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Abstract

The numerical solution of saddle-point problems has attracted considerable interest in

recent years, due to their indefiniteness and often poor spectral properties that make

efficient solution difficult. While much research already exists, developing efficient

algorithms remains challenging. Researchers have applied finite-difference, finite-

element, and finite-volume approaches successfully to discretize saddle-point problems,

and block preconditioners and monolithic multigrid methods have been proposed for

the resulting systems. However, there is still much to understand.

Magnetohydrodynamics (MHD) models the flow of a charged fluid, or plasma, in

the presence of electromagnetic fields. Often, the discretization and linearization of

MHD leads to a saddle-point system. We present vector-potential formulations of

MHD and a theoretical analysis of the existence and uniqueness of solutions of both

the continuum two-dimensional resistive MHD model and its discretization.

Local Fourier analysis (LFA) is a commonly used tool for the analysis of multigrid

and other multilevel algorithms. We first adapt LFA to analyse the properties of

multigrid methods for both finite-difference and finite-element discretizations of the

Stokes equations, leading to saddle-point systems. Monolithic multigrid methods,

based on distributive, Braess-Sarazin, and Uzawa relaxation are discussed. From

this LFA, optimal parameters are proposed for these multigrid solvers. Numerical

experiments are presented to validate our theoretical results. A modified two-level

LFA is proposed for high-order finite-element methods for the Lapalce problem, curing

the failure of classical LFA smoothing analysis in this setting and providing a reliable

way to estimate actual multigrid performance. Finally, we extend LFA to analyze the

balancing domain decomposition by constraints (BDDC) algorithm, using a new choice

of basis for the space of Fourier harmonics that greatly simplifies the application of

LFA. Improved performance is obtained for some two- and three-level variants.
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Lay summary

The study of numerical simulation is important in our world, since we cannot always

obtain exact solutions to accurate mathematical models of many real-world phenomena.

Numerical simulation has, thus, penetrated into many fields, including meteorology,

fluid mechanics, the biomedical sciences, and so on. For a good numerical algorithm,

we should consider the choice of relevant parameters, comparison of the cost and

effectiveness among different algorithms, and parallelism. Our goal in this work is

to better understand algorithmic performance for simulation of fluid models and to

design efficient algorithms.

Much research on simulation needs mathematical theories and tools to help study

the algorithms before applying them to general problems. With the aid of mathematical

analysis, we can know properties of models and develop efficient algorithms. The focus

of this thesis is on the validity and applicability of such an analysis tool. Recent work

has reported failure of the existing tool in some cases, and we aim to make up for this

failure.

Our work addresses several issues. We develop a theoretical analysis for a model

of charged fluids to answer an open question about the existence and uniqueness of

solutions of this model. For the design of good algorithms, we employ a mathematical

tool to analyze and predict the actual performance of algorithms. In some cases, this

tool gives a good prediction and, based on this tool, we optimize the parameters in

the algorithms and obtain efficient performance. To address the failure of the analysis

for some models, we propose a modified analysis, which obtains a reliable prediction

and efficient performance. Furthermore, we build a framework of analysis to study

a parallel algorithm. In this case, we better understand the existing algorithm and

develop improved variants. The results and tools presented here may help us design

efficient numerical algorithms for many other models.
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Ã

(4)
h (θ) as a function of θ/π.154

5.10 At right, LFA-predicted two-grid convergence and smoothing factors

as a function of ω. At right, ρ and ρ0 as a function of ω for the Q4

approximation in 1D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.11 The distribution of eigenvalues, λ, of M̃−1
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Chapter 1

Introduction

Saddle-point problems naturally arise in fluid and solid mechanics. There is great

current interest in developing fast and efficient linear solvers for saddle-point systems,

since their indefiniteness and often poor spectral properties pose some difficulties

in numerical computing. While numerical experiments and theoretical analysis of

saddle-point problems have been well-studied in the literature, there is a need to

understand different problems more precisely, such as magnetohydrodynamics [1],

mixed finite element approximations of elliptic PDEs [11], constrained optimization

[9, 14, 15, 24, 27], and optimal control [25, 28]. The main goal of this thesis is

the development of local Fourier analysis (LFA) [29, 30] tools to understand the

performance of multigrid methods for saddle-point systems [5, 11] and higher-order

finite-element discretizations.

Magnetohydrodynamics (MHD) models the flow of a charged fluid, or plasma, in the

presence of electromagnetic fields. There are many formulations of MHD, depending

on the domain and physical parameters considered. Often, the discretization and

linearization of MHD leads to a saddle-point system. The set of equations that

describe MHD are a combination of the Navier-Stokes equations of fluid dynamics and

Maxwell’s equations of electro-magnetism. These differential equations must be solved

simultaneously. The equations of stationary, incompressible single fluid MHD posed

in three dimensions are considered in (for example) [13, 26]. Under some conditions

on the data, the existence and uniqueness of solutions to weak formulations of the

equations is known both in the continuum and for certain discretizations. When
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writing the magnetic field variable using a vector potential form, the divergence-

free condition is automatically satisfied. Consequently, vector potential formulations

for MHD substantially reduce the complexity of the resulting equations and allow

flexibility in the finite-element approximation. Numerical results using the vector

potential formulation already exist in the literature [1, 6]. However, these papers focus

mainly on linear-algebraic aspects of the solution of the resulting linearized systems of

equations. Until now, unfortunately, rigorous study of the existence and uniqueness of

solutions are still lacking. In our work presented here, we demonstrate that standard

analysis techniques can be extended from three-dimensional MHD [13, 26] to the

two-dimensional discretizations considered in [1, 6].

Discretization of the Stokes equations naturally leads to a saddle-point system.

Finite-difference, finite-volume, and finite-element discretization approaches have been

studied in the literature. Considerable attention must be paid to avoid instability when

choosing appropriate discretizations of the Stokes equations. For finite differences, the

Marker-and-Cell (MAC) scheme is known to be suitable for the Stokes equations [29].

Thus, we consider this approach as one of our discretizations. Fast and efficient solvers

for the resulting systems are needed, and it is necessary to employ some mathematical

theories and tools to help us analyze the properties of the systems and design efficient

algorithms. In the past several decades, local Fourier analysis (LFA) has attracted

much attention as an analysis tool to quantitatively predict convergence properties of

multigrid methods and multilevel algorithms. There is a large volume of published

studies concentrating on LFA of different relaxation schemes for many problems. We

extend this work to multigrid schemes of current interest for the solution of saddle-point

systems.

Recent developments in LFA have investigated the validity of LFA, and several

studies have found that the smoothing analysis of LFA fails to be a good predictor of

true performance, especially for overlapping multiplicative relaxation for the Q2 −Q1

(Taylor-Hood) approximation of the Stokes equations [19]. One natural question

that needs to be asked is whether this failure is due to the relaxation scheme or the

discretization itself. We investigate this here.

For the Stokes equations, block preconditioners and monolithic multigrid methods

have been designed for the resulting saddle-point systems. Recently, several families of

relaxation schemes, including distributive Gauss-Seidel, Braess-Sarazin, and Uzawa
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relaxation, have been further developed for monolithic multigrid methods for the

Stokes equations and more complicated saddle-point systems. These methods have

been shown to outperform block preconditioners in some cases (see, e.g., [2]). Thus,

monolithic multigrid methods are attractive. However, we note that most existing

research using LFA is based on (symmetric) Gauss-Seidel approaches, even for simple

scalar problems. Distributive Gauss-Seidel is well-known for its high efficiency [22, 23],

but Jacobi relaxation is simpler and cheaper. However, to our knowledge, there is no

research on distributive Jacobi relaxation for other problems. Braess-Sarazin relaxation

has been shown to generally outperform other relaxation schemes [1, 2, 3]; however,

there is still much more to understand about this approach, and no LFA has been

performed for Braess-Sarazin relaxation. A simple version of Braess-Sarazin relaxation

is Uzawa, which is popular for its simplicity and easy implementation [10, 12, 20].

Thus, we investigate monolithic multigrid methods based on common block-structured

relaxations, including distributive Jacobi, Braess-Sarazin, and Uzawa relaxation, using

LFA. Considering modern parallelism, variants based on weighted Jacobi are examined.

Besides multigrid methods, domain decomposition methods are also very popular

for large-scale problems, offering high efficiency and natural parallelism. Balancing

domain decomposition by constraints (BDDC), a nonoverlapping domain decomposition

method, has been successfully applied to many problems [4, 7, 8, 16, 17, 18, 21].

Although there exists some convergence analysis of BDDC based on finite-element

theorems in the literature, no study of BDDC using LFA has been carried out. We

build a framework suitable for the analysis of BDDC and analyze some two- and

three-level variants of BDDC here.

This thesis makes several noteworthy contributions to our knowledge by addressing

four important issues. Firstly, we offer a more rigorous understanding of the existence

and uniqueness of solutions of the vector potential formulations of two-dimensional

magnetohydrodynamics. Secondly, we apply LFA to analyze block-structured relax-

ations for the Stokes equations discretizated with the MAC scheme and finite-element

methods, and obtain efficient multigrid methods. Thirdly, the study of higher-order

finite-element discretizations adds substantially to our understanding of the failure

of classical LFA smoothing analysis for some types of problems. Lastly, the study of

BDDC contributes a fundamentally new approach to the LFA literature suitable for

analysis of domain decomposition methods.
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This thesis is organized as follows.

In Chapter 2, we review the the existing work on linear solvers for saddle-point

problems, and the history of local Fourier analysis and its applications.

In Chapter 3, a vector-potential formulation is presented for electromagnetic

problems in two dimensions. Existence and uniqueness are considered separately for

the continuum nonlinear equations of magnetohydrodynamics. At the same time, the

discretized and linearized form that arises from Newton’s method applied to a modified

system is discussed.

In Chapter 4, we discuss the performance of multigrid for the Stokes equations

discretized by the MAC scheme. Distributive weighted Jacobi, Uzawa, and Braess-

Sarazin relaxations are investigated. Local Fourier analysis is applied to these relaxation

schemes to analyse the convergence behavior, and we compare the efficiency of multigrid

methods based on these schemes.

Chapter 5 begins by examining higher-order finite-element approximations to the

Laplace problem. A modified Fourier analysis is presented to evaluate the performance

of weighted Jacobi relaxation and the related two-grid method. Two-grid and multigrid

performance is presented to validate our theoretical results.

In Chapter 6, two stabilized Q1 −Q1 and the stable Q2 −Q1 discretizations are

considered for the Stokes equations. Optimal smoothing factors for distributive and

Braess-Sarazin relaxation for the stabilized discretizations are determined by LFA. Just

as LFA fails to predict the convergence factor of multigrid for the Q2 discretization

of the Laplace problem, the same is true for the Q2 −Q1 discretization of the Stokes

equations. Thus, we numerically optimize the two-grid convergence factor. Inexact

variants, using a few steps of Jacobi or multigrid iterations on the Schur complement

system for Braess-Sarazin relaxation, are investigated as well.

In Chapter 7, we extend local Fourier analysis to the balancing domain decomposi-

tion by constraints family of algorithms, one of the classes of nonoverlapping domain

decomposition methods. In this LFA, we use a new basis for the Fourier space allowing

us to simplify the analysis. Two- and three-level variants of BDDC methods are

proposed. Quantitative estimates of condition numbers of the resulting preconditioned

operators are given by local Fourier analysis.

In Chapter 8, some conclusions are drawn and some potential projects for future



5

work are discussed.
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Chapter 2

Background

In recent decades, saddle-point problems have arisen in a wide variety of applications

throughout computational science and engineering, and have formed one of the most

significant topics of research in scientific computing. The substantial challenges

for solving these problems arise due to their indefiniteness and often poor spectral

properties. A considerable amount of research has been carried out on the numerical

analysis of the saddle-point problems, see [6, 8, 31] and the references therein.

2.1 Saddle-point systems

Here, we first introduce some common problems in fluid dynamics. The Navier-

Stokes (Stokes) equations are a common saddle-point problem. In the literature,

both analytical and numerical aspects of the solution of the Navier-Stokes or Stokes

equations for viscous incompressible fluids have been considered [4, 31, 41, 73, 80].

However, the analysis of the existence and uniqueness of the solution in linear and

nonlinear, steady and time-dependent cases is still difficult and receives much attention.

We introduce the stationary incompressible Navier-Stokes equations here. Let Ω be

a Lipschitz, bounded open set in R
n with boundary Γ, and ~f ∈ (L2(Ω))n be a given

vector function. The stationary incompressible Navier-Stokes equations [4, 73, 75] are
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to find a fluid velocity ~u = (u1, u2, · · · , un) and pressure p such that





−∆~u+Re

( n∑

i=1

uiDi~u+∇p
)

= ~f, in Ω

∇ · ~u = 0, in Ω

~u = 0, on Γ

(2.1)

where Re is the Reynolds number, which is proportional to a characteristic velocity, a

characteristic length, and the reciprocal of fluid viscosity, and Di is the differentiation

operator defined as Di =
∂
∂xi

. We call the first equation in (2.1) the momentum

equation, since it arises from the physical principle of conservation of momentum. The

second equation in (2.1) is called the continuity equation for steady flow, which states

that the rate at which mass enters a system is equal to the rate at which mass leaves

the system.

Remark 2.1.1. Here, we consider the vector Laplacian for the diffusion term in the

first equation of (2.1), consistent with the Dirichlet boundary condition given. For more

general models and/or boundary conditions, this could be replaced with the divergence

of the symmetric part of the gradient, as will be considered in Chapter 3.

Challenges in analyzing the existence and uniqueness of solutions of the Navier-

Stokes equations arise in many aspects. For example, some technical difficulties arise

in applying Sobolev inequalities and dealing with the nonlinear terms. The treatment

of the equations heavily depends on the dimension of the problems considered, and

non-uniqueness of solutions also happens. Uniqueness results are known only when the

data, for example, Re, are small enough, or the viscosity is large enough. For more

details, we refer to [22, 73].

A special case of fluid dynamics is the Stokes equations, which describe highly

viscous incompressible flows characterized by the diffusion term in the momentum

equation. The Stokes equations are linear, and simpler than the incompressible

Navier-Stokes equations. We consider the Stokes equations as follows





−ε∆~u+∇p = ~f, in Ω

∇ · ~u = 0, in Ω

~u = 0, on Γ
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where ε is the fluid viscosity.

Remark 2.1.2. The Stokes equations considered here are a limiting(Re→ 0) case of

the Navier-Stokes equations in (2.1) with a proper scaling of the pressure term.

The discretizations of the above models by finite-element, finite-difference, and

finite-volume methods for the unknown variables lead to some difficulty. For high

Reynolds number in the Navier-Stokes equations, the momentum equation is singularly

perturbed and the h-ellipticity measure [75] of the standard (central) discretization

schemes decreases. For the Stokes equations, equal-order finite element methods

cannot be used, since the required stability condition is not satisfied in this situation.

Instability also arises when using central differencing of the first-order derivatives

in the pressure term and continuity equation, if all variables are located at the grid

points.

To overcome this instability, the Marker-and-Cell (MAC) scheme was first estab-

lished by Harlow and Welch [78]. In the MAC scheme, the velocity unknowns are

located at the midpoints of the x- and y-edges of the mesh, and the pressure is located

at the cell centres. The MAC scheme has been successfully adapted and applied to

many PDEs. Another option is to add additional “artificial viscosity” or “artificial

pressure” terms to keep the discrete equations stable [75]. A semi-implicit method

was designed by Chorin [20, 21], where an artificial compressibility was introduced to

the continuity equation. One of our interests in this work is to analyze solution of

discretizations using the MAC scheme.

Using higher-order finite-element methods is another option to avoid instability.

Taylor-Hood elements (Q2 −Q1, P2 − P1) have been applied to the Stokes equations.

We consider the Q2 −Q1 approximation and solvers for the resulting systems. Other

stabilized finite-element methods are also well-studied, for example, in [31].

The momentum equation is associated with ~u and p, but p is not present in the

continuity equation. This leads to complications in the discretization and in the

numerical treatment. For well-posedness of the discrete system, the discretization of

the velocity and pressure unknowns should satisfy an inf-sup stability [31]

inf
qh 6=0

sup
~vh 6=~0

|(∇qh, ~vh)|
‖~vh‖1‖qh‖0

≥ γ > 0,

where γ is a constant.
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A more complicated example of fluids is magnetohydrodynamics (MHD). MHD is

the study of the properties of electrically conducting fluids, and has many valuable

applications, including in modelling plasma confinement, in astrophysics, aerospace

engineering, and so on. Based on the MHD equations, for example, scientists have

made a supercomputer model of the Earth’s interior. Often, MHD is modelled using a

combination of the Navier-Stokes equations of fluid dynamics and Maxwell’s equations

of electro-magnetism. We consider the one-fluid visco-resistive MHD model, where the

dependent variables are the fluid velocity, ~u, the hydrodynamic pressure, p, and the

magnetic field ~B. The equations are

∂~u

∂t
+ (~u · ∇)~u−∇ · (T + TM) +∇p = ~F , (2.2)

∂ ~B

∂t
−∇× (~u× ~B) +∇× (

1

Rem
∇× ~B) = ~G, (2.3)

∇ · ~u = 0, (2.4)

∇ · ~B = 0, (2.5)

where ~G = −∇ × ~Estat, and ~Estat is the static component of the electric field. The

Newtonian and magnetic stress tensors are given by

T =
1

2Re

[
∇~u+∇~uT

]
, and TM = ~B ⊗ ~B − 1

2
| ~B|2I,

respectively.

The stationary, incompressible MHD model in three-dimensions has been discussed

in [44], where the existence and uniqueness of solutions of the continuous and approx-

imate problems are guaranteed under some conditions on the data. A new mixed

variational formulation of MHD is presented in [70], where standard inf-sup stable

velocity-pressure pairs are used for the hydrodynamic unknowns, and a mixed approach

using Nédélec elements is used for the magnetic variables. In this model, there is

another scalar variable, r, included in (2.3) as ∇r. In that case, if ∇ · ~G is zero, it can

be shown that r = 0, yielding equivalence to the standard MHD model or the linearized

version in [40], where the author focuses on the stabilized finite-element method for

MHD. In recent years, numerical experiments using vector potential formulations of

(2.2)-(2.5) have been discussed in [1, 23]. However, there has been no attempt to

explore the existence and uniqueness of solutions of the formulations. Noting that the
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discretizations of MHD lead to saddle-point systems, it is necessary to better under-

stand the properties of either the continuum formulation or the discrete formulations of

MHD before designing good algorithms. In Chapter 3, we extend the tools of [44, 70]

to prove the existence and uniqueness of solutions of vector potential formulations of

MHD in two dimensions.

2.2 Multigrid preliminaries

For a general nonsingular linear system, Ku = b, we can consider finding its solution

exactly or inexactly. With increasing problem size, it is often a challenge to solve the

linear-algebraic equation exactly. Thus, iterative methods are used to find approximate

solutions. In the literature, many iterative methods have been well studied [31, 43,

59, 68, 72], including stationary iterative methods, Krylov subspace methods, and

multigrid methods. The idea of a stationary iteration is to find an approximation,

M , to K that can be inverted easily, then compute the approximate solution via the

iteration

uj+1 = uj +M−1(b−Kuj),

or

uj+1 = (I −M−1K)uj +M−1b. (2.6)

The matrix S := I −M−1K is called the iteration matrix. If ρ(S) := max |λ(S)| < 1,

then (2.6) is said to be convergent. Often, we choose M to be the diagonal part of K

(Jacobi iteration), the lower triangle part of K (Gauss-Seidel iteration), or a scalar

multiple of the identity (Richardson iteration).

Many classical iterative methods (for example, Jacobi) appropriately applied to

discrete problems have poor convergence but a strong “smoothing” effect on the error in

any approximation. That is, the schemes can reduce high frequency error components

quickly, but are slow to reduce low-frequency errors. Because of this, we call such

schemes “relaxation” methods. Based on this smoothing property, we can construct

a coarse grid, where the low frequencies on the fine grid can be treated as relatively

high frequencies, so the smooth error can be approximated on the coarse grid, which

is simple, compared with the fine-grid problem. This leads to two-grid and multigrid

methods.
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Multigrid methods [10, 16, 71, 75, 79, 81] have been successfully applied to saddle-

point problems either as standalone iterative solvers or as preconditioners, due to

their high efficiency. Precisely, multigrid offers the possibility of solving problems

with N unknowns with O(N) work and storage for large classes of problems. In the

literature, there are two families of multigrid methods, geometric multigrid [71, 79]

and algebraic multigrid [16, 67, 68, 75]. In this thesis, we focus on geometric multigrid

methods. Assume we have two meshes, with fine-grid meshsize h and coarse-grid

meshsize H (often, H = 2h, by doubling the meshsize in each spatial direction). A

two-grid algorithm is as follows,

Algorithm 2.2.1. Two-grid method: uj+1
h = TGAlg(Kh, bh, u

j
h, ν1, ν2)

1. Pre-smoothing: Applying ν1 sweeps of relaxation to ujh:

ūjh = Smoothingν1(ujh, Kh, bh). (2.7)

2. Coarse grid correction (CGC):

• Compute the residual: rh = bh −Khū
j
h;

• Restrict the residual: rH = Rhrh;

• Solve the coarse-grid problem: K∗
HuH = rH ;

• Interpolate the correction: δuh = PhuH ;

• Update the corrected approximation: ûjh = ūjh + δuh;

3. Post-smoothing: Applying ν2 sweeps of relaxation to ûjh,

uj+1
h = Smoothingν2(ûjh, Kh, bh) (2.8)

Applying this two-grid method, the two-grid error propagation operator is

MTGM = Sν2h (I − Ph(K
∗
H)

−1RhKh)Sν1h , (2.9)

where Sh = I −M−1
h Kh is the error propagation operator for relaxation.

From the above discussion, the important components in a two-grid algorithm are:

• The smoothing procedure: ūh = Smoothingν(∗, Kh, bh);
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• The fine-to-coarse restriction operator: Rh;

• The coarse-grid operator: K∗
H ;

• The coarse-to-fine interpolation operator: Ph;

For the pre- and post-smoothing relaxation, Jacobi, Gauss-Seidel, and Richardson

relaxation can all be used. Usually, we use the same relaxation for both pre- and

post-smoothing, but it can be different. For the restriction operator, Rh, there are

many choices, which depend on the problems. Here, we focus on choices of Rh tied to

the mesh and the particular discretization scheme used to generate Kh. K
∗
H can be the

Galerkin operator, K∗
H = RhKhPh, or the natural rediscretization operator, KH , and

I − Ph(K
∗
H)

−1RhKh is called the coarse-grid correction operator. The interpolation

operator, Ph, is usually taken to be the conjugate transpose of Rh, with scaling

depending on the discretization scheme and the dimension of the considered problem.

For more details on the choice of multigrid components, we refer to [71, 75, 79].

If we solve the coarse-grid problem recursively by the two-grid method, then we

obtain a multigrid method. Over the past decades, a variety of types of multigrid

methods have been developed, including W,V, and F -cycles [71].

The choice of the components of multigrid methods, such as coarse-grid correction,

prolongation, restriction, and relaxation schemes, is very crucial to design efficient

algorithms. A well-developed tool, local Fourier analysis (LFA), can aid proper choice

of these multigrid components in many cases. Thus, it is worth investigating and

understanding how to apply LFA to different problems and when it can be an effective

tool.

2.3 LFA preliminaries

Local Fourier analysis was first introduced by Brandt in [13], where the smoothing

factor is presented as a good predictor for multigrid performance. The principal

advantage of LFA is that it provides realistic quantitative estimates of the asymptotic

multigrid convergence factor of some model problems and classes of relaxation schemes

and multigrid algorithms. Two-grid local Fourier analysis [75] contains analysis of two

parts: the relaxation scheme and the coarse-grid correction. Here, we present a brief

introduction to LFA.
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In order to describe LFA, we consider d-dimensional infinite uniform grids, Gh, as

follows,

Gh =

{
x := (x1, x2, . . . , xd) = kh = (k1, k2, . . . , kd)h, ki ∈ Z

}
, (2.10)

and Fourier modes ϕ(θ,x) = eıθ·x/h on Gh, where θ = (θ1, θ2, . . . , θd) and ı
2 = −1.

Because ϕ(θ,x) is periodic in θ with period 2π, we consider θi to vary continuously in

the interval
(
− π

2
, 3π

2

]
(or any interval with length 2π). The coarse grid G2h is defined

similarly.

Remark 2.3.1. In practical use, the grids might be more complicated than (2.10).

However, LFA can be modified to adapt to the corresponding discretizations, as it will

be later in this thesis.

Let Lh be a scalar Toeplitz operator acting on l2(Gh) as follows,

Lh
∧
= [sκ]h (κ = (κ1, κ2, · · · , d) ∈ Z

d);

Lhwh(x) =
∑

κ∈V
sκwh(x+ κh),

with constant coefficients sκ ∈ R (or C), where wh(x) is a function in l2(Gh). Here,

V is taken to be a finite index set. Note that because Lh is Toeplitz, it is diagonalized

by the Fourier modes ϕ(θ,x).

A general 2D stencil can be written as

[sκ]h =




...
...

...

· · · s−1,1 s0,1 s1,1 · · ·
· · · s−1,0 s0,0 s1,0 · · ·
· · · s−1,−1 s0,−1 s1,−1 · · ·

...
...

...




.

If we consider the 2D Laplace problem using the 5-point finite-difference approximation,

then the stencil of Lh = −∆h is

1

h2




−1

−1 4 −1

−1


 , denoted as




s0,1

s−1,0 s0,0 s1,0

s0,−1


 . (2.11)
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Definition 2.3.1. We call L̃h(θ) =
∑

κ∈V
sκe

iθ·κ the symbol of Lh.

Note that for all grid functions ϕ(θ,x),

Lhϕ(θ,x) = L̃h(θ)ϕ(θ,x).

We note that the symbol of the stencil Lh is closely related to the standard definition

of the symbol of a differential operator. By standard calculation, the symbol of stencil

−∆h, defined in (2.11), is given by L̃h(θ1, θ2) =
4−2 cos θ1−2 cos θ2

h2
.

For multigrid methods, we construct a sequence of coarse grids by doubling the

mesh size in each spatial direction. High and low frequencies for standard coarsening

are given by

θ ∈ T low =
[
−π
2
,
π

2

)d
, θ ∈ T high =

[
−π
2
,
3π

2

)d∖[
−π
2
,
π

2

)d
.

It is easy to check that

ϕ(θ,x) ≡ ϕ(θ
′

,x) for x ∈ G2h, iff θ = θ
′

(mod π).

We define 2d-dimensional spaces of harmonics over θ ∈ (−π
2
, π
2
]d as

Eh(θ) = span
{
ϕh(θ

ξ, ∗) : ξ = (ξ1, ξ2, . . . , ξd), ξj ∈ {0, 1}
}
, (2.12)

with

θξ = θ + ξπ.

Definition 2.3.2. The error-propagation symbol, S̃h(θ), for smoother Sh on the

infinite grid Gh satisfies

Shϕ(θ,x) = S̃hϕ(θ,x), θ ∈
[
− π

2
,
3π

2

)d
,

for all ϕ(θ,x), and the corresponding smoothing factor for Sh is given by

µloc = µloc(Sh) = max
θ∈Thigh

{∣∣S̃h(θ)
∣∣ }. (2.13)

Remark 2.3.2. If Lh is not a scalar operator, then
∣∣S̃h(θ)

∣∣ in (2.13) can be modified
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to be
∣∣λ
(
S̃h(θ)

)∣∣, taking the absolute value of the eigenvalues of S̃h(θ).

The error-propagation symbol for a relaxation scheme, represented by matrix Mh,

applied to Lh is

S̃h(p, ω,θ) = I − ωM̃−1
h (θ)L̃h(θ),

where p represents parameters within Mh, the approximation to Lh, ω is an overall

weighting factor, and M̃h and L̃h are the symbols for Mh and Lh, respectively. Denote

p̄ = (p, ω).

For the 2D Laplace problem, we consider the Jacobi relaxation, where Mh is given

by

Mh =
1

h2




0

0 4 0

0


 ,

with its symbol M̃h(θ1, θ2) =
4
h2
.

Then, the error propagation symbol of weighted Jacobi relaxation for the Laplace

problem is

S̃h(ω,θ) = 1− ω
4− 2 cos θ1 − 2 cos θ2

4
.

According to (2.13), we have

µloc = max

{
|1− 2ω|, |1− ω

2
|
}
, (2.14)

since the maximum and minimum values of 4 − 2 cos θ1 − 2 cos θ2 are achieved at

(θ1, θ2) = (π, π), and (θ1, θ2) = (0, π
2
) or (π

2
, 0), respectively.

Because µloc, defined in (2.13), is a function of p̄, the following is a natural question:

how can we optimize the parameters in (2.13) to obtain the most efficient performance?

This is one of the central topics in our work presented here.

Definition 2.3.3. The optimal smoothing factor over D is defined as

µopt = min
D
µloc, (2.15)

where D is a bounded and closed set of allowable parameters.
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Now, optimizing (2.14), we obtain

µopt =
3

5
, if and only if ω =

4

5
. (2.16)

2.3.1 Two-grid LFA

Here, we introduce the two-grid LFA. For simplicity, we consider d = 2 (other cases are

similar). We use the ordering of α = (0, 0), (1, 0), (0, 1), (1, 1) for the four harmonics.

Given any θ00, (2.12) can be written as the following 4-dimensional subspaces

Eh(θ) = span{ϕ(θ00, ∗), ϕ(θ10, ∗), ϕ(θ10, ∗), ϕ(θ11, ∗)}.

We consider applying LFA to the two-grid operator,

MTGM
h = Sν2h MCGC

h Sν1h , (2.17)

with CGC operator,

MCGC
h = I − Ph(L

∗
H)

−1RhLh,

where L∗
H is the coarse-grid operator. Assume that Lh, Rh, Ph,Sh, and L∗

H are rep-

resented by stencils on Gh and G2h. Then, Eh(θ) is invariant under the two-grid

operator, MTGM
h .

To derive symbols for the grid-transfer operators, we first consider an arbitrary

restriction operator characterized by a constant coefficient stencil Rh
∧
= [rκ]. Then, an

infinite grid function wh : Gh → R (or C) is transferred to the coarse grid, G2h, in the

following way

(Rhwh)(x) =
∑

κ∈V
rκwh(x+ κh) (x ∈ G2h).

Definition 2.3.4. We call R̃h(θ
α) =

∑

κ∈V
rκe

ικ·θα

the restriction symbol of Rh.

Inserting the representations of Sh, Lh, L∗
H , Ph, Rh into (2.17), we obtain the Fourier

representation of two-grid error-propagation operator as

M̃
TGM

h (θ) = S̃
ν2

h (θ)
(
I − P̃ h(θ)(L̃

∗
H(2θ))

−1R̃h(θ)L̃h(θ)
)
S̃
ν1

h (θ),
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where

L̃h(θ) = diag
{
L̃h(θ

00), L̃h(θ
10), L̃h(θ

01), L̃h(θ
11)
}
,

S̃h(θ) = diag
{
S̃h(θ00), S̃h(θ10), S̃h(θ01), S̃h(θ11)

}
,

P̃ h(θ) =
(
P̃h(θ

00); P̃h(θ
10); P̃h(θ

01); P̃h(θ
11)
)
,

R̃h(θ) =
(
R̃h(θ

00), R̃h(θ
10), R̃h(θ

01), R̃h(θ
11)
)
,

in which diag{T1, T2, T3, T4} stands for the block diagonal matrix with diagonal blocks,

T1, T2, T3, and T4.

Remark 2.3.3. Considering general dimensions d, the above block matrices will have

2d blocks.

Definition 2.3.5. The asymptotic two-grid convergence factor, ρasp, is defined as

ρasp = sup{ρ(M̃h(θ)
TGM) : θ ∈ T low}. (2.18)

For practical use, we usual consider a discrete form of ρasp, denoted by ρh, resulting

from sampling ρasp over only finite set of frequencies.

