much more in the case of scenario data 

(illustrated by a small box for baseline data and big boxes for scenario data in Figure 26). 

Other than this, there is no clear pattern seen from clustering results. 

Results from linear regression showed that there is a trend of physiological changes 

over the order of scenarios that participants did. This is a downward trend, indicating that 

participants’ mental states vary more in the first scenarios and became more stable when 

the session proceeded to the end. This could be explained by the fact that participants 

were calmer when they were familiar with the platform. This point could not be seen 

from performance score, which once again indicates the capability of physiological 

measures to reveal information of trainees’ experiences during a training session. 
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For the aforementioned points, an objective measure of stress like physiological 

arousal may be helpful in estimating participants’ feelings while in a VE- or simulation-

based training. For example, it could be used as an additional indicator of competency in 

the trained skills to complement the performance measure. In addition, such a measure 

could be a tool to evaluate a person’s capability to work offshore. For example, different 

participants could derive the same results in emergency scenarios in terms of 

performance; their stress levels, however, could be very different. As human failures are 

highly correlated to stress (Cohen, 1980; Hockey, 1997), trainees who are more prone to 

an increase in stress have the potential to perform worse in real conditions, where the 

emergency is real. Therefore, applying stress detection in training might be a solution for 

organizations who need to choose people with solid performance during critical 

situations. Finally, the physiological arousal measurement could also be incorporated into 

VR applications to monitor users’ feelings in real-time, allowing for modification of the 

scenarios accordingly to enhance each individual’s experience while using VR 

applications. 
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Chapter 6: Conclusions and Future Work 

6.1 Conclusions 

After applying physiological measurements to participants in 8 different VR-based 

emergency response training scenarios, it was found that although their performances 

were different among scenarios, their mental experiences were not. This information 

could be useful for those who design virtual scenarios for emergency training, especially 

if they want to create scenarios where trainees will experience different levels of stress 

(different levels of sense of emergency). Specifically, this study’s findings suggest that 

the scenario designers might need to increase the gaps between the high and low levels of 

the performance shaping factors, or use other factors in the design, in order to create 

different levels of sense of emergency for the training program. This would help trainees 

experience the training program with the difficulty levels from low to high, thus helping 

them to learn the emergency procedure from basic levels to advanced levels.  

In conclusion, classification accuracy between physiological data collected during a 

training scenario and that collected during baseline can be a useful measure of trainees’ 

experience in a given training scenario to complement performance measures, which is 

potentially useful for training program designers in designing the curriculum for VR-

based training programs. Furthermore, physiological signals may be more reliable 

indicators of stress than subjective ratings. The findings from this research might be 

useful in a number of applications. 
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6.2 Future Work 

It is necessary to conduct further research to distinguish between stress and 

engagement in participants’ physiological changes during virtual training, so that a clear 

relationship between performance and stress, and between performance and engagement 

could be found. In addition, during training sessions, the questionnaires should include 

both stress and engagement questions, thus providing more comprehensive responses 

from participants. 

Finally, experiments should be designed to be more different in terms of difficulty 

levels.  From this study’s findings, situation familiarity is a good factor to make scenarios 

different. The other two factors, which are proximity to hazard and information quality 

could either be designed to have bigger gaps between low level and high level, or 

replaced by other potential factors. 
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Appendices 

Appendix A: Recruiting information 

Consent Form (Moyle & Veitch, 2017) 

Informed Consent Form 

 

Title: Assessing Human Participants’ Response to an Emergency Situation Using a Virtual 

Environment as a Diagnostic Tool 

 

Researcher(s):  

Principle Investigators 

Dr. Brian Veitch 

Engineering and Applied Science 

MUN 

(709) 864-8970 

bveitch@mun.ca 

Ms. Allison Moyle  

Engineering and Applied Science 

MUN 

(709) 685-5793 

p13dabm@mun.ca  

Co-Investigators 

Ms. Jennifer Smith | Mr. Kyle Doody | 

Engineering and Applied Science 

(709) 864-6764 

jennifersmith@mun.ca | kdoody@mun.ca | 

 

Dr. Sarah Power 

Faculty of Engineering and Applied Science 

Faculty of Medicine 

(709) 864-8200 

b09sdp@mun.ca 

 

You are invited to take part in a research project entitled “Assessing human participants’ 

response to an emergency situation using a Virtual Environment as a diagnostic tool” 
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This form is part of the process of informed consent.  It should give you the basic idea of 

what the research is about and what your participation will involve.  It also describes your 

right to withdraw from the study and its risks and benefits to be able to make an informed 

decision.  .  Take time to read this carefully and to understand the information given to 

you.  Please contact the researcher, Allison Moyle , or co-investigator Jennifer Smith if 

you have any questions about the study or would like more information before you 

consent. Contact information is listed above.  

 

Introduction: 

We are an interdisciplinary research team consisting of faculty, staff, and students at 

Memorial University.  This research project is funded jointly by NSERC, Husky Energy 

and RDC. 

 

Purpose of study: 

This study will involve a Human Reliability Assessment (HRA) to assess human 

performance results in emergency scenarios using a virtual environment. As you have 

learned in the initial research study and the retention study, AVERT is a virtual 

environment program that enables users to learn basic offshore emergency response skills 

through a series of learning objectives, training materials, and evaluations. Training using 

AVERT is beneficial as it gives individuals access to realistic training scenarios that they 

wouldn’t be exposed to otherwise due to ethical, financial, and logistical constraints.  

 

The objective of this research is to determine if AVERT is an effective way to evaluate 

how people will react in an offshore safety emergency situation.  This will determine the 

usefulness of AVERT as a diagnostic tool to evaluate participant’s strengths and 

weaknesses in different evacuation conditions to suggest further training in order for an 

individual to become competent effectively.  

 

What you will do in this study: 

You will attend one session at the Virtual Environments (VE) Lab. You will be given an 

explanation of the experimental design, given an opportunity to ask questions or express 

concerns, and, if satisfied, will indicate your free and informed consent by completion of 

this Informed Consent form.   

 

Testing: 

Performance Shaping Factors (PSFs) contribute to an event in a positive or negative way 

and can increase or decrease human performance. PSFs have been incorporated into 
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various scenarios in high and low levels.  Scenarios will involve completing various tasks 

during an emergency situation using the knowledge you have gained during the AVERT 

training.   Participants will be asked to complete eight scenarios that will have different 

levels of PSFs.  

 

Collecting Physiology: 

Before starting the scenarios, you will have sensors applied to locations on the head, torso 

and hand.  A five-minute seated baseline of physiological signals will be collected prior 

to the start of each scenario.  You will be asked to refrain from exercise, smoking and 

caffeine for four hours prior to testing, to refrain from alcohol for 24 hours prior to 

testing, and not to have fasted for a period greater than 2 hours. You will also be asked to 

wear comfortable clothes.  

 

Length of time: 

You will be asked to attend one session. The total time to complete the session is 

expected to be 1-2 hours (depending on individual performance).  

 

Withdrawal from the study: 

If you decide to withdraw from the study, the information collected up to that time will 

be removed from the study.  This information will be destroyed and will not be included 

in the data analysis of the study.  

 

If you choose to withdraw from the study after data collection has ended, your data can 

be removed from the study up to two weeks after the completion of your participation. 

 

 

Possible benefits: 

There are no known direct benefits to the participants of this study. With regards to the 

community, the outcomes of this research may support efforts that improve training of 

maritime and offshore industry personnel, and thereby contribute to an improvement in 

the safety of those industries. 

 

The findings from this study will advance knowledge. Specifically, the findings will 

determine if a virtual environment can be used as a diagnostic tool for assessing 

performance during an offshore emergency situation.  The findings may also inform 

improvements to safety training that result in safer industry practices, which is a societal 

benefit. 
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Possible risks: 

If you are not comfortable with any aspect of the testing, then you have the right to 

withdraw from the study at any point.  

 

Navigation through the virtual space using a desktop computer configuration may cause 

some individuals to experience symptoms of visually induced motion sickness (VIMS) or 

simulator-induced sickness (SIS). The symptoms of simulator-induced sickness include 

fatigue, headache, eye strain, difficulty focusing, increased salivation, sweating, nausea, 

stomach awareness, blurred vision, dizziness, vertigo and burping. The symptoms of 

simulator sickness can sometimes occur during, immediately after or several hours after 

exposure to the simulator.  

 

To ensure you do not experience severe symptoms, simulator-induced sickness 

susceptibility will be assessed prior to the study and will be monitored throughout using 

the simulator sickness questionnaire (SSQ). The research coordinator will monitor you 

during the trials for symptoms and stop the trials if necessary. The simulator sickness 

questionnaire allows you to rate the severity of your symptoms as no symptoms, minimal, 

moderate and severe. A SSQ will be completed after the first four scenarios and again at 

the end of the scenario testing.  If you self-report a symptom as moderate, then the trials 

will be paused and you will be provided an extended rest period to allow symptoms to 

subside until you are able to proceed. If you report a symptom as severe, the trials will be 

stopped and you will be provided with a rest period until symptoms subside. Should any 

symptoms persist (beyond a period of 20 minutes), you will be excluded from the study.  

 

To reduce the effects of simulator-induced sickness, your exposure time to the virtual 

environment will be limited to a maximum of 10 minutes per scenario with time allocated 

for breaks in between scenarios to allow a period of rest. It may be unsafe to drive if 

symptoms persist after the rest period. If symptoms persist, arrangements will be made to 

take you home. Symptoms must subside before you are able to leave the experimental 

laboratory.  

 

Exposure to virtual reality may cause seizures for some individuals. Individuals who are 

prone to seizures or have a history of seizures will not be eligible to participate in the study. 

You will be monitored throughout the study to ensure you do not experience seizures. The 

research team will be trained in standard First Aid should a situation arise. 

 

 Exposure to a desktop computer screen may cause eye strain in some participants. Screen 

time exposure is minimal, and therefore there is minimal expected discomfort. The distance 
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from you to the screen will be selected such that it reduces the potential for eye strain and 

discomfort. Eye strain is expected to be not more than would be experienced during normal 

computer usage of the same duration.  

 

Electrodes/sensors will be applied at the following locations: hand and torso (rib caged 

area). While these are only applied to the skin, the conductive gel that is used to ensure 

signal quality, and tape that is used to secure the wires, may irritate sensitive skin. The 

application method employed in this study is common practice in research and clinical 

applications. Skin sensitivity will be assessed prior to the application of the sensors and 

should the skin become irritated to a point of discomfort you retain the right to withdraw. 

All efforts will be made to minimize the duration of skin exposure to the adhesive gel and 

tape. 

 

Performance in the virtual environment scenarios will be assessed repeatedly throughout 

the study. For some individuals, this may cause performance anxiety or stress which  may 

cause poor performance in the test scenarios. To reduce the likelihood of anxiety and stress,  

you will receive a break between stages to rest and be instructed not to worry or dwell on 

the previous testing scenarios.  

 

Some participants may experience embarrassment if they do not perform to their 

expectations during the test scenarios, experience simulator sickness, or when 

physiological sensors are applied to their torso. To reduce the likelihood of embarrassment, 

you will perform the task individually and are reminded that your performance in the 

virtual environment will be anonymous. The research team will reassure you that the 

purpose of the study is not to assess your ability but to assess the technology. 

 

Confidentiality and Anonymity: 

The ethical duty of confidentiality includes safeguarding participants’ identities, personal 

information, and data from unauthorized access, use, or disclosure. 

 

Protecting your privacy and maintaining confidentiality is an important goal of the 

research team. Every effort to protect your privacy will be made. However it cannot be 

guaranteed. For example we may be required by law to allow access to research records. 

 

When you sign this consent form you give us permission to  

• Collect information from you 

• Share information with the people conducting the study 

• Share information with the people responsible for protecting your safety  
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The members of the research team will see study records that identify you by name. 

Other people may need to look at the study records that identify you by name. This might 

include the research ethics board. They can look at your records only when one of the 

research team is present. 

 

Anonymity refers to protecting participants’ identifying characteristics, such as name or 

description of physical appearance. Protecting your privacy and ensuring all personal data 

recorded during participation remains anonymous is an important goal for the research 

team. You will not be required to attend group session during this study. All participation 

will be conducted individually. Every reasonable effort will be made to assure your 

anonymity. You will also not be identified in any reports or publications.   

 

Recording and Storage of Data: 

The research team will collect and use only the information they need for this research 

study. This information will include your: 

• date of birth 

• gender 

• performance metrics 

• physiological data 

• subjective assessments 

 

Performance metrics will be recorded electronically during computer-based activities: 

time to complete, route selection and errors. Physiological parameters will be collected to 

assess stress experienced during the test trials: heart rate (EKG), galvanic skin response, 

respiration rate and skin temperature. Your response to subjective assessments like the 

SSQ and PTQ will also be reviewed and assessed.    

 

Your name and contact information will be kept in a locked office on a password 

protected PC by the research team at MUN.  It will not be shared with others without 

your permission. You will receive an alphanumeric participant code. All information 

collected from you will be recorded with the participant code and you will not be 

identifiable in the documentation and data. Your name will not appear in any report or 

article published as a result of this study 

 

Information collected for this study will be kept for 5 years. Following this period, all 

electronic records of your participation will be permanently deleted and all paper files 

will be appropriately destroyed.   
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Reporting of Results: 

The research team intends to publish the findings of this study in peer reviewed journals 

and academic conferences.  Formal reports will be made available to the funding 

representatives. The data will be reported in a summarized statistical and descriptive 

form.  

 

 

Sharing of Results with Participants: 

On completion of data analysis, a report will be prepared for dissemination.  Participants 

who wish to be informed of the results will have the opportunity to receive a copy of the 

final report. 

 
 

ICEHR Statement: 

The proposal for this research has been reviewed by the Interdisciplinary Committee on 

Ethics in Human Research and found to be in compliance with Memorial University’s 

ethics policy.  If you have ethical concerns about the research, such as the way you have 

been treated or your rights as a participant, you may contact the Chairperson of the 

ICEHR at icehr@mun.ca or by telephone at 709-864-2861. 

 

Consent: 

Your signature on this form means that: 

• You have read the information about the research. 

• You have been able to ask questions about this study. 

• You are satisfied with the answers to all your questions. 

• You understand what the study is about and what you will be doing. 

• You understand that you are free to withdraw participation in the study without 

having to give a reason, and that doing so will not affect you now or in the future.   

• You understand that if you choose to end participation during data collection, any 

data collected from you up to that point will be destroyed. 

