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Abstract 

This research aims to investigate the aeroelastic capacities of a blade through geometry based 

bend twist coupling (BTC). Power optimization is performed based on Blade Element 

Momentum Theory (BEMT) on NREL phase VI rotor and optimized power and elastic twist 

curves are presented. Elastic twist of the blade can be tailored to improve blade performance. 

BTC is implemented through the blade spar and blade planform. An L beam is incorporated in 

the blade as spar and fluid-structure interaction analysis is conducted. 1-way and 2-way fluid-

structure interaction analysis are performed and compared. CFD results are verified with 

experimental data. Induced elastic twist is presented for different spar thicknesses and spar 

locations over a range of wind speeds. The results show improved elastic twist with a thicker 

spar placed closer to the tip of the blade. Modified blade designs with different curved 

planform are analyzed and the results are presented in this thesis. The curved blade is modeled 

and analyzed with L spar and box spar to compare the effects of spar type on elastic twist. More 

elastic twist is predicted in the blade with L spar compared to the blade with box spar. Elastic 

twist of up to 0.7˚ is yielded from the curved blades with L spar with bend depth of 1.5 m. A 

power increase of 1.89% for the wind turbine due to the induced elastic twist is predicted. 
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1 Background 

1.1 Introduction 

 Renewable energy has gained attention during the past few decades due to increased 

world energy demand and climate change mitigation strategies. World population is growing by 

1.1% per year (2017) [1] and the total energy consumption has increased by 11.3% from 2008-

2015 [2, 3]. The greenhouse effect from burning fossil fuels such as oil, gas and coal as main 

sources of energy have resulted in 0.9 ˚C [4] temperature rise since 1880. A clean renewable 

alternative energy source that can address these concerns is wind power. Wind that is driven by 

uneven solar heating of the earth, is renewable and well distributed around the globe, making it 

a promising clean energy source.  

 Wind power technology has developed over the past century and is considered a 

mature technology. However, there is always a tendency for larger turbines because bigger 

machines harness more power with lower cost of energy (COE). There are design and 

manufacturing challenges associated with longer blades. Greater aerodynamic and inertial 

loads are applied on larger blades, thus stronger structures are needed to withstand the loads. 

As wind turbines are rotating machines, they experience complex loading which can result in 

fatigue failures. Reducing load while expanding in size is a major challenge in wind turbines. 

Power control techniques have been developed over the past years to partly address these 

issues while there could still be more improvement.  

 Most current wind turbines use active power control systems, which have expensive 

elements such as sensors, processors and actuators. These systems suffer from long response 

time as the blades are very massive and have high inertia. Passive adaptive blades can be used 
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along with active controls to improve turbine performance. In this thesis, aeroelastic tailoring of 

a wind turbine blade is studied and the resulted power improvements are reported. 

1.2  Power control in wind turbines 

 Power in wind is proportional to wind velocity to power 3. However, not all of that 

power can be extracted. Betz’s law explains that to capture wind power, there must still be 

some energy left after it passes through any sort of actuator disk. Based on continuity and 

conservation of momentum, Betz derived a theoretical maximum for how much power we can 

extract from wind. According to Betz’s law, it is impossible to extract more than 16 27⁄  (59.3%) 

of wind power regardless of the type of machine used [5]. Modern wind turbines benefiting 

from sophisticated power control methods can capture up to 80% of the Betz limit. 

 Wind speed constantly changes which affects the power coefficient of a turbine. Also, 

working in excessively high wind conditions can not only damage the turbine, it is not 

economical as it increases maintenance costs.  As there are no controls over incoming wind 

speeds, some sort of power control method is needed for any type of wind turbine. Simpler 

control methods such as stall control are used in smaller wind turbines while multiple 

sophisticated methods are employed in larger rotors (where it is economical) [6]. The goal of 

wind turbine control is to 1) limit torque and power in excessive wind speeds 2) reduce fatigue, 

and 3) maximize power production [7]. 

 As illustrated in Figure 1, there is no power production in Region 1 as low wind velocity 

does not produce enough power to overcome internal losses and friction. In Region 2, the 

turbine starts producing power as there is more power in the wind. At speeds above rated, in 

Region 3, the turbine produces rated power which must be maintained as wind speed increases 
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(until cut-out). Depending on the operating region of the turbine, there are different control 

objectives and strategies. In Region 2, while the turbine is still operating below its rated power, 

the control objective is to maximize power output, however, upon reaching its rated power in 

Region 3, the objective is to limit power output to its rated value and reduce mechanical loads. 

A turbine should not be working to produce more power than its rated power as this increases 

cost of energy and puts too much load on the gearbox and generator. When wind reaches over 

the cut-out speed, the objective is to minimize the aerodynamic load applied on the turbine 

structure while the rotor is not rotating and brakes are active. 

  

Figure 1. Typical wind turbine power curve 

1.3  Power control methods 

 Turbine control can be divided into active and passive categories. Active methods use 

sensors and actuators and need external energy. Examples of active controls are the variable 

speed rotor and blade pitch control. In passive methods, however, there is no need for any 
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energy expenditure [6]. An example of passive control is stall control. A list of active and passive 

control methods is shown in Figure 2. 

 

Figure 2. Turbine control techniques 

 Passive stall control is used in older turbines and modern smaller turbines with constant 

rotor speeds. This method only depends on the blade aerodynamic characteristics. Stall occurs 

when the angle of attack exceeds a critical value resulting in a reduction in lift. The airfoils are 

designed to stall in high winds to reduce aerodynamic loads and torque on the rotor. Different 

sections of the blade stall at different wind speeds depending on their section pitch angle 

providing a smooth reduction in torque. Pitch angle is the angle between chord line of the 

blade section (airfoil) and the plane of the blade rotation. Pitch angle is illustrated graphically in 

section 2.1 .This parameter (section pitch angle) is optimized for each section based on the 

rotor rated speed and the wind speed history of the located site and is built in the blade. This 

provides passive control over power production and reduces aerodynamic loads at high winds. 

Passive stall control is cheaper and simpler, however, the controllability is limited and power 
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fluctuations and torque spikes are more frequent. Passive stall control is not economical in 

larger wind turbines [6]. 

 A typical power curve for a stall controlled turbine is shown in Figure 3. As can be seen, 

once wind speed exceeds the rated 10 m/s, the power drops because the blade starts to stall. 

Stall starts from the root and as wind speed increases, further sections of the blade also stall, 

resulting in a smooth reduction in torque and power. In a constant speed rotor, the angle of 

attack of each blade section is only a function of wind speed. 

 

Figure 3. Power output of a stall controlled wind turbine [5] 

 Modern larger wind turbines use two active control methods: variable speed rotor and 

blade pitch control. Variable speed technology works by changing generator torque which can 

slow down or speed up the rotor. In pitch control, the blade can actively rotate around its axis 

to adjust its pitch angle at different wind speeds. Pitching the blade changes the angle of attack 

for each section of the blade and results in reduced or increased lift and drag which changes 
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the load and torque on the blade. Depending on the region and the objective, either blade pitch 

or rotor speed are the active control regime. In Region 2, where maximizing the power is the 

objective, rotor speed is active and maintains the optimum tip speed ratio (TSR), which by 

definition is the speed of blade tip divided by wind speed (TSR = 
𝑟𝛺

𝑈∞
) [8]. In Region 3, where 

limiting power to reduce mechanical loads is the objective, the pitch control is active while 

rotor speed is kept constant [8]. Changing the pitch angle controls the input torque from wind 

and regulates the power output and mechanical loads. Pitch angle control works by keeping the 

rotor speed constant thereby power output stays at its rated power. 