Now, consider the two-grid LFA for the 2D Laplace problem. Here, we use

L∗
H = RhLhPh, where Rh is the full weighted (FW) restriction operator given by

Rh =
1

16



1 2 1

2 4 2

1 2 1


 ,

with its symbol R̃h(θ1, θ2) =
1
4
(1+cos θ1)(1+cos θ2), and Ph is taken to be the bilinear

interpolation as follows,

Ph =
1

4




1 2 1

2 4 2

1 2 1


 ,
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with its symbol P̃h(θ1, θ2) =
1
4
(1 + cos θ1)(1 + cos θ2). Thus,

P̃ h(θ) =
1

4




(1 + cos θ1)(1 + cos θ2)

(1− cos θ1)(1 + cos θ2)

(1 + cos θ1)(1− cos θ2)

(1− cos θ1)(1− cos θ2)



,

and R̃h(θ) = P̃
T

h (θ). For more details on calculation of symbols of grid-transfer

operators, we refer to [53, 75, 81].

Here, we show LFA predictions for the 2D Laplace problem with weighted Jacobi

relaxation. ρh is computed with h = 1
64
. In the smoothing analysis above, we give the

optimal parameter choice for weighted Jacobi relaxation scheme. Figure 2.1 presents

the two-grid LFA convergence factor for weighted Jacobi, as a function of ω, to show

the sensitivity of performance to parameter choice. From Figure 2.1, we see that the

LFA smoothing factor and predicted two-grid convergence factors match well. Note

that the optimal parameter is 4
5
, which is consistent with the smoothing analysis.

Now we take ω = 4
5
to show the LFA predictions. At the left of Figure 2.2, we

present the spectral radius of the error-propagation symbol for the weighted Jacobi

relaxation, as a function of θ, showing that weighted Jacobi relaxation reduces errors

over the high frequencies quickly. The right of Figure 2.2 shows the spectra of the two-

grid error-propagation operators for weighted Jacobi relaxation. We see the two-grid

convergence factor ρh =
3
5
, which is equal to the optimal smoothing factor.

Figure 2.1: The two-grid local Fourier analysis convergence and smoothing factors for
weighted Jacobi, as a function of ω.
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Figure 2.2: At left, the spectral radius of the error-propagation symbol for weighted
Jacobi relaxation with ω = 4

5
, as a function of the Fourier mode θ. At right, the

spectrum of the two-grid error-propagation operator for weighted Jacobi relaxation
with ω = 4

5
. The radius of the red circle is the smoothing factor.

Remark 2.3.4. If we use rediscretization operator, L∗
H = LH , for the 2D Laplace

problem with weighted Jacobi relaxation, we obtain the same LFA predictions as those

with the Galerkin operator.

The convergence factor of the two-grid method can be estimated directly from

the two-grid LFA convergence factor in (2.18). If we assume that we have an “ideal”

coarse-grid-correction operator that annihilates low-frequency error components and

leaves high-frequency components unchanged, then the resulting LFA smoothing

analysis usually gives a good prediction for the actual multigrid performance. For

precise prediction by LFA, we usually consider an infinite-grid operator, that is, we

ignore the boundary conditions. In practical computing, extra work, for example,

pre-relaxation, might be needed to deal with boundary conditions and obtain better

performance. Under these circumstances, the smoothing factor, (2.13), of LFA can be

used to analyse the multigrid algorithm and easily optimize any parameters available.

Two- and multi-level local Fourier analysis have been established to adapt to different

multigrid cycling strategies. For more details, we refer the reader to [75, 81].

2.4 LFA applications

LFA can be applied to different types of discretization schemes, including discontinuous

Galerkin finite-element [46], finite-difference [75], and finite-volume methods [52]. Both
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staggered and unstaggered grids, and even more complicated grids, can be considered.

Both vertex-centred and cell-centred multigrid methods have been considered [57, 75].

There are also some recent extensions to more complicated meshes, for example,

discretizations on Voronoi meshes [66].

Different relaxation schemes have also been investigated using LFA. For PDEs

with a single (scalar) unknown, pointwise relaxation schemes, such as classical Jacobi,

and Gauss-Seidel are widely used. Alternating line relaxation [75], a combination

of x-line and y-line relaxation, is attractive, due to its robustness, yielding excellent

properties for a large class of complicated problems, including anisotropic model

problems. Collective relaxation schemes are also very efficient, updating the solution

over subsets, whose union covers all of the unknowns. The advantage of these methods

is that one can solve the resulting small-scale problems over subsets of the unknowns

more accurately and efficiently. For example, Local Fourier analysis has been applied

to the curl-curl equation with overlapping block relaxation [9, 53]. Collective (Vanka-

type) relaxation has also been well-studied for scalar PDEs or systems of PDEs, see

[53, 65], including theoretical analysis of the validity of LFA for multigrid methods

with staggered grid transfers and multiplicative overlapping smoothers [53]. Arbitrary

finite-element discretizations can also be analysed in that framework for LFA. Recently,

LFA has also been presented for periodic stencils with collective relaxation [63], with

a flexible computer implementation [64].

2.5 Block-structured solvers

Researchers have recently shown increased interest in numerical solution of the Stokes

equations, whose discretization naturally leads to saddle-point systems. The design of

fast solvers for the Stokes equations has been a major research subject in recent years,

developing efficient algorithms for the Navier-Stokes equations [41, 73] and control

problems governed by the Stokes equations [51, 62]. We mainly employ LFA to help

us analyze and construct better algorithms for the solution of the Stokes equations

with multigrid methods.

The discretization of saddle-point problems, considered here, has the following
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form

Kx =

(
A BT

B −C

)(
U
p

)
= b, (2.19)

where we focus on the case where A is symmetric and positive definite on the kernel of

B, B has full rank, and C is symmetric and positive semidefinite, including the case

where C is zero.

In the literature, researchers have developed two main families of preconditioners

for the Stokes equations. Block preconditioners (cf. [31] and the references therein)

are commonly used, since they can easily be constructed from standard multigrid

algorithms for scalar elliptic PDEs, such as algebraic multigrid [67]. Monolithic

multigrid methods, in contrast, are directly applied to the system in coupled form.

However, the construction and analysis of these methods poses some difficulty, because

standard pointwise relaxation schemes cannot be applied. Thus, several families of

relaxation schemes have been developed for monolithic multigrid methods for the

Stokes equations and more complicated saddle-point systems. These methods have

been shown to outperform block preconditioners in some cases (see, e.g., [2]).

Distributive relaxation [14, 60, 82] was the first approach to be proposed, and

can be regarded as a generalization of decoupled relaxation, that has been further

developed [5, 77]. For a theoretical description and corresponding analysis, we refer

to [82, 83]. The central idea is to use a distribution operator, P, to allow use of

pointwise relaxation schemes on transformed variables. For distributive Gauss-Seidel

or weighted-Jacobi relaxation (with weights α1, α2), we solve a system of the form

Mδx̂ =

(
α1D1 0

B α2D2

)(
δÛ
δp̂

)
=

(
rU

rp

)
, (2.20)

where D1 and D2 are approximations to the corresponding blocks in KP , respectively.

Then, distribute the updates as δx = Pδx̂. Equation (2.20) is equivalent to computing

the updates as

δÛ = (α1D1)
−1rU ,

δp̂ =
(
α2D2)

−1(rp − BδÛ),
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followed by distribution to the original unknowns by computing

(
δU
δp

)
= P

(
δÛ
δp̂

)
.

Different choices of D1 and D2 lead to the distributive Gauss-Seidel or distributive

Jacobi relaxation, or other schemes in this family.

A collective relaxation scheme was introduced by Vanka [76], based on solving

a sequence of localized saddle-point problems in a block overlapping Gauss-Seidel

iteration. Although collective relaxation is more robust for coupled systems, it is

also more expensive in practice than decoupled relaxation. More detailed comparison

between coupled and decoupled relaxations can be found, for example, in [75]. Others

block relaxation schemes include the Braess-Sarazin [12] and Uzawa [54] approaches.

Using Braess-Sarazin relaxation (BSR) for system (2.19), one solves a system of

the form

Mδx =

(
αD BT

B −C

)(
δU
δp

)
=

(
rU

rp

)
, (2.21)

where D is an approximation to A, the inverse of which is easy to apply, for example

I, or diag(A). Solutions of (2.21) are computed in two stages as

Sδp =
1

α
BD−1rU − rp, (2.22)

δU =
1

α
D−1(rU − BT δp),

where S = 1
α
BD−1BT +C, and α > 0 is a chosen weight to obtain a better relaxation

scheme. Iterative methods can be applied to the solution for δp in (2.22), which leads

to inexact BSR methods [84].

The Uzawa-type relaxation schemes that we consider can be written in terms of a

simpler block solve than that used in BSR,

Mδx =

(
αD 0

B −S

)(
δU
δp

)
=

(
rU

rp

)
, (2.23)

where αD is an approximation of A and −S is an approximation of the Schur com-

plement, −BA−1BT − C. Equation (2.23) is equivalent to computing the updates
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as

δU = (αD)−1rU ,

Sδp = BδU − rp.

The choice of S leads to different types of Uzawa relaxation, which we will investigate.

Each of the above families has been further developed in recent years, including

Braess-Sarazin-type relaxation schemes [1, 2, 3, 11, 12], Vanka-type relaxation schemes

[1, 2, 3, 53, 56, 65, 69, 76], Uzawa-type relaxation schemes [39, 42, 47, 58], and other

types of methods [19, 72].

Here, we first consider the MAC scheme for the Stokes equations, and address the

natural question of how to solve the resulting saddle-point systems. Block relaxation

schemes, such as Braess-Sarazin, Uzawa, and distributive approaches, have each been

investigated in this setting. However, few studies have been carried out comparing these

schemes. Thus, we concentrate on LFA for Braess-Sarazin, Uzawa, and distributive

relaxation schemes, and focus on optimizing the parameters for each to provide a

fair comparison of performance. Considering parallel implementation on modern

architectures, we consider variants based on weighted-Jacobi relaxation.

For predicting performance, early studies mainly have focused on LFA smoothing

analysis. However, recently, some studies have reported that smoothing analysis is

unable to give a good prediction of multigrid behavior for some problems [36, 37, 53].

Specifically, in [37], local Fourier analysis failed to provide its usual predictivity of

the convergence behavior of multigrid applied to the space-time diffusion equation

and its generalizations. In [36], however, a semi-algebraic mode analysis (SAMA) was

proposed to remedy standard LFA and provide insight into asymptotic convergence

behaviour of multigrid methods. In [53], the smoothing factor of LFA overestimates

the two-grid convergence factor for the Q2 −Q1 discretization of the Stokes equations

with Vanka-type relaxation.

Our work is motivated by the failure of the classical smoothing analysis for the

Q2 −Q1 approximation. Since this failure might be related to the Q2 approximation

for the velocity unknowns, we first investigate higher-order finite-element methods

for the Laplace problem. Even for the simple weighted Jacobi relaxation for the

Laplace problem, although the two-grid LFA convergence factor matches with realistic
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multigrid performance, we find that the LFA smoothing factor fails to predict this

performance. A modified two-grid local Fourier analysis is presented, and the correct

parameter choice is shown to yield a significant improvement in two-grid and multigrid

convergence factors. This study further helps us understand the previous findings that

the classical smoothing analysis of LFA loses its predictivity of multigrid performance

for the Q2 −Q1 approximation to the Stokes equations.

Following this, we discuss LFA for multigrid methods applied to Taylor-Hood

and two stabilized (Q1 − Q1) finite-element discretizations of the Stokes equations.

Similarly to the case of the MAC discretization, block-structured relaxations are

considered for these finite-element methods. As the exact application of these schemes

is expensive, we also experiment with the inexact case, in which the subsystem solves

are performed by a few steps of Jacobi or multigrid iteration. Rediscretization and

Galerkin coarse-grid operators are discussed. Many interesting results are found.

2.6 Domain decomposition

With increasing problem sizes, there is an urgent need to design fast and efficient

algorithms. Direct solvers usually are too costly, especially considering memory.

Domain decomposition is well-suited for parallelism and can be applied to some

challenging problems, for example indefinite Helmholtz equations [18, 32]. There are

two common families: nonoverlapping and overlapping domain decomposition, and

many approaches, including Neumann-Neumann [45, 61, 74], FETI [29, 33, 34], Schwarz

[27, 28, 74], and Optimized Schwarz [27, 38] methods. Balancing domain decomposition

by constraints (BDDC), one of the nonoverlapping domain decomposition methods,

was first introduced by Dohrmann in [24]. Recently, BDDC has been extended to

many problems either as a solver or preconditioner, including for the Stokes equations

[48], elliptic problems [7, 50], 3D problems in H(curl) [26], and others [25, 49, 55].

However, existing research focuses mainly on either the linear-algebraic aspects of

solutions or the analysis of error estimates based on the finite-element theory. In

contrast to this work, we extend LFA to BDDC to examine the condition number of

the preconditioned operators.

The idea of domain decomposition methods is very natural and simple. First,

partition the domain, Ω, into N subdomains, Ωi, i = 1, 2, · · · , N , such that Ω̄ =
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⋃N
i=1 Ω̄i. Then, solve smaller-scale problems on each subdomain, Ωi. Finally, “glue”

the local solutions together to obtain a global approximation to the solution. There

are many techniques for this “glue” to obtain the correct solution. How we choose

the subdomain and glue the local solutions together determines the different classes of

domain decomposition methods.

Here, we give a brief introduction to Schwarz domain decomposition methods, to

shed light on the BDDC approach that we will investigate. For more details about

domain decomposition methods, we refer to [27, 74]. Consider the Laplace problem on

a bounded domain, Ω, with Lipschitz boundary, with homogenous Dirichlet boundary

conditions as follows 


∆w = f, in Ω

w = 0, on ∂Ω
(2.24)

For simplification, suppose that Ω is partitioned into two nonoverlapping subdo-

mains Ωi (as shown at the left of Figure 2.3):

Ω̄ = Ω̄1 ∪ Ω̄2, ∂Ω1 ∩ ∂Ω2 = ∂Ωs. (2.25)

Figure 2.3: At left, partition of Ω into two nonoverlapping subdomains, and −→n i

(i = 1, 2) denote the outward normals to the boundary ∂Ω corresponding to subdomain
Ωi. At right, partition of Ω into two overlapping subdomains.
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The Laplace problem (2.24) is equivalent to the following coupled system [74],





−∆w1 = f, in Ω1

w1 = 0, on ∂Ω1 ∩ ∂Ω
w2 = w1, on ∂Ωs

∂w2

∂−→n 2
= − ∂w1

∂−→n 1
, on ∂Ωs

−∆w2 = f, in Ω2

w2 = 0, on ∂Ω2 ∩ ∂Ω

(2.26)

Several domain decomposition approaches arise from (2.26), alternately solving for w1

and w2 based on the conditions imposed on ΩS.

The finite-element discretization of (2.24) leads to the linear algebraic system,

Aw = f, (2.27)

which, similarly to (2.26), can be ordered as

A =



A

(1)
I 0 A

(1)
IΓ

0 A
(2)
I A

(2)
IΓ

A
(2)
ΓI A

(2)
ΓI AΓΓ


 , w =



w

(1)
I

w
(2)
I

wΓ


 , f =



f
(1)
I

f
(2)
I

fΓ


 ,

where the variables corresponding to Ω1, Ω2, and ∂Ωs are labelled by w
(1)
I ,w

(2)
I , and wΓ,

respectively. Note that A is written in block form, similar to the saddle-point structure.

The challenge for (2.27) is how to construct fast solvers using this decomposition.

In contrast, suppose that Ω is partitioned into two overlapping subdomains Ωi

(shown at the right of Figure 2.3):

Ω̄ = Ω̄1 ∪ Ω̄2, Ω1 ∩ Ω2 = Ωs.

Here, we discuss additive Schwarz methods, based on the overlapping partition.

To avoid complications from the overlap between subdomains, we introduce the

partition of unity functions. Since Ω1 ∩ Ω2 = Ωs, to obtain global solutions from the

subdomains, we first define an extension operator Ei. For a function wi : Ωi → R,

Ei(wi) : Ωi → Ω is the extension of wi by zero outside Ωi. Another option to “glue”
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the solutions together is to use partition of unity functions, gi, mapping Ωi to R,

with gi(x) ≥ 0, g1(x) + g2(x) = 1, and supp(gi) ⊂ Ωi for each i, and such that for all

functions w : Ωi → R,

w = E1(g1w|Ω1) + E2(g2w|Ω2).

Based on the above, we introduce the famous additive Schwarz (AS) and restricted

additive Schwarz (RAS) approaches based on the overlapping partition (see the right

of Figure 2.3), following [27].

Algorithm 2.6.1. AS and RAS Algorithms

Given w0 that satisfies boundary conditions on Ω,

1. Compute the residual: rn = f +∆wn;

2. For i = 1, 2, solve the following local subdomain problem:




−∆vni = rn, in Ωi

vni = 0, on ∂Ωi

3. Two choices to update solution wn:

(a) AS choice

wn+1 = wn + E1(v
n
1 ) + E2(v

n
2 ). (2.28)

(b) RAS choice

wn+1 = wn + E1(g1v
n
1 ) + E2(g2v

n
2 ). (2.29)

The advantage of AS is that it is suitable to parallelize, but its convergence is very

slow. In practice, AS is always used as a preconditioner for a Krylov method such as

GMRES, CG, or BiCGSTAB. For more details, including about the implementation

of AS and RAS, we refer to [27]. Two-level AS methods have also been developed

for scalar second-order symmetric positive-definite elliptic boundary value problems

and for the biharmonic equation [15], using a nonconforming finite-element method.

A finite-element-based additive Schwarz preconditioner has been developed for the

Navier-Stokes equations [35]. Often, RAS shows a faster convergence than AS [30]. An

extension of RAS preconditioning has been designed for symmetric positive-definite
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problems [17], where sharp condition number bounds on the preconditioned system

and the combination with CG are discussed, and also for general sparse systems [18].

BDDC can be treated as a combination of nonoverlapping and overlapping decom-

position methods, using a nonoverlapping partition, but the idea of (2.28) and (2.29)

to give two values to represent the solution along the boundary ∂Ωs, and to construct

a preconditioner for the global problem (2.24). Taking Figure 2.4 as example, where

Ω has the same partition as (2.25). We duplicate ∂Ωs, and introduce independent

degrees of freedom for subdomains Ω1 and Ω2, along this line. We call the union of the

duplicated subdomains the “duplicated global” domain, corresponding to a duplicated

global problem. Then, we glue the solutions of the two subdomain problems together

to get the approximate solution of the global problem (2.24). To be specific, we have

the matrix representation of the duplicated global problem,

Â =
2∑

i=1

(R̄(i))TA(i)R̄(i), (2.30)

where R̄i is a restriction operator mapping from the “duplicated global” variables

to the i-th subdomain variables, and A(i) corresponds to matrix representation of

subdomain problem in Ωi with Neumann boundary conditions on ∂Ωs. Based on

(2.30), a preconditioner for A is given by

M−1 = RT Â−1R, (2.31)

where R is a mapping from the standard global variables to the “duplicated global”

variables. The role of RT is the same as Ei in AS and RAS. In [50], “lumped”

and Dirichlet operators are used to construct R. Our BDDC work is based on the

preconditioners introduced in [50].



31

Figure 2.4: Nonoverlapping partition for BDDC method with two subdomains.

In (2.31), Â has a block structured form with block LU decomposition,

Â =

(
Arr ÂTΠr
ÂΠr AΠΠ

)
=

(
Arr 0

ÂΠr ŜΠΠ

)(
I A−1

rr A
T
Πr

0 I

)
,

where Arr corresponds to the subdomain interior and interface degrees of freedom, AΠΠ

corresponds to the coarse-level degrees of freedom, which are located at the corners of

the subdomains, ÂΠr is the connections between the coarse-level and subdomain and

interface degrees of freedom, and ŜΠΠ = AΠΠ − ÂΠrA
−1
rr Â

T
Πr is the Schur complement.

In BDDC, the solution of the Schur complement equation (ŜΠΠ) is needed, which is

the main bottleneck of the BDDC approach. To mitigate this, we propose variants of

BDDC algorithms based on multiplicative preconditioning ideas. From LFA, we can

quantitatively estimate the conditioner numbers of BDDC-like algorithms, which gives

us some insight into the design of efficient solvers.
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performance study for Stokes solvers at the extreme scale. J. Comput. Sci.,

17(part 3):509–521, 2016.

[43] A. Greenbaum. Iterative methods for solving linear systems, volume 17 of Frontiers

in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 1997.

[44] M. D. Gunzburger, A. J. Meir, and J. S. Peterson. On the existence, uniqueness,

and finite element approximation of solutions of the equations of stationary,

incompressible magnetohydrodynamics. Mathematics of Computation, 56(194):523–

563, 1991.

[45] M. Heinkenschloss and H. Nguyen. Neumann-Neumann domain decomposition

preconditioners for linear-quadratic elliptic optimal control problems. SIAM J.

Sci. Comput., 28(3):1001–1028, 2006.



36

[46] P. W. Hemker, W. Hoffmann, and M. H. van Raalte. Fourier two-level analysis

for discontinuous Galerkin discretization with linear elements. Numer. Linear

Algebra Appl., 11(5-6):473–491, 2004.
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Chapter 3

Vector-potential finite-element

formulations for two-dimensional

resistive magnetohydrodynamics

Abstract

1 Vector-potential formulations are attractive for electromagnetic problems in two di-

mensions, since they reduce both the number and complexity of equations, particularly

in coupled systems, such as magnetohydrodynamics (MHD). In this paper, we consider

the finite-element formulation of a vector-potential model of two-dimensional resistive

MHD. Existence and uniqueness are considered separately for the continuum nonlinear

equations and the discretized and linearized form that arises from Newton’s method

applied to a modified system. Under some conditions, we prove that the solutions of

the original and modified weak forms are the same, allowing us to prove convergence

of both the discretization and the nonlinear iteration.
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3.1 Introduction

Magnetohydrodynamics (MHD) models the flow of a charged fluid, or plasma, in the

presence of electromagnetic fields. There are many formulations of MHD, depending on

the domain and physical parameters considered. This includes assumptions associated

with the coupling between the electric field, current density, and Ohm’s law, leading to

formulations such as ideal, resistive, and Hall MHD [16]. In this paper, we use a single

incompressible fluid model, treating ions and electrons together, along with a resistive

formulation. The resulting visco-resistive model couples the Navier-Stokes equations

with Maxwell’s equations, forming a nonlinear system of partial differential equations

(PDEs). Moreover, we focus on time-independent solutions, with our primary focus

on existence and uniqueness of solutions to the nonlinear and linearized systems of

equations.

The equations of stationary, incompressible single fluid MHD posed in three

dimensions are considered in (for example) [17, 18]. Under some conditions on the

data, the existence and uniqueness of solutions to weak formulations of the equations

is known both in the continuum and for certain discretizations. The focus of this paper

is on MHD in two dimensions (2D). Here, a vector potential formulation was used

in [2, 10]. Vector potential formulations are attractive for electromagnetic problems

with two-dimensional dynamics, since they substantially reduce the complexity of the

resulting equations, by trading vector for scalar unknowns, and the curl terms that

arise in Maxwell’s equations for standard gradient and diffusion operators. Despite

this attractiveness, there is a scarcity of analysis for multiphysics systems using

vector potential formulations, for both the continuum and discretized models. In this

paper, we demonstrate that standard analysis techniques can be extended from three-

dimensional MHD [17, 18] to the two-dimensional discretizations considered in [2, 10],

although some complications arise that can only be addressed (to our knowledge) by

making more restrictive assumptions.

Two-dimensional models of MHD arise when considering magnetically confined

plasmas, such as in a large aspect-ratio tokamak reactor, as illustrated in Figure 3.1.

In this setting, the magnetic field along the toroidal direction (denoted by z) is very

large in order to contain the plasma. Consequently, the resulting dynamics decouple

into a two-dimensional problem posed over the poloidal cross-section. While such

a configuration can be accurately studied using full three-dimensional models, the
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Numerical results supporting the theory are presented in Section 3.5. Finally, some

concluding remarks are given in Section 3.6.

In what follows, the letter C (with or without subscripts) denotes a generic positive

constant which may be different depending on the context. For a Lipschitz domain

Ω ⊂ R
2, denote by Lp, 1 ≤ p ≤ ∞, the Lebesgue space of p-integrable functions,

endowed with the norm ‖·‖0,p. Denote the standard Euclidean norm as | · |, the classical
L2(Ω) inner product and norm as 〈·, ·〉0 and ‖ · ‖0, respectively, and 〈f, g〉 =

∫
Ω
fgdX,

where fg ∈ L1(Ω). The standard L2-based Sobolev space with integer or fractional

exponent s is denoted by Hs(Ω). We write ‖ · ‖s for its norm.

For convenience, we introduce the spaces

J :=
(
H1

0 (Ω)
)2 ∩H(div0; Ω), W :=

(
H1

0 (Ω)
)2
, Q := L2

0(Ω),

X := H2
τ (Ω) ∩ L2

0(Ω), X̃ := H1(Ω) ∩ L2
0(Ω), X0 := H2

γ(Ω), X̃0 := H1
0 (Ω),

endowed with natural Sobolev norms. Here, in addition to the standard (scalar and

vector) spaces H1(Ω) and H1
0 (Ω), we take

H(div0; Ω) :=
{
~v
∣∣∣~v ∈

(
L2(Ω)

)2
, ∇ · ~v = 0 in Ω

}
, L2

0(Ω) :=

{
q

∣∣∣∣q ∈ L2(Ω),

∫

Ω

q dX = 0

}
,

H2
τ (Ω) :=

{
φ

∣∣∣∣φ ∈ H2(Ω),
∂φ

∂~n
|∂Ω = 0

}
, H2

γ(Ω) := {φ|φ ∈ H2(Ω), φ|∂Ω = 0}.

3.2 Steady-state visco-resistive MHD

In this paper, we consider cylindrical three-dimensional domains, Ω̂ = Ω × [z0, z1],

where Ω ⊂ R
2 is Lipschitz, bounded and connected, which are coupled with a large

incident magnetic field in the z-direction. To begin, we consider the one-fluid visco-

resistive MHD model, where the dependent variables are the fluid velocity ~u, the
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hydrodynamic pressure p, and the magnetic field ~B. The equations are

∂~u

∂t
+ (~u · ∇)~u−∇ · (T + TM) +∇p = ~F , (3.1)

∂ ~B

∂t
−∇× (~u× ~B) +∇× (

1

Rem
∇× ~B) = ~G, (3.2)

∇ · ~u = 0, (3.3)

∇ · ~B = 0, (3.4)

where ~G = −∇ × ~Estat, and ~Estat is the static component of the electric field. The

Newtonian and magnetic stress tensors are

T =
1

2Re

[
∇~u+∇~uT

]
, and TM = ~B ⊗ ~B − 1

2
| ~B|2I,

respectively. We define the tensor ~B ⊗ ~B component-wise as ( ~B ⊗ ~B)i,j = BiBj and
~F = (~f, 0) ∈

(
H−1(Ω̂)

)3
for ~f ∈

(
H−1(Ω)

)2
(where H−1(Ω) is the dual space of H1(Ω),

and which is isomorphic to the dual space of H1
0 (Ω)), ~G ∈

(
L2(Ω̂)

)3
. Additionally, we

define the standard nondimensional Reynolds number, Re, and magnetic Reynolds

number, Rem:

Re =
ρUL

ν
, Rem =

µ0UL

η
,

for a characteristic velocity, U , and a characteristic length scale, L. The physical

parameters, all assumed constant, are the fluid viscosity ν, the fluid density ρ, the

magnetic permeability of free space µ0, and the magnetic resistivity η.

Assuming that the domain is coupled with a large incident magnetic field in the

z-direction, the resulting dynamics decouple into a two-dimensional problem over Ω

with simple behaviour in the z-direction. For the tokamak pictured in Figure 3.1,

this is equivalent to assuming both a large incident magnetic field in the toroidal

direction as well as a large aspect-ratio, so that the curvature of the tokamak is

negligible. Considering the resulting plasma behaviour over Ω (the poloidal cross-

section of the tokamak), and assuming no variation in the z- (toroidal-)direction, we

take ~B = (B1(x, y), B2(x, y), B0) and ~u = (u1(x, y), u2(x, y), u0). Then, we complete

the above system with homogeneous boundary conditions on the velocity, ~u = ~0 on ∂Ω,

and either perfect conductor or perfect insulator boundary conditions on ~B, ~B · ~n = 0

or ~B × ~n = ~0 on ∂Ω, respectively, where ~n denotes the outward normal vector on ∂Ω.
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Noting that ∇ · ~B = 0, we must have ∂B1

∂x
+ ∂B2

∂y
= 0, which allows us to write

~B = ∇× ~A+ (0, 0, B0), where ~A = (0, 0, A(x, y)). A standard result (see, for example

[15]), is that if B ∈ (H1(Ω̂)
)3
, then A ∈ H2(Ω̂). Consequently, we rewrite Equations

(3.1)-(3.4) in terms of the vector potential, ~A. Considering the continuum problem

(3.1)-(3.4), direct calculation shows that B0 and u0 do not appear in the resulting

equations for the other components of ~B and ~u and, so, we ignore them (by treating

them as zero) in what follows.

3.2.1 H2(Ω) weak formulation

We now introduce the weak formulation of (3.1)-(3.4) for the two-dimensional domain

Ω. Writing ~B = ∇× ~A for vector potential, ~A, gives ∇ · ~B = 0 and Equation (3.4) is

automatically satisfied. Thus, we no longer include it in the formulation.

A standard vector calculus identity is that if ~B ∈
(
H1(Ω̂)

)3
,

∇ · ( ~B ⊗ ~B − 1

2
| ~B|2I) = (∇× ~B)× ~B + (∇ · ~B) · ~B,

and if ~B ∈
(
H1(Ω̂)

)3 ∩H(div0; Ω̂), then

∇ · ( ~B ⊗ ~B − 1

2
| ~B|2I) = (∇× ~B)× ~B.

Taking ~B = (∂A
∂y
,−∂A

∂x
, 0) ensures that ~B ∈

(
H1(Ω̂)

)3∩H(div0; Ω̂) when A ∈ X, giving

∫

Ω̂

∇ · ( ~B ⊗ ~B − 1

2
| ~B|2I) · ~V dX̂ =

∫

Ω̂

(∇× ~B)× ~B · ~V dX̂

=

∫

Ω̂

(−△A · ∂A
∂x

,−△A · ∂A
∂y

, 0) · ~V dX̂

= −(z1 − z0)

∫

Ω

△A · (∇A · ~v) dX, (3.5)

for any ~V = (~v, v3) ∈
(
H1(Ω̂)

)3
, with ~v ∈

(
H1(Ω)

)2
.

Taking ~C = ∇× (0, 0, ϕ) for ϕ ∈ X, then we can rewrite the weak formulation of

(3.2), discarding the time derivative,

∫

Ω̂

[
−∇× (~u× ~B) · ~C +∇× (Re−1

m ∇× ~B) · ~C
]
dX̂ =

∫

Ω̂

~G · ~CdX̂,
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as ∫

Ω

−(u1, u2) · ∇A · △ϕ dX +

∫

Ω

Re−1
m △A · △ϕ dX =

∫

Ω

E0 · △ϕdX,

where E0 is the z-component of the electrostatic part, ~Estat, and we choose E0 so that∫
Ω
E0dX = 0. We drop the common scaling of (z1 − z0) when switching from integrals

over Ω̂ to those over Ω. In the following, we denote ~u = (u1(x, y), u2(x, y)).

