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Abstract

Stability analysis of larger power system can be challenging and difficult. This

is mainly due to the effect of several power system phenomena which are no longer

negligible when the analysis is made on larger and complex power systems. The

modelling of these unknown number of power system phenomena increases the overall

model complexity. This causes the simulation more time consuming which does not

help in improving stability of the system in the event of disturbance. Although,

reduced order modelling of larger power system is considered as temporary solution,

there is always a risk of producing different results than the actual power system

response.

In this thesis, various types of measurement based modal analysis is studied in

detail as an alternate approach to the conventional model based modal analysis.

This is based on the fact that any disturbance given to the system excites a

particular eigenvalue pair/s causing significant reduction in damping ratio and

thereby moving the system towards instability. These eigenvalue pair/s of each

generator can be extracted directly from obtained system response using various

mathematical techniques.

Both time domain and frequency domain techniques are analyzed and compared

with the results of model based modal analysis. Different IEEE test cases are

considered based on the type of domain in which the data is analyzed.
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Chapter 1

Introduction

1.1 Background of the research

In 1901, the concept of co-generation and distribution was adopted to meet the

overall demand with the generation. This made the interconnection of power system

present in various areas/ regions. The term tie-line was coined and has been highly

monitored especially in the tie lines connecting power system of two countries. With

time, more and more interconnection of power systems have been carried out and

the system as a whole became more complex. This made it difficult for analyzing

the stability of the power system causing risk in ensuring reliable power delivery to

the consumers. Use of high processing units for solving the inter-connected power

system reduced the processing times but the simulated results using a model proved

to be different than that produced by the actual system. The western north-American

blackout on 10th August 1996 [1] and Northern India blackout on 30th July 2012 [2] are

some classic examples of power system instability due to effect of dynamic cascading.
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1.2 Objective of the research

The main objectives of this research are listed as follows:

• To study about various types of instability and power system stability problems

in power systems.

• To study about the modelling of various power system components for stability

studies.

• To understand about the conventional method of modal analysis in power

system for stability purposes and difficulties in extending it to a large power

system.

• To study about the importance of system operating parameters, network

parameters and gains of control system used to calculate the model of the

power system for stability studies.

• To analyze measurement based modal analysis as an alternative approach to

model based modal analysis.

• To study about various types of time and frequency domain techniques based

on actual system measurement.

• To compare the realized system model from measured system response with

that of full order model of the power system.

• To tune/ re-tune power system stabilizer(PSS) using the obtained modal

parameters from measurement based techniques.
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1.3 Organization of the thesis

This thesis has been organized such that power system stability problems and

conventional modal analysis are discussed in early chapters and measurement based

modal analysis is discussed in later chapters. In Chapter 2, various types of power

system instability and its stability problems are demonstrated. In Chapter 3, dynamic

modelling of various power system components are discussed and the sensitivity of the

exciter parameters on stability is analyzed using single machine infinite bus(SMIB)

system. In Chapter 4, conventional method of modal analysis in power system is

discussed and sensitivity of various system parameters is analyzed to show how the

different parameters affect the stability estimation of the system using model based

modal analysis. In Chapter 5, an alternative approach to modal analysis is discussed

using 3 types of time domain techniques. In Chapter 6, frequency domain based modal

identification is discussed and its advantages and disadvantages are discussed. In

Chapter 7, the method of measurement based PSS tuning/ re-tuning is discussed and

demonstrated on IEEE 39 bus system. Chapter 8 concludes the thesis by highlighting

the key contribution of this research and presenting various suggestions for future

work.

3



Chapter 2

Power System Stability

2.1 Introduction

In this chapter, an overview of the various power system stability problems and

different disturbances that excite local and control modes are studied in terms of

transient/ small signal stability. In Section 2.2, the basis of power system operation

and the characteristics of power system during a transient followed by a disturbance

are discussed. In Section 2.3, classification of power system stability is briefly

discussed. In Section 2.4, various types of power system stability problems are

discussed and the difference between a transient stability and small signal stability

is shown. In Section 2.5, various types of oscillatory modes observed in power

system and their adverse effects are discussed. In Section 2.6, a single machine

infinite bus (SMIB) system is simulated and various modes present in the oscillation

are analyzed with and without exciter. Section 2.7 concludes this chapter.
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2.2 Overview of power system stability

Power system stability refers to the ability of the system reaching an equilibrium

after a disturbance. The operation of power system can be broadly divided into two

types [3]:

1. Steady state operation

The steady state operation deals with power flow in the power system to meet

the load demands with the available generation capability. It refers to the

analysis of the system neglecting any minute changes in the power system

properties.

2. Transient Operation

The dynamic state analysis of the power system deals with the stability of the

power system after a disturbance occurs. It takes into account the changes

in system properties due to the disturbance. It also involves modelling the

power system under study to obtain its oscillatory characteristics for any future

contingencies.

When a power system operating in steady state when experiences a disturbance

either severe or weak for a long or short duration, it enters into a transient state

causing it to oscillate around the equilibrium point. After the oscillation, a stable

system attains a new equilibrium position. It is said to be stable even if it attains a

new equilibrium point than it was before the disturbance. Stability is the ability of

the system to remain in synchronism during the post disturbance period.

A power system is said to be unstable if oscillations during the transient period are

undamped and sustained. A poorly damped oscillation occurring for a time period

5



large enough can cause the separation of generators or progressive reduction of bus

voltage leading to failure of the operation of the power system. A different kind

of instability which even occur without losing synchronism is due to the collapse of

voltage due to the presence of large induction motor in the bus.

The dynamic modelling of power system has always been a challenging task because

of nature of the system as described below [4]:

1. Non-linear and unpredictable nature.

2. Drifting of system parameters with time.

3. Higher order due to complexity of the system.

2.3 Classification of power system stability

A need for having a classification for stability arised with the variety of ways

a disturbance might occur which leads to different types of the oscillation causing

instability [5]. The stability of power system is broadly classified based on the three

main power system parameters as follows:

• active power support: known as frequency stability

• reactive power support: known as voltage stability

• maintenance of synchronism: known as rotor angle stability

6



Figure 2.1: Classification of power system stability [5]

Figure (2.1) shows the overall classification of power system stability. It is

broadly divided into rotor angle, frequency and voltage stability based on

synchronism, active and reactive power support in power system which are three

important operation parameters for the power system to function. Each type of

stability can be affected either small disturbance or large disturbance indicative of

the severity of the disturbance and also classified based on the time duration of each

type of disturbance. Thus the classification covers almost every type of disturbance

that a power system might experience.

2.4 Rotor angle stability

The rotor angle stability deals with the maintenance of synchronism with all the

generators present in the power system. The system is stable if the rotor angle of one

of the machines deviates from the steady state value due to any disturbance, attains

7



the equilibrium/ steady state after the disturbance is eliminated.

The power output of the synchronous machine highly depends upon the rotor angle

and if one of the synchronous generator runs in higher speed, then the rotor of that

machine gets advanced than that of the other machines in the power system. This

leads to a load shift towards the machine which has the advanced rotor angle. The

magnitude of the load shift depends upon the non-linear power angle characteristics

of the machine. The relation indirectly relates to sufficient amount of torque to return

back the rotor to a new or previous equilibrium point. Insufficient electrical torque

will result in rotor drifting away from the equilibrium point causing instability.

The electro-mechanical torque of a synchronous machine consists of two

components which are in quadrature with each other.

1. Synchronizing torque: in-phase with the change in rotor angle. An insufficient

synchronizing torque will cause aperiodic instability without any oscillation.

2. Damping torque: in-phase with the change in rotor speed. An insufficient

damping torque causes a periodic or oscillatory instability.

2.4.1 Small signal stability

Small signal stability of the power system defines the ability of the power system

to return back to its equilibrium position when subjected to a small disturbance.

The small disturbance can be a minor change in loads, change in set-point voltage

of voltage regulator or even due to weakly coupled static var compensator (SVC) or

high voltage dc converters (HVDC). Small signal instabilities are highly dependent on

initial states and might be both oscillatory and aperiodic. In modern power system,
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the aperiodic instabilities are eliminated by the use of automatic voltage regulators

with rotating exciters. But due to saturation effects and limits of the exciter, such

instabilities cannot be totally eliminated for small disturbances.

2.4.2 Transient stability

Transient Stability defines the ability of the power system to return back to its

equilibrium position when subjected to a large disturbance. The large disturbance

might be a short circuit in the transmission line. A large disturbance causes a change

in rotor angle so large that there is insufficient synchronizing torque. Therefore, the

instability is always aperiodic.

2.4.3 Contrasts between transient and small signal stability

The contrast between a transient stability and small signal stability is the analysis

method used. The time frame of interest for a small signal stability studies is 10-15

seconds, whereas for transient stability studies it might be 3-5 seconds after the

disturbance. In small signal stability analysis, the differential equations governing

the non-linearity are linearized due to shorter time scales in small disturbances. For

transient stability studies, the dynamic equations are solved directly using trapezoidal

integration since linearization of the dynamic equations are not made for severe faults

or faults with longer duration. Small signal disturbances are prone to occur more

frequently than the transient disturbances in a practical power system [6].

9



2.5 Small signal stability problems on power

system

The frequency range of each type of oscillation arising from variety of sources is

termed as mode. The following are a few common modes of oscillations related to

small signal stability [7]:

1. Intra-plant modes: The machines within a power plant oscillate. Here the

frequency range of oscillation is 2-3 Hz.

2. Local modes: Local modes are associated with swinging of units at a

generating station with respect to the rest of the power system. The

oscillations are localized at one station. Here frequency range of oscillation is

1-2 Hz.

3. Inter-area modes: Inter area modes are associated with the swings of many

machines in one part of the system against a group of machines in the other

parts. As the number of machines involved here is more, frequency of oscillation

is less compared to intra-plant modes. Here the frequency range of oscillation

is 0.1-0.9 Hz.

4. Control modes: Control modes are associated with generating units and other

control units like poorly tuned exciters, speed governors, HVDC converters and

SVC. The nonlinear interaction between exciter and loads leads to oscillatory

response in bus voltage.

5. Torsional modes: Torsional modes relate to oscillation of various stages of
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steam turbine shaft system with the electrical network. Instability in torsional

modes may be caused by interaction with excitation controls, speed governors,

HVDC controls, and series capacitor compensated lines. Here the frequency

range of oscillation is 10-46 Hz.

2.6 Case study: SMIB system

In order to demonstrate the various types of oscillation modes associated in power

system, a single machine infinite bus (SMIB) system is used as shown in Figure

(2.2). The parameter values for the generator, exciter system and system operating

conditions are given in Appendix A. To study the different types of the modes as

explained in Section 2.4, the system is perturbed with a 3 phase to ground fault at

bus 3 which is applied at t = 1s and the fault is cleared at t = 1.1s. The simulation

is carried out using PowerWorld [8] for 10s with and without the exciter model and

the eigenvalues of the system model is studied to obtain the modes present in the

oscillation.

It can be seen the simulation results of Figures (2.3) and (2.4) that the system is

totally stable since the system attains an equilibrium position after the disturbance.

It is to be noted that although the power system with and without exciter is stable,

the response of the system with the exciter model is less damped due to the addition

of control modes in the SMIB power system.
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Figure 2.2: Single machine infinite bus system
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Figure 2.3: Rotor angle oscillation of generator at bus 4 without exciter system

2.6.1 Various modes of oscillations

Eigenvalue analysis gives an estimate of number of modes,the frequency associated

with each mode and the damping ratio. The SMIB system consists of 4th order model12
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Figure 2.4: Rotor angle oscillation of generator at bus 4 with exciter system

for generator and 3th order model for the exciter. Therefore, it results in 4 and 7 modes

with and without exciter respectively.