• You understand that if you choose to withdraw after data collection has ended, 

your data can be removed from the study up to two weeks after the completion of 

your participation. 
 

 

 

 I agree to having all of the following physiological parameters recorded during my 

participation in this study. 
  

  Heart Rate (EKG) 

 Galvanic Skin Response 

mailto:icehr@mun.ca
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 Skin Temperature 

 Respiration  

  
 

 I agree to the use of my responses to all questionnaires completed during my 

participation in this study. 
 

 

By signing this form, you do not give up your legal rights and do not release the 

researchers from their professional responsibilities. 

 

 

 

 

 

Your signature confirms:  

       I have read what this study is about and understood the risks and benefits.  I have 

had                adequate time to think about this and had the opportunity to ask 

questions and my questions have been answered. 

  I agree to participate in the research project understanding the risks and 

contributions of my participation, that my participation is voluntary, and that I 

may end my participation. 

 

      A copy of this Informed Consent Form has been given to me for my records. 

 

 

 _____________________________  _____________________________ 

Signature of participant     Date 

 

 

Researcher’s Signature: 

I have explained this study to the best of my ability.  I invited questions and gave 

answers.  I believe that the participant fully understands what is involved in being in the 

study, any potential risks of the study and that he or she has freely chosen to be in the 

study. 

 

 

______________________________  _____________________________ 

Signature of Principal Investigator    Date 
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Appendix B: Performance evaluation rubric 

The scoring rubric for the scenarios were based off the work presented in (Smith & 

Veitch, 2015). 

Table 13. Performance rubric for scenario 1 and 2 

Learning 

Objectives 

Specific 

Tasks 
Performance Measure Weighting 

LO1. Establish 

Spatial 

Awareness of 

Environment  

Identify 

Primary 

Muster 

Station 

Correct location 

See LO2 

LO2. Alarms 

Recognition: 

Understand role 

of alarms and 

urgency of 

situation  

Identify 

General 

Platform 

Alarm (GPA)  

Correct location (GPA = Mess Hall, PAPA = 

Lifeboat) 

25 25 

LO3. Routes and 

Mapping: 

Determine 

Primary and 

Alternative 

Routes to Muster 

Stations 

Accommodat

ion Cabin to 

Primary 

Muster 

Station  

Route selected (15 points primary; 7.5 

secondary; 0 lost or off route) 

15 

30 

 Primary 

Muster 

Station back 

to Cabin 

Route selected (15 points primary; 7.5 

secondary; 0 lost or off route) 

15 

LO5. Perform 

Muster Station 

Protocol and 

Individual 

Responsibilities 

Perform T-

Card 

Procedure at 

Muster 

Station 

Correct location + Move t-card correctly 

12.

5 
25 

  Un-muster 12.

5 
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LO6. Safe 

Practices 

Do not run on 

the platform 

Speed of trainee (% running) 
10 

25 

Recognize 

and Use Fire 

Doors & 

Water Tight 

Doors 

Number of fire/water tight doors left open 

(closed)  

15 

LO7. First 

Actions - Taking 

PPE from Cabin 

Know to 

locate and 

bring the 

following: 

Grab Bag and 

Immersion 

Suit 

Takes Grab Bag and Immersion Suit 

10 10 

    

Total 11

5 

11

5 
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Table 14. Performance rubric for scenario 3 

Learning 

Objectives 

Specific 

Tasks 
Performance Measure Weighting 

LO1. Establish 

Spatial 

Awareness of 

Environment  

Identify 

Primary 

Muster 

Station 

Correct location 

See LO2 

LO2. Alarms 

Recognition: 

Understand role 

of alarms and 

urgency of 

situation  

Identify 

General 

Platform 

Alarm (GPA)  

Correct location (GPA = Mess Hall, PAPA = 

Lifeboat) 

25 25 

LO3. Routes and 

Mapping: 

Determine 

Primary and 

Alternative 

Routes to Muster 

Stations 

Accommodat

ion Cabin to 

Primary 

Muster 

Station  

Route selected ( 

15 points primary; any other route = 0) 
15 

65 

Take safest 

route from 

primary 

Muster 

Station back 

to Cabin 

Route selected (second) and re-route in event 

of alarm change/ PA update 

10 

Listen to PA 

and avoid 

blocked 

routes 

Re-route in event of encounter hazard (most 

efficient route selected when re-routing) 10 

Avoid 

Exposure to 

Hazards 

along path 

Exposure to hazard = gas 

15 

Primary 

Muster 

Station back 

to Cabin 

Route selected (prim, second,) 15 

LO5. Perform 

Muster Station 

Protocol and 

Individual 

Responsibilities 

Perform T-

Card 

Procedure at 

Muster 

Station 

Correct location + Move t-card correctly 

12.

5 
25 

  Un-muster 12.

5 
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LO6. Safe 

Practices 

Do not run on 

the platform 

Speed of trainee (% running) 10 

25 
Recognize 

and Use Fire 

Doors & 

Water Tight 

Doors 

Number of fire/water tight doors left open 

(closed)  
15 

LO7. First 

Actions - Taking 

PPE from Cabin 

Know to 

locate and 

bring the 

following: 

Grab Bag and 

Immersion 

Suit 

Takes Grab Bag and Immersion Suit 

10 10 

    

Total 15

0 

15

0 
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Table 15. Performance rubric for scenario 4 and 6 

Learning 

Objectives 
Specific Tasks Performance Measure Weighting 

LO1. Establish 

Spatial 

Awareness of 

Environment  

Identify Primary Muster 

Station 

Correct location 
See 

LO2 

LO2. Alarms 

Recognition: 

Understand 

role of alarms 

and urgency of 

situation 

Identify General Platform 

Alarm (GPA)  

Correct location (GPA = Mess 

Hall) 
25 

50 

  
Identify PAPA  Correct location (PAPA = Lifeboat) 25 

LO3. Routes 

and Mapping: 

Determine 

Primary and 

Alternative 

Routes to 

Muster 

Stations 

Accommodation CCR to 

Primary Muster Station  

Route selected (15 points primary; 

7.5 secondary; 0 lost or off route) 

15 15 

LO5. Perform 

Muster Station 

Protocol and 

Individual 

Responsibilitie

s 

Perform T-Card Procedure 

at Muster Station 

Correct location + Move t-card 

correctly 12

.5 
25 

  

  Transfer to Lifeboat Station and 

muster at lifeboat 

12

.5 

LO6. Safe 

Practices 

Do not run on the platform Speed of trainee (% running) 10 

25 Recognize and Use Fire 

Doors & Water Tight Doors 

Number of fire/water tight doors 

left open (closed)  
15 

LO7. First 

Actions - 

Taking PPE 

from Cabin 

Know to locate and bring 

the following: Grab Bag 

and Immersion Suit  

Takes Grab Bag and Immersion 

Suit 
10 

15 

Don Immersion Suit at 

Lifeboat Station  

Put on Immersion Suit 5 

     Total 

13

0 

13

0 
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Table 16. Performance rubric for scenario 5 

Learning 

Objectives 

Specific 

Tasks 
Performance Measure Weighting 

LO1. Establish 

Spatial 

Awareness of 

Environment  

Identify 

Primary 

Muster 

Station 

Correct location 

See LO2 

LO2. Alarms 

Recognition: 

Understand role 

of alarms and 

urgency of 

situation  

Identify 

General 

Platform 

Alarm (GPA)  

Correct location (GPA = Mess Hall, PAPA = 

Lifeboat) 
25 25 

LO3. Routes and 

Mapping: 

Determine 

Primary and 

Alternative 

Routes to Muster 

Stations 

Accommodat

ion Cabin to 

Primary 

Muster 

Station  

Route selected (prime) & off route 

15 points primary; any other route = 0 
15 

55 

Listen to PA 

and avoid 

blocked 

routes 

Re-route in event of encounter hazard (most 

efficient route selected when re-routing)  10 

Avoid 

Exposure to 

Hazards 

along path 

Exposure to hazard = gas 

15 

 Primary 

Muster 

Station back 

to Cabin 

Route selected (prim, second,) 

15 

LO5. Perform 

Muster Station 

Protocol and 

Individual 

Responsibilities 

Perform T-

Card 

Procedure at 

Muster 

Station 

Correct location + Move t-card correctly 

12.

5 
25 

  Un-muster 12.

5 

LO6. Safe 

Practices 

Do not run on 

the platform 

Speed of trainee (% running) 10 

25 
Recognize 

and Use Fire 

Doors & 

Water Tight 

Doors  

Number of fire/water tight doors left open 

(closed)  15 
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LO7. First 

Actions - Taking 

PPE from Cabin 

Know to 

locate and 

bring the 

following: 

Grab Bag and 

Immersion 

Suit  

Takes Grab Bag and Immersion Suit 

10 10 

     Total 

14

0 

14

0 
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Table 17. Performance rubric for scenario 7 

Learning 

Objectives 
Specific Tasks Performance Measure Weighting 

LO1. Establish 

Spatial 

Awareness of 

Environment  

Identify Primary Muster 

Station 

Correct location 
See 

LO2 

LO2. Alarms 

Recognition: 

Understand 

role of alarms 

and urgency of 

situation 

Identify General Platform 

Alarm (GPA)  

Correct location (GPA = Mess 

Hall) 

25 

50 

  
Identify PAPA  Correct location (PAPA = Lifeboat) 25 

LO3. Routes 

and Mapping: 

Determine 

Primary and 

Alternative 

Routes to 

Muster 

Stations 

Accommodation CCR to 

Primary Muster Station  

Route selected (second) & off route 

15 points secondary; 0 all other 

routes 
15 

50 

Take safest route from 

primary Muster Station 

back to Cabin 

Route selected (primary) and re-

route in event of alarm change/ PA 

update 
10 

Listen to PA and avoid 

blocked routes 

Re-route in event of encounter 

hazard (most efficient route 

selected when re-routing) 

10 

Avoid Exposure to Hazards 

along path  

Exposure to hazard = gas 15 

LO5. Perform 

Muster Station 

Protocol and 

Individual 

Responsibilitie

s 

Perform T-Card Procedure 

at Muster Station 

Correct location + Move t-card 

correctly 
12

.5 
25 

  

  Transfer to Lifeboat Station and 

muster at lifeboat 

12

.5 

LO6. Safe 

Practices 

Do not run on the platform Speed of trainee (% running) 10 

25 
Recognize and Use Fire 

Doors & Water Tight Doors  

Number of fire/water tight doors 

left open (closed)  
15 

LO7. First 

Actions - 

Know to locate and bring 

the following: Grab Bag 

and Immersion Suit  

Takes Grab Bag and Immersion 

Suit 10 15 
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Taking PPE 

from Cabin 

Don Immersion Suit at 

Lifeboat Station 

Put on Immersion Suit 5 

     Total 

16

5 

16

5 

Table 18. Performance rubric for scenario 8 

Learning 

Objectives 
Specific Tasks Performance Measure Weighting 

LO1. Establish 

Spatial 

Awareness of 

Environment  

Identify Primary Muster 

Station 

Correct location 
See 

LO2 

LO2. Alarms 

Recognition: 

Understand 

role of alarms 

and urgency of 

situation 

Identify General Platform 

Alarm (GPA)  

Correct location (GPA = Mess 

Hall) 

25 

50 

  
Identify PAPA  Correct location (PAPA = Lifeboat) 25 

LO3. Routes 

and Mapping: 

Determine 

Primary and 

Alternative 

Routes to 

Muster 

Stations 

Accommodation CCR to 

Primary Muster Station  

Route selected (primary) & off 

route 

15 points primary; 0 all other routes 

15 

40 

  

Listen to PA and avoid 

blocked routes 

Re-route in event of encounter 

hazard (most efficient route 

selected when re-routing)  

10 

  
Avoid Exposure to Hazards 

along path  

Exposure to hazard = gas 15 

LO5. Perform 

Muster Station 

Protocol and 

Individual 

Responsibilitie

s 

Perform T-Card Procedure 

at Muster Station 

Correct location + Move t-card 

correctly 
12

.5 
25 

  

  Transfer to Lifeboat Station and 

muster at lifeboat 

12

.5 

Do not run on the platform Speed of trainee (% running) 10 25 
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LO6. Safe 

Practices 

Recognize and Use Fire 

Doors & Water Tight Doors  

Number of fire/water tight doors 

left open (closed)  
15 

LO7. First 

Actions - 

Taking PPE 

from Cabin 

Know to locate and bring 

the following: Grab Bag 

and Immersion Suit  

Takes Grab Bag and Immersion 

Suit 10 

15 

Don Immersion Suit at 

Lifeboat Station  

Put on Immersion Suit 5 

     Total 

15

5 

15

5 
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Appendix C: Detailed results 

C.1 Performance Scores data 

Table 19. Performance scores results for scenario 1 

No. Alarm 

Select 

Route  

(muster) 

Select 

Route (return 

to cabin) 

Register 

at TSR 

Un-Register 

at TSR 

Takes 

Equip 

Not 

Running 

Closing 

Doors 

Total 

Score 
% 

1 25 7.5 15 12.50 12.50 10 10 15 107.5 93 

2 25 7.5 15 12.50 12.50 10 10 15 107.5 93 

3 25 15 15 12.50 12.50 10 10 15 115 100 

4 25 15 15 12.50 12.50 10 10 0 100 87 

5 25 15 15 12.50 12.50 10 10 15 115 100 

6 25 15 15 12.50 12.50 10 10 15 115 100 

7 25 15 15 12.50 12.50 10 10 15 115 100 

8 25 15 15 12.50 12.50 10 10 15 115 100 

9 25 7.5 15 12.50 12.50 10 10 15 107.5 93 

10 25 15 15 12.50 12.50 10 10 15 115 100 

11 25 15 15 12.50 12.50 10 10 15 115 100 

12 25 15 15 12.50 12.50 10 10 15 115 100 

13 25 15 15 12.50 12.50 10 10 15 115 100 

14 25 15 15 12.50 12.50 10 10 15 115 100 

15 25 15 0 12.50 12.50 10 10 15 100 87 

16 25 15 15 12.50 12.50 10 10 15 115 100 
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17 25 15 15 12.50 12.50 10 10 15 115 100 