Note that with ~B = (∂A/∂y,−∂A/∂x, 0), the perfect conductor boundary condi-

tion, ~B · ~n = 0 is implied by a homogeneous Dirichlet boundary condition on A, as is

included in the space X0, while the perfect insulator boundary condition, ~B × ~n = ~0,

is implied by a homogeneous Neumann boundary condition on A, as is included in the

space X. In what follows, we state weak formulations and results for the latter case,

A ∈ X (and, from Section 3.3 onwards, A ∈ X̃) as proofs for this case are slightly

more technical than for A ∈ X0 (or A ∈ X̃0). Where substantial differences occur

between the two cases, we provide remarks to clarify. With homogeneous Dirichlet

boundary conditions on ~u and perfect insulator boundary conditions on A, the weak

form of (3.1)-(3.4) in two dimensions is : find ~u ∈ W, A ∈ X, p ∈ Q such that

a1(~u,~v) + c0(~u; ~u,~v) + c1(A;~v, A) + b(p,~v) = 〈~f,~v〉, (3.6)

a2(A,ϕ)− c1(A; ~u, ϕ) = 〈E0,△ϕ〉, (3.7)

b(q, ~u) = 0, (3.8)

for all ~v ∈ W, ϕ ∈ X, q ∈ Q, with S~u = 1
2
(∇~u+∇~uT ), where

a1(~u,~v) := Re−1

∫

Ω

S~u : ∇~v dX = Re−1

∫

Ω

S~u : S~v dX,

a2(φ, ψ) := Re−1
m

∫

Ω

△φ · △ψ dX,

b(q, ~v) := −
∫

Ω

q(∇ · ~v) dX,

c0(~w; ~u,~v) :=
1

2

∫

Ω

(~w · ∇)~u · ~v dX− 1

2

∫

Ω

(~w · ∇)~v · ~u dX,

c1(ψ;~v, φ) :=

∫

Ω

△φ · ∇ψ · ~v dX.
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3.2.2 Properties of the weak formulation

In this section, we briefly analyze the weak form in Equations (3.6)-(3.8), which we

write as

Formulation 3.2.1. Find (~u, p, A) ∈ W ×Q×X such that

A(~u,A;~v, ϕ) + C(~u,A; ~u,A;~v, ϕ) + B(p;~v, ϕ) = L(~v, ϕ), (3.9)

B(q; ~u,A) = 0, (3.10)

for all (~v, q, ϕ) ∈ W ×Q×X,

with

A(~u,A;~v, ϕ) := a1(~u,~v) + a2(A,ϕ),

B(q;~v, ϕ) := b(q, ~v),

C(~w, ψ; ~u, φ;~v, ϕ) := c0(~w; ~u,~v) + c1(ψ;~v, φ)− c1(ψ; ~u, ϕ),

L(~v, ϕ) := 〈~f,~v〉+ 〈E0,△ϕ〉.

We define the product space W×X with the norm |||(~v, ϕ)|||2 := ‖~v‖21 + ‖ϕ‖22 and

define the operator norm, |||L|||− := sup
(~0,0) 6=(~v,ϕ)∈J×X

|L(~v, ϕ)|
|||(~v, ϕ)||| . Next, we consider the

properties of the forms A, B, and C.
Lemma 3.2.1. For any (~v, ϕ), (~w, ψ) ∈ W ×X, we have

A(~v, ϕ;~v, ϕ) ≥ cαmin{Re−1, Re−1
m }|||(~v, ϕ)|||2, (3.11)

A(~w, ψ;~v, ϕ) ≤ max{2Re−1, Re−1
m }|||(~w, ψ)||| · |||(~v, ϕ)|||,

where cα ≤ 1 is a constant depending only on Ω.

Proof. Since (~v, ϕ) ∈ W ×X, we have

A(~v, ϕ;~v, ϕ) = Re−1

∫

Ω

S~v : S~v dX +

∫

Ω

Re−1
m △ϕ · △ϕ dX

= Re−1‖S~v‖20 +Re−1
m ‖△ϕ‖20

≥ β1Re
−1‖~v‖21 + β2Re

−1
m ‖ϕ‖22

≥ cαmin{Re−1, Re−1
m }|||(~v, ϕ)|||2,
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where cα = min{β1, β2}, β1 comes from Korn’s Inequality [7, Corollary 11.2.22], and

β2 comes from a regularity argument [15, Chapter I, Theorem 1.10]. This gives the

coercivity of A.

For continuity,

A(~u, ψ;~v, ϕ) = Re−1

∫

Ω

S~u : S~v dX +Re−1
m

∫

Ω

△ψ · △ϕ dX

≤ 2Re−1‖~u‖1‖~v‖1 +Re−1
m ‖ψ‖2‖ϕ‖2

≤ max{2Re−1, Re−1
m }|||(~u, ψ)||| · |||(~v, ϕ)|||,

via the Cauchy-Schwarz inequality.

Remark 3.2.1. If ϕ ∈ X0, then ‖∆ϕ‖20 ≥ β2‖ϕ‖22 also holds (see [15, Chapter

I,Theorem 1.8]).

We state two Lemmas that follow directly from the standard Compact Imbedding

Theorem for Sobolev spaces (see, e.g., [15], Theorem I.1.2), showing the trilinear forms

c0 and c1 are well defined.

Lemma 3.2.2. If ~u,~v, ~w ∈
(
H1(Ω)

)2
, then

|c0(~w; ~u,~v)| ≤ C0‖~w‖0,4 · ‖∇~u‖0 · ‖~v‖0,4 ≤ C0‖~w‖1 · ‖~u‖1 · ‖~v‖1, (3.12)

where C0 is a constant depending only on Ω.

Lemma 3.2.3. If ψ, φ ∈ H2(Ω) and ~v ∈
(
H1(Ω)

)2
, then

|c1(ψ;~v, φ)| ≤ C1‖∇ψ‖0,4 · ‖△φ‖0 · ‖~v‖0,4 ≤ C1‖ψ‖2 · ‖φ‖2 · ‖~v‖1, (3.13)

where C1 is a constant depending only on Ω.

Lemma 3.2.4. For any ~w, ~u,~v ∈ W and ψ, φ, ϕ ∈ X , the trilinear form C has the

following properties

|C(~w, ψ; ~u, φ;~v, ϕ)| ≤ Cc|||(~w, ψ)||| · |||(~u, φ)||| · |||(~v, ϕ)|||, (3.14)

where Cc is a constant only depending on Ω. Furthermore,

C(~w, ψ;~v, ϕ;~v, ϕ) = 0. (3.15)
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Proof. The continuity bound follows directly from inequalities (3.12) and (3.13). That

C(~w, ψ;~v, ϕ;~v, ϕ) = 0 follows directly from its definition, and those of c0 and c1.

The form b(q, ~v) is continuous and satisfies the following inf-sup condition

inf
0 6=q∈Q

sup
~0 6=~v∈W

b(q, ~v)

‖~v‖1‖q‖0
≥ Γ > 0, (3.16)

where Γ is a constant depending only on Ω [15, Chapter I.5.1].

The form B is obviously continuous:

|B(q;~v, ϕ)| ≤ Cb‖q‖0‖~v‖1 ≤ Cb‖q‖0|||(~v, ϕ)|||,

for all (~v, q, ϕ) ∈ W ×Q×X, with a constant Cb > 0. Furthermore, it inherits the

inf-sup condition from b.

Lemma 3.2.5. There exists a constant Γ > 0 depending only on Ω, such that

sup
(~0,0) 6=(~v,ϕ)∈W×X

B(q;~v, ϕ)
|||(~v, ϕ)||| ≥ Γ‖q‖0,

for all q ∈ Q.

Proof. Since

B(q;~v, ϕ) = b(q, ~v),

we have

sup
(~0,0) 6=(~v,ϕ)∈W×X

B(q;~v, ϕ)
|||(~v, ϕ)||| ≥ sup

~0 6=~v∈W

b(q, ~v)

‖~v‖1
≥ ‖q‖0 · Γ,

where the last inequality follows directly from (3.16).

3.2.3 Existence and uniqueness of solutions

From [15], we quote the main theorem that we will apply to this weak formulation.

Theorem 3.2.1 ([15], Theorem IV.1.3). Let V be a separable Hilbert space with the

norm ‖ · ‖V , l be a linear functional in the dual space V ′ and, for w ∈ V , the mapping

(u, v) → a(w; u, v) be a bilinear continuous form on V × V . Assume that the following

hold:
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• the bilinear form a(w; v, v) is uniformly V-coercive with respect to w, i.e., there

exists a constant α > 0 such that

a(w; v, v) ≥ α‖v‖2V , ∀v, w ∈ V.

• there exists a continuous and monotonically increasing function L : R+ → R+

such that for all µ > 0

|a(w1; u, v)− a(w2; u, v)| ≤ L(µ)‖u‖V ‖v‖V ‖w1 − w2‖V ,

∀u, v ∈ V, w1, w2 ∈ Sµ = {w ∈ V ; ‖w‖V ≤ µ}.

• the linear function l and α satisfy

‖l‖V ′

α2
· L(‖l‖V ′/α) < 1.

Then the problem: find u ∈ V such that

a(u; u, v) = l(v), ∀v ∈ V,

has a unique solution that satisfies the stability bound ‖u‖V ≤ α−1‖l‖V ′.

Theorem 3.2.2. Let ~f ∈
(
H−1(Ω)

)2
and E0 ∈ L2(Ω), and assume that

Cc|||L|||−
c2αmin{Re−2, Re−2

m } < 1, (3.17)

where cα comes from (3.11), and Cc comes from (3.14). Then, there exists a unique

solution (~u, p, A) in W × Q × X of Formulation 3.2.1. Furthermore, we have the

stability bounds

|||(~u,A)||| ≤ |||L|||−
cαmin{Re−1, Re−1

m }
and

‖p‖0 ≤ Γ−1

[
||~f ||−1 + 2Re−1‖~u‖1 + C0‖~u‖21 + C1‖A‖21

]
,

where C0 comes from (3.12), and C1 comes from (3.13).

Proof. We first apply Theorem 3.2.1 to Formulation 3.2.1 restricted to (~u,A) ∈ J×X,
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satisfying the constraint in Equation (3.10). We note that J×X is separable, since

J and X are closed subsets of
(
H1(Ω)

)2
and H2(Ω) respectively, and

(
H1(Ω)

)2
and

H2(Ω) are separable Hilbert Spaces.

For any (~w, ψ), define the mapping ((~u, φ), (~v, ϕ)) → A1(~w, ψ; ~u, φ,~v, ϕ), where

A1(~w, ψ; ~u, φ,~v, ϕ) = A(~u, φ;~v, ϕ) + C(~w, ψ; ~u, φ;~v, ϕ).

From inequalities (3.11) and (3.15), we have

|A1(~w, ψ;~v, ϕ;~v, ϕ)| = |A(~v, ϕ;~v, ϕ) + C(~w, ψ;~v, ϕ;~v, ϕ)| = |A(~v, ϕ;~v, ϕ)|
≥ cαmin{Re−1, Re−1

m }|||(~v, ϕ)|||2 ∀(~w, ψ), (~v, ϕ) ∈ J×X.

Finally, linearity in the first argument of C and inequality (3.14) give

|A1(~w1, ψ1; ~u, φ;~v, ϕ) − A1(~w2, ψ2; ~u, φ;~v, ϕ)|
= |C((~w1, ψ1; ~u, φ;~v, ϕ)− C(~w2, ψ2; ~u, φ;~v, ϕ)|
= |C(~w1 − ~w2, ψ1 − ψ2; ~u, φ;~v, ϕ)|
≤ Cc|||(~w1 − ~w2, ψ1 − ψ2)||| · |||(~u, φ)||| · |||(~v, ϕ)|||,

∀(~w1, ψ1), (~w2, ψ2), (~u, φ), (~v, ϕ) ∈ J×X. In the notation of Theorem 3.2.1, this gives

L(µ) = Cc, where Cc comes from (3.14).

Thus, by Theorem 3.2.1, assumption (3.17) proves existence of a unique solution

to Formulation 3.2.1 restricted to J×X. Let (~u,A) ∈ J×X be that unique solution,

which satisfies the stability bound stated.

By the inf-sup condition in Equation (3.16), there also exists a unique solution of

the following problem: find p ∈ Q such that

b(p,~v) = B(p;~v, ϕ) = L(~v, ϕ)−A(~u,A;~v, ϕ)− C(~u,A; ~u,A;~v, ϕ),
= 〈~f,~v〉 − a1(~u,~v)− c0(~u; ~u,~v)− c1(A;~v, A),

for all ~v ∈ W \ J [15, Theorem IV.1.4].
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From the inf-sup condition, we have

Γ‖p‖0 ≤ sup
~0 6=~v∈W

b(q, ~v)

‖~v‖1

= sup
~0 6=~v∈W

〈~f,~v〉 − a1(~u,~v)− c0(~u; ~u,~v)− c1(A;~v, A)

‖~v‖1
.

Combining this with Equations (3.12) and (3.13), we obtain the bound on p.

Any conforming mixed finite-element discretization of (3.9) and (3.10) necessarily

requires the use of H2-conforming elements for A ∈ X, such as Argyris triangle

elements, or Bogner-Fox-Schmit elements [9]. By using the antisymmetric form of c0

in the weak formulation, existence and uniqueness of the solution to the discretized

form of Formulation 3.2.1 follows immediately, so long as an appropriate inf-sup

stable finite-element pair is used for the velocity and pressure unknowns. While these

approximations have been thoroughly studied, particularly for fourth-order problems,

their use also poses some additional difficulties for implementation and efficient solution

of the resulting linearized systems. Thus, we next consider a modified approach using

H1-conforming elements, following [2, 10].

3.3 Uncurled formulation of MHD

Introducing the vector potential into Equation (3.2) leads to the bilinear form a2(φ, ψ),

which requires H2-conforming elements for discretization. Notice, however, that, in the

steady-state case, Equation (3.2) can be rewritten as ∇× (−~u× ~B +Re−1
m ∇× ~B) =

−∇ × ~Estat, which can be simplified into a first-order equation in ~B, resulting in a

second-order equation in A. Using this in place of (3.2), we derive an “uncurled” weak

formulation: find (~u,A) ∈ W × X̃, p ∈ Q such that

a1(~u,~v) + c0(~u; ~u,~v) + c̃1(A;~v, A) + b(p,~v) = 〈~f,~v〉, (3.18)

ã2(A,ψ) + c̃2(A; ~u, ψ) = 〈−E0, ψ〉, (3.19)

b(q, ~u) = 0, (3.20)
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for all (~v, ψ) ∈ W × X̃, q ∈ Q, where

ã2(φ, ψ) := Re−1
m

∫

Ω

∇φ · ∇ψ dX,

c̃1(φ;~v, A) :=
1

2

〈(
∂A

∂y
· ∂φ
∂y

− ∂A

∂x
· ∂φ
∂x
,−
[
∂A

∂x
· ∂φ
∂y

+
∂A

∂x
· ∂φ
∂y

])
,
∂~v

∂x

〉

0

+
1

2

〈(
−
[
∂A

∂x
· ∂φ
∂y

+
∂A

∂x
· ∂φ
∂y

]
,
∂A

∂x
· ∂φ
∂x

− ∂A

∂y
· ∂φ
∂y

)
,
∂~v

∂y

〉

0

,

c̃2(φ; ~u, ψ) :=

∫

Ω

~u · ∇φ · ψ dX.

Note, we now integrate by parts on the stress tensor in (3.1) since c1(A,~v, A) is

obviously ill-defined if A /∈ H2(Ω). The corresponding term in (3.7) becomes c̃2(φ; ~u, ψ)

due to the “uncurling” of (3.2). This is the formulation used in [2, 10]; in [2], an

inf-sup stable finite-element method pair is used for discretization of ~u and p, while a

stabilized pair was used in [10]. Neither of these papers considered theoretical analysis

of this formulation, which we do here.

The analysis below shows that, in contrast to the formulation considered above,

this formulation does not directly yield unique solutions under the classical theory.

To address this, we augment analysis of the continuum weak form with that at the

discrete level. We separately consider the well-posedness of the Newton linearizations

in Section 4.

3.3.1 Mixed variational formulation

Extending the bilinear form B to act on X̃ gives

B̃(q;~v, ψ) := b(q, ~v),

where the only difference between B and B̃ is that they act on X and X̃, respectively.

The mixed variational formulation in (3.18)-(3.20) can then be rewritten as

Formulation 3.3.1. Find (~u, p, A) ∈ W ×Q× X̃ such that

Ã(~u,A;~v, ψ) + C̃(~u,A; ~u,A;~v, ψ) + B̃(p;~v, ψ) = L̃(~v, ψ), (3.21)

B̃(q; ~u,A) = 0,
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for all (~v, q, ψ) ∈ W ×Q× X̃, where

Ã(~u,A;~v, ψ) := a1(~u,~v) + ã2(A,ψ),

C̃(~w, φ; ~u,A;~v, ψ) := c0(~w; ~u,~v) + c̃1(ψ;~v, A) + c̃2(ψ; ~u, φ),

L̃(~v, ψ) := 〈~f,~v〉+ 〈−E0, ψ〉.

For our later analysis, we note some properties of the terms in this formulation.

Lemma 3.3.1. Let ψ, φ ∈ H1(Ω) and ~u ∈
(
H1(Ω)

)2
, then

|c̃2(φ; ~u, ψ)| ≤ C‖~u‖0,4 · ‖∇φ‖0 · ‖ψ‖0,4 ≤ C‖~u‖1 · ‖φ‖1 · ‖ψ‖1,

where C is a constant depending only on Ω.

We define the product space W × X̃ with the norm

‖(~v, ψ)‖21 := ‖~v‖21 + ‖ψ‖21,

and consider ellipticity of Ã on this product space.

Lemma 3.3.2. For any (~v, ϕ) ∈ W × X̃, we have

Ã(~v, ϕ;~v, ϕ) ≥ c̃αmin{Re−1, Re−1
m }‖(~v, ϕ)‖21,

Ã(~w, ψ;~v, ϕ) ≤ max{2Re−1, Re−1
m }‖(~w, ψ)‖1‖(~v, ϕ)‖1,

where c̃α ≤ 1 is a constant depending only on Ω.

Proof. The proof follows that of Lemma 3.2.1, substituting Friedrichs’ Inequality [7],

‖∇ϕ‖20 ≥ ξ‖ϕ‖21, ∀ϕ ∈ X̃,

for the regularity argument used in the coercivity bound.

Remark 3.3.1. For ϕ ∈ X̃0, the standard Friedrichs’ Inequality also gives the coer-

civity result.

The form B̃ is again continuous:

|B̃(q;~v, ψ)| ≤ Cb‖q‖0‖~v‖1 ≤ C̃b‖q‖0‖(~v, ψ)‖1, (3.22)
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for all (~v, q, ψ) ∈ W × Q × X̃, with a constant C̃b > 0, and inherits the inf-sup

condition from b:

Lemma 3.3.3. There exists a constant Γ > 0 depending only on Ω such that

sup
(~0,0) 6=(~v,ψ)∈W×X̃

B̃(q;~v, ψ)
‖(~v, ψ)‖1

≥ Γ‖q‖0, (3.23)

for all q ∈ Q.

The form C̃ no longer satisfies the desired zero property C̃(~w, φ;~v, ψ;~v, ψ) = 0.

Also, c̃1 is not obviously continuous in H1(Ω). Consequently, classical results, such

as Theorem 3.2.1, cannot be directly applied to establish existence and uniqueness of

solutions to Formulation 3.3.1. Instead, we tackle this question indirectly, leveraging

the result given in Theorem 3.2.2 for Formulation 3.2.1.

3.3.2 Relationship between solutions of the two formulations

Formulations 3.2.1 and 3.3.1 offer two weak formulations of the steady-state visco-

resistive MHD problem, (3.1)-(3.4). A natural question is whether the solutions of

these two formulations are the same. Here, we provide conditions under which this is

the case. These results follow naturally from the fact that X ⊆ X̃.

Theorem 3.3.1. Assume that Ω has C1,1 boundary and (~u, p, A) ∈ W ×Q×X is a

solution of Formulation 3.2.1, then (~u, p, A) is also a solution of Formulation 3.3.1.

Proof. Let (~u, p, A) ∈ W ×Q×X be a solution of Formulation 3.2.1. According to

(3.5), the following equality holds

∫

Ω

△A · (∇A · ~v) dX = −
∫

Ω

(∇ · TM) · ~v dX =

∫

Ω

TM : ∇~v dX, ∀~v ∈ W.

Then, (3.6) is the same as (3.18). For any ψ ∈ X̃ ⊆ L2(Ω), there exists ϕ ∈ X such

that △ϕ = ψ (see [15, Chapter I, Theorem 1.10]). In (3.7),

∫

Ω

−~u · ∇A · △ϕ dX +

∫

Ω

Re−1
m △A · △ϕ dX = 〈E0,△ϕ〉, ∀ϕ ∈ X,

taking △ϕ = ψ implies (3.19). So (~u, p, A) is also a solution of Formulation 3.3.1.
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Remark 3.3.2. When ψ ∈ X̃0, [15](Chapter I,Theorem 1.8) gives the existence of

ϕ ∈ X0 such that ∆ϕ = ψ in Ω.

Theorem 3.3.2. Assume that Ω has C1,1 boundary and (~u, p, A) ∈ W ×Q × X̃ is

a solution of Formulation 3.3.1 and that this solution is smooth enough such that

A ∈ H2(Ω). Then, (~u, p, A) is also a solution of Formulation 3.2.1.

Proof. Let (~u, p, A) ∈ W×Q×X̃ be a solution of Formulation 3.3.1. Since A ∈ H2(Ω)

and ~v ∈ (H1
0 (Ω))

2
, the following equality holds

∫

Ω

TM : ∇~v dX = −
∫

Ω

(∇ · TM) · ~v dX =

∫

Ω

△A · (∇A · ~v) dX, ∀~v ∈ W.

Then, (3.18) is the same as (3.6). Furthermore,

∫

Ω

[
~u · ∇A · ψ +Re−1

m ∇A · ∇ψ
]
dX = −

∫

Ω

E0 · ψ dX, ∀ψ ∈ X̃,

can be rewritten as

∫

Ω

∇A · ∇ψdX = −Rem
∫

Ω

(
E0 + ~u · ∇A

)
· ψ dX, ∀ψ ∈ X̃.

Since
∫
Ω
E0dX = 0 and

∫
Ω
~u · ∇A dX = −

∫
Ω
(∇ · ~u)A dX +

∫
∂Ω
(~u · ~n)A dX = 0, we

have
∫
Ω
(E0 + ~u · ∇A) dX = 0. Using the results of Proposition 1.2 of [15], the weak

form of finding w ∈ X̃ such that

∫

Ω

∇w · ∇ψdX =

∫

Ω

−Rem
(
E0 + ~u · ∇A

)
· ψ dX, ∀ψ ∈ X̃, (3.24)

has a unique solution, and if w ∈ H2(Ω), then it is the strong solution of the Neumann

problem, 



−∆w = −Rem(E0 + ~u · ∇A), in Ω,
∂w
∂~n

= 0, on ∂Ω,∫
Ω
w dX = 0.

(3.25)

Thus, from [15, Chapter I, Theorem 1.10], we have that (3.25) has a unique solution,

w ∈ H2
τ (Ω), which is given by w = A, implying that −~u · ∇A+ Re−1

m △A = E0. For

ϕ ∈ H2
τ (Ω), multiplying both sides by △ϕ and integrating yields (3.7). So (~u, p, A) is

also a solution of Formulation 3.2.1.
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Remark 3.3.3. Using the Lax-Milgram Lemma, problem (3.24) considered over H1
0 (Ω),

has one and only one solution, w ∈ H1(Ω). By Theorem 1.8 of [15], if w ∈ H2(Ω),

then it is the strong solution of the corresponding Dirichlet problem. Thus, Theorem

3.3.2 also applies in the case when A ∈ X̃0.

Theorem 3.3.3. Assume that Ω has C1,1 boundary and (3.17) holds. Then, Formula-

tion 3.3.1 has at least one solution (~u, p, A) ∈ W×Q× X̃, which is the unique solution

of Formulation 3.2.1. Furthermore, if all of the solutions of Formulation 3.3.1 satisfy

(~u, p, A) ∈ W ×Q×X, then Formulation 3.2.1 and Formulation 3.3.1 have the same

solution, and the solution is unique.

Proof. Since (3.17) holds, Theorem 3.2.2 states that Formulation 3.2.1 has a unique

solution (~u, p, A). According to Theorem 3.3.1, (~u, p, A) is also a solution of Formulation

3.3.1.

If A ∈ X, Theorem 3.3.2 states that the solution (~u, p, A) of Formulation 3.3.1 is

also a solution of Formulation 3.2.1. However, since (3.17) holds, Formulation 3.2.1

has only one solution. This means that Formulation 3.3.1 has only one solution.

3.3.3 Finite-element discretization

In this subsection, we introduce a mixed finite-element approximation of the uncurled

formulation and discuss the convergence rates that are obtained under some standard

smoothness assumptions.

Let Th be a quasi-uniform family of subdivisions that partition Ω into triangles

or quadrilaterals, K, with diameters bounded by h [15, Chapter I, Definitions A.2].

Based on these meshes, we construct a series of finite-element spaces satisfying

Wh ⊂ W,Xh ⊂ X̃,Qh ⊂ Q.

The discretization of Formulation 3.3.1 can be written as

Formulation 3.3.2. Find (~uh, ph, Ah) ∈ Wh ×Qh ×Xh such that

Ã(~uh, Ah;~v, ψ) + C̃(~uh, Ah; ~uh, Ah;~v, ψ) + B̃(ph;~v, ψ) = L̃(~v, ψ),
B̃(q; ~uh, Ah) = 0,
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for all (~v, q, ψ) ∈ Wh ×Qh ×Xh.

In the following, we assume that Formulation 3.3.2 is well-posed. In this paper, we

consider the 2D problem and assume that the solution A ∈ Hs+1(Ω), s > 1, then we

have

|∇A|∞ ≤ CA‖∇A‖s ≤ CA‖A‖s+1, s > 1. (3.26)

More details can be found in [1, Theorem IV4.12].

Theorem 3.3.4. Assume that (3.17) holds and that (~u,A) is the solution of Formula-

tion 3.3.1 with ~u ∈
(
H1(Ω)

)2
and A ∈ Hs+1(Ω) for s > 1, and (~uh, Ah) is the solution

of Formulation 3.3.2 satisfying ‖~uh‖1 + |∇Ah|∞ ≤ d, where d is a constant. Then,

‖(~u− ~uh, A− Ah)‖1 ≤ C

(
inf

(~v,ψ)∈Wh×Xh

‖(~u− ~v, A− ψ)‖1 + inf
q∈Qh

‖p− q‖0
)
,

with a constant C > 0, depending on d, for sufficiently small values of Re and Rem.

Proof. Subtracting Formulation 3.3.2 from Equality (3.21), we have

Ã(~u− ~uh, A− Ah;~v, ψ) + C̃(~u− ~uh, A− Ah; ~u,A;~v, ψ) + C̃(~uh, Ah; ~u− ~uh, A− Ah;~v, ψ)

+B̃(p− ph;~v, ψ) = 0, (3.27)

for all (~v, ψ) ∈ Wh ×Xh.

From (3.27), for any ~v such that b(q, ~v) = 0 for all q ∈ Qh, we have

Ã(~v − ~uh, ψ − Ah;~v − ~uh, ψ − Ah) + C̃(~v − ~uh, ψ − Ah; ~u,A;~v − ~uh, ψ − Ah)

+C̃(~uh, Ah;~v − ~uh, ψ − Ah;~v − ~uh, ψ − Ah)

= Ã(~v − ~u, ψ − A;~v − ~uh, ψ − Ah) + C̃(~v − ~u, ψ − A; ~u,A;~v − ~uh, ψ − Ah)

+C̃(~uh, Ah;~v − ~u, ψ − A;~v − ~uh, ψ − Ah)− B̃(p− ph;~v − ~uh, ψ − Ah), (3.28)

For such a ~v, we also have

B̃(p− ph;~v − ~uh, ψ − Ah) = B̃(p− q;~v − ~uh, ψ − Ah), (3.29)

for all q ∈ Qh.
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From (3.28) and (3.29), we have the estimate

r.h.s of (3.28) ≤ ‖(~v − ~uh, ψ − Ah)‖1
[
max{2Re−1, Re−1

m }‖(~v − ~u, ψ − A)‖1
+C‖(~v − ~u, ψ − A)‖1

(
‖~u‖1 + CA‖A‖s+1

)

+C‖(~v − ~u, ψ − A)‖1
(
‖~uh‖1 + |∇Ah|∞

)
+ C̃b‖p− q‖0

]

≤ Cr‖(~v − ~uh, ψ − Ah)‖1
(
‖(~u− ~v, A− ψ)‖1 + ‖p− q‖0

)
, (3.30)

where Cr = max{2Re−1, Re−1
m }+2C ·max{‖~u‖1 +CA‖A‖s+1,2, ‖~uh‖1 + |∇Ah|∞}+ C̃b,

CA comes from (3.26), and C̃b comes from (3.22). Since (~u,A) is the solution of the

continuous problem and ~u ∈ H1(Ω) and A ∈ Hs+1(Ω), then ‖~u‖1 + CA‖A‖s+1,2 can

be bounded by some constant. By assumption, so can ‖~uh‖1 + |∇Ah|∞.

Similarly,

l.h.s of (3.28) ≥ c̃αmin{Re−1, Re−1
m } · ‖(~v − ~uh, ψ − Ah)‖21

−C‖(~v − ~uh, ψ − Ah)‖21 ·
(
‖~u‖1 + ‖A‖s+1,2

)

−C‖(~v − ~uh, ψ − Ah)‖21 ·
(
‖~uh‖1 + |∇Ah|∞

)

≥ Cl‖(~v − ~uh, ψ − Ah)‖21, (3.31)

where Cl = c̃αmin{Re−1, Re−1
m } − 2C ·max{‖~u‖1 +CA‖A‖s+1,2, ‖~uh‖1 + |∇Ah|∞} and

c̃α comes from Lemma 3.3.2. Here, we assume that c̃αmin{Re−1, Re−1
m } is large enough

such that Cl ≥
c̃α
2
min{Re−1, Re−1

m }.

According to (3.30) and (3.31), we have the following estimate

‖(~v − ~uh, ψ − Ah)‖1 ≤ C

(
‖(~u− ~v, A− ψ)‖1 + ‖p− q‖0

)
,

where C = Cr/Cl. Furthermore,

‖(~u− ~uh, A− Ah)‖1 ≤
√
2
(
‖(~u− ~v, A− ψ)‖1 + ‖(~v − ~uh, ψ − Ah)‖1

)

≤ C‖(~u− ~v, A− ψ)‖1 + C‖p− q‖0.

Now, let ~v ∈ Wh be arbitrary and take ~w ∈ Wh to be a solution of

b(q, ~w) = b(q, ~u− ~v), ∀q ∈ Qh.
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Since b satisfies an inf-sup condition and a continuity condition, then there exists a

solution to this problem such that

‖~w‖1 ≤ C‖~u− ~v‖1,

and such that b(q, ~w + ~v) = 0 for all q ∈ Qh. By the triangle inequality and using the

result above, we then have

‖(~u− ~uh, A− Ah)‖1 ≤ C‖(~u− (~w + ~v), A− ψ)‖1 + C‖p− q‖0
≤ C‖(~u− ~v, A− ψ)‖1 + C‖~w‖1 + C‖p− q‖0
≤ C‖(~u− ~v, A− ψ)‖1 + C‖p− q‖0.

To give a more precise definition of our finite-element approximations, define, on

an element K,

Pk(K) := the space of polynomials of degree ≤ k,

and let C0(Ω̄) denote the standard space of continuous functions on Ω̄. The finite-

element spaces are defined as

Wh := {~vh ∈ C0(Ω̄) : ~vh|K ∈ (Pk+1)
2, ∀K ∈ Th},

Qh := {qh ∈ C0(Ω̄) : qh|K ∈ Pk, ∀K ∈ Th},
Xh := {ψh ∈ C0(Ω̄) : ψh|K ∈ Pk+1, ∀K ∈ Th},

where k ≥ 1. In what follows, we make standard approximation assumptions for

generalized Taylor-Hood mixed finite-elements on either triangular or quadrilateral

elements in 2D [6, Proposition 8.2.2] as well as for the scalar space Xh.

Assumption 3.3.1. Let k ≥ 1, s > 1. Assume that

inf
~vh∈Wh

‖~u− ~vh‖1 + inf
qh∈Qh

‖p− qh‖0 ≤ Chmin{s,k+1}[‖u‖s+1 + ‖p‖s
]
,
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for all (~u, p) ∈ Hs+1(Ω)2 ×Hs(Ω) and that

inf
ψh∈Xh

‖A− ψh‖1 ≤ Chmin{s,k+1}‖A‖s+1,

for all A ∈ Hs+1(Ω).

