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Abstract

Liquid water nanodroplets are valuable for studying supercooled water because they

resist nucleation well below the bulk freezing temperature and conveniently self-

pressurize in the interior. These features make nanodroplets good candidates for

studying the properties of liquid water and for probing the liquid-liquid critical point

(LLCP) in water hypothesized to exist in the deeply supercooled state at high pres-

sure, at which a distinct low density liquid (LDL) phase becomes distinct from a high

density liquid (HDL) phase.

We conduct extensive molecular dynamics computer simulations to study the

properties of water nanodroplets using the TIP4P/2005 potential over a wide range

of size and temperature. In order to improve the sampling of independent microstates,

we conduct “swarms” of independent simulations, in which we monitor the approach

to equilibrium from the potential energy autocorrelation function. After a swarm

of this size attains equilibrium, the ensemble of final microstates from each run is

sufficient to evaluate equilibrium properties and their uncertainties in the shortest

real time.

In order to study the possibility of recovering bulk properties using nanodroplets,

we evaluate the Laplace pressure inside the nanodroplets from direct evaluation of

the local pressure tensor. We use a modification of a coarse-graining pressure ten-

sor method that calculates the components of the microscopic pressure tensor as a
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function of radial distance r from the centre of a spherical water droplet. The pres-

sure tensor beneath the surface region becomes approximately isotropic and constant

with r. From this region where the components of the pressure tensor are equal, we

determine the Laplace pressure of the droplets.

Defining the pressure and the density inside the nanodroplets enables us to probe

the properties of liquid water nanodroplet cores. We find that the bulk properties

and related anomalies are present in the nanodroplets, such as the appearance of a

density maximum. We simulate water nanodroplets under extremly low temperature

conditions that have not been investigated thoroughly before. At such low temper-

atures, the nanodroplets show interesting emergence of structural complexity in the

interior which may be linked to the LLCP and may indicate a HDL-like to LDL-like

transformation in the nanodroplets.

We also study the surface tension of water nanodroplets using different approaches.

When employing the thermodynamic route to calculating surface tension, we find that

the Tolman correction is small and can be neglected. Therefore, the surface tension

of nanodroplets can be approximated by the planar surface tension. We also observe

a sudden increase in the planar surface tension at low temperature on crossing the

Widom line, which may signal the emergence of a LDL-like network in the interior of

water nanodroplets.
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Chapter 1

Introduction

1.1 Water: the key of life

Perhaps every one of us has the passion to understand the universe. Some are eagerly

watching and studying enormous planets, while others are obsessed with small atoms.

But if each one of us would pick one element that we are utterly fascinated by, I can

fairly say the element would be water.

We all refer to water as the matrix of life [1]. There are countless reasons as

to why water has such a privilege. The tremendous amount of water on our earth

only is overwhelmingly impressive [2]. Water has not stopped fascinating us with its

many unique and unusual properties. At sufficiently cold conditions, water exhibits

anomalies, such as a density maximum at 4◦C, and it becomes more compressible on

cooling, while it becomes less viscous when compressed [3]. The anomalies of water

become more pronounced as liquid water is supercooled further [2, 4]

Over decades, the richness of the phase diagram of water has attracted scientists

in astrophysics, condensed matter physics, and chemistry; see Fig. 1.1. Water exists

in three phases, gas, liquid, and solid [5]. Moreover, solid water can exist in different
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crystal forms. Nine of the forms that have been identified to date are thermodynam-

ically stable over a range of pressure P and temperature T [6, 7]. Water exists as a

stable ice in hexagonal form (ice Ih) at atmospheric P (and up to about 100 MPa) in

the T range between 72 and 273 K. It can also exist in two amorphous forms, namely,

high density amorphous (HDA) ice and low density amorphous (LDA) ice [8].

Figure 1.1: Phase diagram of water. A projection of coexistence lines of the P (ρ, T )
surface onto the P -T plane. Figure is adapted from Ref. [5]

The thermodynamic parameters, P , T , and density ρ, are connected through a

functional relation called the equation of state (EOS), which forms a three dimensional

surface, f(P, ρ, T ) = 0. In the plane of P and T , these phases are separated by lines,

called coexistence lines, where two phases can coexist with each other in equilibrium;

see Figure 1.1.

The coexistence lines are the “fusion curve” between solid and liquid, the “subli-

mation curve” between solid and gas, and the “vapour pressure curve” between gas

and liquid, which terminates at the “critical point”. The three lines meet at the “triple

point”, where all phases are in equilibrium with each other.

The coexistence lines in Figure 1.1 are defined in the thermodynamic limit (num-
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ber of particles N →∞, observation time t→∞). A phase of water, as for any other

substance, can be observed as a metastable state on the other side of the coexistence

line without undergoing a phase transition on a finite time scale [9]. For instance,

water can exist for finite time below the freezing point 0◦C in a liquid phase, where

we call it supercooled water. The degree to which you can keep supercooled water in

the liquid phase depends on the nucleation rate for crystallization. The experimental

limit of supercooling for bulk water is 231 K at atmospheric pressure (1 bar) [10]. On a

phase diagram, the limit of supercooled water at different P is called the homogeneous

nucleation limit, Th.

Figure 1.2 shows the temperature range for observing liquid water at atmospheric

pressure. The lines correspond to coexistence temperatures, and the dotted lines cor-

respond to metastability limits, where homogeneous nucleation to gaseous and crystal

phases become unavoidable at TSH and Th respectively. Above the glass transition

temperature Tg, there is a highly viscous form of liquid water that crystallizes to cubic

ice (Ic) at Tx [2].

Intensive research on amorphous forms of water was spurred on by an important

review article by Angell [11]. The two distinct forms of amorphous water are separated

by an apparently first-order phase transition. One of the most important conclusions

of this extensive and rich review is that supercooled liquid water and amorphous water

are closely related. Therefore, a comprehensive understanding of metastable water

requires understanding water in its supercooled and glassy states and the connection

between them.

3



Figure 1.2: Temperature range of water at atmospheric pressure. The lines correspond
to coexistence temperatures of the gaseous and liquid phases at Tb, and the solid and
liquid phases at Tm. The dotted lines correspond to metastability limits for super-
cooling at Th and superheating at TSH . Tx corresponds to the temperature at which
crystallization to cubic ice (Ic) occurs, while Tg is the glass transition temperature.
Figure is adapted from Ref. [2]

1.2 Liquid-liquid phase transition

Water anomalies like the density maximum at 4◦C, the minima in isothermal com-

pressibility at 46◦C and in isobaric heat capacity at 35◦C, and the first-order-like

transition between HDA and LDA inspired researchers to think of hypotheses to shed

light on the source of water anomalies. The singularity-free hypothesis suggests that

the transition between HDA and LDA is continuous [12, 13, 14]; see blue shaded area
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in Fig. 1.3. The idea behind the hypothesis comes from the observation of a sharp

increase in response functions at the transition, but the increase remains finite [15].

In this scenario, volume and entropy remain continuous and the fluctuations between

HDA and LDA are finite. Consistent with this hypothesis, neutron and x-ray diffrac-

tion studies on the structural changes between HDA and LDA suggest the existence

of multiple distinct amorphous forms of ice, which is interpreted as a result of a

continuous transition [16]. However, the story did not end there.

The search for another explanation for water’s anomalies continued to deepen.

Another hypothesis came out to explain the first-order-like transition between HDA

and LDA and its connection to metastable liquid. In 1992, Poole et al, studied water

using computer simulations of the ST2 model [26, 24]. They observed that isothermal

curves inflect at low T and high P . The inflection is similar to the one we see as

we approach the region of a critical point. The authors explain the anomalies by the

existence of a first order transition between two distinct metastable phases of water,

high density liquid (HDL) and low density liquid (LDL), and that the coexistence line

between these two phases terminates at a second liquid-liquid critical point (LLCP)

in the metastable regime of water at low T and high P ; see Fig. 1.3. The same line

is believed to separate HDA and LDA. Harrington et al. [18] also observed inflections

in the ST2 water EOS. They reported a 15% change in density at their lowest sim-

ulated temperature, T = 235 K, without any increase in pressure. Other computer

simulation studies show that pressure-density isotherms using the TIP4P model [21],

TIP4P/2005 [19, 23], and the TIP5P model [20, 22] show evidence of a LLCP at low

temperatures.

A smart experiment on the melting of ice IV provided a strong observational

evidence for the LLCP [25]. They found that ice IV- and V-liquid coexistence curves

change slope abruptly when they intersect the proposed liquid-liquid coexistence line;
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Figure 1.3: Liquid-liquid phase transition (LLPT) and liquid-liquid critical point
(LLCP), C ′, locations on the phase diagram of water. The figure is taken from
Ref. [2].

see Fig. 1.4. The smoothness of these melting curves except at the intersection is a

sign that the abrupt change is related to the liquid phase of water rather than the

solid.

Liu et al. conducted computer simulations of water using the ST2 model [27].

They calculated the free energy surface as a function of density and bond-orientational

order under supercooled conditions. They found two distinct basins in the free energy

surface related to HDL and LDL. They also observed flipping between the two phases.

Moreover, studies on ST2 water done by Holten et al. [28] showed that the liquid-

liquid transition is energy-driven, in contrast to the mW model of water [29], for which

the transition is entropy-driven [30]. This implies that the two models should have
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different behaviour at low T .

Figure 1.4: Melting curves of ices III, IV, V, and XIII. Left: experimental results. The
empty circles are the onset of the change in the sample temperature. Right: schematic
representation of the hypothesized first-order liquid-liquid transition line dividing the
low- and high-density liquids (LDL and HDL) and the liquid-liquid critical point
(LLCP). The LLCP is thought to exist in the hatched area. Used with permission
from Ref. [26].

Several studies tried to locate the LLCP in the phase diagram of water in terms

of critical temperature Tc, critical pressure Pc, and critical density ρc. Note that in

this thesis, we use unprimed symbols to indicate the location of the second critical

point of water, in contrast to the notation of Fig. 1.3.

Experimental results on high-pressure ices [43, 31] suggested that the location

of the LLCP at the coordinates Tc ' 220 K, Pc ' 100 MPa, and ρc ' 1g/cm3. Ni

and Skinner [33] extrapolated the Kanno-Angell line from compressibility experiments

and extrapolated the line of singularity temperatures from NMR relaxation experi-

ments [34]. Their estimate of the of the LLCP is at Tc ' 168 K and Pc ' 195 MPa.

This is similar to Kanno and Miyata’s estimate of the LLCP using differential thermal

analysis data of emulsified liquid water [35], where they find 145 K< Tc ' 175 K and

Pc ' 200 MPa. Dougherty [36] found that the LLCP based on experimental data of
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the homogeneous nucleation curve Th and the temperature of maximum density curve

TMD is at Tc ' 182 K and Pc ' 195 MPa. Mishima in 2010 estimated the LLCP

using water emulsions [37], and found that Pc is lower than other studies estimate,

giving a new estimate of Tc ' 223 K and Pc ' 50 MPa.

The location of the LLCP is also explored using computer simulations. Tanaka

found that the LLCP from molecular dynamics simulation for the TIP4P model of

water is rather at negative pressure in the range between 0 and -200 MPa at Tc '

213 K. However, using the ST2 model of water, Poole et al. estimated Tc ' 235 K

and Pc ' 200 MPa. In 1998, Rosenfeld and Tarazona observed a transition between

HDL and LDL at low temperatures using the SPC/E model of water, and estimated

the LLCP at Tc ' 130 ± 5 K and Pc ' 290 ± 30 MPa. For a 5-site model of water,

TIP5P, Yamada et al. locate the LLCP at Tc ' 217 ± 3 K, Pc ' 340 ± 20 MPa,

and ρc ' 1.13 ± 0.04g/cm3. Ni and Skinner [33] carried out molecular dynamics

simulations using the E3B3 model [33], and estimated the LLCP at Tc ' 180 K

and Pc ' 210 MPa. Recently, the extensively studied water model, TIP4P/2005,

assigned critical coordinates to the LLCP at Tc ' 182 K, Pc ' 170 MPa, and ρc '

1.13± 0.04g/cm3 [44].

1.3 Water nanodroplets

As one can clearly see, the estimate of the LLCP varies widely for different experimen-

tal techniques and different simulation models of water. Also, the results of computer

simulations differ from the extrapolation estimates of experimental data. Therefore,

we propose the utilization of water nanodroplets to explore the behaviour of water

in extreme conditions. Nanodroplets conveniently self-pressurize, and this pressure

increases as the size of the nanodroplet N gets smaller. This eliminates the need to
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subject water to high pressure via experimental apparatus to probe the LLCP. The

small size of water nanodroplets reduces the freezing temperature and hence sup-

presses the nucleation. This helps study liquid water under low temperatures that

are not accessible otherwise in bulk.

For their essential role in many systems, such as climate [45], interstellar space [46],

and biomedical applications [47], water nanodoplets have been the focus of studies

for quite some time. Maintaining water nanodroplets in the liquid state is essential

to further probe bulk liquid properties and to determine to what extent they are

expressed in nanodroplets. Galli et al [48] found, through computational studies,

that crystal nucleation rates in nanodroplets are suppressed because of the Laplace

pressure. The suppression of the melting temperature with decreasing nanodroplet

radius was studied by Johnston et al [49] using the mW model. They also found that

the crystallized nanodroplets comprised stacked Ih and Ic layers, similar to what is

observed for small crystallites in bulk at the same low temperatures studied (150 to

200 K). The structure of quenched water nanodroplets was studied by Nandi et al [50]

using molecular dynamics simulations. They found a dynamically arrested state that

resembles the LDA form of glassy water, thus also finding evidence that nanodroplets

are capable of behaviour associated with the bulk.

From the experimental side, Manka et al used small angle X-ray scattering to

monitor the size distribution of nanodroplets formed in a supersonic nozzle and used

Fourier Transform infrared spectroscopy to monitor crystallization occurring within

the nanodroplets. This enabled them to determine nucleation rates for nanodroplets

in a size range of 3.2 to 5.8 nm at T between 202 and 215 K, and thus they were

able to push observation of the liquid state significantly below Th. Further infrared

spectroscopy studies showed that the onset of ice-like structure occurs in nanodroplets

only at a size of 275 molecules [52], i.e., below this size, nanodroplets do not crystallize
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at all. Thus, if the interiors of nanodroplets below this size have the properties of bulk

water, then the liquid state can be studied with no interference from crystallization.

Utilizing water nanodroplets to study liquid water under high P and low T first

requires establishing whether the Laplace pressure is high enough to probe the LLCP,

and this depends on how the surface tension behaves with N and T . We also need to

determine whether the interiors of nanodroplets reflect the properties of bulk water.

For that, we carry out thorough investigations of water nanodroplet properties over

a wide range of T and N .

1.4 Outline

In Ch. 2, we give an overview of the simulation techniques used in this thesis, where

we use molecular dynamics and Monte Carlo simulations, and we modelled our wa-

ter nanodroplets using the TIP4P/2005 potential. In Ch. 3 (“Swarm relaxation”:

Equilibrating a large ensemble of computer simulations) we detail our development of

a method “swarm relaxation” that useful in getting an equilibrated data set in the

shortest real time, when many processors are available, as in the case with high per-

formance computing facilities. We present in Ch. 4 (Evaluating the Laplace pressure

of water nanodroplets from simulations), details of how we modify a coarse-grained

method for calculating the local pressure tensor in systems with spherical geometry in

order to use it with the water model we employ. We present our main findings of ther-

modynamic and structural anomalies in nanodroplets in Ch. 5 (Thermodynamic and

structural anomalies of water nanodroplets), where we show that the bulk anomalies

manifest themselves in the nanodroplets, and that the Laplace pressure gets as high

as 220 MPa at 180 K. We also see interesting density gradient in the interior of the

nanodroplets for T = 180 and 200 K. In Ch. 6 (Surface tension of deeply supercooled
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TIP4P/2005 water nanodroplets using direct evaluation of the pressure tensor) we

investigate the behaviour of the surface tension of our strongly curved nanodroplets

using two approaches, the thermodynamic and the mechanical routes. We also study

one of the important issues with the surface tension of droplets, which is the sign and

magnitude of the Tolman length, a length quantifying the variation of surface tension

with the radius of the droplet. Interestingly, we observe a sudden increase in the

surface tension at low T , which occurs on crossing the Widom line, the supercritical

extension of the LLPT. Finally, we summarize our results and discuss future work in

Ch. 7.
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Chapter 2

Methodology

2.1 The TIP4P/2005 model of water

Intermolecular potential models of water have been developed for use in computer

simulations. One of these models is called the TIP4P/2005 water model [1]. A water

molecule consists of three atoms, two hydrogens H and one oxygen O. In this rigid

model, the molecule has one more interaction site called the virtual (massless) site M;

see Fig. 2.1. Charges are assigned to H and M, while O is left neutral. The M site

is coplaner with O and H, and is located on the bisector of the H-O-H angle. The

charged sites interact via the Coulomb potential,

uelectrostatic(rab) = e2

4πε0

qaqb
rab

(2.1)

where qa and qb stand for the charges on sites a and b, e is the charge of the electron,

ε0 is the permittivity of vacuum, and rab is the a-b distance.

The O sites interact via the Lennard-Jones (LJ) potential,

uLJ(rOO) = 4ε
(
σ12

r12
OO
− σ6

r6
OO

)
, (2.2)
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where rOO is the O-O distance, and ε and σ are the LJ bond strength and distance

parameters, respectively. The parameters are listed in Table 2.1.

Parameter Value
σ (nm) 0.31589
ε (KJ/mol) 0.7749
rOM (nm) 0.01546
rOH (nm) 0.09572
qH(e) +0.5564
qO(e) 0.0
qM(e) -1.1128
] HOH (◦) 104.52

Table 2.1: Potential parameters of the TIP4P/2005. These values are taken from
Ref. 79.

Figure 2.1: A sketch of the TIP4P/2005 water model.

A droplet of water can be simulated as a collection of these model molecules. Dif-

ferent microstates of the droplet can be sampled through molecular dynamics (MD)

or Monte Carlo (MC) simulations. The bulk of this thesis uses MD because it pro-

vides the opportunity to study dynamics. MC yields thermodynamic quantities only.

However, MC does provide the opportunity to study rare events, such as nucleation,
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through biased sampling techniques.

2.2 Molecular Dynamics

In molecular dynamics (MD), we solve numerically the equations of motion of a system

consisting of Np atoms [2, 3]. For a given particle, the equation is,

f i = mir̈i, (2.3)

where mi is the mass of atom i, r̈i is the acceleration of atom i given by the second

derivative of the atom coordinate ri with respect to time t, and fi is the force on i

due to all other atoms in the system. The force on i due to atom j is given by,

fij = −u′(rij)
rij
rij

(2.4)

where rij = ri − rj is the displacement vector from i to j, and rij is the distance

between i and j. The derivative of the potential u(rij) depends of the kinds of atoms,

i.e., if the atoms are O, then the force between them is given by the derivative of

Eq. 2.2 with respect to rOO, while if the atoms are charges, then the force between

them is given by the derivative of Eq. 2.1 with respect to rab. Therefore, the net force

on i, required for Eq. 2.3, is given by the sum over all pairs of atoms,

fi =
Np∑
j 6=i

fij. (2.5)

Solving Eq. 2.3, for all Np atoms will determine positions r and velocities v of

all atoms in the system as a function of t, given initial values for r and v for each

particle.
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In our simulations, we use the “leap-frog” algorithm that numerically solves for

r and v in such a way that one quantity is half a time step from the other. The

algorithm takes the form,

v
(
t+ δt

2

)
= v

(
t− δt

2

)
+ δt f (t) /m (2.6)

r (t+ δt) = r (t) + δtv
(
t+ δt

2

)
, (2.7)

where δt is the time step. The current velocity is calculated by,

v (t) = 1
2

(
v
(
t+ δt

2

)
+ v

(
t− δt

2

))
. (2.8)

One then can use Eq. 2.8 to find the system kinetic energy,

K = 1
2

Np∑
i=1

miv
2
i , (2.9)

while the system potential energy is given by,

U =
Np−1∑
i=1

Np∑
j>i

u(rij), (2.10)

where u(rij) is given by Eq. 2.1 or Eq. 2.2, and interactions between atoms in the

same molecule are ignored. U(t) is required to find the total energy of the system,

E(t) = U(t) +K(t). (2.11)

The energy is a conserved quantity for an isolated system in the microcanonical

ensemble, and therefore the invariance of E with t is a test on the algorithm that

provides a way of checking that the step size is sufficiently small.
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As discussed in section 2.1, TIP4P/2005 treats the water molecule as a rigid

molecule, and as such the water molecule is subject to bond and angular constraints.

However, the leap-frog integrator calculates the motion of the atoms in the system

assuming a complete absence of intermolecular rigid bond forces, and therefore, we use

the SHAKE algorithm [4] to modify velocities and positions to satisfy the constraints.

For the canonical ensemble (constant number of molecules N , volume V , and

temperature T ), T is kept constant with the Nosé-Hoover thermostat algorithm [5, 6].

In summary, MD generates new microstates by computing forces to propagate the

system in time. MD is widely used in situations where we need to study dynamic

properties of the system.

2.3 Monte Carlo: Metropolis algorithm

In contrast with MD, the Monte Carlo (MC) method generates new microscopic states

by randomly displacing and rotating molecules, usually one molecule at a time. These

rototranslational moves are accepted or rejected according to criteria derived from the

statistical ensemble we wish to simulate [2, 3].

Our MC simulations are based on the Metropolis algorithm [2, 3], where a random

molecule is chosen and is translated by a random trial displacement dr, and rotated

by a random angle θ about a randomly chosen axis; see Fig. 2.2. An upper limit

drmax to the magnitude of each component of dr is set in this algorithm to avoid

a dramatic change in the system energy. Also the rotation angle θ of the chosen

molecule is confined within ±θmax, for the same reason. These limits are chosen to

give an acceptance ratio around 40% [7].

