








.+. National LibrarY
"eo.
Acqui:siIiorlsand
~s.tvic:es"'-=.ONKlilllNl

~natiottaIe
,",Conodo

~et
Mrviees~ues

=~

The author has granted a DOD

exclusM: licence allowiDg the
Natioual Libnry of Canada to
reproduce, loan.. distribute or seD
copies of this thesis in microform.
paper or electronic formats.

The author retains ownership of the
copyrigbJ: in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'aurcu:r a accordC uoe licence Don
exclusive pennettant it Ia
BibliolhCque oatiooaJe du Canada de
reproduire. prCter. disaib"er au
vendre des copies de cette these sous
Ia forme de microfiche/film. de
reproduction sur papier ou sur format
elecuonique.

L 'auteur conserve 1a propritte du
droit d'auleUf qui protege cette these.
Ni 1a these oj des extraits subSlaDtiels
de celle<i De doiveot etre imprimes
ou autrement reproduits sans son
amorisation.

0-612·73637·7

Canada



l SI\"G \1:\\"IPl-LHI\'ES WITH FR..s"CTIO\"S_ OECI\IALS. r:"TEGERS ..\\"O ..s"LGEBR..s,,:

:\ Gl"IDE FOR THE I'STER.\1EDI..s"TE TE_.s"CHER

by

Tina \1. Smith. B. Sc __ B. Ed.

A PWj\-..:1 submill~ to lhe S.:hool ofGl':!du:lIe Studi~s

mpartlalfullilmentoflhe

requirementSli."JrtheJ.:gr.:.::uf

\Iaster ofEJucation

Faculty ot" Education

\kmorial L-ni\·.::r.;ily ot"S.::\\1"oundland



:\CK~OWl[DG'I[STS

f,' Bru.:~ Bunl,ln;md Brent PJ.yn~. th;mks tor J.1I your tel.:hnologicJ.1 J.SsislJ.ncc

f,. J.'hn tirJ.nt \kL.)ughlin. my J.d\-isor. lh;mks lor ~ing such;m inspir:J.tion_.-\1I ~t.1ur time ;lnJ
dr.," W;lS greJ.t1~ J.ppreciJ.t~J.

\nJ I,' my sun. l"hristuph~r. Ih;mk you for b.:ing ::iO :>upporti\c. I could nt.1t hJ.\ c ;lSk~J tor;l
hcltcrrc",c;lTcha:>sisl::mt'



iit

ABSTR.-\CT

R~'sc:u-ch in rc~cm yc:ll"S has sho\\l1 thai lraditional mO:lhods 01 instruction b<ing o:mployed in
man~ intermediate classrooms loday :U-c clc:u-Iy lacking" The \alion.::ll Coun~il 01 Te:lch<:1'S vf
;"!:llhematics I\CT:-"! I slat.::; that "kamin\! math.:matics \\;thoul undel'Standinl! has k'nc b......n:l
~l'mmlln outcome of school m3th<:m3tics instruction·' (\CT:-"l. '::000. p. 1()1. ..\"ccording-to
~\'I!niti\"c kaOline theorists. true I...amin\! im"ol\".:s mo\"in\! irom the concret... to th<: .::l!:lstract.
rh:'se clmerele ;preso:nt:nions. or manipulati\"es. contrib~te to the do:\"<:Iopmem ol"w<:ll
I!rounJo:J. into:rconno:cled und.:rstandinl!s uf mathemalic:JJ ideas IStein and Su\"alino. ~OOl \..-\s
~u~h. the \CT:-..! and tho: Atlantic Pro\"inees Education Found.::ltion tAPEF) hale incorporat..-d
them into re(;en! mathematics rdorm Jt lhe imermo:diate le\·el.

rhe neW imermo:Ji:ne mathematics curriculum calls lor tho: regul:u us< vi manipulati\"es b~

h:adlers and stud..-nts IAPEF. l11<)lj I. This. howe\"o:r. caus<:s problems lor th..:: h:a..:her whl) is
unsure of hv\\ hJ usc them. Education:lj m..::thods ..::ourscs \\hi..::h focus on th..:: usc of
m.mipulati\"o:s h3n.: ~en restri..:teJ to prim:u-y and elementary I.:\"els. This r..-inl"'r..:es the ide:l th.::lt
!l1anil"ul:ni\-es :.lr<.' imo:nded I,"j~ for 10\\0:1' grade instruction.

nliS rapo:!" will :.luuro:ss these Issues in li~ht ,JI·the ne\\ APEF ..::urricuJurn 101' Into:rmediat ...
m:l1h<:rnali..:s. ..:ulminatinc \\ith;l resource 101' tea..::hers. TIlis l!uiJe is intcnded 10 facilitate the
<.'t·li..:;I..:i"US Inte~ration UI~ rn:lmpulati\cs inhl the tC:lching u!" ~'ra..::tions. decimals. Integers. :mu
.llg.... br.l ;It th... int ... rmediate k·\ d
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Lsing :\1anipulalh"" ~·ith Fractions. D«imals. (ncegers. :and Algebra:
.-\ Guide ror the lntermediace Teacher

.\I.mipul:lCh·e:s h;l\·e: bt:e:n in the: l",Jret"ront ofre:ee:nt ~dueational reruMs llfint"::nTIe:diat~

malh~mati..::s te:a..::hing :md karning. Ycalts (19911 Jeline:s the:m as ··ubjccts lhal students arc abl~

(_, 1<:<:1. l~'uch, h:mJk,.md olo\"C'· (p. 7l. Cognitin: kaming the:orists suggest thai they ar~ a

n......c~sary componcnt ~,t mathcmalics. enabling slud~nts 10 mo\"~ from thc eoncr..::l<: into thc nlllr~

,1r.SIf:ll:l areas of math~m:llies.The imponance ofmanipulali\"~sis supponed by the: \<alional

l""lInl:il ,'IT~·al:h... rs elf \blhem:ltil:s I\CT:'<.[ I and the .·\t1.mtic Pro\"inc~s Education Found:lliun

1_\PEI' •. wtlll ha\-e inc~'rp~)r:.lted th ...m into rel:e:nt mathem:lties rcl"\.)nTI. This, howc\-e:r.l:aus...s

rr"r.kms ri..lr the int ...ml.:diale rnatheffi:ltil:s lea..::he:r who is unsur..:: of how ur \\hen 10 uS<: them

This pap.:r will address Ih..::sc issucs in light oflh~ n..::w APEF curriculum l"\.)r int..:rmeJiat.:

mathcm:Jtics. ..::ulminating with a r.:souree: l"or te:achcf'S which willlhcilit:lI~ Ih..: ..:tlk:l<:iuus

Inside Tod:a~-'s Classroum

R~scarl:h in rceent :' e:ars sug",csts that instructional methods being employed in man~

da.ssrlloms lhillO locus on unJ.:rstandin",. Thc SCT~1 statcs that ··Ieaming mathematics withuut

unJerslanding has long bee:n a ..:ommon out":Uffic ofs<:hool mathe:matics instr1Jclion" 17\CT\1.

:Illll). p. I'll rhi~ is (unher supponed by th~ results otthc Sational Ass<:ssmc:nt of Edu..:alional

Pfl'gr...ss and Ih.: Third JnI~m:lllunal \Ialh.:matks and Science: Study which illustrate:d that onl:

~I-"I: r.:rc.:nt of stud.:nts taught using traditional m.:thods of instruction ..:ould compul.: dljci~ntly

I as ..:it<:d in Tsuruda. 19981. This ..traditional instruction is b:c;ed on th.: outdat~d assumption that

..:hitJn:n must int.:maliz~ in reaJy-mad.: fOnTI th.: results of cc:nluri<:s of <:onstruction by adult

malh.:mati\:ians·· (\\'arringlon & Kamii. 1998. p. 3-D).



Th~ m:llhemati.:s .:urri.:ulum b<:ing laughl in dassrollms today h:nds 10 .:mpha.~i ...: 10\\

1.:\ d ':'lgniti\e skills. su.:h as rl'{': m.:morintion. :lS well as inad.:qual': I':;lching pra.:ti.:es. su.:h

,I" u"ing ,'ne melh....d ,It" instruction cxdusil"<:ly or acccplin~only on.: answ.:r 3S b.:ing ':OlTCl.:1

IK,llstad. Briggs. 3nll Hughes. 1<)9:<1. Th.: curriculum has b<:come so pa.:ked Ihal this seems to he

Ih.: nll'sl .:llil.:iem \\·a~ III getlhe 10pil.:S l.:overed. It is unlortunale lhal true I...'aming is not laking

rb.:e:llthes3m':Utlle.

rh~ Jri\ ing 10n:..: b.:hind inslrul.:tion in Ihe l.:lasSrllOffi is .:o\"erin!? the objecti\"es Il(th.:

preso.;rihed .:urril.:ulum_ Curri.:uluffi gO;lls b<;:.:om... more important ::i0 t...ach... rs nlsh slud..:nlS tll lh.:

,llgorithm. On Ihe surfJc ... il Jpp..:ars as thllUgh Ih.:s..: go;!ls.:an b..: r.:aliz.:d. hO\\<.'ler. b~' I<lllking

J.:crer ,me ':311 ,;e..: that dlling S<l .:an h3\'': detriment:!l .:11..-..:(:; on th.: learning lhal tak..:s pia.:.:

l~llJJ ...rnsl ar... unlikd~ t,l han: [h.: time I<l nmtemplate and compare m.:thoJs. to t;.llk

.1t-I'Ullhclr l\ork. :.md l,l re;.lson [hruugh their ll\I'n processes. This foss olund.:rstanding

~'r..:ates..l \Ieak lllUnJalllln t0r reasonin~ in .:urrent and 1:Il.:r math.:mati..:s work anJ

J..:stru~ s stuJ..:nls· laith in Iheir olIn J'll\I..:rs uf inventilJn. Ratht..'r Ihan h..:lp th.:m trust

th.:ir intdlig..:n.:.: :.1l1d th\lughtluln.:ss. tdling studerns how to do prohl.:ms has the long

t<..'rm ell.:et III disemPLl\lering them m:11h.:matically. ICol'lin. Russ<:Jl. and Tiem.:~. lIN I.

p_ 131

fhe math ..:Iassruom b..: ...omes ;1 pla...e where the obje... ti\-e is 11) m.:morize a ruk. Cram.:r

..lnd B.:zuk 11lJQl t show.:d th:11 stud....nts ..:an ....asily learn th~se rules with linle conceptual

unJ.:rslanding. lat<:r. \\ hen th.... se rules an: forgott.:n. students hal"<: nothing to lall baek un

11-lin1'.man. I'-lui I. \\ben lacts or proct:dur<..'s are memorized withuut understanding. slUd,-,nts are

,'lien 11~'t sure of when ur ho\\ to ust: wh;1t !ht:y know. and such l.:amin!:, is oti..:nquil'-' fragil<..'