Table 2.1: Eigenvalue of SMIB system without exciter model

Eigenvalue no. Most Associated States Real part Imag Part Frequency

1 δ, ω -0.5893 11.2576 1.7917

2 δ, ω -0.5893 -11.2576 -1.7917

3 Ed -3.508 0 0.55

4 Eq -0.2832 0 0.0451
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Table 2.2: Eigenvalue of SMIB system with exciter model

Eigenvalue Most Associated States Real part Imag Part Frequency

1 Ve, Vr -4.8236 15.467 2.461

2 Ve, Vr -4.8236 -15.467 -2.461

3 ω, δ -0.1654 11.058 1.758

4 ω, δ -0.1654 -11.058 -1.758

5 Eq, Ed -5.9311 0 0

6 Vf , Eq -1.708 1.707 0.2719

7 Vf , Eq -1.708 1.707 0.2719

Tables (2.1) and (2.2) show the most associated states based on the highest

participation factor of the state on that eigenvalue for the two cases of without and

with an exciter calculated using PowerWorld [8]. The method of calculating

participation factors of each eigenvalue on state variables will be discussed in

Chapter 3. The eigenvalues corresponding to eigenvalue 6 and 7 in Table (2.2) is the

control mode due to exciter showing the highest participation factor for Vf which is

the applied field voltage by exciter, and Eq of the generator. The control mode can

dangerously affect the small signal stability of the system due to its high

participation with the generator local modes.

To demonstrate the reduction in small signal stability due the control modes,

another disturbance which excites the control mode is introduced. In the same SMIB

system shown in Figure (2.2), the control modes can be excited by changing the set

point voltage of the exciter from 1.1 pu to 1.0 pu at t= 1s. Figure (2.5) shows the
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small signal instability of the SMIB system due to excitation of the control mode.
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Figure 2.5: Terminal voltage oscillation of the generator at bus 4 with exciter system

The reduction in damping ratio in the case of transient stability and poor small

signal stability is a characteristic of addition of exciter to the generator model. This

is due to the gain of the exciter that changes the root locus of the overall system

such that the eigenvalues move more closer to the origin. It could be seen that the

addition of control modes are more prone to cause small signal instability than the

transient instability because the small disturbances like the change in preset setting

of exciter, HVDC components or even sudden change in load causes instability in the

presence of less damped local mode which is highly coupled with the control modes.
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2.7 Conclusion

In this chapter, classification on power system stability and various stability

problems have been discussed with respect to the modes of oscillation. Various

types of modes due to different components in the power system have also been

studied. The local modes of a SMIB system are identified and the effect of addition

of a exciter system producing control modes has been studied. Comparison between

the small signal stability and transient stability is also made by exciting the system

and reducing the voltage reference input to the exciter system. Thus, the relation of

system response and its stability with various modes of system excited by the type

of disturbance are studied in this chapter.
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Chapter 3

Dynamic Modelling of Power

System

3.1 Introduction

In this chapter, mathematical models that describe the dynamic behaviour of

generator and exciter system are discussed. In Section 3.2, the dynamic model of

synchronous generator and reduced order modelling of synchronous generator is

discussed. In Section 3.3, the selection of reduced order models for stability studies

is analyzed using a Single Machine Infinite Bus (SMIB) system. In Section 3.4, the

modelling of IEEE AC1A exciter system is discussed and the effect of rotating

excitation system is discussed. In Section 3.5, sensitivity analysis of the excitation

system parameters on the small signal stability of the SMIB system is discussed.

Section 3.6 concludes this chapter.
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3.2 Modelling of synchronous generator

The dynamic modelling of the synchronous generator starts with the swing

equation derived with the help of fundamental Newton’s second law of motion

substituted in terms of the synchronous motor parameters namely, the rotor angle

and the net force in terms of electrical and mechanical power [9].

d2δ

dt2
=

ωs

2H
(Pm − Pe sin δ) (3.1)

where, δ, ωs, H are the rotor angle, synchronous speed and inertia constant of the

generator, Pm and Pe are the input mechanical power and output electrical power of

the generator. Equation (3.1) can also be written in terms of the rotor angle and

speed deviation as follows:

d∆δ

dt
= ω(t)− ωs = ∆ω (3.2)

d∆ω

dt
=

ωs

2H
(Pm − Pe sin δ) (3.3)

where,

Pe = real

(

V̄

(

Ē − V̄

(xg + xe)

))

(3.4)

Equations (3.2) and (3.3) are referred to as the classical model of the

synchronous generator which consists of two differential equation and one algebraic

equation with ∆δ and ∆ω as the state variables. The parameters Ē and the V̄ are

the internal voltage of the generator and the voltage of the bus upto which the

analysis is considered. xg and xe are the generator reactance and external network

reactance respectively. In the classical model, only the mechanical dynamics are

considered for the modelling of the synchronous generator and the electrical
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dynamics are computed only by the algebraic equation of the power flow from the

generator to a bus or load. The disturbance can be in the form of a change in the

input mechanical power indicated with ∆Pm or with a change in the electrical

power depending upon the xe of the external network indicated by ∆Pm. Therefore

equation (3.3) becomes

d∆ω

dt
=

ωs

2H
(Pm − Pe sin δ −D∆ω) (3.5)

where D is the generator load damping co-efficient when damping due to the damper

winding is considered.

3.2.1 Addition of electrical dynamics to the classical model

In order to have an accurate model of the dynamic behaviour of the power system

it is necessary to consider the non-linearity in the stator and the rotor circuits of the

synchronous generator. The flux decay equations of stator winding, rotor winding

with the damper winding is considered and the electrical dynamic equation is derived

in detail [7] as follows:

T
′

do

dE
′

q

dt
= −E

′

q − (Xd−X
′

d)
[

Id−
X

′

d −X
′′

d

(X
′

d −Xls)
2 (ψ1d+(X

′

d−Xls)Id−E
′

q)
]

+Efd (3.6)

T
′′

do

ψ1d

dt
= −ψ1d + E

′

q − (X
′

d −Xls)Id (3.7)

T
′

qo

dE
′

d

dt
= E

′

d + (Xq −X
′

q)
[

Iq −
X

′

q −X
′′

q

(X ′

q −Xls)2
(ψ2d + (X

′

q −Xls)Iq − E
′

d)
]

(3.8)

T
′′

qo

ψ2q

dt
= −ψ2q + E

′

d − (X
′

q −Xls)Iq (3.9)

and

ψd = −X
′′

q Iq −
(X

′′

q −Xls)

(X ′

q −Xls)
E

′

d +
(X

′

q −X
′′

q )

(X ′

q −Xls)
ψ2q (3.10)
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ψq = −X
′′

d Id −
(X

′′

d −Xls)

(X
′

d −Xls)
E

′

q +
(X

′

d −X
′′

d )

(X
′

d −Xls)
ψ2d (3.11)

where, Xd and Xq are the d-axis and q-axis synchronous reactance (pu) , X
′

d and X
′

q

are the d-axis and q-axis transient reactance (pu) , X
′′

d and X
′′

q are the d-axis and

q-axis sub-transient reactance (pu) , T
′

do and T
′

qo are the d-axis and q-axis transient

open loop time constant (s) , T
′′

do and T
′′

qo are the d-axis and q-axis sub-transient open

loop time constant (s) , E
′

q and E
′

d are the q-axis and d-axis internal voltages (pu) ,

ψ1d and ψ2q are the flux linkages of d-axis and q-axis damper winding (pu) ,Id and

Iq are d-axis and q-axis currents (pu) ,Xls is the leakage reactance. Equations (3.6)-

(3.11) adds 4 more differential equations (3.6)- (3.9) and 2 algebraic equations (3.10)-

(3.11) to the classical model. Hence this model is called the 6th order model of the

synchronous generator.

3.2.2 Reduced order modelling of synchronous generators

The 6th order model of the generator with 6 differential equations and 3

algebraic equations not only makes it complex to solve the differential equations but

also difficult to maintain dynamic database for the whole power system under study.

Although the 6th order model is better, the states with comparatively less

participation factors when compared to other states can be neglected without any

appreciable loss of accuracy.

Reduced 4th order model:

In a 4th order model, the sub-transient time constants which are less than one

cycle are neglected as the response of the associated transfer function is almost

instantaneous and the delay in the response is negligibly small [7]. Therefore
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substituting T
′′

do and T
′′

qo equal to zero in equations (3.7) and (3.9),we get:

0 = −ψ1d + E
′

q − (X
′

d −Xls)Id (3.12)

0 = −ψ2d + E
′

d − (X
′

q −Xls)Iq (3.13)

Now, substituting equation (3.12) and (3.13) into (3.6) and (3.8), we get

T
′

do

dE
′

q

dt
= −E

′

q − (Xd −X
′

d)Id + Efd (3.14)

T
′

qo

dE
′

d

dt
= −E

′

d + (Xq −X
′

q)Iq (3.15)

and

ψd = −E
′

q −X
′

dId (3.16)

ψq = −E
′

d −X
′

qIq (3.17)

After the reduction of the states ψ2d and ψ1d, there are 2 electrical dynamic

equations and 2 mechanical dynamic equations resulting in a 4th order model. This

model is also called two axis model of synchronous generator.

3rd order model:

The state due to the direct axis of the stator which is represented by dE
′

d is still

present in the 4th order model. For the power system under study, if the value of T
′

qo is

considerably small, then, a 3rd order model is possible. It is obtained by substituting

T
′

qo with zero in the equation (3.15) and the resulting 3rd order model is shown in

equations (3.18) and (3.19).

E
′

d = (Xq −X
′

q)Iq (3.18)

and

T
′

do

dE
′

q

dt
= −E

′

q − (Xd −X
′

d)Id + Efd (3.19)
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3.3 Selection of dynamic order of synchronous

generator for stability studies

The order or number of differential equations considered for analyzing the dynamic

behaviour of the synchronous generator is highly decided on the value of sub-transient

and transient reactances and its time constants. If the time constant of that particular

differential equation is very much less than the 1
f
seconds of the system, then the

differential equation is considered to be an algebraic equation that can be substituted

in other differential equations. If the value of the d/q axis reactance of the generator

is very small which causes very minute change,the particular reactance is considered

to be zero. Consider the single machine infinite bus(SMIB) system shown in Figure

(3.1) whose system data is shown in Appendix A.

Figure 3.1: A SMIB power system

The generator in SMIB system shown in Figure (3.1) has very small sub-transient

reactance and time constant, therefore the 6th order model is not necessary. In
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this thesis, the response to the classical model and the effect of the addition of the

electrical dynamics is studied and why the 3rd order model is not sufficient in this

case is discussed. Figures (3.2) and (3.3) show the oscillation in the rotor angle and

speed with a 3-phase fault occurring in bus 1 at t= 0s and then cleared at t=0.05s.

The differential equation solver ode45 in MATLAB [10] is used to numerically solve

the classical model of generator for during and post fault conditions. In the classical

model, the generator internal voltage is assumed constant, hence the oscillation is

sustained and undamped.
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Figure 3.2: Rotor angle oscillation with classical Model

Figures (3.4) and (3.5) show the rotor angle and rotor speed after addition of the

electrical dynamics to the classical model. It can be seen that the oscillation are now

damped by generator internal voltages attaining a new equilibrium position in time
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Figure 3.3: Rotor speed with classical model
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Figure 3.4: Rotor angle oscillation with 4th order modelling
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Figure 3.5: Rotor speed oscillation with 4th order modelling

T
′

d0 = 7.0s. As a comparison, Figure (3.6) shows the difference in response of a 3rd

order model when compared with a 4th and 6th order model. This is because the

time constant T
′

q = 0.75s is far more higher than the time period of the system with

f=60Hz which completes one cycle in 0.01667s. Therefore, both the 4th and 3rd order

model is fairly the same at the initial integration times but has a phase shift with

continued integration. This also explains the reduction in damping of the oscillations.

Therefore, for generators of small rating which has very small T
′

q0 and sub-transient

reactance, a 3rd order model is sufficient. As the rating of the generator increases

the value of T
′

q0 also increases with respect to the generation frequency and 3rd order

modelling would not accurately predict the response of the synchronous generator

modelled. A 6th order model is not necessary unless the sub-transient reactances are

large enough in which case cannot be neglected.