18 25 15 0 12.50 12.50 10 10 15 100 87 

19 25 7.5 15 12.50 12.50 10 10 15 107.5 93 

20 25 15 15 12.50 12.50 10 10 15 115 100 

21 25 15 15 12.50 12.50 10 10 15 115 100 

22 25 15 15 12.50 12.50 10 10 15 115 100 

23 25 15 15 12.50 12.50 10 10 15 115 100 

24 25 15 15 12.50 12.50 10 10 15 115 100 

25 25 15 15 12.50 12.50 10 10 15 115 100 

26 25 7.5 15 12.50 12.50 10 10 15 107.5 93 

27 25 15 15 12.50 12.50 10 10 15 115 100 

28 25 7.5 15 12.50 12.50 10 10 15 107.5 93 

29 25 15 15 12.50 12.50 10 10 15 115 100 

30 25 7.5 15 12.50 12.50 10 10 15 107.5 93 

31 25 15 15 12.50 12.50 10 10 15 115 100 

32 25 7.5 15 12.50 12.50 10 10 15 107.5 93 

33 25 15 15 12.50 12.50 10 10 15 115 100 

34 25 15 15 12.50 12.50 10 10 15 115 100 

35 25 15 15 12.50 12.50 10 10 15 115 100 

36 25 15 15 12.50 12.50 10 10 15 115 100 

37 25 15 15 12.50 12.50 10 10 15 115 100 

38 25 15 15 12.50 12.50 10 10 15 115 100 
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Table 20. Performance scores results for scenario 2 

No. Alarm 

Select 

Route  

(muster) 

Select 

Route (return 

to cabin) 

Register 

at TSR 

Un-Register 

at TSR  

Takes 

Equip 

Not 

Running 

Closing 

Doors 

Total 

Score 
% 

1 25 15 15 12.50 12.50 10 10 15 115 100 

2 25 15 15 12.50 12.50 10 10 15 115 100 

3 25 15 15 12.50 12.50 10 10 15 115 100 

4 25 15 15 12.50 12.50 10 10 15 115 100 

5 25 15 15 12.50 12.50 10 10 15 115 100 

6 25 15 15 12.50 12.50 10 10 15 115 100 

7 25 15 15 12.50 12.50 10 10 15 115 100 

8 25 15 15 12.50 12.50 10 10 15 115 100 

9 25 15 15 12.50 12.50 10 10 15 115 100 

10 25 15 15 12.50 12.50 10 10 15 115 100 

11 25 15 15 12.50 12.50 10 10 15 115 100 

12 25 15 15 12.50 12.50 10 10 15 115 100 

13 25 15 15 12.50 12.50 10 10 15 115 100 

14 25 15 15 12.50 12.50 10 10 15 115 100 

15 25 15 15 12.50 12.50 10 10 15 115 100 

16 25 15 15 12.50 12.50 10 10 15 115 100 

17 25 15 15 12.50 12.50 10 10 15 115 100 

18 25 15 15 12.50 12.50 10 10 15 115 100 

19 25 15 15 12.50 12.50 10 10 15 115 100 
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20 25 15 15 12.50 12.50 10 10 15 115 100 

21 25 15 15 12.50 12.50 10 10 15 115 100 

22 25 15 15 12.50 12.50 10 10 15 115 100 

23 25 15 15 12.50 12.50 10 10 15 115 100 

24 25 15 15 12.50 12.50 10 10 15 115 100 

25 25 15 15 12.50 12.50 10 10 15 115 100 

26 25 15 15 12.50 12.50 10 10 15 115 100 

27 25 15 15 12.50 12.50 10 10 15 115 100 

28 25 15 15 12.50 12.50 10 10 15 115 100 

29 25 15 15 12.50 12.50 10 10 15 115 100 

30 25 15 15 12.50 12.50 10 10 15 115 100 

31 25 15 15 12.50 12.50 10 10 0 100 87 

32 25 15 15 12.50 12.50 10 10 15 115 100 

33 0 15 15 12.50 0.00 10 10 15 77.5 67 

34 25 15 15 12.50 12.50 10 10 15 115 100 

35 25 15 15 12.50 12.50 10 10 15 115 100 

36 25 15 15 12.50 12.50 10 10 15 115 100 

37 25 7.5 15 12.50 12.50 10 10 15 107.5 93 

38 25 15 15 12.50 12.50 10 10 15 115 100 
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Table 21. Performance scores for scenario 3 

No. Alarm 

Select 

Route  

(muster) 

Re- 

route  

alarm 

changes 

Re-route  

encounter 

hazard 

Avoid 

Hazard 

Select 

Route 

(return to 

cabin) 

Register 

at TSR 

Un-

Register 

at TSR  

Takes 

Equip 

Not 

Running 

Closing 

Doors 

Total 

Score 
% 

1 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

2 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

3 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

4 0 0 0 10 15 0 0.00 0.00 0 10 15 50 33 

5 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

6 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

7 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

8 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

9 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

10 25 0 0 10 15 0 12.50 12.50 10 10 15 110 73 

11 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

12 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

13 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

14 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

15 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

16 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

17 25 0 0 10 15 15 12.50 12.50 0 10 15 115 77 

18 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 
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19 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

20 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

21 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

22 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

23 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

24 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

25 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

26 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

27 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

28 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

29 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

30 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

31 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

32 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

33 0 0 0 0 0 0 12.50 0.00 10 10 15 47.5 32 

34 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

35 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

36 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

37 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 

38 25 15 10 10 15 15 12.50 12.50 10 10 15 150 100 
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Table 22. Performance scores for scenario 4 

No. Alarm 

Identify 

PAPA 

(Lifeboat 

muster) 

Select Route 

(muster) 

Register at 

TSR 

Register at 

lifeboat 

Put on 

Immersion 

suit 

Takes 

Equip 

Not 

Running 

Closing 

Doors 

Total 

Score 
% 

1 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

2 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

3 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

4 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

5 25 25 15 12.50 12.50 5 10 10 15 130 100 

6 25 25 15 12.50 12.50 5 10 10 15 130 100 

7 0 0 0 0.00 0.00 0 0 10 15 25 19 

8 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

9 25 25 15 12.50 12.50 5 0 10 0 105 81 

10 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

11 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

12 25 25 7.5 12.50 12.50 5 10 10 0 107.5 83 

13 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

14 25 25 15 12.50 12.50 5 10 10 15 130 100 

15 25 25 15 12.50 12.50 5 10 0 0 105 81 

16 25 25 7.5 12.50 12.50 0 10 0 15 107.5 83 

17 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

18 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 
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19 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

20 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

21 25 25 7.5 12.50 12.50 0 0 10 15 107.5 83 

22 25 25 15 12.50 12.50 5 10 10 15 130 100 

23 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

24 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

25 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

26 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

27 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

28 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

29 25 25 7.5 12.50 12.50 0 0 10 15 107.5 83 

30 25 25 7.5 12.50 12.50 0 0 10 15 107.5 83 

31 25 25 7.5 12.50 12.50 5 0 10 15 112.5 87 

32 0 0 0 0.00 0.00 0 0 10 15 25 19 

33 25 25 15 12.50 12.50 0 0 10 15 115 88 

34 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

35 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

36 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

37 25 25 15 12.50 12.50 5 10 10 15 130 100 

38 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 
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Table 23. Performance score for scenario 5 

No. Alarm 

Select 

Route 

(muster) 

Re-route 

when 

encounter 

hazard 

Avoid 

Hazard 

Select Route 

(return to 

cabin) 

Register at 

TSR 

Un-register at 

TSR 

Takes 

Equip 

Not 

Running 

Closing 

Doors 

Total 

Score 
% 

1 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

2 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

3 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

4 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

5 25 15 10 15 8 12.50 12.50 10 10 15 132.5 95 

6 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

7 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

8 25 15 10 15 8 12.50 12.50 10 10 15 132.5 95 

9 25 15 10 15 8 12.50 12.50 10 10 15 132.5 95 

10 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

11 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

12 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

13 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

14 25 15 10 15 8 12.50 12.50 10 10 15 132.5 95 

15 25 15 10 15 8 12.50 12.50 10 10 15 132.5 95 

16 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

17 25 15 10 15 8 12.50 12.50 10 10 15 132.5 95 

18 25 15 10 15 15 12.50 0.00 10 10 15 127.5 91 
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19 25 15 10 15 0 12.50 12.50 10 10 15 125 89 

20 25 15 10 15 8 12.50 12.50 10 10 15 132.5 95 

21 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

22 25 15 10 15 8 12.50 12.50 10 10 15 132.5 95 

23 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

24 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

25 25 15 10 15 8 12.50 12.50 10 10 15 132.5 95 

26 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

27 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

28 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

29 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

30 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

31 25 15 10 15 8 12.50 12.50 10 10 15 132.5 95 

32 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

33 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

34 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

35 25 0 10 15 15 12.50 12.50 10 10 15 125 89 

36 25 15 10 15 0 12.50 12.50 10 10 15 125 89 

37 25 15 10 15 15 12.50 12.50 10 10 15 140 100 

38 25 15 10 15 8 12.50 12.50 10 10 15 132.5 95 
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Table 24. Performance scores for scenario 6 

No. Alarm 

Identify PAPA 

(Lifeboat 

muster) 

Route 

Selected 

(muster) 

Register at 

TSR 

Register at 

Lifeboat 

Put on 

Immersion 

suit 

Takes 

Equip 

Not 

Running 

Closing 

Doors 

Total 

Score 
% 

1 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

2 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

3 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

4 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

5 25 25 15 12.50 12.50 5 10 10 15 130 100 

6 25 25 15 12.50 12.50 5 10 0 15 120 92 

7 25 25 7.5 12.50 12.50 5 0 10 15 112.5 87 

8 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

9 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

10 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

11 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

12 25 25 7.5 12.50 12.50 5 10 10 0 107.5 83 

13 25 25 15 12.50 12.50 5 10 10 15 130 100 

14 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

15 25 25 15 12.50 12.50 5 10 10 15 130 100 

16 0 0 0 0.00 0.00 0 0 10 15 25 19 

17 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

18 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 
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19 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

20 25 25 7.5 12.50 12.50 5 10 10 0 107.5 83 

21 25 25 7.5 12.50 12.50 5 0 10 15 112.5 87 

22 25 25 15 12.50 12.50 5 10 10 15 130 100 

23 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

24 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

25 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

26 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

27 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

28 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

29 25 25 7.5 12.50 12.50 5 0 10 15 112.5 87 

30 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

31 25 25 7.5 12.50 12.50 5 0 10 15 112.5 87 

32 0 0 0 0.00 0.00 0 0 10 15 25 19 

33 25 25 15 12.50 12.50 5 10 10 15 130 100 

34 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

35 25 0 7.5 12.50 0.00 0 0 10 15 70 54 

36 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 

37 25 25 7.5 12.50 12.50 0 10 10 15 117.5 90 

38 25 25 7.5 12.50 12.50 5 10 10 15 122.5 94 
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Table 25. Performance scores for scenario 7 

No. Alarm 

Identify 

PAPA 

(Lifeboat 

muster) 

Select 

Route 

(muster) 

Re-

Route  

alarm 

changes 

Re-route  

encounter 

hazard 

Avoids 

Hazard 

Register 

at TSR 

Register 

at 

lifeboat 

Put on 

immersion 

suit 

Takes 

Equip 

Not 

Running 

Closing 

Doors 

Total 

Score 
% 

1 25 25 15 0 10 15 12.50 12.50 5 10 10 15 155 94 

2 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

3 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

4 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

5 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

6 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

7 25 25 0 10 10 15 12.50 12.50 5 0 10 15 140 85 

8 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

9 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

10 25 25 15 10 10 15 12.50 12.50 5 10 10 0 150 91 

11 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

12 25 25 15 10 10 15 12.50 12.50 5 10 10 0 150 91 

13 25 25 0 0 10 15 12.50 12.50 5 10 10 15 140 85 

14 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

15 25 25 0 0 10 15 12.50 12.50 5 10 10 15 140 85 

16 0 0 0 0 10 15 0.00 0.00 0 0 10 15 50 30 

17 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 
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18 25 25 15 10 10 15 12.50 12.50 5 10 10 0 150 91 

19 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

20 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

21 25 25 0 10 10 15 12.50 12.50 5 0 10 15 140 85 

22 25 25 0 0 10 15 12.50 12.50 5 10 10 15 140 85 

23 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

24 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

25 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

26 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

27 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

28 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

29 25 25 0 10 10 15 12.50 12.50 5 0 10 15 140 85 

30 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

31 25 25 0 10 10 15 12.50 12.50 5 0 10 15 140 85 

32 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

33 25 25 0 0 10 15 12.50 12.50 5 10 10 15 140 85 

34 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

35 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

36 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 

37 25 25 0 0 10 15 12.50 12.50 5 10 10 15 140 85 

38 25 25 15 10 10 15 12.50 12.50 5 10 10 15 165 100 
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Table 26. Performance scores for scenario 8 

No. Alarm 

Identify 

PAPA 

(Life boat 

muster) 

Select 

Route 

(muster) 

Re-route 

when 

encounter 

hazard 

Avoids 

Hazard 

Register 

at TSR 

Register at 

lifeboat 

Put on 

immersion 

suit 

Takes 

Equip 

Not  

Running 

Closing 

Doors 

Total 

Score 
% 

1 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

2 25 25 0 10 15 12.50 12.50 5 10 10 0 125 81 

3 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

4 0 0 0 0 15 0.00 0.00 0 0 10 0 25 16 

5 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

6 25 25 15 10 15 12.50 12.50 5 10 10 15 155 100 

7 25 25 0 10 15 12.50 12.50 5 0 10 15 130 84 

8 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

9 25 25 0 10 15 12.50 12.50 5 0 10 15 130 84 

10 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

11 0 0 0 0 15 0.00 0.00 0 0 10 15 40 26 

12 25 25 0 10 15 12.50 12.50 5 10 10 0 125 81 

13 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

14 25 25 15 10 15 12.50 12.50 5 10 10 15 155 100 

15 25 25 15 10 15 12.50 12.50 5 10 10 15 155 100 

16 0 0 0 10 15 0.00 0.00 0 0 10 15 50 32 

17 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 
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18 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