IBr..lIlsford. Brown. and Cocking. 19';N as citt:d in ~CnL :!OOOI. ~1ack (1990) adds that



.:hildf\:n·s knowledge of algorithms is onen r:'ulty;md frequently inter1i:res with their thinkinJ;.

ShL' slates that \..nowing lhall:hiIJren's aw~nes.5of:1 rule pre';en15 them from drawing. on thdr

,l~\n inlurmal kno.....ledge and. hence. the~ are e\'en more likd~' 10 3Ceepl the answers th...~

vl'JtainL-J usmg their faulty P~LoJUres r.1ther ttun those ...,bt:1in~ b~' rc:lying. on their own intimTlal

1..rn.,,~leJge. Th~ dericiern.:ies In the d3SSroom tuxe led tho: Sen! to SUg.gL'St that r... funns r..:

madL' [" tilt: mat~nutics cum.:uJum.

" ('all for Reform

The SeT:'.l Sl:.ltL'S th;1l ··..:alls lur reform in school mathematics sugg,".,;t ttut nc\~ gLlals .HL'

ilCL'dcJ", SlT:'.!. 191'N. p. ~ I. Ten SeT:'.1 Sl:1l1dards describo: \\hat :.Ind he\\ rn:1th...matics sh,'uIJ

nL' l:.lught. fh ... li ...: e,mt.:nl SI;mJards L'xplieitly J.:scribo: the eonlenllO be 13ughl. while th.: li\e

l'r"..: ..'Ss St;md~Js suggest \\3~ s In which the C,ln[.:m C:1I1 b.: 3l:"'luir...d:mel usd. On... llftheSl:

I'n...:..:s:> Standards is reprt:sc:nt:.llh'n.

InStru..:thln;).1 prugr.lJI1S frum pro::-I..ind"'''',;arten through grade I:::: ShLlUld ...nable all stud.:nt:.

":rc::11e ;md US<: rL'presenutions 10 orpnize. l"C"Cord, :md commumc:u.: m3th...m:l.tl..:al

lJc-.1S:

,....1.:-.:1. :l.rpl~. :md translale among nuthenutical rc:prc:scnutlons 10 soh-e

r'nlt'llems:

us.: rc:presenl.:ltlons to rn,Kld and interpret physical. social. and matho::matlcal

rhenllrnena. [SeT:'.!. ::::000. p. tJ61.

rho.:~e reprocsentations an: fun.Jamo.:ntallv mathematical underst:mdinJ; as they provide students

\\llh lhoc ,'pportunity to exp:md their capacity 10 think mathematically (SeT:'.!. ::::0001.



Th~ ~CT\t (:::OUOI stat~s that multipk r~prcscntatit}ns:lfcnec~ss.:lJ"Y 10 support

nlath~maticaJ unJ~rstandingand should be emph.:lSiz~d throughout th~ m::uh~maticscurriculum

The~ propose an imo::rmediatt: It:\t:l matht:matics curriculum in which repr....:iltnlations ar~ tlso::d

e'len~i\d~ ··\·liJdlc-gr..lJ~' students who:lfO:: taught \\ith this Standard in mind willlc3.m l~)

re<.:ugnlzt:. <.:umpare. and USt: an :.lIT3.~ ut" repr~:iltnt3.tionalliJnns tiJr fractiuns. do::<.:imals. per<.:.:nts,

..lnJ integers," c),CT\1. :::O{)O. r. :""h

The ~CT\'ll :OU01 suggests that rcpetition ~lftopics fr,)m y':.:lJ"!l' ~.:ar mUSl be repla<.:.:J

"ith a mort: in-depth look at tho:: hlpi<.:s when the~':lIO:: tirst introJuc.:d. StuJ.:nts concepHul

anJe1"Slanding must be e\ ident berur~ a n~\\ topic is introduced, The SCT\t ! I9g91 st::lto::s th:.1t in

drJer 1,) ;lchio::\e thi~ end the ~lrategio::~ pr~s<:ntl~ h.:ing us~d b~ tea\'h.:TS rna\" neeJ tu ~ re\'e!"S\'J

.U1J that kmJ\\ kJge sh,'uld emerge from t::-.:p.::rit:nce - "knll\ling mathematics is Juing

'll,lth..:mallcs'· 1p. -1. "This CllllStructi\c. Jctive \"i\'\1 ,)f tho:: \caming process must be rt,'lk<.:ted in

'he \\a~ much "fmathemati<.:s is taught:·I~CT\l. lQg9. p. 10).

·h·c"rJing III flinzman I l·jQ-I, ~ili:cli\'~ h:a<.:hing \,f matht:m;:ttics n<:~o-Js 10 lOCus ~m

I1lSlrudl,lll \Ihich promutcs stud~ms' Jctil'it~ and mOlt:s allay frum lecturing. StuJo::nts ntUSt hi:

·'!"II\d~ cng:'lgcJ caeh Jay in the JI,rng vI' matht:rnatics" 1.·\PEF. 1'lQQ, p. t,..

StuJ<:nts. pamcularl~ at thc middk Khool kn:J. nccd to be aeti\dy <:ngagd in learning

Th~~ n~~d to be :It-Io:: t~, \~rbalizo:: their id~as and shan: th..:m with thcir cl:l.Ssmat~s: 10 b<:

gilo::n upponunitil':s to build th~ir unders13.Oding of mathematical concepts by "doing"

m:lthematks: and !I~ t-~ acti\'dy in,'oll't:'(j in actil'ilies designed for eollabllration,

Jis<.:ussivn. thinking. and rt:lleClin~. lTsuruda.. 1QQ8. p. :5 1

Th..: classroum ..:an no longer bt: a plact: iilled with t:mpty \"cs:iltls waiting for knowledge

III be lnrtsmined. Students must ~ :lctivdy involved in the construction ofth~ir own knowkdge.



Le:uning shoulJ ~ngagt.> stud..:nlS born intdl~ctually and physically. Tho:y must ~come

~cli\~ kamt.>rs. ..:halkngcd to appl~ tht.>ir prior knowkdge and o:x~ri~nct.> in jncre3.Singl~

more diftieull situations. Instructional approaches should o:ngag~ studt.>nts in the process

uf le:lffllng ratht.>r Ihan transmit intonnation for th.:m to recei\'t.". (:,\CT\1. IQS9. p. 071

Warrington and Kamii (1~81 state th:n "children will go mueh funher. wilh J.:plh.

rle:lsur.:. md contiJ.:n..:.:. iflhey:ll'': J.llow.:d 10 construct th.::ir own mathcmmics thJ.t mak .... s

,cn~e I.j Ihem e\~'1!' Sl<:p ,lflh.:: wa~ ··Ip. 3~:;1. Th.: l..:aming ofm:nhem;).lics must be an :lcli\'<: anJ

.:,'nstru..:ti\,.:: process I.-\PEF. !41.){l1. Students should ~ :lcti\"<:ly .... ngag.::d in tasks and expcri.::n..:cs

J..:~igllcJ It' Jo:o:-p<n ::md C,)T\nCCI th.:ir kn"wkdgo: (:'\CT\1. ~OOOI. Th.::~ lindings point «.j,J

.:,'nstructi\ist;lPPW;lCh.

Th!: Constructh'bt Classroom

Students in :I ,:,'nstrucmist classroom :ll'e pres.:m.:d with problems and en.:ouraged t.j

1m cnt thcir .'wn W;lyS to si.'i\'e th<:m I \\-:lfTinglon::md Kamii. IINS I. Le:lming bee,JIllC'; \"er:

l11u.:h..l pcrson.:l! J.tbir as slu,.!.:nts construct Ih... ir kno\\kdg<: in dill"o:r<:nt \\ays Ihrough utilizing

past <:xp<:rt<:n..:es. eXIStIng kn,)\\ l<:dge. kaming styks :md moti\-;).t!on (Pas\. 149:'). As such. Ihc~

.m: cmPllw<:red by th... kno\\!.:Jg<: th;)'1 th... answ... rs li~ within th<:m. As th..:ir eonlid..:nc.: in th.:ir

;n..llh",m:l!icJ.1 J.bility in~'T':::lS':s th.:y :lre more rnoti\-at<:d to kam and becom.: more rec.::pti\'.: tll

;\~'\\ cxr.:ri.:nc.:s. Th...sc 1<:;lfTling .:xp.:ri<:n.:.:s. which or... f;).ciJit:lt.:d by Ih.: teach.:r. .:nabl.::

.;[uJcnb tlJ Ixnlm.: litd"ng k;tm.:rs (.-\nd':fS(ln. \9901. [hereby aehi.::\"ing "ne 0fth..: S<lcit:l~1

:;l,;tb ldemili~.,j b~ Ih.: :-'CT\1 in l'-lgQ, This role oft.:ao:;her:tS tacilitator is J. central pr.:mis.: of

Ih", c"nstructi\"ist phil"SOphy ..-\":cllrding to \\'.:mworth and \lonra< llqq:; I. th.: t'::lch.:r·s rok is

t.' pres.:n! stuJ.:nt ..:..:nt... r.:d usks and [0 Lju,,:slion students as th<:y work through them in such a



"'3y ;l:i 10 guide their k:uning. T0:3cho:rs must design eng3ging 3nd challenging 3eti,'ities whio:h

meet the needs of their students. while encouraging free thinking. 3t1d risk laking lTsuruda. 19<JS l.

It is important 10 nato: th31 "construetidsm is 3 philosophy lJlle:uning. not;l mcthoJlJlogy

"r"t<;;Iehing·'ICkmo:nts. 1Q<:l7. ['!. '::001. As such, it is import3t1t to UndefSl3t1d the k:uning Ih31 is

lal-Ing rbee. :15 \\0:11 ;IS th.: unJerl~ ing. theories upon \\hich il W3S founded.

CUl1:nitin Theories of learning

Cllgnitiyo: ps~ch,'lllg~ pruyides lho: m.1jor theoretical r.llionalo: lor promoling the stuJ..:nt

.IS .ill :h,:li..,c participant in the k:ll11ing process. True undefSt;lnding is gi\en high<:st pri"rit~ in the

tC;I..:hing-Ic;lrning prO<.:ess and is :lehie,",~d as students internalize concepts and m:lke Ih<:01 Iheir

tl\\n Il'uS!' 19..J:: I. fho: works uf Pi:lge\. Bruner. ;:md L<.'sh h:l\e e"nrribuled grc.1ll~ 10 this

.:,'gnitiw psychologic:l! perspccti\<~. Pbget iniliJ.lIy ..lidded k.1ming imo four st:lges of

:ll1dlc..:IU:lJ Je\<:k'pment. sens"riml.lloJr. prl;'\.'p..:r.:lti\!O;lJ. ..:oncrete l.lpo<:rnli"n:Ll. and fonn;ll

"r~'r;lI1,,";IJ IPust. J'l9:: L Students must Ix- provided with dCYdopmo:nt.1Jly Jppropriale maleriJIs

BruneT. who \\;1.-; grO:;)II~ inllucnced b~ the \\"rk of Pi.1gcl, suggestr..-d Ihree ml.ldes <)1

r.;rrcscntJtion.1llhoughll.1s ..:ited in Post. 194::). The firsl mode is o:naeti\<~. which inyoh'<.'$

hJnJs-,," or Jire..:t e.'\pcrienec. The sc..:\>nd. icunic, is based on Iht: usc lJl\isu.11 mediums such.1s

ri..:turcs .1nJ di;lgi.Uns. The third ntllde is tcnnt:d sy'mbolic b.:c3use Iht: kamer uses .1bstra.et

s~ mb..lls 10 rt:pr<."senl reality. Tcxtbooks. by their ,"cry nature. ~e cxc!usi\-dy iconie.1Ild

,,~mr...,lic_ An cna..:ti\c \,lid is ..:re.1t<:'d unkss the textbook is supplemented by hands-lln .1cti\'ities

l~sh·s tr.1Ilslation mod~lll 'liql is JJl t:xtension of Bruner's work las cit<:d in Post. !99:! I.