25



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (Seconds)

48

50

52

54

56

58

60

62

64

66

R
o

to
r 

a
n

g
le

 (
D

e
g

)

3 rd model

4 th  order model

6 th  order model

Figure 3.6: Comparison of 3rd, 4th and 6th order model of generator

Figure (3.6) also shows the 6th order model response where the change in damping

ratio is very small when compared to 1.99%, 4.81% and 5.01% for 3rd, 4th and 6th

order model respectively. This is explained by the Gibb’s phenomenon [11] where

increasing the order of the model makes the model response more representative of

the actual system response with increasing damping but limited to a certain value. In

the SMIB system, the maximum damping around 5% is achieved as explained by the

Gibb’s phenomenon due to increased leakage of energy from the higher frequencies.

In case of larger power systems with multiple generating stations, the overall order

of the model is very high such that it increases the cost and time of such simulations.

Therefore, it is necessary to choose appropriate order for generators so that the overall

order of the system is low and the model response is closely represents the actual

response of the system at the same time.
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3.4 Modelling of IEEE type AC1A exciter system:

The automatic voltage regulator (AVR) is a power electronic based control device

which is used to maintain a constant voltage at the generator’s terminal by adjusting

the internal voltage of the generator. This is done by adjusting the field current of the

generator by adjusting the input field voltage achieved by power electronic devices.

In short, during steady state, the AVR is used to provide constant reactive power

support to the power system.

Figure 3.7: Block diagram of AVR and exciter system [12]

It is very important to model the dynamics of the AVR with the generator since

Efd is also present in the generator’s dynamic equation. Figure (3.7) shows the

brush-less excitation system in detail and voltage regulator in a block. A permanent

magnet generator is used to provide the main supply to the exciter system which is

connected to the shaft of the main generator. This is done to eliminate the external

transients when the supply is taken from the generator terminal. Such an exciter

system is called static system which is not commonly used.
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3.4.1 Modelling of the AVR

The voltage regulator shown in the Figure (3.7) is a comparator with an amplifier

circuit which instantaneously compares the value of the set-point voltage,Vref with

the terminal voltage of the generator measured by a potential transformer. The error

value thus obtained is applied to a PI controller with a gain value to reduce the steady

state error. The value of gain is set such that the rated voltage is obtained at the

terminal of the generators. Thus the dynamic equation of the voltage regulator is

essentially an equation of the PI controller with Vref - Vmeasured as the input. So we

have,

TA
dVR

dt
= −VR +KA(Vref − Vmeasured) (3.20)

Where, Vref , Vmeasured,VR and KA are the reference voltage, terminal voltage of

generator, regulation voltage and gain of the AVR. The automatic voltage regulator

also has limits governed by the thermal limitation and the loading of the separately

excited AC generator used in the exciter system. In addition to the measured

voltage, the regulator also has additional inputs for the Power System Stabilizer

(PSS), stabilizer for the excitation system, frequency limiter etc.

3.4.2 Modelling of the exciter system

The brush-less excitation system shown in Figure (3.7) starts with the permanent

magnet (PM) generator which generates constant voltage in the stator for the given

input mechanical input provided by the turbine which is also coupled to the main

generator. The PM generator produces AC voltage which is converted to DC using

a controlled rectifier circuit to supply the field of a separately excited AC generator.
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The controlled rectifier consists of gated thyristors or IGBT which can produce both

DC output of both positive and negative polarities. Generally, while modelling the

rectifier circuits the time constant is considered very small in the order of 1
6

th
of the

cycle. Here the dynamics of the PM generator does not greatly affect the response

of the controlled rectifier connected to the generator. The controlled rectifier has

direct control over the output of the self-excited AC generator which is again rectified

using diode bridge and then fed to the main generator’s field circuit. Since the field

voltage can only be controlled using the controlled rectifier, it is necessary to model

the dynamics of the separately excited generator.

Modelling of the separately excited AC generator: For any AC generator, the

relation between the field voltage and the obtained armature voltage is given as

Ef = RfIf +
dEa

dt
(3.21)

where, Ef and Ea are the field and armature voltages, If and Rf are the field current

and field resistance. Since, T
′

do of the main generator is very high, we might need

to apply more field voltage to minimize the rise time of the terminal voltage. There

we need to consider the saturation effects of the separately excited AC generator,

therefore equation (3.21) is modified by [13],

If =
Ea

Rg

+ EaSe(Ea) (3.22)

and,

Ea = KaLfIf (3.23)

where, Se(Ea) refers to the saturation function obtained from the open circuit

characteristics of the generator. Substituting equations (3.22) and (3.23) in (3.21),
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we get

Ef =
Rf

Rg

Ea +RfSe(Ea)Ea +
1

Ka

dEa

dt
(3.24)

Ef = KEEa + SE(Ea)Ea + TE
dEa

dt
(3.25)

where,

KE =
Rf

Rg

SE(Ea) = RfSe TE =
1

Ka

(3.26)

Equation (3.25) represents the dynamic model of the AC generator used in the exciter

system.

Modelling of the diode rectifier: Usually the dynamics of the rectifier is neglected

since the time constant is very small. However, in the case of the diode rectifier the

output voltage depends upon the input voltage and the output current. There is also

appreciable drop in input voltage due to appreciable armature reaction reluctance in

the self-excited AC generator. In addition, some value of inductance is introduced

in the input terminals of the diode rectifier to reduce the commutation delay which

results in furthur drop in the voltage. Therefore from [13],

Eed = f(IN)VE (3.27)

where,

IN = KcIout
VE

, Kc is the commutation constant.

f(IN) is determined by the range of IN .

Equations (3.20) - (3.27) refer to the dynamic equations of the AVR and excitation

system. The IEEE Excitation system of Type AC1A can be obtained by taking the

Laplace transform to obtain the individual transfer function of the blocks as shown

in the Figure (3.8).
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Figure 3.8: IEEE type AC1A AVR with exciter system [13]

It can be seen from the Figure (3.8) that the regulator has an input feed by

the stabilizing transformer transfer function to stabilize the whole control system of

the AVR and exciter system. The output of the regulator is influenced by limiter

like under and over excitation limiters and the limiters for the whole output of the

regulator block which is used to preserve thermal constraints of the AC generator

and also to prevent dropping of voltage below a particular limit VRmin leading to

insufficient field voltage to the main generator.

3.5 Effect of exciter model in the SMIB system

The addition of exciter model to the 4th order model of the synchronous generator

results in system with 7 states. In the SMIB system, a 3 phase to ground fault is

applied at bus 3 at t= 1s and cleared at t= 1.1s and the simulation is carried out for

10s using PowerWorld [8]. The removal of bus 3 from the system causes the system to

attain a new equilibrium position due to the change of the external network topology.

This causes the terminal voltage of the generator to be different than the voltage
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before the fault. Figures (3.10) and (3.11) show the terminal voltage and rotor angle

oscillation of the generator at bus 4 with and without a rotating excitation system.

The parameter values used for the exciter system are shown in Appendix A.
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Figure 3.9: Terminal voltage oscillation of generator with and without exciter

From Figure (3.9), it can be seen that the exciter helps to maintain the same

terminal voltage of the generator which tends to change due to change in system

network without an exciter. Increasing the gain of the exciter helps to attain the Vref

faster with less steady state error which is the main purpose of adding exciter to the

generator.
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Figure 3.10: Rotor angle oscillation of generator at bus 4 with and without exciter

3.5.1 Sensitivity analysis of the excitation system

parameters on small signal stability

The exciter system which is added to the synchronous generator needs to be tuned

such that the system is stable in case of disturbance. From the simulation results from

Section 3.2.3, it is to be noticed that the local mode is less damped due to the addition

of the control modes introduced by the rotating exciter. This requires us to analyze

the effect of various parameters of the exciter model affecting the damping of the

local mode causing small signal and transient instability. The sensitivity of various

parameters of the exciter model on the stability of the system can be analyzed by

eigenvalue analysis.

Unlike the static exciter system, the amplifier/ voltage regulator gain, Ka variation

does not cause instability in the rotating excitation system. It can be seen from the
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Figure (3.11) that increase in the value of the amplifier gain substantially reduces

the damping ratio of the local oscillation mode, but does not cause instability as the

damping ratio does not reduce after Ka= 2000.
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Figure 3.11: Effect of variation of damping ratio with amplifier gain Ka

The improved stability of the rotating excitation system is due to the feedback

loop which consists of the stabilizer block. The stabilization of the exciter system

is performed depending on the value of the stabilizer gain, Kf . This explains the

declining nature of the damping ratio with the increase in the amplifier gain in Figure

(3.11) with a minimum damping ratio of 1.59%. But, the rotating excitation system

becomes vulnerable to instability with gain value of the stabilizing transformer used.

Figure (3.12) shows the change of damping ratio of the local mode corresponding

to 1.667Hz with the variation of the stabilizer gain Kf with a fixed Ka = 200. Figure

(3.13) shows the movement of the eigenvalues/ poles of the system with the variation
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of Kf .

0 0.05 0.1 0.15

Stabilizer gain, K
f
 

-6

-5

-4

-3

-2

-1

0

1

2

3

4

D
a
m

p
in

g
 r

a
ti
o
 (

%
)

Figure 3.12: Effect of variation of damping ratio with stabilizer gain Kf

It can be noted from Figures (3.12) and (3.13) that Kf = 0.01 causes instability

in the power system due to the presence of positive real part in the eigenvalue which

causes negative damping ratio leading to instability. This is due to the stabilizing

transformer not able to provide enough synchronous torque in the synchronous

generator via the excitation system at amplifier gain, Ka = 200. Therefore, in

rotating excitation system, the possibility of small signal instability is present when

the Kf is small even though the value of amplifier gain is at a lower value. This

indicates the system stability is highly affected by the gains of the excitation system

which is a vital factor that needs to be taken into consideration in the model based

modal analysis for stability purposes.
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Figure 3.13: Movement of eigenvalues with variation in stabilizer gain Kf

3.6 Conclusion

In this chapter, the modelling of synchronous generator for dynamic studies is

discussed and the reduced order modelling of synchronous generator has been studied.

Selection of order for synchronous generator dynamic model has been explained using

SMIB system as a case study. It is shown that the 4th order and 3rd order model

shows significantly different results because of neglected T
′

q0 . The working of IEEE

AC1A is discussed and the advantage of the rotating excitation over the static exciter

is also discussed. Sensitivity analysis on various exciter parameters are also studied to

understand the movement of eigenvalues for the same type of disturbance indicating

the importance of the gains of the exciter in a model based modal analysis.
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Chapter 4

Model based Assessment of Power

System Small Signal Stability:

4.1 Introduction

In this chapter, eigenvalue based modal analysis using dynamic model of the power

system is discussed. In Section 4.2, a generalized form of modal analysis for dynamic

system is discussed using the process of linearization . In Section 4.3, conventional

method of modal analysis for single bus equivalent of power systems is discussed.

In Section 4.4, small signal stability of SMIB system is assessed by estimating the

eigenvalues by linearization. Movement of eigenvalues with variation of operating

parameters and network coupling are also discussed in Section 4.4. In Section 4.5,

various difficulties in applying model based modal analysis to large power system are

discussed. Section 4.6 concludes this chapter.
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4.2 Generalized modal analysis based on

eigenvalue estimation

The modes of vibration of any system can be obtained from the eigenvalue pairs

possessed by the system. The eigenvalues of the system can be obtained from the

differential equations that govern the system. In case of small disturbances to the

system, the eigenvalues are obtained by linearizing the system equation around a

point of equilibrium. This is applied to systems when the excitation reaches a new

equilibrium position from a previous equilibrium point.

The linearization of system equation can be performed on previous equilibrium

point which help to obtain modes and its associated damping before the disturbance.

The eigenvalues obtained by linearizing around the new equilibrium point helps to

obtain the present state of the system and estimation of system state for future

disturbances. A system governed by differential algebraic equation can be represented

in state space form as shown below:

ẋ = f(x, v, u) (4.1)

0 = g(x, v, u) (4.2)

where, x is the state variables of the system, v is the algebraic variable and u is the

input to the system. If the response of the system is highly dependent on the initial

condition attained at the new equilibrium position, the modal parameters after the

new equilibrium point can be obtained by linearizing the above system of equations

as follows:

∆ẋ = A∆x+B∆v + C∆u (4.3)
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0 = D∆x+ E∆v + F∆u (4.4)

where, A,B,C are the partial derivatives of equation (4.1) with respect to variables

x, v, u respectively. Similarly, the matrices D,E, F are the partial derivatives of

equation (4.2) with respect to variables x, v, u respectively.