19 0 0 0 0 0 0.00 0.00 0 0 10 15 25 16 

20 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

21 25 25 0 10 15 12.50 12.50 5 0 10 15 130 84 

22 25 25 15 10 15 12.50 12.50 5 10 10 15 155 100 

23 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

24 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

25 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

26 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

27 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

28 25 25 15 10 15 12.50 12.50 5 10 10 15 155 100 

29 25 25 0 10 15 12.50 12.50 5 0 10 15 130 84 

30 25 25 0 0 0 12.50 12.50 5 10 10 15 115 74 

31 25 25 0 10 15 12.50 12.50 5 0 10 15 130 84 

32 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

33 25 25 15 10 15 12.50 12.50 5 10 10 15 155 100 

34 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 

35 25 25 0 10 15 12.50 12.50 0 0 10 15 125 81 

36 0 0 7.5 10 15 0.00 0.00 0 0 10 15 57.5 37 

37 25 25 15 10 15 12.50 12.50 5 10 10 15 155 100 

38 25 25 0 10 15 12.50 12.50 5 10 10 15 140 90 
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C.2 Physiological measures 

C.2.1 Classification results 

Table 27. Classification with LDA, with greedy search algorithm using to select features 

Subject No. Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 

1 78.8 56.7 77.0 75.1 63.7 76.5 88.8 97.2 

2 98.9 89.6 87.8 75.8 99.8 88.8 87.1 93.0 

3 78.1 69.6 68.6 64.2 65.5 74.5 75.8 74.6 

4 82.6 63.4 87.0 91.9 85.7 87.5 81.8 87.6 

5 86.9 74.7 82.8 74.2 76.0 82.8 79.0 81.7 

6 81.2 89.2 89.2 87.7 89.2 78.7 93.3 86.1 

7 87.7 83.1 80.4 75.4 65.2 84.1 73.9 84.3 

8 87.9 94.9 83.9 88.1 96.0 70.7 77.4 84.1 

9 92.7 89.7 77.0 90.1 75.9 77.3 64.2 63.0 

10 92.9 83.6 75.8 94.4 67.9 84.7 85.6 76.2 

11 86.0 87.7 83.7 79.8 83.4 84.0 85.1 71.1 

12 83.0 75.0 69.2 88.6 57.8 96.7 82.3 87.4 

13 69.7 70.3 93.3 95.3 86.6 73.0 91.1 80.7 

14 73.9 84.3 83.8 79.0 85.2 72.4 92.8 78.2 

15 96.7 98.3 99.1 100.0 95.8 98.1 99.8 99.7 

16 80.4 61.5 68.1 73.3 74.6 70.4 71.4 72.7 
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17 88.1 79.5 70.4 94.1 74.5 88.1 91.4 73.8 

18 90.9 98.9 88.1 87.6 89.1 88.6 89.8 79.8 

19 97.6 93.7 93.1 100.0 98.2 99.1 99.7 100.0 

20 62.5 78.6 65.1 63.6 60.9 60.5 82.0 80.3 

21 79.9 79.4 81.1 91.6 70.5 84.0 89.7 88.6 

22 79.3 84.6 61.3 79.7 63.0 74.0 72.2 65.7 

23 79.6 77.2 66.6 76.7 88.2 78.3 90.2 83.2 

24 66.7 82.7 81.8 84.3 71.7 71.5 75.5 68.6 

25 68.4 87.2 71.6 77.7 68.8 86.4 72.8 68.5 

26 83.0 73.0 84.6 70.9 79.9 69.8 79.8 73.8 

27 91.0 65.6 61.2 72.5 70.6 88.9 72.4 99.4 

28 78.2 72.2 75.2 99.2 96.8 71.2 66.3 36.8 

29 84.4 85.6 90.9 81.3 66.3 80.6 82.9 86.6 

30 81.2 71.3 89.8 76.8 81.0 76.0 86.5 84.7 

31 71.3 76.5 85.5 69.6 67.2 75.5 64.8 86.5 

32 84.3 75.1 77.3 95.0 94.9 82.3 74.7 72.3 

33 81.9 83.9 82.2 91.4 58.8 92.2 79.5 75.8 

34 82.8 94.4 84.9 95.2 98.7 95.1 90.9 98.3 

35 75.8 70.5 93.0 69.8 67.5 84.1 94.2 76.5 

36 90.4 92.4 93.5 82.2 76.8 91.9 82.7 88.0 

37 87.3 67.6 78.8 77.9 68.7 83.6 75.8 78.5 

38 92.6 86.3 91.7 85.7 94.8 90.2 86.2 87.5 
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Average 83.02 80.20 80.91 83.04 78.29 81.89 82.35 80.80 

 

Table 28. Classification with SVM, with greedy search algorithm using to select features 

Subject No. Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 

1 50.7 50.0 57.9 54.7 50.2 61.5 73.3 96.9 

2 99.4 60.8 79.7 62.7 99.6 82.7 81.8 90.5 

3 80.7 50.0 53.0 49.5 63.9 68.6 65.3 78.7 

4 82.3 56.2 85.8 91.3 85.3 84.3 84.0 89.1 

5 62.2 49.9 54.9 70.6 59.9 74.3 81.8 77.3 

6 76.8 87.1 86.0 78.5 85.9 79.4 93.7 84.7 

7 80.0 54.8 76.6 76.3 56.4 83.9 73.6 85.4 

8 73.6 84.5 77.9 89.4 96.7 58.1 65.5 61.1 

9 69.5 96.1 61.3 91.8 76.8 68.4 55.9 50.3 

10 74.3 72.2 63.7 83.7 62.8 75.5 80.0 70.0 

11 84.2 83.2 84.1 81.6 85.4 85.2 84.6 70.3 

12 78.7 61.9 50.0 88.9 50.0 98.6 84.3 85.5 

13 51.9 50.0 94.0 94.8 87.7 66.4 90.4 74.5 

14 52.5 86.6 79.1 82.7 73.9 70.8 96.7 69.2 

15 96.7 99.1 98.9 100.0 95.7 98.5 99.8 88.5 

16 82.1 50.0 68.5 75.2 69.5 68.2 68.8 70.3 

17 85.3 64.7 61.3 94.2 73.5 80.0 87.1 71.8 
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18 75.0 97.2 79.9 81.9 67.2 88.7 89.1 71.0 

19 98.2 94.7 93.7 100.0 98.2 99.1 100.0 100.0 

20 49.9 50.6 50.0 52.3 54.6 50.8 81.0 78.3 

21 69.7 61.8 59.9 92.2 61.2 85.6 90.6 90.0 

22 54.4 73.0 50.0 78.4 53.1 64.2 60.3 50.0 

23 60.8 74.5 50.0 75.4 88.0 78.6 91.8 85.6 

24 58.3 76.8 65.9 83.6 61.0 52.8 69.0 59.3 

25 64.2 87.1 52.6 52.2 49.6 85.9 57.1 67.3 

26 84.3 50.0 70.9 56.7 55.3 59.8 57.2 68.9 

27 61.5 50.1 49.6 56.4 56.6 83.1 68.5 99.0 

28 50.7 56.1 57.0 99.6 98.3 68.7 54.2 37.7 

29 88.2 78.4 80.3 75.8 54.4 79.4 84.0 78.1 

30 80.5 50.6 91.3 75.5 79.8 72.3 87.9 85.9 

31 50.6 50.2 88.7 67.2 59.3 66.2 62.6 72.4 

32 79.1 53.0 52.0 93.0 97.2 83.5 67.2 66.2 

33 54.3 84.2 85.0 92.4 58.0 93.6 79.3 76.7 

34 78.4 95.3 85.3 94.8 98.7 94.8 88.0 98.6 

35 67.7 52.4 91.7 67.0 57.7 86.8 73.1 75.3 

36 88.5 91.6 89.2 81.4 76.8 91.2 85.0 87.5 

37 67.9 50.1 50.0 66.1 56.5 83.6 80.0 73.1 

38 87.3 80.6 92.6 85.6 94.8 91.0 86.2 85.4 

Average 72.37 68.82 71.54 78.76 72.36 78.01 78.38 76.85 
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Table 29. Classification by LDA, with full features 

Subject No. Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 

1 81.17 68.11 79.82 82.43 71.84 78.56 92.09 94.67 

2 97.77 94.62 95.96 91.32 99.01 92.99 95.61 95.34 

3 80.92 70.80 67.04 62.40 72.37 78.39 75.82 77.85 

4 87.11 76.91 90.58 94.05 89.35 87.53 88.25 95.33 

5 84.63 76.79 78.52 81.21 85.07 85.46 87.98 86.32 

6 81.24 88.81 90.84 88.93 89.03 79.58 91.45 82.98 

7 89.60 77.97 87.16 84.12 70.20 86.11 74.72 86.89 

8 90.61 95.28 83.00 88.45 98.47 77.88 77.81 83.88 

9 87.20 88.53 72.82 90.56 72.45 80.92 70.60 70.87 

10 88.69 76.10 80.83 95.34 72.16 86.08 81.78 80.32 

11 88.15 82.61 90.47 82.67 86.28 87.69 88.52 76.03 

12 87.24 72.15 70.39 89.31 60.88 95.57 85.70 86.08 

13 67.97 72.87 89.95 91.00 86.45 81.07 93.59 89.04 

14 69.77 87.04 78.37 81.45 84.15 79.85 92.61 74.94 

15 97.39 98.05 97.87 99.78 97.72 98.85 98.47 98.95 

16 88.88 73.20 69.55 78.70 87.35 76.47 76.70 79.18 

17 94.07 86.65 73.16 99.05 79.73 87.40 96.90 81.12 

18 89.08 98.24 82.12 86.06 83.78 96.07 91.31 84.97 

19 96.87 95.10 96.84 99.41 98.60 98.39 98.73 100.00 

20 62.02 75.84 67.08 63.51 63.02 68.31 83.44 85.25 
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21 81.54 84.08 84.10 94.20 82.87 92.05 88.35 85.88 

22 89.33 81.79 67.21 87.13 70.69 66.01 79.03 70.93 

23 79.91 86.56 68.09 77.28 88.76 80.25 93.55 82.45 

24 79.55 87.59 83.59 84.85 74.76 82.62 75.79 85.80 

25 66.31 86.50 78.62 77.27 61.38 86.92 71.05 74.59 

26 84.75 76.83 86.56 76.08 81.48 75.72 82.79 84.88 

27 86.20 71.25 71.53 79.64 72.42 93.13 74.65 99.02 

28 80.74 79.10 83.43 96.18 94.62 76.88 83.21 24.17 

29 88.83 85.86 85.46 86.87 73.94 80.25 83.85 84.14 

30 83.90 71.64 89.69 81.48 85.76 90.66 83.58 93.38 

31 84.17 80.39 88.55 80.84 77.38 74.19 67.54 81.07 

32 94.02 86.57 89.17 95.02 93.22 87.10 74.59 74.17 

33 87.21 84.06 83.18 93.47 73.17 83.70 82.62 79.70 

34 83.89 92.76 85.71 92.93 97.15 94.96 93.67 97.71 

35 80.27 83.25 97.81 77.72 68.38 88.33 95.18 87.33 

36 96.49 88.78 87.24 82.15 86.87 94.94 84.67 92.18 

37 85.66 74.65 79.00 83.25 70.97 91.71 80.88 84.08 

38 92.76 86.86 95.89 83.01 93.82 95.28 89.11 84.51 

Average 85.16 82.74 82.82 85.77 81.46 85.21 84.90 83.58 
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Table 30. Classification by SVM, with full features 

Subject No. Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 

1 75.04 50.00 67.67 78.19 53.56 68.69 84.60 85.62 

2 97.21 72.04 89.76 79.11 96.46 84.84 87.87 90.81 

3 78.89 55.11 58.81 51.85 61.17 68.52 73.92 74.88 

4 85.45 70.63 89.22 90.38 90.52 92.44 86.15 90.98 

5 74.58 78.97 72.60 80.99 77.10 75.03 88.29 84.58 

6 69.58 87.22 89.52 84.10 85.18 81.21 93.38 85.81 

7 75.23 68.53 82.01 82.23 67.91 82.79 73.60 82.52 

8 82.44 89.44 80.23 90.33 97.96 75.86 67.49 80.23 

9 69.76 87.32 74.79 91.79 74.45 75.30 62.98 75.65 

10 78.05 72.08 59.90 89.81 69.30 88.35 74.23 76.90 

11 88.00 81.76 87.19 87.66 85.08 91.21 89.02 78.82 

12 85.31 80.07 59.50 87.44 54.00 95.23 85.93 87.37 

13 60.93 58.30 89.81 91.30 80.43 71.82 88.74 86.04 

14 55.43 83.08 77.01 81.51 83.41 78.35 92.51 71.40 

15 97.23 92.10 95.82 98.65 95.23 97.57 97.34 95.40 

16 78.57 59.93 72.37 84.37 82.62 73.82 78.85 77.42 

17 87.40 66.31 70.40 97.10 69.72 76.97 93.49 76.01 

18 83.31 97.23 74.63 87.13 75.73 93.22 87.09 82.45 

19 98.66 96.07 96.12 99.50 97.42 98.38 99.42 99.93 

20 55.31 69.33 56.40 73.32 65.21 67.77 85.22 84.64 
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21 74.03 63.73 69.52 94.08 73.34 93.58 86.38 87.07 

22 56.98 80.19 49.79 76.65 63.29 64.04 67.85 50.93 

23 72.14 80.18 60.95 81.01 85.49 82.59 92.41 83.78 

24 58.02 82.49 69.74 82.35 76.28 68.75 75.88 68.00 

25 64.87 79.99 71.91 59.90 61.49 84.52 65.95 70.54 

26 80.24 68.69 82.86 68.33 66.79 73.31 62.14 84.47 

27 70.74 62.93 51.07 63.46 64.52 86.14 69.32 93.57 

28 68.81 62.52 62.36 95.66 94.87 70.56 63.84 22.79 

29 79.52 81.77 77.57 76.93 72.93 82.47 85.07 75.45 

30 83.05 69.12 91.62 82.85 83.95 86.60 79.75 92.38 

31 67.65 70.10 88.97 77.32 73.06 67.16 71.70 81.66 

32 87.60 61.60 79.18 96.41 89.56 86.92 74.35 76.03 

33 84.78 85.03 90.24 92.50 64.08 91.03 86.26 85.48 

34 76.64 97.09 78.80 89.50 98.48 94.98 93.53 98.84 

35 62.70 74.83 94.82 67.53 65.38 87.90 85.59 82.68 

36 94.82 90.68 89.78 83.96 85.53 91.92 84.31 93.82 

37 84.64 69.81 75.53 78.74 67.94 93.17 83.11 84.35 

38 84.95 81.45 87.05 84.77 93.05 88.88 86.36 84.57 

Average 77.07 75.73 76.72 83.12 77.43 82.42 81.68 81.15 
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C.2.2 Clustering results 