II<.' us.:J ··manipulatiw aids" w relcr to enacti\-<:. '·pictures·' 10 refer to iconic, 3t1d ··wrin..:n



~~ mt-..lls" I,) ro:li:r!o s~-mboli..::. Lo:sh 31so 3ddo:d IWO more repr~~nt3Iions10 Bruno:r" s mood.

tho.: moJ.:s::md Sl;ll.ed thai k3mlng musl in\oh-~ \-anous tr.lJ1S1:llions within:md .llllong tho:m

,I\'SI. 1"N~1. Ro:~3rdkss01 tho: tenns used in tho:s.: ":<>gnili,'O: ~':holo~ical po:rspo:clivcs. It Ii

0.:\ iJ.:nl that 311 in\·oh·~ sludo:ms mo, in~ (rom the con.:rete thNulI-h 10 the abstract

~1:anlpul:llti\"e5- The :llissinR link

R...scan:h sho\' s thai manipulalh es :l.re the mlssin~ link b,) help "Iud.:ms briJ!;!o: Ilw pp

r.d\'~·en Ihdr .1\\ n ..:oncrele ><n~o~ ..:ndrunment and the m(lrc :I!:IStra..:1 Ie' ds 01 malho:m::ati,,;s

'Y":JIK 1</411. rh ...~ pru,iJe sluJents \,ith:l ..:oncr..:l.: way lo ....xplore m:lth..:malkal.:on..:.:pts

+~h'~ ...r :JnJ J.)nes. I"'IS I. ··[~Ianipul:ltiv.:sl provide 3 .:on..:reIO: way lor studenls 10 link n..:,\.

"ti ...n Jt-str3.:t Lnl"ormali,>n h,l alr..:ady sllliJir'k"<..l 300.1 p..:rson:llly mo::minglul net\\orks of

I.n''',kdl! .... Iho:re[>~ JIl"\\Lnl; studenlS tLl 13ko: in the ne\, inl"onnalion.mJ :;i\-o: it m':3nin~" l~t"'Ln

JnJ U"\..llinLl. 20uL p. ::SbJ.

fh~· no:\, ..:urri..:ulum I,'r Lnlo:nn~-diato: rnatho:m3t1cs ":311s l"or Iho: ro:gul3f USl..' of

numpulatl\·cs by Io:achers;md sludo:nLS cAPEF. 19991. C3th~ POlhier. V3I1ce.:md Ikzuk

,20l.lO1 slate that "tho: use ofm;mipulali\·~materials is .:s~nlial in:lll mathem:uics dassrouffiS"

'r ':31. [I IS ..:Io:".lfly e' iJenl Ir"m tho: resc:arch that .:IT('CtI\ 0: learning should .:mphaslzc tho:

.:.'n::ltru.:t1.:m ofkn"\\k-dge Ihrough Iho: use 01 such manipulaliws IShellielJ 3I1d Cruikshank.

'::IMII. :'IO:ln .mJ B'-'alinLl. ':UIII. L·alh.:an o:t al ':000: scnl. ::000; ."PEF. lQQ9: Tsuruda.

I'osithe Attributes

fho.: SUl:<.:esslUI into:gt:ltion of ffi3flipul:lIiws into the m:lthemalics curriculum C3fl ha\c

posilive ",nS<e'4u~nces lor both tho: !~ach.:r;md th.: SlUd~nls. The proper use of m3flipulatin:



Ill.:n.:ria!s c.:m assist t~ach",rs.:mJ :>tud~nts in :maining th... goals put ronh by th~ :\CT\1 and th~

n..:\\ -"PEF curriculum lor int~rm~di;:n~m.:lth.:matics. They can assist teach...rs in m~~ting th..:

individual nccds Of slud.:nls. \\h ...th"'r th...y b..: dirT.:renl karoing slyks or varying malh.:matical

-Ir.ilitics. ;"Ianipulativcs can :.Ilso in..:r...ase stud.:nts· c,lOceptual underst:l1lding and pcrfonnanc..:_

.b \\ell u.~ moti\:lting :>tud~nts :lnJ Jecr...asing m.:lth.:malical anxiety.

\~ SI:.IteJ pr.:\ iuusly. une ufthc Proc...ss Stand:lrds idenliti.:d by the SCT\! is

r..:rr~·~ent;lti,,". "In onkr 10 bcCl)m~ J~~ply knuwkdgcabk abuut fractiuns - and many other

,;,'nccpts in school math..:matics - stud.:n1s will n... .:d:l v:lri ... ty ofr...pres...ntations th:lt support Ih..:ir

unJcrsunding'" l:-':CT\L :000. p. 68)..-\ multilUd... ofmanipulati,'cs can be uscd IU pw\'iJe the:-..:

lllultiplL' r...pr~senlati,\ns. For .:x;lmpl..:. Cuis..:n;lir... rods. fraction pi.:c...s. :.Iod patl.:m blocks. :.II''':

rllaOlpUl;lli\es that "::.In n.: used t" ...fl~cli,",~ly n~pres':n1 ofl<,'r:nions with fractions. Th...

tn..:,'rp<'rali,m uflh...s.: manipulati\cs. as well as uthers, inlo the t...aching l,f\'mous int ...nnl'Ji:.lte

k\d tl'pi..:s. su..:h as Ib..:tillns. Jecimal~. int.:g.:rs. JnJ Jlg...bra. \\i11 tx :.IddrcsseJ \:.Iter in this

\\"ith the :.IJ\ <:nt uf Ihe ne\\ .--\PEF .:urriculum lor int.:rmediat.: mathematics it is ..:ru..:i:.ll

th:.ll k:.l.:h..:rs tinJ a \\ay ll) J...al with ,arying abilitics and I~aroing styl~s within Ih~ same d:.lss.

"I.:\,'r;. .;Ias~roum Cl'mprises students:.ll man~ Jill<:r~nt cognili,-c k\·<l5. R:.Ith..:r than chuosing a

.:..:rtain k\e1 at \\ hi.:h to tC:I..:h, a IC..lch...r is r.:sponsibk lor uilllring inslruction to r"::.Ich:.ls m:.ln~

,\t"lh<::s~ slUdcnts as pllssil:<k..· I,-\PEF. l'Iq:,. p. }~). \lanipulati\~s can assist th~ te:lch.:r in

J.:hi<:\'ing this gO:l1 b~ pro\iding lor indi\idualleaming sty!.:s (Yl'atts. 1991) anJ allowing

tl':'h:hl'fS (0) b<: b.:n... r abk to :.Iss...ss and m,".:t th~ individual n«ds of stud~nts IRoss and Kurtz.

1'!'I3 I. Tuli\.:r ( 19961 not~s that many stud~nts ar... \isual or kin ...sthdic karn~r5 and Ih~ us... of

manlpulati\~smakcs th~ traditional. :lhstract way of thinking b.:com~ ckar for them, Th.:~' nccd



t,l manipulate vbje~tS in vrder 10 internalize the ~vnccpts b<:in~ taught (Sh~tlidd and Cruikshank.

:UUII, Wh~n t<:achers design opcn~ndedacti\·itics ~\ hieh ineorpor3le manipulath·es. studentS

..:an \~ork w their o\~n le\"el without losin!.' faith in th<:ir rnath<:rnatieaJ abilities (Fractions '.

1'1471. \lanipulath es..:an also assist in meeting the needs 01 students with kaming disabilities.

;l.~ \~ell JS those ~\ho arc math..:rnatio:alJy gili<:d I Thomton and Wilmot. ]91161.

Tht: dk..:tin: ~se llfmampulatiYes pro\"id<:s a strong t-asis lor con..:t:ptual understanding

t'\lT\1. :000: Hinzman. 1'14~: KolstJd. Briggs. and Hughes. ]943: Rvss and Kurtz. 19931

··ChiIJr..:n s...crn kl kam b.:SI \\hcn kamin!,1 begins with J ..:ono:rete represcntation:'lCath~;m <:t

.il,. :m)u. p. :3 I, Th.::se ..:on.::r<:k' representJtions. or manipulath·es. can contribute to Ihe

Je\d.'pment ofwell'grllunlJ...d. inl...r~.lOn .....:t...d und...rstandings vI mathematicJI id.:>lS tSt.:in and

1l"\;Jlin.l. '::001 l. When s!Udent~ h;J\c;l strong cllnceptu;l] toundJtion th<:y arc /).:u<o'r ;J.bk 10

"nd..:r:-;IJnJ tho.: l~lrmaj ;Jlgllrilhms be.:ause th..:y understand the thinking bchind them IT"I:\'..:r.

I q<lu I. [t IS ..:ssenti31 that stud..:nts make this .:onncction between Ihe con<:eptuJI work don..: with

lIunipulatl\t:S and tht: rruecdur3! knowkdge il is intended 10 suppon I:\CT\1. 19891.

Stud...nts \\ h.) us.: manlpu]ati\,es usually outpertorm those who do not t Kennedy and

firps. '::UUU; S'l\.ell. 14119; Suydam. 191161. A sludy conducted by pJrhJm in 1983 sho\\.::d that

~lUd..:nts using manipulati\"es a.:hie\ed in the 85'" p<:rc...ntik. while: thos<: nOI using th..:m I\~re in

the ~U'" perc<o'ntik las .. it~d in Suydam. ]t,lllo 1. \loser 11986) goes as far as to SJ~ that wh...n

manipulaliws are us.:d properly they may remo\'e th~ n~d tor later remedi:llilln. \-lanipulali\e

\I,..: Il;b pro\en to impfl)\t: probl ...m sol,·ing skills in generallCanny. 1984 as cited in Suydam.