 To further illustrate the effects of pitch angle on power output, a plot of power curves 

for different pitch angles in a constant rotor speed turbine is shown in Figure 4. For speeds 

below rated, optimum pitch angle does not change with increasing wind. This is why only 

variable speed rotor is used for power optimization in this region. In speeds higher than rated, 

however, constant power output can be achieved by increasing pitch angle as wind speed rises. 

As can be seen, high pitch angles are needed for power regulation at high wind speeds. This is a 

disadvantage of the pitch control method. 
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Figure 4. Effect of blade pitch angle on power output in a constant speed rotor [5] 

 Variable diameter rotor is another concept in active load control which works by 

changing the blade sweep area [9-13]. Designing a narrow tip blade that can be extended and 

retracted from the inside of a root blade makes it possible to create variable length blades 

(Figure 5) [6]. The tip blade can be extended in low winds to increase the sweep area which 

increases the power output. In high winds, the tip blade retracts and sheds excessive loads. 

Power regulation is achieved with pitch control. Prototypes of variable diameter rotors have 

been built and tested. Tests show a 12.9% increase in power production and a 33% reduction in 

peak loads compared to standard blades of the same size [9].  

 

 
Figure 5. Extendible blade [6] 
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 The concept of using microtabs as a means of load control in wind turbines was first 

developed by Yen et al [14-16]. Microtabs can be utilized on both sides of the blade with 

contrary effects. Implementing a tab on the suction side of an airfoil mounted perpendicular to 

the surface increases the lift coefficient. However, a tab on the pressure side decreases the lift 

coefficient. By designing tabs of variable heights with translational movement a method of flow 

control and consequently load control will be achieved. Experimental and numerical studies on 

GU25-5(11)8 airfoil show an increase of 30-50% in lift with tabs mounted on the suction side 

[14]. The same study and another similar study on NREL S809 airfoil find that a tab of 1% chord 

in height located at 𝑥/𝑐 = 95 provides optimum performance [14, 17, 18]. Microtabs work by 

shifting the point of separation and effectively changing the blade camber. Microtabs are also 

presented and studied as a passive load control technique [19]. Figure 6 shows the streamline 

around an airfoil with Microtabs. 

 

Figure 6. Streamlines around a microtab mounted on suction side of S809 airfoil [6] 
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1.4  Aeroelastic tailoring 

 Aeroelastic tailoring is the employment of directional stiffness in aerodynamic 

structures to control aeroelastic deformations such that the structural response improves the 

aerodynamic and structural performance [20]. This concept has been used in helicopter and 

wind turbine industries [21]. Aeroelastic tailoring that is also defined as passive aeroelastic 

control [22], can be achieved through bend twist coupling (BTC). Bend-induced twist changes 

the angle of attack for each blade section and the applied torque. The bend-induced elastic 

twist can be utilized to 1) control load / power and 2) optimize power production. An elastic 

twist toward stall will alleviate gust loads while twist toward feather can increase power output 

in low wind speeds. Previous work has shown the potential for modifying blade designs to 

incorporate bend-twist coupling [23-32]. 

 Stoddard [33] measured a 2.5˚ elastic twist in wind blades. He suggested that this elastic 

twist can be employed to our benefit when designing blades. Calculations by Malcolm [34], 

Lobitz [35] and Verelst [36] indicate fatigue load reduction by employing BTC. Berry [37] reports 

2.4-8.6% reduction in the bending load with a 4˚ elastic twist. Malcolm [34] reports 2% 

reduction in the Cost of Energy (COE) due to twist coupling. Karaolis [38, 39] first introduced 

the use of biased fibers in the blade skin to create BTC. Koojiman [40] finds that in a constant-

speed pitch-controlled blade optimum power production can be achieved by twisting the inner 

blade toward feather while twisting the outer blade toward stall. Lobits (in 1996) [41] and 

Lobitz (in 2003) [25] consider both twist toward stall and feather. They report a 5-10% increase 

in annual energy from a maximum 2˚ twist toward stall. At the same time they report a 

substantial increase in fatigue damage. Rotor radius is increased to keep the same power 
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capacity. They report less fatigue loads with twist toward feather while a slight reduction in 

power [25]. By discussing optimal pre-twist in blades, Cappuzi [30] states that elastic twist can 

be employed to bring section twist angles closer to their optimal design value. He states pre-

twist is not optimal but is a suitable compromise over all operating conditions. 

 Bend Twist Coupling can be introduced to a structure through material and geometry, as 

illustrated in Figure 7. In material bend twist coupling, which has been the focus among 

researchers in this area, composite lay-ups are employed to relate bending moment in a blade 

to the twist of its cross section. Biased fibers that are not in line with the structure’s principle 

axis are key to creating this material property, illustrated in Figure 8. Off axis fibers oriented at 

20˚ are shown to create optimum bend twist coupling [42]. Material, however, is not the only 

way BTC can be created. The geometry of the blade can also create BTC. An example of this is a 

swept blade, illustrated in Figure 9. In a curved design, the load applied on the parts off the 

pitch axis, creates pitching torque which results in an elastic twist [43]. Tests on full scale 

Sweep-Twist Adaptive Rotor (STAR) show a reduction in operating loads allowing for larger 

blades [29, 44]. A 12% increase in energy capture is reported by increasing the diameter by 10% 

while keeping the loads at the same level [29, 44]. A novel design by Capuzzi [31, 32] employs 

both material and geometry BTC for better results. 
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Figure 7. Variations of Bend Twist Coupling 

 

Figure 8. Biased fibers 

 

 

Figure 9. Swept blade planform [45] 

 Wind blades are designed such that they work the best at their rated TSR. This optimum 

TSR can be achieved in variable speed rotors by adjusting rotor speed (Ω) according to wind 

speed. However, in constant speed rotors, TSR will be different from its rated value at wind 

speeds other than the rated wind speed. As a result, the turbine will produce less power than 
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its rated power when the wind speed changes. The blade function can be improved if the angle 

of attack of the blade could adapt to the new wind condition. This can be achieved if the blade 

could passively twist to adjust the angle of attack. The Blade Element Theory (BET) can be used 

to find the optimum angle of attack for each blade section. 

1.5 Objectives and Overview of Thesis 

 The main objective of this study is to employ a specific type of spar to aeroelastically 

tailor wind turbine blades. The potential of using an angle spar to provide BTC in wind turbines 

will be studied. By employing an angle beam spar in the blades we can benefit from its Bend 

Twist Coupling to passively control loads on the blade. This can be done with the purpose of 

power optimization or load alleviation. In this thesis, power optimization is being considered 

and load alleviation capacities of the spar are deferred to future studies. The blade planform is 

modified to a swept blade to benefit from its BTC property. 

In Chapter 2 (Formulation), BEMT is implemented on NREL Phase VI blade to predict 

power output of the turbine at different wind speeds. The predictions are verified with 

experimental data. Optimization is done on the power to find optimal pitch angles and 

corresponding optimal elastic twists for each blade section at different wind speeds. Also, 

different spar types are discussed in the chapter, as well as fluid-structure interaction (FSI). In 

Chapter 3 (Results and Discussion) elastic twist potential of an L beam is studied and the L spar 

is designed to be incorporated into the blade. Finite element model of the blade and the CFD 

model are discussed. Verification of the CFD mesh and the mesh independence study are 

presented in this chapter. A comparison between 1-way and 2-way FSI is performed and 

presented. Induced elastic twist predicted from 1-way FSI analysis is presented for variations of 
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the spar at different wind speeds. A modified swept blade planform is proposed and FSI analysis 

is conducted for different bend depths. The power output change due to elastic twist from the 

swept blade model with L spar is predicted. 
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2 Formulation of bend-twist coupling 

2.1 Blade Element Momentum Theory and Optimization 

 In horizontal axis wind turbines (HAWT) lift force creates torque around the rotor axis 

and rotates the low speed shaft. The relative wind speed passing over the blade consists of two 

components perpendicular to each other: real wind velocity,𝑈∞, and blade rotation speed, 𝛺𝑟. 