K-means clustering 

Case 1: Cluster all data (scenario and baseline combined) of each participant 

 
Table 31. Number of data points in each scenario which fell into cluster 1 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Baseline 

1 11 3 14 4 16 16 18 18 231 

2 19 11 12 30 8 21 21 0 353 

3 10 5 14 12 5 53 28 7 228 

4 9 17 4 17 9 17 33 10 331 

5 5 8 12 4 6 10 10 10 107 

6 7 0 10 9 11 7 3 11 69 

7 13 7 6 8 12 34 18 13 216 

8 2 20 26 35 23 22 42 49 199 

9 15 14 10 15 20 9 7 19 107 

10 10 18 20 10 19 38 19 11 307 

11 1 0 4 2 5 9 5 8 298 

12 9 7 9 22 19 12 10 15 162 

13 4 6 1 24 8 6 3 29 206 

14 19 23 14 21 11 12 23 27 236 

15 5 1 2 1 4 1 0 55 375 

16 2 52 16 9 16 102 21 0 276 
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17 4 4 4 71 37 18 9 3 272 

18 16 26 6 16 18 34 27 12 111 

19 60 37 15 70 9 20 5 37 16 

20 2 2 2 3 3 2 4 3 84 

21 11 19 4 54 15 13 5 6 264 

22 7 1 8 6 9 6 7 5 153 

23 15 6 8 17 18 29 5 0 245 

24 14 14 17 3 37 16 20 13 199 

25 26 10 19 24 14 25 13 23 218 

26 2 3 2 0 1 10 13 5 66 

27 13 23 24 29 18 31 19 11 277 

28 14 10 12 2 10 23 4 22 153 

29 4 24 24 43 6 4 6 28 250 

30 20 4 23 9 7 11 8 10 111 

31 7 3 1 30 17 8 51 4 240 

32 28 14 28 10 23 81 20 34 249 

33 24 0 43 0 0 13 46 15 206 

34 28 9 5 5 0 0 1 0 413 

35 18 22 3 11 26 16 30 44 398 

36 54 0 0 0 0 0 0 0 111 

37 25 11 25 28 34 24 40 35 228 

38 31 23 32 49 30 42 38 42 147 
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Table 32. Proportion of data in each scenario which fell into cluster 1 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Baseline 

1 23.40 9.09 38.89 8.16 35.56 32.65 28.13 34.62 28.70 

2 34.55 28.21 28.57 43.48 14.55 36.21 36.21 0.00 44.13 

3 17.24 11.11 30.43 20.69 9.09 58.89 50.00 10.00 28.29 

4 12.86 28.81 3.92 18.28 10.23 18.48 37.93 8.77 40.42 

5 12.50 20.51 30.00 8.33 10.34 21.28 15.63 16.95 13.28 

6 14.58 0.00 14.08 12.86 15.49 10.29 2.91 17.19 8.65 

7 30.95 17.95 12.50 7.69 20.34 51.52 27.27 20.63 26.83 

8 4.44 43.48 52.00 43.21 29.87 27.85 66.67 73.13 24.60 

9 27.27 33.33 23.26 23.08 27.40 11.39 9.72 30.16 13.14 

10 28.57 48.65 37.74 20.00 38.78 69.09 38.78 22.92 37.71 

11 2.00 0.00 8.00 2.38 7.58 10.71 5.95 7.77 37.02 

12 23.68 18.42 21.43 32.84 35.85 23.53 19.61 28.30 20.05 

13 9.52 15.79 2.56 40.68 14.81 12.00 4.62 44.62 25.75 

14 46.34 56.10 34.15 25.30 15.94 18.46 40.35 47.37 27.67 

15 6.58 1.85 3.33 1.04 4.49 1.52 0.00 77.46 46.53 

16 3.92 98.11 27.59 8.65 25.00 98.08 20.19 0.00 34.37 

17 7.55 8.16 5.63 69.61 46.25 25.00 18.37 3.41 33.83 

18 27.59 56.52 13.64 25.40 31.58 51.52 45.00 20.00 13.67 

19 78.95 60.66 23.44 80.46 8.33 20.41 4.95 75.51 2.00 

20 4.35 4.55 4.55 4.29 4.00 2.70 5.48 3.33 10.50 
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21 25.00 46.34 9.52 52.94 27.27 17.11 7.81 11.32 32.59 

22 17.07 2.50 21.62 13.64 14.52 11.11 9.72 12.20 19.13 

23 34.88 14.29 19.05 28.81 31.58 33.72 6.49 0.00 30.28 

24 35.90 37.84 42.50 5.45 46.84 29.63 35.71 24.53 24.75 

25 33.77 26.32 47.50 46.15 22.95 46.30 25.00 24.73 26.72 

26 4.08 8.33 5.41 0.00 2.04 17.86 26.00 9.62 8.24 

27 31.71 54.76 55.81 47.54 34.62 40.79 27.14 21.15 34.45 

28 27.45 27.03 28.57 3.08 18.87 39.66 7.27 17.60 18.19 

29 7.69 46.15 53.33 42.16 10.71 4.40 10.00 45.90 30.56 

30 27.78 8.70 41.07 8.82 12.28 15.07 11.76 13.33 13.84 

31 15.22 6.82 2.00 43.48 25.37 14.55 44.74 6.90 29.93 

32 46.67 33.33 54.90 10.64 38.98 79.41 30.77 34.34 30.97 

33 50.00 0.00 69.35 0.00 0.00 19.40 52.27 17.65 25.62 

34 35.44 12.00 9.80 7.58 0.00 0.00 1.52 0.00 50.43 

35 40.91 47.83 6.52 16.18 48.15 15.69 48.39 43.14 49.44 

36 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.67 

37 55.56 20.00 56.82 57.14 57.63 33.80 50.00 66.04 28.11 

38 64.58 57.50 71.11 68.06 41.10 72.41 63.33 63.64 18.24 

Avg 28.17 26.61 26.59 24.95 22.06 28.75 24.62 25.11 26.38 
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Table 33. Number of data points in each scenario which fell into cluster 2 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Baseline 

1 8 18 3 21 19 16 23 21 195 

2 0 22 23 0 0 23 3 0 272 

3 0 2 2 10 3 5 5 2 62 

4 2 8 32 10 14 12 4 2 65 

5 10 13 6 15 31 22 28 18 314 

6 13 42 37 14 32 42 82 29 60 

7 2 3 4 24 4 6 6 8 73 

8 21 3 7 13 6 13 9 10 321 

9 15 17 23 35 43 23 27 25 300 

10 0 8 3 6 13 9 6 2 185 

11 21 24 15 23 14 21 23 11 180 

12 28 25 12 32 12 35 30 35 181 

13 10 7 10 10 15 7 8 6 134 

14 10 1 1 14 2 5 3 11 255 

15 6 3 0 1 6 1 1 5 148 

16 2 0 1 0 0 0 10 102 116 

17 1 8 1 3 8 10 10 11 48 

18 4 0 16 2 3 9 0 4 282 

19 1 0 0 0 1 0 0 0 442 

20 27 24 10 32 4 13 33 30 241 
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21 6 5 2 3 4 2 6 2 169 

22 4 8 9 10 9 19 29 15 202 

23 3 5 6 3 4 13 15 7 62 

24 6 10 2 10 8 16 11 10 197 

25 22 6 2 4 14 2 7 21 216 

26 5 4 0 3 0 0 1 5 170 

27 5 8 9 16 17 10 29 15 137 

28 1 3 5 55 36 2 32 8 217 

29 4 6 4 40 12 15 9 8 129 

30 28 11 15 12 12 15 31 30 283 

31 29 24 37 20 36 28 17 16 273 

32 14 11 3 2 19 6 15 27 180 

33 1 18 15 14 8 24 8 2 119 

34 27 60 30 46 10 1 26 9 239 

35 6 1 35 20 1 23 2 6 138 

36 0 6 3 13 24 7 16 90 215 

37 8 3 5 5 9 27 1 2 186 

38 4 7 8 12 35 6 10 15 168 
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Table 34. Proportion of data in each scenario which fell into cluster 2 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Baseline 

1 17.02 54.55 8.33 42.86 42.22 32.65 35.94 40.38 24.22 

2 0.00 56.41 54.76 0.00 0.00 39.66 5.17 0.00 34.00 

3 0.00 4.44 4.35 17.24 5.45 5.56 8.93 2.86 7.69 

4 2.86 13.56 31.37 10.75 15.91 13.04 4.60 1.75 7.94 

5 25.00 33.33 15.00 31.25 53.45 46.81 43.75 30.51 38.96 

6 27.08 76.36 52.11 20.00 45.07 61.76 79.61 45.31 7.52 

7 4.76 7.69 8.33 23.08 6.78 9.09 9.09 12.70 9.07 

8 46.67 6.52 14.00 16.05 7.79 16.46 14.29 14.93 39.68 

9 27.27 40.48 53.49 53.85 58.90 29.11 37.50 39.68 36.86 

10 0.00 21.62 5.66 12.00 26.53 16.36 12.24 4.17 22.73 

11 42.00 50.00 30.00 27.38 21.21 25.00 27.38 10.68 22.36 

12 73.68 65.79 28.57 47.76 22.64 68.63 58.82 66.04 22.40 

13 23.81 18.42 25.64 16.95 27.78 14.00 12.31 9.23 16.75 

14 24.39 2.44 2.44 16.87 2.90 7.69 5.26 19.30 29.89 

15 7.89 5.56 0.00 1.04 6.74 1.52 1.11 7.04 18.36 

16 3.92 0.00 1.72 0.00 0.00 0.00 9.62 99.03 14.45 

17 1.89 16.33 1.41 2.94 10.00 13.89 20.41 12.50 5.97 

18 6.90 0.00 36.36 3.17 5.26 13.64 0.00 6.67 34.73 

19 1.32 0.00 0.00 0.00 0.93 0.00 0.00 0.00 55.25 

20 58.70 54.55 22.73 45.71 5.33 17.57 45.21 33.33 30.13 
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21 13.64 12.20 4.76 2.94 7.27 2.63 9.38 3.77 20.86 

22 9.76 20.00 24.32 22.73 14.52 35.19 40.28 36.59 25.25 

23 6.98 11.90 14.29 5.08 7.02 15.12 19.48 8.43 7.66 

24 15.38 27.03 5.00 18.18 10.13 29.63 19.64 18.87 24.50 

25 28.57 15.79 5.00 7.69 22.95 3.70 13.46 22.58 26.47 

26 10.20 11.11 0.00 5.77 0.00 0.00 2.00 9.62 21.22 

27 12.20 19.05 20.93 26.23 32.69 13.16 41.43 28.85 17.04 

28 1.96 8.11 11.90 84.62 67.92 3.45 58.18 6.40 25.80 

29 7.69 11.54 8.89 39.22 21.43 16.48 15.00 13.11 15.77 

30 38.89 23.91 26.79 11.76 21.05 20.55 45.59 40.00 35.29 

31 63.04 54.55 74.00 28.99 53.73 50.91 14.91 27.59 34.04 

32 23.33 26.19 5.88 2.13 32.20 5.88 23.08 27.27 22.39 

33 2.08 38.30 24.19 13.73 9.20 35.82 9.09 2.35 14.80 

34 34.18 80.00 58.82 69.70 15.38 1.22 39.39 10.59 29.18 

35 13.64 2.17 76.09 29.41 1.85 22.55 3.23 5.88 17.14 

36 0.00 12.24 6.25 18.84 24.00 9.21 23.19 88.24 26.48 

37 17.78 5.45 11.36 10.20 15.25 38.03 1.25 3.77 22.93 

38 8.33 17.50 17.78 16.67 47.95 10.34 16.67 22.73 20.84 

Average 18.49 24.34 20.86 21.13 20.25 19.64 21.75 21.91 23.33 
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Table 35. Number of data points in each scenario which fell into cluster 3 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Baseline 

1 22 2 12 18 3 16 21 9 247 

2 3 3 4 1 1 0 9 63 88 

3 40 38 26 24 37 13 23 55 323 

4 0 28 31 54 24 34 42 84 207 

5 7 2 2 1 0 2 8 0 182 

6 10 5 12 23 16 6 14 9 347 

7 24 26 31 71 33 20 36 38 311 

8 2 15 4 30 37 4 8 1 50 

9 21 10 8 15 10 12 28 18 218 

10 11 2 12 0 0 1 1 6 72 

11 21 17 23 49 40 47 43 62 271 

12 0 3 21 6 16 3 5 2 204 

13 9 3 25 0 31 33 0 29 257 

14 10 13 19 35 47 42 23 7 272 

15 18 3 6 4 37 16 70 3 188 

16 41 0 35 11 13 0 59 0 237 

17 39 31 40 18 17 23 19 48 351 

18 13 1 13 25 16 7 11 28 245 

19 0 0 1 0 1 1 8 0 317 

20 6 18 26 19 62 52 21 27 222 
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21 5 6 11 25 13 9 16 5 122 

22 16 15 7 15 25 10 18 11 221 

23 21 24 24 6 20 18 28 48 210 

24 1 2 7 1 9 7 3 5 80 

25 24 12 6 14 25 20 20 37 275 

26 14 16 18 34 48 17 15 22 288 

27 17 4 6 4 4 9 5 13 160 

28 34 23 22 0 1 31 14 79 407 

29 42 20 5 19 37 71 45 7 268 

30 17 27 14 59 38 44 19 30 213 

31 5 15 12 18 10 18 34 37 170 

32 8 9 1 15 3 8 5 7 168 

33 1 29 4 88 79 1 1 1 324 

34 10 1 6 10 12 1 11 7 124 

35 12 14 5 5 7 17 23 6 106 

36 0 33 32 38 37 43 34 5 222 

37 7 27 6 8 11 17 20 3 268 

38 6 3 1 7 1 3 3 3 160 

 

  



146 
 

Table 36. Proportion of data in each scenario which fell into cluster 3 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Baseline 