The rototranslational move is accepted with a probability that depends on the
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Figure 2.2: Trial move in MC. A sketch shows the chosen molecule (shaded sphere),
which is moved anywhere in the shaded area and then rotated within a specified
angular range.

change in the potential energy of the system resulting from the move,

Paccept(rtrial
i ) =


1 if Ucurrent ≥ Utrial

exp [−β(Utrial − Ucurrent)] if Ucurrent < Utrial.

 ,

where β = 1/kBT , kB is the Boltzmann constant, Ucurrent refers to the potential energy

before the rototranslational move, and Utrial referes to the potential energy after the

rototranslational move. This definition of Paccept means that the the rototranslational

move is accepted if it lowers U , and accepted with a non-zero probability if it increases

U .

If the trial rototranslational move is rejected, then the current configuration is

kept (i.e., its properties are counted again in any average being calculated), and

is used as the starting point for the next trial rototranslational move. If the trial

rototranslational move is accepted, the new configuration replaces the current one

and its properties are used in determining any ensemble average.

Since drmax and θmax control the size of particle displacement and rotation, it

is necessary to chose an optimal value for both. Otherwise, the simulation becomes
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costly and inefficient. If drmax is too small, most trial rototranslational moves will be

accepted since the energy changes will be small, but the exploration of configurational

space will be slow. If drmax is too big, then trial rototranslational moves are likely

to result in unfavourable interactions, leading to near certainty of rejection. Previous

work has shown that an acceptance rate of 20-40% is optimal in most cases [7].
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Chapter 3

“Swarm relaxation”: Equilibrating

a large ensemble of computer

simulations
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and Peter H. Poole, Eur. Phys. J. E 10.1140/epje/i2017-11588-2. Copyright EDP

Sciences / Societá Italiana di Fisica / Springer-Verlag 2017. Reproduced with kind

permission of The European Physical Journal (EPJ).

3.1 Abstract

It is common practice in molecular dynamics and Monte Carlo computer simulations

to run multiple, separately-initialized simulations in order to improve the sampling

of independent microstates. Here we examine the utility of an extreme case of this

strategy, in which we run a large ensemble ofM independent simulations (a “swarm”),

each of which is relaxed to equilibrium. We show that if M is of order 103, we can
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monitor the swarm’s relaxation to equilibrium, and confirm its attainment, within

∼ 10τ̄ , where τ̄ is the equilibrium relaxation time. As soon as a swarm of this size

attains equilibrium, the ensemble of M final microstates from each run is sufficient

for the evaluation of most equilibrium properties without further sampling. This

approach dramatically reduces the wall-clock time required, compared to a single

long simulation, by a factor of several hundred, at the cost of an increase in the total

computational effort by a small factor. It is also well-suited to modern computing

systems having thousands of processors, and is a viable strategy for simulation studies

that need to produce high-precision results in a minimum of wall-clock time. We

present results obtained by applying this approach to several test cases.

3.2 Introduction

When conducting a molecular dynamics or Monte Carlo computer simulation study

of an equilibrium system, a key question is: “How long should we run?" First, equi-

librium must be attained and verified, and then a sufficient number of independent

microstates of the system must be sampled within equilibrium to allow for the ac-

curate evaluation of equilibrium properties. In a traditional approach, all of this is

achieved in a single long run (SLR). In this context, a run is “long" if it is many

times (usually 100 times or more) longer than the equilibrium relaxation time τ̄ of

the slowest relaxing, unconstrained observable of the system. When using a SLR,

the evaluation of equilibrium properties relies on the ergodic hypothesis, i.e. that a

sufficiently long time average of an observable is equal to the ensemble average taken

over a set of independently generated microstates [1].

While perfectly sound in principle, a SLR can produce inaccurate results if τ̄ is un-

derestimated. This can occur in simulations of supercooled liquids and glassy systems
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exhibiting subtle and very slow structural relaxation [2], or in complex systems (such

as proteins) where metastable basins of the free energy landscape trap the system for

time scales that are long compared to the time required to explore the metastable

basin itself [3]. In these cases, a SLR may appear to achieve equilibrium when in fact

it has not.

As a consequence of these concerns, it is increasingly common to initiate multiple,

independently initialized simulation runs to test for slow relaxation and trapping in

metastable states [4, 3, 5, 6]. This strategy also takes advantage of the multi-processor

structure of virtually all modern computing systems, since independent simulations

can run concurrently on separate processors. Simulation studies of aging in glassy

materials have long used this approach, in order to average over different realizations

of the disorder in the initial configuration [7, 8].

When using multiple runs to study an equilibrium system, the final results are

averaged both in time (within a single run) and over the ensemble of independent

runs. Here we study the extreme case of an ensemble of runs in which the number

of runs M is so large that no time averaging is required to obtain accurate results.

Herein, we refer to such a large ensemble of runs as a “swarm”. That is, we create

a swarm of M independent runs, bring each to equilibrium, and use only the last

microstate of each run to evaluate the equilibirum properties, which are computed

purely as ensemble averages.

Our motivation to study this extreme case is to minimize the wall-clock time

required to obtain the final results: The shortest possible run that produces an equi-

librium microstate is a run that just reaches equilibrium and then stops. If a swarm

of M such runs is carried out concurrently, and if M is large enough to produce an

accurate ensemble average, then the wall-clock time to obtain results of a given preci-

sion will be substantially less than for a SLR. While it is apparent that this strategy
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can produce accurate results if M is large enough, and if the runs are long enough,

it is not obvious that the reduction in the wall-clock time will be worth the increase

in the total computational cost, compared to a SLR. The efficiency of such a “swarm

relaxation" strategy, relative to a SLR, will depend on the ability to stop the swarm

runs just as they relax to equilibrium. However, we usually don’t know the time scale

to reach equilibrium in advance.

In the following, we study several test cases of the swarm relaxation approach,

using Monte Carlo and molecular dynamics simulations of water. Simulations of water

display a wealth of complex phenomena, carefully studied in many previous works,

making this system an excellent choice for testing new computational strategies. We

test the swarm relaxation approach by examining the time dependence of average

properties, and their variance, during the evolution of the swarm to equilibrium, and

also examine the properties of the autocorrelation functions and relaxation times of

these observables. For several test cases, we show that when M is large enough (of

order 103 or greater), the establishment of equilibrium can be detected from the time

evolution of the average properties of the swarm on a time scale which is not much

longer than the time scale separating independent equilibrium microstates in a sin-

gle run. We also show that such values of M are sufficient to accurately evaluate

equilibrium properties. For our test cases, when all M simulations in the swarm run

concurrently, we show that a dramatic decrease of the wall-clock time is achieved (a

factor of several hundred), in return for a much smaller increase in the total computa-

tional cost (a factor of not more than 3), relative to a SLR. Thus a swarm relaxation

strategy is a viable approach for exploiting large-scale multi-processor computing

systems to substantially reduce the wall-clock time required to evaluate equilibrium

properties.
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3.3 Definitions

Consider an ensemble of M independent runs in which an observable x(i, t) is mea-

sured in run i of the ensemble as a function of time t. In the following we use 〈· · · 〉 to

denote an ensemble average over the runs at fixed t. The ensemble average of x over

all runs at a fixed t is defined as,

〈
x(t)

〉
= 1
M

M∑
i=1

x(i, t). (3.1)

The variance of x is,

σ2
x(t) =

〈[
x(i, t)−

〈
x(t)

〉]2
〉
, (3.2)

where σx is the standard deviation of x at fixed t, which characterizes the average

deviation of x from 〈x〉 at time t. Since 〈x〉 is an average ofM completely independent

values of x, the standard deviation of the mean sx = σx/
√
M characterizes the error

in our estimate of 〈x〉.

Following standard practice, we define the autocorrelation function for x, as mea-

sured from a reference time t0, as,

Cx(t0, t) =

〈[
x(i, t0)−

〈
x(t0)

〉][
x(i, t)−

〈
x(t)

〉]〉
σx(t0) σx(t)

. (3.3)

As a function of the time difference ∆t = t − t0, Cx measures the decay of the

correlations between the fluctuations of x from the ensemble average 〈x〉 occurring at

t, and the fluctuations occurring at t0. We emphasize that only ensemble averaging

is used in the definition of Cx. Since our ensemble of runs is large, there is no need to

average over different choices of the time origin t0 in order to obtain an accurate value

for Cx, as is commonly done when evaluating an autocorrelation function from a SLR.

30



This feature allows us to compute Cx for any value of t0 both during the approach to

equilibrium, as well as after equilibrium has been established.

As documented in the Appendix, it is straightforward to show that the standard

deviation of fluctuations of Cx as Cx → 0 is exactlyM−1/2. This result is important in

the present context because it establishes how large M must be in order to effectively

use Cx to monitor the relaxation of the ensemble of runs to equilibrium. If we choose

M = 1000, then 1/
√
M = 0.032, and so when Cx approaches zero, it will do so with

fluctuations that remain within ±2/
√
M = ±0.064 of zero for 95% of the time. As

we will see below, this error is sufficiently small to allow for the accurate evaluation

of the relaxation time for the system, starting from any given t0.

3.4 Test cases

3.4.1 Bulk ST2 water

Our first test case is a Monte Carlo simulation of bulk water, using the ST2 inter-

molecular potential. We employ the ST2 model of water in the original form pro-

posed by Stillinger and Rahman [9], using the reaction field method to approximate

the long-range contribution of the electrostatic interactions [10]. ST2 water has been

extensively studied in previous work, mainly to investigate the liquid-liquid phase

transition that occurs in the supercooled region of the phase diagram for this model.

As a consequence, there is a rich literature of published work to which we can compare

our results [13, 12, 13, 14, 15]. The ST2 simulations presented here are part of a larger

study of ice nucleation in supercooled water, to be published separately [16].

Our Monte Carlo simulations of ST2 water are carried out in the constant-

(N,P, T ) ensemble, with N = 1728 molecules contained in a cubic simulation cell,

with periodic boundary conditions. One Monte Carlo step (MCS) consists of (on av-
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Figure 3.1: Black curves show the time dependence of 〈ρ〉 (left panels) and 〈U〉 (right
panels) for ST2 runs A, B, and C (panels top to bottom). The black horizontal
lines identify ρ̄ and ρ̄ ± 2s̄ρ (left panels); and Ū and ρ̄ ± 2s̄U (right panels). The
bottom section of each panel shows logCρ (left panels) and logCU (right panels) over
successive relaxation cycles, calculated as described in the text. The red circles in
the left panels are values of 〈ρ〉 (with error ±2sρ) at the beginning of each relaxation
cycle, and the green circle is 〈ρ〉 at t = trun. Similarly, the red circles in the right
panels are values of 〈U〉 (with error ±2sU) at the beginning of each relaxation cycle,
and the green circle is 〈U〉 at t = trun.
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Figure 3.2: Cρ (solid lines) and CU (dashed lines) for ST2 runs A, B, C and D. The
horizontal dotted lines identify Cx = ±2M−1/2. Here ∆t = t− t0, with t0 = trun/2.

erage) of N − 1 attempted rototranslational moves, and one attempted change of the

system volume. The maximum size of the attempted rototranslational and volume

changes are chosen to give MC acceptance ratios in the range 30% to 40%.

To initialize a swarm of independent runs, we generate M = 1000 different con-

figurations, each of which consists of N water molecules with their centers of mass

arranged on a simple cubic lattice of density ρ = 1.0 g/cm3, and with randomized

molecular orientations. These configurations are used to initialize a swarm of runs at

T = 400 K and P = 100 MPa (labelled run A in Table 3.1). Each run in this swarm

is carried out for a run time of trun = 105 MCS.

As summarized in Table 3.1, the final configurations generated in run A are used

to initialize two new swarm runs, B and C. Run B aims to characterize a state point

on the ice-liquid coexistence line for ST2 water, and run C studies a state point close

to the liquid-liquid critical point of ST2 water. The final configurations of run C are

then used to initialize a swarm of runs D, which studies a low temperature state at
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Figure 3.3: Relaxation times τρ (black) and τU (red) for ST2 runs A, B, and C (panels
top to bottom). Horizontal lines indicate the values of τ̄ρ (black) and τ̄U (red). Note
that each value of τx is plotted at the value of t corresponding to t0 at the end of the
relaxation cycle from which τx is computed.

swarm T P started trun τ̄ trun/τ̄ tstop tstop/τ̄
run label (K) (MPa) from (103 MCS or ns) (103 MCS or ns) (103 MCS or ns)

A 400 100 random 100 3.4 29 41 12
B 290 120 A 400 19 21 229 12
C 250 190 A 4000 230 17 3270 14
D 100 190 C 800 � 103 � 1 � 103 -
E 180 - SLR at 180 K 24 1.8 13 23 13
F 180 - SLR at 220 K 24 1.9 13 23 12

Table 3.1: Run parameters and time scales for each of our swarm relaxation test cases.
Symbols and abbreviations are as defined in the text. Time units are MCS for runs
A, B, C and D, and are ns for E and F.
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Figure 3.4: 〈ρ〉 (a) and 〈U〉 (b) as a function of t for ST2 runs A, B, C and D, plotted
relative to the corresponding values of ρ̄ or Ū , and using a logarithmic time axis. In
the case of run D, ρ̄ and Ū are not known. To allow comparison with the other curves,
for run D we arbitrarily set ρ̄ = 1.04 g/cm3 in (a) and Ū = −51.8 kJ/mol in (b).

which the system is quenched into a glass, and where (as we will see) the system

is unable to achieve liquid-like equilibrium on the time scale currently accessible to

simulations. Table 3.1 gives the values of T , P , and trun for each of these ST2 swarm

runs.

Fig. 3.1 shows the time dependence of the ensemble-averaged density 〈ρ〉 and the

potential energy 〈U〉 for swarm runs A, B, and C. In each case, t = 0 corresponds

to the set of microstates used to initialize the ensemble, as indicated in Table 3.1.

For runs A, B, and C, trun is sufficiently large that the time dependence of 〈ρ〉 and

〈U〉 in Fig. 3.1 suggests that an approximately steady state has been attained for

t > trun/2, if not earlier. For each ensemble, we evaluate the time average of 〈ρ〉 and

〈U〉 for trun/2 < t < trun, respectively denoted ρ̄ and Ū . In each panel of Fig. 3.1,

the horizontal solid line passing through the middle of the data at large t identifies

the corresponding value of ρ̄ or Ū . The horizontal lines that bracket ρ̄ and Ū identify

values at ρ̄ ± 2s̄ρ and Ū ± 2s̄U respectively, where s̄ρ and s̄U are time averages of sρ
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and sU for trun/2 < t < trun. We see in Fig. 3.1 that the fluctuations of 〈ρ〉 and 〈U〉

are largely confined to the ranges ρ̄± 2s̄ρ and Ū ± 2s̄U in the second half of each run.

This behavior is consistent with 〈ρ〉 and 〈U〉 having reached equilibrium, since in this

case we would expect them to fluctuate within a range of ±2s̄x for 95% of the time.

Fig. 3.2 shows Cρ and CU for runs A, B and C evaluated as a function of ∆t for

t0 = trun/2, a time by which equilibrium has been established according to the results

presented in Fig. 3.1. The time scale for the decay of Cρ and CU to zero therefore

reflects the equilibrium relaxation time of each state point. We find in each case that

Cρ and CU decay to zero in a time that is shorter than trun/2, confirming that our

runs are able to relax completely within equilibrium. The dotted horizontal lines in

Fig. 3.2 locate ±2M−1/2. We find that the fluctuations of Cx as Cx → 0 are largely

confined within these bounds, as predicted in Section 3.3.

We also evaluate Cρ and CU for various values of t0, shown as the blue “saw-tooth"

curves in Fig. 3.1. These curves are calculated as follows: Starting at t0 = 103 MCS,

we evaluate the decay of Cx as a function of t, for both x = ρ and x = U . At the

next smallest time such that Cx < e−2, we reset t0 to the current time, and continue

evaluating Cx. This process is repeated for the duration of the run, thus generating a

saw-tooth curve that quantifies successive cycles of relaxation, both as the ensemble

evolves towards equilibrium, and after equilibrium has been established.

As shown in Fig. 3.1, we find that the decay of Cx is approximately exponential

(i.e. logCx is linear in t), especially in the case of Cρ. We therefore define the

relaxation time τx as 1/2 of the time required for Cx to first reach e−2 during each

relaxation cycle. Fig. 3.3 shows τρ and τU as a function of t for runs A, B and C.

Consistent with Fig. 3.1, Fig. 3.3 shows that τx is approximately constant in the

2nd half of our runs. We note that τx initially increases with t before reaching a

steady state. This is to be expected for runs B and C in part because the initial
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configurations come from runs at higher T , where the equilibrium relaxation time is

shorter. Also, in all cases, the system is far out of equilibrium at the beginning of the

runs, providing a strong initial driving force for change, demonstrated by the rapid

decay of the autocorrelation functions at early times.

To characterize the average equilibrium relaxation time τ̄ for each state point, we

first compute τ̄ρ and τ̄U , the average values of τρ and τU for t0 > trun/2. We then

define τ̄ = max{τ̄ρ, τ̄U}, to ensure that we use the most conservative choice of the

relaxation time available. The values for τ̄ so obtained are given in Table 3.1. We

note in all cases that τ̄ρ is greater than τ̄U .

In each panel of Fig. 3.1, the open red symbols present values of 〈ρ〉 and 〈U〉 at

the values of t0 that mark the beginning of a new relaxation cycle in the saw-tooth

curve for Cx. The error bars on each data point represent ±2sρ and ±2sU respectively,

the instantaneously calculated error in 〈ρ〉 and 〈U〉. These data demonstrate that the

error in 〈ρ〉 and 〈U〉 does not vary significantly with t during the evolution of the

swarm to equilibrium. These data also show that the instantaneous values of 〈ρ〉 and

〈U〉 attain values that are within error of ρ̄ and Ū well before trun/2.

Fig. 3.4 shows 〈ρ〉 and 〈U〉 plotted with a logarithmic time axis. The time de-

pendence of 〈ρ〉 exhibits a non-monotonic approach to the equilibrium value, possibly

arising from the time separation between the vibrational and configurational degrees

of freedom [17, 18]. Fig. 3.4 also confirms that a stable equilibrium has been attained

at large t for runs A, B, and C. Fig. 3.5 shows the time dependence of 〈ρ〉 and 〈U〉,

where the time has been scaled by τ̄ . Fig. 3.6(a) shows a similar plot for the time

dependence of τρ. Figs. 3.5 and 3.6(a) demonstrate that in all cases, equilibrium

thermodynamic properties and equilibrium relaxation times are established on a time

scale of 10τ̄ or less.

To test if the present results agree with previously reported results for ST2 water,
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Figure 3.5: (a) 〈ρ〉 as a function of t/τ̄ for ST2 runs A, B and C, plotted relative to
the corresponding value of ρ̄. (b) Same as in (a) but for 〈U〉, and comparing both our
ST2 runs (A, B and C) and TIP4P/2005 runs (E and F).

Fig. 3.7 compares our results for 〈ρ〉 and 〈U〉 from runs A, B, and C with results

for ST2 water based on the data set generated for Ref. [12]. The data reported in

Ref. [12] was obtained from constant-(N, V, T ) molecular dynamics simulations with

N = 1728. To conduct this comparison, we use the values of 〈ρ〉 and 〈U〉 evaluated at

t = trun (green open symbols in Fig. 3.1). The agreement between the two data sets is

excellent, and again confirms that we have obtained equilibrium properties using our

swarm relaxation strategy. Note in Fig. 3.7 that the error for our data points (±2sx)

is much smaller than the symbol size. The scatter in the data points taken from

Ref. [12] is larger, indicating that the estimates obtained here are of higher precision

that those reported in Ref. [12].

In the case of run D, as expected, the swarm does not reach equilibrium on the

time scale of our simulations. In Fig. 3.2 we see that both Cρ and CU remain very

far from zero throughout the simulation time. Fig. 3.4 shows that both 〈ρ〉 and 〈U〉

continue to vary with t even at the largest t. It is apparent that a much longer

simulation would be required to bring run D into equilibrium. Our results from run
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Figure 3.6: (a) τx/τ̄ and (b) τmax/τ̄ versus t/τ̄ , for runs A, B, C, E and F. Note that
each value of τx or τmax is plotted at the value of t corresponding to t0 at the end of
the relaxation cycle from which it is computed. The dashed line has slope 1/10.

D confirm that the swarm relaxation strategy used here is able to clearly distinguish

between a liquid and a glassy state.

3.4.2 TIP4P/2005 water nanodroplet

As a second test case, we present molecular dynamics simulations of an isolated nan-

odroplet of N = 360 water molecules, surrounded by vacuum. In this case, the water

interactions are modelled using the TIP4P/2005 potential [19]. These simulations are

also used in a study of water nanodroplets over a wide range of N and T [20]. In the

present simulations, we focus on T = 180 K, where T is controlled using a Nosé-Hoover

thermostat [21, 22]. We use a cubic simulation cell of linear dimension L =10 nm,

with periodic boundary conditions. The liquid nanodroplet occupies less than 2% of

the total volume of the simulation cell. Since the diameter of the nanodroplet is sig-

nificantly smaller than L/2, we directly evaluate all electrostatic interactions among

molecules separated by a distance of less than L/2, and ignore interactions beyond

this distance.
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Figure 3.7: Comparison of our results for 〈ρ〉 and 〈U〉 for ST2 runs A, B and C (open
green circles) with ST2 data taken from Ref. [12] (filled symbols). The error for the
green circles is smaller than the symbol size in both plots. Panel (a) shows isotherms
of P versus ρ from Ref. [12] for T = 400 K (black), 290 K (red), and 250 K (blue).
Panel (b) shows isotherms of U versus ρ from Ref. [12] for the same T as in (a). In
(b) we also show the parametric curves (green dashed lines) for 〈ρ〉 and 〈U〉 for runs
B and C as they evolve from their starting values at A to their equilibrium values.