Placing a rotating turbine in wind causes the wind to change speed and pattern. As wind 

approaches the blade it expands and its speed reduces (see Figure 10). At the same time, 

because of the blade rotation, the wind will find a radial speed component that rotates in the 

opposite direction with respect to the blade rotation direction (see Figure 11). The reduction in 

incoming wind speed is represented by the axial flow induction factor, 𝑎, shown in Figure 3a. 

Similarly, the rotation of air on the blade plane of rotation is represented by the tangential flow 

induction factor, 𝑎′. The factors 𝑎 and 𝑎′ are later calculated using equations derived from the 

Blade Element Momentum Theory. 

 

Figure 10. Streamlines passing through a wind turbine [5] 

 

𝑈∞ 
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Figure 11. The trajectory of an air particle passing through the rotor disc [5] 

 To better illustrate the aerodynamics of a wind turbine, a figure of a 3 bladed working 

wind turbine and the related angles are presented in Figure 12. Angle 𝜃𝑃 is the section pitch 

angle and 𝛼 is the section’s angle of attack. From Figure 12, it can be understood that when 

wind speed rises, α will increase. Also, for blade sections closer to the tip, the velocity vector 𝑟𝛺⃗⃗⃗⃗  ⃗ 

is greater resulting in a relative wind velocity vector, 𝑤⃗⃗ , tilted closer to the plane of blade 

rotation. 

 

Figure 12. Wind turbine and blade section 
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       (a)        (b) 

Figure 13.Aerodynamics of a typical wind turbine for (a) blade section velocities (b) and forces 

(modified from [5]) 

 As illustrated in Figure 13a, relative wind speed makes an angle 𝜑 with the blade plane 

of rotation. Lift and drag forces are parallel and perpendicular to the relative wind speed 

direction, respectively. The section force component 𝛿𝐹 =  𝐿 𝑆𝑖𝑛𝜑 − 𝐿 𝐶𝑜𝑠𝜑 that creates 

torque around the rotor axis is shown in Figure 13b. Lift and drag forces can be obtained from 

Equation (2.1) and Equation (2.2) where 𝐶𝑙 is the lift coefficient, 𝐶𝑑 is the drag coefficient, 𝐿 is 

the lift force, 𝐷 is the drag force, 𝜌 is the air density, 𝑊 is the relative wind velocity, and 𝐴 is 

the section area. 

 𝐶𝑙 =
2 𝐿

𝜌 𝑊2 𝐴
 (2.1) 

 

 𝐶𝑑 =
2 𝐷

𝜌 𝑊2 𝐴
 (2.2) 

Substituting L and D into force component 𝛿𝐹 , for a section of blade provides 

𝜃𝑃 

𝛼 φ 

φ 

𝑊 

 

𝐿 

  
𝐷 

  

𝐿 𝑠𝑖𝑛𝜑 − 𝐷 𝑐𝑜𝑠𝜑 

  

𝐿 𝑐𝑜𝑠𝜑 + 𝐷 𝑠𝑖𝑛𝜑 

  

𝑈∞(1 − 𝑎)  

rΩ(1+𝑎′) 
Plane of rotation 
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 𝛿𝐹 =
1

2
 𝜌 𝑊2𝛿𝐴 (𝐶𝑙 𝑠𝑖𝑛 𝜑 – 𝐶𝑑  𝑐𝑜𝑠 𝜑) (2.3) 

The torque created from a section of the blade in distance r from the rotor axis is 

 𝛿𝑇 =  𝑟 × 𝛿𝐹   (2.4) 

Substituting Equation (2.3) into Equation (2.4) gives an equation for a blade section torque  

 𝛿𝑇 =
1

2
 𝜌 𝑊2𝛿𝐴 (𝐶𝑙 𝑠𝑖𝑛 𝜑 – 𝐶𝑑  𝑐𝑜𝑠 𝜑) 𝑟 (2.5) 

From Figure 13.a the magnitude of relative wind velocity can be calculated by 

 𝑊 = √𝑈∞
2(1 − 𝑎)2  +  𝑟2𝛺2(1 + 𝑎′)2 (2.6) 

Also, 

 𝑠𝑖𝑛 𝜑 =  
𝑈∞(1 − 𝑎)

𝑊
 (2.7) 

 𝑐𝑜𝑠 𝜑 =
𝑟𝛺(1 + 𝑎′)

𝑊
 (2.8) 

 𝜑 =  𝑡𝑎𝑛−1(
1 − 𝑎

(1 + 𝑎′)𝜆𝑟
) (2.9) 

where 𝜆𝑟 is the section tip speed ratio and is defined as 

 𝜆𝑟 = 
𝑟𝛺

𝑈∞
 (2.10) 

Substituting (2.7) and (2.8) into (2.5) provides 

 𝛿𝑇  =  
1

2
 𝜌 𝑊2 𝛿𝐴 (𝐶𝑙  

𝑈∞(1 − 𝑎)

𝑊
 – 𝐶𝑑  

𝑟𝛺(1 + 𝑎′)

𝑊
) 𝑟 (2.11) 

Power is the product of torque by angular velocity: 

 𝛿𝑃 = 𝛿𝑇  ×  𝛺 (2.12) 

By substituting Equation (2.11) into Equation (2.12) an equation for the power of a section of 

the blade with the area of 𝛿𝐴 is developed: 
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 𝛿𝑃  =  
1

2
 𝜌 𝑊2 𝛿𝐴 (𝐶𝑙  

𝑈∞(1 − 𝑎)

𝑊
 – 𝐶𝑑  

𝑟𝛺(1 + 𝑎′)

𝑊
) 𝑟𝛺 (2.13) 

Power of the rotor now can be calculated by integrating 𝛿𝑃 over the span of the blade for both 

blades.  

 𝑃 =  𝐵 ∫ 𝛿𝑃

𝑅

𝑟0

 (2.14) 

where 𝐵 is the number of blades. 

 Induction factors 𝑎 and 𝑎′ must be calculated before the power Equation (2.14) can be 

integrated. The Blade Element Momentum Theory is used to derive equations to solve for 

induction factors. Equations (2.15) and (2.16) are given from the BEM theory: 

 𝑎′ = 
1

4 𝑐𝑜𝑠𝜑
𝜎′𝑐𝑙

− 1
 (2.15) 

 𝑎 =  
𝑎′ 𝜆𝑟

tan𝜑
 (2.16) 

where, 𝜎′ is the Chord Solidity which is a measure of how much the blade chord covers the 

sweep circumference of the blade at a given radius. 

 𝜎′ = 
𝐵𝑐

2𝜋𝑟
 (2.17) 

 Equations 2.15 and 2.16 are solved iteratively using the following steps. Initial values of 

𝑎′ = 𝑎 = 0 are inserted into Equation (2.9) to get 𝜑. Angle of attack then can be calculated 

from 𝛼 =  𝜑 − 𝜃𝑃. The corresponding Lift coefficient 𝐶𝑙 is interpolated from a graph of 𝐶𝑙 

versus 𝛼. The new 𝑎′ and 𝑎 are calculated from Equations (2.15) and (2.16). This process is 

completed for the new 𝑎′ and 𝑎 and repeats until convergence.  
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 These steps have to be conducted for each blade section as 𝑐, 𝜃𝑃, 𝜆𝑟 and 𝜑 are all 

functions of r. From 𝑎 and 𝑎′, Equation (2.13) can be integrated numerically to calculate the 

power output. A code is developed in MATLABTM to do the calculations. Induction factors 𝑎 

and 𝑎′ are presented in Figure 14. The estimated power output for different wind speeds are 

presented in Figure 15. 