I'ISo 1:.md Il' in..:rcase s..:or<o's ,'n retention and probkm so]\'ing tests l Baroody. 1496 as cited in

l·k:O!t.'n!s:md \k\lilkn.19lJOl
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Th<: inc<.lrpor.nion uCmanipulativcs also incre::l.Ses stuJent motivation (Hinzman. 19'17:

\ [oyer and Jones. 1998: Dutton and Dutton. 1991: YeatlS. 199 II and signilicantl~' r<:duces

Iluthcmatical am.:iety (\"inson. ~byn.:s. Brasher. Sloan. :mJ Gresham. 19(7). If stud<:nts enio~

\\hallhey arc ,juin~ amJ ~rcci\c it to ~ fun. they will be more willing 10 panicip.::u<: in

":[:J.,;sruom a..:ti\iti<:s. l\msc"lu<:ntly. Iheirattitudcs toward mathematics will impro\'c 1\loycr and

1,'lIe5. !Y<J8; S,}\\<:II. ]9lNL In un.kr [0 luster this posili\'e attitude in sw,knts. [<:achcrs must

..."hibit a p\lsiti\c attitude toward m~l1h.:m;llicsas well. R.:scarch shows that h:achcrs' bdicfs and

.1lIituJcs inl1ucm:.: their ~h;J\iur in the dasstO<Jrn which ultimately :inc.:ts students' bdicfs

Il1enninl;:.l. Guskey. and fhllmburg. I<)H~I. Sdt~rdl<.'Ction is neeul:d by th.: tl::.I.:h.:rs Sll th:.lt they

I.. ill h<:O:'lm.: rnon: O:llgnizam ll(the role they piny in sh:.lping: their stuuenlS intll mathematic:.!l

!.::.Irnt,;rs

It' \It,; hdp stuuents uewlup pusitin.' beliefs and allitudcs towards mathcmatics.

their pcrt"unn;lno:c ShllUIJ imprun:. Irw~ encourage stuJ...nts to think of

l1l;Jth..:m:lliO:JI problcms JS o:h:.l[[cng<:s r.llhcr Ih;m frustrations. thcy ShllU[d bc

t-.::lIcr :.Iblc to ..:ontrol th<:ir crnntions. [f studcms' all"c<.:ti\-c r<:sponscs impro\"l:. Hur

ffiJthcm:Itio:s .:lassruoms o:an be much more inviting plao:cs (or both tc:.!..:hing ;lnd

karning. t\lclcod anJ Ortcga. 199}. p. 33)

Rcg:milcss "fthe amount of research which points to Ihe positiw.theory is lJli<:n lJ\"l:rshaulJ\\eu

t'l~- the rl::.IJitics o( thl: classroom.

PUlling Theor·~- into Pnctice

fher<: is otil:n great dillicu[ty in putting theory into pr:Ktice. Changes suggl:sted for

mJthcmati.:s edUCalilJn refonn must go well beyond the documents and materials.
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,.) J.KUffienl. no c"h,m:lti,'n. nl' Prol;T'3IT1 0T sClulmalcrials can. by itselL change

what l:!"cs ,m in ..:lJ.ssfO,'ms. Chang.... J ....pends on teachers" working alune ;mJ

l,'gclh ....r \Ll1<:a..:h in \\a~ s that hdp all sluJcnts Jcwlup m:lth....m:ltic:lllit<:rac~ and

J"!'l\, ....r. and to Impro\C t<:a..:hinl:! :l:i cm-isioned b~ tho: Prok~ional Tcaching

Stand:l.rds. 18all and Schm....dcr. 1985. p. 071

··I\I:mipul:l.thcs[ h:l\t: link imrinsi..: education,]1 \":1lu.:: .. the real \"a[ut" ofmanipuJatil':s

In the ..:bssroom Iks In the \\:l~ s in which It:C~ an,' incurporatcd into kssuns.·· (Russ and Kunz.

1'Ill~. ['. ':~t>I, T., thi~ cnJ. R,Iss and I\.unz iJcntit~ l,mT \\-a~ s to promote the success "f

nl:.lnlpu!:ltin:us.:.

\I:.mipu!:lti\'cs luI,' ttl he: ch,'scn (0 supp0n the ksson"s "hjc..:tin:s; it is nLlI

cn.. ,ugh I" male them :.I\;liJahk

StuJ<:nts n<:<:J h' he rnaJe aWJrtc' "f thc ruks;mJ pro.:edurcs !\:!!ardin!! the usc ,\I

manlpu!:Jtl\":Slnlhcdassr\lorn

Durin!! J Icsson each slUJ.:nt musl b", Jcti\'dy in\oh.:d

[\·J.!uJ.ti,m shoulJ r"'lkct an cmph:lSis \In conc,·plUJ.li7..;ltion J.nd umkrstanJin!!.

l",m<:.:m r,'r inJi\'iduJ.I netc'Js mUSI !!L\\Cm Ih... uS<: 0Im:mipuJati\,c ffiJ.tocriJ.ls IS:..L"Jam.

I"1'i-l.I. It IS Inlp..'rtam Il' re":l'!!nlZC thJ.t students mJ.~ Jilkr in lhL'ir nt:t:J for manipul:ni\es. Jlcn..:c.

:IJL·~ sh,'uIJ hoc ahk t\l ma.koc the ..:hoice L.f\\h<:lheror not lhey u:>t' lhem IShet1i",ld and

I.. n.Jlk':hank. ':tl\J l; l"l.:m.:nts a.nd .\k\lilkn. I lN61. \Ianipulati\'.:s sh\luld nOI b<: lod,.:d a"a~ in a

..:urh,'ard :m..! us.:..! "nj~ l~r Srecili( kssons. Th",~ should be made a\ailabloc l<l stud",nL~ t,l us.: al

their ,1\\n Jiscrtc'IlL>U. This gi\.:s slUd",ms:t socns.: olconlrol. as woctl as ocnablin!! them to s<:<: the

TnaruruJaIl\..:s as !<lois. rathocr lh:ln IUyS I\ lo~ ocr :utd 1<ln.:s. 1qQ81. Somoc slUdents will lind it

;.';lSI<:r I" l\("Irk with on", typo: 01 m:mipul:ttiw <l'<:r :molhocr IShdlidd and Cruikshank. ~OOII. If



.~tuJ~nts .:lrl: r.:~uiC:lcd to working with the m:mipubti\"e chosen by th.: t...::Ieh... r it m::lY mak~' tht::

rnl~lem seem more dillicuh ITougt::r. : 9861. Consequ.:nlly. It is important forth.: t",::Ieh...r III h.:1\":

;l '·::Irkly or" manipulativ..:s J\"Jilabl..: to th... stud...nts ISh... t1idd and Cruiksh.:lIlk. ~OOI: \lnyer =J

.I,'nes. leNl\l. Ea.:h tim.:..l n"'\1 m;mirubliv..: is introduced it is impon:mt to alltJ\\ tim..: felr lr~'<:

~·"r!"ratll)n tlvyner. 1991)1. Shetlield:md Cruiksh:mk 120011 suggest interviewing the students

t'n:'-lu~·ntl~ t,l J<::h::rmin<:: the hest \\".:1~ \<) utiliz<:: each manipubtile l\:It the students. Onee the

":a..:h~·r is ,,:,'nliJent that thc stllJcnts hal.: ao.:hic\cd:m ad.:quat.: kvd tJfptlllio.:ien.:y using .:a..:h

ty reo II she'ulJ he leli h' the student which type th.:y will choos<:. if:my.

It 1'; Iml""'ll1afll t,n t.:a..:h.:rs to h.:com.: prolici.:nt with th.: r::mge of m:mipubti\.:s

Il·l.:m.:nts and \k\lilkn. I'No I. They must It::un 10 use the m:mipubti\·.:s a.'i tools 1;'1r

..:,'nc.:ptual und<::rsl.Jnding. t:lth~·r th:m just fur g3mes ,lr probkm soll·jng I \loy.:r and Jones.

l'I'IXI. :-'tul.knts n~·L>J III s<:t: lca..:hers moJd th.: ust: oflh..:se m;mipuI3ti\.:s tloyner. I"QUI

Ica..:h.:rs "h,' Jel S.l J.r': e'p<:ning many Joors lor stud.:nls who struggl<.' with the .:1hstra..:t nJlUr..: ,11

:lutIKlllatl..:s I\h'~ cr JnJ J.'n.:s. 1eNX l. StuJents' ..:on..:eptualization will impro\c .,nl~ it"tea..:h...n

.Ir.: kn'l\\ lcJgeabk ;\~'Ul the us.: vI' th.: manlpulatives I50\\<:11. 19891.

In ,'ruer l"r mJnipubtl\CS 1U n~ d!~di\'dy inl.:urporat.:c into Ih.: curriculum. studO:nl~

must Ji",o:uss their th,'ughts whil.: w(lrkmg through pwbkms IRobilailI<:: .JnJ Tt:l\ers. I\)q:::: I.

'tuJenls sh,'uIJ nc .:ncnut:lgeJ I" ro:l1..-..:l on :md justify thcir solutions 10 these probkms

,(kmcnts:.mJ \k\lilkn. 14'J61. This sd(·r.:tlt:1:tlon is.J!l import.:1nt p.:lTt oftn.: lesson b<:caus.: n

rr,'mN.:s I.:atnrng :.md d.:crea.~es :.mxkty (Heuser. 20001.

StuJ.:nts must be .:ommittd tu .:xpr.:ssing thdr le:uning in me:mingtul ways beforc using

manlpulati\-.:s c:m t>.: productiw (Thompson. 1992\, Th~ te.:1cher c:m help (:J.cilitate this by

rn"-tding stud.:nts with dilT<.'ft'nt W.Jys of :lf1icul3ting their k:uning. Journals can be:m d!el:ti\.:



Ill.:ans ,If n:,;ording th.:ir thoughts ;lbou! using the manipul:J.tin~s 10 sol\'e a pmi,;ular problem.

rc~ch.:r~ c;m J.:sign \\;lrksh.:.:ts whi..::h "::')fT..::lat..:: with the ksson so th;ll students ..::an ~eep tra.:k L'(

,11':11' pr,'gr.:~s Ihroughout the dJ..,;s. Questioning the sludent in an inierYie" typ.: situatiun ..::an

rr,l\'; t., h.: an <:I1"':cti\'': wa~ 1"1' teach.:rs to :t.."sess studeniS' understanding un an unguing t'lasis.

Obstacles to Effccrin Impll.'mentlUion

Rq:;lrJkss "flh,; res.:arch p')inling to th.: pusith'c asp<:..::ts ut"manipulati\.: us.: in

IIll..::rmeJi:1Ie mathemati..::s. th.:r.: stillt.:nds t.) 1'1.: a 1\·ld<.'sprc;ld bdidthat manipubti\'cs arc

InI,-nJed unJy 1,,1' lu\l.:r gr;lde IOstnH:tion l\k,y<.'r ;lnd Junes. 14.;8: T.Xlke el aJ., I'N::; l. .-\ sluJ\

":'lOJU.:teJ t-y SCl1tt in IQR} Sh"\\eJ that the perc.:ntage ufteachers using manipulatl\cs Jcdin.:J

.::,..:h : car alicr th..:: lirst gr:lJe. \llth Ih:1I t'leinJ; ,~wer than o(Ju o las cit.:J in Su~ dam. Il.J80 I. This is

:",:rhJps due. in gr.::ll part. III th,- 13d th:1I te" I... :lchl."l's hl."~"nJ the dement:l!; IeI'd h:J,\"c bl."l."n

:~:.:tnl'J III th..: us.: "t"mJnipubtt\r.:s. Instructlon;ll m':lhoJs .:ourses th:ll <\.:rc ot"i;;:rr.:J t,) lnd;l~ '.\

IIltcrm..:JiJI..: :.mJ sc.:"nJ:'L1: ffiJthcmatl"::s tca..:hers JiJ nut 1"'<.'us ..1Il th.: ulllizallon ,,1

l1l:.ltllpu!:.ltl\.:S. II b nl' \HlIld<.'r.. Ih.:n. that int.:tm.:diatc m:1Ih.:rnatics IC:lchr.:rs in II)J:lY'S

..:1:.ISSl'\l,'m~ h"ld this opini,'n 'lfmanipubti« m:lleri:Jls.