The system characteristics can be obtained from the eigenvalues of the system

matrix which can be calculated from the equations (4.3) and (4.4) as shown below:

Asys = A− BE−1D (4.5)

The complex eigenvalues obtained from the system matrix, Asys determines the

stability of the system. A large negative value in the real part of a complex

eigenvalue indicates the particular mode is highly damped. A negative real part

close to zero indicates the mode is poorly damped and a consecutive disturbance of

the system might cause instability. A positive real part with imaginary part

indicates periodic instability, while a positive real without an imaginary part

indicates aperiodic instability.

The state variable which contributes the most for a particular mode is used to

decide the input signal to a stability controller. This can be obtained from

participation factor of each state variable on all eigenvalue. A high value of

participation factor indicates the most contribution of the state variable to the

oscillation. The participation factor can be determined as follows:

pki = ψkiφki (4.6)

where, ψki and φki are the right and left eigenvalues of the system matrix, Asys.
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4.3 Conventional modal analysis of power systems

Any power system network can be represented as a single bus equivalent circuit,

where the generator under study is considered as a single machine and the rest of the

network is replaced by infinite bus. The differential algebraic equations that govern

the system response are represented in equations (4.7) and (4.8).

dδ

dt
= ωr − ωs

dωr

dt
=

ωs

2H
(Tm − Te)

dE
′

q

dt
=

1

T
′

d0

[−E
′

q − (Xd −X
′

d)Id + Efd]

dE
′

d

dt
=

1

T
′

q0

[−E
′

d − (Xq −X
′

q)Iq]

(4.7)

−(X
′

q +Xt)Iq − E
′

d + Ebsin(δ) = 0

(X
′

d +Xt)Iq − E
′

q + Ebcos(δ) = 0

−XtIq + Ebsin(δ) = Vd

XtIq + Ebcos(δ) = Vq

(4.8)

Equation (4.7) represents the set of differential equations and equation (4.8)

represents the set of algebraic equations. From [14], equations (4.7) and (4.8) can be

linearized and written in state space form to obtain the A,B,C,D,E, F matrices as

discussed in Section (4.2) are shown in equations (4.9)- (4.14).

A =























0 1 0 0

0 0 − ωs

2H
Iq0 − ωs

2H
Id0

0 0 − 1

T
′

do

0

0 0 0 − 1

T
′

q0























(4.9)
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B =























0 0 0 0

0 0 − ωs

2H
[E

′

q0(X
′

q −X
′

d)Id0] − ωs

2H
[E

′

d0(X
′

q −X
′

d)Iq0]

0 0 0 −xd−x
′

d

T
′

d0

0 0 −xq−x
′

q

T
′

q0

0























(4.10)

C =





















0 0

ωs

2H
0

0 1

T
′

d0

0 0





















(4.11)

D =





















Ebcosδ0 0 0 −1

−Ebsinδ0 0 −1 0

Ebcosδ0 0 0 0

−Ebsinδ0 0 0 0





















(4.12)

E =





















0 0 −(X
′

q +Xt) 0

0 0 0 X
′

d +Xt

0 −1 −Xt 0

−1 0 0 Xt





















(4.13)

F = φ2×4 (4.14)

where, x =

[

∆δ ∆ω ∆E
′

q ∆E
′

d

]T

, u =

[

∆Tm ∆Efd

]T

,

z =

[

∆Vq ∆Vd ∆Id ∆Iq

]T

From equations (4.9)- (4.14), the eigenvalues of the

system can be obtained for the equilibrium point for which the differential equations

are linearized. For a network of more than one generator, the network matrix E

changes accounting for the interaction between both the generators.
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Asys =





































0 377 0 0 0 0

−0.346 −0.224 −0.268 0.141 0 0

−0.414 −0.555 −0.657 0 0.142 0

1.693 −1.560 0 −4.191 0 0

66.112 −422.870 −293.336 −194.452 −5 −1000

0 0 0 0 0 −1.000





































(4.15)

where, x =

[

∆δ ∆ω ∆E
′

q ∆E
′

d ∆Efd ∆Vf

]T

Table 4.1: Eigenvalues of SMIB obtained from linearized dynamic model

Eigenvalue Damping ratio Frequency

1 -0.3679+j11.0053 0.0334 1.7515

2 -0.3679-j11.0053 0.0334 1.7515

3 -3.2489+j6.6893 0.4369 1.0646

4 -3.2489-j6.6893 0.4369 1.0646

5 -2.8405 -NA- -NA-

6 -1 -NA- -NA-

Table (4.1) shows the list of eigenvalues with their damping ratios and frequencies

which is also shown in Figure (4.2). From the participation factor table shown in

Table (4.2), it can be seen that the 1.715 Hz component with least damping is due

to ∆δ and ∆ω. The 1.064 Hz component with highest damping is due to ∆E
′

q and

∆Efd state variables.
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Figure 4.2: Eigenvalues on complex plane of considered SMIB system

Table 4.2: Participation factor on various state variable of the system.

Eigenvalue no. ∆δ ∆ω ∆E
′

q ∆E
′

d ∆Efd ∆Vf

1 0.707 0.700 0.06 0.026 0.066 0

2 0.707 0.700 0.06 0.026 0.066 0

3 0.056 0.069 0.686 0.092 0.715 0

4 0.056 0.069 0.686 0.092 0.715 0

5 0.022 0.023 0.034 0.997 0.043 0

6 0 0 0 0 0 1
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4.4.1 Sensitivity of reactive power support on small signal

stability

From Section 4.3, it can be seen that matrices C and D are constant for a given

generator parameters. The values of matrices B and E depend on the operation

conditions of the system and system network. The generated reactive power can be

varied to change the values of B matrix. The effect of reduction of reactive power

from 50 Mvar to 0 Mvar is analyzed.
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Figure 4.3: Movement of eigenvalues for varying Qgen
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From Figure (4.3), it can be seen that the reduction of reactive power causes the

reduction of damping ratio of each mode causing the poles to move closer to the origin

line. This is due to reduction of direct and quadrature currents in the B matrix which

affects the values of the system matrix such that damping of the modes is reduced.

4.4.2 Sensitivity of system coupling on small signal stability

The stability of the system is also highly dependent on the network reactance

represented by Xt. A higher value of Xt represents strong coupling of the generator

with the rest of the network. A low value of Xt represents a weak coupling resulting

in increased stability problems.
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Figure 4.4: Movement of eigenvalues for varying coupling, Xt
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Figure (4.4) shows the movement of eigenvalues for variation of Xt from 0.5 pu to

0.1 pu for a fixed value of Q = 150MV ar. It can be seen that damping of the modes

is greatly reduced similar to reducing reactive power generation. But reducing the

coupling of the generator causes changes in network matrix, E which in turn causes

changes in system matrix moving the poles closer to the origin line.

Thus from the sensitivity analysis of reactive power support and system

coupling, it can be noted that the system stability is highly affected by changes in

system operating parameter matrices A, B, D and system network matrix E.

Therefore it is important to accurately calculate and maintain the values of the

matrices A,B,C,D,E in order to estimate the modes that represent the actual

response of system.

4.5 Difficulties in applying model based modal

analysis to large power system

• Maintenance of dynamic database: Due to the linearization process, the initial

values for every state variables and the other system variables need to be

measured from the system to determine the modal properties. Also the system

operating parameter matrices A,B,D and the system network matrix E is

also need to be updated for every equilibrium point attained by the power

system.

• For a larger order model, it requires a larger dynamic database that needs to

maintained which is costly and time consuming.
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• Models for power system characteristics like the ferro-resonance and skin effect

might be negligible for large systems.

• The uncertainty in representing a constant current/ constant impedance model

for loads in power system makes the model based modal analysis challenging.

4.6 Conclusion

In this chapter, eigenvalue based modal analysis has been discussed using a model

based approach. The participation factor of every state variable on each eigenvalue

is also discussed. The eigenvalue based modal analysis and the effect of participation

factor of each state variable is explained using a SMIB system. Movement of main

oscillatory mode causing instability with variation of generated reactive power and

network coupling is analyzed with respect to the various model matrices.
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Chapter 5

Modal Identification by Time

Domain Techniques

5.1 Introduction

In this chapter, an alternative method of estimating the modal parameters of

power system using measured oscillatory data is discussed. In Section 5.2, the

concept of alternative approach to modal analysis and method of measurement

based techniques are discussed. In Section 5.3, various types of signal processing

methods to extract modal parameters from system responses are discussed. Prony

analysis, Eigenvalue realization algorithm and matrix pencil method are discussed

in Section 5.4. In Section 5.5, the measurement-based technique is illustrated using

a SMIB system. In Section 5.6, the modal parameters of an IEEE 39 bus system are

extracted using time domain techniques. In Section 5.7, disadvantages of time

domain techniques are discussed. Section 5.8 concludes this chapter.
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the time synchronized system measurements which became possible after the advent

of phasor measurement units [17]. Since these methods are directly based on

measured response, changes in modal parameters due to unknown characteristics

can be tracked irrespective of the size of the system. The performance of these

methods is affected and limited to availability of data with a required resolution

under a certain noise level.

For example, in power systems, although an 8th order model (4th order model for

generator, a 2nd order model for exciter, a 2nd order model for governor) is linearized

to obtain 8 eigenvalues, not all eigenvalues are responsible for oscillation in the system

response. This is because a particular disturbance excites only one eigenvalue pairs

called the main oscillatory mode. This holds true for large power systems where the

oscillation and therefore the stability is predominately due to one or rarely at most 2

eigenvalue pairs. Table (5.1) shows the list of events that led to the Western North

American blackout in 1996.

Table 5.1: List of events during 1996 Blackout [18]

Time/Event Frequency Damping ratio

10:52:19(brake insertion) 0.285 Hz 8.4%

14:52:37(John Day-Marion) 0.264 Hz 3.7%

15:42:03(Keeler-Allston) 0.264 Hz 3.5%

15:47:40(oscillation start) 0.238 Hz -3.1%

15:48:50(oscillation finish) 0.216 Hz -6.3%
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5.3 Signal processing methods for modal

extraction

The signal processing methods can be classified based on the approach to extract

the modes from measured oscillatory response. The techniques can either use a

model based approach, where a curve is fitted with the model and system response,

or can be a direct analysis on a pre-processed form of the system response. A

model-based approach is called parametric method and the latter being the non-

parametric method. Usually, the time domain techniques are parametric based

techniques which assume either a linear or non-linear model to obtain modal

parameters [19]. Therefore, the parametric algorithms can be classified as Ringdown

and Mode meter analysis.

5.3.1 Ringdown analysis

In this technique, according to [20], the modal parameters are obtained using N

number of linearly superimposed damped sinusoids as shown in equation (5.1).

Y (t) =
N
∑

i=1

Aie
−Σitcos(ωit+ φi) (5.1)

where, Ai, is the amplitude of the ith mode, Σi, is the damping constant of the ith

mode, ωi, is the natural frequency of the ith mode, φi, is the phase of the ith mode,

N , is the total number of modes.

Equation (5.1) is established based on the definition that oscillatory signals are

obtained from the real part of the complex values obtained from the poles and zeros
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of the transfer function which can be generally represented as:

Y (s) =
N
∑

i=1

βi

s− λi

+
βi

s− λ
′

i

(5.2)

where, Y (s), is the transfer function of the system to be identified. λi, λ
′

i and βi are

the eigenvalue pairs and complex amplitude. The solution of equation (5.2) is written

as

Y (t) =
N
∑

i=1

βie
λit + λie

λ
′

it (5.3)

where the eigenvalue pairs can be expressed as −αi ± iωi and the equation (5.3)

becomes,

Y (t) =
N
∑

i=1

βi(e
(−αi+iωi)t + e(−αi−iωi)t)) (5.4)

Y (t) =
N
∑

i=1

2βie
−αit(

eiωit + e−iωit

2
) (5.5)

The measured signals can be obtained by taking the real value of the equation

(5.4) which can be simplified by substituting βi ∗ 2 as Ai and trigonometric identities

to equation (5.5) to obtain equation (5.6).