1 46.81 1.98 12.00 17.82 3.00 15.84 21.00 8.82 30.68 

2 5.45 3.00 4.04 1.00 1.00 0.00 9.09 61.17 11.00 

3 68.97 37.62 25.74 24.00 36.63 12.87 23.00 54.46 40.07 

4 0.00 27.72 31.00 53.47 23.76 33.66 41.58 74.34 25.27 

5 17.50 2.00 1.92 1.00 0.00 2.00 7.92 0.00 22.58 

6 20.83 4.95 12.00 23.00 16.00 6.06 14.00 9.09 43.48 

7 57.14 26.00 31.00 70.30 33.00 19.80 36.00 37.62 38.63 

8 4.44 15.00 3.96 29.70 35.92 3.96 7.92 0.99 6.18 

9 38.18 9.71 7.77 14.85 9.90 11.76 27.72 17.65 26.78 

10 31.43 1.96 11.88 0.00 0.00 0.99 0.97 5.83 8.85 

11 42.00 17.00 23.47 47.12 40.40 48.45 43.00 62.00 33.66 

12 0.00 2.97 19.81 6.00 16.00 3.00 5.00 1.98 25.25 

13 21.43 3.00 25.00 0.00 31.00 33.00 0.00 29.00 32.13 

14 24.39 13.13 19.19 27.34 45.19 36.21 21.90 6.93 31.89 

15 23.68 3.00 6.00 3.96 35.92 15.84 70.00 3.00 23.33 

16 80.39 0.00 35.00 10.89 13.00 0.00 59.00 0.00 29.51 

17 73.58 31.00 40.40 18.00 17.00 22.33 19.00 47.06 43.66 

18 22.41 1.00 12.62 25.25 15.09 6.93 11.00 27.72 30.17 

19 0.00 0.00 1.00 0.00 1.00 1.00 8.00 0.00 39.63 

20 13.04 18.00 26.26 19.00 63.27 53.61 20.59 27.55 27.75 
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21 11.36 5.94 11.00 25.00 12.87 8.91 15.84 4.81 15.06 

22 39.02 15.15 7.00 15.00 24.75 10.10 18.00 11.00 27.63 

23 48.84 24.00 24.00 5.88 19.23 18.00 27.72 47.52 25.96 

24 2.56 1.94 7.07 1.00 9.00 7.00 3.00 4.95 9.95 

25 31.17 12.00 5.83 14.00 25.00 19.80 19.80 33.64 33.70 

26 28.57 16.16 18.00 34.00 48.00 17.00 15.15 22.00 35.96 

27 41.46 4.00 5.94 4.00 4.00 8.82 5.00 13.00 19.90 

28 66.67 21.10 22.00 0.00 0.98 31.00 14.00 63.20 48.39 

29 80.77 20.20 5.00 19.00 37.00 71.00 38.46 7.00 32.76 

30 23.61 26.21 14.00 59.00 38.00 44.00 19.00 30.30 26.56 

31 10.87 15.00 11.88 18.00 10.10 18.00 34.00 36.63 21.20 

32 13.33 9.09 0.98 15.00 2.97 8.00 5.00 6.93 20.90 

33 2.08 29.00 3.96 88.00 78.22 1.00 1.00 0.99 40.30 

34 12.66 1.01 6.19 9.90 10.08 1.00 11.11 7.14 15.14 

35 27.27 13.73 4.95 5.00 7.00 16.83 23.00 5.94 13.17 

36 0.00 33.33 32.00 38.00 36.27 43.00 34.00 5.00 27.34 

37 15.56 26.21 5.94 7.92 10.58 16.83 20.00 3.00 33.05 

38 12.50 3.00 1.00 6.73 0.99 3.00 2.97 3.00 19.85 

Average 27.89 13.06 14.13 19.95 21.37 17.65 19.84 20.56 27.30 
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Table 37. Number of data points in each scenario which fell into cluster 4 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Baseline 

1 6 10 7 6 7 1 2 4 132 

2 33 3 3 38 46 14 25 1 87 

3 8 0 4 12 10 19 0 6 193 

4 59 6 35 12 41 29 8 18 216 

5 18 16 20 28 21 13 18 31 203 

6 18 8 12 24 12 13 4 15 322 

7 3 3 7 1 10 6 6 4 205 

8 20 8 13 3 11 40 4 7 239 

9 4 1 2 0 0 35 10 1 189 

10 14 9 18 34 17 7 23 29 250 

11 7 7 8 10 7 7 13 22 56 

12 1 3 0 7 6 1 6 1 261 

13 19 22 3 25 0 4 54 1 203 

14 2 4 7 13 9 6 8 12 90 

15 47 47 52 90 42 48 19 8 95 

16 6 1 6 84 35 2 14 1 174 

17 9 6 26 10 18 21 11 26 133 

18 25 19 9 20 20 16 22 16 174 

19 15 24 48 17 97 77 88 12 25 

20 11 0 6 16 6 7 15 30 253 
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21 22 11 25 20 23 52 37 40 255 

22 14 16 13 13 19 19 18 10 224 

23 4 7 4 33 15 26 29 28 292 

24 18 11 14 41 25 15 22 25 328 

25 5 10 13 10 8 7 12 12 107 

26 28 13 17 15 0 29 21 20 277 

27 6 7 4 12 13 26 17 13 230 

28 2 1 3 8 6 2 5 16 64 

29 2 2 12 0 1 1 0 18 171 

30 7 4 4 22 0 3 10 5 195 

31 5 2 0 1 4 1 12 1 119 

32 10 8 19 67 14 7 25 31 207 

33 22 0 0 0 0 29 33 67 155 

34 14 5 10 5 43 80 28 69 43 

35 8 9 3 32 20 46 7 46 163 

36 0 10 13 18 39 26 19 7 264 

37 5 14 8 8 5 3 19 13 129 

38 7 7 4 4 7 7 9 6 331 
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Table 38. Proportion of data in each scenario which fell into cluster 4 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Baseline 

1 12.77 30.30 19.44 12.24 15.56 2.04 3.13 7.69 16.40 

2 60.00 7.69 7.14 55.07 83.64 24.14 43.10 1.56 10.88 

3 13.79 0.00 8.70 20.69 18.18 21.11 0.00 8.57 23.95 

4 84.29 10.17 34.31 12.90 46.59 31.52 9.20 15.79 26.37 

5 45.00 41.03 50.00 58.33 36.21 27.66 28.13 52.54 25.19 

6 37.50 14.55 16.90 34.29 16.90 19.12 3.88 23.44 40.35 

7 7.14 7.69 14.58 0.96 16.95 9.09 9.09 6.35 25.47 

8 44.44 17.39 26.00 3.70 14.29 50.63 6.35 10.45 29.54 

9 7.27 2.38 4.65 0.00 0.00 44.30 13.89 1.59 23.22 

10 40.00 24.32 33.96 68.00 34.69 12.73 46.94 60.42 30.71 

11 14.00 14.58 16.00 11.90 10.61 8.33 15.48 21.36 6.96 

12 2.63 7.89 0.00 10.45 11.32 1.96 11.76 1.89 32.30 

13 45.24 57.89 7.69 42.37 0.00 8.00 83.08 1.54 25.38 

14 4.88 9.76 17.07 15.66 13.04 9.23 14.04 21.05 10.55 

15 61.84 87.04 86.67 93.75 47.19 72.73 21.11 11.27 11.79 

16 11.76 1.89 10.34 80.77 54.69 1.92 13.46 0.97 21.67 

17 16.98 12.24 36.62 9.80 22.50 29.17 22.45 29.55 16.54 

18 43.10 41.30 20.45 31.75 35.09 24.24 36.67 26.67 21.43 

19 19.74 39.34 75.00 19.54 89.81 78.57 87.13 24.49 3.13 

20 23.91 0.00 13.64 22.86 8.00 9.46 20.55 33.33 31.63 
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21 50.00 26.83 59.52 19.61 41.82 68.42 57.81 75.47 31.48 

22 34.15 40.00 35.14 29.55 30.65 35.19 25.00 24.39 28.00 

23 9.30 16.67 9.52 55.93 26.32 30.23 37.66 33.73 36.09 

24 46.15 29.73 35.00 74.55 31.65 27.78 39.29 47.17 40.80 

25 6.49 26.32 32.50 19.23 13.11 12.96 23.08 12.90 13.11 

26 57.14 36.11 45.95 28.85 0.00 51.79 42.00 38.46 34.58 

27 14.63 16.67 9.30 19.67 25.00 34.21 24.29 25.00 28.61 

28 3.92 2.70 7.14 12.31 11.32 3.45 9.09 12.80 7.61 

29 3.85 3.85 26.67 0.00 1.79 1.10 0.00 29.51 20.90 

30 9.72 8.70 7.14 21.57 0.00 4.11 14.71 6.67 24.31 

31 10.87 4.55 0.00 1.45 5.97 1.82 10.53 1.72 14.84 

32 16.67 19.05 37.25 71.28 23.73 6.86 38.46 31.31 25.75 

33 45.83 0.00 0.00 0.00 0.00 43.28 37.50 78.82 19.28 

34 17.72 6.67 19.61 7.58 66.15 97.56 42.42 81.18 5.25 

35 18.18 19.57 6.52 47.06 37.04 45.10 11.29 45.10 20.25 

36 0.00 20.41 27.08 26.09 39.00 34.21 27.54 6.86 32.51 

37 11.11 25.45 18.18 16.33 8.47 4.23 23.75 24.53 15.91 

38 14.58 17.50 8.89 5.56 9.59 12.07 15.00 9.09 41.07 

Avg 25.44 19.69 23.28 27.94 24.92 26.32 25.50 24.87 22.99 
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Case 2: Cluster all scenario data (excluding baseline data) of each participant 

Table 39. Number of data points in each scenario which fell into cluster 1 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 

1 7 16 7 14 13 4 18 13 

2 24 2 1 19 47 4 19 1 

3 37 37 25 22 30 5 21 42 

4 0 22 24 22 5 48 51 28 

5 11 13 8 14 28 19 19 14 

6 12 10 15 19 16 11 46 17 

7 9 16 7 67 7 7 17 6 

8 2 17 20 30 20 13 41 44 

9 15 15 10 15 20 8 8 20 

10 6 11 6 12 17 7 9 4 

11 17 13 15 21 26 21 26 55 

12 10 13 13 7 8 14 11 17 

13 27 29 2 8 0 1 60 1 

14 13 1 1 16 3 5 3 11 

15 0 2 0 0 0 1 0 67 

16 7 4 50 10 17 1 98 1 

17 8 5 4 82 30 21 13 2 

18 12 16 6 10 15 28 20 10 
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19 47 35 9 66 0 6 0 12 

20 1 8 20 12 49 25 8 13 

21 10 4 17 7 18 19 25 13 

22 15 14 6 12 20 6 13 9 

23 12 8 7 33 15 30 26 28 

24 14 13 21 1 37 21 22 17 

25 5 10 16 13 8 8 12 15 

26 12 15 19 34 42 16 15 20 

27 8 3 4 5 3 4 2 4 

28 14 12 13 2 10 22 4 22 

29 1 17 7 84 16 1 13 3 

30 12 23 10 65 30 24 8 21 

31 7 5 0 34 17 8 52 3 

32 6 10 20 12 23 9 16 50 

33 27 0 0 0 0 38 34 75 

34 4 5 5 3 33 76 1 51 

35 16 22 4 21 24 19 29 42 

36 0 5 13 28 33 22 30 81 

37 27 3 17 30 31 12 12 36 

38 26 21 17 42 5 26 27 34 
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Table 40. Proportion of data in each scenario which fell into cluster 1 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 

1 14.89 48.48 19.44 28.57 28.89 8.16 28.13 25.00 

2 43.64 5.13 2.38 27.54 85.45 6.90 32.76 1.56 

3 63.79 82.22 54.35 37.93 54.55 5.56 37.50 60.00 

4 0.00 37.29 23.53 23.66 5.68 52.17 58.62 24.56 

5 27.50 33.33 20.00 29.17 48.28 40.43 29.69 23.73 

6 25.00 18.18 21.13 27.14 22.54 16.18 44.66 26.56 

7 21.43 41.03 14.58 64.42 11.86 10.61 25.76 9.52 

8 4.44 36.96 40.00 37.04 25.97 16.46 65.08 65.67 

9 27.27 35.71 23.26 23.08 27.40 10.13 11.11 31.75 

10 17.14 29.73 11.32 24.00 34.69 12.73 18.37 8.33 

11 34.00 27.08 30.00 25.00 39.39 25.00 30.95 53.40 

12 26.32 34.21 30.95 10.45 15.09 27.45 21.57 32.08 

13 64.29 76.32 5.13 13.56 0.00 2.00 92.31 1.54 

14 31.71 2.44 2.44 19.28 4.35 7.69 5.26 19.30 

15 0.00 3.70 0.00 0.00 0.00 1.52 0.00 94.37 

16 13.73 7.55 86.21 9.62 26.56 0.96 94.23 0.97 

17 15.09 10.20 5.63 80.39 37.50 29.17 26.53 2.27 

18 20.69 34.78 13.64 15.87 26.32 42.42 33.33 16.67 

19 61.84 57.38 14.06 75.86 0.00 6.12 0.00 24.49 

20 2.17 18.18 45.45 17.14 65.33 33.78 10.96 14.44 
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21 22.73 9.76 40.48 6.86 32.73 25.00 39.06 24.53 

22 36.59 35.00 16.22 27.27 32.26 11.11 18.06 21.95 

23 27.91 19.05 16.67 55.93 26.32 34.88 33.77 33.73 

24 35.90 35.14 52.50 1.82 46.84 38.89 39.29 32.08 

25 6.49 26.32 40.00 25.00 13.11 14.81 23.08 16.13 

26 24.49 41.67 51.35 65.38 85.71 28.57 30.00 38.46 

27 19.51 7.14 9.30 8.20 5.77 5.26 2.86 7.69 

28 27.45 32.43 30.95 3.08 18.87 37.93 7.27 17.60 

29 1.92 32.69 15.56 82.35 28.57 1.10 21.67 4.92 

30 16.67 50.00 17.86 63.73 52.63 32.88 11.76 28.00 

31 15.22 11.36 0.00 49.28 25.37 14.55 45.61 5.17 

32 10.00 23.81 39.22 12.77 38.98 8.82 24.62 50.51 

33 56.25 0.00 0.00 0.00 0.00 56.72 38.64 88.24 

34 5.06 6.67 9.80 4.55 50.77 92.68 1.52 60.00 

35 36.36 47.83 8.70 30.88 44.44 18.63 46.77 41.18 

36 0.00 10.20 27.08 40.58 33.00 28.95 43.48 79.41 

37 60.00 5.45 38.64 61.22 52.54 16.90 15.00 67.92 

38 54.17 52.50 37.78 58.33 6.85 44.83 45.00 51.52 

Avg 25.57 28.60 24.09 31.24 30.38 22.84 30.38 31.72 
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Table 41. Number of data points in each scenario which fell into cluster 2 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 