 

Figure 14. Induction factors at wind speed 𝑈∞ = 8 𝑚/𝑠 

 
Figure 15. Rotor power versus wind speed 
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 Rotor power results for speeds below rated are presented and verified with 

experimental tests done on a full scale NREL Phase VI rotor at NASA Ames Research Center [46]. 

As illustrated in Figure 15, the code overestimates power output by an average of 20%. This 

could be due to not considering tip / hub losses and stall delay. The results show good 

agreement and a similar trend with the experimental data. The blade goes into stall when it 

reaches its rated power of 10 kW at 10 m/s wind speed. 

 An optimization algorithm was incorporated in the code to find the optimized angle of 

attack for each blade section of the NREL Phase VI turbine. The algorithm works by trying 

different angles of attacks on each blade section to find the one that maximizes the section 

torque (𝛿𝑇), and consequently the section power (𝛿𝑃). In the analysis, 80 angles of attack were 

tested, between 0˚ and 40˚, at each blade section for each wind speed ranging 5m/s to 10 m/s. 

Blade span was divided into 100 sections each of 4.275 cm. The code completed 48,000 loops 

to find the optimized angle of attack and the corresponding optimized power output for each 

wind speed. The results are presented in Figure 16. As the NREL Phase VI is a stall controlled 

blade, it is designed to stall and shed power after rated speed, for this reason, the code was not 

run for speeds higher than 10 m/s. 
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Figure 16. Optimized power 

 NREL Phase VI is a two-bladed stall-controlled wind turbine designed and developed by 

NREL. The blade was tested at full scale at the NASA Ames Research Center wind tunnel (24.4 × 

36.6 m). The study is one of a few full scale tests that focus on 3D effects of flow on a working 

turbine. As the design process of wind turbines relies mainly on data from 2D tests on airfoils, 

this experiment provided insights on the 3D effects on a running full scale turbine in wind 

tunnel. The blade chord and twist are presented in Figure 17, Figure 18 and Table 1. 

 The potential for increased power output is mainly in lower wind speeds and around the 

rated speed, however, at the rated speed, the blades are designed to go in stall to control and 

limit power output. As a result, any power increase after the blade has reached its rated power 

is not favorable. From 6.5 m/s to 8.5 m/s, the power output is almost equal to its optimized 

value. This shows that the twist designed in the blade provides the optimum angle of attack for 

all blade sections in this narrow wind speed range. 
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 The optimal pitch angles needed for optimized power for each wind speed are shown in 

Figure 19. These curves compare against the already applied blade pitch angle that is 3˚ and 

constant along the blade. At lower wind speeds the lines are rather flat and indicate that a 

constant blade pitch can work, however, at higher speeds, the lines show larger pitch closer to 

the root and smaller pitch closer to the tip. Compared to 3˚ constant pitch, the curves show the 

induced elastic twist must be nose down for higher wind speeds. Nose down twist, which is also 

called twist to feather, has been mentioned in the literature for the purpose of power 

optimization. 

NREL Phase VI Rotor characteristics 

Table 1. Blade chord and 
twist distribution [47] 

 
          Figure 17. Chord distribution [47] 
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1.257* 0.737 20.04 

1.343 0.728 18.074 
1.510 0.711 14.292 
1.648 0.697 11.909 
1.952 0.666 7.979 
2.257 0.636 5.308 
2.343 0.627 4.715 
2.562 0.605 3.425 
2.867 0.574 2.083 
3.172 0.543 1.150 
3.185 0.542 1.115 
3.476 0.512 0.494 

3.781 0.482 -0.015 
4.023 0.457 -0.381 
4.086 0.451 -0.475 
4.391 0.420 -0.920 
4.696 0.389 -1.352 
4.780 0.381 -1.469 
5.000 0.358 -1.775 
5.305 0.328 -2.191 

5.532 0.305 -2.500 
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Figure 18. Twist angle distribution [47] 

*Transition NREL S809 airfoil completes at the section 1.257 𝑚 from the rotor axis, as a result 

all of the calculations and modeling of the blade take this point as the root of the blade 

 
 

 
Figure 19. Optimal pitch angles for maximum power output at various wind speeds 

 The desired induced twist for 8 m/s wind speed is 3.5˚ at a 30% span and decreases to 

0.6˚ at the tip. Figure 20 shows the optimal pitch angle only for 𝑈∞ = 8 m/s. For the majority of 

the blade span, the optimal pitch angle stays higher than the constant blade pitch angle, 𝜃𝑃,0 =
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3˚ . This indicates elastic induced twist must be nose down for all blade sections which makes 

this concept feasible. 

 
Figure 20. Optimal pitch angle for maximum power output at 𝑈∞ = 8 m/s and 𝑈∞ = 5 m/s 

 In the conventional blade design process, the section pitch angle is the summation of 

the blade pitch angle and section twist angle. Figure 21 is a sketch of the airfoil section and 

related angles. 

 𝜃𝑃 = 𝜃𝑝,0 + 𝜃𝑇  (2.18) 

where for each section of the blade, 𝜃𝑃 is the section pitch angle, 𝜃𝑝,0 is the blade pitch angle 

(constant for all sections) and 𝜃𝑇  is the twist angle. In an adaptive design, however, an extra 

term for elastic twist is introduced so the equation becomes: 

 𝜃𝑃 = 𝜃𝑝,0 + 𝜃𝑇 + 𝜃𝑒 (2.19) 

where 𝜃𝑒 is the induced elastic twist. 
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Figure 21. Blade section forces and angles 

 The elastic twist, 𝜃𝑒, is a new variable introduced to the pitch angle equation. This 

variable adds an extra term to the equation and makes it theoretically possible to achieve the 

optimal pitch angle distribution presented in Figure 10. Figure 22 is a plot of induced elastic 

twist, 𝜃𝑒 for 𝑈∞ = 8 m/s. The desired induced twist for 8 m/s wind speed is a 3.5˚ at 30% span 

and decreases to a 0.6˚ at the tip. Although the exact optimal pitch angle distributions cannot 

be achieved because of their non-monotonic behavior, the target curves can be developed that 

closely resemble the same pattern. Adding the elastic twist angle to a constant blade pitch 

angle makes it possible to achieve the target section pitch angles. 

𝜑 
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Figure 22. Desired elastic twist for 𝑈∞ = 8 𝑚/𝑠 

 The desired elastic twist curve in Figure 22 shows two abrupt spikes, and then a 

reduction creating two local maximums in the curve. This is due to two sudden reductions in 

optimal angle of attack at sections r = 1.84 m (r/R = 33%) and r = 2.5 m (r/R = 45%) (Figure 23). 