First we conduct a SLR of this 180 K nanodroplet lasting 2700 ns, to compare to

our swarm runs. The initial configuration for this SLR is an equilibrium configuration

taken from a single long nanodroplet simulation conducted at 250 K. The potential

energy U is recorded every 40 ps during the SLR at 180 K. From the time series for

U over the last 288 ns of the SLR, we evaluate the autocorrelation function using the

definition in Eq. 3.3, but where the ensemble average is replaced by an average over

the choice of time origin t0. This autocorrelation function, plotted in Fig. 3.8, exhibits

a fast initial decay, due to large fluctuations which occur on a time scale of less than

40 ps, followed by a slower relaxation to zero. Since it is the slower relaxation to zero

that we wish to characterize, we coarse grain the time series by averaging our data

for U over successive, non-overlapping time windows of 200 ps. The autocorrelation

function for the coarse grained time series is also shown in Fig. 3.8. As desired, the

coarse grained time series yields an autocorrelation function that better spans the full
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For runs E and F, we choose t0 = 10 ns. Results for CU both with (solid) and without
(dashed) coarse graining are shown.

range of decay from 1 to 0 within the time domain studied here. Fig. 3.8 shows that

the relaxation time τ̄ for our SLR is on the order of 1 ns, confirming that this run is

long enough for measuring equilibrium properties.

We then conduct two swarm relaxation runs of the N = 360 TIP4P/2005 wa-

ter nanocluster, labelled E and F in Table 3.1. To initialize run E, we select one

equilibrium configuration from the SLR conducted at 180 K, and generate M = 1000

copies, where we use the same spatial coordinates for the molecules in the system, but

select their velocities (both translational and rotational) randomly from a Maxwell-

Boltzmann distribution appropriate for T = 180 K. To initialize run F, we proceed

in the same way as for run E, except that the initial configuration is an equilibrium

configuration obtained from a separate SLR conducted at T = 220 K. We choose this
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Figure 3.9: Time dependence of 〈U〉 (black curve) for TIP4P/2005 runs E and F
(panels top to bottom). The black horizontal lines identify Ū and Ū±2s̄U . The lower
section of each panel shows logCU (evaluated from the coarse grained times series
for 〈U〉) over successive relaxation cycles, as described in the text. The red circles
are values of 〈U〉 (with error ±2sU) at the beginning of each relaxation cycle. The
green open circle is 〈U〉 at t = trun. The green filled circle (displayed arbitrarily at
t = 26 ns) is Ū from our SLR, evaluated with error as described in the text.

approach to test the use of an “isoconfigurational" [23] set of microstates to initialize

a swarm relaxation run. We anticipate that there may be many situations where a

single configuration of a complex system is available, either near or away from the

state we wish to equilibrate. In this case, an isoconfigurational set is a convenient

way to initialize a swarm relaxation run, compared to generating M independent con-

figurations from scratch. Also, runs E and F will allow us to compare the time to

recover the ensemble-average properties at T = 180 K when starting from a single

equilibrium microstate (E), versus an out-of-equilibrium microstate (F).

For runs E and F, our swarm relaxation simulations run for trun = 24 ns. Fig. 3.9

shows the time dependence of 〈U〉 obtained for E and F, as well as the successive

relaxation cycles of CU . Fig. 3.9 demonstrates that 〈U〉 for both E and F is in a steady

state when t > trun/2. We note that despite the fact that the initial configuration used
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for run E is from the equilibrium portion of a SLR at the same conditions, its value

of U is well outside, and above, the error estimate for Ū . This occurs because σU is

much greater than sU , and so it is likely that a randomly chosen single configuration

from equilibrium will fall outside of Ū ± 2s̄U . We also note that when calculating

CU from our swarm runs, we coarse grain the time series of U values for each run

in the same way as described above for the SLR. The values of τ obtained from the

successive relaxation cycles are shown as the solid symbols in Fig. 3.6(a), where we

have used τ̄ = 1.8 ns for run E, and τ̄ = 1.9 ns for run F, evaluated by averaging the

values of τ from runs E and F for trun/2 < t < trun.

In Fig. 3.8 we plot CU as obtained from runs E and F, when t0 = 10 ns, and using

both the original and coarse grained time series for U . We find that the autocorrelation

functions obtained from the SLR for T = 180 K and from the swarm runs E and F

agree within error, confirming that the equilibrium relaxation time τ̄ is the same in

all cases.

By time averaging over the last 288 ns of the SLR at T = 180 K, we obtain Ū =

−50.66±0.03. Here the error has been evaluated as 2σ/
√
Nτ , where σ is the standard

deviation of the time series for U , and Nτ = (288 ns)/τ̄ , with τ̄ = 1.8 ns. That is,

we have made the (optimistic) assumption that successive independent configurations

are separated by τ̄ in the SLR. This value of Ū is plotted as the solid green circle in

both panels of Fig. 3.9, which demonstrates that the equilibrium value of U obtained

from the swarm runs E and F, and the SLR, all agree within error. Our results also

show that the equilibrium values of τ (Fig. 3.6) and 〈U〉 [Fig. 3.5(b)] in runs E and

F are established within a run time of 10τ̄ , regardless of whether our swarm runs are

initiated from an equilibrium or out-of-equilibrium configuration.
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3.5 Computational efficiency

The above results indicate that all investigated test cases attain equilibrium within a

time less than 10τ̄ . This time scale is physically reasonable: When the equilibrium we

seek to attain is more slowly relaxing than the state point from which our swarms are

launched, it is not surprising that the time scale to reach equilibrium is dominated by

the time scale for relaxation within equilibrium. We define τ̄ as the time to relax an

equilibrium autocorrelation function to 1/e, and so full decorrelation requires several

τ̄ ; e.g. 5τ̄ is required for an exponential autocorrelation function to decay to less than

0.01, and longer would be required for a stretched exponential. Hence our test swarms

reach equilibrium in less than two full decorrelation times of the equilibrium system.

For our swarm relaxation strategy to be both accurate and efficient, the runs

need to be stopped at a time tstop that is longer than the time required for the system

to attain equilibrium, but not much longer. That is, if each run only contributes

one microstate to the ensemble averages, then continuing the runs in the equilibrium

time regime is a waste of computing resources. Based on the results shown above,

tstop = 10τ̄ would be a good choice, but τ̄ is not known in a priori. However, a reliable

estimate for tstop can still be made due to the fact that we can monitor τ as a function

of t during the simulations. In the present context, by τ we mean the time-dependent

relaxation time for the most slowly relaxing observable of interest.

In particular, it is reasonable to assume that the approach of τ to τ̄ (from below)

is approximately exponential in t. If we also assume that τ = τ̄ for t > 10τ̄ , then the

function τ(t) will lie above the linear curve t/10 from t = 0 to some time t ≤ 10τ̄ ,

and will lie below t/10 for t > 10τ̄ . The time at which the curves for τ(t) and t/10

cross thus provides a way to estimate (an upper bound on) τ̄ . We see in Fig. 3.6(a)

that such a crossing is observed in each case studied here.

We therefore propose the following procedure to determine tstop: Let τmax(t) be

44



the largest value of τ observed so far in a swarm run of length t. We define tstop as

the smallest t satisfying t > 10τmax(t). This procedure allows tstop to be identified

using only information that is available at time t. We use τmax(t) instead of τ(t) in

order to make the estimate of tstop a conservative one. In Fig. 3.6(b) we plot τmax(t)

for each state point, from which we obtain estimates for tstop from the crossing time

of the curves for τmax(t) and t/10. These values of tstop are tabulated in Table 3.1.

In all cases, we find tstop is larger than 10τ̄ , but not too much larger; tstop/τ̄ ranges

between 12 and 14.

Next, we compare the efficiency of our swarm relaxation strategy relative to a SLR.

Let us denote the time separation between independent microstates during a run as nτ̄ ,

leaving open for the moment what a good choice of n should be. A SLR that generates

K independent microstates will run for a wall-clock time of tSLR = nτ̄K. Here we

ignore the equilibration time of a SLR, by assuming that this is a small fraction of the

total run length. Using the swarm relaxation approach, and the procedure described

above to determine tstop, each run will terminate after approximately 13τ̄ . Using M

processors concurrently, subject to the constraint M ≤ K, the swarm approach will

generate K independent microstates in a wall-clock time of tswarm = 13τ̄K/M . The

swarm strategy is thus faster, in terms of wall-clock time, than a SLR by a speedup

factor of fspeedup = tSLR/tswarm = nM/13. The total computational cost for a swarm

run relative to a SLR increases by a factor of fcost = Mtswarm/tSLR = 13/n.

As for the choice of n, many simulation studies consider microstates to be inde-

pendent if they are separated by as little as τ̄ ; see e.g. Ref. [24]. However, this choice

almost certainly underestimates the error in a SLR, relative to the error evaluated

in a swarm run. As discussed above, complete decorrelation requires several τ̄ , e.g.

n = 5. Since the swarm approach produces completely independent microstates, for

a direct comparison we should consider a SLR from which only completely indepen-
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dent microstates have been harvested. Hence, for comparing the two approaches, we

choose n = 5. As shown above, a practical value for both K and M is 1000. With

these choices, the swarm approach is faster than a SLR by a factor of fspeedup = 385,

in exchange for a total computational cost that increases by a factor of fcost = 2.6.

The above estimates for fspeedup and fcost are approximate, and can be expected

to vary substantially for different systems, different parameter choices (such as for

n), and as the strategy for implementing a swarm approach is varied to best suit

a particular physical system and/or computing facility. Although our results are

thus difficult to generalize, they do show for a few practical, real-world cases that a

swarm relaxation strategy can shorten the time to obtain results by a factor of several

hundred, in return for an increased computational cost of about a factor of 3.

3.6 Discussion

In addition to a dramatic decrease in the time required to obtain results, another

significant advantage of the swarm relaxation approach is the quality of the results,

including their error estimates, and the ease with which they are evaluated. All the

microstates that contribute to the final results in a swarm approach are, by construc-

tion, completely independent. The quality of the estimates for equilibrium properties

is thus very high, since they are formed as pure ensemble averages. While we have

focussed here on bulk average properties such as ρ and U , all observables available

from a SLR can be readily computed from a swarm ensemble, including structural

measures such as radial distribution functions, and quantities such as the specific heat

that are based on fluctuations occurring within the ensemble. Also, since there is no

need to estimate the time separation between independent microstates, as in a SLR,

the evaluation of statistical error is straightforward and robust. A swarm approach
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is therefore a good choice for studies requiring high-precision results, with rigorously

defined error.

We emphasize that the swarm relaxation strategy does not resolve the fundamen-

tal physical challenges associated with the equilibration of complex systems. Users of

the present approach must still be watchful for the effects of metastable states, and

of slowly relaxing collective degrees of freedom. The approach does provide opportu-

nities for checking for these effects, for example, testing for the presence of distinct

metastable states by looking for divergent behavior in subsets of the swarm trajec-

tories. If the presence of a slow degree of freedom is suspected, it would be best to

check swarm results against a test case using a SLR, especially if the system under

study is new.

Regarding the definition of the autocorrelation functions used here, there are

of course other choices that may serve just as well, or even better, for assessing

the relaxation of the system to equilibrium. In particular, the time decay of the

intermediate scattering function has long been used as a benchmark for quantifying

relaxation in bulk liquids and glasses [2]. When available, such additional measures

of decorrelation can be used in a swarm approach to check for subtle, slowly relaxing

degrees of freedom. Here, we have focussed on the autocorrelation functions obtained

from the time series for the same observables (e.g. ρ and U) used to compare the

swarm results to a SLR. We do so for simplicity, and to show that when M is large

enough, any observable can be used to monitor the time evolution of τ as the system

approaches equilibrium.

We have shown that M = 103 is sufficient to make our strategy both efficient

and straightforward to implement. Smaller values of M may also be used, at the cost

of decreased precision in the estimates for equilibrium properties and for character-

istic time scales such as τ . In particular, if the behavior of τ as a function of t [see
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Fig. 3.6(a)] is too noisy, then reliable estimates for tstop become difficult to obtain.

Tests using sub-ensembles of our swarm runs suggest that M = 250 is an approxi-

mate lower bound for obtaining accurate equilibrium properties, while simultaneously

ensuring that a useful estimate for tstop can be made from the behavior of τ(t).

In situations where M ∼ 103 computing processors are not available for concur-

rent use, the swarm strategy can still be implemented, since the individual runs are

independent and can run asynchronously. Furthermore, the computational workload

in a swarm approach takes the form of a large number of short runs. Our experi-

ence when running asynchronously on a shared facility is that excellent throughput

is achieved, since the runs fill usage gaps between larger and longer computing jobs.

We also note that the swarm approach can be modified by extending each run

so as to produce a sequence of independent configurations, appropriately separated

in time. In this case, observables are evaluated from a combination of ensemble and

time averaging. The balance between the two kinds of averaging can be tuned to best

fit the available computing resources, bearing in mind that such a hybrid approach

does not minimize the wall-clock time, and complicates the error analysis, relative to

a pure swarm strategy.

Finally, we point out the conceptual connections between our work and studies

of physical aging in glassy systems. The swarm procedure used here is the same as

that commonly used in simulations to study the aging of material properties in a

glass subjected (e.g.) to a jump in T . The only difference is that here the destination

equilibrium state can be reached, and that the characteristic time scales are much

shorter than those normally studied in aging. In particular, we draw the reader’s

attention to Dyre’s recent analysis of the Narayanaswamy theory for physical aging,

in which the “material time" is unambiguously related to the system’s mean-square-

displacement in configuration space [25]. The variation of τ with t shown in Fig. 3.6 is
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a proxy measure of the material time in our test systems as they approach equilibrium.

It would be interesting for future work to assess the swarm relaxation strategy within

the framework of Dyre’s analysis.

To summarize, the practicality of the swarm relaxation strategy rests on two

observations: (i) The time required to generate independent microstates during a

single long run is comparable to the time required to bring a single short run into

equilibrium. (ii) When the swarm is large enough, the attainment of equilibrium can

be confirmed within a time that is not much longer than the equilibration process

itself. So long as these two observations hold, the present strategy is an effective

way to “trade processors for time". When computational facilities having 103 or

more processors are available, and when time is of the essense, the swarm relaxation

strategy is an effective way to rapidly generate high-quality results with robustly

defined statistical error.
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3.9 Appendix: Fluctuations of the autocorrelation

function

Here we show that the fluctuations of the autocorrelation function Cx(t0, t) have a

standard deviation σC = M−1/2, when Cx approaches zero.

Let X(t) represent the discrete set of M random variables {x(i, t)} for various

i at fixed t. Similarly, let δX(t) represent the discrete set of M random variables

{x(i, t)− 〈x(t)〉}. The variance of X(t) can be written in a number of ways:

Var[X(t)] = σ2(t)

=
〈[
x(i, t)−

〈
x(t)

〉]2
〉

=
〈[
δX(t)

]2〉
=

〈[
X(t)

]2〉
−
〈
X(t)

〉2
. (3.4)

In this notation,

Cx(t0, t) =

〈
δX(t0) δX(t)

〉
σ(t0) σ(t) . (3.5)

The fluctuations of Cx are quantified by Var[Cx(t0, t)] = σ2
C . Using standard identities

for the variance, we have,

Var[Cx(t0, t)] = Var

〈
δX(t0) δX(t)

〉
σ(t0) σ(t)



=
Var

[〈
δX(t0) δX(t)

〉]
σ2(t0) σ2(t)

=
Var

[
δX(t0) δX(t)

]
M σ2(t0) σ2(t) . (3.6)
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Using the last equality of Eq. 3.4 we can write,

Var
[
δX(t0) δX(t)

]
=

〈[
δX(t0)

]2[
δX(t)

]2〉
−
〈
δX(t0) δX(t)

〉2
(3.7)

For sufficiently large ∆t, δX(t0) and δX(t) become independent, and Cx → 0. In this

case, the first term on the right-hand side of Eq. 3.7 reduces to,

〈[
δX(t0)

]2[
δX(t)

]2〉
=

〈[
δX(t0)

]2〉〈[
δX(t)

]2〉
= σ2(t0) σ2(t), (3.8)

and the second term vanishes,

〈
δX(t0) δX(t)

〉2
=
〈
δX(t0)

〉2〈
δX(t)

〉2
= 0, (3.9)

because by definition 〈δX(t0)〉 = 〈δX(t)〉 = 0. Combining Eqs. 3.6-3.9, we obtain,

Var[Cx(t0, t)] = M−1. (3.10)

Therefore, the standard deviation σC of fluctuations of Cx as Cx → 0 is,

σC = M−1/2. (3.11)
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Chapter 4

Evaluating the Laplace pressure of

water nanodroplets from

simulations

Reproduced with permission from Shahrazad M.A. Malek, Francesco Sciortino, Pe-

ter H. Poole, and Ivan Saika-Voivod, J. Phys. Condens. Matter 10.1088/1361-

648X/aab196. Copyright 2018, IOP Publishing.

4.1 Abstract

We calculate the components of the microscopic pressure tensor as a function of

radial distance r from the centre of a spherical water droplet, modelled using the

TIP4P/2005 potential. To do so, we modify a coarse-graining method for calculating

the microscopic pressure [T. Ikeshoji, B. Hafskjold, and H. Furuholt, Mol. Simul. 29,

101 (2003)] in order to apply it to a rigid molecular model of water. As test cases,

we study nanodroplets ranging in size from 776 to 2880 molecules at 220 K. Beneath
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a surface region comprising approximately two molecular layers, the pressure tensor

becomes approximately isotropic and constant with r. We find that the dependence of

the pressure on droplet radius is the one expected from the Young-Laplace equation,

despite the small size of the droplets.

4.2 Introduction

Small droplets of liquid water are important to atmospheric science and technological

applications, and understanding the properties and role of the surface is increasingly

important as droplets become nanoscopic. Surface effects can profoundly influence

the mechanism and rate of crystallization in general. In water, the role of surface

freezing is still unresolved [1].

Significant to much of the discussion is the Laplace pressure, the pressure differ-

ence between the interior and exterior of a droplet of radius R arising from the liquid-

vapour surface tension γ, as quantified by the Young-Laplace equation for droplets,

∆P = 2γ
R
. (4.1)

Galli and coworkers modelled the effect within nanodroplets of the Laplace pressure

on nucleation rates [2]. They argued that since the interior of the nanodroplet is at a

higher pressure, the liquid there is less supercooled on account of the decreasing melt-

ing temperature of ice Ih with increasing pressure. Hence nucleation rates should be

greatly diminished in the interior. Espinosa et al [3] went on to show that the liquid-Ih

surface tension also increases with increasing pressure, further suppressing nucleation.

By contrast, the nanodroplet surface, though prone to disorder, experiences a nega-

tive pressure, and should thus be more supercooled and therefore enhance nucleation

rates. The simulations of Ref. [2] showed that nucleation rates for mW [4] water nan-
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odroplets are progressively and greatly suppressed as nanodroplet size decreases, and

that the rates are the same within error for R ≥ 3.1 nm when compared to the bulk at

the same density. For smaller nanodroplets, the difference in rates between droplets

and bulk at the same density is significant. The authors argue, however, that for real

water, for which the density difference between liquid and crystal at melting is larger

than in mW water, surface nucleation should be favoured in microdroplets. We note

that while the authors estimated the Laplace pressure through Eq. 4.1 and provided

a check of the equation by determining the pressure of the bulk at the same density

as inside the nanodroplets, they did not explicitly calculate the pressure inside the

droplets. Nor is it clear to what extent Eq. 4.1 should hold for more realistic models

of water, such as the TIP4P model [5] and related potentials [6].

The insights of Ref. [2] have been enriched by the work of Haji-Akbari and

Debenedetti [7] on water nanofilms. They found that nucleation rates obtained using

the TIP4P/ice [8] model of water are enhanced by a factor of 107 within the nanofilm

in comparison to the bulk. The enhancement stems not from the interface, where

crystal-like ordering is reduced, but rather from a relative abundance of “double-

diamond cages” over hexagonal cages in the interior of the film compared to bulk.

The latter cage type is less favourable for nucleation. Their work therefore indicates

the importance of subtle changes in structure arising from the finite extent of the

system, and diminishes the importance of the negative pressure near the interface.

However, this study was conducted on films, where the internal pressure is no differ-

ent from the ambient, and therefore did not address the role of the Laplace pressure

on the interior.

Recent experiments on microdroplets, for which the Laplace pressure is likely

negligible, have pushed the limits of observing liquid water below the bulk homoge-

neous nucleation limit of 235 K by determining nucleation rates down to 227 K [9].
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Nucleation rates at significantly lower temperatures have been measured for nan-

odroplets with radii of just a few nanometers [10, 11], for which the Laplace pressure

is likely significant. An experimental study of water clusters in the range of 100-1000

molecules showed that crystallization may be entirely suppressed below roughly 275

molecules [12], at which point surface effects may dominate and the Laplace pressure

would be quite high. Given that experiments probe ever smaller systems, it is crucial

to develop a better understanding of the basic physical properties of nanodroplets,

including the pressure.

The theoretical and experimental developments described above all point to the

need for a detailed analysis of the microscopic pressure tensor within water nan-

odroplets and its connection to the Laplace pressure. This is the subject of this paper.