Y (t) =
N
∑

i=1

Aie
−αitcos(ωit+ φi) (5.6)

The ringdown algorithm is widely used for analyzing transient response of the

power system followed by a disturbance. All ringdown algorithms/ analysis are

parametric including techniques like the Prony analysis, eigenvalue realization and

matrix pencil method.

5.3.2 Mode meter analysis

The mode meter analysis is based on the analysis of ambient data assumed to be

caused due to low-amplitude random variation like minute load changes. This
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results in a system response of low amplitude depending on system dynamics [21].

The mode meter analysis is either a non-parametric(model-less) like the Welch

periodogram or parametric method like the auto-aggressive moving average and

Yule Walker technique. The mode meter analysis is not considered in this thesis.

5.4 Time domain techniques: Ringdown algorithm

5.4.1 Prony analysis

Prony analysis has been a viable technique to model a linear sum of damped

complex exponentials with signals that are uniformly sampled. In Prony analysis

curve fitting for a sum of exponentials is carried out at first and then extended models

to interpolate intermediate points are obtained. Prony analysis is not only a signal

analysis technique but also a system identification technique used to estimate modal

parameters and mode shape in various fields including power system. Prony analysis

is a parametric technique which involves three basic steps [22].

Step 1

From equation (5.6) a discretized form of equation (5.3) with sampling rate ∆k

can be written as

Y [k] =
N
∑

i=1

Ciµ
k
i (5.7)

where, Y[k], is the sampled signal at sampling rate of ∆k.

Ci, is
Aie

iφ

2

µk
i , is e

αi∆k
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Equation (5.7) can be written as a linear prediction model as,

Y [N ] = a1Y [N − 1] + a2Y [N − 2] + ....+ aNY [0] (5.8)

We can write equation (5.8) as a matrix form as





















Y [N ]

Y [N + 1]

...

Y [L− 1]





















=





















Y [N − 1] Y [N − 2] ... Y [0]

Y [N ] Y [N − 1] ... Y [1]

... ... ... ...

Y [L− 2] Y [L− 3] ... Y [L−N − 1]









































a1

a2

...

aN





















(5.9)

Step 2

Equation (5.9) is of the form Y = DA where the coefficients a1...aN , are obtained

by computing A = D−1Y . The poles of the system can be obtained from equation

(5.8) by taking root polynomial equation obtained from the coefficients in equation

(5.8). The obtained poles contain the estimated damping co-efficient Σi and natural

frequency ωi of each mode.

Step 3

The amplitude and phase of each mode can be obtained from the known poles by

writing equation (5.7) in matrix form as




























Y [0]

Y [1]

Y [2]

...

Y [L− 1]





























=





























1 1 ... 1

µ1
1 µ1

2 ... µ1
N

µ2
1 µ2

2 ... µ2
N

... ... ... ...

µL−1
1 µL−1

2 ... µL−1
N

























































C1

C2

C3

...

CN





























(5.10)

Equation (5.10) is of the form Y=UC and the value of C1...CN can be obtained

by computing U−1Y .
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From equation (5.7), the amplitude and the phase can be obtained as

Ai = 2|Ci|

φi = args[Ci]

(5.11)

5.4.2 Eigenvalue realization algorithm

The eigenvalue realization algorithm(ERA) uses the principles of minimum

realization to obtain a state-space representation of the structure [23]. A realization

is the estimation of the system matrices A,B, and C from the response of the

structure. There can be infinite number of matrices A,B,C, and D each of different

dimensions, that can be used to describe the input/output relationship of the

system. However, the system should be realized with the least number of states or

number of modes. This realization is called minimum realization [24]. The ERA

starts with the discretized model of the system as shown in equation (5.12).

ẋ[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] +Du[k]

(5.12)

Substituting k = 0, 1, 2..., we get y[k] as shown in the equation bellow,
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(5.13)
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The ERA technique starts with formation of Hankel and shifted Hankel matrix as

shown below

H0 =





















y[0] y[1] ... y[L/2]

y[1] y[2] ... y[(L/2) + 1]

... ... ... ...

y[L/2] ... ... Y [L− 1]
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(5.14)
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[

B AB A2B ....AL/2B

]

(5.16)

H0 = OPCP (5.17)

where OP and CP are the controllability and observabilty matrix of the system.

In order to obtain the controllability and observabilty matrices, a singular value

decomposition (SVD) of the Hankel matrix is performed. The SVD of H0 yields,

H0 = UnΣ
2
nV

T
n (5.18)

where,

Un, is the unit left eigenvector associated with the singular values.

Σn, is the singular values.
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Vn, is the unit right eigenvector associated with the singular values.

Comparing equations (5.17) and (5.18), we can write,

Op = UnΣnCp = ΣnV
T
n

(5.19)

The matrix can be obtained from a shifted Hankel matrix, H1 which yields,

H1 = OPACP (5.20)

Therefore,

A = O−1
P H1C

−1
P (5.21)

Finally we can write,

A = Σ−1
n UT

n H1VnΣ
−1
n (5.22)

From equations (5.16) and (5.17), the matrices B and C can be obtained from

first elements of OP and CP and matrix D = y[0].

5.4.3 Matrix pencil method

The matrix pencil method is based on numerical linear algebra. The matrix

pencil method is also similar to ERA which works on the singular value

decomposition [25]. While the ERA is better than Prony analysis in obtaining the

state space model of the system, the matrix pencil method is a more robust

technique producing better results from a signal with high level of noise.
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In matrix pencil method, the problem of obtaining the poles of the system can be

casted into a generalized linear eigenvalue problem as

[H1 − λH0] ⇐⇒ [H0+H1 − α[i]] (5.23)

where,

H0, is the Hankel matrix from ERA

H1, is the shifted Hankel matrix from ERA

and the plus sign indicates the pseudoinverse of the matrix.

The SVD of the Hankel matrices H0 and H1 yields,

H0 = UΣV1

H1 = UΣV2

(5.24)

and

V
′

1 = V1[1 : N ]

V
′

2 = V2[1 : N ]

(5.25)

According to [26],

[[V1]
H − λ[V0]

H ] ⇐⇒ [[V +
1 ]

H
[V2]

H − λi] (5.26)

is equivalent to eigenvalues obtained by

[H1 − λH0] ⇐⇒ [H0+H1 − α[i]] (5.27)

where,

the H denotes the complex conjugate of the matrix.

The A matrix of the system can be obtained from V
′

1 and V
′

2 as

[Y1] = [V
′

1 ]
T
[V

′

1 ] (5.28)
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Consider the single machine infinite bus system shown in the Figure (5.3), which

is used to show the relation between the participation factor in model based technique

and main oscillatory mode in measurement based technique. The following are the

generator parameters used in MATLAB used in control system toolbox for simulation.

Table 5.2: Generator parameters of SMIB system

Parameter Value Parameter Value(pu)

H 3.5MWs/MVA Xd 1.81

T
′

do 7.5s Xq 1.76

Ka 50 X
′

d 0.3

ta 0.2s X
′

q 0.16

The linearized state space representation of the SMIB is shown below:
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u (5.31)

where K1- K6 are calculated from system operating parameters to be,

K1 = 0.84 K3 = 0.38 K5 = 0.1015

K2 = 1.02 K4 = 0.553 K6 = 0.79
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Therefore, equation (5.31) becomes
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u (5.32)

In order to obtain the change in rotor angle, the matrix C is [1 0 0 0] and D=0. The

MATLAB [10] function lsim from control system toolbox is used to simulate change

in the rotor angle of the generator from the obtained state space system as shown in

Figure (5.4).

Figure 5.4: Oscillation of the generator rotor angle for impulse input
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5.5.1 Modal analysis using linearized model

The modal parameters of the system can be easily obtained using the eigenvalues

of the system matrix, A. The eigenvalues obtained using the linearized model of the

SMIB are as follows:

λ = eig(
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0 377 0 0

−0.12 0 −0.1457 0

−0.0737 0 −0.3509 0.1333
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
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








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) (5.33)

Table 5.3: Modal parameters of SMIB system

Mode Eigenvalue,λ frequency damping ratio

1 -2.3264 + j4.1051 0.653 0.566

1 -2.3264 - j4.1051 0.653 0.566

2 -0.3490 + j6.9061 1.099 0.050

2 -0.3490 - j6.9061 1.099 0.050

It can be seen from Table (5.3) that mode 2 is lightly damped and mode 1 is

highly damped. In order to obtain the effect of each state variable on each mode, the

participation factor is calculated.

It can be seen from Table (5.4), that δ, ω have higher participation factor of Mode 2

with 1.099 Hz and lower damping ratios. This implies that the time domain response

of the rotor angle and speed will have higher oscillations because of mode 2 having

very low damping ratio as seen in Figures (5.4) and (5.5). Whereas in E
′

fd, E
′

q, Mode
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Table 5.4: Participation factors of each variables

Mode 1 Mode 1 Mode 2 Mode 2

δ -0.0294 + 0.0788i -0.0294 - 0.0788i -0.5790 + 0.1717i -0.5790 - 0.1717i

ω -0.0179 + 0.0604i -0.0179 - 0.0604i 0.5179 - 0.2154i 0.5179 + 0.2154i

E
′

q -0.2061 + 0.4594i 0.2061 + 0.4594i 0.0080 + 0.0758i -0.0080 + 0.0758i

E
′

fd -0.1587 - 0.4779i -0.1587 - 0.4779i 0.0691 - 0.0320i 0.0691 - 0.0320i

1 has higher participation factor than mode 2 and since mode 1 is highly damped the

time domain response has oscillations with lower amplitude due to lower participation

factor as seen in Figures (5.6) and (5.7).

Figure 5.5: Oscillation of generator 1 speed for impulse input
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Figure 5.6: Oscillation of generator 1 q-axis voltage for impulse input

Figure 5.7: Oscillation of generator 1 field voltage for impulse input
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5.5.2 System realization using eigenvalue realization

technique.

The data for the change in rotor angle is collected from the simulation of the SMIB

in order to obtain an output based model of the power system using ERA technique.

250 data points are collected with a time resolution of 0.04 seconds and ERA is

applied on the data points. The SVD of the Hankel matrix reveals the presence of 4

eigenvalues in the data as shown below:

Singularvalues =





















0.2804 0 0 0

0 0.2835 0 0

0 0 0.5181 0

0 0 0 0.8884
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(5.34)

The system matrices A,B,C are obtained using equation (5.22) are as follows:
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0.9451 0.2589 −0.0632 0.0177

−0.2589 0.9653 0.0146 −0.0070

0.0632 0.0146 0.8909 0.1575

0.0177 0.0070 −0.1575 0.8941
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

(5.35)

B = [−0.0180;−0.0005; 0.0702; 0.0993] (5.36)

C = [0.0180− 0.00050.0702− 0.0993]; (5.37)

The discrete model obtained is based on the change in rotor angle data for the

given input to the system. The discrete matrices, A,B,C can be converted to

continuous state space system with zero order hold using d2c() in MATLAB and the
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obtained continuous state space model is

A =


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(5.38)

B = [−0.4266;−0.0689; 1.6305; 2.7613] (5.39)

C = [0.0180 − 0.0005 0.0702 − 0.0993]; (5.40)

The modal analysis of realized system matrix, A shows the same eigenvalues that was

obtained from the linearized model of the power system. From equation (5.33)
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(5.41)

Therefore, the system identified using ERA technique produces a model using

the measured oscillatory data which has the same eigenvalue of the original model

of the system. The participation of state variable can be obtained by extracting the

individual modal parameters. The modal parameters of the rotor angle are shown in

Table (5.5).
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Table 5.5: Modal parameters of rotor angle of generator 1

Amplitude Phase Natural frequency Damping ratio

Mode1 11.629 115.04 0.653 0.5667

Mode2 6.91 -44.6 1.099 0.0505

It can be clearly seen from the Table (5.5), that the mode 2 with 1.09Hz component

is the main oscillating energy. This is because, even though the amplitude of mode 2

is higher that mode 2, mode 2 has a very low damping compared to mode 1 which is

in accordance with the highest participation factor in linearized model analysis.