The sudden reductions happen because of the nature of the term, (𝐶𝑙 𝑠𝑖𝑛 𝜑 – 𝐶𝑑 𝑐𝑜𝑠 𝜑), which 

is the portion of the differential torque equation of a section of the blade that is being 

optimized (Equation 2.5). Figure 24 compares plots of the term (𝐶𝑙  𝑠𝑖𝑛 𝜑 – 𝐶𝑑  𝑐𝑜𝑠 𝜑) for two 

sections of the blade at r/R = 30% and r/R = 50%. The maximum points on these curves 

correspond to the optimal torque and power, as well as the corresponding α is the optimal 

angle of attack for that section of the blade. As it is illustrated, each curve has two local 

maximums and the curves pivot from one section to another making the global maximum to 

jump from the right side to the left side rather than making a smooth transition. For instance, 

as marked on Figure 24, the global maximum jumps from 14.5˚ at r/R = 30% to 8.5˚ at r/R = 

50%. Although the global maximums are used in the optimization routine, the local maximums 

are almost of the same magnitude as the curve is almost flat at the top part. 
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Figure 23. Optimal angle of attack at 𝑈∞ = 8 𝑚/𝑠  

 
Figure 24. Finding optimized angle of attack 

2.2 Spar Selection 

 Figure 25 illustrates a typical modern wind turbine blade with pre-twist and taper. Spar 

is a blade component that supports a large portion of the induced loading. As illustrated in 

Figure 26, spars have a variety of different designs. Spar cap mainly bears the bending loads 

whereas shear web stabilizes the spar caps under shear loads [48]. Different designs of spars 
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have different static structural response under loads. The structural response can be tailored 

for improving the performance of the wind turbine. Since the main load-bearing component of 

the blade is spar, the structural response of the spar is assumed to be the blade’s structural 

response [48]. 

 

Figure 25. Wind turbine blade components 

 

 

Figure 26. Different Spar designs. 

Spar cap 

Shear web 

Blade root 

Blade tip 

Leading edge 

Trailing edge 

Shear Web 

Spar Cap 



29 
 

 Spars can have open or closed sections, as shown in Figure 26. Closed sections allow for 

the formation of a cell shear flow circuit which takes up the internal torque and resists torsion 

much more effectively [49]. The shear flow circuits are internal forces per unit length tangential 

to the wall (Figure 27). An uninterrupted circuit for a shear flow cannot be established in an 

open section. 

 

Figure 27. Shear flow in a box section 

 An open section will twist more than a closed section with the same load and 

dimensions. This is because a shear flow circuit can develop in a closed section and resist 

applied torque. Figure 28 shows torque application on a closed and open rectangular section 

with the same dimensions. Using statics analysis, it can be shown that the twist of the open 

section is orders of magnitudes greater than that of the closed section. Therefore, an open 

section for the spar can be more effective in geometry-based BTC. 

q [N/m] 
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Figure 28. Closed and open rectangular sections 

 Each cross section has a shear center. Shear center is a point around which the lateral 

force creates zero torque. A lateral load that does not pass through the shear center creates 

torque, which causes the section to twist. The magnitude of torque is proportional to force, F, 

and lever arm, d, which is the perpendicular distance from the load to the shear center, (Figure 

29). The greater amount of torque applied on a beam, the more the section twists. Therefore, F 

and d are variables that can be utilized to tailor the twist of a section. The aerodynamic force 

applied on a spar cross section is a function of turbine operating conditions and design 

parameters that are selected for a variety of design purposes. However, d is a variable that is 

less restricted and can be modified for our purpose of bend twist coupling. 

 
Figure 29. Channel section 
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 An angle section is shown in Figure 30. The shear center of the section is located at the 

corner, providing more perpendicular distance for twist coupling compared to a channel section 

(Figure 29). As illustrated in Figure 27, the shear center is located on the axis far from the shear 

web, thus reducing lever arm and induced torque. 

 

Figure 30. Schematic of spar section 

 Aerodynamic forces applied on an airfoil can be represented by lift and drag forces. 

Distributed pressure on airfoil is integrated and then resolved to two components 

perpendicular and parallel to the vector of relative wind velocity, which are lift and drag, 

respectively. The center of pressure is a point usually on the chord line through which the 

resultant force passes without producing torque, as illustrated in Figure 31. As a result, this 

point is a necessary coordinate in airfoil force analysis. Since lift and drag change with angle of 

attack (𝛼), center of pressure location is also a function of 𝛼. To conduct a statics analysis on 

the blade section, it is important to locate this point which can be done with approximate 

Shear center 

F 

d 
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methods or CFD analysis. In this thesis, the center of pressure for the airfoil is located using 

numerical methods and is presented in Chapter 3.3. 

 

 

Figure 31. Lift and drag forces at the center of pressure 

 A free body diagram (FBD) of the blade section is illustrated in Figure 32. The 

perpendicular distance between the center of pressure of the airfoil and the shear center of the 

spar is denoted by S. Based on the analysis presented in Section 2.1 (desired induced elastic 

twist), incorporating the angle beam spar in the airfoil section must be such that it maximizes 

the nose down torque on the beam. Torque is product of force and distance, thus, by increasing 

the distance S, torque will be increased. Although drag force also creates nose down torque, 

this torque is usually neglected in calculations because drag is much smaller than lift. For the lift 

and drag to produce a nose down moment, the center of pressure must be placed on the right 

hand side of the spar shear center. Figure 32 illustrates that lift and drag produce positive 

moments (nose down) around the shear center.  
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Figure 32. Blade cross section free body diagram 

 The angle section can be placed inside the airfoil in two potential orientations. The spar 

can be either facing the trailing edge (Figure 33.a) or leading edge (Figure 33.b). The selection 

of orientation is based on a simple finite element analysis that compares the elastic twist of 

both cases in the same conditions. The orientation with the greatest elastic twist will be 

selected. Geometric constraints from the airfoil shape will also limit where the spar is located. 

 

 

(a) 

 

(b) 

Figure 33. Spar orientations witch the cap facing (a) right and (b) left 
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2.3 Fluid Structure Interaction 

 Fluid-structure interaction in wind turbines is a complex phenomenon. The blade cross 

section (airfoil) changes the direction of air passing over it causing a pressure difference 

between the both sides of the airfoil. This pressure difference results in lift and drag forces 

under which the blade deforms. Analytical solutions of fluid-structure interaction are very 

complex and sometimes impossible because of the coupled nature of its governing equations. 

However, thanks to advances in computational power, it is possible to numerically study 

complex FSI models. Experimental tests can also be conducted to study interaction between 

fluids and solids. 

 

Figure 34. Numerical solution methods for Fluid Solid Interaction problems 

 Numerical methods to solve FSI problems are classified as monolithic approach and 

partitioned approach. In monolithic approach, the equations for solid and fluid domains are in a 

single coupled system of equations and are solved simultaneously using a unified solver. This 

approach provides strong coupling between domains, guarantees conservation of energy on 

the interface and is potentially more accurate. However, the need for development of 

specialized codes and high storage resource needed are disadvantages of this method. 

Partitioned approach uses already available fluid and structural codes to solve each domain 

Fluid-structure interaction 

Monolithic approach Partitioned approach 

Two way One way 
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separately and through an iterative approach, satisfies interface conditions. The ability to use 

conventional fluid and structure codes with minimal modification is the main advantage of 

partitioned methods However, lack of convergence is more likely with this method [50, 51]. 

 A partitioned approach analysis can be conducted in one-way or two-way (Figure 35) 

[52]. As illustrated in Figure 35, in a one-way analysis forces from fluid are transferred to the 

structure as loading and the analysis continues in structure side. The fluid side will not be 

updated with deformations in the structure. This obviously is a simplification as in some FSI 

problems, the structure deformation will modify the flow at the interface and this in turn will 

change the forces applied on the structure from the fluid. This is called a weak coupling 

between fluid and solid and can be an acceptable simplification if the deformations in structure 

are negligible. In problems where structure deformation and its effect on the flow is 

considerable, two-way method is employed. In the two-way method, once deformations are 

calculated in solid side, they are passed to the fluid solver. The mesh is updated with the new 

interface location and the new fluid analysis is performed with the updated grid. Iterations will 

continue until displacements and forces on the interface converges. If a sufficient quantity of 

iterations are used in each time step, conservation of energy will be ensured and strong 

coupling will be achieved [53, 54]. 