The work on ST2 water clusters of Brodskaya et al. [13, 14] found significantly ele-

vated pressures within nanodroplet interiors. Thompson et al. [15] provided a detailed

description of the methodology for calculating the pressure tensor in droplets in the

context of Lennard-Jones particles. We base our calculations on the work by Ikeshoji

et al. [16], who developed a coarse-grained scheme for calculating the molecular-scale

pressure for simple particles interacting with radial potentials. The advantages of their

method include improved statistics over non-coarse-grained methods (e.g. [15]), as well

as the ability to directly calculate both the normal and transverse components of the

pressure tensor. The method was applied to a molecular model of water, SPC/E [17],

in a study of methane hydrate droplets embedded in ice [18], but no details on how

the method was modified for molecules were given. The method of Ref. [16] was

later generalized to molecules in a way that considered multibody intramolecular in-

teractions, and applied to non-rigid chain-like organic molecules interacting with a

coarse grained-model for water [19]. However, for rigid multi-site water models such

as TIP4P/2005, it is more straightforward to modify Ref. [16] in a way that does not
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require the consideration of intramolecular interactions, i.e., forces of constraint. It is

this latter approach that we present here. That is, we adapt the method of Ref. [16]

to TIP4P/2005 water nanodroplets, and give details of the calculation.

This paper is organized as follows. Section 4.3 describes our molecular dynamics

simulations of TIP4P/2005 water nanodroplets. In Section 4.4 we show in detail how

we adapt and apply the method introduced in Ref. [16] to water, comment on the

utility of the method in terms of independently calculating the normal and transverse

components of the local pressure tensor, and introduce an energy-based approximate

method of calculating the local isotropic pressure and use it as a check of our results.

We present the pressure components as functions of radial distance from the centre

of mass of a nanodroplet and validate the form of Eq. 4.1 in Section 4.5, before

concluding in Section 4.6.

4.3 Simulations

We simulate nanodroplets of N = 776, 1100, 1440 and 2880 water molecules interact-

ing through the TIP4P/2005 water model [20]. All simulations are done at temper-

ature T = 220 K, where the vapour pressure is negligible. For N = 1440 and 2880,

we initially prepare a droplet system of a given size by placing N water molecules

randomly in a rather large cubic simulation box and simulating at constant volume.

The molecules naturally condense into a droplet surrounded by a very low density

vapour. The equilibrated configuration is then run for many relaxation times to get

equilibrium properties of the droplets. We produce two spherical droplets of size N =

776 and 1100 by removing molecules beyond an appropriate radial distance from the

centre of an equilibrated N = 1440 droplet. For the N = 776 system, the simulation

box length L = 15 nm. For the larger droplets L = 20 nm. We use a potential cutoff
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of L/2, and employ periodic boundary conditions to ensure that vapour molecules can

return to the droplet in order to avoid eventual evaporation. The box is large enough

to avoid any direct interaction between the water droplet and its periodic images.

With this setup, molecules within the droplet interact through the full, untruncated

potential, including electrostatic interactions. We use Gromacs v4.6.1 [20] to carry

out the molecular dynamics simulations. We hold T constant with the Nosé-Hoover

thermostat. The equations of motion are integrated with the leap-frog algorithm with

a time step of 2 fs. The total simulation times for the four droplet sizes, in order of

increasing N, are 862, 633, 593 and 182 ns.

To determine equilibration and relaxation times, we monitor the decay of the bond

autocorrelation function φ(t), which gives the probability that a bond present at time

t = 0 remains unbroken until time t [22]. Two molecules i and j are considered bonded

if the distance between their O atoms is less than 0.32 nm, the location of the first

minimum in the oxygen-oxygen radial distribution function of bulk water at ambient

conditions. The calculation of φ(t) is sensitive to the sampling interval, which in our

case falls between 0.2 and 0.8 ns. We can not discriminate between persistent and

reformed bonds on times shorter than our sampling time, and so our φ(t) provides an

upper bound on the true value.

Error bars for various quantities are calculated by taking the standard deviation in

a quantity over all sampled equilibrium configurations, and dividing by √nind, where

nind = teq/τφ is the estimated number of independent configurations sampled, teq is the

duration of the equilibrated time series used for averaging, and τφ is the time at which

φ(t) ≤ e−1 ≈ 0.368. For example, for the N = 1100 droplet, the simulation is carried

out for a total of 633 ns, the first 129 ns of which are discarded, leaving teq = 504 ns.

Our determination of φ(t) is not very well resolved in time, but we determine that

φ(0.8 ns) = 0.08 and so we set τφ = 0.8 ns and hence nind ≈ 500/0.8 = 625. Our
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estimates for the number of independent configurations sampled in equilibrium for

the other sizes are 1917 (N = 776), 1588 (N = 1440) and 48 (N = 2880).

4.4 Microscopic pressure

4.4.1 Pressure profiles

To calculate the normal PN(r) and tangential PT (r) components of the pressure tensor

as a function of radial distance r from the centre of mass of the water nanodroplet,

we follow the prescription of Ikeshoji et al. [16] for a spherical geometry. Below we

reproduce their approach, which uses a coarse graining wherein the pressure compo-

nents at r are calculated as averages over a thin spherical shell of finite thickness in

order to improve statistics and to avoid divergences in PT (r).

Their method was presented for particles interacting through central forces. We

introduce adaptations required since the pair force between water molecules is not

central (although the site-site interactions are). The generalization is straightforward

since only the intermolecular forces need to be considered and they need not be

central [13, 14, 23]. In order to present the reader with a self-contained explanation

of the method, we have reproduced relevant portions of Ref. [16] here. To be more

explicit, Eqs. 4.2 to 4.14 and their development are adapted from Ref. [16], albeit

with slightly different notation, while Eqs. 4.15 to 4.24 have been modified because

of the non-central force between molecules. Fig. 4.1 is adapted from [16] to explicitly

include all types of molecular pair contributions. We introduce Table 4.1 to provide

mathematical details that complement Fig. 4.1.

Schofield and Henderson [24] showed that the pressure tensor at a point R in
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space is given by [24, 15],

P ′αβ(R) =
〈
P ′c,αβ(R)

〉
+
〈
P ′k,αβ(R)

〉
, (4.2)

where 〈
P ′k,αβ(R)

〉
= kBTρ(R)δαβ, (4.3)

is the kinetic part, and follows directly from the local equilibrium density ρ(R). The

brackets 〈. . . 〉 indicate an ensemble average, i.e., an average over a set of equilibrated

configurations, and δαβ is the Kronecker delta. Pressures annotated with a prime

indicate that the pressure is calculated at a single point in space. Pressures without

primes refer to quantities that are coarse-grained (averaged) over a small volume.

The configurational contribution is obtained from intermolecular pair forces, and

is given by,

P ′c,αβ(R) = 1
2
∑
i

∑
j 6=i

P ′ij,αβ(R), (4.4)

where the molecular pair-wise contribution to the pressure is given by,

P ′ij,αβ(R) =
∫
Cij

fij,α δ(R − l )dlβ, (4.5)

where fij,α is the α component of the force on molecule j due to molecule i, fij, δ(R−l)

is the Dirac delta function, Cij is a contour from i to j, l is a vector indicating a point

on Cij, and dlβ is the β component of an infinitesimal portion of the path along Cij. We

stress that fij is the force between two molecules, i.e., the quantity that is responsible

for the acceleration of the centres of mass of the molecules. We consider neither

torques nor forces between atoms on the same molecule nor forces of contstraint [23].

For TIP4P/2005, fij is obtained by summing over all of the interactions between

charge and Lennard-Jones sites on molecule i and those on molecule j. The freedom
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in choosing Cij renders the definition of the microscopic pressure non-unique. Ikeshoji

et al [16] follows the convention of defining Cij to be a straight line segment connecting

the centres of mass of molecules i and j, consistent with the Irving-Kirkwood definition

of the pressure tensor [25]. As we comment below, this simple and intuitive choice of

Cij leads to divergences in PT (r) that coarse-graining eliminates.

The coarse-graining procedure amounts to carrying out an integration of Eq. 4.2

over R within a spherical shell of radius r, thickness ∆r and volume Ṽ = 4π[R3
out −

R3
in]/3, with Rout = r + ∆r/2 and Rin = r − ∆r/2. We set ∆r = 0.05 nm. The

coarse-grained pressure Pαβ(r) is given by,

Pαβ(r) = 1
Ṽ

∫
Ṽ
P ′αβ(R)dR = 〈Pc,αβ〉+ 〈Pk,αβ〉 . (4.6)

The kinetic part is still calculated from the density, but now averaged over Ṽ . The

configurational part maintains the same form as before,

Pc,αβ = 1
2
∑
i

∑
j 6=i

Pij,αβ, (4.7)

but now the coarse-grained contribution to the pressure from an interaction between

a pair of molecules is given by,

Pij,αβ = 1
Ṽ

∫
Ṽ

∫
Cij

fij,α δ(R − l)dlβdR,

= 1
Ṽ

∫
Cij

fij,α

[∫
Ṽ
δ(R − l)dR

]
dlβ,

= 1
Ṽ

∫
Cij∈Ṽ

fij,αdlβ, (4.8)

where the force between molecules i and j contributes to the pressure in Ṽ only along

the parts of Cij that are in Ṽ . Regardless of the location of i and j, i.e., whether they
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are in Ṽ or not, as long as the line between them passes through Ṽ , their interaction

contributes to the pressure.

To determine the part of Cij that contributes to the pressure in Ṽ , one first uses

a parametric expression for l(λ) that defines points located on Cij,

l(λ) = ri + λrij, (4.9)

where rij = rj − ri, i.e. the vector pointing from i to j. (For repulsion, fij points

approximately along rij.) Points on Cĳ correspond to λ ∈ [0, 1].
!

r"

!! " C."3"

C."1"

C."2

C."10"

C."6"

C."8"

C."9"

C."4"

C."5"

C."7"

Figure 4.1: A sketch of all possible contributions to P in Ṽ from the coarse-graining
method of Ikeshoji et al. [16]. See Table 4.1 for details. The contours Cij are line
segments between molecules i and j (filled circles). The portions of Cij between arrows
contribute to the pressure. Ṽ is a spherical shell of inner radius Rin = r−∆R/2 and
outer radius Rout = r + ∆R/2.

Fig. 4.1 shows a sketch of all possible contributions from molecular pair interac-

tions to Ṽ in the coarse-grained method. The contributions from Cij that contribute

to the pressure in Ṽ are portions of lines between arrows, while the line between

small filled circles is the line segment connecting particles i and j. For a given line,

the portion between arrows corresponds to λa ≤ λ ≤ λb, with a and b labelling entry

and exit points. If the line intersects Ṽ over two segments (yielding two contributions
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to the pressure), there is a second set of entry and exit points that define the segment

λ′a ≤ λ ≤ λ′b. If ri ∈ Ṽ then λa = 0, while if rj ∈ Ṽ then λb (or λ′b if it exists) = 1.

A precise determination of relevant intersections between the line l(λ) and the

spheres bounding Ṽ requires solving the equation,

l(λ) · l(λ) = r2
i + λ 2ri · rij + λ2r2

ij = R2
out, (4.10)

and a similar one for Rin. The magnitudes of ri and rij are ri and rij, respectively.

The solutions to these quadratic equations are,

λ
in/out
± = −ri · rij

r2
ij

± 1
r2
ij

√
Din/out, (4.11)

where the discriminants are given by,

Din/out = (ri · rij)2 − r2
ij

(
r2
i −R2

in/out

)
. (4.12)

If Dout < 0, there are no intersections and the pair interaction gives no contribution

to the pressure in Ṽ . All of the possible cases for solution sets yielding pressure

contributions and the resulting limits of integration are given in Table 4.1.

Having determined all intersections and limits on our integration variable λ,

Eq. 4.8 becomes,

Pij,αβ = 1
Ṽ

[∫ λb

λa

(fij · eα)(rij · eβ)dλ

+
∫ λ′

b

λ′
a

(fij · eα)(rij · eβ)dλ
]
,

(4.13)

where the integrand is expressed in terms of the unit vectors er, eθ, and eφ. Note that

if there is only one portion of Cij intersecting Ṽ , then the second integral in Eq. 4.13
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Din λin
− λin

+ λout
− λout

+ λa λb λ′a λ′b Case
< 0 [0,1] [0,1] λout

− λout
+ C.1

> 0 < 0 < 0 < 0 > 1 0 1 C.2
> 0 > 1 > 1 < 0 > 1 0 1 C.2
> 0 [0,1] [0,1] [0,1] [0,1] λout

− λin
− λin

+ λout
+ C.3

> 0 [0,1] [0,1] < 0 [0,1] 0 λin
− λin

+ λout
+ C.4

> 0 [0,1] [0,1] [0,1] > 1 λout
− λin

− λin
+ 1 C.4

> 0 < 0 [0,1] < 0 [0,1] λin
+ λout

+ C.5
> 0 [0,1] > 1 [0,1] > 1 λout

− λin
− C.5

> 0 < 0 [0,1] < 0 > 1 λin
+ 1 C.6

> 0 [0,1] > 1 < 0 > 1 0 λin
− C.6

> 0 < 0 < 0 < 0 [0,1] 0 λout
+ C.7

> 0 > 1 > 1 [0,1] > 1 λout
− 1 C.7

> 0 [0,1] [0,1] < 0 > 1 0 λin
− λin

+ 1 C.8
< 0 < 0 [0,1] 0 λout

+ C.9
< 0 [0,1] > 1 λout

− 1 C.9
< 0 < 0 > 1 0 1 C.10

Table 4.1: List of all 16 solution sets of Eq. 4.11 that contribute to Eq. 4.13 and the
resulting limits of integration. In all cases Dout > 0. Entries in the rightmost column
refer to curve labels in Fig. 4.1.

(with limits λ′a and λ′b) is absent. These unit vectors are not constant as l(λ) moves

along Cij, and the unit vectors in Cartesian coordinates are,

er =
{
lx
l
,
ly
l
,
lz
l

}
, (4.14)

eθ =
{

lxlz
l(l2x + l2y)1/2 ,

lylz
l(l2x + l2y)1/2 ,

−(l2x + l2y)1/2

l

}
,

eφ =
{

−ly
(l2x + l2y)1/2 ,

lx
(l2x + l2y)1/2 , 0

}
,

where φ is the azimuth angle in the xy-plane, θ is the angle between l and the z-axis,

l = | l |, and lα is the α component of l.

The Pij tensor can be written in terms of two components, normal and tangential.

These components are obtained from Eq. 4.13 using Eqs. 4.9 and 4.14. The contri-

bution from the interaction between molecules i and j to the normal component is
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given by,

Pij,N ≡ Pij,rr = 1
Ṽ

∫ λb

λa

(fij · er)(rij · er)dλ (4.15)

= 1
Ṽ

∫ λb

λa

an + bnλ+ cnλ
2

dn + enλ+ fnλ2dλ (4.16)

= 1
Ṽ

{
ΣN(λ)

∣∣∣∣λb

λa

+ ΣN(λ)
∣∣∣∣λ′

b

λ′
a

}
, (4.17)

where we omit in Eqs. 4.15 and 4.16 the second integral simply for brevity, and,

an = (ri · fij) (ri · rij) (4.18)

bn = (rij · fij) (ri · rij) + (ri · fij) (rij · rij)

cn = (rij · fij) (rij · rij)

dn = ri · ri

en = 2 ri · rij

fn = rij · rij

ΣN(λ) = 1
2f 2

n

{2cnfnλ+ (bnfn − cnen) (4.19)

× ln
[
dn + enλ+ fnλ

2
]

+ 2√
4dnfn − e2

n

arctan
 en + 2fnλ√

4dnfn − e2
n


×

(
fn(2anfn − bnen) + cn(e2

n − 2dnfn)
)}
,

while the tangential component is given by,

Pij,T ≡ Pij,φφ = 1
Ṽ

∫ λb

λa

(fij · eφ)(rij · eφ)dλ (4.20)

= ct

Ṽ

∫ λb

λa

at + btλ

dt + etλ+ ftλ2dλ (4.21)

= ct

Ṽ

{
ΣT (λ)

∣∣∣∣λb

λa

+ ΣT (λ)
∣∣∣∣λ′

b

λ′
a

}
, (4.22)
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where we omit in Eqs. 4.20 and 4.21 the second integral for brevity, and,

at = ri,x fij,y − ri,y fij,x (4.23)

bt = rij,x fij,y − rij,y fij,x

ct = ri,x rij,y − ri,y rij,x

dt = r2
i,x + r2

i,y

et = 2 (ri,x rij,x + ri,y rij,y)

ft = r2
ij,x + r2

ij,y

ΣT (λ) = bt ln [dt + etλ+ ftλ
2]

2ft
(4.24)

+ arctan
 et + 2ftλ√

4dtft − e2
t

 (2atft − btet)
ft
√

4dtft − e2
t

Having assembled all the pieces required to calculate the coarse-grained pressure

tensor components, we now report on the following radial quantities related to the

pressure (see Eq. 4.6):

PN(r) = 〈Pc,rr〉+ kBTρ(r) (4.25)

P̄c,N(r) = 〈Pc,rr〉 (4.26)

PT (r) = 〈Pc,φφ〉+ kBTρ(r) (4.27)

P̄c,T (r) = 〈Pc,φφ〉 (4.28)

P (r) ≡ 1
3PN(r) + 2

3PT (r) (4.29)

where ρ(r) is the average number density of molecules in Ṽ as determined from molec-

ular centres of mass and P (r), the mean (or isotropic) pressure, is one third the trace

of the pressure tensor. As noted in Ref. [16], the tangential component may be cal-

culated from Pij,θθ. However, the analytic expression for the resulting antiderivative
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is very cumbersome.

4.4.2 Comment on calculating PT (r)

Without coarse-graining, the transverse component of the pressure tensor is calculated

from the first of two equivalent equations relating pressure components derived from

the condition of mechanical stability [15, 16],

PT (r) = PN(r) + r

2
dPN(r)
dr

(4.30)

PN(r) = 2
r2

∫ r

0
PT (r′)r′dr′, (4.31)

rather than directly from configurations on account of divergences occurring in Eq. 4.5.

(We note that Eqs. 4.30 and 4.31 are valid regardless of whether the quantities are

coarse-grained or not.) To illustrate this, let us use Eq. 4.5 in the context of calculating

the transverse pressure component over a sphere (not a spherical shell) of radius r

and assume for simplicity, for the purposes of this illustration only, that fij = fij r̂ij,

with fij a scalar and the unit vector is the one derived from rij, i.e. that the force

is central - acting along the line joing the particles. Our setup for this illustration is

shown in Fig. 4.2, where we take the transverse direction to be in the plane of rij and

r̂, the radial unit vector at the point of intersection of Cij with the sphere, at which

point λ = λ0. As we are now considering the contribution to the pressure over the

68



!

r!!

c"

ri""

!̂!
Type%equation%here.

!̂!
Type%equation%here.

!̂!" !!

a"
α"

i"
j"

Figure 4.2: A sketch of the geometry for a sample calculation of the transverse pressure
component at a radius r. The straight line contour intersects the sphere when λ = λ0
(see Eq. 4.9), at which point a + c = λ0rij. Here, the force between i and j is taken
to be radial, and forms an angle α with r̂, with cosα = c/r and a = −ri · r̂ij.

spherical surface, Eq. 4.5 becomes,

P ′ij,T (r) = 1
2

1
4πr2

∫
Cij

(
fij · t̂

) (
dl · t̂

)
δ(r − l ) (4.32)

= 1
8πr2 fij rij sin2 α

∫ 1

0
dλ δ

(
r − l(λ)

)
(4.33)

= 1
8πr2 fij rij sin2 α

∫ 1

0
dλ

δ(λ− λ0)
|l′(λ0)| (4.34)

= 1
8πr2 fij

sin2 α

cosα , (4.35)

where the extra factor of 1
2 comes from t̂ having both θ and φ components and,

with the help of Eq. 4.10 and the geometrical arrangement shown in Fig. 4.2, it can

be shown that l′(λ0) = rij cosα. Eq. 4.35 appears in Ref. [16] as Eq. 12, which is

itself referenced from [26]. The cosine in the denominator causes a divergence when

cosα = 0, i.e., when the Cij becomes tangent to the sphere. Attempts to use Eq. 4.35

to calculate the transverse pressure illustrate the problem, which is formally absent

in the coarse-graining method because of the order in which the integration is carried

out in obtaining Eq. 4.8.
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4.4.3 Obtaining the local pressure from the potential energy

Ikeshoji et al [16] also discusses the method of determining the pressure tensor in

Ṽ by using the virial expression for the bulk pressure, but only considering particle

interactions for which at least one of the particles is in Ṽ . While this intuitive ap-

proach is only a low-order approximation [27], the authors demonstrate for a planar

geometry that it fails to respect mechanical equilibrium (Eqs. 4.30 and 4.31) only at

the interface.

In the same spirit, we define an expression inspired by the thermodynamic mean-

ing of pressure in the bulk,

PU(r) ≡ ρ(r)kBT −
〈
dU(r)
dṼ

〉
T,N

, (4.36)

where the derivative is calculated in the following way (see Fig. 4.3). For a given

nanodroplet configuration, all molecular centres of mass are isotropically expanded

according to r+
CM,i → (1 + α+)rCM,i, and in this rescaled system we calculate the

binding energy u+
i = ∑

j 6=i uij for each molecule i originally in Ṽ , where uij is the

interaction energy between molecules i and j. The rescaled shell volume is Ṽ+ = (1 +

α+)3Ṽ , and the potential energy associated with the rescaled shell is U+ = 1
2
∑
i∈Ṽ+

u+
i .

To use the centred difference scheme to approximate the derivative,

dU(r)
dṼ

≈ U+ − U−
Ṽ+ − Ṽ−

, (4.37)

we similarly rescale the molecular centres of mass according to r−CM,i → (1 +α−)rCM,i

to obtain U− and Ṽ−. We use α+ = 10−4, and then to ensure that Ṽ+ − Ṽ = Ṽ − Ṽ−,

we use α− = [2− (1 + α+)3]1/3−1 (approximately equal to −α+). Note that the same

particles are in Ṽ , Ṽ+ and Ṽ− and that the same molecular pairs are used to calculate
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U+ and U−. This derivative is then averaged over nanodroplet configurations.