Figure 5.8: ERA fit showing individual modes of rotor angle oscillation

From Figure (5.8) it can be clearly seen that mode 2 is the main oscillatory mode

contributing to the oscillatory energy in the rotor angle of the generator. Similar
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In order to analyze the small signal stability, the linearized system matrix A is

obtained from the PowerWorld. The linearization is performed before the fault to

obtain the eigenvalues of the healthy system and by applying the measurement based

technique after the fault, the excited modes by the disturbance can be tracked by its

movement towards the origin. The obtained matrix A is a 209 X 209 matrix with 209

state variable. The eigenvalues of the system, which is oscillatory in nature close to

the origin, are shown in the Figure (5.11).

Figure 5.11: Eigenvalues of the 39 bus system before the fault

In order to perform an ERA/ Matrix pencil/ Prony analysis, a 3 phase to ground

fault is introduced at bus 16 at 0.5 seconds and cleared at 0.7 seconds. The rotor

angle and speed of generator 2, 5, 10 are chosen for analysis and shown in Figure

(5.12). A 6th order model is fitted for the transient data after the fault is cleared
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at t=0.7 seconds in MATLAB environment by importing the time domain data from

PowerWorld.

Figure 5.12: Eigenvalues of oscillatory nature of the 39 bus system

The realized system using the rotor angle and speed of the generators is of size 6

X 6 with three modes. The time domain fit of the realized model is shown in Figure

(5.12) which indicates that the realized system modal parameters represent the actual

system. The estimated modal parameters for rotor angle and speed of generator 2

73



Table 5.6: Modal parameters of speed of generator 2

Amplitude Phase Natural frequency Damping ratio

Mode1 4.19 164.73 1.18 0.1362

Mode2 3.05 56.5 1.001 0.141

Mode 3 1.14 -166.72 0.6063 0.265

Table 5.7: Modal parameters of rotor angle of generator 2

Amplitude Phase Natural frequency Damping ratio

Mode1 1.13 81.5 1.19 0.101

Mode2 0.85 -46.65 0.99 0.1037

Mode 3 2.388 99.06 0.599 0.2478

are shown in Tables (5.6) and (5.7). It can be seen from Tables (5.6) and (5.7)

that mode 1 is the main oscillatory mode for both speed and rotor angle of generator

2 due to lower damping when compared to mode 3. The higher amplitude of mode

3 of rotor angle does not make it as a main oscillatory mode due to high damping

relative to the natural frequency of mode 3.

Figures (5.13) and (5.14) show the movement of the eigenvalues before and after

the disturbance in power system. The eigenvalues from the linearized model is used

as eigenvalues before the fault and it can be seen that all the eigenvalues are towards

the left half of the s-plane, indicating that the each mode is highly damped. The

eigenvalues of the realized systems for rotor angle and speed of multiple generators

2, 5, 10 are shown in the Figures (5.13) and (5.14) respectively.
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Figure 5.13: Movement of eigenvalues associated with rotor angle after fault.

Figure 5.14: Movement of eigenvalues associated with generator speed after fault.
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It can be seen that the realized system using the time domain techniques indicates

the significant reduction of the damping ratios which causes the eigenvalues to move

towards the right half of the s-plane, thus making the system vulnerable to instability.

In addition, it can be seen that the main oscillatory mode of all the generators occurs

along the same imaginary axis (around 1Hz) indicating that the main oscillatory

mode is a single eigenvalue pair which is excited by the 3 phase fault in the system.

5.7 Disadvantage of time domain based technique

The algorithm of any time domain technique is based on the minimal error fit of

the time domain model with the chosen system response. Therefore, the algorithm

represents a single frequency mode as two modes as seen in Table (5.6) and (5.7)

where mode 1 and 2 having more or less the same frequency and damping ratio are

represented as two modes because of minimal error fit in time. This might make it

difficult for identifying the main oscillatory modes present in the system response. On

the other hand, the time domain techniques are always suitable for analyzing larger

system where the system possesses a lot of closely spaced frequencies.
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5.8 Conclusion

In this chapter, three types of time domain techniques are discussed to estimate

the modal parameters from the obtained system response. System identification is

performed for a SMIB system using the time domain techniques and compared with

the modal analysis results from a calculated linearized model. System identification

on a larger IEEE 39 bus network is performed for all 10 generators. The movement

of the main oscillatory modes in the event of disturbance obtained from the time

domain techniques is compared with the eigenvalues before the disturbance obtained

from linearized model in view of stability monitoring.
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Chapter 6

Modal Identification by Frequency

Domain Techniques

6.1 Introduction

In this chapter, the method of extracting modal parameters by curve fitting in

frequency domain using a frequency model is discussed. In Section 6.2, the concept

of modal extraction in frequency domain and the types of frequency domain

techniques with its disadvantages are discussed. In Section 6.3, the model used for

frequency domain curve fitting is discussed. In Section 6.4, the method of extracting

the modal parameters using curve fitting is discussed. In Section 6.5, the parametric

discrete Fourier transform (p-DFT) is validated using synthetic signal with two

levels of noise. In Section 6.6, IEEE 14 bus system is used as a case study and the

modal parameters are obtained using p-DFT and the results are compared with

results of traditional model based technique. In Section 6.7, the disadvantages of
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frequency domain technique are discussed in comparison with time domain

techniques. Section 6.8 concludes the chapter.

6.2 Modal identification in frequency spectrum

Similar to time domain techniques, both parametric and non-parametric methods

can be used for frequency domain analysis to extract modal parameters from the

measured system response. The graphical form of frequency domain analysis is one

method of non-parametric Discrete Fourier Transform (DFT) technique where the

modal parameters are directly obtained from the frequency domain plot of oscillatory

signal. The modal parameters can be obtained by performing DFT of the time domain

signal as indicated in the equation (6.1).

Y (jω) =
N
∑

i=1

y[n]e−j2πin, 0 ≤ i ≤ N (6.1)

where,

y[n] is the measured oscillatory signal

Y (jω) is the DFT of the measured oscillatory signal.

According to [28], the modal parameters can be graphically obtained for kth peak in

DFT plot using the equations (6.2) - (6.4).

Ak =
4|Y (ωk)|
NTs

(6.2)

φk = tan−1

[

Im(Y (ωk))

Re(Y (ωk))

]

(6.3)

ζk =
2

ωkNTs

ln

( |Y (ωk)|
Y (ωk)e−jωkNTs

)

(6.4)
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6.2.1 Shortcomings of non-parametric DFT technique

1. Leakage of energy due to rectangular windowing:

As a property of the rectangular window used for the DFT, the leakage of energy

due to Gibbs phenomenon is highest for a rectangular window with the lowest

main-lobe width [29]. Therefore, the usage of other common windows like the

hamming window, has higher side lobe attenuation(less leakage) but has higher

main lobe width, which causes peaks to overlap with each other in frequency

and hence the resolvability in frequency is compromised.
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Figure 6.1: Infinite windowed/ undamped sinusoid with 1 and 1.5 Hz component

2. Significant aliasing in frequency:

In applications like power system oscillations where several frequency
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components are usually present along with the main frequency component, the

leaked energy from other frequency components interferes with the main

energy component of nearest mode and vice-versa. This causes the analysis of

frequency spectrum to be harder even when the characteristic of a rectangular

window is already known. But the usage of the rectangular window with

lowest main-lobe width is enough to produce the peaks at the exact frequency

location corresponding to the damped frequency of the input signal. Figures

(6.1) and (6.2) show the DFT plot of undamped and damped sin wave

consisting of 1Hz and 1.5Hz component.
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Figure 6.2: Windowed/ damped sinusoid with 1 and 1.5 Hz component

In addition, the damped sinusoids limit the number of samples or window size

causing the significant leakage of energy and aliasing and giving rise to peaks
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between 1 and 1.5 Hz component.

3. Type of window used:

The analysis of a non parametric DFT technique is independent of the type of

window used to produce the DFT plot. The usage of different types of windows

produces different DFT plots and causes differences in the results of the non

parametric DFT technique.

6.3 Modelling for parametric Frequency domain

analysis

In order to overcome the short coming of non-parametric/ graphical method of

frequency domain analysis, a model based frequency domain analysis called the

parametric DFT is adopted. The response or the measured oscillatory data can be

characterized by an impulse response of the system causing it to have N number of

super-imposed sinusoidal modes which are exponentially decaying in nature as

shown in equation (6.5).

y(t) =
N
∑

k=1

Ake
−ζkωktsin(ωk

√

1− ζ2t+ φk) (6.5)

where,

Ak is the amplitude of kth mode.

ζk is the damping ratio of kth mode.

ωk is the damped frequency of kth mode.

φk is the phase of kth mode.
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The time domain model shown in equation (6.5) is converted into frequency

domain to make a least square fit in the frequency domain [30]. The Laplace

transform of equation (6.5) can be written as shown in equation (6.6).

Y (jw) =
N
∑

k=1

Ak
(s+ ζkωk)sin(φk) + ωk

√

1− ζ2cos(φk)

s2 + 2ζkωks+ ω2
k

(6.6)

Y (jw) =
N
∑

k=1

Ak
(s+ ζkωk)sin(φk) + ωk

√

1− ζ2cos(φk)

(s− α1k)(s− α2k)
(6.7)

where,

α1k,2k is the poles of the s domain transfer function indicating the eigenvalues pairs

responsible for the oscillation.

In order to perform a least square fit in the frequency domain, equation (6.7) can

written in a generalized form as shown in equation (6.8).

Y (s) =
b1s

2N−1 + b2s
2N−2 + ...+ b2N

s2N + a1s2N−1 + ...+ a2N
(6.8)

Y (s) =
N
∑

k=1

Ak

( β1k

s− α1k

+
β2k

s− α2k

)

(6.9)

By comparing equation (6.9) with equation (6.6) the modal parameters can be

extracted [31] using the below equations:

φk = cot−1(
1

√

1− ζ2k
(
−Re(β1kα1k)

−Re(α1k)
− ζkωk)) (6.10)

Ak =
−Re(β1k)

sinφk

(6.11)

ωk = |α1k| (6.12)

ζk =
−Re(α1k)

ωk

(6.13)
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6.4 Least square fit of frequency domain model

with DFT of system response

Mathematically, the discrete time Fourier Transform is written as,

Y [i] =
N
∑

i=0

x(t)e
−2π
N

it, i = 0, 1, ..., N (6.14)

Where, x(t) is the input signal for which the frequency response is to be obtained and

N is the total number of samples in the input signal. The mapping of the resulting

frequency response corresponding to frequency index, i to actual frequency can be

written as ωi = (2πi) where, ωi ∈ [0, 2π].

According to the definition of the DFT, the plot of absolute value of the Y [i] has

peaks corresponding to the frequency component present in the input signal, which

corresponds to particular frequency index, i mapped as ωi,k. From equation (6.5),

the DFT producing peaks at ωi,k are equal to the damped frequency of each mode

in the measured data. The number of peaks in the DFT determines the order of the

numerator and the denominator and number of its coefficients.

In order to capture the dominant energy of each of the mode, a curve is fitted for

M points around each peak ωi,k in the frequency spectrum of the input data. In [31],

the value of M chosen should be a minimum odd integer nearest to 2fcNTs, where fc

refers to the maximum frequency up to which the DFT can detect for peaks, usually

0.05Hz.