   
    (a) One way         (b) Two way 

Figure 35. One way and two way FSI 
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 As the interface is at a new location after each iteration, the mesh needs to be moved 

accordingly. Diffusion-based smoothing method, which is superior in handling rotational 

motion, is used to update the grid [55]. Mesh motion governing Equation (2.20) is solved 

numerically to find vector 𝑢⃗ , which is mesh displacement velocity. The diffusion coefficient 𝛾 is 

used to control how the boundary motion affects the interior mesh motion [55]. The new 

location of each node then can be calculated using Equation (2.21).  

 ∇. (𝛾∇𝑢⃗ ) = 0 (2.20) 

 𝑥 𝑛𝑒𝑤 = 𝑥 𝑜𝑙𝑑 + 𝑢⃗ ∆𝑡 [55] (2.21) 

2.4 Measuring elastic twist 

 As the blade is pre-twisted and a pitch angle of 3˚ is applied, each section of the blade 

already has a pitch angle which has to be compared with that of the deformed blade. Figure 36 

and Equations (2.22) and (2.23) illustrate the method to calculate induced elastic twist for each 

blade section. 

 𝜃𝑝
′ = 𝑆𝑖𝑛−1 (

𝑦𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 − 𝑦𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑒𝑑𝑔𝑒

𝐶
) (2.22) 

 𝜃𝑒 = 𝜃𝑝
′ − 𝜃𝑝 (2.23) 

where 𝜃𝑝
′ is the section pitch angle after deformation, 𝜃𝑝 is the undeformed section pitch 

angle, c is the chord length for each section of the blade. 
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Figure 36. schematic of the blade section after and before deformation 
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3 Results and Discussion 

3.1 Angle beam bend twist coupling potential 

 To investigate the magnitude of twist angle that can be expected from an angle section, 

a finite element analysis is performed. An angle beam was modeled and static structural 

analysis was conducted using Ansys Mechanical. The beam thickness and length are 10−2 m 

and 5.532 m respectively. Figure 37 shows the beam and applied loading. A fixed support 

boundary condition is applied at the end of the beam and a distributed load, ω, is applied at a 

distance d from the beam shear center, resembling aerodynamic loading of an airfoil. The load 

vector, 𝜔⃗⃗ =  4.7 𝑖̂ +  104.7 ĵ N, is the resultant force at wind speed U = 14.6 m/s and angle of 

attack α = 7˚. 

 
Figure 37. Angle beam 

 

 Shell181, which is a 4-node element, is used in the beam FE model. This element has 3 

translational and 3 rotational degrees of freedom at each node making it suitable for analyzing 

thin shell structures [55]. In the FE model, there are 62,640 elements and 63,745 nodes. The 

d 

ω 
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same (equivalent) material properties that are later used for the blade model are also used for 

the beam FE analysis. An elasticity modulus of 𝐸 = 1.56 ×  1010 Pa and Poisson’s ratio of  

𝜈 = 0.42 are employed [56]. A mesh independence study is conducted on the model and the 

results are presented in Table 2.  

Table 2. Finite element mesh independence study for angle beam 

Quantity of 
Elements 

max flapwise Y 
deformation 

(m) 

max chordwise 
x deformation 

(m) 

4,185 0.02029 0.01768 
16,650 0.02035 0.01768 
66,480 0.02039 0.01768 

 

 Twist angles of the beam tip for different values of d are presented in Table 3. An 

illustration of flapwise deformation is presented in Figure 38. Diagonal contours of flapwise 

displacement on the beam flange indicate the presence of twist in the beam. As presented in 

Table 3, considerable twist angles can be achieved even for lever arm distances as low as 0.1 m. 

 
Figure 38. Angle section beam flapwise deformation 
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Table 3. Twist of the beam at the tip 

d 
(m) 

Elastic 
twist at 

the tip (˚) 

maximum 
flapwise 

deformation (m) 

0.1 3.04 0.0202 
0.15 4.55 0.0228 
0.2 6.06 0.0257 

 
3.2 Orientation of spar 

 A finite element model for an angle beam facing the leading edge is analyzed and the 

results are compared to the results presented in Section 3.1. Table 4 presents the elastic twist 

from both beams, showing that the models’ elastic twist are almost the same in each loading 

case. As a result, geometric constraints where considered to select which orientation should be 

used. The orientation with the L section facing right was selected because it provides a broader 

cap on the sections of the airfoil which are more flat than curved. 

Table 4. Elastic static structural response of angle beams 

d (m) - 
Perpendicular 

distance from shear 
center, CS 

Elastic twist at the tip 
(˚) 

  
0.1 3.04 3.02 

0.15 4.55 4.54 
0.2 6.06 6.04 

 

3.3 Locating NREL S809 airfoil center of pressure 

 A series of 2D steady state CFD analyses are conducted on an NREL S809 airfoil to locate 

its center of pressure. Angles from 2˚ to 17˚ are considered which is the range of α for all blade 

sections at the operational wind velocities. Table 5 presents the location of center of pressure 

measured in percent of chord length from the airfoil tip along the chord. In all of the models, 
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wind velocity and Reynolds number are 14.6 m/s and 1 million, respectively. A mesh 

independence study is conducted with three different mesh densities monitoring the lift 

coefficient and the center of pressure location. The results from the mesh independence study 

are presented in Table 6. 

Table 5. Location of center of pressure 

α (˚) 
C.P. 
(%C) 

2 36.3 

7 30 
12 28.2 
14 27.9 
17 28.3 

 
Table 6. Mesh independence study for 2D C-grid 

Quantity 
of cells 

Quantity of 
nodes 

around 
airfoil 

Lift 
coefficient 

C.P. 
(%Chord) 

14,465 168 0.3123 36.36 

39,105 300 0.3139 36.4 
63,935 528 0.3134 36.35 

 

3.4 2D CFD verification 

 As illustrated in Figure 39, a C-grid structural mesh is generated around the airfoil. The 

mesh consists of 63,935 cells and the first layer thickness is 10−3 𝑚. There are 528 nodes 

around the airfoil. Finite volume method is used to solve the governing equations of continuity 

and momentum. Equations (2.24) – (2.27) are governing equations for air flow with the 

following assumptions: 1 - the flow is steady state, 2 - the flow is incompressible, 3 - viscosity is 

constant. The turbulence model 𝑘 − 𝜀 standard is used with standard wall functions. The lift 

and drag coefficients are monitored for convergence and the iterations are carried on until all 
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residuals drop below 2 × 10−5. To verify the 2D CFD results, pressure distribution around the 

airfoil is shown in Figure 40 [57].  A Dense mesh around the blade is used. The plot shows good 

agreement between numerical and experimental results. This indicates that the mesh is of high 

quality. 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 (2.24) 

 𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) + 𝜌𝑔𝑥 (2.25) 

 𝜌 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) + 𝜌𝑔𝑦 (2.26) 

 𝜌 (𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
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𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) + 𝜌𝑔𝑧 (2.27) 
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Figure 39. Grid around the airfoil 
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Figure 40. Coefficient of pressure for α = 9˚ at Re=1 million 

3.5 FSI model 

3.5.1 CFD model 

 For a rotating wind turbine blade, as illustrated in Figure 41, the relative wind velocity 

vector has both x and y components. To consider the rotation of the blade in the CFD model, an 

inlet velocity profile is implemented in Fluent. The profile has constant x component equal to 

real wind velocity for all of the domain. However, the y component linearly increases from root 

to tip as a function of coordinate z. The magnitude of y component is equal to 𝑅𝛺 at the tip, 

where R is the blade length and 𝛺 is the rotor rotational velocity.  
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Figure 41. Wind velocity vectors on the blade 