Corollary 3.3.1. Let (~uh, Ah) ∈ Wh × Xh be the finite-element approximation in

Formulation 3.3.2. Under the assumptions of Theorem 3.3.4 and Assumption 3.3.1,

we have the error bound

‖(~u− ~uh, A− Ah)‖1 ≤ Chmin{s,k+1}[‖~u‖s+1 + ‖p‖s + ‖A‖s+1

]
.

3.4 Newton’s method

Since the weak formulation in (3.18)-(3.20) is nonlinear, we use Newton’s method to

derive a linearized system. As expected, the discrete form leads to a saddle-point

problem [5, 8]. Here, we focus on the linearization steps and show that the resulting

systems are well-posed, and that the solutions converge to that of the original problem,

under certain assumptions.

3.4.1 Newton linearizations

Let S = W × X̃ with the norm ‖W‖21 = ‖~v‖21 + ‖ψ‖21 for all W = (~v, ψ) ∈ S. For

convenience, we denote the solutions of Formulations 3.3.1 and 3.3.2 as (U∗, p∗), (U∗
h , p

∗
h),

respectively.

For U = (~u,A),W = (~v, ψ) ∈ S, define the following operators:

L1(~u,A, p)[~v] := a1(~u,~v) + b(p,~v) + c0(~u; ~u,~v) + c̃1(A;~v, A)− 〈~f,~v〉,
L2(~u,A, p)[ψ] := ã2(A,ψ) + c̃2(A; ~u, ψ) + 〈E0, ψ〉,
L3(~u,A, p)[q] := −b(q, ~u).
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Problem (3.18)-(3.20) is equivalent to

L1(~u,A, p)[~v] = 0, ∀~v ∈ W, (3.32)

L2(~u,A, p)[ψ] = 0, ∀ψ ∈ X̃, (3.33)

L3(~u,A, p)[q] = 0, ∀q ∈ Q.

Since the variational system contains nonlinearities in both (3.32) and (3.33), we

linearize the above forms. Let ~uk, Ak, pk be the current approximations for ~u,A, p,

respectively and δ~uk = ~uk+1 − ~uk, δA = Ak+1 − Ak, δp = pk+1 − pk be the update to

the approximations, then the linear systems that arise within Newton’s method are

denoted 

L1,~u L1,A L1,p

L2,~u L2,A 0

L3,~u 0 0






δ~u

δA

δp


 = −



L1

L2

L3


 ,

where each of the system components is evaluated at ~uk, Ak, pk. That is

L1,~u[~v] · δ~u =
∂

∂~u
(L1(~uk, Ak, pk)[~v])[δ~u] = a1(δ~u,~v) + c0(~uk; δ~u,~v) + c0(δ~u; ~uk, ~v),

L1,A[~v] · δA =
∂

∂A
(L1(~uk, Ak, pk)[~v])[δA] = â(Ak;~v, δA),

L1,p[~v] · δp =
∂

∂p
(L1(~uk, Ak, pk)[~v])[δp] = b(δp,~v),

L2,~u[ψ] · δ~u =
∂

∂~u
(L2(~uk, Ak, pk)[ψ])[δ~u] = c̃2(Ak; δ~u, ψ),

L2,A[ψ] · δA =
∂

∂A
(L2(~uk, Ak, pk)[ψ])[δA] = ã2(δA, ψ) + c̃2(δA; ~uk, ψ),

L3,~u[q] · δ~u =
∂

∂~u
(L3(~uk, Ak, pk)[q])[δ~u] = b(q, δ~u),

where

â(Ak;~v, A) :=

〈(
∂Ak
∂y

· ∂A
∂y

− ∂Ak
∂x

· ∂A
∂x

,−
[
∂Ak
∂x

· ∂A
∂y

+
∂A

∂x
· ∂Ak
∂y

])
,
∂~v

∂x

〉

0

+

〈(
−
[
∂Ak
∂x

· ∂A
∂y

+
∂A

∂x
· ∂Ak
∂y

]
,
∂Ak
∂x

· ∂A
∂x

− ∂Ak
∂y

· ∂A
∂y

)
,
∂~v

∂y

〉

0

.
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Define the following forms:

A(Uk;U,W ) := â(Ak;~v, A) + a1(~u,~v) + ã2(A,ψ) + c0(~uk; ~u,~v) + c0(~u; ~uk, ~v)

+c̃2(Ak; ~u, ψ) + c̃2(A; ~uk, ψ),

B(W, q) := b(q, ~v),

F (Uk, pk;W ) := L̃(~v, ψ)− Ã(~uk, Ak;~v, ψ)− C̃(~uk, Ak; ~uk, Ak;~v, ψ)− B̃(pk;~v, ψ),
G(Uk; q) := −B(Uk, q).

For Newton’s method applied in a linearize-then-discretize formulation, we consider

the finite-element spaces Sh = Wh ×Xh ⊂ S and Qh ⊂ Q. Given an approximation,

(Uh,k, ph,k) ∈ Sh ×Qh, the discrete Newton update is given by

Formulation 3.4.1. Find (δUh, δph) ∈ Sh ×Qh such that

A(Uh,k; δUh,Wh) +B(Wh, δph) = F (Uh,k, ph,k;Wh), (3.34)

B(δUh, qh) = G(Uh,k; qh), (3.35)

for all (Wh, qh) ∈ Sh ×Qh. Let Uh,k+1 = Uh,k + δUh, ph,k+1 = ph,k + δph.

For simplicity, throughout the remainder of this section, we drop the subscript

h. Since we consider finite-element approximations ~uk and Ak, we denote Csup =

sup
(x,y)∈Ω

|∇~uk|, Dsup = sup
(x,y)∈Ω

|∇Ak|, and Msup = sup
(x,y)∈Ω

|~uk|, and note that they are all

finite quantities.

Lemma 3.4.1. A(Uk;U,W ) and B(W, q) are continuous on Sh and Qh for the norms

‖ · ‖1 and ‖ · ‖0.

Proof. For the continuity of A(Uk;U,W ), observe that

|A(Uk;U,W )| ≤ |â(Ak;~v, A) + a1(~u,~v) + ã2(A,ψ) + c0(~uk; ~u,~v) + c0(~u; ~uk, ~v)

+c̃2(Ak; ~u, ψ) + c̃2(A; ~uk, ψ)|.

Next, consider the above summands separately. First, note that

|â(Ak;~v, A)| ≤ 2Dsup‖∇A‖0‖∇~v‖0.
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Recalling the definitions of the rest of these terms, we obtain the following estimates

|a1(~u,~v)| ≤ CR−1
e ‖~u‖1‖~v‖1,

|ã2(A,ψ)| ≤ Re−1
m ‖A‖1‖ψ‖1,

|c0(~uk; ~u,~v)| ≤ Msup

2
(‖|∇~u‖0‖~v‖0 + ‖~u‖0‖∇~v‖0) ,

|c0(~u; ~uk, ~v)| ≤ 1

2
(Csup‖~u‖0‖~v‖0 +Msup‖~u‖0‖∇~v‖0) ,

|c̃2(Ak; ~u, ψ)| ≤ Dsup‖~u‖0‖ψ‖0,
|c̃2(A; ~uk, ψ)| ≤ Msup‖∇A‖0‖ψ‖0.

An application of the Cauchy-Schwarz inequality shows that

|A(Uk;U,W )| ≤ C‖U‖1‖W‖1,

where C is a constant depending on Csup, Dsup, Msup, Re and Rem.

Continuity of B(W, q) holds by standard arguments.

Lemma 3.4.2. F (Uk, pk;W ) and G(Uk; q) are bounded linear functionals on Sh and

Qh, respectively.

Proof. The components of F (Uk, pk;W ) can be bounded as in the proof of Lemma

3.4.1. Since, additionally,

|〈E0, ψ〉0| ≤ ‖E0‖0‖ψ‖0,
|〈~f,~v〉| ≤ ‖~f‖−1‖~v‖1,

and b(q, ~v) is continuous, we have

|F (Uk, pk;W )| ≤ C‖W‖1,

where C is a constant only depending on the norms of Uk and pk.

By Hölder’s inequality, we have

|G(Uk; q)| = | −B(Uk, q)| ≤ ‖Uk‖1‖q‖0,

implying that G(Uk; q) is bounded.
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To illustrate the existence and uniqueness of solutions to the system given by

(3.34) and (3.35), we now give conditions under which A(Uk;U,W ) is a coercive and

continuous bilinear form. When B(W, q) is continuous and weakly coercive in the

chosen finite-element spaces, existence and uniqueness of solutions to the discretized

Newton linearization is automatic.

Theorem 3.4.1. Let Re and Rem be small enough such that

min{α1Re
−1, α2Re

−1
m } − (Csup +Dsup +

Msup

2
) > 0,

where α1, α2 are constants defined below, and Csup, Dsup, and Msup are as given above.

Then, there exists a constant γ > 0 depending on Uk and Ω such that

A(Uk;W,W ) ≥ γ‖W‖21, ∀W ∈ Sh. (3.36)

Proof. By standard arguments,

〈∇~v +∇~vT ,∇~v〉0 ≥ α1‖~v‖21, ∀~v ∈ Wh,

where α1 is a constant depending only on Ω (see [7], Corollary 11.2.22) and

〈∇ψ,∇ψ〉0 ≥ α2‖ψ‖21, ∀ψ ∈ Xh,

where α2 depends only on Ω (see Friedrichs’ inequality [7]).

The remaining terms in A(Uk;W,W ) can be bounded as in the proof of Lemma

3.4.1, giving

A(Uk;W,W ) ≥ α1Re
−1‖~v‖21 + α2Re

−1
m ‖ψ‖21 − 2Dsup‖∇ψ‖0‖∇~v‖0

−Msup‖~v‖0‖∇~v‖0 −
Csup
2

‖~v‖20 −
Msup

2
‖~v‖0‖∇~v‖0

−Dsup‖~v‖0‖ψ‖0 −Msup‖∇ψ‖0‖ψ‖0
≥ min{α1Re

−1, α2Re
−1
m }‖W‖21 −

2Csup + 6Dsup + 5Msup

4
‖W‖21

= (γ1 − γ2)‖W‖21,

where γ1 = min{α1Re
−1, α2Re

−1
m }, γ2 = (2Csup+6Dsup+5Msup)/4. Let γ = γ1−γ2 > 0.

Thus, A(Uk;W,W ) is coercive.
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Remark 3.4.1. Since the standard Friedrichs’ inequality applies for ψ ∈ X̃0, the

coercivity bound will also hold for the appropriate finite-element space in the case of

perfect conductor boundary conditions.

Assumption 3.4.1. There exists a constant Γs > 0 depending on Ω such that

inf
0 6=q∈Qh

sup
~0 6=~v∈Wh

b(q, ~v)

‖~v‖1‖q‖0
≥ Γs > 0. (3.37)

Remark 3.4.2. The major difference between (3.23) and (3.37) is that the inf-sup

condition must be satisfied on the discrete space. There is, however, no restriction on the

discrete space chosen to approximate A. Choosing a pair of spaces for which the discrete

inf-sup condition (3.37) holds is well-known to be a delicate matter, and seemingly

natural choices of velocity and pressure approximation do not always work [13]. For

example, the simplest globally continuous approximations, using linear or bilinear

elements for both velocity and pressure on triangles or quadrilaterals, respectively

(the so-called P1 − P1 and Q1 − Q1 approximations), are unstable. In general, care

must be taken to make the velocity space rich enough compared to the pressure space,

otherwise the discrete solution will be “over-constrained”. Any stable element pair for

the Navier-Stoke equations (e.g., P2 − P1 or Q2 −Q1 Taylor-Hood elements) can be

used for ~u and p (see [6, 13, 14, 15]) to satisfy (3.37).

Theorem 3.4.2. Under the assumptions of Theorem 3.4.1 and Assumption 3.4.1,

there is a unique solution to Formulation 3.4.1.

Proof. Following Theorem 1.2 of [15, Chapter III], Lemmas 3.4.1, 3.4.2, and Theorem

3.4.1 prove the result.

3.4.2 Solvability of stabilized discretizations

In this subsection, we give a solvability condition for stabilized finite-element methods,

since our analysis is also suitable for this setting. From Formulation 3.4.1, the matrix

equations that result from a stabilized finite-element discretization have the following

block form:

Mx =



K Z B

Y D 0

BT 0 −T






x~u

xA

xp


 =



f~u

fA

fp


 , (3.38)
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where x~u, xA, and xp are the discrete Newton corrections for ~u,A, and p, respectively,

and f~u, fA, and fp are the corresponding blocks of the residual, while T is the stabilization

term.

Let

K̂ =

[
K Z

Y D

]
, B̂ =

[
B

0

]
, x~̂u =

[
x~u

xA

]
, f~̂u =

[
f~u

fA

]
.

Then, Equation (3.38) can be rewritten as

Mx =

[
K̂ B̂

B̂T −T

][
x~̂u
xp

]
=

[
f~̂u

fp

]
, (3.39)

where K̂ ∈ R
n×n, B̂ ∈ R

n×m, f~̂u ∈ R
n, fp ∈ R

m and m ≤ n.

Lemma 3.4.3. Under the assumptions of Theorem 3.4.1, K̂ is positive definite.

Proof. This is a consequence of (3.36).

With homogeneous Dirichlet boundary conditions on ~v ∈ W, b(p,~v) = 0 for all

~v ∈ W implies that the pressure, p, is a constant. When using a nodal finite-element

basis, Span{~1} ⊂ Ker(B) is a natural consequence of this. If the two spaces are equal,

the resulting pressure is unique up to constants. When a discrete inf-sup condition (as

in (3.37)) does not hold, Ker(B) 6= Span{~1}. However, we have the following condition

that guarantees the solvability of the stabilized method, and gives insight into the

construction of T .

Theorem 3.4.3. Under the assumptions of Theorem 3.4.1, let S = −(T + B̂T K̂−1B̂)

be the Schur complement of K̂ in M, with T symmetric and positive semidefinite. If

Ker(T ) ∩Ker(B) ⊆ Span{~1}, then Ker(S) ⊆ Span{~1}.

Proof. Since K̂ is positive definite, K̂−1 is also positive definite. This implies that

pT B̂T K̂−1B̂p ≥ 0 with equality if and only if Bp = 0. On the other hand, because T

is symmetric positive semidefinite, Ker(S) = Ker(T ) ∩Ker(B).

This theorem tells us that (3.39) is well-posed if the stabilized pressure Schur

Complement, S, is a positive semi-definite matrix with the following stability condition:

Ker(S) ⊆ Span{~1}.
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The important consequence of Theorem 3.4.3 is that any stabilization approach

that is suitable for the Stokes equations is also suitable in this context, since K̂ does

not enter the intersecting kernels condition. In particular, standard approaches for

equal-order Q1 −Q1 approximations of velocity and pressure can be used, including

diffusion stabilization and pressure-projection [12, 13]. Thus, the analysis above can be

applied to discretization approaches similar to those in [10], which uses diffusion-type

stabilization of the pressure equation (although we note that [10] also makes use of

additional stabilization for the case when the Reynolds numbers are not small, which

is not considered here). Based on the above discussions, we give the natural result.

Theorem 3.4.4. Under the assumptions of Theorem 3.4.3, the stabilized discrete

Newton approximation of Formulation 3.3.2 yields a unique solution with a pressure

that is unique up to constants..

We note here that, for both the stable and stabilized cases, the assumptions of

Theorem 3.4.1 could be relaxed with the use of appropriate stabilized finite-elements

for the convection-diffusion parts of the weak form, as was done in [10]. The general

conclusions of Theorems 3.4.2 and 3.4.4 would naturally still hold in this case, notably

that any standard mixed finite-element space for Stokes or Navier-Stokes can be used

for the velocity and pressures, and an independent choice can be made for the potential,

A.

3.4.3 Convergence of Newton’s method

Finally, under much more restrictive assumptions, we give a local convergence analysis

of Newton’s method at the discrete level. Define ‖U‖1,∞ := max{‖~u‖1,∞, ‖A‖1,∞} and

D(U ; r) = {W : ‖W − U‖1 < r} and assume the following.

Assumption 3.4.2. Assume the conditions of Corollary 3.3.1 hold; furthermore,

assume the solution U∗
h of Formulation 3.3.2 satisfies

κ∗h = ‖U∗
h‖1,∞ < γ1,

where γ1 = min{α1Re
−1, α2Re

−1
m } is from Theorem 3.4.1.

Assumption 3.4.3. Assume that there exists r1 > 0 such that for any initial iterate

Uk ∈ D(U∗
h ; r1) Newton’s method converges to the unique solution of Formulation 3.3.2
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and converges quadratically.

Recalling constants γ1, γ2 from the proof of Theorem 3.4.1,

γ2 = (2Csup + 6Dsup + 5Msup)/4 < 4 ·max{Csup, Dsup,Msup} < 4‖Uk‖1,∞,

gives

A(Uk;W,W ) > (γ1 − 4‖Uk‖1,∞)‖W‖21.

Thus, if ‖Uk‖1,∞ <
γ1
4
, then A(Uk;W,W ) is coercive.

Lemma 3.4.4. Assume that U ∈ Sh and ‖U‖1,∞ = κh. Then,

‖W‖1,∞ ≤ κh + C1h
−1r, ∀W ∈ D(U ; r) ∩ Sh,

where C1 is a constant depending on Ω.

Proof. According to the standard inverse inequality [7, Theorem IV.5.11],

‖U‖1,∞ ≤ C1h
−1‖U‖1, ∀U ∈ Sh,

where C1 is a constant. By the triangle inequality, for W ∈ D(U ; r) ∩ Sh

‖W‖1,∞ ≤ ‖U‖1,∞ + ‖W − U‖1,∞
≤ κh + C1h

−1‖W − U‖1
≤ κh + C1h

−1r.

Remark 3.4.3. Lemma 3.4.4 indicates that if we take Uk ∈ D(U ; r2), for r2 =
h(γ1/4−κ∗h)

C1
, then A(Uk;W,W ) is always coercive.

If for the stabilized case, we have the same approximation result as in Theorem 3.3.1,

then the next convergence theorem is not only true for stable element approximations,

but also for the stabilized case.

Theorem 3.4.5. Under Assumptions of Theorem 3.4.2 or Theorem 3.4.4, and As-

sumptions 3.4.2 and 3.4.3, for any initial U0 ∈ D(U∗
h ; r

∗), r∗ = min{r1, r2}, the
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sequence {Uk} produced by Newton’s method is both well-defined and converges to the

solution of Formulation 3.3.2.

Proof. Since U0 ∈ D(U∗
h ; r

∗), then according to Lemma 3.4.4, Formulation 3.4.1 has a

unique solution for every Uk. By the triangle inequality, we have

‖Uk − U∗‖1 ≤ ‖Uk − U∗
h‖1 + ‖U∗

h − U∗‖1. (3.40)

According to Assumptions 3.4.2 and 3.4.3, (3.40) goes to zero.

Remark 3.4.1. Conditions that guarantee convergence of Newton’s method for finite-

element discretizations of MHD in 3D can be found, for example, in [17].

3.5 Numerical results

To demonstrate both the finite-element convergence and performance of Newton’s

method for this formulation, we consider the Hartmann flow test problem on the

domain
[
−1

2
, 1
2

]2
. For this problem, we have an analytical solution, given by ~u = (u1, 0)

and ~B = (B1, B2) with

u1(x, y) =
1

2 tanh(Ha/2)

√
Re

Rem

(
1− cosh(yHa)

cosh(Ha/2)

)
,

B1(x, y) =
sinh(yHa)

2 sinh(Ha/2)
− y,

B2(x, y) = 1,

p(x, y) = −x− 1

2
(B1(x, y))

2 ,

where the Hartmann number is given by Ha =
√
ReRem. Increasing Ha leads to

increased coupling between the velocity and magnetic field components of the solution,

which is seen in [2] to lead to difficulties with some preconditioners for the discretized

and linearized equations. In the numerical results that follow, we fix Re = Rem = Ha.

From this expression, we compute A(x, y) such that B1(x, y) =
∂A
∂y

and B2(x, y) = −∂A
∂x
.

For this solution, we have non-homogeneous conductor boundary conditions on ~B,

which we implement with suitable non-homogeneous Dirichlet boundary conditions on

A(x, y).
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Figure 3.2: H1 approximation error, (‖~u− ~uh‖21 + ‖A− Ah‖21)
1/2

, for finite-element
solution of Hartmann test problem on uniform quadrilateral meshes with meshwidth
h. At left, error for approximation with velocities and potential in Q2 and pressure in
Q1, at right, error for approximation with velocities and potential in Q3 and pressure
in Q2.

Figure 3.2 shows finite-element convergence for this problem with varying Ha

and mesh-size h. We solve the problem using a linearize-then-discretize formulation,

starting from an initial guess that matches the non-homogeneous Dirichlet boundary

conditions, but is zero for all variables inside the domain. The discretization is done

in deal.II [3, 4], with each linearization solved using a direct solver (UMFPACK [11]),

and the nonlinear iteration stopped when the vector ℓ2-norm, scaled by the mesh-size

h, of the nonlinear residual or that of the Newton update is less than 10−8. These

results are presented in the setting of Corollary 3.3.1, using (generalized) Taylor-Hood

elements for the velocity and pressure, and matching the degree of the velocity space

for the potential. The numerical results presented here agree quite well with Corollary

3.3.1, with O(h2) errors observed for approximation of velocities and potential in Q2

and pressure in Q1 and O(h3) errors observed for approximation with velocities and

potential in Q3 and pressure in Q2. For the range of Hartmann numbers considered in

these figures, no difficulties are seen with convergence either of the nonlinear iteration

or the finite-element approximations; convergence is seen within 4 to 7 Newton steps

for all Hartmann numbers and all meshes. For larger Hartmann numbers, we did

observe convergence issues with Newton’s method.
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3.6 Conclusions

In this paper, we present a theoretical analysis of the weak formulations of a steady-

state visco-resistive vector-potential MHD formulation. Under certain conditions, we

prove the uniqueness and existence of the solutions. Furthermore, we show that the

solutions of the curled and uncurled formulations are the same, under some conditions.

From this point of view, using the uncurled formulation to approximate the MHD

problem is reasonable and meaningful. A mixed finite-element approximation of

the uncurled formulation is discussed. The convergence rates obtained under some

standard smoothness assumptions have been analysed and show that it is a suitable

option. Thus, using Newton stepping and a stable Stokes finite-element method pair

plus any space for A yields a convergent solution scheme for MHD.
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Chapter 4

Local Fourier analysis of

block-structured multigrid

relaxation schemes for the Stokes

equations

Abstract

1 Multigrid methods that use block-structured relaxation schemes have been success-

fully applied to several saddle-point problems, including those that arise from the

discretization of the Stokes equations. In this paper, we present a local Fourier analysis

of block-structured relaxation schemes for the staggered finite-difference discretization

of the Stokes equations to analyze their convergence behavior. Three block-structured

relaxation schemes are considered: distributive relaxation, Braess-Sarazin relaxation,

and Uzawa relaxation. In each case, we consider variants based on weighted Jacobi

relaxation, as is most suitable for parallel implementation on modern architectures.

From this analysis, optimal parameters are proposed, and we compare the efficiency of

the presented algorithms with these parameters. Finally, some numerical experiments

are presented to validate the two-grid and multigrid convergence factors.

1Authors: Y. He and S. P. MacLachlan
This work is published as Local Fourier analysis of block-structured multigrid relaxation schemes for

the Stokes equations, Numerical Linear Algebra with Applications, 25(3):e2147, 2018.



76

Keywords: Braess-Sarazin relaxation, distributive relaxation, local Fourier anal-

ysis, multigrid, staggered finite-difference method (MAC scheme), Stokes equations,

Uzawa relaxation

AMS subject classification: 65N22, 65N55

4.1 Introduction

Large linear systems of saddle-point type arise in a wide variety of applications

throughout computational science and engineering. Such linear systems represent

a significant challenge for computation owing to their indefiniteness and often poor

spectral properties. Saddle-point problems are well known and well studied in numerical

analysis [5, 6, 15]. Discretization of the Stokes equations naturally leads to saddle-point

systems, and solvers for the Stokes equations are a natural first step in developing

new algorithms for the Navier-Stokes equations and other saddle-point problems.

Two main families of preconditioners are found in the literature for saddle-point

systems, such as the Stokes equations. Block preconditioners (cf. [15] and the

references therein) are commonly used, because they can easily be constructed from

standard multigrid algorithms for scalar elliptic PDEs, such as algebraic multigrid [32].

Monolithic multigrid methods, which are applied directly to the system in coupled form,

are potentially more difficult to construct and analyse, because standard pointwise

relaxation schemes cannot be applied. Several families of relaxation schemes have,

however, been developed for monolithic multigrid methods for the Stokes equations

and more complicated saddle-point systems and have been shown to outperform

block preconditioners in some cases (see, e.g., [2]). Distributive relaxation [11, 30, 41]

was the first to be proposed, using a distributive operator to allow use of pointwise

relaxation schemes on transformed variables. A strongly coupled relaxation scheme

was introduced by Vanka [37], based on solving a sequence of localized saddle-point

problems in a block overlapping Gauss-Seidel (GS) iteration. Two further families

are based on using block preconditioning strategies as relaxation schemes, yielding

the Braess-Sarazin [8] and Uzawa [25] approaches. Each of these families has been

further developed in recent years, including Braess-Sarazin-type relaxation schemes

[1, 2, 3, 7, 8], Vanka-type relaxation schemes [1, 2, 3, 24, 26, 31, 33, 37], Uzawa-type

relaxation schemes [16, 17, 20, 28], distributive relaxation schemes [4, 38] and other
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types of methods [12, 35]. The aim of this paper is to analyse block-structured

relaxation schemes, including distributive, Braess-Sarazin, and Uzawa relaxation.

Existing analysis of these relaxation schemes leaves several open questions. For

finite-element discretizations, variational analysis techniques have been developed for

both Braess-Sarazin [44] and Uzawa [20] relaxation. Local Fourier analysis (LFA) has

been applied to all of the standard relaxation schemes, including distributive relaxation

[27], Vanka relaxation [24, 31], and Braess-Sarazin and Uzawa-type schemes [16, 23].

However, the vast majority of the existing LFA has been for relaxation schemes using

(symmetric) GS approaches. Here, in contrast, we focus on schemes that make use of

weighted Jacobi relaxation. Considering modern multicore and accelerated parallel

architectures, proper understanding of such schemes is critical to achieving excellent

parallel and algorithmic scalability.

Supporting numerical results demonstrate some key conclusions of this analysis.

First, distributive weighted-Jacobi (DWJ) relaxation retains the well-known advantages

of distributive GS (DGS). This fact, coupled with the low cost per iteration and fine-

scale parallelism, recommends this relaxation scheme, at least in the context of the

finite-difference scheme considered herein. For Braess-Sarazin relaxation, we find that

there is no degradation in predicated multigrid performance for the inexact variant of

the algorithm introduced in [44] over the exact variant originally proposed in [7, 8]. The

same is not true for Uzawa relaxation, where our results show a notable gap between

the predicated performance with the exact inversion of the resulting approximate Schur

complement and that with only the inexact inversion. Furthermore, we see that the

assumptions made in [16] for algebraic analysis of Uzawa-type relaxation are sufficient

but not necessary for convergence.

In this paper, we consider these three families of relaxation schemes in terms of

the computational work and the optimal smoothing factors obtained. The results

show that Braess-Sarazin relaxation provides better smoothing than Uzawa in the

case of finite-difference discretization. This is in contrast to results in [20] for finite-

element discretizations. The gap between finite-difference discretization and finite-

element discretization using Braess-Sarazin relaxation is a question for our future work.

However, we also see that distributive weighted Jacobi can match the performance of

Braess-Sarazin, as has been seen for GS-based relaxation. Extending this analysis to

the finite-element case is also a topic for future research.
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The outline of the paper is as follows. In Section 4.2, we introduce the marker and

cell (MAC) finite-difference discretization of the Stokes equations in two dimensions

and some definitions of LFA. In Section 4.3, we present the DWJ relaxation schemes

and the optimal smoothing factor is given by LFA. In Section 4.4, LFA is developed

for Braess-Sarazin-type relaxation and optimal parameters are derived. In Section 4.5,

we apply LFA to Uzawa-type relaxation to determine the optimal smoothing factor.

Furthermore, a comparison of the relaxation schemes is given. Section 4.6 presents

some experimentally measured two-grid and multigrid convergence factors to confirm

the theoretical results. Conclusions are drawn in Section 4.7.

4.2 Discretization and local Fourier analysis

4.2.1 Staggered finite-difference discretization of the Stokes

equations

We consider the Stokes equations,

−△U +∇p = F , (4.1)

∇ · U = 0, (4.2)

for velocity vector, U =

(
u

v

)
, and scalar pressure, p, of a viscous fluid. Discretization

of (4.1) and (4.2) typically leads to a linear system of the form

Kx =

(
A BT

B 0

)(
Uh

ph

)
=

(
Fh

0

)
= b, (4.3)

where A corresponds to the discretized vector Laplacian, B is the negative of the

discrete divergence operator, and Uh =

(
uh

vh

)
.

Remark 4.2.1. Here, we consider the vector Laplacian of the velocity in the Stokes

equations, as is standard. For more general models, the divergence of the symmetric

part of the gradient could be considered, affecting only the symbol of A in what follows.

In this paper, we consider the standard staggered finite-difference discretization
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in two-dimensions, known as the MAC scheme (see [19, 36]). The discrete pressure

unknowns ph are defined at cell centres (×-points in Figure 1). The discrete values

of uh and vh are located at the grid cell faces in the ◦- and •-points, respectively, see
Figure 1.

Figure 4.1: The staggered location of unknowns on mesh Gh: ×− p, ◦ − u, • − v.

The discrete momentum equations read (see [36])

−△huh + (∂x)h/2 ph = F1,h, −△hvh + (∂y)h/2 ph = F2,h,

where Fh =

(
F1,h

F2,h

)
. Here, we use the standard five-point discretization for −△h (for

uh on the ◦ grid and for vh on the • grid) and the approximations

(∂x)h/2 ph(x, y) =
1

h

(
ph
(
x+ h/2, y

)
− ph

(
x− h/2, y

))
,

(∂y)h/2 ph(x, y) =
1

h

(
ph
(
x, y + h/2

)
− ph

(
x, y − h/2

))
.

The discrete conservation of mass equation is given by

(∂x)h/2 uh(x, y) + (∂y)h/2 vh(x, y) = 0.

We consider uniform meshes with: hx = hy = h in this paper.
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4.2.2 Definitions and notations

Experience with multigrid methods and multigrid theory shows that the choice of

multigrid components may have a strong influence on the efficiency of the resulting

algorithm. Some rules are needed to choose the proper multigrid components. In

general, the smoothing factor, µ, of LFA gives satisfactorily sharp predictions of actual

multigrid convergence (ρ) and guarantees h-independent multigrid convergence [36].

In order to describe LFA for staggered grids, we first introduce some terminology.

More details can be found in [36]. We consider two-dimensional infinite uniform grids

Gh = G1
h

⋃
G2
h

⋃
G3
h with

Gj
h =

{
x
j
k1,k2

:= (k1, k2)h+ δj, (k1, k2) ∈ Z
2
}
,with δj =





(0, h/2) if j = 1,

(h/2, 0) if j = 2,

(h/2, h/2) if j = 3,

and Fourier functions ϕ(θ,xk1,k2) ∈ span
{
ϕ1(θ,xk1,k2), ϕ2(θ,xk1,k2), ϕ3(θ,xk1,k2)

}
on

Gh, in which

ϕ1(θ,xk1,k2) =
(
eiθ·x

1
k1,k2

/h 0 0
)T

, ϕ2(θ,xk1,k2) =
(
0 eiθ·x

2
k1,k2

/h 0
)T

,

ϕ3(θ,xk1,k2) =
(
0 0 eiθ·x

3
k1,k2

/h
)T

, θ = (θ1, θ2),

where T denotes the (nonconjugate) transpose of the row vectors. Because ϕ(θ,xk1,k2)

is periodic in θ with period 2π, we consider the domain θ ∈
[
− π

2
, 3π

2

)2
(or any interval

with length 2π).