Figure 4.3: A sketch for the calculation of the derivative of the local potential energy
U(r) with respect to volume. All particles coordinates are rescaled isotropically ac-
cording to r → (1 + α)r (filled to open circles), resulting in a commensurate change
in spherical shell volume Ṽ (solid lines) to (1 + α)3Ṽ (dashed lines).

4.5 Results

4.5.1 Radial pressure profiles

In Fig. 4.4 we plot various pressure contributions for a nanodroplet of size N = 1100.

The radial density is proportional to the ideal gas term (black circles), which for this

state point accounts for most of the roughly 100 MPa of pressure in the interior of

the nanodroplet. There is a small maximum in the density at or near the surface

(at r ≈ 1.75 nm,) where the configurational contributions to the normal [P̄c,N(r)

- blue diamonds] and tangential [P̄c,T (r) - red squares] components of the pressure

are maximally negative. Despite the large negative values near the surface, P̄c,N(r)

and P̄c,T (r) become indistinguishable from each other within the precision of our
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within rn = 0.35 belong to the same cluster yields the same result [28].

Notwithstanding the progressively larger error bars as r → 0, there appear to be

oscillations within both P̄c,N(r) and P̄c,T (r) that may correlate with small oscillations

in ρ(r). However, given the precision of our calculations, we can do no better than to

assume that P̄c,N(r) and P̄c,T (r) are both equal to the same constant below RL.

As a consistency check on our results, we verify that our calculated pressure

components satisfy mechanical equilibrium by using Eq. 4.31 to recover PN(r) from

PT (r). We use Eq. 4.31 instead of Eq. 4.30 since numerical integration reduces noise.

In Fig. 4.5 we plot both PN(r) calculated directly from the droplets and as calculated

from Eq. 4.31. We see that the two curves are the same within error, even though

Eq. 4.31 yields a curve with less pronounced oscillatory behaviour. A global estimate

of the numerical integration error can be taken to be the difference between Eq. 4.31

and PN(r) where the latter decays to zero.

PU(r) for the same state point is shown in Fig. 4.4, where it agrees, to within

error, with P (r) in the interior of the droplet where the pressure is constant with

r. At the interface, there is a significant difference, in which PU(r) exaggerates the

extremal values of P (r), and shows a positive pressure peak near the surface. Despite

this exaggeration near the surface, PU(r) shows none of the apparent oscillations seen

in P (r).

As this method only relies on the potential energy, it is comparatively a rather

straightforward calculation, and so may be of use when interactions are complex and

precise determination of the properties near the interface is not required. Furthermore,

that the two methods agree within the interior provides a useful check on the results

for P (r).
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Figure 4.5: Consistency check on the calculation of PN(r) and PT (r) for N = 1100
and T = 220 K.

4.5.2 Laplace pressure relation

To test Eq. 4.1, and noting that the vapour pressure is so small compared to the

interior pressure of the nanodroplets, we simply define PL to be the average of P (r)

from rmin = 0.025 (our first data point) to RL, the radial distance to which the pressure

tensor is isotropic, i.e., below which point PT (r) and PN(r) are indistinguishable:

PL ≡
3

4π (R3
L − r3

min)

∫ RL

rmin
4πr2P (r)dr. (4.38)

Operationally, we take RL to be the first crossing of Pc,T (r) and Pc,N(r) as r de-

creases below the location of the minimum in Pc,T (r). As a measure of the radius

of the droplet, treating the nandroplets as spheres of uniform density, we choose
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R =
√

5/3Rg, where Rg is the radius of gyration.
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Figure 4.6: Test of the Laplace pressure relation. Plotted is the average isotropic
pressure from the interior of nanodroplets as a function of 1/R, where R =

√
5/3Rg.

Solid line is the result of a one-parameter least-squares fit, PL = 2(80.1)/R. The
dashed line uses an estimate of γ = 78.9 mN/m for a planar interface at 220 K [24].

In Fig. 4.6 we plot PL as a function of 1/R. We fit the data to 2γfit/R and find

γfit = 80.1. This estimate of γ agrees well with the value γ = 78.9 mN/m obtained

using Eq. 6 in Ref. [24]; the dashed line in Fig. 4.6 shows 2γ/R using this value of γ.

4.6 Discussion and conclusions

Calculating the local pressure is a non-trivial task and requires good averaging because

of significant statistical fluctuations, particularly at small radial distances. We note

the discrepancy between our results and the early work on ST2 water clusters of
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Brodskaya et al. [13, 14]. They reported a significant drop in the pressure, even

to significantly negative values, towards the centre of the droplet. While the droplet

sizes they investigated were smaller and at higher T , we speculate that this unexpected

result may have arisen from an imprecise determination of the centre of mass or even

from sample bias since these early simulations had much shorter run times. A given

configuration may have an extremely large (positive or negative) value of P (r → 0),

depending on whether there is a high or low density fluctuation at the centre, which

can be considerable given the small number of particles there. As a general remark,

statistics for larger r are not only better because of the greater volume over which the

average is determined, but because mobility is likely greater the closer a layer is to

the surface. However, in the present study we have not excluded the possibility that

for smaller droplets, such as those studied in Refs. [13, 14], there exists an effect that

reduces the pressure at the centre.

It is important to directly calculate the pressure instead of relying only on the

local density and the known bulk equation of state, even when done as elegantly as

in a recent test of the Young-Laplace equation for the SPC/E model by pressuring

water through a nanopore [30]. We already see a dense region near the surface of

the nanodroplet, where the pressure is negative. Clearly, the water in this layer does

not follow the bulk equation of state. Further, subtle finite size effects on structure,

as noted already in regard to nucleation [7], may affect local pressure more than

local density. Thus, water in sufficiently small nanodroplets may not follow the bulk

equation of state.

Whether or not droplet interiors represent bulk water also depends on how deeply

surface effects propagate inside. At T = 220 K, we see, coming in from large r,

that the density rises from zero to a local maximum [where P (r) is most negative]

in about 0.3 nm (see black curve with circles in Fig. 4.4). Another 0.4 nm further
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inside and PN(r) and PT (r) become indistinguishable within uncertainty. This non-

bulk-like region is 0.7 nm thick and encompasses approximately two molecular layers.

This estimate of the size of non-bulk-like region is somewhat smaller than pointed

out in Ref. [7], for which there is also observed a local maximum in the stress before

quickly tending to a constant at smaller r. However, in our case the interior is at

a high pressure and the definition of the local stress used in [7] differs from that of

the pressure. We note that PU(r) also produces a peak near RL, and would thus also

produce a larger estimate of the extent of the non-bulk-like region. This should not

be an issue if one is in search of a conservative estimate of what is perhaps bulk-like.

Eq. 4.1 formally models a droplet with a sharp interface at R = Rs, at the so-

called surface of tension, that separates interior and exterior fluids with isotropic and

homogeneous pressures, and ∆P refers to the difference between these fluid pressures.

For our droplets, the pressure tensor components become equal and constant with r

near the centre (and hence bulk-like), and so we identify ∆P with PL obtained from

the pressure tensor. In using Eq. 4.1 we approximate Rs with
√

5/3Rg. In a more sys-

tematic study aiming to quantify the curvature corrections to γ (through the Tolman

length δ), the choice of dividing surface should be carefully considered. Nonetheless,

our use of R =
√

5/3Rg yields a γ remarkably consistent with the expected planar

value. This may indicate that curvature corrections to γ, and hence δ itself, are small.

Calculations for both Lennard-Jones [31] and TIP4P/2005 [32] yield small negative

values of δ, around -0.1σ and −0.05 nm respectively, with the magnitude of δ decreas-

ing with decreasing T for TIP4P/2005 [33]. For a future study of smaller droplets,

for which curvature effects may become more apparent, the pressure calculation pre-

sented here provides the means of directly determining δ from simulation data, as

has been done for Lennard-Jones droplets [11]. In addition, density functional theory

suggests that δ becomes positive for very small droplets, as implied by a decreasing
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γ with Rs [35], and hence in the present study we may be in a droplet size regime

where δ ≈ 0.

While working with forces between molecules and their centres of mass is more

convenient compared to treating molecules as collections of atoms held rigidly by

forces of constraint, there is another important advantage of our approach. As re-

cently pointed out by Sega et al. [36], when constraints are used and the kinetic

energy tensor is calculated from atomic velocities, the kinetic energy tensor may be-

come anisotropic at a liquid-vapour interface. Failure to consider these anisotropies

may, for example, lead to underestimates of γ by approximately 15% for a planar

interface. It is thus insufficient, when working with constraints, to only calculate the

configuration contribution to the virial and assume an isotropic ideal gas contribution.

Velocities are thus required for the pressure calculation. In contrast, we work with the

velocities of the molecular centres of mass and intermolecular forces, thus avoiding

these difficulties [23]. The molecular approach works essentially because the calcula-

tion of pressure stems from the calculation of the force, i.e., the rate of change of the

linear momentum with time [24]. The validity of the molecular approach used here,

where we assume an isotropic ideal gas contribution, is confirmed in Fig. 4.5, where

PN(r) and PT (r) are shown to be consistent with mechanical stability. If our ideal

gas contribution were incorrect, mechanical stability would appear to be violated.

Regardless of the concerns raised by Sega et al. [36], our estimates for PL are made

solely based on the behaviour of the pressure tensor in the interior of the droplets.

As a result, anisotropy arising in the region of the surface does not affect our results

for PL.

In summary, we have provided a detailed description of the calculation of the

microscopic pressure for spherical droplets of molecular liquids, and checked the results

by introducing an approximate energy-based method of calculating the microscopic

78



isotropic pressure. Our calculation paves the way for a detailed analysis of effects of

the local pressure on nucleation, and for direct checks on whether the bulk equation

of state remains valid in nanodroplet interiors. For the size range studied, and at

fairly deeply supercooled T , we find that γ determined from a flat interface predicts

the pressure in the interior of the nanodroplet quite well, despite significant surface

features in the radial dependence of the pressure.
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Chapter 5

Thermodynamic and structural

anomalies of water nanodroplets

Reproduced with permission from Shahrazad M.A. Malek, Peter H. Poole, and Ivan

Saika-Voivod, Nat. Commun. (2018) 10.1038/s41467-018-04816-2.

5.1 Abstract

Liquid water nanodroplets are important in earth’s climate, and are valuable for study-

ing supercooled water because they resist crystallization well below the bulk freezing

temperature. Bulk liquid water has well-known thermodynamic anomalies, such as

a density maximum, and when supercooled is hypothesized to exhibit a liquid-liquid

phase transition (LLPT) at elevated pressure. However, it is not known how these

bulk anomalies might manifest themselves in nanodroplets. Here we show, using simu-

lations of the TIP4P/2005 water model, that bulk anomalies occur in nanodroplets as

small as 360 molecules. We also show that the Laplace pressure inside small droplets

reaches 220 MPa at 180 K, conditions close to the LLPT of TIP4P/2005. While the
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density and pressure inside nanodroplets coincide with bulk values at moderate super-

cooling, we show that deviations emerge at lower temperature, as well as significant

radial density gradients, which arise from and signal the approach to the LLPT.

5.2 Introduction

Nanoscale particles of water are a key component of important processes in the

earth’s atmosphere, planetary and interstellar space, and numerous technology ap-

plications [1, 6, 5, 4, 2]. For example, nanometer-sized aqueous aerosol droplets are

common in earth’s lower atmosphere, and understanding their role in cloud formation

is critical for climate prediction [6]. The crystallization of pure water nanodroplets

has attracted particular interest because the temperature at which freezing is ob-

served, relative to bulk water, decreases dramatically with size, reaching 202 K for

nanodroplets of radius 3.2 nm [7]. This effect arises from a combination of influences:

Surface effects normally lower the melting temperature of a small system relative to

the bulk [8]; a smaller system volume yields fewer nucleation events [9]; and, im-

portantly for experiments, the large surface-to-volume ratio of a small droplet makes

rapid cooling rates possible, allowing the establishment of low-temperature conditions

on a time scale shorter than the nucleation time [11, 10].

On cooling, bulk liquid water exhibits well-known thermodynamic anomalies, such

as the density maximum at 277 K [12]. As the temperature T decreases into the su-

percooled regime, these anomalies become progressively more dramatic. For example,

both the specific heat and the isothermal compressibility of the liquid increase strongly

as T decreases. To account for these anomalies, several thermodynamic scenarios have

been proposed, including the hypothesis that a liquid-liquid phase transition (LLPT)

occurs in deeply supercooled water [13, 14]. However, bulk samples of liquid wa-
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ter crystallize at a homogeneous nucleation temperature TH (encountered at ambient

pressure in the range 227-232 K, where the precise value depends on the experimental

protocol [15, 10, 16, 17, 18]), which to date has prevented the direct observation of

the LLPT predicted to occur at lower T . The ability of water nanodroplets to remain

liquid below TH presents a promising opportunity to clarify the properties of deeply

supercooled water, provided that the bulk anomalies are not suppressed as the number

of molecules N in a nanodroplet decreases [11, 7, 19, 16].

In addition, as the size of water nanodroplets decreases, they access a range of

pressure P above ambient, due to the Laplace pressure PL that arises inside a liquid

droplet. As pointed out in Ref. [19], the increase of PL in small water nanodroplets

also contributes significantly to the decrease of their freezing temperature. From the

Young-Laplace equation PL = 2γ/R, where R is the droplet radius and γ is the

surface tension, PL inside a 1 nm droplet should exceed 102 MPa [19, 23]. This is

high enough to approach the range of P in which the critical point of the proposed

LLPT is estimated to occur in bulk water [14, 21]. Water nanodroplets thus permit

exploration of a significant range of both T and P relevant to understanding deeply

supercooled water.

Despite the importance of liquid water nanodroplets, and their potential to help

clarify the behaviour of bulk water, relatively little is known of their fundamental

thermophysical properties. This is due to the significant experimental challenges

associated with studying liquid nanodroplets that are not in contact with a supporting

or confining surface. To date, experimental and simulation studies of pure liquid water

nanodroplets have focussed largely on freezing and melting behaviour [8, 7, 19, 22,

23, 24, 25, 26, 27, 28], as well as the formation of amorphous solid nanoparticles [29].

However, a systematic description is lacking for how basic nanodroplet properties,

such as R, PL, or the droplet density profile, vary with both N and T . Knowledge
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Figure 5.1: Snapshots of simulated liquid water nanodroplets. Equilibrium nan-
odroplets at T = 200 K for various sizes N = 100, 360, 1100 and 2880.

of this variation is necessary to determine the regime in which bulk liquid properties,

including the anomalies of bulk water, first emerge as nanodroplets grow in size.

Also lacking is an understanding of how a liquid nanodroplet will behave under T -P

conditions at which the corresponding bulk liquid exhibits a LLPT.

Here we seek to address these knowledge gaps through computer simulations of

water nanodroplets, modelled using the TIP4P/2005 interaction potential [19]. The

TIP4P/2005 model is known to reproduce the phase behaviour and thermodynamic

anomalies of bulk water over a wide range of T and P , and also predicts the occurrence

of a LLPT with a critical point located at Tc = 182 K and Pc = 170 MPa [21]. As we

will show, by comparing nanodroplet and bulk behaviour for the same water model,

we self-consistently estimate the range of N for which bulk properties emerge, and also

identify novel nanodroplet behaviour that occurs when approaching the conditions of

the bulk LLPT observed in the model.
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Figure 5.2: Variation of nanodroplet radius R with temperature T and number of
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The statistical error for both R−1 and ρR is smaller than the symbol size. N decreases
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5.3 Results

5.3.1 Anomalous variation of the nanodroplet radius

We study isolated equilibrium nanodroplets consisting of N molecules, whereN ranges

from 100 to 2880, for T from 180 to 300 K; see Methods for details of our simulations.

Example nanodroplets from our simulations are shown in Fig. 5.1.

We characterize the nanodroplet size as a function of N and T by evaluating the

average radius R, as described in Methods. If the density of droplets is constant,

then R3 will be proportional to N . In order to reveal more subtle variations in

R(N, T ), we first define an effective droplet density as determined by R as ρR =

3mN/4πR3, where m is the mass of a water molecule, in order to scale out the

approximate proportionality of R3 and N . Next, we note from the Young-Laplace
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Figure 5.3: Equations of state for bulk liquid and nanodroplets of TIP4P/2005. a
Isotherms of P (ρ) for the bulk liquid (solid lines), taken from the EOS presented
in Ref. [21]; and PL(ρc) for water nanodroplets (open symbols). N decreases with
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expected for droplets as R→∞ and N →∞. Lines and symbols of the same colour
correspond to the same T . b Same as in a, but to permit easier examination of each
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equation that γ/R should be proportional to PL. As we will see below, we find that

γ is approximately constant at fixed T over the range of R studied here. Hence R−1

should be proportional to PL along isotherms, and so R−1 can serve as a proxy for the

pressure inside a nanodroplet. We therefore present in Fig. 5.2 our data for R(N, T )

plotted as isotherms of R−1 versus ρR, a form analogous to the equation of state

(EOS) of a bulk liquid when plotted as isotherms of P versus the bulk liquid density

ρ.

The EOS of the TIP4P/2005 bulk liquid is shown in Fig. 5.3a, and displays several

important anomalies of water [12, 21]. When an EOS is presented as isotherms of

P versus ρ, as in Fig. 5.3a, the occurrence of a density maximum along isobars is

indicated by the crossing of isotherms. That is, if two isotherms intersect in the

ρ-P plane, then the density is equal at two different T at the same P , a condition

that occurs on either side of a density maximum. A maximum in the isothermal

compressibility KT = ρ−1(∂ρ/∂P )T as a function of P at fixed T corresponds to the

emergence of an inflection in the isotherms at the lowest T . Increasing KT on cooling

is reflected in the decreasing slope of the isotherms as a function of T at fixed P , and

is a precursor of the divergence of KT at the critical point of the proposed LLPT.

Each of the anomalous features enumerated above for the bulk EOS is also ob-

served in the nanodroplet isotherms derived from R(N, T ) and plotted in Fig. 5.2.

That is, the nanodroplet isotherms for R−1 versus ρR also cross; inflect at low T ; and

exhibit a range of R−1 in which the slope decreases as T decreases. We thus find that

the variation of R with N and T exhibits the signatures of water’s bulk anomalies as

observed over a wide range of ρ and P . The occurrence of this qualitative correspon-

dence is remarkable, given that these nanodroplets are extremely small relative to a

bulk system, and have no external pressure applied to them.
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Figure 5.4: Nanodroplet density profiles. a Density profiles ρo(r) (symbols) and ρv(r)
(lines) for water nanodroplets at various N and T . For T = 260 K, the curves have
been shifted vertically by 1.5 g cm−3. For N = 776, the curves have been shifted
horizontally by 1 nm. b ρv(r) at various N and T . For N = 360, the curves have
been shifted horizontally by 0.5 nm; and for N = 776 by 1.5 nm. In a and b, note
that the error increases as r → 0; see Supplementary Figs. 5.10 and 5.11.

92



200 250 300 350
T (K)

0.95

1

1.05

1.1

ρ
c (g

 c
m

-3
)

100
200
205
301
360
405
512
614
729
776
1100
1440
2880

N

Figure 5.5: Density maximum of liquid nanodroplets. Plot of ρc versus T for water
nanodroplets of fixed N (symbols). The dashed line is the P = 0 isobar of ρ for bulk
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of ρc for droplets as N →∞. Error bars represent one standard deviation of the mean.

5.3.2 Density profile of nanodroplets

To quantify the internal structure of our nanodroplets, we study the density as a

function of the distance r from the droplet centre of mass. We first compute ρo(r),

the density of molecules that have their centres of mass in a shell of radius r, shown

in Fig. 5.4a. As noted in previous simulations of water nanodroplets [19, 27, 29], we

observe oscillations in ρo(r) that are especially prominent near the surface, indicating

that the interface with the vacuum is a well-defined molecular layer, the influence of

which propagates inward as a succession of concentric shells. The amplitude of these

oscillations is larger at lower T and for smaller N .

Although the oscillations of ρo(r) reveal the shell-like structure of nanodroplets,

their large amplitude makes it difficult to define an average density for the droplet

interior. As an alternative measure of the density profile, we compute the Voronoi
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cells for all O atoms, ignoring the H atoms. Within each shell of radius r, we compute

the total volume V(r) of the Voronoi cells for O atoms, as well as N (r), the number

of O atoms. We define the average density as determined by the Voronoi cell volumes

as ρv(r) = m〈N (r)/V(r)〉, where 〈· · · 〉 indicates an average over the configurations

sampled in our simulations. As shown in Fig. 5.4a and Supplementary Fig. 5.10, the

oscillations observed in ρo(r) are absent in ρv(r), allowing more precise tracking of the

density variation in the droplet interior. Note that the Voronoi cells for molecules at

the droplet surface have a divergent volume, and so ρv(r) vanishes for the outer-most

molecular layer.

Fig. 5.4b and Supplementary Fig. 5.11 show ρv(r) for a wide range ofN and T , and

reveal complex changes in internal structure. In particular, we observe the emergence

of a density maximum as N increases. The density at all r for our smallest droplets

(N = 100) increases monotonically as T decreases. For N = 360, the density near the

centre passes through a maximum as T decreases, although the surface density still

increases monotonically. For larger droplets (e.g. N = 776), the density at almost all

r passes through a maximum as T decreases.

We define the droplet core density as ρc = m〈Nc/Vc〉, where Nc is the number

of O atoms within rc = 0.5 nm of the droplet centre, and Vc is the total volume of

the Voronoi cells for these atoms. (For N ≤ 205 we use rc = 0.25 nm, since for our

smallest droplets the effect of the surface extends closer to the centre.) Fig. 5.5 shows

ρc as a function of T for fixed N , and confirms that a density maximum occurs in the

core of water nanodroplets as small as N = 360.