 The use of the inlet velocity profile involves having angled vectors of velocity entering 

the domain through the inlets. In a C-grid as shown in Figure 42, this results in the flow exiting 

from the inlet at the top parts of the curved section, especially around the root of the blade 

where the relative velocity vector is angled steeper. To address this concern, the C-grid is 

incorporated in a rectangular domain as illustrated in Figure 43. The new grid is still structured, 

however, all boundaries are straight lines. Total number of 1,081,038 cells are used in the 

rectangular domain. Mesh independence study for the rectangular domain grid is presented in 

Table 7. Turbulence model 𝑘 − 𝑤 is used in FSI model as it has been widely used in the studies 

of wind turbine blades [58, 59]. 
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Figure 42. C-domain and boundary conditions 
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Figure 43. Rectangular domain mesh 

Table 7. Mesh independence study for the 3D rectangular domain 
Number of 
cells 

Number of 
nodes on the 
airfoil 

First layer 
thickness 
(mm) 

Number of 
nodes along 
the blade 
span 

Number of 
nodes in 
radial 
distance 
from the 
airfoil 

Lift force 
(N) 

Drag force 
(N) 

377858 78 10 30 15 591.96 -12.80 

654108 101 10 40 20 589.78 -20.08 

1081038 131 8 50 30 593.96 -25.71 

 

3.5.1.1 3D mesh verification 

 For a blade with taper, twist and variable inlet velocity, each section has a different 

Reynolds number and angle of attack. Reynolds number and angle of attack are calculated for 

each blade section over a range of inlet wind velocities. The section at r = 4.275 m with Re = 

106 for which experimental data are available is selected for verification. CFD mesh verification 

is done using the pressure coefficient around the section. Figure 44 compares CFD results with 

experimental data. There is good agreement between CFD and experimental data in majority of 
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the section, except for the very tip of the airfoil on the suction side where the CFD model 

underestimates the pressure.  

 Underestimation of pressure at the tip of the airfoil on the suction side could be due to 

the insufficient mesh quality around the blade tip. The flow experiences abrupt change in 

direction while passing over the suction side at a high angle of attack. This rapid change of 

direction generally needs finer grid for more accurate calculation. Also, the results presented in 

Figure 44 are from a section of the blade where the airfoil has a 15˚ angle of attack which is 

much higher than its critical angle of attack of 10˚. This results in flow separation and 

turbulence on the suction side of the airfoil. Significant quantities of turbulence makes a very 

complex flow condition therefore, makes it difficult to accurately predict the flow velocity and 

pressure. This can reduce the accuracy of the estimated coefficient of pressure. Coefficient of 

pressure for the same airfoil at a lower angle of attack (9˚) is presented in Fig. 40. The numerical 

predictions have very good agreement with experimental data as at lower angles of attacks 

turbulence is not significant. 

 
Figure 44. Coefficient of pressure for α = 15˚ at Re=1 million 
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3.5.2 FE Model 

 The rotational forces from the blade weight are applied on the blade. The resulting force 

is calculated from the rotational velocity and applied as a body force on the blade (to represent 

blade rotation). Although the blade rotation is not defined in the domain, its effects are taken 

into account by using the velocity profile in CFD and rotational force load in FEA. There are 

187,357 nodes and 188,165 elements used in the FE model. The elements are of the type 

Shell181. Figure 45 shows the quadrilateral elements on the blade skin. The same equivalent 

material that is used in analyzing the angle beam in Section 3.1 is used for the entire blade. The 

equivalent material properties are calculated based on several modal analyses of NREL Phase VI 

blade with composite materials. A study [56] finds that a blade with elasticity modulus of 𝐸 =

1.56 × 1010pa and poisson’s ratio of 𝜈 = 0.42 in all directions, have the same response from 

the composite blade. Therefore, these properties are considered as equivalent material 

properties and are used in this thesis for the blade simulation. Blade skin has constant thickness 

of 10−3m and the spar thickness linearly decreases from 10−2m at the root to 10−3m at the 

tip. In the thicker model (results are presented in Section 3.7), the spar thickness is doubled. 

 

Figure 45. Blade mesh 
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3.6 Two-way Vs. one-way FSI 

 Two-way FSI models are computationally costly so it is typically desirable to simplify 

them to one-way models if it is a reasonable assumption. To determine if this assumption is 

valid in this study, a two-way and a one-way model with same boundary conditions and loading 

are conducted and the results compared. For simplicity the blades are modeled without twist 

and taper. The wind velocity is set to 40 m/s. The deformed blades from both models are 

shown in Figure 46. Maximum deflection at the tip of the blade is 0.02 m in the two-way model, 

this number is 0.0196 m in the one-way model. The error of 2% is acceptable and a good 

compromise between accuracy and complexity. Therefore, one-way models are used for the 

rest of the study. 

 
(a) One-way 
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(b) Two-way 

Figure 46. Blade deformation. 

3.7 Elastic twist 

 In this section, fluid structure interaction results are presented for different spar 

locations, thicknesses and wind speeds. Induced elastic twist is the main variable that is 

investigated. To investigate the effect of wind speed on the induced elastic twist, the one way 

FSI model was performed for three different wind speeds. As illustrated in Figure 47, elastic 

twist is proportional to wind speed. The elastic twist is greater at the blade tip, which is 

expected as those parts are further from the fixed support boundary condition applied at the 

root of the blade. Elastic twist shows a linear increase along the span with an increased slope 

for higher wind speeds. 
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Figure 47. Induced elastic twist for different wind speeds for spar located at x = 0.2c 

 To investigate the effect of spar location on the induced twist, two models are 

compared. One with spar located at x = 0.1c and the other one at x = 0.2c. Figure 48 compares 

the elastic twists for these two models. The model with the spar placed closer to the leading 

edge (thus further from the center of pressure) is showing more twist. This behavior is expected 

as a greater lever arm provides greater torque. However, it should be noted that due to 

constraints from airfoil geometry, the model with the spar placed closer to the leading edge has 

a spar which is shorter in height. 
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Figure 48. Elastic twist for different spar locations at 𝑈∞ = 20 m/s 

 Spar thickness is also studied and the results are presented in Figure 49. A spar which is 

twice as thick, shows much more twist at each blade section. This is in contrast to a thicker spar 

having more torsional stiffness, thus should better resist torsion. An explanation for this could 

be that when the spar thickness is much greater than the skin thickness, the closed section’s 

effect from the blade skin becomes much weaker. Therefore, the skin cannot develop a shear 

flow circuit and take up part of the torque. A much thinner blade skin eliminates the shear flow 

developed in the skin. 
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Figure 49. Effect of thickness on elastic twist. x = 0.1c, 𝑈∞ = 20 m/s 

3.8 Swept blade 

3.8.1 Curved planform 

To improve elastic twist of the blade, a curved design is employed. A modified swept 

blade is modeled based on the NREL Phase VI rotor and FSI analysis is conducted incorporating 

different types of spars. In this section, the results of bend induced twist for sweep blades are 

presented and compared between different models. 

 To form the curved planform of the blade, a power curve of order 4 is used and 

normalized to provide the desired bend depth at the tip. Bend depth is the perpendicular 

distance of the tip of the blade measured at 30% chord to the pitch axis of the blade. Two bend 

depths of 1 m and 1.5 m are studied. Figure 50 is the planform of the modified NREL Phase VI 

rotor blade. All of the other characteristics of the blade are maintained the same so the 

information on the blade can be found in Table 1, Figure 17 and Figure 18. Figure 51 illustrates 

the curved blade model with box spar. 
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Figure 50. Modified curved blade planform   

 

Figure 51. Swept blade with box spar 

 Unlike the previous models, the orientation of L spar facing leading edge is selected. 