1 16 4 8 1 16 19 26 20 

2 7 2 9 3 3 0 15 62 

3 8 2 2 3 10 38 15 16 

4 1 28 29 52 15 29 36 80 

5 4 7 12 4 9 9 8 15 

6 6 21 28 8 25 26 42 13 

7 16 10 12 0 21 40 22 18 

8 38 1 6 15 10 24 7 11 

9 24 7 12 10 12 11 31 18 

10 11 9 22 27 11 6 17 34 

11 9 10 14 33 21 38 22 15 

12 1 4 14 8 27 1 7 5 

13 0 0 0 49 0 0 3 0 

14 18 22 14 23 13 13 22 27 

15 1 10 50 3 32 41 8 2 

16 1 49 3 16 19 103 0 0 

17 9 6 24 11 17 22 12 24 

18 26 0 22 21 16 15 17 16 

19 9 12 18 8 8 65 75 18 

20 7 8 11 9 19 33 12 17 
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21 15 10 6 57 9 14 6 6 

22 5 15 9 15 14 20 30 19 

23 18 24 13 20 33 40 5 4 

24 4 7 2 5 2 9 9 13 

25 26 14 6 15 25 19 22 37 

26 1 13 13 16 3 29 14 15 

27 4 6 9 15 15 9 28 15 

28 35 21 22 0 1 33 10 81 

29 30 16 2 3 13 75 15 1 

30 41 4 13 21 4 7 11 12 

31 25 15 21 13 36 16 15 6 

32 39 27 27 0 30 83 9 35 

33 16 10 59 9 4 28 52 8 

34 47 65 25 32 0 1 8 3 

35 12 3 2 9 8 20 4 12 

36 0 9 8 14 28 18 15 15 

37 8 5 6 5 10 27 4 3 

38 5 4 4 3 3 1 3 6 
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Table 42. Proportion of data in each scenario which fell into cluster 2 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 

1 34.04 12.12 22.22 2.04 35.56 38.78 40.63 38.46 

2 12.73 5.13 21.43 4.35 5.45 0.00 25.86 96.88 

3 13.79 4.44 4.35 5.17 18.18 42.22 26.79 22.86 

4 1.43 47.46 28.43 55.91 17.05 31.52 41.38 70.18 

5 10.00 17.95 30.00 8.33 15.52 19.15 12.50 25.42 

6 12.50 38.18 39.44 11.43 35.21 38.24 40.78 20.31 

7 38.10 25.64 25.00 0.00 35.59 60.61 33.33 28.57 

8 84.44 2.17 12.00 18.52 12.99 30.38 11.11 16.42 

9 43.64 16.67 27.91 15.38 16.44 13.92 43.06 28.57 

10 31.43 24.32 41.51 54.00 22.45 10.91 34.69 70.83 

11 18.00 20.83 28.00 39.29 31.82 45.24 26.19 14.56 

12 2.63 10.53 33.33 11.94 50.94 1.96 13.73 9.43 

13 0.00 0.00 0.00 83.05 0.00 0.00 4.62 0.00 

14 43.90 53.66 34.15 27.71 18.84 20.00 38.60 47.37 

15 1.32 18.52 83.33 3.13 35.96 62.12 8.89 2.82 

16 1.96 92.45 5.17 15.38 29.69 99.04 0.00 0.00 

17 16.98 12.24 33.80 10.78 21.25 30.56 24.49 27.27 

18 44.83 0.00 50.00 33.33 28.07 22.73 28.33 26.67 

19 11.84 19.67 28.13 9.20 7.41 66.33 74.26 36.73 

20 15.22 18.18 25.00 12.86 25.33 44.59 16.44 18.89 
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21 34.09 24.39 14.29 55.88 16.36 18.42 9.38 11.32 

22 12.20 37.50 24.32 34.09 22.58 37.04 41.67 46.34 

23 41.86 57.14 30.95 33.90 57.89 46.51 6.49 4.82 

24 10.26 18.92 5.00 9.09 2.53 16.67 16.07 24.53 

25 33.77 36.84 15.00 28.85 40.98 35.19 42.31 39.78 

26 2.04 36.11 35.14 30.77 6.12 51.79 28.00 28.85 

27 9.76 14.29 20.93 24.59 28.85 11.84 40.00 28.85 

28 68.63 56.76 52.38 0.00 1.89 56.90 18.18 64.80 

29 57.69 30.77 4.44 2.94 23.21 82.42 25.00 1.64 

30 56.94 8.70 23.21 20.59 7.02 9.59 16.18 16.00 

31 54.35 34.09 42.00 18.84 53.73 29.09 13.16 10.34 

32 65.00 64.29 52.94 0.00 50.85 81.37 13.85 35.35 

33 33.33 21.28 95.16 8.82 4.60 41.79 59.09 9.41 

34 59.49 86.67 49.02 48.48 0.00 1.22 12.12 3.53 

35 27.27 6.52 4.35 13.24 14.81 19.61 6.45 11.76 

36 0.00 18.37 16.67 20.29 28.00 23.68 21.74 14.71 

37 17.78 9.09 13.64 10.20 16.95 38.03 5.00 5.66 

38 10.42 10.00 8.89 4.17 4.11 1.72 5.00 9.09 

Avg 27.20 26.63 28.46 20.70 22.22 33.71 24.35 25.50 
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Table 43. Number of data points in each scenario which fell into cluster 3 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 

1 9 11 17 30 14 14 10 14 

2 8 23 25 10 2 32 10 1 

3 0 2 2 10 3 6 5 1 

4 1 8 33 10 12 13 0 2 

5 4 13 14 28 17 10 8 25 

6 7 0 9 7 8 9 7 9 

7 4 2 4 26 9 6 9 11 

8 0 13 2 29 31 0 8 1 

9 6 1 3 4 2 50 20 2 

10 5 15 21 5 10 39 20 10 

11 5 7 8 10 8 3 13 20 

12 11 10 10 13 13 20 11 18 

13 8 7 1 1 4 6 1 32 

14 1 5 6 12 8 5 10 11 

15 30 13 7 7 56 17 77 1 

16 41 0 4 78 28 0 6 1 

17 1 8 6 3 7 10 11 13 

18 12 0 12 20 17 5 11 28 

19 8 1 1 2 4 1 13 12 

20 23 22 7 25 5 11 33 28 
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21 5 23 5 34 18 6 6 5 

22 19 6 20 13 18 17 21 10 

23 7 5 15 1 5 2 33 48 

24 5 4 2 8 21 2 6 7 

25 25 8 16 20 14 24 12 21 

26 2 3 2 0 1 10 13 5 

27 21 23 26 18 14 31 19 14 

28 1 2 5 56 36 0 36 7 

29 4 9 34 9 4 1 1 51 

30 8 4 8 1 4 8 5 4 

31 10 21 25 13 12 26 35 42 

32 9 0 3 70 3 5 36 5 

33 1 2 1 11 70 0 0 0 

34 10 2 6 12 15 1 12 9 

35 10 21 2 18 19 38 28 40 

36 54 0 1 0 0 0 0 0 

37 8 0 17 3 13 27 61 7 

38 14 9 17 14 10 29 22 11 
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Table 44. Proportion of data in each scenario which fell into cluster 3 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 

1 19.15 33.33 47.22 61.22 31.11 28.57 15.63 26.92 

2 14.55 58.97 59.52 14.49 3.64 55.17 17.24 1.56 

3 0.00 4.44 4.35 17.24 5.45 6.67 8.93 1.43 

4 1.43 13.56 32.35 10.75 13.64 14.13 0.00 1.75 

5 10.00 33.33 35.00 58.33 29.31 21.28 12.50 42.37 

6 14.58 0.00 12.68 10.00 11.27 13.24 6.80 14.06 

7 9.52 5.13 8.33 25.00 15.25 9.09 13.64 17.46 

8 0.00 28.26 4.00 35.80 40.26 0.00 12.70 1.49 

9 10.91 2.38 6.98 6.15 2.74 63.29 27.78 3.17 

10 14.29 40.54 39.62 10.00 20.41 70.91 40.82 20.83 

11 10.00 14.58 16.00 11.90 12.12 3.57 15.48 19.42 

12 28.95 26.32 23.81 19.40 24.53 39.22 21.57 33.96 

13 19.05 18.42 2.56 1.69 7.41 12.00 1.54 49.23 

14 2.44 12.20 14.63 14.46 11.59 7.69 17.54 19.30 

15 39.47 24.07 11.67 7.29 62.92 25.76 85.56 1.41 

16 80.39 0.00 6.90 75.00 43.75 0.00 5.77 0.97 

17 1.89 16.33 8.45 2.94 8.75 13.89 22.45 14.77 

18 20.69 0.00 27.27 31.75 29.82 7.58 18.33 46.67 

19 10.53 1.64 1.56 2.30 3.70 1.02 12.87 24.49 

20 50.00 50.00 15.91 35.71 6.67 14.86 45.21 31.11 
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21 11.36 56.10 11.90 33.33 32.73 7.89 9.38 9.43 

22 46.34 15.00 54.05 29.55 29.03 31.48 29.17 24.39 

23 16.28 11.90 35.71 1.69 8.77 2.33 42.86 57.83 

24 12.82 10.81 5.00 14.55 26.58 3.70 10.71 13.21 

25 32.47 21.05 40.00 38.46 22.95 44.44 23.08 22.58 

26 4.08 8.33 5.41 0.00 2.04 17.86 26.00 9.62 

27 51.22 54.76 60.47 29.51 26.92 40.79 27.14 26.92 

28 1.96 5.41 11.90 86.15 67.92 0.00 65.45 5.60 

29 7.69 17.31 75.56 8.82 7.14 1.10 1.67 83.61 

30 11.11 8.70 14.29 0.98 7.02 10.96 7.35 5.33 

31 21.74 47.73 50.00 18.84 17.91 47.27 30.70 72.41 

32 15.00 0.00 5.88 74.47 5.08 4.90 55.38 5.05 

33 2.08 4.26 1.61 10.78 80.46 0.00 0.00 0.00 

34 12.66 2.67 11.76 18.18 23.08 1.22 18.18 10.59 

35 22.73 45.65 4.35 26.47 35.19 37.25 45.16 39.22 

36 100.00 0.00 2.08 0.00 0.00 0.00 0.00 0.00 

37 17.78 0.00 38.64 6.12 22.03 38.03 76.25 13.21 

38 29.17 22.50 37.78 19.44 13.70 50.00 36.67 16.67 

Avg 20.38 18.83 22.24 22.86 21.39 19.66 23.88 20.74 
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Table 45. Number of data points in each scenario which fell into cluster 4 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 

1 15 2 4 4 2 12 10 5 

2 16 12 7 37 3 22 14 0 

3 13 4 17 23 12 41 15 11 

4 68 1 16 9 56 2 0 4 

5 21 6 6 2 4 9 29 5 

6 23 24 19 36 22 22 8 25 

7 13 11 25 11 22 13 18 28 

8 5 15 22 7 16 42 7 11 

9 10 19 18 36 39 10 13 23 

10 13 2 4 6 11 3 3 0 

11 19 18 13 20 11 22 23 13 

12 16 11 5 39 5 16 22 13 

13 7 2 36 1 50 43 1 32 

14 9 13 20 32 45 42 22 8 

15 45 29 3 86 1 7 5 1 

16 2 0 1 0 0 0 0 101 

17 35 30 37 6 26 19 13 49 

18 8 30 4 12 9 18 12 6 

19 12 13 36 11 96 26 13 7 

20 15 6 6 24 2 5 20 32 
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21 14 4 14 4 10 37 27 29 

22 2 5 2 4 10 11 8 3 

23 6 5 7 5 4 14 13 3 

24 16 13 15 41 19 22 19 16 

25 21 6 2 4 14 3 6 20 

26 34 5 3 2 3 1 8 12 

27 8 10 4 23 20 32 21 19 

28 1 2 2 7 6 3 5 15 

29 17 10 2 6 23 14 31 6 

30 11 15 25 15 19 34 44 38 

31 4 3 4 9 2 5 12 7 

32 6 5 1 12 3 5 4 9 

33 4 35 2 82 13 1 2 2 

34 18 3 15 19 17 4 45 22 

35 6 0 38 20 3 25 1 8 

36 0 35 26 27 39 36 24 6 

37 2 47 4 11 5 5 3 7 

38 3 6 7 13 55 2 8 15 
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Table 46. Proportion of data in each scenario which fell into cluster 3 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 

1 31.91 6.06 11.11 8.16 4.44 24.49 15.63 9.62 

2 29.09 30.77 16.67 53.62 5.45 37.93 24.14 0.00 

3 22.41 8.89 36.96 39.66 21.82 45.56 26.79 15.71 

4 97.14 1.69 15.69 9.68 63.64 2.17 0.00 3.51 

5 52.50 15.38 15.00 4.17 6.90 19.15 45.31 8.47 

6 47.92 43.64 26.76 51.43 30.99 32.35 7.77 39.06 

7 30.95 28.21 52.08 10.58 37.29 19.70 27.27 44.44 

8 11.11 32.61 44.00 8.64 20.78 53.16 11.11 16.42 

9 18.18 45.24 41.86 55.38 53.42 12.66 18.06 36.51 

10 37.14 5.41 7.55 12.00 22.45 5.45 6.12 0.00 

11 38.00 37.50 26.00 23.81 16.67 26.19 27.38 12.62 

12 42.11 28.95 11.90 58.21 9.43 31.37 43.14 24.53 

13 16.67 5.26 92.31 1.69 92.59 86.00 1.54 49.23 

14 21.95 31.71 48.78 38.55 65.22 64.62 38.60 14.04 

15 59.21 53.70 5.00 89.58 1.12 10.61 5.56 1.41 

16 3.92 0.00 1.72 0.00 0.00 0.00 0.00 98.06 

17 66.04 61.22 52.11 5.88 32.50 26.39 26.53 55.68 

18 13.79 65.22 9.09 19.05 15.79 27.27 20.00 10.00 

19 15.79 21.31 56.25 12.64 88.89 26.53 12.87 14.29 

20 32.61 13.64 13.64 34.29 2.67 6.76 27.40 35.56 
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21 31.82 9.76 33.33 3.92 18.18 48.68 42.19 54.72 