T'::..I~'h,-rs :.1ft: :llso l..m<:... rt:un :.Ib.lut hll\\ tel uS<: manipulatl\-':s l T,lt.)k.:.:t :.Ii.. i Ql.J::: I. The~

!"-U~ 11ll,' ··the 1~II:..1':~ ,'t" assummg that swd':lll.s will autumatically Jr:..lw Ihe .:oncJusions their

;c:.l..:h...r~ ":..1m slmrJ~ I'>~ imr.:r:leting with p:lrticular r.lanipul.Jti\es··IBaJI. Il.JQ:::. p. 171. Jt IS

Illlr,'Mant II' n:mt:m[l,:r thaI "manipul.Jti\.:s Jo nut m;lgic:Jlly ..:afTY m:.lthcmati.:al und.:r.s!andin{'

I Stem :.1m! B.,n.lino. :::001. p. ~:'()). It is no! enough to m:Jke them :J\':Jil:Jbk IEdw:Jtds. ::;000:

'-l'T\!. :::lfOUI. B,'han and Sh;.l\\ak.:r (J ...Q-tl sta,<.'d thal··som.:tim.:s in uur lr.:n·or \l) usc

Illallirulatlh>s. \\C I.'SI." sight ut"th.: t3Ct!h:ll th.:y ar.: a m.:ans to an .:nd. not an .:nd in lhemsd...:s··



(p. ~..j61. This r~suhs in oblit.:r::lling the pedagogical \'alue oCusing Ih.:m in the li~t place.

SlUd.:nts s.:e using manipulati\'es as Iiule mo~ than play lime.

Ewn though discussion is an eS:Kntial componenl oCsuccesstul implementation.:I study

c,mduclLoJ b~ Stigler and Bam...-s I 111881 tktermincl that manipulali\".:s are ol1.:n us...oJ by te;lchL'n:

.1....... subslitute lilr Jis.:ussion la::i cit...oJ in Robitaille and To\·ers. IlN2). Sludents are tJltcn gl\L'n

the m;lnipulali\'es and kit ItJ thcir tJwn de\'ices to complete an assi~ned wk. Withoull.liscu::i:iltJn.

it!x,\:umL'S unckar as to whelhcr karoing is taking place.

Stul.lenl::i arc abo intrul.lucel.lto the algorithm 100 soon t ~Ioyer and Jones. 19981. Te;lchers

"t'tL'n :ts:;ume Ih:j( th.: manipulati\"es c;ln ~ u~ the tirst day. lor the introduction to the nc\\

lI'ric..md Ihen be t;tken awa~ the next to proceed to the algorithm (Shellidd ;lnd Cruikshank.

:lJtlll. Studenls must und.:rst;lnd the concept being taught ~lorc symbols arc introJuced or

tL';lchers will unly b..: "adding abslr.lctness ttJ the abstraction" (Kolstad. Briggs. and l-Iughes.

I'N;.p.llGI.

.\n'llhL'rol!sl;lc!e identified b~ Tooke el a1119'l~1 is Ihe textboQk ilsdf They nut...oJ lhal

the natu~ tJlleXtbuoks JtJo:s n,1t ctJrrclate \\1Ih manipulati\"e u~. Teactk'rs;lle being inuooat...oJ

\\I\h 11\:\\ mathematics cumeula. but arc pn)\'ido:d wilh link. ilany. support IBall. l'Jq~l.

I'rul<:SSltJfhll den:lopment is at a minimum and textbooks do not malch Ihe new obj ..."\:lh·C'S. So.

,'l1e..- ...gain. I..-achers arc kIt to their own de\·ic..-s to establish and mainlain an eITecti\"~way <II

mtpkmenting the ne\\ curriculum. l·nt'.munately. ,:mly thos< truly dedicat.:1.1 to their proti:ssion

,lrc \\i1ling 10 take the lime needed to [e:lm how to use manipulali\"es etTecth'e]y tTooke CI al.
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Conclusion

.\!l is nOI lost ho\\~\·~r. The 3,h';lllt3ges or iffipkm~mingmanipulali\'~sinto the

int..:mleJiat.: m:lth.:matics ..:urri.:ulum t'.::lr outweigh;lll~ OhSl3Cks Ihut might be ~n..:ounlereJ. It is

.:ru.:iallh3Ithis l'.::lith in the usc .'(manlpulatives be held by JlIl~\'ds within the edue:ltion:ll

~y ~I.:m_ Onl~ Ih.:n will te:lchers get the nc:cc:ssary supp.)rt md prot;"ssion:ll dc:\e!opmentto

~ue.:essluJly integral': m:tnipulali\'r.'s. "If m:l1lipulati\'~sare to lind thdr J.ppropriale J.IlU fruitful

rb.:<: ;.tffiung the many possible impro\'ements to mJ.theffiJ.ti.:s edu.::ltion. ther.: will han: 10 be

~,,'rc ,lpportunitics IlJr indi\idual rdketion.md prolessionJ.1 discours.:.·· «(hll. 1l:Jl:J2. p. 4il

With t':lith in tho,; eJu..::.nilmal sy ~Icm .mJ a willingness ..m the pJ.rt ut'teachcrs tu ,ld;J.r>t hI

,he ne\\ .:urti.:uJum. th"'s.: uhsta.:ks ,,;an Ix 0\.:rc0me;mJ th.: .:lli.:aeious integration 0f

lllJ.tllpulath es intu int.:nneJi:ltc m:lthemati.:s.::tn be fully rcalizcd.
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COSTEXT :'~D O\TR\"IEW OF Gt:lOE

Baso:d.:ln th~ Pnncipld :InJ Sund.:uds idenll!i~ by the Sen,I. the APEF!us J~ign.:J:l

n<:\\ lnlr.:nn.:Jiatr.: nuth.:matl;;-s .:uniculum \\hi.::h is tu h.:gin lmplcmenutit>n in Seplembt:r. 21101.

nll~ .:uml:ulum U]..C:S 3. ne\\ 3Pf1roxh to the t(,:l.chmg "f inlenncdl:l!e rn:J.rnematks. p!:l.:tng a

mu.:h str.>ng<:r emphasis "" Ih.: tl:gular us..- <>1 manipul:lti\~. ~h>S1 nuthenutics te-lr.:hers ;lIlhl"

k\d ;If<: high schoollninai. :mJ th('relon: ha\"(' liltk. ifan~ . .:xp.:rience \\lth m:mlpul:!ti\('",.

l·.m"..:qur.:ml~. th':Tr.: IS.l n....."I.l t'.Jr ll:a.;hr.:rs 1,1 b.:com<.' l:uniliar with using them. This guide is

J\·.~lgnr.:J 1<' supT'<,n thr.: l':;l..:h..:r·~ tr-.mSllhJn m1<J th.: nc\\ .:umcuJum b~ illuslr.lting ho\..

Ill.,mq'ul:.ltl,('s ~·;).n ~ utiliz..·J.

It IS imr.:nJcJ t.' h..: u:,cJ b~ 11.';J.;hcTS 1,1 supph::mcnt 'lther instrur.:ti'lnJ.1 malenals. II

J.;".:ri~s th..: ,:ll'i,lUS typ.:s ,J!" mampuJallh'S suggo:sl..:d by tno: APEF anJ ilJustr.l.f~S no" Iho:~ o:an

t-..: mO:l1rJ'!'lrJ,lo:J III ml'o:t tho: ,1!-l\'(Il'O:s of Inc mlermo:diale curriculum, Tho: guide (nnsists 'll"a

:,.'rmm,'I'll;~ ~.."I;tl,>n. ..IS "d[.1."li.c .:,Intcnl.;o:.:tlons JCHJl ..·J to mulliple rcpn:s..:nl;ul.lI\S.

:rJ..:thln:-. JC':II11.;1I:>. ml..:g...rs. .mJ JI~ehrJ,. fh..- ..-onl..-m S<Xtlon~ ":'l\<:r th<.' ma.l,mt~ .'flh....

•or-I ....:tl • ..:" "ftno: mtcnncJi:1l<.' .:um..:ulum. !lo.. ..:.cr. Ino:y aro: nOI ...xh:lUsli.<::..-\lthougn thiS gUIJ..:

l~ ~,;'ar....,j wW"ard ~ mlcrmcdi:1lc 10:'0:1. il c:m i'>o: US<d:11 an~ k\<:I •• ho:r..: Ihc:.so:: topics an: t:1u~nl.

II l~ Jls..· s...·lur m slKh a "a~ Ihat il com ':-.1Si[~ i'>o: uso:d t-y any 100;Kh<.'r ..ilh link "r n,l

;'!lJ,thclll.,lII":" bad..!,:r"und. [II" J,ssum<:'J th:1IIC:1..:ho:rs n:I\,;';l. f3l:1Iit~ •• ith pc."ncd and p:lpo:r

':"mrU1atL,m". The gUld<:. Ih<:l\:lurc. IS not Int<:nd~d to 1~:1ch tho: ,':u10US .:onl:,,:pb;. bUI r.nh..:r hl

e'"ri:lln tho::m m a Jitl<:ro:nt \\;l.~.
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INTRODUCTION

This guide is :><:1 up kl h<: us~d as a st:md alone resource. Howe\l~r. it can b.:
.~urrlemented by olher resources. such as dememary methods 1<::\15. Based on th~ assumpti"n
lh:l! tcachers :ll!his k,"d h:l\"": n~J;o- litlle ex~rience with manipulatin~s. then: is.:1 sedilm
,10:101"'.1 to simpl~' dcscrihing 1h... manipuJatin: m:lh:rials md defming asSOCi:ll':U h:rminology
rhl~ scellon is \ksigncd W Ix used as:J rdcrenc.: and could <:'3Sily bo: "milled by the tcach':T Ilho
I" f..lrl1lliar wah th.:: m:mirulatin.-s. In su..:h instann·s. the s,,"ction ffi;ly bo: used as:l glllSsar;. The
",'.;lion ,m mullipk n:present:ltions should b<: read bo:iore thoS(' of tbelions :md J ...cimaJs. \:1m th...
,.,'clions on integers and aJ!:,cbr:l can be covered indeP""ndently, Bdore doing the algchr:l sect!,'n.
Ih\\\<:\<:r. J I~miliarity with th.: ;ao prindph' is n~c~ssary. so it may b< wise: 10 read the s.:e:tiun
'lOlnte:gerslirst

\~'h.:n ~~urking Ihruugh th~ ~xampks in Ut.: guide. it is suggest.:d that on.: d<l su "ith a
rarlner ur in a group. ifpossihl.:. Th.: nution of muhipk n::pr~s.:ntations~C0mes incrcasingl~

c\'idcnt whe:n the: guid.: is us~J in this manner. In contrast to a traditional :tpproae:h, therc arc: a
multituJe: or' ways \<) Jp[lwach mathcmatics using manipulatiws. Con~quently.keep in minJ
thatlhis guiJe: lS m..:ant tu introJu..:c teachc:rs to their us~. not 10 he an e:xhaustivc a":C0Unt "fthe
van"us wa~s III Jo so.