Let Lh be a Toeplitz operator acting on one of the components of Gh,

Lh
∧
= [sκ]h (κ = (κ1, κ2) ∈ Z

2);

Lhwh(x
j) =

∑

κ∈V
sκwh(x

j + κh),

with constant coefficients sκ ∈ R (or C), where wh(x
j) is a function in l2(Gj

h). Here,

V is a finite index set. Note that because Lh is Toeplitz, it is diagonalized by the

Fourier modes ϕ(θ,xj) = eiθ·x
j/h = eiθ1x

j
1/heiθ2x

j
2/h.

Definition 4.2.1. We call L̃h(θ) =
∑

κ∈V
sκe

iθκ the symbol of Lh.
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Note that for all grid functions ϕ(θ,xj),

Lhϕ(θ,x
j) = L̃h(θ)ϕ(θ,x

j).

The staggered discretization of the Stokes equations leads to the system

Lhuh =




−△h 0 (∂x)h/2

0 −△h (∂y)h/2

−(∂x)h/2 −(∂y)h/2 0






uh

vh

ph


 ,

with stencils

−△h =
1

h2




−1

−1 4 −1

−1


 , (∂x)h =

1

h

[
−1 0 1

]
, (∂y)h =

1

h




1

0

−1


 .

The symbol of operator Lh is given by

L̃h(θ1, θ2) =
1

h2




4m(θ) 0 i2h sin θ1
2

0 4m(θ) i2h sin θ2
2

−i2h sin θ1
2

−i2h sin θ2
2

0


 ,

where m(θ) = 4−2 cos θ1−2 cos θ2
4

= sin2( θ1
2
) + sin2( θ2

2
). Each entry in L̃h is computed

as the (scalar) symbol of the corresponding block of Lh, following Definition 4.2.1.

Because Lh is a 3 × 3 block operator, its symbol is naturally a 3 × 3 matrix. The

error-propagation symbol for a relaxation scheme, represented by matrix M , applied

to MAC scheme is

S̃h(p, ω,θ) = I − ωM̃−1L̃h,

where p represents parameters within M , the block approximation to Lh, ω is an

overall weighting factor, and M̃ and L̃h are the symbols for M and Lh, respectively.

In this paper, we consider multigrid methods for staggered discretizations with

standard geometric grid coarsening, that is, we construct a sequence of coarse grids by

doubling the mesh size in each spatial direction. High and low frequencies for standard
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coarsening are given by

θ ∈ T low =
[
−π
2
,
π

2

)2
, θ ∈ T high =

[
−π
2
,
3π

2

)2∖[
−π
2
,
π

2

)2
.

Definition 4.2.2. The error-propagation symbol, S̃h(θ), for a block smoother Sh on

the infinite grid Gh satisfies

Shϕ(θ,xk1,k2) = S̃hϕ(θ,xk1,k2), θ ∈
[
− π

2
,
3π

2

)2
,

for all ϕ(θ,xk1,k2), and the corresponding smoothing factor for Sh is given by

µloc = µloc(Sh) = max
θ∈Thigh

{∣∣λ(S̃h(θ))
∣∣ },

where λ
(
S̃h(θ)

)
is an eigenvalue of the 3×3 matrix-valued function S̃h(θ). Throughout

the rest of this paper, the developed theory applies to discrete spaces. Therefore, except

when necessary for clarity, we drop the subscript h for simplicity.

Definition 4.2.3. Because the smoothing factor is a function of some parameters,

let D be a bounded and closed set of allowable parameters, and define the optimal

smoothing factor over D as

µopt = min
D
µloc.

Set D may have many parameters depending on the selection of the relaxation scheme.

Remark 4.2.2. Because the ϕ(θ, ·) are defined on the infinite grid Gh, the influence

of boundaries and of boundary conditions is not taken into account here. The purpose

of LFA is to determine the quantitative convergence behavior and efficiency an ap-

propriate multigrid algorithm can attain if a proper boundary treatment is included

[10, 34]. Experience with LFA shows that it is often exact for problems with peri-

odic boundary conditions, but degradation in performance may be seen with Dirichlet

boundary conditions [27], as will be seen here in the numerical results in Section 4.6.

4.3 Distributive relaxation

DGS relaxation [11, 30] is well known to be highly efficient for the MAC discretization.

The idea of distributive relaxation is as follows. To relax the equation Lx = b,
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we introduce a new variable x̂ by x = Px̂ and consider the (transformed) system

L∗x̂ = LPx̂ = b. Here, P is chosen such that the resulting operator LP is suitable for

decoupled relaxation with a simple, efficient relaxation process, preferably for each

of the equations (velocity and pressure) of the transformed system separately. After

each sweep of relaxation, the correction δx̂, is distributed to the original unknowns,

δx = Pδx̂. DGS-type relaxation has been widely used [12, 13]. One well-known

drawback of DGS is a persistent “gap” between the smoothing factor predicted by LFA

and the convergence factors observed in practice for problems with Dirichlet boundary

conditions [27, 29, 42, 43]. In [27], it is noted that the LFA predictions are exact for

periodic boundary conditions, but extra boundary relaxation is required for Dirichlet

boundary conditions (consistent with later analysis of LFA in general in [10, 34]).

Another possible solution, proposed in [43] is to replace GS with an incomplete LU

factorization in this setting.

Motivated by potential parallelization, we consider DWJ relaxation here, although

results in Section 4.6 will show that the above concerns also play a role in this setting.

For the Stokes equations, the discretized distribution operator can be represented by

the preconditioner

P =



Ih 0 (∂x)h/2

0 Ih (∂y)h/2

0 0 △h


 .

Then, we apply block weighted-Jacobi relaxation to the distributed operator,

L∗ = LP =




−△h 0 0

0 −△h 0

−(∂x)h/2 −(∂y)h/2 −△h


 . (4.4)

Remark 4.3.1. For the staggered MAC discretization, if the original problem has

Dirichlet boundary conditions, then the last block operator, −△h, of L∗ is the standard

5-point stencil of the Laplacian operator discretized at cell centers with Neumann

boundary conditions [18]. If the original problem has periodic boundary conditions,

then last block operator, −△h, should have periodic boundary conditions.

The discrete matrix form of P is

P =

(
I BT

0 −Ap

)
,
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where Ap is the the standard five-point stencil of the Laplacian operator discretized

at cell centers (see Remark 4.3.1). For DWJ (with weight αD) relaxation, we need to

solve a system of the form

Mδx̂ =

(
αDdiag(A) 0

B αDdiag(Ap)

)(
δÛ
δp̂

)
=

(
rU

rp

)
, (4.5)

then distribute the updates as δx = Pδx̂. The error propagation operator for the

scheme is then I − ωDPM−1L.

4.3.1 DWJ relaxation

The symbol of operator L∗ is given by

L̃∗(θ1, θ2) =
1

h2




4m(θ) 0 0

0 4m(θ) 0

−i2h sin θ1
2

−i2h sin θ2
2

4m(θ)


 ,

and the symbol of the block weighted-Jacobi operator is

M̃D(θ1, θ2) =
1

h2




4αD 0 0

0 4αD 0

−i2h sin θ1
2

−i2h sin θ2
2

4αD


 .

It is easy to see that all of the eigenvalues of the error-propagation symbol, S̃D(αD, ωD,θ) =
I − ωDP̃M̃−1

D L̃, are 1− ωD
m(θ)
αD

.

Theorem 4.3.1. The optimal smoothing factor for DWJ relaxation is

µopt,D = min
(αD,ωD)

max
θ∈Thigh

∣∣λ(S̃D(αD, ωD,θ))
∣∣ = 3

5
,

and is achieved if and only if αD = 5
4
ωD.

Proof. When θ ∈ T high, m(θ) = sin2( θ1
2
) + sin2( θ2

2
) covers the interval [1

2
, 2]. Be-

cause all of the eigenvalues of S̃D(αD, ωD,θ) = I − ωDP̃M̃−1
D L̃ are 1 − ωD

m(θ)
αD

,

max
θ∈Thigh

∣∣λ(S̃D(αD, ωD,θ))
∣∣ = max

{∣∣1− ωD
2αD

∣∣,
∣∣1− 2ωD

αD

∣∣
}
. In order to minimize this,

setting |1− ωD

2αD
| = |1− 2ωD

αD
| obtains ωD

αD
= 4

5
and |1− ωD

2αD
| = 3

5
.
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Remark 4.3.2. The optimal smoothing factor for the ω-(damped) Jacobi relaxation for

a five-point finite-difference discretization of the Laplacian is 3
5
with ω = 4

5
. Thus, it is

not surprising that this serves as an intuitive lower bound on the possible performance

of block relaxation schemes that include this as a piece of the overall relaxation.

4.4 Braess-Sarazin-type relaxation schemes

Although the DWJ-type relaxation is efficient, proper construction of the preconditioner

P , is not always possible or straightforward, especially for other types of saddle-point

problems. Considering this obstacle, we also analyse other block-structured relaxation

schemes. Braess-Sarazin-type algorithms were originally developed as a relaxation

scheme for the Stokes equations [8], requiring the solution of a greatly simplified but

global saddle-point system. As a relaxation scheme for the system in (4.3), one solves

a system of the form

Mx =

(
αC BT

B 0

)(
δU
δp

)
=

(
rU

rp

)
, (4.6)

where C is an approximation of A, the inverse of which is easy to apply, for example

I, or diag(A); α > 0 is a chosen relaxation parameter. Solutions of (4.6) are computed

in two stages as

(BC−1BT )δp = BC−1rU − αrp, (4.7)

δU =
1

α
C−1(rU − BT δp).

In practice, (6.16) is not solved exactly; an approximate solve is sufficient [44], such

as using a simple sweep of a GS or weighted Jacobi iteration. In the following, we

consider two ways to solve (6.16): exact and inexact methods.

4.4.1 Exact Braess-Sarazin relaxation

We first take C = diag(A) and analyze exact Braess-Sarazin relaxation (BSR), that is,

solving (6.16) exactly. Denoting the corresponding M as ME, the symbol of ME is
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given by

M̃E(θ1, θ2) =
1

h2




4αE 0 i2h sin θ1
2

0 4αE i2h sin θ2
2

−i2h sin θ1
2

−i2h sin θ2
2

0


 .

The symbol of the error-propagation matrix for weighted exact BSR is S̃E(αE, ωE,θ) =
I − ωEM̃

−1
E L̃. A standard calculation shows that the determinant of L̃− λM̃E is

πE(λ;αE) =
16m(θ)αE

h4
(
λ− 1

)2
(λ− m(θ)

αE
),

thus, the eigenvalues of M̃−1
E L̃ are 1, 1,

m(θ)

αE
.

Remark 4.4.1. Note that 1 is an eigenvalue of M̃−1
E L̃ with multiplicity 2. This result

matches with the general results for constraint preconditioners in [21], which considers

the distribution of eigenvalues of the left preconditioned linear system, G−1Hx = G−1b.

Theorem 4.4.1. The optimal smoothing factor for (weighted) exact BSR is

µopt,E = min
(αE ,ωE)

max
θ∈Thigh

∣∣λ(S̃E(αE, ωE,θ))
∣∣ = 3

5
,

and is achieved if and only if αE = 5
4
ωE, with ωE ∈ [2

5
, 8
5
].

Proof. Since the symbol of the error-propagation operator, S̃E(αE, ωE,θ) = I −
ωEM̃

−1
E L̃, has eigenvalues 1− ωE, 1− ωE, 1− ωE

m(θ)
αE

, the smoothing factor is given

by max
θ∈Thigh

∣∣λ(S̃E(αE, ωE,θ))
∣∣ = max

{∣∣1− ωE
2αE

∣∣,
∣∣1− 2ωE

αE

∣∣,
∣∣1− ωE

∣∣
}
. As in Theorem

4.3.1, we know that min
(αE ,ωE)

max
θ∈Thigh

{∣∣1− ωE
2αE

∣∣,
∣∣1− 2ωE

αE

∣∣
}

=
3

5
. Because |1−ωE| should

be no larger than 3
5
to achieve the overall bound, we have ωE ∈ [2

5
, 8
5
].

The natural choice is to take ωE = 1, with αE = 5
4
ωE = 5

4
. In this setting, the

predicted rate of multigrid convergence is very fast, again matching the smoothing

performance of weighted Jacobi on the finite-difference Poisson operator. Also note

that for the analysis above, we considered C = diag(A) rather than C = I; however,

the same conclusion holds for the latter case because diag(A) = 4I on the infinite grid.

Taking C = I, we obtain the same smoothing factor µopt,E(θ) =
3
5
with ωE ∈ [2

5
, 8
5
]

and αE = 5ωE.
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Remark 4.4.2. Choosing C to be (symmetric) GS relaxation ((S)GS) leads to an

impractical exact BSR iteration that can, however, be easily analyzed following the

above. For the Gauss-Seidel variant (GS-BSR), this leads to an optimal smoothing

factor of 0.50 and an LFA-predicted convergence factor of 0.45 with optimal parameters.

For the symmetric Gauss-Seidel variant (SGS-BSR), this leads to an optimal smoothing

factor of 0.25 and an LFA-predicted convergence factor of 0.20 with optimal parameters.

In Remarks 4.4.6 and 4.4.7, we revisit these results in comparison with inexact GS-BSR

and SGS-BSR, respectively.

4.4.2 Inexact Braess-Sarazin relaxation

The (exact) Braess-Sarazin approach was first introduced in [8], where it was shown

that a multigrid convergence rate of O(k−1) can be achieved, where k denotes the

number of smoothing steps on each level. However, there is a significant difficulty

in practical use of this method because it requires an exact inversion of the Schur

complement, which is very expensive. A broader class of iterative methods for Stokes

problem is discussed in [44], which demonstrated that the same O(k−1) performance

can be achieved as the exact Braess-Sarazin relaxation when the pressure correction

equation is not solved exactly. In [44], this inexact BSR (IBSR) is seen to be slightly

worse than exact BSR for a finite-element discretization of the Stokes Equations, even

with a strong iteration used on the Schur complement system. This motivates us

to explore inexact Braess-Sarazin relaxation for the MAC discretization, wondering

whether it is possible to achieve the same smoothing factor of 3
5
. This will be answered

in the following.

Considering parallel and graphics processing unit (GPU) computation, we focus on

using a single sweep of weighted Jacobi iteration (with weight ωJ) to approximate the

solution of Equation (6.16). In order to distinguish between the parameters αE, ωE used

in the exact case, we use αI , ωI in the inexact case. Denote the resulting approximation

matrix, M , as MI . Considering the block factorization of M in Equation (4.6), we

introduce the modified Schur complement that corresponds to applying only a single

weighted Jacobi sweep of relaxation on the true Schur complement, B(αIC)
−1BT , as

−S +B(αIC)−1BT , where C = diag(A) and S = ω−1
J diag(B(αIC)−1BT ). The stencil
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of αIC is

1

h2

[
4αI 0

0 4αI

]
,

and the stencils of B(αIC)
−1BT and the modified Schur complement for weighted

Jacobi iteration are, respectively,

1

αI




−1
4

−1
4

1 −1
4

−1
4


 ,

1

αI




−1
4

−1
4

1− ω−1
J −1

4

−1
4


 . (4.8)

Therefore, according to the symbol Definition 4.2.1, the symbol of the weighted

Jacobi iteration is

β =
2− cos θ1 − cos θ2 − 2ω−1

J

2αI
=
m(θ)− ω−1

J

αI
.

The symbol of matrix MI is given by

M̃I(θ1, θ2) =
1

h2




4αI 0 i2h sin θ1
2

0 4αI i2h sin θ2
2

−i2h sin θ1
2

−i2h sin θ2
2

h2β


 .

Calculating the determinant of L̃ − λM̃I , we obtain the characteristic polynomial

πI(λ;αI , ωJ) =
16αI(m(θ)− αIβ)

h4
(
λ−m(θ)

αI

)(
λ2+

βm(θ)− 2m(θ)

m(θ)− αIβ
λ+

m(θ)

m(θ)− αIβ

)

(4.9)

Note that setting β = 0 (which would require m(θ)ωJ = 1) yields πI(λ;αI , ωJ) =

πE(λ;αI), recovering the case of exact Braess-Sarazin. In the general case (when ωJ

is a constant factor), we still recognize that λ∗ :=
m(θ)
αI

is an eigenvalue for both the

exact and inexact Braess-Sarazin relaxation. Therefore, the optimal smoothing factor

µopt,I for the inexact case cannot be smaller than 3
5
, and will only achieve that value if

ωI

αI
= 4

5
. Thus, it is reasonable to try ωI

αI
= 4

5
in the analysis of the inexact case.
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To analyze the other eigenvalues of the inexact Braess-Sarazin relaxation, substi-

tuting β =
m(θ)−ω−1

J

αI
into (4.9), these two eigenvalues, λ1, λ2, are the roots of

gI(λ;αI , ωJ) = λ2 +

(
m(θ)

αI

(
m(θ)ωJ − 1

)
− 2m(θ)ωJ

)
λ+m(θ)ωJ . (4.10)

Consequently, we have

λ1 + λ2 =
m(θ)

αI

(
1−m(θ)ωJ

)
+ 2m(θ)ωJ , (4.11)

λ1λ2 = m(θ)ωJ > 0. (4.12)

Denote the discriminant of the quadratic function gI as

∆I(αI , ωJ) =
ω2
J

α2
I

m(θ)
(
m(θ)−m∗

)(
m(θ)−m+

)(
m(θ)−m−

)
, (4.13)

where

m∗ = ω−1
J , m± =

4αI + ω−1
J ±

√
(4αI + ω−1

J )2 − (4αI)2

2
.

For m(θ) ∈ [0, 2], the sign of ∆I(αI , ωJ) is determined by the choices of αI , ωJ .

Hence, it is important to determine the relationship of m∗,m+,m−, for certain choices

of αI , ωJ . The next Lemma gives a useful characterization.

Lemma 4.4.1. If αI = ω−1
J , then m− = m∗. If, furthermore, 1

2
≤ αI ≤ 2, then

∆I(αI , ωJ) ≤ 0, ∀m(θ) ∈ [0, 2].

Proof. Since αI = ω−1
J , we have

m− =
4αI + ω−1

J −
√

(4αI + ω−1
J )2 − (4αI)2

2
= αI = m∗,

which is the first result.
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If 1
2
≤ αI ≤ 2, we have

m+ =
4αI + ω−1

J +
√

(4αI + ω−1
J )2 − (4αI)2

2
= 4αI ≥ 2,

m− = αI ≤ 2.

According to the discriminant in (4.13) and the relationship that αI = ω−1
J , it follows

that

∆I(αI , ω) =
m(θ)(m(θ)− 4αI)(m(θ)− αI)

2

α4
I

≤ 0,

for all m(θ) ∈ [0, 2].

Theorem 4.4.2. If ∆I(αI , ωJ) ≤ 0, then necessary and sufficient conditions for

the convergence of inexact Braess-Sarazin iteration, S̃I(θ) = I − ωI(M̃I)
−1L̃, for all

frequencies θ 6= 0 are

|1− ωIλ∗| < 1, (4.14)

(1− ωIλ1)(1− ωIλ2) < 1. (4.15)

Proof. If ∆I(αI , ωJ) ≤ 0, then λ1 = λ2 and |1 − ωIλ1|2 = |1 − ωIλ2|2 = (1 −
ωIλ1)(1 − ωIλ2). Thus, the necessary and sufficient condition for convergence is

(1− ωIλ1)(1− ωIλ2) < 1, along with |1− ωIλ∗| < 1.

Next, under the condition αI = ω−1
J , we optimize the smoothing factor µloc,I(θ).

Considering the convergence conditions, using (4.11) and (4.12), (4.15) can be simplified

as

m(θ) < ω−1
J + αI(2− ωI),

which should hold for all m(θ) ∈ [0, 2]. This is clearly satisfied for all m(θ) if it is true

for m(θ) = 2. From (4.14), becuase λ∗ =
m(θ)
αI

, we obtain ωI < αI . We thus define a

set D∗, of parameters that satisfy Theorem 4.4.2 (allowing for nonconvergence when

θ = 0), as well as the assumption that αI =
5
4
ωI needed to achieve the smoothing

factor of 3
5
, as

D∗ =

{(
αI , ωJ , ωI

)
:
1

2
≤ αI = ω−1

J ≤ 2, 2 < αI(3− ωI), αI =
5

4
ωI

}
.

The next theorem demonstrates that IBSR can achieve the optimal smoothing factor
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of 3
5
.

Theorem 4.4.3. For (αI , ωJ , ωI) ∈ D∗, the optimal smoothing factor for the IBSR is

µopt,I = min
(αI ,ωJ ,ωI)∈D∗

max
θ∈Thigh

{
|1− ωIλ∗|, |1− ωIλ1|, |1− ωIλ2|

}
=

3

5
,

and is achieved if and only if αI =
5
4
, ωI = 1, and ωJ = 4

5
.

Proof. Because (αI , ωJ , ωI) ∈ D∗, the convergence conditions are satisfied. For the

high frequencies, the eigenvalues are either complex numbers or two equal real numbers,

so we consider µ2
opt in place of µopt. Let us set

η2(m(θ)) := (1− ωIλ1)(1− ωIλ2).

Following (4.11) and (4.12), and substituting ω−1
J = αI , ωI =

4
5
αI into η

2(m(θ)), we

have

η2(m(θ)) =
4

5αI
m(θ)2 + (

16αI
25

− 12

5
)m(θ) + 1.

Treating η2 as a quadratic function of m, the symmetry axis is m0 =
15αI − 4α2

I

10
.

For αI ∈ [1
2
, 2],m0 ∈

[
13
20
, 45
32

]
⊆
[
1
2
, 2
]
, achieving its maximum value at αI =

15
8
. This

tells us that η2(m(θ)) obtains its maximum at either m(θ) = 1
2
or m(θ) = 2, so our

discussion is divided into two cases. Note also that m0 =
5
4
, when αI =

5
4
.

Case 1: If m0 ≥ 5
4
, then

max
θ∈Thigh

η2(m(θ)) = η2(m(θ) =
1

2
) =

1

5αI
+

8αI
25

− 1

5
.

From m0 ≥ 5
4
and αI ∈ [1

2
, 2], we have αI ∈

[
5
4
, 2
]
. The optimal smoothing factor is,

then,

min
(αI ,ωJ ,ωI)∈D∗

max
θ∈Thigh

η2(m(θ)) = min
αI∈[ 54 ,2]

{
1

5αI
+

8αI
25

− 1

5

}
=

9

25
, (4.16)

where αI =
5
4
obtains the minimum.

Case 2: If m0 ≤ 5
4
, then

max
θ∈Thigh

η2(m(θ)) = η2(m(θ) = 2) =
16

5αI
+

32αI
25

− 19

5
.
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From m0 ≤ 5
4
and αI ∈

[
1
2
, 2
]
, we have αI ∈

[
1
2
, 5
4

]
. The optimal smoothing factor is

min
(αI ,ωJ ,ωI)∈D∗

max
θ∈Thigh

η2(m(θ)) = min
αI∈[ 12 ,

5
4
]

{
16

5αI
+

32αI
25

− 19

5

}
=

9

25
, (4.17)

where αI =
5
4
obtains the minimum.

For both situations, ωI =
4
5
αI = 1, ωJ = α−1

I = 4
5
satisfy the condition 2 < αI(3−ωI)

in D∗. Combining (4.16) and (4.17), we see that the optimal smoothing factor over D∗

for λ1, λ2 is 3
5
. For the third eigenvalue, λ∗, because αI =

5
4
ωI is a condition on D∗, we

always have max
θ∈Thigh

∣∣1− ωI
m(θ)

αI

∣∣ = 3

5
as in BSR. Thus, we can draw the conclusion

that the optimal smoothing factor for IBSR is

min
(αI ,ωJ ,ωI)∈D∗

max
θ∈Thigh

{
|1− ωIλ∗|, |1− ωIλ1|, |1− ωIλ2|

}
=

3

5
,

with αI =
5
4
, ωI = 1, and ωJ = 4

5
.

Remark 4.4.3. For the optimal values αI = ω−1
J = 5

4
, and ωI = 1, (4.10) has real

roots only for m(θ) = 0, 5
4
. For other m(θ) ∈ [0, 2], the roots are complex.

Remark 4.4.4. It is interesting that the optimal parameter of αI =
5
4
matches that

found experimentally in [22] for solving the discretized Stokes problem using Taylor-

Hood elements with Braess-Sarazin relaxation.

Remark 4.4.5. The definition of D∗ makes use of the assumption that αI = ω−1
J ,

which is not strictly necessary, Thus, while the choice of parameters is unique over D∗,

it may not be globally unique. However, because our interest is whether IBSR can reach

the same optimal smoothing factor as BSR, we do not consider this question further.

Remark 4.4.6. While exact GS-BSR is impractical, a reasonable inexact variant

uses GS relaxation for the velocity equations and retains weighted Jacobi relaxation

for the pressure correction, based on the same approximate Schur complement given

in (4.8). Following similar reasoning as above, we can conclude the inexact variant

cannot achieve a better smoothing factor than GS does for the velocity block, which

is 0.5. While we have not analytically optimized the inexact GS-BSR parameters,

numerical optimization shows that a smoothing factor of 0.5 can be achieved, and

yields an LFA-predicted convergence factor of 0.48 with linear interpolation and 6-point

restriction, and 0.41 with linear interpolation and 12-point restriction, for the optimal

parameters found.
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Remark 4.4.7. Similarly, a reasonable inexact SGS-BSR algorithm again uses weighted

Jacobi relaxation for the pressure correction, based on the approximate Schur comple-

ment given in (4.8). Numerical optimization of the inexact SGS-BSR parameters yields

a smoothing factor of 0.25, matching the lower bound given from the exact SGS-BSR

case, and an LFA-predicted convergence factor of 0.20 with linear interpolation and

6-point restriction.

Comparing Theorem 4.4.3 with Theorem 4.4.1, we note that IBSR and BSR obtain

the same optimal smoothing factor, 3
5
, with the same choices αI =

5
4
, ωI = 1. The

IBSR is simple to implement, avoiding the necessity of computing the exact inversion

of the Schur complement. These properties make IBSR attractive as a smoother for

general saddle-point problems.

4.5 Uzawa-type relaxation

Multigrid methods with Uzawa-type relaxation are a popular family of algorithms

for solving saddle-point systems [14, 25]. Each step of the exact Uzawa algorithm

requires the solution of a linear system with coefficient matrix A, as well as one with an

approximation of the Schur complement, −BA−1BT . However, if this computation is

replaced by approximate solutions produced by iterative methods then, with relatively

modest requirements on the accuracy of the approximate solution, the resulting inexact

Uzawa algorithm is convergent, with a convergence rate close to that of the exact

algorithm [9, 14]. In order to distinguish the parameters from those used in Braess-

Sarazin relaxation, we add the subscript U in the following. The Uzawa-type relaxation

that we consider can be written as a simpler block solve than that used in BSR,

MUδx =

(
αC 0

B −S

)(
δU
δp

)
=

(
rU

rp

)
, (4.18)

where αC is an approximation of A, and −S is an approximation of the Schur

complement, −BA−1BT .

Here, we discuss two cases. First, we consider an analogue to exact Braess-Sarazin

with C = diag(A), S = B(αC)−1BT . Then, we consider an algorithm with manageable

cost, with C = diag(A), S = σ−1I.
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4.5.1 Schur-Uzawa relaxation

Here, we consider C = diag(A), S = B(αSUC)−1BT , giving the so-called Schur-Uzawa

method. The amplification factor for this method is S̃SU (αSU , ωSU ,θ) = I−ωSUM̃−1
SU L̃

and the symbol of MSU is given by

M̃SU(θ1, θ2) =
1

h2




4αSU 0 0

0 4αSU 0

−i2h sin θ1
2

−i2h sin θ2
2

−m(θ)
αSU

h2


 .

The determinant of L̃− λM̃SU is then

πSU(λ;αSU) =
16αSUm(θ)

h4
(
λ− m(θ)

αSU

)(
λ2 −

(
1 +

m(θ)

αSU

)
λ+ 1

)
.

As discussed in Braess-Sarazin relaxation, the optimal smoothing factor for the modes

λ∗U := m(θ)
αSU

is known to be

∣∣1− 2ωSU
αSU

∣∣ =
∣∣1− ωSU

2αSU

∣∣ = 3

5
,

provided that ωSU

αSU
= 4

5
.

To analyze the other eigenvalues of Schur-Uzawa relaxation, we denote λ1, λ2 as

the roots of

gSU(λ;αSU) = λ2 −
(
1 +

m(θ)

αSU

)
λ+ 1, (4.19)

taking the discriminant of the quadratic function gSU as

∆SU(m(θ);αSU) =
(
1 +

m(θ)

αSU

)2 − 4.

Because the sign of the discriminant is undetermined and depends on the value of

m(θ), we must consider three cases for the distribution of the eigenvalues. First, that

all of the eigenvalues are real numbers. Second, that all of the eigenvalues are complex

numbers. Finally, that some are real and some are complex. The main idea behind

optimizing the smoothing factor is, simply, to optimize for each of the three cases

respectively, then select the best one.
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Theorem 4.5.1. The optimal smoothing factor for Schur-Uzawa relaxation is

µopt,SU = min
(αSU ,ωSU )

max
θ∈Thigh

{∣∣λ(S̃SU(αSU , ωSU ,θ))
∣∣
}

=

√
33− 3

√
73

41− 3
√
73

≈ 0.6924,

and is achieved if and only if

αSU =
4√

73− 5
, ωSU =

4√
73− 3

.

Proof. Case 1: If ∆SU(m(θ);αSU) ≤ 0 for all m(θ), then we must have αSU ≥ m(θ)

for all θ, so αSU ≥ 2. In this case, we have two complex roots for all m(θ), whose

magnitude, τSU(m(θ)), is given by

τ 2SU(m(θ)) := (1− ωSUλ1)(1− ωSUλ2),

= 1− (λ1 + λ2)ωSU + λ1λ2ω
2
SU ,

= 1− ωSU(1 +
m(θ)

αSU
) + ω2

SU .

The smoothing factor over these roots is given by

µC(αSU , ωSU)
2 : = max

m(θ)∈[ 1
2
,2]
τ 2SU(m(θ)) = τ 2SU(

1

2
)

=

(
ωSU −

(1
2
+

1

4αSU

))2

+ 1−
(1
2
+

1

4αSU

)2
. (4.20)

In order to minimize µC(αSU , ωSU), ωSU must be equal to ω∗
SU = 1

2
+ 1

4αSU
. Because

αSU ≥ 2,

min
(αSU≥2,ωSU )

µC =

√
1−

(1
2
+

1

4× 2

)2
=

√
39

64
≈ 0.7806,

provided that αSU = 2, ωSU = 1
2
+ 1

4αSU
= 5

8
.

Because there is another eigenvalue, m(θ)
αSU

, the optimal smoothing factor when

∆SU(m(θ);αSU) ≤ 0 for all θ is at least
√

39
64
.

Case 2: If ∆SU(m(θ);αSU) ≥ 0 for all m(θ), then we have αSU ≤ m(θ) for all θ,
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so αSU ≤ 1
2
. Denote the two eigenvalues of (4.19) as λ+(m(θ)) > λ−(m(θ)). It is easy

to check that λ+ is an increasing function of m(θ), while λ− is a decreasing function

of m(θ). Set

µR(αSU , ωIU) := max
m(θ)∈[ 1

2
,2]
{|1− ωSUλ|} = max

{
|1− ωSUλ+(2)|, |1− ωSUλ−(2)|

}
.

(4.21)

We know that to minimize this maximum, we need

ωSU =
2

λ+(2) + λ−(2)
=

2
2

αSU
+ 1

, (4.22)

and take ω∗∗
SU = 2

2
αSU

+1
. The smoothing factor for these modes is then given by

minµR(αSU , ωSU) = min
αSU≤ 1

2

{
λ+(2)− λ−(2)

λ+(2) + λ−(2)

}

= min
αSU≤ 1

2

{√
1− 4λ+(2)λ−(2)(

λ+(2) + λ−(2)
)2
}

= min
αSU≤ 1

2

{√
1− ω2

SU

}
(4.23)

=

√
21

25
≈ 0.9615,

because λ+(2)λ−(2) = 1 with the minimum achieved when αSU = 1
2
.

Because there is another eigenvalue, m(θ)
αSU

, the optimal smoothing factor when

∆SU(m(θ);αSU) ≥ 0 for all θ is at least
√

21
25
.