For the curve fitting to be performed and to capture dominant energy of each

mode with M points can be done using (6.8) as

Y (jωi,M) =
b1(jωi,M)2N−1 + b2(jωi,M)2N−2 + ...+ b2N

((jωi,M)2N) + a1(jωi,M)2N−1 + a2(jωi,M)2N−3 + ...+ a2N
(6.15)
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(−ωi,M)N =
b1(jωi,M)2N−1 + b2(jωi,M)2N−2 + ...+ b2N

Y (jωi,M)

− a1(jωi,M)2N−1 − a2(jωi,M)2N−3 − ...− a2N (6.16)

Let

Bi,M =
b1(jωi,M)2N−1 + b2(jωi,M)2N−2 + ...+ b2N

Y (jωi,M)
(6.17)

Ai,M = −a2(jωi,M)2N−3 − ...− a2N (6.18)

From equating the real and imaginary parts of equation (6.16) around each point

in M , the numerator and denominator coefficients a and b can be extracted as

W = CX (6.19)

where,

W =

[

−ω2
1,1 0 −ω2

1,2 0 ... −ω2
1,M 0

]

(6.20)

C =

[

Ca CB

]

(6.21)

and

Cb =

[

Re(B1,1) Im(B1,1) ... Re(B1,M) Im(B1,M) ... Re(Bk,M) Im(Bk,M)

]

(6.22)

Ca =

[

Re(A1,1) Im(A1,1) ... Re(A1,M) Im(A1,M) ... Re(Ak,M) Im(Ak,M)

]

(6.23)

X =

[

a1 a2 ... a2k b1 b2 ... b2k

]

(6.24)

The main advantage of applying frequency domain technique in general is the ease

of identifying the main oscillatory modes based on highest peak in the DFT plot of

the system response, provided that the modes are not closely spaced to each other.
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6.5 Application of parametric DFT on synthetic

signal

For validating the parametric DFT technique, a synthetic signal is generated using

equation (6.5) with the modal parameters as shown in Table (6.1):

Table 6.1: Synthetic signal modal parameters

Mode Amplitude Phase Natural Frequency(Hz) Damping ratio

1 0.5 0 0.5 0.08

2 0.7 0 0.6 0.08

For this simulation, the value of M = 9 with an fc = 0.1Hz and then data

is synthesized for 30 seconds and sampled at 0.1 seconds. In order to have better

resolution in frequency in the DFT, the data is zero padded and the DFT is carried

out for N =1000 points. The synthetic signal is added with random white Gaussian

noise with zero mean. Figure (6.3) shows the DFT of synthetic signal and Figure

(6.4) shows the synthetic signal generated for 30 seconds with 20 dB of noise.

It can be seen from the Figure (6.3) that there are two distinct peaks occurring at

ω1 = 0.49 rad and ω2 = 0.59 rad which indicates the presence of two modes, therefore

N =2. Note that the ideal DFT of a sine or cosine is an impulse occurring at their

corresponding frequencies, in this case at 0.49 and 0.59 radians. However, Figure

(6.3) shows that a part of the energy from impulses is lost across various frequencies

due to poor side lobe attenuation of the rectangular window.

Figure (6.3) also shows the fitted frequency spectrum with M =9 points around
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each peak in the frequency spectrum and the least square fit is performed as discussed

in Section (6.4). Tables (6.2) and (6.3) show the estimated mode parameters for mode

1 and 2 respectively with a noise level of 20 dB and 10 dB.

Table 6.2: Mode 1 parameters in synthetic signal

Mode Amplitude Phase Natural Frequency(Hz) Damping ratio

No noise 0.503 0.002 0.499 0.0805

20 db1 0.501/0.006 0.007/0.03 0.501/0.001 0.0801/0.001

10db1 0.507/0.02 0.005/0.03 0.499/0.002 0.0806/0.002

Table 6.3: Mode 2 parameters in synthetic signal

Mode Amplitude Phase Natural Frequency(Hz) Damping ratio

No noise 0.695 0.001 0.599 0.0795

20 db1 0.704/0.01 0.005/0.03 0.599/0.001 0.0803/0.001

10db1 0.688/0.02 0.004/0.03 0.599/0.003 0.0789/0.001

Comparing Tables (6.2) and (6.3) with the actual modal parameters from Table

(6.1), it can be seen that the modal parameters are estimated within acceptable

ranges for noisy signal. During the application to actual system, the estimated modal

parameters obtained by fit in frequency domain are verified by time domain fit with

the considered system response.

1Represented as Mean/ SD for 20 simulations
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Figure 6.6: Simulated output power of Generator 19
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Figure 6.7: Simulated terminal voltage of Generator 19
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The simulated data produced from the simulator is generated with a sample time

of 0.04s, and before the DFT is carried out, the dc component is removed with the

known steady state value of each signal followed by zero padding to have better

frequency resolution. Figures (6.8) and (6.9) show the DFT of the terminal voltage

and output power generated by generator 19 with the fitted frequency response using

the parametric DFT technique.
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Figure 6.8: Fitted frequency spectrum of output power

For the terminal voltage, the curve fitting is performed around the two peaks at

ω1,1=1.3Hz and ω1,2 = 2.5Hz with M =11 points and for the generated power at

ω2,1=1.45Hz and ω2,2= 2.5Hz with M = 11 points. Figures (6.10) and (6.11) show

the actual data and that the estimated response from the modal parameters obtained

by fitting in frequency domain indicating the estimated modal parameters provide

better fit in time and preserve the frequency properties of the signal.
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Figure 6.9: Fitted frequency spectrum of terminal voltage
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Figure 6.10: Output power fit in time
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Figure 6.11: Terminal voltage fit in time

6.6.1 Analysis of extracted modal parameters

The extracted modal parameters of the output power of Generator 19 are shown

in Table (6.4).It is observed that mode 1 has very high amplitude and low damping

ratio, which indicates that mode 1 is the main dominating mode causing oscillation.

Since mode 2 has very low amplitude and high damping ratio, it lasts less than a

second and therefore cannot be the main dominating mode.

Similarly, for modal parameters from the voltage shown in Table (6.5), it can be

seen that mode 1 has very high amplitude but very high damping ratio when compared

to mode 2. However, mode 2 has very low amplitude relative to its frequency, which

indicates that mode 1 is the main dominating mode and mode 2 is the less critical

mode.
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Table 6.4: Modal parameters of output power using p-DFT

Mode Amplitude Phase Natural Frequency(Hz) Damping ratio

1 42 -150.91 2.541 0.0713

2 3 -19.01 1.374 0.1501

Table 6.5: Modal parameters of terminal voltage using p-DFT

Mode Amplitude Phase Natural Frequency(Hz) Damping ratio

1 4.742 -41.77 1.264 0.4135

2 0.367 -154.63 2.411 0.1829

Therefore, by choosing the output power and terminal voltage as the input signal

for measurement based analysis, the 2.541 Hz and 1.374 Hz components can be tracked

for monitoring/ stability studies.

6.6.2 Comparison of results with model based modal analysis

In order to verify the obtained modal parameters and estimated main oscillatory

mode, the 12×12 linearized system model of the IEEE 14 bus system is obtained using

PowerWorld and modal parameters with their participation factors are calculated

for both output power and terminal voltage using MATLAB. Table (6.6) and Table

(6.7) show the obtained modal parameters for output power and terminal voltage

respectively.

It can be seen from Table (6.6) that 94% of the energy of the measured signal is

made up of the 2.539 Hz component with a damping of 0.081 whereas only 3% for
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Table 6.6: Modal parameters of output power using model based modal analysis

Mode Natural Frequency(Hz) Damping ratio Weighted % of mode

1 2.539 0.081 94.47

2 1.578 0.147 3.65

Table 6.7: Modal parameters of terminal voltage using model based modal analysis

Mode Natural Frequency(Hz) Damping ratio Weighted % of mode

1 2.448 0.143 14.55

2 1.367 0.345 71.481

1.57 Hz component which indicates that the majority of the oscillation in the signal

is made up of the 2.539 Hz component which is the main oscillatory mode.

Similarly from Table (6.7), 71% of the energy of the 1.367 Hz component and

14% of the 2.448 Hz component can be seen as oscillation in the terminal voltage.

Therefore 1.367 Hz component is the main oscillatory mode with the highest

contribution and 2.448 Hz with 14% component can be considered as relatively

critical mode when compared to the 3% of 1.578 Hz component.Therefore, the

extracted modal parameters analyzing oscillatory data is the same as the results of

the model based modal analysis.

The knowledge of tracking a particular eigenvalue pair by selecting different

system responses can be obtained using the eigenvalues participating with each of

the state variable. Therefore, the model based modal analysis is important in order

to study the frequency properties of the system in order to effectively track modes
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using measurement based technique.

6.7 Disadvantages of frequency domain techniques

Frequency domain techniques is mainly based on the number of distinct peaks in

the DFT of the system response. In the case of larger system with several frequency

components, the peaks occurs with larger width due to aliasing. Figure (6.12) shows

the DFT of the rotor angle of generator 39 from the larger IEEE 39 bus system,

where the width of lobes is too wide indicating the possible overall of closely spaced

frequencies. Since the p-DFT is based on the magnitude of the DFT, the estimated

modal parameters shows better fit in time.

Figure 6.12: DFT plot of rotor angle oscillation of Generator 39 from IEEE 39 bus

system
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On the other hand, the frequency domain technique could be applied to relatively

less larger systems and the main oscillatory modes can be simultaneously identified

by the highest peak in DFT plot unlike a time domain technique where the modes

are usually split for better in time domain. However, the time domain technique is

suitable for larger systems where frequency domain techniques cannot be applied.

6.8 Conclusion

In this chapter, the method of extracting modal parameters in frequency domain

using parametric DFT techniques is discussed. The p-DFT is validated using a

synthetic signal with two levels of noise and then illustrated using IEEE 14 bus

system. Using IEEE 14 bus system it is also shown that different eigenvalue pairs

can be tracked by choosing different system responses for monitoring. The results of

the extracted modal parameters of Generator 19 are also compared with the model

based modal analysis and it is found that both results are more or less the same.

The frequency domain techniques are compared and contrasted with the time

domain techniques and the disadvantage of frequency domain techniques are

discussed.
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Chapter 7

Measurement based Power System

Stabilizer Tuning

7.1 Introduction

In this chapter, the method of tuning/ re-tuning a power system stabilizer (PSS)

based on extracted modal parameters is discussed and illustrated using the IEEE 39

bus system. In Section 7.2, the parameters in PSS transfer function are discussed and

the method of tuning a PSS is discussed. In Section 7.3, the measurement based PSS

tuning for a single machine infinite bus (SMIB) system is applied. The effect of exciter

and stabilizer gain in terms of damping ratio of the resulting main oscillatory mode

is also analyzed in Section 7.3. In Section 7.4, IEEE 39 bus system is considered as

a case study and PSS of all the 10 generators are re-tuned using measurement based

technique and it is shown that the re-tuned PSS provides better damping compared

to the PSS of IEEE 39- bus system. Section 7.5 concludes the chapter.
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7.2 Measurement based PSS re-tuning

Based on the output only model obtained using Prony/ ERA/ Matrix pencil

method, the PSS of each generator can be re-tuned in order to obtain better

performance [33]. Equation (7.1), shows the parameters in the transfer function of a

PSS to be tuned.

H(s) = K

(

TW s

1 + TW s

)(

1 + T1s

1 + T2s

)(

1 + T3s

1 + T4s

)

(7.1)

where,

TW is the washout time constant and is usually set to 10 seconds to allow for inter-area

modes and filter out torsional modes.

K is the gain of the PSS.

T1, T2, T3, T4 are the lead compensator time constants which needs to be calculated

based on the modes in the oscillation.

With the known output only transfer function of the system, G(s), the closed loop

transfer function can be represented as,

G0(s) =
G(s)

1−G(s)H(s)
(7.2)

Using the pole placement method, the mode with the least damping ratio λ, can

be replaced with a mode with higher damping ratio λ0, by satisfying the stability

criterion as,

1−G(λ0)H(λ0) = 0 (7.3)

The above technique does not change the frequency of oscillation but increases

the damping ratio by moving the eigenvalue towards the left half of the s-plane. The
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time constants of the PSS can be calculated by

T2 =
1

2πf
√
α

(7.4)

T1 = αT2 (7.5)

where, α is the scaling factor which is usually chosen to be a value 6-10. To have

a scaling factor for a desired damping ratio, scaling factor can be obtained from the

compensation phase computed from (7.3) as,

φ = arg(
1

G0(λ0)
) (7.6)

A single phase lead block can compensate up to 45 degrees, therefore, a number of

compensation blocks can be connected in series if the compensation angle is greater

than 45 degree [34]. The scaling factor for each phase lead block can be calculated as

α =
1− sin(φ)

1 + sin(φ)
(7.7)

The gain of the PSS can be calculated either by choosing 1/3rd of the least maximum

gain causing instability or can be calculated using root locus for achieving a specific

damping ratio.