22 4.88 12.50 5.41 9.09 16.13 20.37 11.11 7.32 

23 13.95 11.90 16.67 8.47 7.02 16.28 16.88 3.61 

24 41.03 35.14 37.50 74.55 24.05 40.74 33.93 30.19 

25 27.27 15.79 5.00 7.69 22.95 5.56 11.54 21.51 

26 69.39 13.89 8.11 3.85 6.12 1.79 16.00 23.08 

27 19.51 23.81 9.30 37.70 38.46 42.11 30.00 36.54 

28 1.96 5.41 4.76 10.77 11.32 5.17 9.09 12.00 

29 32.69 19.23 4.44 5.88 41.07 15.38 51.67 9.84 

30 15.28 32.61 44.64 14.71 33.33 46.58 64.71 50.67 

31 8.70 6.82 8.00 13.04 2.99 9.09 10.53 12.07 

32 10.00 11.90 1.96 12.77 5.08 4.90 6.15 9.09 

33 8.33 74.47 3.23 80.39 14.94 1.49 2.27 2.35 

34 22.78 4.00 29.41 28.79 26.15 4.88 68.18 25.88 

35 13.64 0.00 82.61 29.41 5.56 24.51 1.61 7.84 

36 0.00 71.43 54.17 39.13 39.00 47.37 34.78 5.88 

37 4.44 85.45 9.09 22.45 8.47 7.04 3.75 13.21 

38 6.25 15.00 15.56 18.06 75.34 3.45 13.33 22.73 

Avg 26.85 25.93 25.20 25.20 26.01 23.78 21.39 22.04 
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Gaussian model 

Case 1: Cluster all data (scenario and baseline combined) of each participant 

Table 47. Number of data points in each scenario which were detected as anomaly 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Baseline 

1 7 6 14 5 8 7 14 10 188 

2 17 8 9 17 16 15 16 19 141 

3 5 0 5 7 10 10 3 13 152 

4 12 14 16 31 27 48 10 28 183 

5 4 3 7 3 4 7 2 7 165 

6 21 5 21 18 17 18 32 16 138 

7 7 1 4 11 16 16 8 11 216 

8 9 9 7 16 19 14 9 4 138 

9 14 2 9 8 9 8 12 8 196 

10 12 6 21 7 12 12 16 6 206 

11 2 5 3 8 7 5 6 11 184 

12 10 10 7 15 12 9 10 7 218 

13 12 10 6 21 13 11 9 15 186 

14 15 3 4 10 6 11 8 16 206 

15 10 14 16 22 19 35 19 35 180 

16 16 8 9 27 5 7 6 33 219 

17 15 15 15 28 23 13 24 23 148 
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18 15 20 7 13 13 28 23 11 149 

19 24 20 7 20 20 17 29 12 159 

20 5 2 2 9 8 8 12 3 192 

21 14 12 3 21 10 16 10 9 220 

22 5 13 15 11 15 8 11 11 173 

23 5 8 5 6 8 11 14 12 215 

24 13 6 8 10 20 14 16 22 160 

25 22 13 7 7 8 6 11 16 177 

26 7 6 2 3 3 6 8 2 205 

27 12 6 9 11 7 8 11 14 151 

28 4 8 9 25 19 14 14 23 187 

29 4 6 13 14 12 4 6 14 213 

30 16 4 9 23 1 10 9 11 182 

31 7 4 2 12 6 3 19 10 223 

32 6 7 2 24 11 8 11 9 131 

33 7 7 13 6 9 6 8 16 204 

34 29 20 10 8 12 28 9 32 133 

35 19 8 18 16 11 31 18 11 197 

36 35 23 8 28 29 13 14 14 167 

37 5 13 6 8 7 16 16 9 234 

38 9 5 10 21 12 12 11 6 235 
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Table 48. Proportion of data in each scenario which were detected as anomaly points 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Baseline 

1 14.89 18.18 38.89 10.20 17.78 14.29 21.88 19.23 23.35 

2 30.91 20.51 21.43 24.64 29.09 25.86 27.59 29.69 17.63 

3 8.62 0.00 10.87 12.07 18.18 11.11 5.36 18.57 18.86 

4 17.14 23.73 15.69 33.33 30.68 52.17 11.49 24.56 22.34 

5 10.00 7.69 17.50 6.25 6.90 14.89 3.13 11.86 20.47 

6 43.75 9.09 29.58 25.71 23.94 26.47 31.07 25.00 17.29 

7 16.67 2.56 8.33 10.58 27.12 24.24 12.12 17.46 26.83 

8 20.00 19.57 14.00 19.75 24.68 17.72 14.29 5.97 17.06 

9 25.45 4.76 20.93 12.31 12.33 10.13 16.67 12.70 24.08 

10 34.29 16.22 39.62 14.00 24.49 21.82 32.65 12.50 25.31 

11 4.00 10.42 6.00 9.52 10.61 5.95 7.14 10.68 22.86 

12 26.32 26.32 16.67 22.39 22.64 17.65 19.61 13.21 26.98 

13 28.57 26.32 15.38 35.59 24.07 22.00 13.85 23.08 23.25 

14 36.59 7.32 9.76 12.05 8.70 16.92 14.04 28.07 24.15 

15 13.16 25.93 26.67 22.92 21.35 53.03 21.11 49.30 22.33 

16 31.37 15.09 15.52 25.96 7.81 6.73 5.77 32.04 27.27 

17 28.30 30.61 21.13 27.45 28.75 18.06 48.98 26.14 18.41 

18 25.86 43.48 15.91 20.63 22.81 42.42 38.33 18.33 18.35 

19 31.58 32.79 10.94 22.99 18.52 17.35 28.71 24.49 19.88 

20 10.87 4.55 4.55 12.86 10.67 10.81 16.44 3.33 24.00 
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21 31.82 29.27 7.14 20.59 18.18 21.05 15.63 16.98 27.16 

22 12.20 32.50 40.54 25.00 24.19 14.81 15.28 26.83 21.63 

23 11.63 19.05 11.90 10.17 14.04 12.79 18.18 14.46 26.58 

24 33.33 16.22 20.00 18.18 25.32 25.93 28.57 41.51 19.90 

25 28.57 34.21 17.50 13.46 13.11 11.11 21.15 17.20 21.69 

26 14.29 16.67 5.41 5.77 6.12 10.71 16.00 3.85 25.59 

27 29.27 14.29 20.93 18.03 13.46 10.53 15.71 26.92 18.78 

28 7.84 21.62 21.43 38.46 35.85 24.14 25.45 18.40 22.24 

29 7.69 11.54 28.89 13.73 21.43 4.40 10.00 22.95 26.04 

30 22.22 8.70 16.07 22.55 1.75 13.70 13.24 14.67 22.69 

31 15.22 9.09 4.00 17.39 8.96 5.45 16.67 17.24 27.81 

32 10.00 16.67 3.92 25.53 18.64 7.84 16.92 9.09 16.29 

33 14.58 14.89 20.97 5.88 10.34 8.96 9.09 18.82 25.37 

34 36.71 26.67 19.61 12.12 18.46 34.15 13.64 37.65 16.24 

35 43.18 17.39 39.13 23.53 20.37 30.39 29.03 10.78 24.47 

36 64.81 46.94 16.67 40.58 29.00 17.11 20.29 13.73 20.57 

37 11.11 23.64 13.64 16.33 11.86 22.54 20.00 16.98 28.85 

38 18.75 12.50 22.22 29.17 16.44 20.69 18.33 9.09 29.16 

Average 22.94 18.87 18.14 19.41 18.39 19.10 18.77 19.56 22.68 
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Case 2: Cluster all scenario data (excluding baseline data) of each participant 

Table 49. Number of data points in each scenario which were detected as anomaly 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 

1 8 5 15 11 13 6 19 11 

2 21 14 14 24 21 21 17 21 

3 7 3 7 15 12 13 7 9 

4 18 12 34 31 37 40 8 17 

5 6 9 11 6 8 12 11 13 

6 23 6 14 19 14 15 33 14 

7 11 3 8 16 14 14 14 14 

8 9 12 14 17 20 18 12 8 

9 22 7 8 6 13 20 18 10 

10 16 5 18 12 15 13 14 8 

11 10 11 5 13 16 14 14 22 

12 9 8 7 16 27 9 11 7 

13 19 11 14 16 15 24 8 18 

14 14 7 11 18 18 12 11 22 

15 12 18 16 26 16 33 14 18 

16 22 6 16 24 18 22 22 15 

17 14 17 21 31 38 20 24 29 

18 15 21 16 10 16 20 23 14 
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19 21 12 9 31 24 20 33 15 

20 10 8 7 12 12 20 14 13 

21 18 14 3 19 12 14 15 11 

22 8 4 11 9 15 18 14 13 

23 7 9 7 13 9 19 23 18 

24 13 7 9 12 20 19 22 26 

25 24 16 10 13 12 7 10 18 

26 11 6 3 2 11 10 15 7 

27 13 12 14 17 10 18 12 15 

28 8 14 8 26 22 14 17 35 

29 4 7 11 16 18 14 4 19 

30 30 11 13 26 7 17 16 18 

31 13 5 3 17 10 7 27 5 

32 15 12 5 28 15 16 13 16 

33 8 12 19 12 13 11 14 29 

34 27 16 14 14 25 17 16 28 

35 23 11 23 20 15 37 21 27 

36 16 15 10 29 37 18 16 22 

37 7 19 8 9 11 21 20 13 

38 11 4 7 20 21 13 11 15 
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Table 50. Proportion of data in each scenario which were detected as anomaly points 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 

1 17.02 15.15 41.67 22.45 28.89 12.24 29.69 21.15 

2 38.18 35.90 33.33 34.78 38.18 36.21 29.31 32.81 

3 12.07 6.67 15.22 25.86 21.82 14.44 12.50 12.86 

4 25.71 20.34 33.33 33.33 42.05 43.48 9.20 14.91 

5 15.00 23.08 27.50 12.50 13.79 25.53 17.19 22.03 

6 47.92 10.91 19.72 27.14 19.72 22.06 32.04 21.88 

7 26.19 7.69 16.67 15.38 23.73 21.21 21.21 22.22 

8 20.00 26.09 28.00 20.99 25.97 22.78 19.05 11.94 

9 40.00 16.67 18.60 9.23 17.81 25.32 25.00 15.87 

10 45.71 13.51 33.96 24.00 30.61 23.64 28.57 16.67 

11 20.00 22.92 10.00 15.48 24.24 16.67 16.67 21.36 

12 23.68 21.05 16.67 23.88 50.94 17.65 21.57 13.21 

13 45.24 28.95 35.90 27.12 27.78 48.00 12.31 27.69 

14 34.15 17.07 26.83 21.69 26.09 18.46 19.30 38.60 

15 15.79 33.33 26.67 27.08 17.98 50.00 15.56 25.35 

16 43.14 11.32 27.59 23.08 28.13 21.15 21.15 14.56 

17 26.42 34.69 29.58 30.39 47.50 27.78 48.98 32.95 

18 25.86 45.65 36.36 15.87 28.07 30.30 38.33 23.33 

19 27.63 19.67 14.06 35.63 22.22 20.41 32.67 30.61 

20 21.74 18.18 15.91 17.14 16.00 27.03 19.18 14.44 
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21 40.91 34.15 7.14 18.63 21.82 18.42 23.44 20.75 

22 19.51 10.00 29.73 20.45 24.19 33.33 19.44 31.71 

23 16.28 21.43 16.67 22.03 15.79 22.09 29.87 21.69 

24 33.33 18.92 22.50 21.82 25.32 35.19 39.29 49.06 

25 31.17 42.11 25.00 25.00 19.67 12.96 19.23 19.35 

26 22.45 16.67 8.11 3.85 22.45 17.86 30.00 13.46 

27 31.71 28.57 32.56 27.87 19.23 23.68 17.14 28.85 

28 15.69 37.84 19.05 40.00 41.51 24.14 30.91 28.00 

29 7.69 13.46 24.44 15.69 32.14 15.38 6.67 31.15 

30 41.67 23.91 23.21 25.49 12.28 23.29 23.53 24.00 

31 28.26 11.36 6.00 24.64 14.93 12.73 23.68 8.62 

32 25.00 28.57 9.80 29.79 25.42 15.69 20.00 16.16 

33 16.67 25.53 30.65 11.76 14.94 16.42 15.91 34.12 

34 34.18 21.33 27.45 21.21 38.46 20.73 24.24 32.94 

35 52.27 23.91 50.00 29.41 27.78 36.27 33.87 26.47 

36 29.63 30.61 20.83 42.03 37.00 23.68 23.19 21.57 

37 15.56 34.55 18.18 18.37 18.64 29.58 25.00 24.53 

38 22.92 10.00 15.56 27.78 28.77 22.41 18.33 22.73 

Average 27.80 22.68 23.54 23.39 26.10 24.43 23.51 23.41 
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3. Subjective ratings of stress 

Table 51. Results for subjective ratings of stress during scenarios (the scale is from 1 for totally relaxed to 7 for too stressful) 

No. Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 

1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 

3 1 3 1 3 4 1 3 1 

4 3 4 3 7 7 4 4 4 

5 1 1 1 1 1 1 1 1 

6 5 5 6 5 5 6 5 5 

7 4 3 3 4 4 4 4 4 

8 2 4 3 4 3 3 4 2 

9 2 2 2 2 2 2 2 2 

10 1 1 1 1 1 1 1 1 

11 5 6 6 5 4 6 4 4 

12 1 1 1 2 1 2 1 1 

13 1 1 1 1 1 1 1 1 

14 2 3 1 3 1 2 2 3 

15 4 4 4 4 4 4 4 4 

16 4 4 4 3 3 4 4 5 

17 1 1 1 1 1 1 1 1 

18 1 2 1 2 2 1 2 1 

19 3 3 3 3 3 3 3 3 
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20 1 1 1 1 1 1 1 1 

21 1 1 1 1 1 1 1 1 

22 1 1 1 1 1 1 1 1 

23 2 2 2 2 2 2 2 2 

24 1 1 1 1 1 1 1 1 

25 2 1 1 2 1 1 1 2 

26 1 1 1 1 1 1 1 1 

27 5 4 4 6 4 4 5 5 

28 5 4 3 3 3 4 3 4 

29 1 1 1 1 1 1 1 1 

30 2 2 2 2 2 2 2 2 

31 2 2 2 2 2 2 2 2 

32 4 4 4 4 4 4 4 4 

33 3 5 4 4 4 5 4 4 

34 1 1 1 1 1 1 1 1 

35 4 5 4 4 4 4 5 2 

36 4 4 4 4 4 4 4 4 

37 1 1 1 1 1 1 1 1 

38 4 4 4 4 5 5 4 4 

 

 