The density maximum of bulk water occurs as its random tetrahedral network

(RTN) structure becomes more prominent as T decreases [12]. At low T , we find that

ρc tends towards the density of the bulk RTN (∼ 0.94 g cm−3) for our larger nan-

odroplets. Despite the disruption of bulk-like structure occurring at the nanodroplet
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surface, the evolution of our density profiles as T decreases is thus driven by the

formation of a low-density RTN in the droplet core. A similar low density core was

observed in recent simulations of glassy water nanoparticles [29]. Notably, the onset

of ice crystallization in nanodroplets is observed experimentally also when N reaches

250-300 [24], consistent with our finding that this is the range of N in which a density

maximum and a RTN structure emerge with decreasing T .

Our results also show that, as a consequence of RTN formation in the droplet

core, the density profile of a nanoscale water droplet undergoes a dramatic “density

inversion” as T decreases: As shown in Fig. 5.4b and Supplementary Fig. 5.11, high-T

droplets have a denser core and a slightly less dense surface, as expected for a simple

liquid droplet, while low-T droplets have a less dense core and a distinctly denser

surface. In Methods, we describe a procedure to define the maximum density ρs in

the surface region of ρv(r). In Fig. 5.6a we plot the difference ρs− ρc as a function of

T . We find for all N ≥ 200 that ρs − ρc is slightly negative at high T and is positive

and rapidly increasing at low T . Despite the emergence of the RTN in the droplet core

as T decreases, the equilibrium droplet structure at low T always exhibits a higher

density liquid layer at the interface with the vapour.

5.3.3 Laplace pressure and equation of state for nanodroplets

At low T , ρc varies by more than 15%, suggesting that PL inside our droplets changes

considerably with N . To measure PL directly, rather than relying on the Young-

Laplace equation, we evaluate the configurational contributions to the tangential and

normal components of the pressure, PT and PN, as functions of r, shown in Fig. 5.7a

and Supplementary Fig. 5.12 [31, 23]. We find that there is a region within each

droplet where PT ' PN, as occurs in a bulk liquid, and we define PL as the average of

the total pressure Ptot in this region (see Methods). In Fig. 5.7b we see that isotherms
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Figure 5.6: Emergence of density differences within nanodroplets with decreasing
temperature. a ρs − ρc versus T , and b ρc − ρb versus T , for nanodroplets of various
N , as indicated in the legend.

of PL are proportional to R−1, consistent with the prediction of the Young-Laplace

equation. Fig. 5.7b confirms that the variation of PL with N is large, reaching more

than 200 MPa for our smallest nanodroplets at low T .

We estimate γ from the slopes of the isotherms in Fig. 5.7b. In Supplementary

Fig. 5.13 we compare our γ values to results obtained previously using TIP4P/2005 for

the surface tension γp of a planar liquid-vapour interface [32]. Although the T ranges

of the two data sets do not overlap, our result at 280 K is quantitatively consistent

with the value of γp at 300 K. This agreement, and the linearity of the isotherms in

Fig. 5.7b, suggests that γ for a strongly curved interface (our results) and a flat one

(γp from Ref. [32]) differ little, i.e. that the Tolman length may be close to zero [33].

On the other hand, our results for γ increase more rapidly with decreasing T than

indicated by the low-T extrapolation of γp given in Ref. [32]. This difference may arise

due to the emergence at low T of the complex and inverted density profiles shown in
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Figure 5.7: Laplace pressure inside nanodroplets. a Contributions to the pressure
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Fig. 5.4b, or of curvature effects, or both. Further work is required to clarify these

influences.

We compare in Fig. 5.3 the correspondence between the EOS of the bulk liquid,

and the variation of PL with ρc along isotherms in our nanodroplets. For T ≥ 220 K,

we find that the bulk and nanodroplet EOS isotherms agree within statistical error

for all N . Our results thus show that the density maximum observed in Fig. 5.5,

which occurs in the range 240-260 K, is a consequence of the ability of nanodroplets

to follow the bulk EOS for T ≥ 220 K, where the bulk density maximum also occurs.

Interestingly, we also find that the absence of a density maximum at small N in

Fig. 5.5 is not due to deviations from the bulk EOS. Instead, the density maximum

disappears because the path followed by a nanodroplet of fixed N in the EOS deviates

strongly from an isobar for small N , as shown in Fig. 5.8a.

5.3.4 Nanodroplet behaviour approaching the LLPT

Despite the good correspondence in Fig. 5.3 between the nanodroplet and bulk EOS

for T ≥ 220 K, we find that the agreement breaks down for T ≤ 200 K. Specifically,

the data points on the nanodroplet isotherms for 200 and 180 K lie at higher density

than the bulk for all but our largest droplets. We quantify this deviation in Fig. 5.6b,

where we plot the difference between ρc for a given droplet, and ρb, the density of a

bulk liquid having the same T and P = PL as the droplet. Not surprisingly, the largest

droplets maintain their bulk-like properties at all T , as they must in the limit N →∞.

However, for N ≤ 776, we observe a dramatic loss of bulk-like character at low T . An

interesting exception to this trend occurs for our smallest droplet (N = 100), which

shows only a modest deviation compared e.g. to N = 200.

This complex behaviour can be understood by considering the influence of the

LLPT that occurs in TIP4P/2005 on the shape of the bulk EOS (Fig. 5.3), in concert
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Figure 5.8: Variation of density and pressure with temperature inside nanodroplets
of various sizes. a Same data as in Fig. 5.3a for PL versus ρc, except here data points
with the same N are connected by coloured lines as indicated in the legend. Symbol
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N . Note that for large N , lines of constant N are nearly isobaric, whereas as N
becomes small, strong deviations from isobaric behaviour are observed. b PL versus
ρc (circles), and PL versus ρs (squares) for droplets of various N . Note that T varies
along each curve, from 280 to 180 K (for N = 360, 776 and 1440) and from 260 to
180 K (for N = 200 and 100). Data points for ρc and ρs at 180 K with the same N
are joined by a thick horizontal line, to highlight their difference at low T . In both
a and b, isotherms of P versus ρ for the bulk liquid are shown for T = 180 K (thin
black line) and 280 K (thin magenta line). The branches of the 180 K bulk isotherm
corresponding to LDL and HDL are indicated.
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with the unusual density profiles observed in our droplets (Fig. 5.4). Fig. 5.8a shows

our nanodroplet EOS data plotted so as to highlight the path in the ρc-PL plane

followed by a droplet of fixed N as T decreases. For all droplets with N ≥ 200,

we find that PL is less than Pc for the LLPT of TIP4P/2005. On cooling, ρc for

these droplets tends towards the low density liquid (LDL) branch of the bulk EOS.

These droplets also develop inverted density profiles as shown in Fig. 5.4, in which

ρc separates from ρs at low T ; this growing separation is illustrated in the density-

pressure plane in Fig. 5.8b. Since the surface remains dense, a large density gradient

must occur in order for ρc to reach ρb at low T . Although our largest droplets are big

enough to accommodate the required gradient, for N ≤ 776 we find that the droplets

are too small for ρc to reach ρb (see Supplementary Fig. 5.14). As a consequence, bulk-

like properties are not attained in the cores of our smaller droplets (200 ≤ N ≤ 776)

at low T , resulting in the EOS deviations observed in Fig. 5.3.

In the case of the N = 100 droplet, PL exceeds Pc at low T , and the droplet

enters the region of the bulk EOS associated with the high density liquid (HDL); see

Fig. 5.8. For the N = 100 droplet, ρc is comparable to ρs, and both are close to the

bulk HDL density [Fig. 5.8b]. The signature of an inverted density profile is also weak

for N = 100 [Fig. 5.6a]. For PL > Pc, we thus find that the droplet behaviour changes

suddenly to that of a simple liquid. In sum, our results demonstrate that the droplet

density profile correlates well to the bulk regime of the LLPT explored by the droplet:

As T → Tc, an inverted density profile indicates a droplet for which PL < Pc, while a

monotonic density profile suggests that PL > Pc.

The large radial density change observed in our droplets at low T is perhaps

suggestive of nanoscale phase separation in which a LDL-like core is wetted by a HDL-

like surface layer. Fig. 5.8b shows that ρc and ρs grow farther apart as T decreases for

all droplets having PL < Pc. The values of ρs are consistent with the range expected
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for HDL, while ρc is lower, and approaches LDL-like values when the droplet is large

enough. Certainly, intrinsic surface effects play a large role in determining our density

profiles: A droplet with a low-density RTN in the core will have a disrupted RTN,

and therefore higher density, near the interface with the vapour. Independent of

surface effects, the LLPT of TIP4P/2005 also promotes the appearance of distinct high

and low density regions near the critical conditions. These two effects are mutually

reinforcing, and it is likely that both contribute to the large density variations in our

low T nanodroplets.

A bulk response function such as KT , which quantifies volume fluctuations, di-

verges at the critical point of a LLPT. To test for a similar effect in our nanodroplets,

we use the fluctuations of the Voronoi volumes for a subsystem of molecules inside our

droplet cores to define a quantity Ks
T which is analogous to KT (see Methods). As

shown in Fig. 5.9, we observe a growing maximum in Ks
T along isotherms at T = 200

and 180 K, the same T for which strong deviations emerge between the nanodroplet

and bulk EOS. This behaviour confirms that the interiors of our coldest droplets

exhibit effects directly associated with the approaching LLPT in TIP4P/2005. Ex-

periments have recently provided strong evidence of a KT maximum in supercooled

water, both for water enclosed in micrometer quartz inclusions [34], and for unsup-

ported microdroplets [17]. Our results show that this effect may also be observable in

much smaller nanodroplets, which allow even deeper supercooling, and which access

higher P closer to the estimated critical conditions of the LLPT proposed for real

water.
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versus ρc for 200 ≤ N ≤ 2880.

5.4 Discussion

It is a central goal of nanoscience to determine the scale at which macroscopic be-

haviour first emerges. Our results show that bulk-like liquid properties, including

the density maximum, can be observed using water nanodroplets as small as several

hundred molecules. We also demonstrate that by varying N , the interiors of water

nanodroplets explore a remarkably wide range of both density and pressure. This

range is large enough to encompass and to reproduce the pattern of thermodynamic

anomalies that occurs in bulk water for T ≥ 220 K, including precursors of the pro-

posed LLPT. Indeed, we have shown that simply measuring the nanodroplet size R

as a function of N and T is a viable approach for revealing the qualitative signatures

of these anomalies.

For T ≤ 200 K, we observe dramatic departures from bulk-like behaviour, which

arise as T approaches Tc for the LLPT of TIP4P/2005. It is well understood that
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the discontinuities at a bulk phase transition are strongly rounded and shifted by

finite-size effects in small systems [35]. Explicit surface effects in nanoscale systems

also induce deviations from bulk behavior. These two effects are intertwined in our

system, and together they generate the complex evolution of nanodroplet properties

that we observe as T decreases. Disentangling the relative contributions of finite-size

and surface effects is challenging. For example, consider the ρc data shown in Fig. 5.5.

In the bulk liquid, isobars of the density will decrease more sharply with decreasing

T as P → Pc. Although our smaller nanodrolets access higher P , the variation of ρc

does not sharpen. Finite-size effects are at least partially responsible, since we know

that the phase transition exists in our model bulk system, but we also know that

ρc does not reach the bulk value at low T and small N because of the influence of

the dense surface layer, as discussed above. Further work to quantify how finite-size

and surface effects combine to produce the novel phenomena observed here would be

valuable, for example, to better understand the unusual shape of our density profiles

at low T .

Despite these complexities, our results establish the pattern of nanodroplet be-

haviour that occurs in a water-like system that exhibits a bulk LLPT. The key fea-

tures of this behaviour are the deviation of nanodroplet properties from the bulk as

T → Tc, and the emergence of a large and inverted gradient in the droplet density

profile when PL < Pc. These observations have the potential to assist in understand-

ing many systems where water nanodroplets play a central role. For example, for

aerosols involved in cloud formation [6], the average position and chemical activity

of a solute molecule within a water nanodroplet may be strongly influenced by the

changes in the pressure and the density profile that we observe on cooling [36, 37].

Regarding the ongoing efforts to clarify the behaviour of deeply supercooled water,

experiments increasingly exploit small water droplets, from the microscale [16, 17, 18]
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to the nanoscale [11, 7, 28]. We confirm here that cold water nanodroplets both

resist crystallization and generate sufficient Laplace pressure to directly access the

region of the proposed LLPT. Furthermore, our results suggest specific ways to use

nanodroplets to help locate a possible LLPT. For example, an experimental probe

sensitive to the droplet density profile, or to the volume fluctuations of the droplet

core, could identify droplets that have entered the critical regime, from which an

estimate of Tc and Pc might be obtained.

5.5 Methods

5.5.1 Computer simulations

We simulate liquid water nanodroplets of size N = 100 to 2880 molecules. The

molecules interact via the TIP4P/2005 water pair potential [19]. We use Gromacs

v4.6.1 [20] to carry out our molecular dynamics (MD) simulations. The equations

of motion are integrated using the leap-frog algorithm, with a time step of 2 fs. We

carry out simulations in the fixed-(N, V, T ) ensemble, where N is the total number

of molecules in the simulation cell, and V is the volume of the cell. We hold the

temperature constant using a Nosé-Hoover thermostat with a time constant of 0.1 ps.

Our droplets are located in a cubic simulation cell, with periodic boundary conditions,

of various sizes V = L3, as listed in Supplementary Tables 5.1- 5.3. The intermolecular

interaction is set to zero for molecules separated by more than L/2. We choose

L large enough relative to the size of the droplet to avoid any direct interaction

between the water droplet and its periodic images. Consequently, all molecules within

a nanodroplet interact directly, without cut-offs or approximations for long-range

electrostatic interactions.

Individual molecules occasionally escape from the surface of the droplet and con-
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tribute to a vapour phase in equilibrium with the droplet. We choose L small enough

so that the average number of molecules in the vapour phase is never more than

0.004N (see Supplementary Tables 5.1- 5.3). The vapour pressure in our simulations

is always much smaller than the size of the error in our estimates for PL, and so we

consider the vapour pressure to be zero. We note that because of the presence of the

vapour phase, and our droplet definition (see below), the average number of molecules

in a nanodroplet Nd may differ from the number of molecules in the system N . How-

ever, as stated above the difference is always less than 0.004N , and for T ≤ 220 K we

find no difference. Having distinguished here between the definitions of N and Nd, we

note that to calculate the values of ρR presented in Fig. 5.2, we use ρR = 3mNd/4πR3.

When labelling data in our figures, we use the N value for the run from which the

data are obtained.

For N = 1440 and 2880, we create initial configurations by placing N molecules

at random within the simulation cell, and then running for long enough so that the

molecules condense into a single droplet. Initial configurations for other values of N

are obtained from our N = 1440 configurations by deleting molecules from the surface

until the desired N is reached.

We conduct two types of run to evaluate the equilibrium properties of our droplets:

conventional “single long runs" (SLR), and “swarm relaxation” runs [21]. We use SLRs

for droplet sizes N = 100, 200, 360, 776, 1100, 1440, and 2880; see Supplementary

Tables 5.1- 5.2. In each SLR, the system comes into equilibrium during the first phase

of the run, followed by a production phase from which equilibrium configurations are

harvested. The relaxation time τ (defined below) is evaluated from the production

phase. In each SLR, our equilibration phase is at least 10τ long, and is never less

than 100 ns. The length of the production phase of our runs is never less than 46τ ,

and is typically between 102τ and 103τ .
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For droplet sizes N = 205, 301, 405, 512, 614, and 729 we use the “swarm

relaxation” method, described in detail in Ref. [21]. The initial configurations for

these choices of N are obtained from a SLR configuration for N = 2880 by deleting

molecules from the surface until the desired N is reached. We then run each new

configuration for 350 ns at 200 K to generate a starting configuration for our swarm

relaxation runs. For our swarm relaxations runs at 220 K, M different initial con-

figurations are generated by randomizing the velocities of the starting configuration

according to a Maxwell-Boltzmann distribution appropriate for T = 220 K. We use

M = 250 or 1000, as documented in Supplementary Table 5.3. We then conduct an

ensemble of M independent runs (a “swarm”), and monitor the average behaviour of

the swarm over time to determine when the runs have attained equilibrium. Swarm

relaxation runs at 200 K (180 K) are initiated using the M final configurations from

the 220 K (200 K) runs. We evaluate the relaxation time τs of each swarm ensem-

ble from the autocorrelation function of the system potential energy. As shown in

Ref. [21], swarm runs of length 10τs are sufficient for reaching equilibrium. Supple-

mentary Table 5.3 shows that the run time trun for each of our swarm runs significantly

exceeds this threshold. To estimate equilibrium properties, we carry out an ensemble

average over the final M configurations of each swarm run.

5.5.2 Droplet definition

We define the droplet as the largest cluster of water molecules in our system. A

molecule belongs to a cluster if its distance to any molecule in the cluster is less than

0.35 nm [40].
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5.5.3 Relaxation times

To determine the structural relaxation time τ of the droplets in our SLRs, we use

the method of Refs. [41, 42]. We evaluate the bond correlation function φ(t), which

characterizes the likelihood that a bond present at time t = 0 remains unbroken at

time t:

φ(t) =
〈

1
NB(0)

∑
i<j

nij(t)nij(0)
〉
. (5.1)

Here, nij(t) = 1 for all t up to the time that the bond between molecules i and j

breaks for the first time. After the bond breaks, nij(t) = 0 for all time, even if the

bond later reforms. Molecules i and j are considered bonded if the distance between

their O atoms rij ≤ 0.32 nm. NB(0) is the number of bonds at t = 0. The average in

Eq. 5.1 is taken over multiple choices of the time origin t = 0.

In all cases, we find that φ(t) decays to zero on a time scale much shorter than the

length our SLRs. This behaviour confirms that all of our nanodroplets are equilibrium

liquid droplets, and not glassy solids. We define τ as the time such that φ(τ) = e−1.

We define the number of independent configurations in each of our SLR simulations

as Nτ = trun/τ , where trun is the total length of the production phase of a SLR. The

values of τ and Nτ for each of our SLRs are listed in Supplementary Tables 5.1- 5.2.

5.5.4 Testing for crystal formation

To determine if crystalline ice forms in our liquid nanodroplets, we use the proce-

dure developed by Frenkel and coworkers [43, 44] to identify clusters of crystal-like

molecules, based on quantifying the local bond order using spherical harmonics [45].

The specific procedure we use to identify ice-like clusters is the same as that described

in Ref. [46]. We monitor nmax, the size of the largest ice-like cluster in the droplet, as

a function of time during our SLR simulations. The largest value of nmax encountered
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in all of our SLR simulations is 12, observed in our N = 1100 droplet at 180 K. In the

same run, the average value of nmax is 1.4. All such ice-like clusters appear only as

transients, and dissipate on a time scale comparable to τ . These observations confirm

that our droplets remain in the liquid phase on the time scale of our simulations.

5.5.5 Stability of liquid nanodroplets at low T .

The coexistence temperature for the bulk liquid and ice Ih phases of TIP4P/2005 is

252 K at ambient P , and decreases to 230 K at P = 200 MPa [19]. To estimate

the minimum T at which we observe a thermodynamically stable liquid droplet, we

prepare approximately spherical nanocrystallites of ice Ih of size N = 360 and 776. We

run each of these nanocrystallites for 4 ns at T = 180, 200, 220, 240 and 260 K. During

each run we monitor nmax, the size of the largest crystalline cluster as a function of

time t, using the definition of nmax described in Ref. [46]. As shown in Supplementary

Fig. 5.15, our N = 360 system completely melts within 4 ns for T ≥ 200 K, and our

N = 776 system melts within 4 ns for T ≥ 220 K. This behaviour demonstrates that

liquid nanodroplets of these sizes are thermodynamically stable below the melting

temperature for the bulk liquid phase.

5.5.6 Droplet radius

To quantify the droplet radius, we model the droplet as an ellipsoid with uniform

density [47, 48]. We first compute the moment of inertia tensor I from the position

vector ri for the centre of mass of each molecule i in the droplet, relative to the droplet

centre of mass. The elements of I are given by,

Ijk = m
Nd∑
i=1

(
r2
i δjk − rij rik

)
, (5.2)

108



where ri = |ri|; rij is the jth component (x, y or z) of ri; and δjk is the Kronecker delta.

The eigenvalues of I (Ixx, Iyy and Izz) are related to the lengths of the principal axes

(a, b and c) of the ellipsoid via the relations: 5Izz = mNd(a2+b2); 5Ixx = mNd(b2+c2);

and 5Iyy = mNd(a2 + c2). We then define the droplet radius as R = (abc)1/3. The

values of R reported here are averages over the ensemble of droplet configurations

generated for each N and T . We note that the qualitative pattern of behaviour

observed in Fig. 5.2 does not change if we define R instead as the radius of gyration.

5.5.7 Voronoi volumes and isothermal compressibility

To evaluate the volumes of the Voronoi cells around the O atoms in our nanodroplet

configurations, we use the “Voro++" software described in Ref. [49].

To define a quantity similar to KT in our droplet cores, we exploit the de-

pendence of KT on the volume fluctuations in a fixed-(N,P, T ) ensemble: KT =

〈δV 2〉/〈V 〉kT , where 〈δV 2〉 is the variance of the system volume V [50]. We define a

fixed-(N,P, T ) subsystem within the droplet core by selecting from each configuration

the 40 molecules that are closest to the droplet centre of mass. We choose 40 molecules

because this is approximately the number of molecules within the core region of our

N = 200 droplets, allowing us to consider a subsystem of fixed size throughout the

range 200 ≤ N ≤ 2880. We define the volume of the subsystem Vs as the sum of

the Voronoi volumes of these 40 molecules, and thereby define Ks
T = 〈δV2

s 〉/〈Vs〉kT .