An cllon has ~cn m:lJc hJ Jr.l~~ thc Jia!:!ranls J~cur:l.ldy, howevcr, tho: rcpn:senw.ti"ns
ma\ n,l! he ...xa..:1. The: illustrati,ms are intend~d as instructional aids onl<'. Th~ ori:.!inall!uiJ... \~as

[lrc:rar...d in ..:ol<,r. Su..:h a ..:op~ may he: 'lhtained from Ute author. The bl;ck and whit.: ..:~pi<:s
.:,'ntain (hc iJenllca!l::xt. hC'\\c\'e:r. in thl: C~ o(th~ :tlg~br.ltiles. those tiles thaI represcnt
n<:!,!ati\c '-luantiti.:s ha~·e hc.:n Jenuted with a negati~c sign, It is cx~ctcd that users ,,{ th.: guide
«ill \~,'rk with actual manipulati\es. T'::lchers arc encouf:l!:!cd to model the \·arious
rcrr\'"entatl,lOS with Jif!i::rent manlpuJati\'cs and 10 work through th~ qu~tilJns that ha\'c hc<'n
InduJ..:J p..:noJi..:all~ thfllugh"m the guide
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TERMINOLOGY

Algcbrl1 Tiles

Algebra tiles are available commercially or can easily be made using paper. They consist of
larger squares (x by x. or r). rectangles (x by It or x), and smaller squares (1 by I, or 1). To
represent positive and negative ,-alues, two different colors are used. Algebra tiles can be used to
represent algebraic expressions. For example. 3r + 2x + 4 can be represented as follows:

•

Ifnegative values arc used, a different color can be chosen for the representation. For the
purposes of this guide, black and red will be used to indicate positive and negative, respectively.

For example, zr -x - 3 can be represented as follows:

B:lse Ten Blocks

Similar to algebra tiles, base len blocks consist of larger squares (10 by 10), rectangles
(I by 10), and smaller squares (I by 1).

•
The larger square is ollen referred to as the "flat"' and the rectangle is the ·'rod·'. Base ten blocks
also come wilh a large cube (10 by 10 by 10). Base ten blocks are often used in primary and
elementary grades to represent whole numbers, the large cube being 1000, the flat representing
100. the rod 10 and the small cube I. For example, the number 1243 could be represented using
I large cube. 2 flats. 4 rods, and 3 small cubes.
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When representing decimals. the base ten blocks used will depend on what shape represents the
unit. It is the fixed scaling factor of 10 that makes base ten blocks useful for representing
decimals. For example. if the flat represents 1. then 3.42 can be modeled using 3 flats, 4 rods.
and 2 small cubes.

IIIr
If. however, the large cube represents I, then 3.421 can be modeled using 3 large cubes. 4 flats.
2 rods. and 1 small cube.

Cuisenaire rods

Cuisenaire rods are three-dimensional plastic or wooden rods which range in length from 1 em to
10 em. each length being represented by a difTerent color. Commercially packaged sets contain
the following colors:

whitc(l)
'ed (2)
light green (3)
purple (4)
yellow(5)
dMk green (6)
black (7)
brown (8)
blue (9)
orange (10) I .

When using Cuisenaire rods it is helpful 10 line them up as pictured above, so that students have
a quick reference to the color coding.

Cuisenaire rods can be used to represent fractions. For example. 3/5 and 5/8 can be represented
as follows:
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Fraction Pieces

Fraction pieces, or fraction circles, are circles which are subdivided into halves. thirds. quarters,
fifths. sixths, eighths. tenths. and twelfths.

~,. ••
1/2 1/3 1/4 1t,;

~
1/6
~

1(8 1/10
L::J

1/12

They are commercially available or can be duplicated using the blackline masters that accompany
most tcacher texts. Fraction pieces can be used to represent different fractions, such as 2/3 and
4/5.

Integer Counters

Commercial integer counters are bicolored circles with red on one side and yellow on the other.
If they are unavailable, however, any object available in two colors can be used as integer
counters. One color represents positive and the other represents negative quantities. Typically,
each positive counter represents +1, and each negative counler represents -1. Integers can be
modeled as follows:

••••
+3 -4
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Pattern Blocks

Pallem blocks are similar to fmelioR pieces. but are based on the hexagonal unit, rather than the
circular unit. They are comprised of four basic shapes, namely hexagons, trapezoids.
parallelograms, and triangles.

The relative areas afme pieces facilitate various fractional representations, such as 112. 113,2/3,
and 1/6, respectivel)'.
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M LTIPLE REPRESENTATIONS

Representing Fractions and Decimals

One of the Process Standards identified by the National Council for Teachers of Mathematics is
representation. "Students can develop and deepen their understanding of mathematical concepts
and relationships as they create. compare, and use various representations:' (NCTM. 2000,
p.279). These multiple representations are a crucial component in the teaching of fractions and
decimals. A multitude of concrete manipulatives exist which can be successfully utilized to
increase students' conceptual understanding. Cuisenaire rods, fraction pieces, pattern blocks. and
base ten blocks can be quite effective in teaching fractions and decimals. The diagrams below
show how to represent different fractions and decimals using these manipulatives.

In can be easily represented using either the fraction pieces, the pattern blocks. or the Cuisenaire
rods.

8 -
In cases where In is to be considered as 500/0. the base ten blocks may be useful. As such, half of
a flat could be covered as follows:

Students may also use other representations of 112, such as one of two identical objects.



24

It is important to note, however, that some manipulatives readily lend themselves to certain
fractions, while others do not. The following example illustrates this.

TIle fraction 3/4 can be represented easily using fraction pieces or Cuisenaire rods.

It becomes more difficult, however, to represent 3/4 using the pattern blocks because the hexagon
can not be easily divided into 4 equal parts. Here it becomes helpful to think ofllIe whole in
lenns of multiples of six. Consequently, 3/4 can be represented as 9/12. Therefore, two hexagons
are used to represent the whole, and nine triangles are used to represent the fraction. Note that
three trapezoids or other suitable combinations can also cover the area.

Students should be given the opportunity to work through the different representations and learn
to make their own decisions regarding the most effective manipulative materials to use in each
case. This will depend, in large part, on the purpose for which the fraction is being modeled.
When working with two fractions it is important to look at the representation for each. The
manipulative that can be used to model both fractions should be chosen. Although Cuisenaire
rods arc the most flexible, it is important that students learn to manipulate the other materials as
well.
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Base ten blocks can be used to represent different decimals. This will lend itself nicely when
parts of 100. or percent, are introduced. As noted previously, multiple representations also exist
using (he base ten blocks. For example, 0.75 can be represented using: 75 small cubes; 5 rods and
25 small cubes; or 7 rods and 5 small cubes. In fact. any random covering of75 out orthe J00
unit squares would suffice.

Renaming Frllctions and Decimals

The ability to rename fractions and decimals is fundamental if students are to progress to using
various operations with them. Students must understand the concept of equivalency in order 10

compare fractions and decimals. They need to know how to get equivalent fractions in order to
understand the addition and subtraction of fractions. The following diagrams illustrate how the
renaming of fractions and decimals can be carried out concretely.

Using fmction pieces. students can cover the shaded area using different pieces. The concepl of
equivalency is more accessible if identical pieces are used. For example, Ihe following diagmms
represent the same area.

The same area is shaded. showing that 1/2 is equal 10 2/4. 3/6, and 4/8.
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Some slUdents may choose 10 cover the area as follows.

These representations do nOl lend themselves nicely to equivalent fractions. however, they could
prove beneficial when introducing addition, as students could be asked to detennine different
ways of making 112.

The same holds true when pattern blocks are used. However, it is important to note that the
fractions obtained may be different, depending on how students choose to cover the area.

The same area is shaded, showing that 1/2 is equal to 3/6.

How many ways can you represent 3/4?

Another way to iIIuslrate equivalent fractions is achieved through repeating the same ralio. The
following diagrams illustrate equivalency using fraction pieces, pauem blocks. and Cuisenaire
rods.

8
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These diagrams illustrate that 1/2 is equal to 2/4, 3/6, and so on.

Students must also understand how to rename fractions as decimals. and vice versa. This can be
illustrated using the base-ten blocks.

0.3 can be represented as follows:

Considering the flat as the whole, 0.3 covers)O blocks, which slUdenlS should see as 0.30, 30 oul
of 100, or 3/10 afme area. Hence, 0.3 = 0.30 - 30/100 = 3/10.

A familiarity with the blocks can be established by having the students start with the flat and
cover the correct area using the smaller pieces. For example, 1/4 can be represented as follows:

Students should nole that 25 blocks are covered. or 0.25. Hence, 1/4 = 25/100:::: 0.25.

Using the above method would also be very effective for tcaching percent.
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FRACTIONS

Limitations

Although operations involving fractions can be modeled using fraction pieces, pattern blocks,
and Cuisenaire rods, it is important to keep in mind that some fractions lend themselves more
toward one type of manipulative. A familiarity with all three is essential, however, if students are
to learn 10 make appropriate choices regarding which is the most efficient.

The concept of lowest common denominator can be restrictive when representing fractions
concretely. In some instances. it may be more effective to think in terms ofa more efficient
common multiple, which is nol necessarily the lowest. Regardless or how the denominator is
chosen, it may be impractical to model the fractions ifit is a large number.

It is assumed that teachers and students will have an understanding of the previous section on
multiple representations before proceeding.

Addition and Subtraction

Common Misconceptions

It is important 10 stress 10 students (hat in order to add or subtract fractions Ihe "whole" musl be
Ihe same. The following example illustrates the common misconception of merely adding !he
partS.

Students should understand that both of the diagrams illustrate 1/2. Ask them what would happen
if you added them together. If they add the pieces together they get the following, which
represents 3/4 or 312, depending on which shape represents the whole.

3/4 if!he whole is 3(2, or I 1/2, if!he whole is
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MOSI students will know that 112 + 1/2 is I. This can be correctly modeled as follows:

First, both must be represented as part of the same whole.

Because the whole is the same, the pieces can be combined.