Case 3: αSU ∈ (1
2
, 2). When m(θ) ∈ (1

2
, αSU ], ∆SU(m(θ);αSU) ≤ 0. From (4.20),

we know that µC(αSU , ωSU) is an increasing function of αSU . When m(θ) ∈ [αSU , 2)

, ∆SU(m(θ);αSU) ≥ 0. From (4.22) and (4.23), we know that µR(αSU , ωSU) is a

decreasing function of αSU . Set

µSU = min
(αSU ,ωSU )

max
{

max
αSU≤θ<2

µR(αSU , ωSU), max
1
2
≤θ≤αSU

µC(αSU , ωSU)
}
.

In order to achieve the minimum, we must have µR(αSU , ωSU) = µC(αSU , ωSU) and
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ω∗
SU = ω∗∗

SU . This gives αSU = 4√
73−5

, ωSU = 4√
73−3

, and

µSU =
√
1− ω2

SU =

√
33− 3

√
73

41− 3
√
73

≈ 0.6924.

Recall the third eigenvalue m(θ)
αSU

. Since αSU = 4√
73−5

and ωSU = 4√
73−3

, we have

max
m(θ)∈[ 1

2
,2]

{∣∣1− ωSU
m(θ)

αSU

∣∣
}

=
70 + 2

√
73

128
≈ 0.6804 < 0.6924.

From the three cases discussed above, we can clearly conclude that when αSU = 4√
73−5

and ωSU = 4√
73−3

, we obtain the optimal smoothing factor µSU =
√

33−3
√
73

41−3
√
73

≈
0.6924.

We note that the convergence factor predicated for Schur-Uzawa is somewhat worse

than for exact Braess-Sarazin. As we will see in the next section, further degradation

occurs when we consider the more practical algorithm, σ-Uzawa.

4.5.2 σ-Uzawa relaxation

In Braess-Sarazin relaxation, we prefer to solve Schur complement system (BC−1BT )δp =

BC−1rU −αrp by an inexact iteration such as weighted Jacobi for the pressure update.

This idea can be adopted to the Schur-Uzawa relaxation, replacing the exact solution

of B(αSUC)−1BT δp = BδU − rp by the simple calculation of σ−1δp = BδU − rp, which

can be viewed as a weighted Jacobi iteration applied with the Schur-Uzawa solve,

because the symbol of diag(B(αSUC)
−1BT ) is α−1

SU . Following the usual notation, we

call the resulting parameter σ and the algorithm as σ-Uzawa relaxation. The symbol

of the resulting approximation of L, MU , is given by

M̃U(θ1, θ2) =
1

h2




4αU 0 0

0 4αU 0

−i2h sin θ1
2

−i2h sin θ2
2

−σ−1h2


 .
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The determinant of L̃− λM̃U is then

πU(λ;αU , σ) =
16α2

U

σh4
(
λ− m(θ)

αU

)(
λ2 − 1 + σ

αU
m(θ)λ+

m(θ)σ

αU

)
.

Because λ∗U := m(θ)
αU

and m(θ) ∈ [1
2
, 2] for high frequencies, the optimal smoothing

factor for these modes is known to be

∣∣1− 2ωU
αU

∣∣ =
∣∣1− ωU

2αU

∣∣ = 3

5
,

provided that ωU

αU
= 4

5
.

To analyze the other eigenvalues of σ-Uzawa relaxation, we denote by λ1, λ2 the

roots of

gU(λ;αU , σ) = λ2 − (1 + σ)m(θ)

αU
λ+

m(θ)σ

αU
, (4.24)

taking the discriminant of the quadratic function gU as

∆U(αU , σ) =
m(θ)(1 + σ)2

α2
U

(
m(θ)− 4αUσ

(1 + σ)2

)
,

and take

m1 = 0, m2 =
4αUσ

(1 + σ)2
.

From (4.24), we have

λ1 + λ2 =
m(θ)(1 + σ)

αU
> 0, (4.25)

λ1λ2 =
m(θ)σ

αU
> 0, (4.26)

λ1,2 =
(1 + σ)m(θ)

2αU

(
1±

√
1− m2

m(θ)

)
. (4.27)

The sign of ∆U (αU , σ) (and, consequently, the value of m2) plays an important role

in the analysis of the smoothing factor. As before, we explore the optimal smoothing

factor for three cases: only real eigenvalues, only complex eigenvalues, and when
1
2
< m2 < 2, giving both real and complex eigenvalues. We first explore the case where

only complex eigenvalues occur.

In order to discuss the complex eigenvalues, we take τ(m(θ)) to be the magnitude
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of the two eigenvalues at frequency θ, giving

τ 2(m(θ)) = (1− ωUλ1)(1− ωUλ2),

= 1− (λ1 + λ2)ωU + λ1λ2ω
2
U ,

= 1 +
ωU
αU

(ωUσ − σ − 1)m(θ).

For simplicity of discussion of the smoothing factor for complex eigenvalues, we give a

general result that can be applied in the third case, when 1
2
< m2 < 2.

Lemma 4.5.1. Assume that m2 ≥ 1
2
and let γ = min{m2, 2}. For m(θ) ∈ [1

2
, γ],

eigenvalues λ1 and λ2 are complex conjugates and the smoothing factor for these modes

over this range of θ is

SFC = max
m(θ)∈[ 1

2
,γ]
τ(m(θ)) =

√
1 +

ωU(ωUσ − σ − 1)

αU
≥
√

1− 1

2γ
,

with equality if and only if

ωU
αU

(ωUσ − σ − 1) = −1

γ
.

Proof. Clearly, form(θ) ∈ [1
2
, γ], ∆U (αU , σ) ≤ 0 and |1−ωUλ1| = |1−ωUλ2| = τ (m(θ)).

In order to guarantee convergence, we require τ (m(θ))2 < 1 (with equality allowed for

θ = 0). This requires that ωU (ωUσ−σ−1)
αU

< 0. Because γ = min{m2, 2}, it is easily seen

that

τ 2(γ) = 1 +
ωU
αU

(ωUσ − σ − 1)γ

≥ 1 +
ωU
αU

(ωUσ − σ − 1)m2

=

(
1− 2ωUσ

1 + σ

)2

≥ 0,

which gives
ωU
αU

(ωUσ − σ − 1) ≥ −1

γ
.

It follows that

max
m(θ)∈[ 1

2
,γ]
τ(m(θ)) = τ

(
1

2

)
=

√
1 +

ωU
2αU

(ωUσ − σ − 1) ≥
√

1− 1

2γ
,
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and that equality is achieved if and only if ωU (ωUσ−σ−1)
αU

= −1
γ
.

Lemma 4.5.2. If m2 =
4αUσ
(1+σ)2

> 2, then τ 2(2) = 1 + ωU

αU
(ωUσ − σ − 1)2 > 0.

Proof. For contradiction, assume that τ(2) = 1 + ωU

αU
(ωUσ − σ − 1)2 = 0, which gives

αU

ωU (σ+1−ωUσ)
= 2. Because m2 > 2, we have

4αUσ

(1 + σ)2
>

αU
ωU(σ + 1− ωUσ)

,

which can be rewritten as (
ωUσ

1 + σ
− 1

2

)2

< 0.

These results allow us to obtain a bound on the smoothing factor when m2 > 2.

Theorem 4.5.2. If m2 =
4αUσ
(1+σ)2

> 2, then the optimal smoothing factor for inexact

Uzawa relaxation is larger than
√
3
2
.

Proof. From Lemma 4.5.1, we know the smoothing factor for the complex modes

is SFC = τ(1
2
) ≥

√
1− 1

2γ
=

√
3
2

with equality if and only if τ 2(2) = 0. However,

from Lemma 4.5.2, we know when m2 > 2, τ 2(2) 6= 0. This implies that the optimal

smoothing factor is larger than
√
3
2
.

We now consider the case where m2 ≤ 2. For m(θ) ∈ [m2, 2], the two roots are

real. From (4.27), we have

|1− ωUλ1| =

∣∣∣∣1−
(1 + σ)ωU

2αU
m(θ)

(
1 +

√
1− m2

m(θ)

)∣∣∣∣ ,

|1− ωUλ2| =

∣∣∣∣1−
(1 + σ)ωU

2αU
m(θ)

(
1−

√
1− m2

m(θ)

)∣∣∣∣ .

Let

R+(m(θ)) =
m(θ)

2

(
1 +

√
1− m2

m(θ)

)
,

R−(m(θ)) =
m(θ)

2

(
1−

√
1− m2

m(θ)

)
.
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Function R+(m(θ)) is an increasing function of m(θ) for m(θ) ∈ [m2, 2], giving

R1 := R+(m(θ))max = R+(2) = 1 +

√
1− m2

2
,

R+(m(θ))min = R+(m2) =
m2

2
.

For function R−(m(θ)), since it is a decreasing function of m(θ), where m(θ) ∈ [m2, 2],

we have

R−(m(θ))max = R−(m2) =
m2

2
,

R2 := R−(m(θ))min = R−(2) = 1−
√

1− m2

2
.

Remark 4.5.1. R−(m(θ)) is a decreasing function of m(θ), because R−(m(θ))
′

=√
1− m2

m(θ)
+

m2
2m(θ)

−1

2
√

1− m2
m(θ)

< 0 for all m(θ) ∈ (m2, 2].

From the above discussion, the smoothing factor for the two real eigenvalues in

this case is

SFR : = max
θ∈Thigh

∣∣λ(S̃U(αU , ωU , σ,θ))
∣∣

= max

{∣∣1− (1 + σ)ωU
αU

R1

∣∣,
∣∣1− (1 + σ)ωU

αU
R2

∣∣
}
.

We can simplify the above expression by noting that

SFR =





(1 + σ)ωU
αU

R1 − 1, if
(1 + σ)ωU

αU
≥ 1

1− (1 + σ)ωU
αU

R2, if
(1 + σ)ωU

αU
≤ 1

(4.28)

This allows us to bound the smoothing factor for the case when m2 ≤ 1
2
.

Theorem 4.5.3. If m2 =
4αUσ
(1+σ)2

≤ 1
2
, then the optimal smoothing factor for inexact

Uzawa relaxation is at least
√
3
2
.

Proof. Becausem2 ≤ 1
2
, the eigenvalues are all real. According to (4.28), the smoothing
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factor for m(θ) ∈ [1
2
, 2] is

SFR =





(1 + σ)ωU
αU

(1 +

√
3

2
)− 1, if

(1 + σ)ωU
αU

≥ 1

1− (1 + σ)ωU
αU

(1−
√
3

2
), if

(1 + σ)ωU
αU

≤ 1

It is easy to see that when (1+σ)ωU

α
= 1, SFR reaches its minimum value of

√
3
2
. Note

that the conditions that (1+σ)ωU

α
= 1 and m2 ≤ 1

2
might not be satisfied at the same

time, so the optimal smoothing factor may be larger than
√
3
2
.

We now consider the case where 1
2
≤ m2 ≤ 2. The key parameter in the proof is

(1+σ)ωU

αU
, which determines which of bounds on the real eigenvalues is dominant.

Theorem 4.5.4. When m2 ∈ [1
2
, 2], the optimal smoothing factor for σ-Uzawa relax-

ation is

µopt,σU = min
(αU ,ωU ,σ)

max
θ∈Thigh

{∣∣1− 2ωU
αU

∣∣,
∣∣1− ωU

2αU

∣∣, SFR, SFC
}

=

√
1− mopt

2
=

√
3

5
≈ 0.7746,

if and only if m2 = mopt =
4
5
, and the parameters satisfy

1

5(2µopt,U − 1)
≤ ωU ≤ 2

5(1− µopt,U)
,

αU =
5ω2

U

5ωU − 1
,

σ =
1

5ωU − 1
.

Proof. We first consider the case where (1+σ)ωU

αU
= 1, and the two expressions in (4.28)

coincide. In this case, m2 =
4αUσ
(1+σ)2

= 4
ω2
Uσ

αU
, and, for m(θ) ∈ [m2, 2],

SFR =
(1 + σ)ωU

αU
R1 − 1 =

√
1− m2

2
=

√
1− 2

ω2
Uσ

αU
.
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For m(θ) ∈ [1
2
,m2], from Lemma 4.5.1, we have

SFC =

√
1 +

ωU(ωUσ − σ − 1)

2αU
=

√
1

2
+
ω2
Uσ

2αU
.

Because SFR is a decreasing function of
ω2
Uσ

αU
and SFC is an increasing function of

ω2
Uσ

αU
,

the optimal smoothing factor over the modes bounded by these factor is achieved if

and only if SFR = SFC and is given by

µopt,σU = min
(αU ,ωU ,σ)

max
m(θ)∈[ 1

2
,2]





√
1− 2

ω2
Uσ

αU
,

√
1

2
+
ω2
Uσ

2αU



 =

√
3

5
, (4.29)

with the minimum occurring when

ω2
Uσ

αU
=

1

5
, (4.30)

(1 + σ)ωU
αU

= 1. (4.31)

Furthermore, mopt := m2 = 4
ω2
Uσ

αU
= 4

5
. We now show this is the best possible

bound over these two modes before returning to consider the eigenvalues 1− ωU
m(θ)
αU

.

In the following, take x = (1+σ)ωU

αU
, and y =

ω2
Uσ

αU
, then m2 =

4αUσ
(1+σ)2

= 4y
x2
. Assume

that SFC ≤
√

3
5
, that is,

√
1 +

ωU(ωUσ − σ − 1)

2αU
=

√
1− x

2
+
y

2
≤
√

3

5
,

which implies that

y ≤ x− 4

5
. (4.32)
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If x > 1, from (4.28) and (4.32), we have

SFR =
(1 + σ)ωU

αU

(
1 +

√
1− m2

2

)
− 1

= x+
√
x2 − 2y − 1

≥ x+

√
x2 − 2(x− 4

5
)− 1

= x− 1 +

√
(x− 1)2 +

3

5

>

√
3

5
.

Therefore, when x > 1, the optimal smoothing factor is larger than
√

3
5
.

If x < 1, from (4.28) and (4.32), we have

SFR = 1− (1 + σ)ωU
αU

(
1−

√
1− m2

2

)

= 1− x+
√
x2 − 2y

≥ 1− x+

√
x2 − 2(x− 4

5
)− 1

= 1− x+

√
(x− 1)2 +

3

5

>

√
3

5
.

Therefore, when x < 1, the optimal smoothing factor is larger than
√

3
5
.

Thus, over all choices of x, the optimal smoothing factor that over these modes is

µopt,U =
√

3
5
, achieved when x = (1+σU )ωU

αU
= 1.

We now consider the eigenvalue λ∗,U = m(θ)
αU

. We know that min
(αU ,ωU ,σ)

max
θ∈Thigh

∣∣1 −

ωU
m(θ)

αU

∣∣ = 3

5
< µopt,U =

√
3

5
. In order to have this mode not be reduced more slowly

than the others, we need

|1− 2ωU
αU

| ≤ µopt,U and |1− ωU
2αU

| ≤ µopt,U ,
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which imply that

2(1− µopt,U)
1

ωU
≤ 1

αU
≤ 1 + µopt,U

2

1

ωU
. (4.33)

Simplifying (4.30) and (4.31), we have

αU =
5ω2

U

5ωU − 1
, (4.34)

σ =
1

5ωU − 1
. (4.35)

Using (4.34) and (4.35), (4.33) can be simplified as

1

5(2µopt,U − 1)
≤ ωU ≤ 2

5(1− µopt,U)
. (4.36)

Note that the set of values defined by (4.34), (4.35), and (4.36) is not empty, with

parameters ωU = 1, αU = 5
4
, σ = 1

4
in this set.

Corollary 4.5.1. The optimal smoothing factor for σ-Uzawa relaxation over all

possible parameters is
√

3
5
.

Comparing this to the optimal smoothing factor for both exact and inexact Braess-

Sarazin, 3
5
, we note that Braess-Sarazin relaxation offers better smoothing performance,

but requires more work per iteration. In the following, we compare the computational

work of these two methods and distributive relaxation.

4.5.3 Comparing among IBSR, σ-Uzawa, and DWJ relaxation

To end this section, we turn our attention to an estimate of the computational work for

multigrid methods with σ-Uzawa, IBSR and DWJ relaxation. Because µ2
opt,σU = µopt,I ,

one cycle of multigrid with IBSR brings about the same total reduction in error

as 2 cycles using σ-Uzawa relaxation. However, for IBSR and DWJ relaxation,

µopt,I = µopt,D.

Considering the cost per sweep of IBSR and Uzawa relaxation, we see that inexact

Braess-Sarazin is expected to be slightly more efficient. Recall the IBSR (4.6), where
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C = diag(A), requires inexact solution of

(BC−1BT )δp = BC−1rU − αrp,

δU =
1

α
C−1(rU − BT δp).

Because we use the standard finite-difference discretizations, C is just a diagonal matrix

and C−1 is very simple to compute. For the first equation, we use a single sweep of

weighted Jacobi iteration, having precomputed the approximate Schur complement,

B(C)−1BT . Thus, the total cost of a single sweep of IBSR is that of 2 applications of

C−1, one sweep of weighted Jacobi for δp, one matrix-vector product each with B and

BT , and some vector updates. In σ-Uzawa relaxation, Equation (4.18) is equivalent to

computing updates as

δU = (αC)−1rU ,

Sδp = BδU − rp.

Thus, the total cost of a single sweep is that of one application of C−1, one diagonal

scaling for δp, one matrix-vector product with B, and some vector updates. Thus, the

cost of 2 sweeps of σ-Uzawa is slightly more than one sweep of inexact Braess-Sarazin

and, in this case, inexact Braess-Sarazin is more efficient.

In distributive weighted-Jacobi relaxation, Equation (4.5) is equivalent to computing

updates as

δÛ = (αC)−1rU ,

δp̂ =
(
αdiag(Ap)

)−1
(rp − BδÛ),

followed by distribution to the original unknowns by computing

δU = δÛ +BT δp̂,

δp = −Apδp̂.

Thus, the total cost of a single sweep is one application of (αC)−1, one sweep of Jacobi

on Ap, one matrix-vector product with BT and B, one application of Ap, and some

vector updates. Comparing with IBSR, the cost of one sweep of DWJ relaxation is

slightly more than the cost of one sweep of IBSR.



107

Remark 4.5.2. Similar comparisons are possible between inexact (S)GS-BSR and

published results for DGS and (S)GS-Uzawa. For (S)GS-based methods, the cost of

an (S)GS sweep on the velocity (or pressure) equations is somewhat more expensive

than the diagonal scaling discussed above. For the inexact (S)GS-BSR algorithms

discussed in Remarks 4.4.6 and 4.4.7, the cost is now that of two sweeps of (S)GS on

the velocity equations, one sweep of weighted Jacobi (diagonal scaling) for the pressure,

one matrix-vector product each with B and BT , and some vector updates. The DGS

algorithm of [11, 30] requires a single sweep of GS on the velocity equations plus one on

the pressure unknowns, one matrix-vector product each with B and BT as well as one

with Ap, and some vector updates. In [27], LFA predicts a two-grid convergence factor

for DGS of 0.4 when using 6-point interpolation and 12-point restriction, essentially

the same as that predicted in Remark 4.4.7 for GS-BSR with the same grid-transfer

operators. As the cost of the extra operations for the pressure block in DGS is quite

similar to that of the second sweep of GS on the velocity block, we conclude that LFA

predicts essentially the same efficiency for these two approaches. In [16], LFA for

GS-Uzawa predicts a two-grid convergence factor of 0.87 when 2 sweeps of GS are

used on the velocity block in each sweep of Uzawa. While this algorithm is slightly less

expensive per iteration than GS-BSR (due to the lack of a multiplication with BT ), the

convergence predicted here for GS-BSR is clearly superior, although we note that [16]

does not allow for weighted-GS relaxation on the velocities as we use in GS-BSR. Also

in [16], LFA predictions for SGS-Uzawa show a smoothing factor of 0.5 for Uzawa

using a single sweep of SGS, and an LFA-predicted two-grid convergence factor of

0.44. Comparing these to the predictions in Remark 4.4.7, we see that two sweeps of

SGS-Uzawa should yield essentially the same LFA-predicted reduction per cycle as one

of SGS-BSR, at a slightly higher cost per iteration (due to the use of one diagonal

scaling operation on the pressure in each sweep of SGS-Uzawa).

4.6 Numerical experiments

In this section, we present the optimized smoothing and LFA two-grid convergence

factors for DWJ, Braess-Sarazin-type, and Uzawa-type relaxation. Furthermore,

we validate these predictions against measured multigrid convergence factors using

distributive weighted-Jacobi, inexact Braess-Sarazin, and σ-Uzawa relaxations. The

numerical results show good agreement between predicted convergence and the true
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performance, although some dependence is seen on the boundary conditions imposed,

as noted elsewhere in the literature.

4.6.1 LFA spectral radius of error-propagation symbols

In this section, we show the spectral radius of the error-propagation symbol for DWJ,

Braess-Sarazin, and Uzawa-type relaxation, computed with h = 1
64
. Figure 4.2 gives the

spectral radius of the error-propagation symbol for DWJ as a function of θ, showing

that DWJ relaxation reduces errors over the high frequencies quickly. Figure 4.3

displays these for BSR and IBSR, showing that both reduce the error over the high

frequencies at a fast speed. Figure 4.4 displays these for Schur-Uzawa and σ-Uzawa.

Here, we see very flat profiles in the upper right quadrant, particularly for the case of

σ-Uzawa, which reduces the error at a much slower speed over the high frequencies.

Figure 4.2: The spectral radius of the error-propagation symbol for DWJ, as a function
of the Fourier mode, θ.
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Figure 4.3: At left, the spectral radius of the error-propagation symbol for BSR, as a
function of the Fourier mode, θ. At right, the spectral radius of the error-propagation
symbol for IBSR.

Figure 4.4: At left, the spectral radius of the error-propagation symbol for Schur-
Uzawa, as a function of the Fourier mode, θ. At right, the spectral radius of the
error-propagation symbol for σ-Uzawa.

4.6.2 LFA two-grid convergence factor

Let µ and ρ be the LFA-predicted smoothing and two-grid convergence factors, respec-

tively, computed with h = 1
64
. For ρ, we first consider only one step of pre-smoothing

(which gives the same results as one step of post-smoothing). At grid points corre-

sponding to velocity unknowns, u and v, we consider six-point restrictions and at

grid-points associated with pressure unknowns, p, a four-point cell-centered restriction

is applied. For the prolongation of the corrections, we apply the corresponding adjoint
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operators multiplied by a factor of 4 or bilinear interpolation for velocity (12pts) and

pressure (16pts) see, e.g., [27]. In Table 4.1, we give the choices of parameters for

the relaxation schemes analyzed in the previous sections to present our LFA two-grid

convergence factors. Note that parameter ωJ appears only in the IBSR algorithm, and

σ only in σ-Uzawa.

Table 4.1: Relaxation parameter choices.

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳
parameter

Relaxation
DWJ BSR IBSR Schur-Uzawa σ-Uzawa

ω 1 1 1 4√
73−3

1

α 5
4
ω = 5

4
5
4
ω = 5

4
5
4

4√
73−5

5ω2

5ω−1
= 5

4

ωJ or σ \ \ 4
5

\ 1
5ω−1

= 1
4

µopt
3
5

3
5

3
5

√
33−3

√
73

41−3
√
73

√
3
5

Figures 4.5-4.9 show the spectra of the two-grid error-propagation operators for

different relaxation methods. In Figure 4.5, both linear and bilinear interpolation result

in the same convergence factor µ = 0.600, which is equal to the optimal smoothing

factor for DWJ. In Figure 4.5, we see many eigenvalues with linear interpolation

cluster around zero compared with the bilinear case. This might indicate that the

linear interpolation operator produces an algorithm that reduces the error better. In

Figure 4.6, we again have ρ = µ for both linear and bilinear interpolation for exact

Braess-Sarazin relaxation, with some complex eigenvalues for the linear case, while all

of the eigenvalues for bilinear interpolation are real. In Figure 4.7, we see some more

significant differences between the distribution of the eigenvalues for the linear and

bilinear cases, however the resulting spectral radii are the same. In Figure 4.8, for Schur

Uzawa, we see that the two-grid spectral radius is larger than the smoothing factor with

linear interpolation, but is the same as smoothing factor with bilinear interpolation.

In Figure 4.9, both linear and bilinear interpolation for σ-Uzawa relaxation achieve the

same convergence factor, ρ =
√

3
5
, which is the same as the optimal smoothing factor,

µ =
√

3
5
. All of these pictures confirm our theoretical optimal smoothing factors

presented in previous sections, showing the (generally small) effect of the choice of

interpolation.
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Figure 4.5: At left, the spectrum of the two-grid error-propagation operator for DWJ
with linear interpolation. ρ = µ = 0.6000. At right, the spectrum of the two-grid
error-propagation operator for DWJ with bilinear interpolation. ρ = µ = 0.6000.

Figure 4.6: At left, the spectrum of the two-grid error-propagation operator for exact
BSR with linear interpolation. ρ = µ = 0.6000. At right, the spectrum of the two-grid
error-propagation operator for exact BSR with bilinear interpolation. ρ = µ = 0.6000.
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Figure 4.7: At left, the spectrum of the two-grid error-propagation operator for IBSR
with linear interpolation. ρ = µ = 0.6000. At right, the spectrum of the two-grid
error-propagation operator for IBSR with bilinear interpolation. ρ = µ = 0.6000.

Figure 4.8: At left, the spectrum of the two-grid error-propagation operator for Schur-
Uzawa with linear interpolation. ρ = 0.8240, µ = 0.6924. At right, the spectrum of
the two-grid error-propagation operator for Schur-Uzawa with bilinear interpolation.
ρ = µ = 0.6924.
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Figure 4.9: At left, the spectrum of the two-grid error-propagation operator for σ-

Uzawa with linear interpolation. ρ = µ =
√

3
5
. At right, the spectrum of the two-grid

error-propagation operator for σ-Uzawa with bilinear interpolation. ρ = µ =
√

3
5
.

4.6.3 Sensitivity of LFA-predicted convergence factors to pa-

rameter choice

In the analysis above, we give the optimal parameter choices for three block-structured

relaxation schemes. Here, we present the LFA convergence factor for DWJ, IBSR, and

σ-Uzawa as a function of these parameters, to show the sensitivity of performance

to parameter choice. We consider the case of linear interpolation, where the LFA

smoothing factor and predicted two-grid convergence factors match. Note that Theorem

4.3.1 demonstrates that the smoothing factor for DWJ is a function of ωD

αD
(but the

same is not necessarily true for the convergence factor). In Figure 4.10, we plot the LFA

smoothing and convergence factors for DWJ as a function of ωD, with αD = 1.0, and see

that these factors agree. To fix a single parameter for IBSR and σ-Uzawa, we consider

choices motivated by their theoretical analysis, fixing ωI =
4
5
αI for IBSR and σ = 1

5ωU−1

for σ-Uzawa. At the left of Figure 4.11, we present the LFA-predicted convergence

factors for IBSR with variation in αI and ωJ , seeing much stronger sensitivity to

variations in ωJ than αI , again with worse sensitivity to values larger than the optimal.

At the right of Figure 4.11, we present the LFA-predicted convergence factors for

σ-Uzawa as a function of αU and ωU . Here, we see great sensitivity for small values of

αU and large values of ωU , but otherwise generally similar performance to the optimal

parameter case.
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Figure 4.10: The two-grid LFA convergence and smoothing factors for DWJ, as a
function of ωD with αD = 1.

Figure 4.11: At left, the two-grid LFA convergence factor for IBSR, as a function of
αI and ωJ . At right, the two-grid LFA convergence factor for σ-Uzawa, as a function
of αU and ωU .

4.6.4 Multigrid convergence factor

We now validate our LFA results against measured multigrid performance. We

use the notation W (ν1, ν2) to indicate the cycle type and the number of pre- and

postsmoothing steps employed. Here, we use the defects (full system residuals in (4.3))

d
(k)
h (k = 1, 2, · · · ) to experimentally measure the convergence factor as ρ̂

(k)
h = k

√
‖d(k)

h
‖2

‖d(0)
h

‖2
(see [36]), with k = 100. We consider the homogeneous problem (b = 0) with discrete

solution xh ≡ 0, and start with a random initial guess x(0) to test the multigrid

convergence factor. The coarsest grid is a 4×4 mesh. Rediscretization is used to define
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the coarse-grid operator. For comparison, we present the LFA predicated convergence

factors, ρh, for two-grid cycles with ν1 prerelaxation and ν2 postrelaxation steps.

In Table 4.2, we present the multigrid performance of DWJ relaxation with Dirichlet

boundary conditions. We see the same degradation in actual convergence behavior as

was mentioned for DGS in [27] and note that performance is h-independent. Further-

more, as we increase the number of relaxation sweeps, we see degradation in even the

LFA predication as compared to µν1+ν2 for bilinear interpolation. In order to see that

boundary conditions play an important role in multigrid performance, we present the

case of periodic boundary conditions in Table 4.3. These results show measured multi-

grid convergence factors that coincide with the LFA-predicated convergence factors. In

both [10, 34], it is shown that additional boundary relaxation may be needed in order

to achieve the convergence factors predicted by LFA, and this appears to be the case

here for Dirichlet boundary conditions. We also note that [36] suggests the specific

augmentation of Vanka-style box relaxation in place of distributed relaxation near the

domain boundaries. Comparing linear and bilinear interpolation, these results indicate

that linear interpolation outperforms bilinear interpolation in this case, matching

some existing studies [30, 39, 40] for other relaxation schemes. Table 4.4 shows that

the measured multigrid convergence factors again match well with the LFA-predicted

two-grid convergence factors for IBSR with Dirichlet boundary conditions, and that

the convergence is h-independent. We note no major differences in results between

linear and bilinear interpolation, except a small one (that is captured by the LFA) for

W (2, 2) cycles. Similar results are seen with periodic boundary conditions.

For the σ-Uzawa relaxation, there are many choices for ωU , αU , and σ, see Theorem

4.5.4. We tested a range of parameter values for the multigrid method with Dirichlet

boundary conditions, and found that the choice of ωU = 1

5(2
√

3/5−1)
is typically best.

Thus, we use this value in our numerical results. In Table 4.5, the measured multigrid

convergence factor degrades for ν1 + ν2 > 1 for both linear and bilinear interpolation

with Dirichlet boundary conditions, and the same behavior was seen using a two-grid

method. To confirm this is due to LFA doing a poor job of capturing the effects

of boundary conditions, we tested the σ-Uzawa relaxation with periodic boundary

conditions. In Table 4.6, we see no major difference between the measured convergence

using linear and bilinear interpolation with periodic boundary conditions, and good

agreement between the LFA-predicted convergence factor and the measured multigrid

convergence factor. Comparing Table 4.6 with Table 4.5, we conclude that the
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degradation seen in Table 4.5 is, in fact, due to boundary conditions.

Remark 4.6.1. We also tested the LFA-predicated two-grid convergence factors using

Galerkin coarse-grid operators for the different relaxation schemes discussed in this

paper. The convergence factors were almost the same as the ones obtained above using

rediscretization coarse-grid operators for bilinear interpolation. However, for the case

of linear interpolation, we see a large degradation in performance.

Remark 4.6.2. We see similar good performance for IBSR when using F -cycles;

however, this is true only for Uzawa-type and distributive weighted-Jacobi relaxation

on the problem with periodic boundary conditions. For V (ν1, ν2)-cycles with linear

interpolation, when ν1 + ν2 = 1, both Braess-Sarazin-type and Uzawa relaxations are

divergent. However, when ν1 + ν2 > 1, Braess-Sarazin relaxation works well for both

Dirichlet and periodic boundary conditions, but Uzawa only works well for periodic

boundary conditions. This is consistent with other studies of these relaxation schemes

such as [16]. DWJ relaxation has similar behavior as Braess-Sarazin relaxation. For

V (ν1, ν2)-cycles with bilinear interpolation, all of these three relaxation schemes are

convergent with both Dirichlet and periodic boundary conditions, although there is a

different degradation for each case, compared with the LFA predications.

Table 4.2: Multigrid convergence factor for DWJ–Dirichlet BC.