7.3 PSS tuning for single machine infinite bus

system

Figure (7.1) shows the single machine infinite bus system with an exciter system

parameters shown in Appendix A. A fault is introduced at bus 3 at t =0 and line 2-3

is removed at t =0.5s.
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Figure 7.1: Single machine infinite bus system

The oscillation of the rotor angle of the SMIB without the PSS is calculated as

1.602 Hz with a damping ratio of 3.5%. Using eigenvalue realization technique and

the output only model, the PSS parameters are calculated using the method discussed

in Section (7.2) and shown in Table (7.1).

Table 7.1: Parameters of measurement based tuning of PSS

K 4.65

T1, T3 0.2499

T2, T4 0.0395

The PSS is tuned to have 15% damping of the 1.602 Hz component with α = 6.328.

The generator rotor angle and speed with and without PSS are shown in Figures (7.2)

and (7.3) respectively. It can be seen that the first half cycle is required for PSS to

detect the presence of oscillation and improve the damping. In addition, it can be

seen that there is no change in frequency of oscillation as discussed in Section (7.2).
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Figure 7.2: Rotor angle of generator with and without PSS
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Figure 7.3: Speed of generator with and without PSS

102



7.3.1 Effect of exciter gain and stabilizer gain

With the addition of PSS, the increase in exciter gain does not cause instability.

Instead it increases the damping ratio of the oscillation to a maximum value

co-responding to the stabilizer gain as illustrated in Figure (7.4) and Table (7.2).

Therefore, a PSS gain calculated for a set point damping ratio using an output only

model with a reduced exciter gain will not result in a desired damping ratio in the

actual system.
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Figure 7.4: Effect of exciter gain on PSS performance/ stability

With the increase in the stabilizer constant, the damping is increased up to a

particular value beyond which additional control modes are introduced. A further

increase in stabilizer gain causes a reduction of control mode damping ratios as shown

in Figure (7.5) and Table (7.3).
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Figure 7.5: Effect of change in PSS gain on stability

Table 7.2: Effect of damping ratio of main

oscillatory mode on exciter gain

Ka Frequency(Hz) Damping ratio

50 1.602 5.087%

150 1.602 8.886%

350 1.586 16.607%

550 1.524 16.905%

Table 7.3: Effect of damping ratio of main

oscillatory mode on PSS gain

Ks Frequency(Hz) Damping ratio

3 1.608 9.384%

5 1.605 15.826%

8
1.55 30.175%

0.14 15.32%
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For each of the 10 generators present in the 39 bus system, the PSS is tuned

with a preset value of time constants and gains such that the center frequencies of

each lead block are present in low frequency (0.1 - 0.5 Hz) and local frequency (0.9 -

1.5 Hz). In order to have optimal PSS tuning using the actual measurement of the

system response, the time domain simulation is carried out without any PSS which

resulted in instability. The obtained modal properties for each generator are shown

in Table (7.4).

Table 7.4: Main dominating mode and unstable mode without PSS

Generator no. Largest residue mode (Hz) Unstable mode (Hz)

30 0.474 0.366

31 0.946 0.268

32 0.802 0.156

33 0.969 0.514

34 0.67 0.4

35 1.127 0.42

36 1.14 0.419

37 1.16 0.274

38 1.041 0.801

39 0.685 0.875
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The lead blocks of the PSS of each generator are tuned such that the center

frequencies are equal to the main dominating mode and unstable mode. For

generators 30, 34 and 39 both the lead blocks are tuned to the unstable mode due

to very high compensation angle required to move it to the left half of the s-plane.

The parameters of the exciter and generators are unchanged. Table (7.5) shows the

PSS time constants after re-tuning.

Table 7.5: Re-tuned PSS parameters

Generator no. T1 T2 T1 T2 Ks

30 1.06 0.160 1.375 0.137 3.46

31 1.878 0.222 0.5320 0.053 4.8

32 3.226 0.036 0.629 0.076 3.78

33 2.978 0.338 0.629 0.063 5.0

34 1.258 0.153 0.534 0.067 3.8

35 1.198 0.119 1.198 0.119 7.0

36 1.198 0.119 1.198 0.119 4.5

37 1.837 0.229 0.434 0.0434 5.5

38 0.628 0.079 0.503 0.053 3.0

39 5.0000 0.6 0.7190 0.0808 8.0

The time domain simulation is carried out using PowerWorld and the rotor angle

and speed oscillation are shown in Figures (7.7)- (7.10).
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Figure 7.7: Speed of generators with measurement based PSS tuning

Figure 7.8: Speed of generators with PSS parameters of 39 bus test system
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Figure 7.9: Rotor angle of generators with measurement based PSS tuning

Figure 7.10: Rotor angle of generators with PSS parameters of 39 bus test system
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It can be seen that the oscillation in frequency are highly damped in Figure

(7.7) when compared to the performance of the conventional PSS of 39 bus system

shown in Figure (7.8). Moreover the rotor angle oscillations of the re-tuned PSS is

of low frequency oscillation with higher damping as shown in Figure (7.9) and the

conventional PSS produces poor damping with higher frequency of oscillation.

Table 7.6: Performance comparison of 39 bus PSS and measurement based PSS on

speed of Generator 39

Mode no. Mode frequency(Hz) Damping ratio(%)

39 Bus PSS

parameters

1 0.598 17.38

2 1.272 12.609

Measurement based

PSS tuning

1 0.353 35.35

2 0.923 18.44

Table 7.6 shows the main oscillatory modes of the slack generator 39. It can be

seen that measurement based PSS tuning have main dominating modes with higher

damping ratio than the modes produced by the PSS in the 39 bus system. The

decrease in the frequency is due to the movement of the pole along the real axis

(damping ratio) also causes movement of the pole along the imaginary axis

(frequency) depending on the root locus of the overall pole and zero of the system

and the corresponding gain of the PSS.

The improved damping is due to the resulting eigenvalues on the far left of the

s-plane indicating the power system is more stable for the same type of disturbance.

This is one of the important application in power system stability using the modal
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parameters extracted from the measurement based modal analysis.

7.5 Conclusion

In this chapter, the method of measurement based PSS tuning/ re-tuning is

discussed and illustrated using SMIB system. The effect of exciter gain and

stabilizer gain are analyzed in terms of damping ratio of the resulting eigenvalues of

the system with a stabilizer. The PSS of IEEE 39 bus system is re-tuned using

measurement based technique. It is shown that tuning the PSS to specific

frequencies based on the obtained modal parameters from measurement-based

techniques showed better damping when compared to that of the damping provided

by the PSS of the 39 bus system.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, an alternative approach is proposed to extract modal parameters of

the power system using the obtained time domain response of the system. Three types

of time domain techniques namely, Prony analysis, eigenvalue realization and matrix

pencil method are discussed and applied on IEEE 39 bus system. The extracted

modal parameters were compared with the parameters obtained using conventional

model based technique. As a frequency domain based technique, parametric DFT

technique is discussed and compared with non-parametric form of DFT technique

and illustrated with IEEE 14 bus system. The shortcomings of frequency domain

technique over the time domain techniques are also discussed.

Lastly, with the extracted modal parameters, tuning/ re-tuning of PSS is

illustrated and it is shown that the re-tuned PSS provides better damping when

compared to the nominal PSS of IEEE 39 bus system.
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8.2 Contribution of the research

• Various types of power system stability problems and importance of the system

operating parameters, system network parameters and gain of the exciter system

on the stability of the system are studied in detail.

• Three types of time domain techniques namely Prony analysis, eigenvalue

realization and matrix pencil method are studied and illustrated using IEEE

39 bus system.

• A parametric form of DFT technique is studied and illustrated using IEEE 14

bus system and its shortcomings on time domain technique is discussed.

• Using a special case SMIB, it is shown that a mode with high participation

factor is not the main mode of interest in stability studies at all times. Using

the larger 39 bus system, it is shown that only one eigenvalue pair out of many

eigenvalues is excited by a particular disturbance. Using a 14 bus system,

monitoring/ tracking of different main oscillatory mode by choosing different

system responses for measurement based technique is shown.

• A method of PSS tuning/ re-tuning is discussed and it is shown that the

performance of re-tuned PSS from the extracted modal parameter is better

than that of default PSS of test system.
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8.3 Future work

In this thesis, extraction of modal parameters from the system response and

re-tuning of PSS has been effectively discussed. The following study can be a

possible future research related to the area of this thesis.

• Selection of proper probing signal for optimally extracting modal parameters.

• Extracting specific modes from the given probing signal with the knowledge of

participation factors.

• Consider the differences in the dynamics of the PMU in capturing the transient

region of the oscillation.

• Resolution limitation of PMU and its effect of different time and frequency

domain techniques.

• A machine learning algorithm can be created for specific systems to identify

main oscillating mode with a given preset value of damping ratio and amplitude.

• Application of these techniques and analysis on real power system oscillatory

data.
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Appendix A

Single machine infinite bus system

data:

Steady state data:

Bus data:

Table A.1: Generator parameters used

Bus Type Voltage(pu) Gen Power(MW) Load power (MW) load power (Mvar)

4 PV 1.095 100 0 0

1 Slack 1 - 0 0
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Dynamic data:

Generator data:

H =3, D = Ra =0, Xd =2.1pu, Xq =0.5pu, X
′

d =0.5pu, X
′

q =0.2pu,T
′

d0 =7

seconds, T
′

q0 =0.75 seconds, Xl =0.15pu.

Exciter data: (IEEE AC1A)

Following is the exciter data used in chapter 2:

Ka =200, Ta =0.1 seconds, Vrmax =3pu, Vrmin =-3pu,Te =0.08 seconds,

Ke =0.01,Kf =0.01, Tf =1.0 seconds, E1 =3.00, E2 =4.00, S(E1) =0.03, S(E2) =0.1

Following is the exciter data used in chapter 3:

Ka =200, Ta =0.1 seconds, Vrmax =3pu, Vrmin =-3pu,Te =0.06 seconds,

Ke =0.05,Kf =0.15, Tf =1.0 seconds, E1 =2.5, E2 =2.5, S(E1) =0.03, S(E2) =0.1
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The IEEE 14 bus system is a single area system with 14 buses, 5 generators

generating 274.2 MW and 71.6 Mvar, 11 loads consuming 250 MW and 73.5 Mvar, 1

switched shunt generating 19.1 MW, 11 transmission lines. The base MVA and base

voltages of the system are 100 MVA and 132 KV respectively.

The system load flow and dynamic data are obtained from the following online

source: http://icseg.iti.illinois.edu/ieee-14-bus-system/
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The IEEE 39 bus system is a single area system with 39 buses, 10 generators

generating 6191.3 MW and 837.3 Mvar, 31 loads consuming 6141.4 MW and 1408.9

Mvar, 34 transmission lines. The base MVA and base voltages of the system are 100

MVA and 1 KV respectively.

The system load flow and dynamic data are obtained from the following online

source: http://icseg.iti.illinois.edu/ieee-39-bus-system/

125



Publications:

Conferences:

S. Rajmurugan and B. Jeyasurya, “Identification of Power system

electro-mechanical modes using time domain techniques”, 26th Newfoundland

Electrical and Computer Engineering Conference, St. Johns, NL, Nov 2017.

S. Rajmurugan and B. Jeyasurya, “Modal Identification of Power System

Oscillation using parametric DFT technique”, Electrical Power and Energy

Conference, Saskatoon, SK, Oct 2017.

Posters:

S. Rajmurugan and B. Jeyasurya, “Power system stability enhancement using

measurement based modal parameter estimation”, FEAS annual research poster day,

30th May 2018.

S. Rajmurugan and B. Jeyasurya, “Oscillation monitoring technique for

pre-detection of power system instability”, FEAS annual research poster day, 26th

April 2017.

126