•
Some students may only represent the pieces themselves, while others may find it beneficial to
represent the whole separately and then cover with the pieces. This reinforces the concept of the
"whole",

A similar example using Cuisenaire rods is effective in illustrating the common misconception of
adding numerators and denominators together. Before you begin, make sure that students
understand that 2/4 is the same as 112.

- ...
Again. ask students how these should be added together. If the pieces are combined you get the
following, which represents 3/6, or 112.
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This will surely puzzle the students. Question students about the whole being compared. One rod
is only 2, while the other is 4. Both have to be the same in order for the fractions to be added
together. -- ..
Now the rods can be combined. Students may suggest combining the top and the bottom...-
This results in 4 over 8, which still represents one half. Remind students of the concept of "parts
of a whole". The whole that we started with was 4, so now we have 4 over 4, which represents 1.

Again, the concept of whole can be reinforced jf students model it separately with a purple rod,
and then place both white rods and the red rod on lOp.

Addition

The following diagrams illustrate how 1/2 + 1/3 can be represented concretely, using the various
manipulatives. Again, it is important to note that the whole must be the same, that is, fractions
must have the same denominators.
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=---+
The three previous reprcsenlalions illustrate how to model 1/2 + 1/3 to obtain 5/6, utilizing the
fraction pieces, pattern blocks, and Cuisenaire rods, respectively..

Use the various manipulatives to show that 213 + 1/4"" 11/12.

Subtraction

Subtraction can be done in much the same manner as addition. When using fraction pieces and
pattern blocks it is more efficient to represent the first fraction, and then cover it with the second
fraction. The area remaining uncovered would be the answer. The following diagrams illustrate
\/2 - \13.

Both examples illustrate that the area remaining uncovered represents 1/6.
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When using Cuisenaire rods to model subtraction it is easier to model both fractions first,
keeping in mind the concept of a common whole (or denominator). Once the fractions are
represented, the appropriate pieces arc removed. The previous example would be represented as
follows:

.- -------=
lIE Use the various manipulatives to show that 3/4·2/3 = 1/12.

Mixed Numbers

The following diagrams illustrate addition and subtraction when mixed numbers arc involved. It
is important that students consider both fractions to determine the most efficient manipulative to
model them.

For example, 2 1/2 and I 2/3 can easily be represented using pattern blocks.

To add, simply combine the pieces.

~OVer1apPing

~,

Note that when the pieces are combined, 1/6 overlaps. Hence, 2 1/2 + 1 2/3 = 4 1/6.
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Another approach to modeling addition involves exchanging pieces for more practical. smaller
ones. Rather than detennining the overlapping section, the smaller pieces are used to fonn the
,...hole, and the remaining pieces determine the fractional part.

This method is illustrated below as 2 1/2 + 1 2/3 is modeled with fraction pieces.

The fractional parts being added, namely In. and 2/3, have a common multiple of six.
Consequently, they will be exchanged for 1/6 pieces, seven in total. Note, however, that different
combinations of pieces could be used to cover the area.

The above representation illustrates that 2 1/2 + J V3 "" 4 1/6.

Use the various manipulatives to show that I 3/4 + 2516 = 4 7/12.

One strategy for subtraction is to represent the larger quantity before covering a portion of it with
the smaller amount. The remaining uncovered area is the result.

For example, to model 2 1/2· I 2/3, represent 2 1/2 first. Then cover it with I 2/3.
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u~area

1f3+112

The illustration above shows that the are remaining uncovered is 1/3 + 112, or 5/6.

Another approach to subtracting is to begin with the smaller quantity and then add pieces to reach
the larger amount. The result would be the total afthe pieces that were added. Therefore, if
representing the previous example, I 213 would be modeled firsl. Pieces would then be added
until the tolal was 2 112.

Q" Using this approach. can you show that 2 1/2 • I 2J3 = 5/6?

Both previous strategies involved modeling the whole numbers, as well as the fractions. This,
however, is not always efficient, nor necessary. Once students have a better conceptual
understanding of adding and subtracting fractions, only the fraction portion of a mixed number
should be represented concretely. When subtracting, however, it may become necessary to trade
in a whole and represent it differently.

For example, 2 1/4 - I 1/3 can not be done concretely ifonly 1/4 - 1/3 is modeled. Consequently,
2 1/4 must be thought of as 1 5/4 (one of the wholes is traded for four quarters). Now it is only
necessary to model 5/4 and 1/3, keeping in mind that the wholes are not being represented.

e·~'
As explained previously, the first fraction is covered by the second, and the uncovered area is
determined.

The above illustrations show that 2 1/4 - I 1/3 = 11/12.
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How would you model the previous example using the pattern blocks?

Fractions are often easier to model with the Cuisenaire rods because lheir linear nature makes
them less restrictive with respect 10 denominators.

For example, 3n and 4/5 would be difficult to model with lhe fraclion pieces or pattern blocks.
However. using the Cuisenaire rods they can be modeled as follows.

-------
Note that the fractions are represented side by side in order to facilitate obtaining a common
multiple, in this case 35.

As stated previously, onc need only consider the parts orthe whole to add mixed numbers.
Consequently, if modeling 2 3/7 + 1 4/5. the diagram above would still suffice. The 5 green rods
and 7 purple rods can be combined, resulting in 43 partS out of35. Students should see this as 1
whole and 8 parts left over. in other words, 1 8/35. Remind students that only the fractional parts
of the mixed numbers were modeled, so 3 more wholes must be added. Hence, the final result
can be wrinen as 4 8/35.

When subtracting 2 3n - I 415 it becomes necessary to trade. Instead of representing only 3n. as
in the addhion example, I 3n will be represented concretely. Since the common multiple used to
represent the whole is 35, 35 blocks must be added to the representation above. Now I 3n is
represented by a total of 50 blocks (35 for the whole plus 5 green rods). As illustrated above. 415
can be represented using a total of28 blocks (7 purple rods). To subtract, line up these rods and
dctennine the remaining portion.

There are 22 blocks left over. Once again, the whole number portion of the mixed numbers were
not modeled. Because trading took place, 2 3n was represented as I 50135. Hence,
2 3n - 1 4/5 ; 1 50/35 - 1 28/35 - 22135.
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Multiplication

Multiplying by a Scalar

Multiplying fractions by a scalar quantity can be shown by using repeated addition. The
following diagrams illustrate how the various manipulatives can be used to show 4 x 213. As \\;th
addition. students may wish to represent the whole separately and then cover with the pieces.

""""~••~
cccc~••C>

Each of the above illustrations show that 4 x 2J3 =2 213. When using Cuisenaire rods, however.
the mixed number is not as readily seen. Consequently, students may prefer to represent it as 8/3.

Use the various manipulatives to model 3 x 1 3/4.

Multiplying by a Fraction

Before proceeding to multiplying two fractions together, it is important that students understand
thai 1/3 means lout aD. Therefore, when taking 1/30£9,9 must first be divided into three
equal groups of3. The answer, then, would be one of those groups, or 3. Similarly, if taking 2/3
of9. the answer would be 2 groups, or 6.
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The following diagrams illustrate 1/3 of 1/2 using fraction pieces and pattern blocks. The resuh
in both cases is 1/6.

f------l~

represent 1/2 divide into 3 groups take 1 oul of 3

If the fraction can not be divided into smaller pieces, equivalent fractions can be used. For
example, when using the Cuisenaire rods. students can not divide 1/2 into 3 equal groupings.
However, they can use the concept ofequivalent fractions and begin with 3/6.

Now it becomes easier to see that when you take one of the three groups you get one block Qut of
six. or 1/6.

Use the various manipulatives 10 show that)/4 x 113 - 112.
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Multiplying by a Mixed Number

The concept of equivalency is further illustrated in the following example: 2/3 x I 2/5.

1 2/5 can not be divided into three equal groups so it is modeled three times. As stated
previously, it may be more helpful to represent mixed numbers as improper fractions when using
Cusienaire rods. For this example, 1 2/S is represented as 7/5.

To obtain 2/3, take two of those groupings, keeping in mind that the whole is represented by 15.

Hence, the answer is 14/15.

Modeling 2/3 x 1 415 would have been much easier. 1 4/5 is equal 10 9/5, which can be divided
into three groups.

Taking 2 of those groups, one gels 6/5, or I 1/5.

IlF Model the above example with Cuisenaire rods.

S' Which type of manipulative would most readily model 3/4 x 1 1/2? Tty each of
them and see if you agree wilh your choice.
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Division

Dividing by a Scalar

When modeling division by a scalar, the fraction is represented first, and is then divided
accordingly.

For example, 3/4 ..;. 2 would be modeled as follows.

represent 3/4 divide by 2 rename area

~ Model the above example using the pattern blocks.

Dividing by a Fraction

When teaching the division of fractions, students should understand the underlying concepts of
division. For example, 10..;. 2 means "How many times can 2 fit into 101". Likewise, 1/2 -'- 1/3
means "How many times can 1/3 fit into 1121". This example is illustrated below.

,.,
1/2

In both instances, the third piece fit in one time, and then half of another. Hence, the answer is
1 1/2.
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When using Cuisenaire rods, the notion of common multiple is reinforced. For example. 1/2 ..;
1/3 can only be modeled when the whole is 6 (or a multiple of 6).

- •••

ow, we must dctcnnine how many times the two blocks (representing 1/3) can til into three
(representing 112). It may help students if these individual blocks are replaced by the
corresponding rods. red and light green. respectively. Students should see that the red rod can fit
into the green rod once. and half ofanother. Hence, the answer is I 112.

Q" Can you use each manipulative to model 5/6 + 213?

Dividing Mixed Numbers

Cuisenaire rods can also be utilized in modeling the division of mixed numbers. The following
diagmms illustrate 2 1/4 + 1 2/3.

First, both 1/4 and 2/3 are modeled to detennine a common muhiple.

The common multiple is 12, so 2 1/4 can be represented as

27
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and I 213 can be represented as

Now students must determine how many times 20 fits into 27. Likewise, they can determine how
many times 27 covers 20. It covers once, with 7 left over 20, or I 7/20.

Similarly, if the expression was I 2/3 -:- 2 1/4, one would determine how many times 20 covered
27. modeled below as 20/27.

... Model 2 3/5 + I 1/6.
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DECIMALS

Limitations

Base ten blocks can be utilized to model all four operations with decimals, however, addition and
subtraction are more user friendly. The area model will be used to briefly introduce
multiplication. The same model can represent division, but often the remainder becomes
problematic for students. For this reason, division will not be addressed.

A basic familiarity wilh representing decimals is assumed for this section.

Addition and Subtraction

Decimals can be added by grouping like terms together, again keeping in mind that the whole
must be the same. For example, 1.23 + 2.9 can be added concretely as follows:

II
The resulting accumulation consists of 3 flats, 11 rods, and 3 cubes. 10 rods can be trading for a
flat, so 4 flals, 1 rod, and 3 cubes remain. This can be represented symbolically as 4.13.

Similarly. subtraction of decimals can be modeled concretely by removing like terms. The
diagram below ilIustmtes 2.1 • 1.23.
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Removing like tenns on each side leaves

II
The nat can be traded for 9 rods and 10 squares in order to continue removing pieces.