❍
❍
❍
❍
❍

❍
❍❍

ρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

Linear interpolation

ρh=1/256 0.600 0.600 0.360 0.216 0.216 0.130

ρ̂
(100)
h=1/256 0.670 0.670 0.476 0.337 0.337 0.240

ρ̂
(100)
h=1/128 0.673 0.672 0.475 0.338 0.337 0.240

Bilinear interpolation

ρh=1/256 0.600 0.600 0.397 0.319 0.319 0.269

ρ̂
(100)
h=1/256 0.668 0.668 0.474 0.340 0.340 0.270

ρ̂
(100)
h=1/128 0.671 0.670 0.476 0.341 0.341 0.270
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Table 4.3: Multigrid convergence factor for DWJ–Periodic BC.

❍
❍
❍
❍
❍

❍
❍❍

ρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

Linear interpolation

ρh=1/256 0.600 0.600 0.360 0.216 0.216 0.130

ρ̂
(100)
h=1/256 0.584 0.585 0.350 0.210 0.210 0.126

ρ̂
(100)
h=1/128 0.584 0.585 0.350 0.211 0.210 0.127

Bilinear interpolation

ρh=1/256 0.600 0.600 0.397 0.319 0.319 0.269

ρ̂
(100)
h=1/256 0.584 0.584 0.381 0.303 0.302 0.253

ρ̂
(100)
h=1/128 0.585 0.584 0.381 0.302 0.302 0.253

Table 4.4: Multigrid convergence factor for IBSR–Dirichlet BC.

❍
❍
❍
❍
❍

❍
❍❍

ρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

Linear interpolation

ρh=1/256 0.600 0.600 0.360 0.216 0.216 0.130

ρ̂
(100)
h=1/256 0.583 0.583 0.350 0.212 0.214 0.130

ρ̂
(100)
h=1/128 0.583 0.582 0.350 0.214 0.213 0.130

Bilinear interpolation

ρh=1/256 0.600 0.600 0.360 0.216 0.216 0.153

ρ̂
(100)
h=1/256 0.582 0.581 0.349 0.209 0.209 0.146

ρ̂
(100)
h=1/128 0.582 0.581 0.349 0.208 0.208 0.145
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Table 4.5: ωU = 1

5(2
√

3/5−1)
: Multigrid convergence factor for σ-Uzawa–Dirichlet BC.

❍
❍
❍
❍
❍

❍
❍❍

ρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

Linear interpolation

ρh=1/256 0.775 0.775 0.600 0.465 0.465 0.360

ρ̂
(100)
h=1/256 0.767 0.777 0.646 0.533 0.532 0.447

ρ̂
(100)
h=1/128 0.780 0.783 0.646 0.540 0.538 0.450

Bilinear interpolation

ρh=1/256 0.775 0.775 0.600 0.465 0.465 0.360

ρ̂
(100)
h=1/256 0.775 0.778 0.644 0.534 0.534 0.445

ρ̂
(100)
h=1/128 0.781 0.780 0.648 0.537 0.537 0.446

Table 4.6: Multigrid convergence factor for σ-Uzawa–Periodic BC.

❍
❍
❍
❍
❍

❍
❍❍

ρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

Linear interpolation

ρh=1/256 0.775 0.775 0.600 0.465 0.465 0.360

ρ̂
(100)
h=1/256 0.752 0.752 0.580 0.449 0.449 0.347

ρ̂
(100)
h=1/128 0.752 0.753 0.580 0.448 0.448 0.347

Bilinear interpolation

ρh=1/256 0.775 0.775 0.600 0.465 0.465 0.360

ρ̂
(100)
h=1/256 0.751 0.751 0.580 0.449 0.449 0.347

ρ̂
(100)
h=1/128 0.753 0.751 0.579 0.448 0.448 0.347

4.7 Conclusions

In this paper, we develop an LFA for block-structured relaxation schemes for the

Stokes equations. The convergence and smoothing theorems presented here provide us

with optimized parameters for DWJ, Braess-Sarazin, and Uzawa relaxation. From the

theory, the inexact Braess-Sarazin method has been proven to be as good as the exact

iteration for solving the Stokes equations, with certain choices of parameters, and the
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convergence of the DWJ relaxation is as good as Braess-Sarazin with both offering

slight improvement over Uzawa. For implementation, we consider the inexact cases,

with weighted Jacobi iterations, as is suitable for use on modern in parallel and GPU

architectures. In practice, we see much less sensitivity to boundary conditions for IBSR

and, hence, generally recommend this as most efficient and robust of the approaches

considered. Overall, the analysis presented here gives good insight into the use of

block-structured relaxation for other types of saddle-point problems. The extensions of

these block relaxation schemes to the Navier-Stokes equations in a nonlinear multigrid

context is straightforward, but the analysis is not; this is a subject for future research.

Developing LFA smoothing analysis to determine the optimal parameters in these

relaxation schemes for finite-element discretization methods, for example, stable and

stabilized rectangular elements for the Stokes Equation, will be a focus of our future

research, as will be extensions to other saddle-point problems.

4.8 Appendix

In contrast to the results presented above, we now consider results for BSR using

(symmetric) Gauss-Seidel relaxation for the velocity block.

4.8.1 BSR with (S)GS

First, we discuss the selection of C to be GS relaxation. One block stencil of C is

C1 =
1

h2




0

−1 4 0

−1


 .

The symbol of C1 is given by

C̃1 =
1

h2
(4− e−iθ1 − e−iθ2).
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Taking t = 4− e−iθ1 − e−iθ2 , then the stencil of MG,E is given by

M̃G,E(θ1, θ2) =
1

h2




αG,Et 0 i2h sin θ1
2

0 αG,Et i2h sin θ2
2

−i2h sin θ1
2

−i2h sin θ2
2

0


 .

Furthermore,

L̃− λM̃G,E =
1

h2




4m(θ)− αG,Etλ 0 i2h sin θ1
2
(1− λ)

0 4m(θ)− αG,Etλ i2h sin θ2
2
(1− λ)

−i2h sin θ1
2
(1− λ) −i2h sin θ2

2
(1− λ) 0


 .

The determinant of L̃− λM̃G,E is

πG,E(λ;αG,E) = −4m(θ)(4m(θ)− αG,Etλ)

h4
(1− λ)2,

and the eigenvalues of M̃−1
G,EL̃ are given by

1, 1,
4m(θ)

αG,Et
. (4.37)

Considering the eigenvalue

4m(θ)

αG,Et
=

4− eiθ1 − eiθ2 − e−iθ1 − e−iθ2

αG,E(4− e−iθ1 − e−iθ2)

=
1

αG,E

(
1− eiθ1 + eiθ2

4− e−iθ1 − e−iθ2

)
,

we can bound convergence using the inequality

∣∣∣∣
eiθ1 + eiθ2

4− e−iθ1 − e−iθ2

∣∣∣∣ ≤
1

2
.

This inequality is strict when θ1 =
π
2
, θ2 = arccos(4

5
), as found in [39]. Thus, we can

give the optimal smoothing factor for exact BSR with GS iteration.

Theorem 4.8.1. The optimal smoothing factor for exact BSR with GS is

µoptG,E
= min

(αG,E ,ωG,E)
max

θ∈Thigh

{∣∣1− ωG,E
4m(θ)

αG,Et

∣∣, |1− ωG,E|
}

=
1

2
.
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Proof. Note that

∣∣1− ωG,E
4m(θ)

αG,Et

∣∣

=
∣∣1− ωG,E

αE
+
ωG,E
αG,E

eiθ1 + eiθ2

4− e−iθ1 − e−iθ2

∣∣

≤
∣∣1− ωG,E

αG,E

∣∣+ 1

2
· ωG,E
αG,E

.

Furthermore,

min
(αG,E ,ωG,E)

(∣∣1− ωG,E
αG,E

∣∣+ ωG,E
2αG,E

)
=

1

2
,

which is achieved for
ωG,E

αG,E
= 1. It follows that the optimal smoothing factor for exact

BSR with GS is as follows:

µoptE = min
(αG,E ,ωG,E)

max
θ∈Thigh

{∣∣1− ωG,E
4m

αG,Et

∣∣, |1− ωG,E|
}

=
1

2
, (4.38)

and the choice
αG,E

ωG,E
= 1, ωG,E ∈ [1

2
, 3
2
] achieves the minimum.

Remark 4.8.1. Lexicographical GS for Laplace equation has the same smoothing

factor of 1
2
, see [36].

Now, we discuss the approximation of A by SGS; that is, C1 = (DA+LA)D
−1
A (DA+

UA), where DA is the diagonal of the Laplace operator, LA is the strict lower triangular

part of the Laplace operator and UA is the strict upper triangular part of the Laplace

operator. The corresponding symbols of DA, LA and UA are

D̃A =
4

h2
, L̃A =

−e−iθ1 − e−iθ2

h2
, ŨA =

−eiθ1 − eiθ2

h2
.

Because D̃A+ L̃A = t
h2
, D̃A+ ŨA = t̄

h2
. Furthermore, C̃1 =

|t|2
4
. So when we apply SGS

to MGS,E, we have the same two unit eigenvalues, as in (4.37). The third eigenvalue is

now the same as applying SGS to the scalar Laplacian operator. It is well known that

the smoothing factor of SGS is 1
4
. Thus, µSGS,opt =

1
4
.
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4.8.2 BSR with inexact (S)GS

The above relaxation scheme is impractical, since the Schur complement using the

(S)GS approximation will be dense. Here, we replace that Schur complement by a

simple diagonal scaling, giving an iteration with symbol

M̃G,I(θ1, θ2) =
1

h2




αG,It 0 i2h sin θ1
2

0 αG,It i2h sin θ2
2

−i2h sin θ1
2

−i2h sin θ2
2

h2βG


 ,

where βG is the symbol of B(αG,IC)
−1BT − ω−1

G,JI,

βG = (αG,It)
−14m(θ)− ω−1

G,J .

Now,

L̃− λM̃G,I =
1

h2




4m(θ)− αG,Itλ 0 i2h sin θ1
2
(1− λ)

0 4m(θ)− αG,Itλ i2h sin θ2
2
(1− λ)

−i2h sin θ1
2
(1− λ) −i2h sin θ2

2
(1− λ) −h2βλ


 .

The determinant of L̃− λM̃G,I is

πG,I(λ;αG,I) = − 4m(θ)− αG,Itλ

(4m(θ)− αG,IβGt)h4
(
λ2 +

(4βG − 8)

4m(θ)− αG,ItβG
λ+

4m(θ)

4m(θG)− αG,ItβG

)

=
ωG,J
h4
(
λ− 4m(θ)

αG,It

)(
λ2 +

4m(θ)

αG,It

(
(
4m(θ)

αG,It
− 2)ωG,J − 1

)
λ+

4m(θ)

αG,It
ωG,J

)
.

From the above equality, we know that one eigenvalue of M̃−1
G,IL̃ is

4m(θ)

αG,It
,

which is the same eigenvalue as the exact GS-BSR.

From (4.38), we know

min
(αG,I ,ωG,I)

max
θ∈Thigh

{∣∣1− ωG,I
4m(θ)

αG,It

∣∣
}

=
1

2
,
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providing that
ωG,I

αG,I
= 1. This tell us that the optimal smoothing factor for the IBSR is

at least 1
2
, strictly providing that

ωG,I

αG,I
= 1. We do not know if the other two eigenvalues

can be bounded accordingly.

Similarly, a reasonable inexact SGS-BSR algorithm again uses diagonal scaling for

the pressure correction, based on the approximate Schur complement given in (4.8). It

is easy to check that one eigenvalue of inexact SGS-BSR is the same as the one of exact

SGS-BSR, which corresponds to the eigenvalue of SGS applied to scalar Laplacian

operator. Thus, a lower bound on the optimal smoothing factor for inexact SGS-BSR

is 0.25, but we do not know if a similar upper bound can be achieved.
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Chapter 5

Two-level Fourier analysis of

multigrid for higher-order

finite-element methods

Abstract

1 In this paper, we employ local Fourier analysis (LFA) to analyze the convergence

properties of multigrid methods for higher-order finite-element approximations to

the Laplacian problem. We find that the LFA smoothing factor fails to accurately

predict the observed multigrid performance. This failure of the LFA smoothing factor

is explained, and we propose a modification to the analysis that yields a reasonable

prediction to help choose the correct damping parameters for relaxation. Finally,

we present two-grid and multigrid experiments, and the corrected parameter choice

is shown to yield a significant improvement in the resulting two-grid and multigrid

convergence factors.

Keywords: Finite-element method, higher-order elements, Jacobi iteration, local

Fourier analysis, multigrid
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5.1 Introduction

Multigrid methods [2, 7, 19, 23, 24] are very popular to solve the linear systems that

arise from the discretization of many PDEs. The choice of the multigrid components,

such as grid transfer operators and the relaxation scheme, has a great influence on the

performance of these algorithms. In this paper, we focus on the Laplace problem,

{
−∆u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,
(5.1)

discretized using higher-order finite elements. In the literature, there are many

efficient multigrid methods for problem (5.1), see [9, 21]. It is worthwhile, however, to

understand how these methods work efficiently. LFA [21, 24] has proven a good tool

for theoretical investigation and multigrid method design, including for the curl-curl

equation [1, 15], parabolic partial differential equations [6, 22], the Stokes equations

[10, 14, 15], and the Poisson equation [8, 17, 21].

Recently, some studies have reported that LFA fails to accurately predict some

multigrid results, see [5, 6]. In [6], LFA does not offer its usual predictivity of the

convergence behavior of the space-time diffusion equation and its generalizations.

However, in [5], the authors develop new tools to make up for the failure of standard

LFA to provide insight into the asymptotic convergence behaviour of multigrid methods

for these problem. In [15], an LFA is presented for general problems, focusing on

analyzing the complementarity between relaxation and coarse-grid correction (CGC)

within multigrid solvers for systems of PDEs with finite-element discretizations. In

that paper, the smoothing factor of LFA overestimates the two-grid convergence factor

for the Taylor-Hood (Q2 − Q1) discretization of the Stokes equations. However, no

further explanation is given. We show here that the failure might be related to the Q2

approximation used for the velocity unknowns.

To our knowledge, the vast majority of existing LFA for the Poisson problem

focuses on discretization using finite differences or linear finite elements [19, 21, 24].

In contrast, [8] studies the convergence of a multigrid method for the solution of a

linear second-order elliptic equation by discontinuous Galerkin methods. In [17], the

cell-centered finite-difference discretization on triangular grids is considered. A variant

of LFA is applied to discretization matrices arising from Galerkin B-spline isogeometric
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analysis in [4], focusing on 2-level analysis in place of classical smoothing analysis. Here,

we focus on standard higher-order finite-element discretizations of Poisson’s equation

with weighted Jacobi relaxation, and use LFA to understand performance. In contrast

to the cases of standard finite-difference or (bi)linear finite-element discretizations, we

will see that the LFA smoothing factor does not offer a good prediction of performance

in the higher-order case.

In the literature, there are many studies about higher-order methods for different

types of PDEs. The spectral element method for second-order problems was studied

both numerically and theoretically in [16, 18], showing good smoothing properties of

simple Jacobi relaxation for the Laplace problem. The impact of different higher-order

finite-element discretizations for the Laplace problem on multigrid convergence, with

Richardson and Jacobi relaxation, was considered in [13]. Comparison of different

multigrid methods for higher-order finite-element discretizations, either as direct solvers

or preconditioners, was reported in [20]. There, the convergence behaviour was seen to

strongly depend on the polynomial order when multigrid is used as a preconditioner, but

not for multigrid as a solver. Other studies of higher-order finite-element methods and

multigrid include those for nonlinear problems [3] and the incompressible Navier-Stokes

equations [11, 12].

Supporting numerical results demonstrate some key conclusions of our analysis.

First, there is a notable gap between the classical LFA smoothing factor and the two-

grid convergence factor for these elements. The standard LFA assumption of an “ideal”

coarse-grid correction operator, which annihilates the low-frequency error components

and leaves the high-frequency components unchanged is not true for higher-order

finite-element discretizations, where our results show that the CGC reduces some

high-frequency error quickly. Furthermore, minimizing the classical smoothing factor

does not minimize the corresponding convergence factor.

The outline of the paper is as follows. In Section 5.2, we recall the standard

definitions of LFA. In Section 5.3, we analyse the weighted Jacobi relaxation scheme

for the Q2 finite-element approximation in one dimension (1D) and show how to obtain

optimal parameters to minimize the convergence factor. We extend this analysis to

higher-order finite-elements in Section 5.4. In Section 5.5, two-grid LFA is presented for

biquadratic Lagrangian elements in two dimensions (2D), and we discuss the optimal

parameter choice. Conclusions are presented in Section 5.6.
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5.2 Definitions and notations

In order to describe LFA for finite-element methods, we first introduce some terminology.

More details can be found, for example, in [21]. We first consider one-dimensional

infinite uniform grids, Gh. Let Lh be a scalar Toeplitz operator acting on l2(Gh)

Lh
∧
= [sκ]h (κ ∈ V ); Lhwh(x) =

∑

κ∈V
sκwh(x+ κh), (5.2)

with constant coefficients sκ ∈ R (or C), where wh(x) is a function in l2(Gh). Here, V

is taken to be a finite index set of integers, V ⊂ Z. Note that since Lh is Toeplitz, it

is diagonalized by the standard Fourier modes ψ(θ, x) = eιθ·x/h, where ι2 = −1.

Definition 5.2.1. We call L̃h(θ) =
∑

κ∈V
sκe

ιθκ the symbol of Lh.

Note that for all grid functions, ψ(θ, x),

Lhψ(θ, x) = L̃h(θ)ψ(θ, x).

Here, we consider multigrid methods for finite-element discretizations with standard

geometric grid coarsening; that is, we construct a sequence of coarse grids by doubling

the mesh size in each spatial direction. High and low frequencies for standard coarsening

are given by

θ ∈ T low =
[
−π
2
,
π

2

)
, θ ∈ T high =

[
−π
2
,
3π

2

)∖[
−π
2
,
π

2

)
.

The error-propagation operator for a relaxation scheme, represented similarly by a

Toeplitz operator Mh, applied to a finite-element approximation is

Sh(ω, θ) = I − ωM−1
h Lh,

where ω is an overall weighting factor.

Definition 5.2.2. The error-propagation symbol, S̃h(θ), for smoother Sh on the infinite

grid Gh satisfies

Shψ(θ, x) = S̃hψ(θ, x), θ ∈
[
− π

2
,
3π

2

)
,
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for all ψ(θ, x), and the corresponding smoothing factor for Sh is given by

µloc := µloc(Sh) = max
θ∈Thigh

{∣∣S̃h(θ)
∣∣ }. (5.3)

Definition 5.2.3. Because the smoothing factor is a function of some parameters,

let D be a bounded and closed set of allowable parameters and define the optimal

smoothing factor over D as

µopt = min
D

µloc.

In what follows, we consider (q × q) linear systems of operators, which read

Lh =




L1,1
h · · · L1,q

h
... · · · ...

Lq,1h · · · Lq,qh


 .

The Li,jh (i, j = 1, 2, . . . , q) are scalar Toeplitz operators. Each entry in L̃h is computed

as the (scalar) symbol of the corresponding block of Li,jh , following Definition 5.2.1.

For simplicity, we reuse the notation in (5.3) for the case of block symbols as described

in the following.

On a collocated mesh, all blocks in Lh are diagonalized by the same transformation.

However, in our setting, we consider Gh = Gh,N

⋃
Gh,C , for quadratic Lagrangian

elements, with

Gh,N =
{
xk,N := kh, k ∈ Z

}
, and Gh,C =

{
xk,C := kh+ h/2, k ∈ Z

}
. (5.4)

Here Gh contains two types of meshpoints, the nodes of the mesh and the cell centres.

The coarse grid, G2h, is defined similarly. Each block Li,jh in Lh for i, j = 1, 2 is defined

as in (5.2), with V taken to be either a finite index set of integer (VN) or half-integer

(VC) values, with VN ⊂ Z and VC ⊂
{
z + 1

2
|z ∈ Z

}
. The operators discussed later are

naturally treated as block operators, and the Fourier representation of each block can

be calculated based on Definition 5.2.1, with Fourier bases adapted to account for the

staggering of the mesh points. In Definition 5.2.2, the symbol S̃h(θ) will be a matrix,

thus,
∣∣S̃h(θ)

∣∣ is replaced by
∣∣λ(S̃h(θ))

∣∣, the absolute value of the eigenvalues of S̃h(θ),
in (5.3).

The resulting Fourier functions are ϕ(θ, xk) ∈ span
{
ϕN(θ, xk), ϕC(θ, xk)

}
on Gh,
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in which

ϕN(θ, xk) =
(
eιθ·xk,N/h 0

)T
, ϕC(θ, xk) =

(
0 eιθ·xk,C/h

)T
,

where T denotes the (non-conjugate) transpose of the row vectors. Because ϕ(θ, xk) is

periodic in θ with period 2π, we consider the domain θ ∈
[
− π

2
, 3π

2

)
.

5.3 LFA for quadratics in 1D

Here, we consider the discretization of problem (5.1) in 1D, using quadratic (Q2) finite

elements, and nodal basis functions defined at the nodes of the mesh and cell centres

(but the analysis could be modified for other bases), and will focus on weighted Jacobi

relaxation.

5.3.1 Quadratic Lagrangian Elements

For these quadratic Lagrangian elements, the elementary contributions to the stiffness

and mass matrices as 3× 3 symmetric matrices are

EK =
1

3h




7 −8 1

−8 16 −8

1 −8 7


 , EM =

h

30




4 2 −1

2 16 2

−1 2 4


 ,

respectively. We can decompose the resulting stencils into connections among and

between the degrees of freedom (DOFs) located at the nodes of the mesh and those

located at cell centres. The node-to-node connections yield the stencils

1

3h

[
1 14 1

]
and

h

30

[
−1 8 −1

]
.

The node-to-centre stencils are given by

1

3h

[
−8 ⋆ −8

]
and

h

30

[
2 ⋆ 2

]
,

with transposed connections between centres and nodes, where ⋆ stands for the

degree-of-freedom position in the off-diagonal blocks. The centre-to-centre stencils are



134

diagonal,
1

3h

[
16
]

and
h

30

[
16
]
.

On the infinite grid Gh, each of these stencils defines a Toeplitz operator on ℓ2(Gh,∗)

and, so, the block systems can be block diagonalized by considering the invariant

subspace given by linear combinations of ϕN(θ, x) and ϕC(θ, x). The resulting block

symbols of the stiffness and mass operators are

Ãh(θ) =
1

3h

(
14 + 2 cos θ −16 cos θ

2

−16 cos θ
2

16

)
, B̃h(θ) =

h

30

(
8− 2 cos θ 4 cos θ

2

4 cos θ
2

16

)
, (5.5)

respectively. The error-propagation symbol of weighted Jacobi relaxation is given by

S̃h(θ) = I − ωM̃−1
h (θ)Ãh(θ), (5.6)

where M̃h(θ) is the symbol of the diagonal operator,

Mh =
1

3h

(
14I 0

0 16I

)
. (5.7)

Using (5.5) and (5.7), we plot the distribution of eigenvalues of M̃−1
h (θ)Ãh(θ), at the

left of Figure 5.1. Note that as a block symbol, M̃−1
h (θ)Ãh(θ) has 2 eigenvalues, each

of which can be seen to be a continuous function of θ/π.

Figure 5.1: At left, the distribution of the two eigenvalues of M̃−1
h (θ)Ãh(θ) as a function

of θ/π. At right, the distribution of the two eigenvalues of M̃−1
h (θ)Ãh(θ), as a function

of cos θ.



135

To derive an analytical expression for the eigenvalues of M̃−1
h (θ)Ãh(θ), we note

that the determinant of M̃−1
h (θ)Ãh(θ)− λI is

(λ− 1)(λ− 1− cos θ

7
)− 4

7
(1 + cos θ).

Let λ+ and λ− be the eigenvalues of M̃−1
h (θ)Ãh(θ); from above, we have

λ± =
14 + cos θ ±

√
cos2(θ) + 112 cos θ + 112

14
.

Taking x = cos θ, then we can write

λ+(x) =
14 + x+

√
x2 + 112x+ 112

14
, λ−(x) =

14 + x−
√
x2 + 112x+ 112

14
.

It is easy to check that

λ+(x)max = λ+(1) =
15

7
, λ+(x)min = λ+(−1) = 1,

λ−(x)max = λ+(−1) =
6

7
, λ−(x)min = λ−(1) = 0.

We plot λ+(x), λ−(x) at the right of Figure 5.1.

Throughout this paper, we denote λmax,H and λmin,H as the biggest and smallest

eigenvalues over only the high frequency range, respectively. Since λ−(x) < λ+(x), for

high frequencies (x ∈ [−1, 0]), we have

λmax,H = λ+(0) =
7 + 2

√
7

7
, λmin,H = λ−(0) =

7− 2
√
7

7
.

Thus, the classical optimal choice of ω that minimizes the resulting smoothing

factor for relaxation scheme (5.6) is given by

ω∗ =
2

λmin,H + λmax,H

= 1, (5.8)

and the corresponding smoothing factor is

µ∗
2 = min

ω
max
θ∈Thigh

∣∣λ(S̃h(ω, θ))
∣∣ = 2

√
7

7
≈ 0.760.
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Note, however, that this choice of ω∗ leads to a diverging relaxation scheme, as

|1−ω∗λ+(1)| > 1. While this might be acceptable assuming ideal CGC, it is worrisome

from the perspective of robustness of the resulting multilevel algorithm. Thus, we

consider another relaxation weight,

ω∗∗ =
2

λ∗max + λmin,H

=
14

22− 2
√
7
≈ 0.838, (5.9)

where λ∗max is the biggest of all eigenvalues; that is λ∗max = λ+(1) =
15
7
. For this choice,

the corresponding smoothing factor is

µ∗∗
2 = max

θ∈Thigh

∣∣λ(S̃h(ω∗∗, θ))
∣∣ = 4 +

√
7

11−
√
7
≈ 0.795.

To understand and compare these choices, we now consider two-grid LFA and

measured two-grid performance. We use the notation TG(ν1, ν2) and V (ν1, ν2) to

indicate the cycle type and the number of pre- and postsmoothing steps employed.

Here, we use the defects d
(k)
h (k = 1, 2, · · · , with d(k)h = b− Ahx

(k)
h ) to experimentally

measure the convergence factor as ρ̂
(k)
h = k

√
‖d(k)

h
‖2

‖d(0)
h

‖2
(see [21]), with k = 100. We consider

the homogeneous problem, Ahxh = b = 0, with discrete solution xh ≡ 0, and start with

a random initial guess, x
(0)
h , to test the multigrid convergence factor. The coarsest grid

is a mesh with 4 elements. Rediscretization is used to define the coarse-grid operator

(CGO). For comparison, we present the LFA-predicted convergence factors, ρh, for

two-grid cycles with ν1 prerelaxation and ν2 postrelaxation steps (see (5.18) ). We

consider periodic boundary conditions.

In Table 5.1, we use ω∗ as the weight. Note that the LFA convergence factor is larger

than the smoothing factor. As noted earlier, while we see convergence for ν1 + ν2 < 3,

we see divergence when ν1 + ν2 = 3, 4 for the two-grid method. Furthermore, even

though the smoothing factor fails to predict the convergence factor, we see that the

measured convergence factor matches well with the LFA-predicted two-grid convergence

factor. For ω = ω∗∗, Table 5.2 shows a good improvement in the convergence factor

compared with the choice of ω∗. We again see a good agreement between the measured

convergence factor and the LFA-predicted convergence factor, but now the two-grid

convergence factor is smaller than the smoothing factor, in contrast to the case of ω∗.

Moreover, while the smoothing factor for the choice of ω∗∗ is larger than that of ω∗,
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the two-grid factor is much better.

Table 5.1: Two-grid convergence factors for the Q2 approximation with ω∗ in 1D.

❍
❍
❍
❍
❍
❍
❍

ρ̂h

Cycle
TG(0, 1) TG(1, 0) TG(1, 1) TG(1, 2) TG(2, 1) TG(2, 2)

ω = ω∗ = 1.000, µ∗ = 0.760

ρh=1/128 0.821 0.821 0.985 1.118 1.119 1.279

ρ̂
(100)
h=1/128 0.813 0.815 0.974 1.096 1.102 1.255

ρ̂
(100)
h=1/256 0.814 0.814 0.972 1.104 1.100 1.263

Table 5.2: Two-grid convergence factors for the Q2 approximation with ω∗∗ in 1D.

❍
❍
❍
❍
❍
❍
❍

ρ̂h

Cycle
TG(0, 1) TG(1, 0) TG(1, 1) TG(1, 2) TG(2, 1) TG(2, 2)

ω = ω∗∗ = 14

22−2
√
7
≈ 0.838, µ∗∗ = 0.796

ρh=1/128 0.526 0.526 0.495 0.372 0.372 0.302

ρ̂
(100)
h=1/128 0.522 0.521 0.491 0.365 0.366 0.296

ρ̂
(100)
h=1/256 0.521 0.522 0.491 0.366 0.366 0.298

5.3.2 Two-grid LFA in 1D

Two natural questions are raised by these results. First, why is the LFA smoothing

factor such a bad predictor of performance? Secondly, is ω∗∗ the best choice for a

weight, in terms of two-grid performance? To answer these questions, we consider

two-grid LFA in more details.

Definition 5.3.1. The 2h-harmonics, F2h(θ), are given by

F2h(θ) = span{ϕh(θ0, x), ϕh(θ1, x)},

with θ = θ0 ∈ T low := Θ2h, and θ
α = θ + απ, where α = 0, 1.

To apply LFA to the two-grid operator,

MTGM
h = Sν2h MCGC

h Sν1h , (5.10)
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we require the representation of the CGC operator,

MCGC
h = I − PA−1

2hRAh.

Inserting the representations of Sh, Ah, A2h, R, P into (5.10), we obtain the Fourier

representation of two-grid error-propagation operator as

M̂TGM
h (θ) = Ŝν2h (θ)

(
I − P̂ (θ)(Ã2h(2θ))

−1R̂(θ)Âh(θ)
)
Ŝν1h (θ),

where

Âh(θ) = diag
{
Ãh(θ), Ãh(θ + π)

}
, Ŝh(θ) = diag

{
S̃h(θ), S̃h(θ + π)

}
,

P̂h(θ) =
(
P̃h(θ); P̃h(θ + π)

)
, R̂h(θ) =

(
R̃h(θ), R̃h(θ + π)

)
,

and

Ã2h(2θ) =
1

6h

(
14 + 2 cos(2θ) −16 cos θ

−16 cos θ 16

)
,

in which diag{A,B} stands for the block diagonal matrix with diagonal blocks, A and

B.

The symbols Ãh(θ) and Ãh(θ + π) are as given above, while the symbols for

relaxation are

S̃h(θ) = I − ωM̃−1
h (θ)Ãh(θ), S̃h(θ + π) = I − ωM̃−1

h (θ + π)Ãh(θ + π).

To derive symbols for the grid-transfer operators, we first consider an arbitrary

restriction operator characterized by a constant coefficient stencil R
∧
= [rκ]

2h
h . Then,

an infinite grid function wh : Gh → R (or C) is transferred to the coarse grid, G2h, in

the following way:

(Rwh)(x) =
∑

κ∈V
rκwh(x+ κh) (x ∈ G2h).

In our case, we have two types of grid points on the fine and coarse grids, so the

restriction operator can also be decomposed based on the partitioning of DOFs

associated with nodes of the mesh and cell centres.



139

Let ϕh(θ
α, x) = eιθ

αx/h. We have the following equality

ϕh(θ
α, x) = eιαπx/hϕ2h(2θ

0, x), for all x ∈ G2h. (5.11)

Note that ϕh(θ
α, x) coincides on G2h,N with the respective grid function ϕ2h(2θ

0, x),

since eιαπx/h ≡ 1 in (5.11), when x = 2jh for j ∈ Z. However, eιαπx/h = (−1)α when

x = 2(j + 1
2
)h coincides with a point in G2h,C .

Using this for x ∈ G2h, we have

(Rϕh)(θ
α, ·)(x) =

∑

κ∈V
rκe

ι(x+κh)θα/h =
∑

κ∈V
rκe

ικθαeιαπx/hϕ2h(2θ
0, x).

Definition 5.3.2. We call R̃(θα) =
∑

κ∈V
rκe

ικθαeιαπx/h :=
∑

κ∈V
r̃κ the restriction symbol

of R.