Fig. 5.9 plots our results for Ks
T along isotherms for N ≥ 200 as a function of ρc.
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5.5.8 Surface region of density profiles

To define the portion of ρv(r) associated with the droplet surface, we first model our

data for ρv(r) by fitting to,

ρfit(r) = ρ0

2

[
tanh

(
r − r0

σ0

)
+ 1

]
, (5.3)

where ρ0, r0 and σ0 are fit parameters. To conduct this fit, we ignore data for r <

0.2 nm, to avoid the larger error in ρv(r) at small r; see Supplementary Fig. 5.11.

We define the surface region of ρv(r) as the region r > r0 − 0.6 nm, and ρs as the

maximum value of ρv(r) in the surface region. The density difference between the

droplet surface and the core, ρs − ρc, is plotted in Fig. 5.6a.

5.5.9 Laplace pressure

To find the Laplace pressure PL, we first evaluate PN and PT, the normal and tan-

gential components of the configurational contribution to the pressure as a function

of r within our droplets. We use the approach presented in Ref. [31], modified to suit

the case of a rigid molecular model of water as described in Ref. [23]. As illustrated

in Fig. 5.7a and Supplementary Fig. 5.12, we find in all cases that PN and PT differ,

and display a prominent minimum, near the droplet surface. For smaller r, PN and

PT become approximately equal within the error of our calculations. In a bulk liquid,

the pressure tensor is isotropic, and so we identify the region inside the droplet where

PN ' PT as a bulk-like region in which the average total pressure is the Laplace

pressure PL. The total pressure is given by,

Ptot = 1
3PN + 2

3PT + ρokT, (5.4)
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where k is Boltzmann’s constant. To evaluate PL, we average Ptot from r = 0 to

r = RL, where RL is the radius at which PN and PT first cross as r decreases below

the surface region where the minima in PN and PT occur.

5.5.10 Error estimates

All error bars presented in our figures represent ±σ/
√
Ns, where σ is the standard de-

viation of the measured quantity, and Ns is the number of independent configurations

averaged over. For our SLRs, we use Ns = Nτ . For our swarm runs, we use Ns = M .

5.5.11 Data availability

The data that support the findings of this study are available from the authors on

reasonable request.
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Figure 5.10: Comparison of density profile definitions. Here we plot ρo(r) and ρv(r)

for water nanodroplets with N = 776 at T = 180 K. The black dashed line is a fit

to ρv(r) using Eq. 3. The surface region of the droplet, as defined in Methods, is the

region where r is larger than that of the red dot-dashed line. Error bars represent one

standard deviation of the mean.

118



0 1 2 3 4 5 6
r (nm)

1.02

1.04

1.06

1.08

1.1

1.12

ρ
v (g

 c
m

-3
)

N=100

N=200 N=205

N=301

N=360
N=405

a

0 1 2 3 4 5 6
r (nm)

0.94

0.96

0.98

1

1.02

1.04

1.06
ρ

v (g
 c

m
-3

)

N=512 N=614 N=729 N=776
b

0 1 2 3 4 5 6
r (nm)

0.94

0.96

0.98

1

1.02

1.04

1.06

ρ
v (g

 c
m

-3
)

N=1100 N=1440 N=2880

c

Figure 5.11: Nanodroplet density profiles. Here we show ρv(r) for a wide range of N
and T . In each panel, one representative curve is shown with error bars. For curves
without error bars, data for r < 0.2 nm are not plotted for N ≥ 301, since the error at
small r is typically large. Line colours indicate T : 180 K (black), 200 K (red), 220 K
(blue), 240 K (green), 260 K (brown), 280 K (magenta), 300 K (cyan). To facilitate
comparison, for most data sets the origin of r has been shifted by an integer multiple
of 0.5 nm, as indicated by the thin vertical lines. Error bars represent one standard
deviation of the mean.

119



0 0.5 1 1.5 2
r (nm)

-300

-200

-100

0

100

200

pr
es

su
re

 (M
P

a)

ρokT
PT
PN
Ptot

a

0 0.5 1 1.5 2
r (nm)

-300

-200

-100

0

100

200

pr
es

su
re

 (M
P

a)

ρokT
PT
PN
Ptot

b

Figure 5.12: Contributions to the pressure inside water nanodroplets. a N = 360 and
T = 220 K. b N = 360 and T = 260 K. Vertical lines identify r = RL (dashed) and
r = R (dot-dashed). Error bars represent one standard deviation of the mean.
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Figure 5.13: Variation of the nanodroplet surface tension with temperature. We com-
pare our results for γ with results for the surface tension γp of a planar liquid-vapour
interface for TIP4P/2005, taken from Ref. 31. Error bars represent one standard
deviation of the mean.
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Figure 5.14: Variation with temperature of characteristic densities for nanodroplets.
Here we show the dependence of ρs, ρc and ρb on T for droplets of various sizes N .
For N = 1440, the droplet is large enough for the core density ρc to reach the bulk
density ρb, despite the growing difference between ρb and the surface density ρs at
low T . For smaller droplets, ρc does not reach ρb at low T .
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N L T Nd τ Nτ

(nm) (K) (ns)

100 10

180 100.00 2.4 1167
200 100.00 0.4 3499
220 100.00 0.8 2892
240 99.97 0.8 2995
260 99.75 0.8 3499

200 10

180 200.00 3.2 864
200 200.00 0.8 3335
220 200.00 0.8 3453
240 199.97 0.8 3452
260 199.82 0.8 3500

360 10

180 360.00 2.4 392
200 360.00 0.4 5921
220 360.00 0.2 12113
240 360.00 0.2 9837
260 359.94 0.2 1397
280 359.71 0.2 876
290 359.56 0.2 10287
300 359.26 0.2 10247

776 15

180 776.00 6.8 166
200 776.00 0.8 954
220 776.00 0.4 1917
240 775.87 0.4 1808
260 775.84 0.4 1921
280 775.32 0.4 1977
290 774.84 0.4 2040
300 773.85 0.4 2009

Table 5.1: Run parameters and relaxation time scales for our SLR nanodroplet sim-
ulations. Symbols are as defined in the Methods section. For each N , as T increases,
τ becomes equal to the time interval between successive stored configurations during
each SLR. Since we cannot measure values of τ smaller than this time interval, such
a τ value represents an upper bound on the actual value of τ .
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N L T Nd τ Nτ

(nm) (K) (ns)

1100 20

180 1100.00 12.8 46
200 1100.00 1.6 288
220 1100.00 0.8 562
240 1099.75 0.8 577
260 1099.53 0.8 603
280 1098.32 0.8 594
290 1097.01 0.8 556
300 1095.13 0.8 579

1440 20

180 1440.00 8.6 49
200 1440.00 1.0 360
220 1439.98 0.2 1588
240 1439.77 0.2 1502
260 1439.74 0.2 1153
280 1438.64 0.2 829
290 1437.84 0.2 261
300 1434.91 0.2 205

2880 20

200 2880.00 1.4 74
220 2880.00 0.2 490
240 2879.97 0.2 464
260 2879.89 0.2 443
280 2879.44 0.2 240
290 2878.71 0.2 320
300 2877.31 0.2 148

Table 5.2: Run parameters and relaxation time scales for our SLR nanodroplet sim-
ulations. Symbols are as defined in the Methods section. For each N , as T increases,
τ becomes equal to the time interval between successive stored configurations during
each SLR. Since we cannot measure values of τ smaller than this time interval, such
a τ value represents an upper bound on the actual value of τ .
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N L T Nd τs M trun
(nm) (K) (ns) (ns)

205 8.29
180 205.00 1.63 1000 79.70
200 205.00 0.14 1000 15.94
220 205.00 0.05 1000 15.94

301 9.42
180 301.00 1.02 250 15.80
200 301.00 0.12 250 7.90
220 301.00 0.04 1000 7.90

405 10.40
180 405.00 1.91 250 63.13
200 405.00 0.13 1000 7.89
220 405.00 0.02 1000 7.89

512 11.25
180 512.00 2.36 250 47.71
200 512.00 0.19 250 7.95
220 512.00 0.04 250 7.95

614 11.95
180 614.00 2.55 250 96.73
200 614.00 0.23 250 8.06
220 614.00 0.05 250 8.06

729 12.65
180 729.00 4.19 250 99.63
200 729.00 0.28 250 8.27
220 729.00 0.06 250 8.27

Table 5.3: Run parameters and relaxation time scales for nanodroplet simulations
carried out using the swarm relaxation method. Symbols are as defined in the Methods
section.
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Chapter 6

Surface tension of deeply

supercooled TIP4P/2005 water

nanodroplets using direct

evaluation of the pressure tensor

6.1 Abstract

We estimate the surface tension from direct calculations of the components of the

microscopic pressure tensor in water nanodroplets modelled with the TIP4P/2005

potential. We study the validity of the Young-Laplace equation over a wide range of

size, from 100 to 2880 molecules, and temperature T , from 300 K down to 180 K.

Values of the planar surface tension γp are consistent with those of Vega and de

Miguel [J. Chem. Phys. 126, 154707 (2007)] down to the crossing of the Widom line

at T = 230 K for ambient pressure. Below this temperature, there is an unexpected

increase in γp. We can discern no T dependence of the Tolman length δ, but find
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that the mechanical route to determining the surface tension yields a higher value of

δ ≈ 0.2−0.3 nm compared to δ ≈ 0.06 nm obtained via the thermodynamic route. The

mechanical route gives smaller values for the surface tension for highly curved droplet

surfaces γs compared to the thermodynamic route, for which γs is consistent with

results at 293 K from Lau et al [J. Phys. Chem. 142, 114701 (2015)]. Assuming the

validity of the thermodynamic route, for water nanodroplet radius as small as 1 nm,

the curvature dependence of γs is small, and so γs can be approximated by γp to within

approximately 15% at the lowest T . We also report on how local structure changes

within the droplets. We find that a well structured random tetrahedral network

forms at low T and larger sizes, and that droplet cores are bulk-like from a structural

perspective.

6.2 Introduction

The essential role that water nanodroplets play in our lives motivates us to understand

the physics inside them and the interplay between the core of small nanodroplets and

their surface. Their presence in pivotal systems, such as climate [1, 2], biological

applications [3], interstellar space [4], and numerous other systems [5], prompts us to

comprehend their complex behaviour, such as their thermodynamic anomalies and nu-

cleation processes. The surface tension plays an important role in water nanodroplet

nucleation in the atmosphere. The vapour-liquid surface tension is crucial to deter-

mine the nucleation rate from the classical nucleation theory (CNT) [6, 7]. There is

still an active debate on how the strong curvature of small condensed nanodroplets

affects the surface tension.

Understanding the surface tension of planar surfaces has been a focus of study for

many years. In contrast, the surface tension of curved surfaces has not been studied
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as extensively as for planar surfaces. It has been accepted that the surface tension

of curved surfaces deviates from that of planar surfaces. Laplace and Young [8, 9],

through observation and analytical derivation, found the relation that bears their

names, the Young-Laplace equation,

∆P = 2γs
Rs

, (6.1)

where ∆P = Pl − Pv, where Pl and Pv are the pressures of the two fluids in contact

assuming the fluids are liquid and vapor, γs is the surface tension of the curved surface,

and Rs is the radius of the surface of tension, where the surface tension acts. For

relatively large droplets, Rs is simply the radius of the droplet. Once the interfacial

width becomes significant compared to the size of droplet, the radius of the droplet

is not uniquely defined.

For curved surfaces, like that of a droplet, Tolman derived an expression that

shows how γs deviates from the planar surface tension, γp, as the droplet radius

varies, and for which he introduced a curvature correction quantified by what is now

termed the Tolman length δ [10],

γs = γp
(1 + 2δ/Rs)

. (6.2)

The magnitude of δ is generally found to be 10-20% of the molecular diameter, while

its sign is still under debate [11]. While modeling on the basis of classical density

functional theory predicted negative δ, simulations estimated both negative and posi-

tive δ. Yan et al [12] performed MD simulations of argon nanoclusters of size ranging

from 800 to 2000 particles at 78 K. They evaluated the pressure tensor and using

the Young-Laplace equation, they concluded that δ is positive for Lennard-Jones (LJ)

nanodroplets and negative for LJ vapor bubbles. However, Giessen and Blokhuis [11]
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estimated a negative δ for LJ naodroplets. The same disagreement appears in water

simulations. Leong and Wang [13] performed MD simulations using the BLYPSP-4F

water potential on nanoscale droplets of sizes varying between 1.973 and 7.940 nm

at T = 298 K. Using an empirical correlation between the pressure and density, they

estimated δ = −0.048 nm. The same negative sign for δ was obtained through mea-

suring the free energy of mitosis in a study by Joswiak et al [14], while Lau et al [15]

used a test-area method and obtained a positive δ. Therefore, it is clear that there

is a controversy between studies on the surface tension and where it acts, even when

the same water model is used.

The sign of δ determines whether γs decreases or increases with Rs. For a positive

δ, γs decreases as R decreases. Moreover, δ relates the equimolar radius Re and Rs [10],

δ = Re −Rs, (6.3)

where Re is the radius of a sphere that has a uniform density equal to that of the

interior part of the droplet and that has the same number of molecules as the droplet.

Since determining Re is more straightforward than determining Rs, we can rewrite

Eqs. 6.1 and 6.2 in terms of Re,

∆P = 2γp
Re

(
1

1 + δ/Re

)
, (6.4)

or in the form,
2

∆PRe

= 1
γp

(1 + δ/Re) , (6.5)

and

γs = γp
Re − δ
Re + δ

. (6.6)

Aside from the Laplace equation, Rowlinson and Widom proposed a model to de-
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rive γs from the tangential and normal components of the pressure tensor as functions

of the radial distance r from the centre of mass of a droplet, PT (r) and PN(r) [16].

The model assumes two homogeneous fluid phases, with homogeneous pressures Pα

and P β far from the interface, and an inhomogeneous interface between them. Under

the model assumption that the surface tension acts at a single value of r = Rs, the

mechanical requirements for static equilibrium, i.e. force and torque balance, yield,

γs =
∫ ∞

0

(
r

Rs

) [
Pα,β(r;Rs)− PT (r)

]
dr, (6.7)

=
∫ ∞

0

(
r

Rs

)2 [
Pα,β(r;Rs)− PT (r)

]
dr, (6.8)

where Pα,β(r;Rs) is Pα for r < Rs and P β for r > Rs. These equations in turn give

an expression for Rs,

Rs =
∫∞

0 r2
[
Pα,β(r;Rs)− PT (r)

]
dr∫∞

0 r [Pα,β(r;Rs)− PT (r)] dr . (6.9)

With the assumption that the two phases are homogeneous, we can assume that

Pα = Pl and P β = Pv. Since Pα,β(r;Rs) depends on the location of Rs, Eq. 6.9 can

be evaluated numerically.

From the condition of mechanical stability, ∇ ·P = 0, it can be proved that,

∫ ∞
0

r2
[
Pα,β(r;Rs)− PN(r)

]
dr = 0, (6.10)

and hence γs can be obtained using the PN(r) component of the pressure in Eqs. 6.7
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and 6.8, yielding,

γs =
∫ ∞

0

(
r

Rs

)
[PN(r)− PT (r)] dr, (6.11)

=
∫ ∞

0

(
r

Rs

)2
[PN(r)− PT (r)] dr, (6.12)

and

Rs =
∫∞

0 r2 [PN(r)− PT (r)] dr∫∞
0 r [PN(r)− PT (r)] dr . (6.13)

Moreover, through the mechanical stability, the surface tension at any radius R

inside the the droplet shows a minimum at the surface of tension Rs with value of γs,

γ(R) =
∫ ∞

0

(
r

R

)2 [
Pα,β(r;Rs)− PT (r)

]
dr. (6.14)

However, we can also find γs while avoiding the need for Rs by combining Eqs. 6.1

and 6.12,

γ3
s = (Pl − Pv)2

4

∫ ∞
0

r2 [PN(r)− PT (r)] dr (6.15)

In this study, we use the TIP4P/2005 model to simulate water nanodroplets under

a wide range of temperatures and sizes to compare the two methods of evaluating

δ and γs. Following Tompson et al [17], we refer to Eqs. 6.1, 6.4, and 6.5 as the

thermodynamic route, and to Eqs. 6.7- 6.15 as the mechanical route. This should

help in understanding the physics of surface tension of curved surfaces.

The paper is organized as follows. In Section 6.3, we provide details of our sim-

ulations. In Section 6.4, we report our results. We present a discussion and our

conclusions in Section 6.5.
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6.3 Simulations

We recently studied the thermodynamic and structural properties of simulated water

nanodroplets ranging in size from N =100 to 2880 molecules, over a temperature

T range of 180 to 300 K [18], with molecules interacting through the TIP4P/2005

model [19]. The same data set is used in the present study. We summarize the

simulation details below for the reader’s convenience.

We carry out the simulations in the canonical ensemble – constant N , volume

V , and T . The droplets are located in a cubic box of side length L that increases

with N and ranges from 10 to 20 nm. We ensure the box is large enough to avoid

any direct interaction between the water droplet and its periodic images, and small

enough to ensure that few molecules are in the vapour phase. We use a potential

cutoff of L/2, ensuring that all molecules in the droplet interact without truncation

of the potential. Occasionally, some molecules depart from the droplet surface into the

vapour phase. Hence, we employ periodic boundary conditions to ensure that vapour

molecules can return to the droplet in order to avoid complete evaporation. We use

Gromacs v4.6.1 [20] to carry out our molecular dynamics (MD) simulations. We hold

the temperature constant with the Nosé-Hoover thermostat with time constant 0.1 ps.

The equations of motion are integrated with the leap-frog algorithm with a time step

of 2 fs.

We set up two kinds of runs in this study: the conventional “single long runs"

(SLR), and using a “swarm relaxation” method (SWRM) [21]. For droplet sizes

N = 100, 200, 360, 776, 1100, 1440, and 2880, we use SLRs. For N = 1440 and 2880,

we start our simulations by placing N molecules randomly within the simulation box,

and run long enough for the molecules to condense into a single droplet. We harvest

an equilibrated N = 1440 configuration, and progressively remove molecules from

the droplet surface to obtain starting configurations for the other droplet sizes. The
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slowest relaxation times are approximately 12 ns, and our longest post-equilibration

simulations last 2.8 µs.

For droplet sizesN = 205, 301, 405, 512, 614, and 729, we use SWRM. To generate

initial configurations for each of these droplet sizes, we first remove molecules from

the surface of an equilibrated N = 2880 configuration to obtain the desired size. We

first conduct SLRs for each size at T = 200 K for not less than 350 ns. We then take

the last configuration of each run and randomize the velocities using the Maxwell-

Boltzmann distribution at T = 220 K to generate M different configurations, which

are used to initiate our swarm relaxation runs. We determine the relaxation time

τs of each swarm ensemble from the potential energy autocorrelation function of the

system. See Ref. [21] for details. The final equilibrated M configurations of each

ensemble is then used to conduct ensembles at T = 200 K. Similarly, we take the

final equilibrated M configurations of each ensemble at T = 200 K to start swarm

ensembles at T = 180 K.

Additionally, we carry out simulations for bulk TIP4P/2005 with T varying from

300 to 180 K with 360 molecules with density varying approximately between 0.96

and 1.12 g/cm3 using the protocols described in Ref. [22].

6.4 Results

6.4.1 Surface tension

The mechanical route to finding the surface tension of a droplet requires determining

both PT (r) and PN(r). We compute kinetic and configurational contributions to the

pressure inside our droplets; see Ref. [23] for details. Fig. 6.1 shows all contributions to

the pressure. We define RL such that the configurational contributions to the pressure,

P N and P T , are equal to each other within error for r < RL (dashed line in Fig. 6.1),
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Figure 6.1: Contributions to the pressure inside water nanodroplets as a function of
r, for (a) N = 776 and T = 220 K, and (b) N = 1440 and T = 200 K. Vertical lines
identify r = RL (dashed) and r = Re (dot-dashed)

and they differ near the surface. To define the pressure in the interior of the droplets

PL, we average the total (isotropic) pressure Ptot(r) = P N(r)/3+2P T (r)/3+ρ◦(r)kBT

over the spherical volume of radius RL, where ρ◦(r) is the local number density.
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We also use the Young-Laplace equation in the form of Eq. 6.4 to determine γp

and δ, and refer to this approach as the thermodynamic route [10]. We plot the

isotherms of PL as a function of R−1
e in Fig. 6.2. The isotherms show that there is a

significant pressure that naturally builds up in the interior of the droplets, and it can

reach as high as 200 MPa for R−1
e ' 1.2 nm−1 (Re ' 0.83 nm).

In Fig. 6.2 we study the curvature correction to PL as a function of Re. Assuming

δ = 0, the fits in Fig. 6.2a using Eq. 6.1 show that there is no obvious curvature

correction to the Young-Laplace equation. To see how small δ is in our range of

droplet sizes, we fit PL as a function of R−1
e at each T with Eq. 6.4, as shown in

Fig 6.2b. We report the value of δ as a function of T in Fig. 6.3, and can discern

no dependence of δ on T . The average small and positive value of Tolman length

δ = 0.055 nm explains the absence of strong curvature in Fig. 6.2.

To exclude the effect of the linear term in Eq. 6.4, we plot, in analogous form to

Fig. 6.2b, 2/PLRe as a function of Re in Fig 6.4. Since δ does not have an apparent

dependence on T , we fit the isotherms in Fig. 6.4 to Eq. 6.5 assuming a single fitting

parameter δ across all T . As shown in Fig. 6.4, this global fit reasonably describes all

the isotherms, and gives a value of δ = 0.036 nm that is similar to δ . The intercepts

in Fig. 6.4 yield γp for each T , and indicate that γp decreases with T .

As discussed in Sec. 6.2, γp and δ can also be obtained using the mechanical route.