Removing the remaining like tenns leaves 8 rods and 7 cubes, or 0.87.

Altematively, students may prefer to model both decimals and cover the first decimal with the
one being subtracted. The area remaining uncovered would be the answer.

Once students have a bener conceptual understanding of subtracting decimals, they may prefer to
model only the first number, and then remove the appropriate pieces. Trading may be necessary
in some instances. The following diagrams illustrate this approach, representing 2.4 - 1.56.

Begin by modeling 2.4 with 2 flats and 4 rods.

11111111
I flat, 5 rods, and 6 cubes must be removed; therefore, one of the flats must be traded. Students
may use a variety of representations to show this.
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One such representation for 2.4 is

••••••••••

After removing the appropriate pieces, 8 rods and 4 cubes remain. This represents 0.84.

Multipliclltion

The area model is effective when using manipulatives to model the multiplication of decimals.
This involves constructing a rectangle with dimensions equal to the numbers being multiplied.
The resulting area is the product.

For example, 2.3 x 3.5 can be represented as follows:

I
I•••

The resulting rectangle is comprised of 6 flats, 19 rods, and 15 small cubes, that is. 6 + 1.9 +
0.15. Once the appropriate trading is done, 8 flats, 0 rods, and 5 cubes remain. This decimal can
be symbolically represented as 8.05.

a- Use the base ten blocks to show that:
1.48+0.63=2.11 2.41-1.67= 1.74 I.3x2.4=4.12
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INTEGERS

Limitations

Bicolored counters will be used in this section to model integers. However, as noted previously,
any object in two different colors is just as effective. It is essential that students know which
color represents positive quantities and which represents negative quantities. For the purposes of
this unit, yellow will represent positive and red will represent negative. This distinction should be
made when the counters arc first introduced and should remain consistent. Allhough
multiplication and division can be represented concretely, only addition and subtraction will be
addressed.

An understanding of the zero principle is required before proceeding to addition and subtraction.

The Zero Principle

The zero principle states that "the sum of opposites is zero". This implies that a positive and
negative cancel each other out and can be added or removed without changing the value.

For example, each of the following represent -3.

••• •••• •••••
Similarly, each of the following represent +2.

• ••
~ Use 5 counters to represent -1. Represent +5 with 7 counters.

Addition

When adding integers merely combine the counters and then use the zero principle to simplify, if
necessary.

For example, (-2) + (+5) can be modeled using 2 red counters and 5 yellow counters. Once the
zeros are removed, 3 yellow counters remain. Hence. the answer is +3 .

••
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Similarly, (+3) + (-4) can be concretely represented as follows:

••••-1

~ Model (-3)+ (+4) and (+5)+(-1).

Subtraction

When subtracting integers, the first integer is represented concretely. Then, the second integer is
removed.

For example, to concretely represent (-3) - (-2), first model-] using 3 red counters, then, remove
2 red counters. •••
There is I red counter remaining; hence, the answer is -1.

Ir there are not enough counters to remove lhe second integer, the =ero principle can be used to
add pairs afred and yellow counters without changing the value.

For example. (-3) - (-5) can be modeled as follo\\'"5:

First. represent -3 using 3 red counters.

•••
Because 5 red counters can not be removed, more counters must be added in the fonn afzera,
resulting in 5 red counters and 2 yellow counters.

•••••
Now the 5 red counters can be removed, leaving 2 yellow counters, representing +2. Hence.
(-3)-(-5)-+2.



To model (-5) - (+2), first represent -5 using 5 red counters.

•••••
Because 2 yellow counters can not be removed, more must be added.

••••• ••
When the 2 yellow counters are removed, 7 red counters remain. Hence, (·5) - (+2) = -7.

Q" Use the counters to model each of the following:
(-3) - (-4) (+2) - (-I)
(-4)-(+2) (+1)-(+3)

47
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ALGEBRA

Limitations

Algebra tiles can be very effective in teaching various algebraic concepts. However.lhe tiles
themselves often prove to be a stumbling block for some students. Their similarity wilh the base
ten blocks makes it difficult for students to lhink of the algebra tiles as having an unknown. or
variable, dimension. The concrete representation is still abstract.

Algebra tiles can be used to model each afthe basic operations. However. much of the
methodology needed to perform these operations has been addressed elsewhere in this guide. For
this reason, addition and multiplication will be addressed briefly. This section will focus on
solving linear equations and factoring trinomials.

Addition and Subtraction

Addition with algebra tiles uses the concepts associated with adding decimals and integers. When
adding polynomials, like lemlS are grouped and simplified according to the zero principle. Note
that the black tiles are used to represent positive values and the red tiles are used to represent
negative values. However, any t\l,.'O colors will suffice.

For example, (Z-r + 3x - 4) +(r - 4x + 6) can be modeled as follows:

••••••

Group like terms together as iIIuslrnted below.

III .

The zero principle is used to simplify, resulting in 3r .x + 2.

Subtraction of polynomials uses the methods addressed in the integers section. In fact,
subtraction principles are employed in the above example. That is, 3x + (-4x) is actually 3x - 4x.

Use the algebra tiles to model (3r - 5x + 2) - (4,r • 6x + 3).



49

Solving Linear Equations

To solve an equation, both sides are first modeled with the algebra tiles. Note that each side is
separated by a vcrticalline which represents the equals sign.

For example, x + 3 = 2 is represented as_.....
To solve algebraic equations, the variable, X, must be isolated in order to detemline its value.
Therefore. when modeling the process, only the rectangular tiles must remain on one side. To do
so. the same tiles can be added to each side.

••

The =ero principle can now be used to simplifY.-
Only one red square tile remains on the right; hence, x = -I.

Often limes. it may be more efficient to remove the same tiles from each side, rather than add
them.

For example. x + 3 = 5 can be represented as

• •••••
Removing 3 square tiles from each side leaves

••
Hence, x = 2.
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More often than not, however, a combination of both methods will be used by students. Such is
the case in solving x + 3 = 2x + 5, as illustrated below.... -_....._.._..

Hence, -2 = x, or x = -2. Note that the x can be isolated on either the right or the left.

When solving some algebraic equations, more than one x remains. Consequently, both sides must
be divided into groups.

For example. 2x + 1 = 5, is modeled as follows_. •••••
Removing one square tile from each side leaves

To determine the value for x, both sides are divided by 2.

••
Hence, x = 2.

Note. however, that 2x + I = 4 would be problematic because it would simplify 10 2x = 3. The
concrete representation merely allows for a simpler Conn of the equation to be produced first. The
equation could then be solved by dividing both sides by 2, resulting in x = 312 = I 112.

Use the algebra tiles to solve 3x • 1 = 8.
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Multiplication

The area model described in multiplying decimals is also used to multiply binomials. It is
important to remind students of the rules associated with multiplying positive and negative
values so that the appropriate pieces are selected to represent the product.

The following diagram illustrates the modeling of(r + 2Xx· 3). Note that red pieces are selected
when a positive quantity is muhiplied by a negative quantity._..

Using the =ero principle. the above rectangular area simplifies lor - x - 6.

The following diagram is a concrete representation af(h - 2X2x - J). ote that black tiles are
selected when two negalive quantities arc multiplied.--1111111

1111111
••

This representation simplifies to ooJ - 8x + 2.

Model (2:< + 3)(x· I).
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Factol'"ing

Students should have a conceptual understanding of the area model for multiplication, as well as
the =ero principle, before proceeding with factoring.

The Arcn Model

To model factoring, the algebraic expression is represented concretely. For example. to factor
xl + 5x + 6, the expression must be modeled.

I······
These tiles are then arranged to form a rectangle.

The resuhing dimensions are the factors. Hence, xl + 5x + 6 = (x + 2Xx + 3).

The factoring ofr -3x + 2 is modeled below.

This illustrates that r- 3x + 2 '" (x - 2)(x - I).

Using algebra liles. factor r -4x + 3 and 3r + 4x + 1.

Il7 Try using the base ten blocks to model the factoring of expressions in which
x = 10. For example. consider (10)2 - 4(10) + 3.



53

The Zero Principle

When some expressions are represented concretely they can not form a rectangle. For example.
r . 3x - 4 can be represented as

Regardless afhow they are arranged, a rectangle can not be formed.

II
Note that all of the tiles must be used to represent the expression as a product. However. the =ero
principle can be used to add two rectangular tiles at a time· one red and one black. The
representation on the left above is missing only one rectangular tile; therefore. it can not be used.
The one on the right, however, is short two rectangular tiles so a black and red tile can be added.

It is important to note that positive and negative tiles of the same shape must not be combined
along the same side when forming a rectangle. In other words, red rectangles can not be
combined with black rectangles along the same side. However, they can be combined with black
squares. This is related to the concept of grouping like tenns, addressed previously.

Applying this strategy to the above representation results in the following diagram.

Hence.xl • 3x· 4 ::(x· 4)(x+ I).

Using the algebra tiles, factor :C + x - 2 and 2r - x - 3.
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Detennining Validity

The rules for multiplying integers become important in determining the validity ofthe rectangles
being formed. For example,~ - 3x - I can be represented as follows:

Although these pieces can form a rectangle, they do not follow the rules for multiplying positive
and negative quantities. Note that the unit, represented by the small square tile is negative. This
can only occur if a positive and negative quantity are multiplied. In this case, both rectangular
tiles represent negative quantities; hence. the unit or small square, would have 10 be positive.

The :ero principle can be used to add more rectangular tiles. however, regardless of how they are
arranged, a rectangle can not be fonned. Hence. this expression can Dot be factored.

Show why xl - 2x - 1 can not be factored.

Tips for Factoring

To determine how many rectangular tiles to add, it may be helpful to begin with the large square
tiles and the small square tiles. For example, when factoring x? • 4, begin by arranging the small
square tiles. Two representations are possible.

II
TIle representation on the left needs five rectangular tiles, so it is invalid. The representation on
the right, however, needs four rectangular tiles (two red and two black). The following
representation results.

--lienee. r· 4 = (x· 2Xx + 2).



55

\\'hen beginning with the square tiles, it is quite evident that xl· 4x + I can not be factored .

•
Clearly. there is no way to place the four x's, or rectangular tiles, to form a rectangle.

The representation ofr + 6x + 4 illustrates the advantage of beginning with the square tiles.

III_.._..-
I II- ....-

The representation on the left has 2 extra rectangular tiles, whereas, the onc on the right has an
extra rectangular tiles. Therefore. this expression can not be factored by this method.

Q" Factor each of the following. ifpossible.
r+4x+S r-9 2r+Sx-6

Common Factors

Often times more than one rectangle can be formed. For example, U + 6x + 4 can fonn two
different rectangles.

111111-_.... 1111-_..
•

The rules for muhiplying positive and negative quantities have been followed; therefore, both are
valid. This is due to the fact that there is a common factor of2. Examples such as this are helpful
in illustrating the concept of multiple representations.

IQ" Model the multiple representations for &xl. 4x· 12.
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