This change is made because it will provide a larger shear web with greater bending stiffness. 

As box spar has greater bending stiffness, this selection helps in comparing the two model in a 

similar condition. Figure 52 is an illustration of the blade’s cross sections. 

 

Figure 52. Cross section of the blade with (a) L spar and (b) Box spar 

Pitch axis 
30% chord 

Bend depth y = a 𝑥4 

(a) (b) 
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3.8.2 Elastic twist 

 FSI analysis is performed on the models for two wind velocities 10 m/s and 15 m/s. 

Figure 53 illustrates contours of flapwise deformation for the blade with box spar at 𝑈∞ = 15 

m/s. The undeformed blade is also shown in wireframe for comparison. A maximum of 4.5 cm 

of deflection is at the tip of the blade. The resultant induced elastic twist for different sections 

of the blade are presented in Figure 54. For better comparison, more plots with fewer series of 

data are presented and discussed in the rest of this section. 

 
Figure 53. Flapwise bending 
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Figure 54. Elastic twist for swept blades 

 As illustrated in Figure 55, similar to the straight blade models, induced elastic twist is 

greater at higher wind speeds in the swept blade model. The effect of bend depth on elastic 

twist is presented in Figure 56 and Figure 57. There is a significant increase in elastic twist due 

to the blade curvature as illustrated in Figure 56 and Figure 57. Twist angle of up to 0.45˚ can be 

achieved with a bend depth of 1.5 m. An average increase of 41% in elastic twist can be 

achieved with 50% increase in bend depth at the rated wind speed 10 m/s. However, a blade 

with sharper curve planform is generally more expensive to build and the power gains might 

not offset the manufacturing costs. 
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Figure 55. Induced twist of blade with L spar and bend depth of 1 m 

 
 

 
Figure 56. Induced twist of blade with L spar at 𝑈∞ = 10 m/s 
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Figure 57. Induced twist of blade with L spar at 𝑈∞ = 15 m/s 

 The blade with box spar shows less elastic twist compared to a blade with L spar. This is 

highlighted in Figure 58 and Figure 59.  A box spar allows for the formation of a shear flow 

circuit that will resist torsion and part of the torque resulting in less elastic twist. The advantage 

of using an L spar over a box spar is that the blade with L spar experiences 18% more elastic 

twist. However, from other design criteria, a box spar might have superiority as it provides 

more stability in vibrations during wind fluctuations. Box spar needs to be analyzed from other 

mechanical aspects in future studies. The blade with box spar experiences less flapwise 

deformation because a box spar has greater bending stiffness compared to an L spar which has 

a single shear web. 
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Figure 58. Induced twist for bend depth = 1 m at 𝑈∞ = 10 m/s 

 

 
Figure 59. Induced twist for bend depth = 1 m at 𝑈∞ = 15 m/s 

3.8.3 Comparison of predicted elastic twist with optimal twist angle 

 As illustrated in Figure 60, optimal elastic twist and predicted elastic twist (from fluid 

structure interaction analysis) are compared for a wind speed of 10 m/s. In this analysis, 

approximately a 6-fold increase in the predicted elastic twist is needed to achieve optimal 

elastic twist at this wind speed at the tip of the blade. However, the optimal values for elastic 
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twist are obtained from an unrealistic and ideal rotor that is assumed to be able to twist each 

blade section significantly and non-monotonically, as illustrated in Fig. 60. This is impractical, 

however, setting feasible target curves instead can be a better reference frame to evaluate how 

effective bend-twist coupling modifications are. Further improvement in elastic twist might be 

possible to achieve by employing other types of BTC, such as biased fibers. Improvement in 

material properties also might lead to manufacturing blades that are more flexible while strong 

enough to be used in wind turbine blades. 

 

Figure 60. Elastic twist for blade with bend depth of 1.5 m and L spar at 𝑈∞ = 10 m/s 

3.8.4 Power increase 

 After obtaining 𝜃𝑒′𝑠 from FSI analysis, a modification is done on the code to be able to 

calculate the resultant power increase. As presented in the Section 2.1, elastic twist adds to 

each section’s pitch angle and changes the angle of attack. Under the new condition, the 

performance of the turbine will change. At wind speed 𝑈∞= 10 m/s, the power generation 

increases by 1.89%. However, a power reduction is seen for a lower wind speed, i.e., 𝑈∞= 5m/s. 

0

1

2

3

4

5

6

7

8

9

10

2 2.5 3 3.5 4 4.5 5 5.5 6

El
as

ti
c 

tw
is

t 
𝜃
𝑒

(˚
)

Blade section r (m)

 Predicted (FSI analysis)

 Optimal



62 
 

As illustrated in Figure 20, for 5 m/s wind speed, the elastic twist needs to be in opposite 

direction (nose up), in contrast with higher wind speed 8 m/s that a nose down twist is needed. 

Table 8. Power change 

 Power (kW)  

𝑈∞(m/s) Solid blade BTC Change (%) 

10 11.35 11.56 1.89 
5 3.505 3.250 -7.26 

 

 Although the power improvement might seem relatively small, the 1.89% calculated 

increase is for the rated speed and when considered throughout the total lifetime of a blade, 

will result in significantly more power production. Also, this improvement comes with relatively 

small changes in the design and manufacturing process of the blade making it more desirable. 

Ultimately, the power improvement can be considered as proof of concept for further studies. 
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4 Conclusions and recommendations 

4.1 Conclusions 

 Power optimization for a wind turbine blade was done based on BEMT and power 

enhancement capacities were confirmed. An elastic twist of up to 5˚ is needed for optimal 

power enhancement purposes around the rated wind speed. Aeroelastic capacities of a blade 

with an L spar were studied through fluid-structure interaction analysis. The results show up to 

0.36˚ elastic twist for a thick configuration of the spar at higher wind speeds. Two spar 

thickness configurations were studied while the same blade skin thickness was maintained. The 

FSI results indicate there is more elastic twist in the thicker configuration. Elastic twist is 

improved with the spar placed closer to the leading edge of the blade. 

Elastic twist resulted from the FSI analysis were compared to desired elastic curves. It 

was found that although some elastic twists is predicted, it is not comparable to the amounts 

needed for optimal power output. As a result, the curved planform blade was combined with L 

spar to enhance the elastic twists. The results show improved elastic twist in the modified 

swept blades. For a bend depth of 1.5 m, elastic twists of up to 0.67˚ were predicted at 15 m/s 

wind speed. Swept blades with L spar and box spar were modeled, analyzed and compared. The 

results indicate the blade with L spar yields considerably more elastic twist compared to the 

blade with box spar. Power increase of 1.89% was predicted from the elastic twists in the swept 

blade with L spar at the rated wind speed 10 m/s. 
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4.2 Recommendations for future studies 

Elastic twist can also be optimized for load alleviation purposes. Stall characteristics of 

the blade can be improved by nose up elastic twist resulting in lower gust loads. A nose up 

elastic twist helps with putting the sections of the blade into stall at more optimal wind speeds. 

Nose up elastic twist can be obtained using a reverse swept planform (forward). Also, 

combining geometry BTC with material BTC can be studied for higher orders of elastic twists. A 

blade with L spar, swept planform and biased fibers in the spar and skin provides more 

potential for bend-twist coupling. Transient analysis to study the blade response in wind 

fluctuations is also a topic of interest. A transient analysis can reveal how fast BTC can be in 

responding to wind fluctuations. 
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