To find γp and δ, we first evaluate γs using Eq. 6.8, where we set Pα = PL for and

P β = 0 since the vapour pressure in our simulations is negligible. In Fig. 6.5a we

show isotherms of γs as a function of R−1
s , where Rs is obtained from Eq. 6.9. We see

that γs decreases with increaing R−1
s along isotherms, indicating that δ is positive.

Fitting these isotherms with Eq. 6.2 yields curves with γp as intercepts. However,

another way of evaluating γs is through Eq. 6.12. Isotherms of γs from Eq. 6.12 as a

function of R−1
s , where R−1

s comes from Eq. 6.13, are shown in Fig. 6.5b. Although
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Figure 6.2: Isotherms of PL as a function of R−1
e . Along each isotherm, N decreases

with Re. (a) The straight lines are fits to Eq. 6.1, with assumption that δ = 0. (b)
The curves are two-parameter fits to Eq. 6.4.

the trend seems to indicate that γs decreases with R−1
s using Eqs. 6.12 and 6.13, the

noise resulting from subtracting PN(r) and PT (r) prevents useful fitting of γs. The

solid curves shown in Fig. 6.5b are simply the fits taken from Fig. 6.5a, and show
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Figure 6.3: Tolman length δ as a function of T obtained from different means: fits of
PL(Re) to Eq. 6.4 shown in Fig. 6.2b (black circles); fits of γs(Rs) to Eq. 6.2 shown in
Fig. 6.5a (red squares) with average value of 0.32±0.02 nm (dot-dashed); fits of γs(Rs)
to Eq. 6.2 shown in Fig. 6.6a (blue diamonds) with average value of 0.21 ± 0.01 nm
(dot-dashed-dashed); and fits of γs(Re) to Eq. 6.6 shown in Fig. 6.6b with average
value of 0.26± 0.005 nm (dot-dot-dashed).
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Figure 6.4: Isotherms of 2/(PLRe) as a function of R−1
e . Along each isotherm, N

decreases with Re. The straight lines are fits to Eq. 6.5, where δ = 0.055 nm is a
global fit parameter.

a general consistency between using Eqs. 6.8 and 6.9, and using Eqs. 6.12 and 6.13,

with the former set suffering from less statistical scatter.

Unlike both Eqs. 6.8 and 6.12, which require the determination of Rs to evaluate

γs, Eq. 6.15 does not involve calculating Rs. We plot γs obtained from Eq. 6.15 as

a function of R−1
s in Fig. 6.6a. We choose Rs from Eq. 6.13 because γs in Eq. 6.15

is derived from Eq. 6.12. The absence of Rs in Eq. 6.15 seems to suppress the noise

from PN(r). We again fit the isotherms in Fig. 6.6a to Eq. 6.2, and we find that the

trends of the fits are similar to the trends in Fig. 6.5a.

To avoid any difficulty inherent in calculating Rs, another way of representing γs

is as a function of R−1
e , as shown in Fig. 6.6b. Regardless of which variant of the

mechanical route is taken, we observe that γs decreases as Re and Rs decrease, δ is

positive with little evidence for a dependence on T , and γp decreases with T . The

values of δ obtained from each variant of the mechanical route are shown for each T
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Figure 6.5: γs as a function of R−1
s . (a) γs obtained from Eq. 6.8 (symbols), where

curves are fits to Eq. 6.2. (b) γs obtained from Eq. 6.12 (symbols), where curves are
replotted from panel (a). Curve intercepts equal γp, and steepness is proportional to
δ.

in Fig. 6.3.

We show γp as obtained from the thermodynamic routes in Fig. 6.7a. Since δ
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Figure 6.6: γs from Eq. 6.15 as a function of (a) R−1
s , with fits to Eq. 6.2 (solid lines).

(b) R−1
e , with fits to Eq. 6.6 (solid lines). Curve intercepts equal γp, and steepness is

proportional to δ.

is small, the thermodynamic route yields similar estimates of γp whether or not the

curvature correction is considered down to T = 220 K. At T = 180 K the discrepancy

between δ = 0 and δ 6= 0 appears to be outside of error, with the curvature-corrected
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Figure 6.7: The variation of planar surface tension γp with T . (a) γp via the ther-
modynamic route obtained from the fits in Fig. 6.2a (red circles), Fig. 6.2b (blue
squares), Fig. 6.4 (green diamonds). (b) γp via the mechanical route obtained from
the fits in Fig. 6.5a (red circles), Fig. 6.2b (blue squares), Fig. 6.6a (green diamonds),
and Fig. 6.6b (brown triangles).
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result yielding a value of γp approximately 10% higher (blue squares versus red circles

in Fig. 6.7a). For T ≥ 220 K our estimates of γp are also consistent with the extrapo-

lation down to low T of γp obtained using the test-area method, taken from Eq. 6 in

the work of Vega and de Miguel [24].

For T = 200 and 180 K, there is a rapid increase in our estimation of γp in

water compared to the extrapolation to low T . This change in trend may arise as a

consequence of crossing the Widom line at T = 230 K along ambient pressure [25] as

R → ∞ and N → ∞ (P ' 0). In the phase diagram, the Widom line is the locus

of correlation length maxima, close to which lie loci of maxima in response functions,

such as the isothermal compressibility. In this case, the rapid increase in γp below

220 K may be connected to the proposed liquid-liquid critical point (LLCP) [26].

Malek et al [18] also observed an emergence of complex radial density profiles at these

temperatures, indicative of the formation of low density liquid (LDL) in the core.

In the case of the mechanical route, the planar surface tension as obtained from

the fits in Fig. 6.5a is larger than when the thermodynamic route is taken, as shown

in Fig. 6.7b, where the values obtained from these equations are systematically above

both Vega and de Miguel’s extrapolation [24] and γp as obtained from the fits in

Fig. 6.2b. Interestingly, γp from the fits in Fig. 6.6a which use Rs from Eq. 6.13 is

consistent with the thermodynamic route for T ≥ 220 K and overlaps with Vega and

de Miguel’s extrapolation within error for T ≥ 240 K, and is lower than γp from the

fits in Fig. 6.6b. This shows that Eqs. 6.2 and 6.6 give different estimates of γp even

if they are used to fit the same γs as obtained from Eq. 6.15, and perhaps the case

for using Eq. 6.3 in the Tolman length (Eq. 6.2) requires closer inspection.

For another independent comparison, we show in Fig. 6.8 our results for γs as

obtained from both thermodynamic and mechanical routes at T = 300 K with the

values in Ref. [15] obtained using the test-area method at T = 293 K. We see that our
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results for γs from the thermodynamic route are consistent with Laue et al. However,

the mechanical route gives smaller values of γs. Smaller values of γs and Rs and larger

values of δ for the mechanical route are also observed in nanodroplets interacting

through the Lennard-Jones potential studied by Thompson et al [17].

To compare the difference in γs as obtained from the mechanical and thermo-

dynamic routes, we plot in Fig. 6.9 isotherms of γs as a function of Re. Fig. 6.9a

shows a significant change in γs obtained from Eq. 6.15 as droplet size varies. For a

change in the nanodroplet radius from 1 to 3 nm, there is a 50% increase in γs at

T = 180 K, and 44% at T = 300 K. However, if we compare this with γs estimated

from the thermodynamic route using δ from the fits in Fig. 6.2 and PL values for all

N and T , we see that the isotherms are almost flat for T ≥ 220 K while there is only

a %15 difference in γs across the droplet size range. We also can see that γs from

the thermodynamic route is systematically larger than the mechanical route, which

is once again consistent with Thompson et al [17].

6.4.2 Local structure ordering

Studying the ordering of the water molecules in the interior of the droplets and how it

changes as we reach the surface is important to enhance our understanding of water at

the nanoscale. To quantify the structure of the interior in our water nanodroplets, we

calculate the distance d5(r) between a molecule located at a distance r from the centre

of the droplet and its fifth nearest neighbouring molecule (using centres of mass when

defining distances). A large value of d5(r) indicates that, at that radial distance from

the centre of the droplet, molecules tend to be four-coordinated, i.e. that the local

tetrahedral network is well formed. We show in Fig. 6.10a d5(r) over a wide range of

N and T . We observe that d5(r) for droplet size N = 100 is small and stays rather

constant. The absence of any change in d5(r) as we approach the surface indicates
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Figure 6.8: Surface tension of curvature γs as a function of Re at T = 300 K from
Eq. 6.8 (red squares), Eq. 6.15 (blue diamonds), using the two-parameter fit, δ =
0.105 nm and γp = 66.68 mN/m from Fig. 6.2 (green triangles), and from Lau et
al. [15] at T = 293 K (black circles).

a disturbance in the tetrahedral network in the whole droplet. The low value of d5

indicates a collapse of the second neighbour shell around each molecule. This collapse

is representative of the high density liquid (HDL) form of water. The overlap of the

curves at different T for N = 100, suggests that droplets at this small size remain

HDL-like both in the interior and at the surface regardless of how deeply we supercool

them. As we increase the droplet size to N = 360, the profiles systematically shift to

higher value of d5 in the interior as we cool to 180 K. This change is a signature of a

transition from HDL at high T to a low density liquid (LDL) at low T . However, for

T ≤ 220 K and N = 360 in Fig. 6.10a, there is a decrease in d5 going from interior to

surface, which indicates a disturbance of the tetrahedral network and an increase in

density at the surface. For larger droplets, such as N = 776, we see similar behaviour

as N = 360, but the transformation scans a wider range of d5. Moreover, for N = 776
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Figure 6.9: Isotherms of γs as a function of Re. (a) γs obtained from mechanical
route through Eq. 6.15 and fitted with Eq. 6.6. (b) Through the thermodynamic
route, γs = PL (Re − δ)/2.
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at T = 180 K we see a monotonic decrease in d5 as we approach the surface. This

may reflect the emergence of structural transformation within the droplet. The same

scenario presents itself for N = 1440. At T = 180 K, as N increases from 100 to 1440,

d5 in the interior monotonically increases. This indicates that as N increases, a better

LDL forms in the interior of the droplets. The transformation from HDL to LDL in

the interior may explain the change in behaviour in γp for T ≤ 200 K in Fig. 6.7.

To further probe the ordering inside the nanodroplets, we compute the local tetra-

hedral order parameter [27],

qi = 1− 3
8

3∑
j

4∑
j=k+1

[
cosψjik + 1

3

]2
(6.16)

where ψjik is the angle between the centre water molecule i and its nearest neighbour

water molecules j and k. Using this definition, we define the average of the tetrahedral

order parameter of water molecules at radius r from the droplet centre of mass as,

qT (r) =
∑
i

qi · δ (ri − r,∆r)
n (r,∆r) (6.17)

n (r,∆r) =
∑
i

δ (ri − r,∆r) (6.18)

where δ (r,∆r) = 1 for |r| < ∆r and zero otherwise, ri is the distance of the oxygen

atom of the ith water molecule from the centre of mass of the droplet, and hence

n (r,∆r) is the number of molecules that have their oxygen atoms located within ∆r

of r.

We show how qT (r) changes in Fig. 6.10b. We see that qT is low for N = 100 and

it increases as we supercool the droplet. Similar behaviour appears for N = 360, 776,
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and 1440. However, for T = 200 and 180 K, the increase in qT upon increasing N

becomes quite dramatic, supporting the suggestion that a better tetrahedral network

forms as N increases. For N = 1440 at T = 180 K, the core reaches 90% of perfect

tetrahedral order. The monotonic decrease in qT for N = 776 and 1440 at T = 180 K

is consistent with the decrease we observe in d5.

To illustrate the structurally bulk-like character of droplet interiors, we plot d5

and qT as a function of density in Fig. 6.11. To compute the density, we define the

density for droplet interiors as ρ = m〈N /V〉, where N is the number of O atoms

within a defined core radius rc = 0.5 nm of the droplet centre, V is the total volume

of the Voronoi cells for these atoms, and m is the mass of a water molecule. Since

in the smallest droplets surface effects extend closer to the centre of droplet, we use

rc = 0.25 nm for N ≤ 205. Fig. 6.11 shows the agreement between d5 and qT as

functions of ρ for bulk systems and droplets. This shows clearly that the core of the

droplets for our range of N is bulk-like. This agreement is supported also by the

match between bulk and droplet core qT , as shown in Fig. 6.11.

6.5 Discussion and conclusions

We estimate the surface tension of water nanodroplets using the TIP4P/2005 model

over a wide range of N and T . We do so from an evaluation of the components of the

pressure tensor inside the droplets [18] using the coarse-graining method described in

Ref. [23]. From the pressure tensor components, we determine the isotropic pressure

in the interior of the droplets PL. This allows us to calculate the surface tension with

two approaches: using the Young-Laplace equation directly, and using the variation

of the pressure tensor components with distance form the droplet center. The direct

route, which we call the thermodynamic route, requires PL and Re to estimate γs,
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Figure 6.10: (a) d5 as a function of radius r from the centre of mass for various N
and T . The curves have been shifted horizontally by 1 nm for N = 360, by 2.7 nm
for N = 776, and by 4.7 nm for N = 1440. (b) qT as a function of radius r from the
centre of mass for various N and T . The curves have been shifted horizontally by
1 nm for N = 360, by 2.7 nm for N = 776, and by 4.7 nm for N = 1440.
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γp and δ as fit parameters, and the mechanical route evaluates γs and Rs from the

pressure tensor components, and yields γp and δ from fitting.

Isotherms of PL plotted as a function of R−1
e on the assumption that the surface

of tension acts at Re (i.e. that δ = 0) show a linear dependence between PL and

R−1
e that is valid for droplets as small as 0.86 nm in radius. To validate this apparent

linearity, we insert the Tolman length correction into the Young-Laplace equation and

find that δ is positive and small with a value of 0.055±0.021 nm. Moreover, γp values

for T ≥ 220 K from this route, regardless of whether we assume δ is zero or not, are

consistent with the extrapolation of γp obtained for TIP4P/2005 using the test-area

method [24], a thermodynamic method, down to low T , as shown in Fig. 6.7a.

We compute γp from the mechanical approach by first finding γs and Rs using

Eqs. 6.8 and 6.9 (using Eqs. 6.12 and 6.13 produces consistent, but noisier results)

and again using Eqs. 6.15 and 6.13. For our range of T and N , we show that γs

decreases as Re decreases. Fitting these two sets of results with Eq. 6.2 results in

positive and rather large values of δ = 0.32 ± 0.02 nm from Fig. 6.5a, and δ =

0.21 ± 0.01 nm from Fig. 6.6a. Although these two values do not overlap within

error, they both suggest that δ from the mechanical route is significantly larger than

the value from the thermodynamic route. Moreover, estimates of γp obtained from

fitting mechanical-route results tend to be higher than thermodynamic-route results,

as apparent in Fig. 6.7b. However, if we consider γs from Eq. 6.15 as a function of R−1
s

as shown in Fig. 6.6a, the γp resulting from fitting with Eq. 6.2 is consistent with the

thermodynamic route and with Vega and de Miguel’s extrapolation for T ≥ 240 K.

We also conclude that γs from the thermodynamic route remains relatively con-

stant as we vary Re for T ≥ 220 K, but shows larger variation at T = 200 and

180 K, where it changes by 15% over the range of droplet sizes we use. In contrast,

γs from the mechanical route increases significantly with Re , resulting in almost 50%
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change in γs at T = 180 K. These results are equivalent to δ being small for the

thermodynamic route and large for the mechanical route.

At 300 K, our thermodynamic results for γs as a function of droplet size are

consistent with those of Lau et al [15], while those from the mechanical route are not.

One might conclude, therefore, that the mechanical route for determining γs and δ

lacks validity, and the relatively large value of δ = 0.2 - 0.3 nm should be rejected in

favour of the smaller value of δ ≈ 0.06 determined from the thermodynamic route.

However, as δ is the difference between Re and Rs, which is understood to be where

the surface tension acts, values in the range of 0.2 to 0.3 nm are reasonable given

the locations of Re and the negative pressure minima in Fig. 6.1. Our work confirms

the discrepancy between the mechanical and thermodynamic routes that has been

previously noted in the literature, and so supports the need for a better theoretical

understanding of the connection between the two.

The marked increase in γp for T < 220, as shown in Fig. 6.7, approximately

coincides with the crossing of the Widom line at T = 230 K as R→∞ and N →∞

(P ' 0), and hence, it may be connected to the LLCP in water. This increase in γp

is consistent across both the mechanical and thermodynamic routes.

Characterizing how local structure varies with radial distance from the center of

the droplet with d5 and qT , we see behavior consistent with the formation of a well-

ordered random tetrahedral network at low T and large N within droplet interiors.

Furthermore, the dependence of these structural measures on local density match that

of bulk TIP4P/2005 water. Hence, from a structural perspective, the interiors of our

nanodroplets are characteristic of the bulk.

We conclude that γs and Rs determined from the mechanical route are smaller

than the values evaluated in the thermodynamic route, and this leads to a larger value

of δ and planar surface tension γp in this route. However, both routes give a positive
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value of δ for our range of T and N , and show that δ has no obvious dependence

on T . Moreover, assuming the validity of thermodynamic route, for Re ≥ 1 nm we

can ignore the curvature correction and use the planar surface tension to estimate

the Laplace pressure inside water nanodroplets to within 15% down to 180 K. This

last point is of practical importance for the estimation of the interior pressure in real

water nanodroplet systems.
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Chapter 7

Summary and Future Work

7.1 Summary

The structure, anomalies, and surface tension of water nanodroplets are studied care-

fully in this thesis. Extensive MD simulations are performed using the TIP4P/2005

potential to study water nanodroplets over a wide range of N and T . To ensure that

the nanodroplets are in equilibrium, two methods have been adopted in these simu-

lations. The conventional “single long run” (SLR) simulations and the new “swarm

relaxation” method developed in Ch. 3. Using the swarm relaxation strategy, the com-

pletely independent microstates that feed into the analysis of ensemble averages make

the determination of equilibrium quantities and their uncertainties required to study

water nanodroplets very precise. The ease of conducting the runs in this method,

the lack of ambiguity in computing the error bars, and the significant reduction of

wall time required to obtain equilibrated configurations are all convincing reasons

that with the availability of computational resources, the swarm relaxation method

can expedite the production of equilibrated and trusted configurations of simulated

systems. However, for new or complex systems, SLRs may be needed. Although the
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potential energy autocorrelation is used to monitor the individual runs in the swarm

relaxation method, any observable autocorrelation can be used. In case of limitations

on the availability of computational resources, asynchronous or extended swarm re-

laxation runs to generate independent configurations within individual runs can be

adopted. After harvesting configurations using both methods, all desired quantities

are obtained.

Studying the anomalies of water in nanodroplets and their relation to the proposed

LLPT can be achieved by computing many quantities, such as R, ρ, and PL. The

local pressure inside nanodroplets is calculated using our modification of a coarse-

graining pressure tensor method explained in detail in Ch. 4. The modified method

enables us to probe the pressure inside nanodroplets and whether it shows signs of

bulk-like behaviour without prior assumptions. Once the pressure tensor and density

inside nanodroplets are evaluated, we can study many properties and anomalies inside

simulated water nanodroplets.

We find that water nanodroplets show bulk-like liquid properties and reproduce

bulk water anomalies, such as density maximum. By varying N , water nanodroplets

explore a wide range of density and pressure. The EOS of bulk and nanodroplet water

agree for T ≥ 220 K, and depart for T ≤ 200 K. This departure arises as T approaches

Tc for the LLPT that occurs in TIP4P/2005. This departure is accompanied by the

emergence of complexity in structure going from surface to the interior. We also

observe that the interior density of some N do not reach the bulk value at low T

because of the influence of the denser layer at the surface. Moreover, we find that

when PL < Pc, the nanodroplets show inverted density gradients at low T . These

changes in density and pressure profile may influence the role of water nanodroplets

in essential systems and applications, such as chemical activities of solute molecules

inside the nanodroplet. And for these findings, we propose the utilization of water
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nanodroplets to probe liquid water properties in extreme temperature conditions as

the small size of water nanodroplets suppresses nucleation, while bulk water fails to

remain in the liquid state below approximately 232 K.

Motivated by the structural complexity and the appearance of HDL-like and LDL-

like environments within nanodroplet interiors depending on the size and temperature,

we find the surface tension from two approaches, mechanical and thermodynamic

routes. We find that the mechanical route gives smaller values of γs and Rs and

a larger value of δ. Fitted values of γp obtained by this route are higher than the

planar surface tension of TIP4P/2005 calculated from the thermodynamic route and

by Vega et al. We also show, assuming the validity of the thermodynamic route, that

for water nanodroplets of radius as small as 1 nm, the curvature dependence of surface

tension can be ignored, and that it can be approximated by the planar surface tension.

Moreover, we find a sudden increase in γP as a function of T from both routes. This

increase coincides with crossing the Widom line and therefore likely arises from the

emergence of a more LDL-like network in the interior.

7.2 Future work

A clear liquid-liquid phase transition in nanodroplets may be observed by imposing a

vapour pressure on the biggest nanodroplets in this thesis. The vapour pressure can

be simulated by filling the box with an inert gas, i.e. a gas that will not not penetrate

the droplet.

A comprehensive study of water nanodroplets requires understanding crystal nu-

cleation within water nanodroplets and the connection to their thermodynamic and

structural anomalies. The nucleation within water nanodroplets can be studied through

umbrella sampling MC techniques [1]. Using both MC and MD, the nucleation rates
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can be determined.

Supercooling water nanodroplets might subject the nanodroplets to slow dynam-

ics in the interior compared to the surface. Therefore, characterizing the dynamics

as a function of radius in the nanodroplets is also important for understanding the

nucleation process.

The vitrification of water nanodroplets can be studied through two techniques,

normal supercooling where the nanodroplet is cooled from a temperature close to

melting to a very low temperature, while the other technique uses vapour deposition,

where the glassy nanodroplet is formed by successive deposition of a few water vapour

molecules onto a growing cluster. One fundamental question is whether the vapour

deposition technique can access low energy states that are inaccessible through normal

supercooling [2].
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