Remark 5.3.1. If the restriction operator is defined on a collocated mesh, we have

only G2h,N , and e
ιαπx/h ≡ 1 in Definition 5.3.2, which coincides with the definition of

the classical restriction symbol [24, Section 6.2.3].

We consider biquadratic interpolation, and the corresponding adjoint operator for

the restriction of the corrections. In stencil notation, the restriction operators are

given by

RN
∧
= [(rN)κ]h =

[
0 −1

8
0 3

8
1(⋆) 3

8
0 −1

8
0
]
h
, (5.12)

and

RC
∧
= [(rC)κ]h =

[
0 3

4
1(⋆) 3

4
0
]
h
, (5.13)

where N,C stand for the node and centre points, respectively, and the ⋆ denotes the

position (on the coarse grid) at which the discrete operator is applied. Note that these

stencils include contributions from both fine-grid nodes and centers to the coarse-grid

quantities. We illustrate these in Figure 5.2.

| | | | |× × × × h

| | |× × 2h
N

-18
3
8 1 3

8 -18

| | |× × h

×| | 2h
C

3
4 1 3

4

Figure 5.2: At left, RN -restriction operator. At right, RC-restriction operator.
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As with the fine-grid matrix, both RN and RC require values from nodes and centres

on the fine grid. We decompose RN as [RN(N), RN(C)] and RC as [RC(N), RC(C)]

defined in the following

RN(N) = [1], RN(C) = [−1

8

3

8
⋆

3

8
− 1

8
], (5.14)

RC(N) = [1], RC(C) = [
3

4
⋆

3

4
], (5.15)

then apply Definition 5.3.2 to each piece separately to obtain the symbol of the

restriction operator.

Theorem 5.3.1. Define R as in (5.12) and (5.13). Then the Fourier representation

of R is given by the (2× 4)-matrix

R̂(θ) =
(
R̃(θ0) R̃(θ1)

)

=

(
1

3 cos( θ
2
)−cos( 3θ

2
)

4
1

−3 sin( θ
2
)−sin( 3θ

2
)

4

1
3 cos( θ

2
)

2
−1

3 sin( θ
2
)

2

)
.

Proof. Let x ∈ G2h and consider a fine-grid mode ϕ(θα, y) = βNϕN (θ
α, y)+βCϕC(θ

α, y)

for y = x + κh ∈ Gh. Clearly the value of [Rϕ(θα), ·](x) depends on whether x is a

node on the coarse grid (and (5.12) is used) or x is a cell centre on the coarse grid (and

(5.13) is used). From (5.14) and (5.15), we write the symbol for R in matrix form,

R̃(θα) =

(
R̃N(N, θ

α) R̃N(C, θ
α)

R̃C(N, θ
α) R̃C(C, θ

α)

)
, (5.16)

acting on the vector
(
βN βC

)T
, where T denotes the (non-conjugate) transpose of

the row vectors.

From (5.14), (5.15), and Definition 5.3.2, we obtain the symbols

R̃N(N, θ
α) = 1, R̃N(C, θ

α) =
3

4
cos
(θα
2

)
− 1

4
cos
(3θα

2

)
,

R̃C(N, θ
α) = (−1)α, R̃C(C, θ

α) =
3

2
cos
(θα
2

)
(−1)α.

Concatenating R̂(θ) =
(
R̃(θ0) R̃(θ1)

)
gives the symbol in the statement of the

theorem.
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A similar calculation (see [15]) gives the symbol of biquadratic interpolation as

P̂ (θ) =




1
2

1
2

3 cos( θ
2
)−cos( 3θ

2
)

8

3 cos( θ
2
)

4
1
2

−1
2

−3 sin( θ
2
)−sin( 3θ

2
)

8

3 sin( θ
2
)

4



, (5.17)

satisfying the usual relationship that P̂ (θ) = 1
2
(R̂(θ))H , where H denotes the conjugate

transpose.

We again use rediscretization for the CGO, which matches the Galerkin CGO. The

asymptotic two-grid convergence factor, ρasp, is defined as

ρasp = sup{ρ(M̂(θ)TGM) : θ ∈ Θ2h}. (5.18)

In what follows, we consider a discrete form of ρasp, denoted by ρh, resulting from

sampling ρasp over only finite set of frequencies. We consider only the case of a single

relaxation; that is ν1 + ν2 = 1. Without loss of generality, let ν1 = 1, giving the

two-grid representation as

M̂TGM
h (θ) =

(
I − P̂ (θ)(Ã2h(2θ))

−1R̂(θ)Âh(θ)
)
Ŝh(θ). (5.19)

5.3.3 A lower bound on convergence in 1D

To gain some insight and a lower bound on convergence, we consider now the limiting

behavior when θ → 0. When θ = 0, the two eigenvalues of

S̃h(θ + π) = I − ωM̃−1
h (θ + π)Ãh(θ + π),

are 1− ω, 1− 6
7
ω and the eigenvector corresponding to 1− ω is v1 =

(
0 1

)T
.

From (5.17), when θ = 0, we have the representation of interpolation

P̂ (0) =




1
2

1
2

1
4

3
4

1
2

−1
2

0 0



,
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and vector v̂1 =
(
0 0 0 1

)T
is not in the range of interpolation. Taken together,

this tells us v̂1 is an eigenvector of M̂TGM
h (θ) in the limit as θ → 0, allowing us to

establish a lower bound on convergence.

Theorem 5.3.2. For M̂TGM
h (θ) defined as in (5.19),

trace
(
lim
θ→0

M̂TGM
h (θ)

)
= 2− 79

28
ω.

Proof. By standard calculation, we have

lim
θ→0

M̂TGM
h (θ) =




7−15ω
14

−7+15ω
14

−7+6ω
28

0

−7−15ω
28

−−7+15ω
28

−−7+6ω
56

0

−7−15ω
14

−−7+15ω
14

−−7+6ω
28

0

0 0 0 1− ω



.

Thus, trace
(
lim
θ→0

M̂TGM
h (θ)

)
=

7− 15ω

14
−−7 + 15ω

28
−−7 + 6ω

28
+1−ω = 2− 79

28
ω.

Note that P̃ (0) is full-rank, so there must be two zero eigenvalues of lim
θ→0

M̂TGM
h (θ).

As 1− ω is also an eigenvalue of lim
θ→0

M̂TGM
h (θ), Theorem 5.3.2 tells us that the other

eigenvalue is 2− 79
28
ω − (1− ω) = 1− 51

28
ω. In order to minimize the spectral radius of

lim
θ→0

M̂TGM
h (θ), we have the following result.

Lemma 5.3.1.

min
ω

{
max{|λ∗|} : λ∗ ∈ λ

(
lim
θ→0

M̂TGM
h (θ)

)}
=

23

79
≈ 0.291, (5.20)

and only ω = ω∗∗∗ = 56
79

achieves the minimum.

Proof. Note that the four eigenvalues of lim
θ→0

M̂TGM
h (θ) are 0, 0, 1 − ω, and 1 − 51

28
ω.

Setting |1− ω| = |1− 51
28
ω|, gives ω = 56

79
.

Corollary 5.3.1. For any ω, the optimal two-grid convergence factor for a single

relaxation (i.e., ν1 + ν2 = 1) is not less than 23
79
, and this factor can be achieved if and

only if ω = ω∗∗∗.

Corollary (5.3.1) only tells us that the two-grid convergence factor has a lower

bound, but we do not know whether it can be achieved or not. We show this numerically.
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For the remaining part of this paper, let µ and ρ be the LFA-predicted smoothing

and two-grid convergence factors, respectively, computed with h = 1
64
. For ρ, we

consider only one step of pre-smoothing (which gives the same results as one step

of post-smoothing). We plot the predicted smoothing and convergence factors as a

function of ω in 1D. The left of Figure 5.3 indicates that when the classical smoothing

factor achieves its optimal value, the corresponding ω does not minimize the two-grid

convergence factor. The choices of ω∗ and ω∗∗ in (5.8) and (5.9) both are clearly not

the best choice. The left of Figure 5.3 shows that the optimal ω is ω∗∗∗ = 56
79

≈ 0.709,

as proposed in Corollary 5.3.1. We explore the reasons for this below.

To see that the prediction of Lemma 5.3.1 is not a coincidence, we plot the two-grid

convergence factor and max
{
|1 − ω|, |1 − 51

28
ω|
}
as a function of ω. Comparing the

left and right of Figure 5.3 indicates that, for all ω, the two-grid convergence factor is

given by max
{
|1− ω|, |1− 51

28
ω|
}
.

Figure 5.3: At left, LFA-predicted two-grid convergence and smoothing factors as a
function of ω. At right, LFA-predicted two-grid convergence factor and max{|λ∗|} as
a function of ω for the Q2 approximation in 1D.

Two-grid and multigrid performance in 1D

Table 5.3 confirms that ω∗∗∗ provides the best observed convergence factor, compared

with the choices ω∗ and ω∗∗, shown in Tables 5.1, 5.2. Table 5.3 also confirms that a

single pre- or post-relaxation offers the most cost-effective cycle. Table 5.4 shows that

similar convergence factors are obtained for full V -cycles.
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Table 5.3: Two-grid convergence factors for the Q2 approximation with ω∗∗∗ in 1D.

❍
❍
❍
❍
❍
❍
❍❍

ρ̂h

Cycle
TG(0, 1) TG(1, 0) TG(1, 1) TG(1, 2) TG(2, 1) TG(2, 2)

ω = ω∗∗∗ = 56

79
≈ 0.709, µ = 0.822

ρh=1/128 0.291 0.291 0.249 0.090 0.090 0.064

ρ̂
(100)
h=1/128 0.289 0.290 0.245 0.088 0.088 0.063

ρ̂
(100)
h=1/256 0.289 0.289 0.246 0.088 0.088 0.063

Table 5.4: Multigrid convergence factors for the Q2 approximation with ω∗∗∗ in 1D.

❍
❍
❍
❍
❍
❍
❍❍

ρ̂h

Cycle
V (0, 1) V (1, 0) V (1, 1) V (1, 2) V (2, 1) V (2, 2)

ω = ω∗∗∗ = 56

79
≈ 0.709, µ = 0.822

ρh=1/128 0.291 0.291 0.249 0.090 0.090 0.064

ρ̂
(100)
h=1/128 0.281 0.282 0.246 0.080 0.081 0.068

ρ̂
(100)
h=1/256 0.284 0.280 0.246 0.083 0.082 0.068

5.3.4 A modified two-grid analysis

To better understand the failure of classical smoothing analysis for the Q2 approxima-

tion, we first consider why the smoothing factor is a good predictor of performance for

the Q1 approximation. In the Q1 case, we denote the CGC operator as M̂CGC
1,h (θ), and

the symbol of the relaxation scheme as Ŝ1,h(θ), which are both 2× 2 matrices. Here

we use linear interpolation for P and R = PH . By standard calculation, we have

M̂CGC
1,h (θ) =

(
sin2( θ

2
) cos2( θ

2
)

sin2( θ
2
) cos2( θ

2
)

)
.

In the standard LFA smoothing analysis, we assume an “ideal” CGC operator, Qh, in

place of the true CGC, M̂CGC
1,h (θ), that annihilates the low-frequency error components

and leaves the high-frequency components unchanged, see [21]. A natural choice for

Qh is as a projection operator, (
0 0

0 1

)
.
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To compute the convergence factor, we replace the CGC operator in (5.18) by Qh,

giving

sup{ρ(QhŜ1,h(θ)) : θ ∈ Θ2h}. (5.21)

Remark 5.3.2. Note that (5.21) is equivalent to form (5.3).

From the form of Qh we can consider optimizing the smoothing factor by working

only over the high frequencies as in Definition 5.2.3. In Figure 5.4, we plot the LFA-

predicted two-grid convergence factor (5.18) and the smoothing factor as a function of

ω and see that the smoothing factor perfectly captures the LFA-predicted two-grid

convergence behavior.

Figure 5.4: LFA-predicted two-grid convergence and smoothing factors as a function
of ω for the Q1 approximation in 1D.

However, as shown above in Subsection 5.3.1, generalizing Qh to




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1



,

does not give a good prediction of the two-grid convergence factor for the Q2 approxi-

mation. Instead, we note that for the Q1 case,

lim
θ→0

M̂CGC
1,h (θ) =

(
0 1

0 1

)
,
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and, if we replace Qh by this limit, then the eigenvalues of QhŜ1,h(θ) do not change.

This suggests that using lim
θ→0

M̂CGC
1,h (θ) as the ideal CGC operator may improve the

robustness of the smoothing factor. We now extend this approximation for two-grid

analysis of the Q2 approximation.

Define

Q0 := lim
θ→0

(
I − P̂ (θ)(Ã2h(2θ))

−1R̂(θ)Âh(θ)
)
. (5.22)

By standard calculation,

Q0 =




1
2

−1
2

−1
4

0

−1
4

1
4

1
8

0

−1
2

1
2

1
4

0

0 0 0 1



.

To see how well Q0 works as an idealized CGC operator when predicting the

two-grid convergence factor, let

ρ0 = ρ0(ω) = sup{ρ(Q0Ŝh(θ)) : θ ∈ Θ2h}. (5.23)

We plot ρ as a function of ω, compared with the LFA-predicted two-grid convergence

factor ρ. Figure 5.5 shows that ρ0 provides a much better prediction than the classical

smoothing factor. Note that for smaller values of ω, ρ0 slightly overpredicts the

convergence factor, as Q0 captures poorly the true effects of CGC for values of θ near

±π
2
. We see that the optimal parameter of ρ0 is very close to the optimal parameter

for the two-grid convergence factor, ρ. Whether further improvement is possible is an

open question.
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Figure 5.5: ρ and ρ0, as a function of ω for the Q2 approximation in 1D.

In (5.22), we compute the limit of the original CGC. Note that if we replace Ã−1
2h (2θ)

by (Ã2h(2θ))
†, the Moore-Penrose pseudoinverse of matrix Ã2h(2θ), in (5.22), we can

recover the same limit, but only indirectly. By a straightforward computation, we can

consider the following operator

QMPP :=
(
I − P̂ (0)(Ã2h(0))

†R̂(0)Âh(0)
)
. (5.24)

By standard calculation,

QMPP =




1 0 0 0
1
4

3
4

3
8

0

−1
2

1
2

1
4

0

0 0 0 1



.

Note that scalar multiples of
(
1 1 0 0

)T
are in the null space of R̂(0) ∗ Âh(0)

and, thus, QMPP indicates that a constant error on the fine grid is not changed by this

idealized CGC. To overcome this deficiency, we note that the singularity of Ã2h(0) can

be exploited to provide a correction in this direction of P̂ (0)

(
1

1

)
=
(
1 1 0 0

)T
.

We find that

Q0 = QMPP + C2,

where

C2 =
(
1 1 0 0

)T (
−1

2
−1

2
−1

4
0
)
.
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Note that the ideal CGC, Q0, has rank 2, while QMPP has rank 3. The column vector

in the outer product, C2, naturally arises as the interpolation of a constant coarse-grid

function, while the row vector is obtained as follows.

Let vc(θ) be an eigenvector of Ã2h(2θ) such that Ã2h(2θ)vc(θ) = λc(θ)vc(θ), and

lim
θ→0

λc(θ) = 0. Note that lim
θ→0

vc(θ) = c

(
1

1

)
for arbitrary constant c. Now, define D

such that

lim
θ→0

vTc (θ)Ã
−1
2h (2θ)R̂(θ)Â(θ) = lim

θ→0

vTc (θ)R̂(θ)Â(θ)

λc(θ)
= − lim

θ→0
vTc (θ)D, (5.25)

where D is a 2× 4 matrix, with rank one. Noting that D is independent of θ, we find

D =

(
1

1

)(
−1

2
−1

2
−1

4
0
)
giving the row vector in C2 above.

We now consider a modified two-grid error-propagation operator,

M̂MTGM(θ) := Q0Ŝ(θ), θ ∈ Θ2h,

which gives a good prediction for the convergence of multigrid for the Q2 approximation.

Now, we consider minimizing the spectral radius of M̂MTGM(θ); that is, to minimize

ρ0.

By standard calculation, we have

Ŝ(θ) =




1− ω(1 + cos(θ)
7

) 8
7
cos( θ

2
)ω 0 0

cos( θ
2
)ω 1− ω 0 0

0 0 1− ω(1− cos(θ)
7

) −8
7
sin( θ

2
)ω

0 0 − sin( θ
2
)ω 1− ω



.

BecauseQ0 has rank 2, M̂MTGM(θ) has at most rank 2. By a straightforward calculation

(done using a computer algebra system), the four eigenvalues of Q0Ŝ(θ) are given by

λ(θ) = 1− g±(θ)ω, 0, 0,

where g±(θ) is

112 + 44 cos( θ
2
) + 2 cos(θ)±

√
2
(
1381 + 44(cos( θ

2
) + cos(3θ

2
))− 412 cos(θ) + cos(2θ)

)

112
.
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We can check that g±(θ) is an increasing function over [−π
2
, 0] and a decreasing function

over [0, π
2
]. We plot g±(θ) as a function of θ over [−π

2
, π
2
] in Figure 5.6.

Figure 5.6: At left, g−(θ) as a function of θ. At right, g+(θ) as a function of θ.

The extreme values of g±(θ) are obtained at θ = 0 and θ = ±π
2
; that is,

g+(0) =
51

28
, g−(0) = 1,

g+(±
π

2
) =

56 + 11
√
2 +

√
690

56
<

51

28
,

g−(±
π

2
) =

56 + 11
√
2−

√
690

56
< 1.

Thus,

ρ0 = sup{ρ(Q0Ŝh(θ)) : θ ∈ Θ2h} = max

{∣∣1− 51

28
ω
∣∣,
∣∣1− g−(±

π

2
)ω
∣∣
}
.

Then, the optimal parameter minimizing ρ0 is given by

ω0,opt =
2

51
28

+ 56+11
√
2−

√
690

56

≈ 0.760,

and the corresponding predicted smoothing factor is

ρ0,opt =
51
28

− 56+11
√
2−

√
690

56

51
28

+ 56+11
√
2−

√
690

56

≈ 0.385.

Recall the optimal parameter and the true two-grid convergence factor are ω∗∗∗ =
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0.709, ρ = 0.291, respectively. Compared with the true two-grid convergence, ρ0

overpredicts the convergence factor based on the mode θ = ±π
2
. However, this

modified M̂MTGM(θ) still offers useful information and a reasonable predictor of

performance. Whether this “ideal” predictor can be used for other higher-order

finite-element approximations will be explored in the following sections.

Remark 5.3.3. Improved two-grid behavior can be achieved by considering different

weights for the DOFs at nodes and those at cell centres for Jacobi relaxation; that is,

putting distinct parameters in each diagonal block in the diagonal operator in (5.7).

Then, the LFA shown above can be extended to this relaxation scheme to optimize the

two-grid convergence factor, resulting in somewhat better convergence.

5.4 Higher-order finite-element methods

In this section, we consider the finite-element spaces Qp for p = 3, 4 and again examine

the relationship between the LFA smoothing and two-grid convergence factors. In order

to distinguish the block symbols for different p, we use superscripts in the matrices

and block symbols in this section.

5.4.1 Cubic Lagrangian Elements

For cubic Lagrangian elements (Q3), using nodal finite-element basis functions de-

fined at the mesh nodes and the 1/3 and 2/3 points of the element, the elementary

contributions to the stiffness matrix can be written as

EK
(3)
h =

1

40h




296 −189 54 −13

−189 432 −297 54

54 −297 432 −189

−13 54 −189 296



.

The corresponding symbol of stiffness operator is

Ã
(3)
h (θ) =

1

h




148−13 cos θ
20

54e−
2
3 ιθ−189e

1
3 ιθ

40
54e

2
3 ιθ−189e−

1
3 ιθ

40

54e
2
3 ιθ−189e−

1
3 ιθ

40
54
5

−297e
1
3 ιθ

40

54e−
2
3 ιθ−189e

1
3 ιθ

40
−297e−

1
3 ιθ

40
54
5


 ,



151

ordered as mesh nodes, then the 1/3 points and 2/3 points, respectively. The error-

propagation symbol of weighted Jacobi relaxation is given by

S̃(3)
h (θ) = I − ω

(
M̃

(3)
h (θ)

)−1
Ã

(3)
h (θ), (5.26)

where

M̃
(3)
h (θ) =

1

h




37
5

0 0

0 54
5

0

0 0 54
5


 .

In Figure 5.7, we plot the eigenvalues of
(
M̃

(3)
h (θ)

)−1
Ã

(3)
h (θ). Considering the high

frequencies, we see λmin,H = 0.085 is obtained at θ = π
2
, and λmax,H = 2.394 is obtained

at θ = π.

Figure 5.7: The distribution of eigenvalues of
(
M̃

(3)
h (θ)

)−1
Ã

(3)
h (θ) as a function of θ/π.

Thus, the classical optimal choice of ω for (5.26) is given by

ω∗
3 =

2

λmin,H + λmax,H

= 0.807,

and

µ∗
3 = min

ω
max
θ∈Thigh

∣∣λ(S̃(3)
h (ω, θ))

∣∣ = λmax,H − λmin,H

λmax,H + λmin,H

≈ 0.931.

Denote the cubic finite-element interpolation operator as R(3) and the corresponding

symbol as R̃(3). Similarly to Theorem 5.3.1, we can write the symbol of restriction,
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R(3)(θα), as

R̃(3)(θα) =



1− eιθ

α

16
− e−ιθα

16
5
16
e

1
3
ιθα + 1

16
e−

5
3
ιθα 5

16
e−

1
3
ιθα + 1

16
e

5
3
ιθα

9
16
e

1
3
ιθαβ 15

16
e−

1
3
ιθαβ (1− 5

16
eιθ

α

)β
9
16
e−

1
3
ιθαβ2 (1− 5

16
e−ιθ

α

)β2 15
16
e

1
3
ιθαβ2


 ,

where β = (e
2
3
ιπ)α. Thus, the symbol of R(3) is the 3× 6 matrix

R̂(3)(θ) =
(
R̃(3)(θ0) R̃(3)(θ1)

)
, where θ = θ0 ∈ Θ2h.

The Fourier representation of P (3) is given by the 6× 3 matrix,

P̂ (3)(θ) =
1

2

(
R̂(3)(θ)

)H
.

We plot the smoothing factor and LFA-predicted two-grid convergence factor as a

function of ω for cubic elements in 1D. Figure 5.8 indicates that when the smoothing

factor achieves its optimal value, the corresponding ω does not minimize the two-grid

convergence factor. From Figure 5.8, note that the optimal convergence factor, ρ, is

0.491 with ω = 0.650, but the corresponding smoothing factor is 0.943, which is larger

than the smoothing factor of 0.931 for ω∗
3 = 0.807 given above.

As the LFA smoothing factor again fails to predict the convergence factor, we extend

the modification above to yield a new prediction based on M̂MTGM(θ) , calculating

Q0 again using the limit in (5.22). We plot ρ0, compared with the true convergence

factor at the right of Figure 5.8, and see that using Q0 accurately predicts the true

convergence factor, except for a small overestimate for ω less than 0.65, as Q0 captures

poorly the true effects of CGC for values of θ near ±π
2
. We observe that when θ = 0, ρ0

underestimates the true two-grid convergence factor. However, the optimal parameter

of M̂MTGM(θ) is very close to the true optimal parameter for the two-grid convergence

factor.
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Figure 5.8: At left, the LFA-predicted two-grid convergence and smoothing factors as
a function of ω. At right, ρ and ρ0 as a function of ω for the Q3 approximation in 1D.

5.4.2 Quartic Lagrangian Elements

For quartic Lagrangian elements (Q4), using nodal finite-element basis functions defined

at the mesh nodes and the 1/4, 1/2, and 3/4 points of the element, the elementary

contributions to the stiffness matrix can be written as

EK
(4)
h =

1

945h




9850 −6848 3048 −1472 347

−6848 16640 −14208 5888 −1472

3048 −14208 22320 −14208 3048

−1472 5888 −14208 16640 −6848

347 −1472 3048 −6848 9850



,

and the corresponding symbol of stiffness operator is

Ã
(4)
h (θ) =

1

h




9850+347(η−4+η4)
945

−6848η+1472η−3

945
1016η−2+1016η2

315
−6848η−1+1472η3

945

−6848η−1+1472η3

945
3328
189

−4736η
315

5888η2

945
1016η2+1016η−2

315
−4736η−1

315
496
21

−4736η
315

−6848η+1472η−3

945
5888η−2

945
−4736η−1

315
3328
189



,

where η = e
ιθ
4 , with both ordered as mesh nodes, then the 1/4, 1/2, and 3/4 points of

the mesh (followed by the right-hand node in EK
(4)
h ).
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The error-propagation symbol of weighted Jacobi relaxation is

S̃(4)
h (θ) = I − ω

(
M̃

(4)
h (θ)

)−1
Ã

(4)
h (θ),

where

M̃
(4)
h (θ) =

1

h




1970
189

0 0 0

0 3328
189

0 0

0 0 496
21

0

0 0 0 3328
189



,

Using these symbols, we plot the distribution of eigenvalues of
(
M̃

(4)
h (θ)

)−1
Ã

(4)
h (θ)

in Figure 5.9. From Figure 5.9, we see that the smallest eigenvalue over the high

frequencies, λmin,H = 0.036 is obtained at θ = π
2
or 3π

2
. Similarly, λmax,H = 2.557 is

achieved with θ = π
2
or 3π

2
.

Figure 5.9: The distribution of eigenvalues of
(
M̃

(4)
h (θ)

)−1
Ã

(4)
h (θ) as a function of θ/π.

Thus, the optimal ω for the classical smoothing factor and the corresponding

smoothing factor are

ω∗
4 =

2

λmin,H + λmax,H

= 0.772, µ∗
4 = 0.973, (5.27)

respectively.

As in the Q2 case, the biggest eigenvalue over all frequencies is λ∗max = 2.789 >
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λmax,H, obtained at θ = 0. We, thus, consider the case of

ω∗∗
4 =

2

λmin,H + λ∗max

= 0.708.

Then, the corresponding smoothing factor is

µ∗∗
4 = max

θ∈Thigh

∣∣λ(S̃(4)
h (ω∗∗, θ))

∣∣ = λ∗max − λmin,H

λ∗max + λmin,H

= 0.975. (5.28)

Denote the quartic interpolation operator as R(4) and the corresponding symbol as

R̃(4). Similarly to Theorem 5.3.1, we can write the symbol of restriction, R(4)(θα), as

R̃(4)(θα) =




1 35
128
ξ + 3

128
ξ5 − 5

128
ξ−7 − 5

128
ξ−3 0 35

128
ξ−1 + 3

128
ξ−5 − 5

128
ξ7 − 5

128
ξ3

0 (35
32
ξ−1 − 5

32
ξ3)γ γ (15

32
ξ + 7

32
ξ5)γ

γ2 (−35
64
ξ−3 + 45

64
ξ)γ2 0 (45

64
ξ−1 − 35

64
ξ3)γ2

0 ( 7
32
ξ−5 + 15

32
ξ−1)γ3 γ3 (− 5

32
ξ−3 + 35

32
ξ)γ3



,

where ξ = e
ιθα

4 , γ = (e
1
2
ιπ)α. Thus, the symbol of R(4) is the 4× 8 matrix

R̂(4)(θ) =
(
R̃(4)(θ0) R̃(4)(θ1)

)
, where θ = θ0 ∈ Θ2h.

The Fourier representation of P (4) is given by the 8× 4 matrix,

P̂ (4)(θ) =
1

2

(
R̂(4)(θ)

)H
.

We plot the LFA smoothing and two-grid convergence factors as a function of ω for

this algorithm. At the left of Figure 5.10, we see that the LFA smoothing factor again

fails to predict the two-grid convergence factor, and that the optimal convergence

factor ρ is 0.608 with ω = 0.640. The choices of ω in (5.27) and (5.28) both fail.

We present the results of the modified prediction using M̂MTGM(θ) here again

defining Q0 following (5.22). At the right of Figure 5.10, we compare ρ0 with ρ, as

a function of the relaxation parameter, ω, seeing that ρ0 matches well with the true

convergence, except for a small overestimation for small ω, as Q0 captures poorly the

true effects of CGC for values of θ near ±π
2
. We also observe that when θ = 0, ρ0 is

exactly the true two-grid convergence factor, which is the same as in the case of the

Q2 approximation.
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Figure 5.10: At right, LFA-predicted two-grid convergence and smoothing factors as a
function of ω. At right, ρ and ρ0 as a function of ω for the Q4 approximation in 1D.

Remark 5.4.1. We find that for the Q3 and Q4 approximations, we can again write

Q0 = QMPP + C,

where QMPP is defined using the Moore-Penrose pseudoinverse as in (5.24) and C is a

rank-one matrix. In the Q3 case, C is given as

C3 =
(
1 1 1 0 0 0

)T (
−1

3
−1

3
−1

3
−1

9
0 0

)
,

and in the Q4 case,

C4 =
(
1 1 1 1 0 0 0 0

)T (
c1 c2

)
,

where

c1 =
(
−469/1536 −53/192 −73/512 −53/192

)
,

c2 =
(
−367/3072 −35/384(−1)1/4 0 −35/384(−1)3/4

)
.

The column vector in the outer product, Ck(k = 3, 4), naturally arises as the

interpolation of a constant coarse-grid function, while the row vector is obtained again

by solving for a rank-one matrix D following (5.25).
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5.5 LFA for the Q2 approximation in 2D

In this section, we consider LFA for problem (5.1) in 2D, using biquadratic finite

elements and the nodal basis functions defined at the mesh nodes, edge midpoints

and element centres. We order the DOFs of the Q2 approximation as nodes first, then

midpoints of the edges parallel to the x-axis (the “x-edges”), followed by the midpoints

of the edges parallel to the y-axis (the “y-edges”), and then the element centres. In

this way, the grids in 2D are defined as

Gh = Ghx

⊕
Ghy ,

where

x := (x, y) ∈ Gh if and only if x ∈ Ghx and y ∈ Ghy ,

where Ghx and Ghy are defined as in 1D, see (5.4). Here, we consider hx = hy = h.

Thus, Gh can be rewritten as Gh = G1
h

⋃
G2
h

⋃
G3
h

⋃
G4
h with

G
j
h =





Gh,N

⊕
Gh,N if j = 1,

Gh,C

⊕
Gh,N if j = 2,

Gh,N

⊕
Gh,C if j = 3,

Gh,C

⊕
Gh,C if j = 4.

We refer to G1
h,G

2
h,G

3
h, and G4

h as the NN -, CN -, NC-, and CC-type points on the

grid Gh, respectively.

5.5.1 Representation of the stiffness and mass operators

It is known that the stiffness and mass matrices for the Q1 approximation in 2D

can be written using tensor products of their 1D analogues. However, for the Q2

approximation in 2D, we must carefully consider the ordering of the DOFs and the

block structure of the resulting system. Assume that the stiffness and mass matrices

in 1D are ordered by nodes and centres in 2× 2-block matrices, given by

A(2) =

(
Ann Anc

Acn Acc

)
, B(2) =

(
Bnn Bnc

Bcn Bcc

)
,
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respectively. For the 2D case, we use the Tracy-Singh product to preserve block

structuring in the product. Let A be an (s × t)-block matrix, whose (i, j)-block is

denoted by Aij , and B be a (p× q)-block matrix, whose (i, j)-block is denoted by Bij .

The Tracy-Singh product of A and B is defined by the pairwise Kronecker product for

each pair of blocks in matrices A and B, that is,

A◦B =




A11

−
⊗B · · · A1t

−
⊗B

...
. . .

...

As1
−
⊗B · · · Ast

−
⊗B


 ,whereAi,j

−
⊗B =




Aij ⊗ B11 · · · Aij ⊗ B1q

...
. . .

...

Aij ⊗ Bp1 · · · Aij ⊗ Bpq


 ,

where ⊗ is the standard Kronecker product. Then, the stiffness and mass matrices in

2D are given by

A2 = A(2) ◦ B(2) + B(2) ◦ A(2), B2 = B(2) ◦ B(2),

respectively, and the ordering of the 4× 4 block system corresponds to the indexing of

the G
j
h given above. Similarly, if the biquadratic restriction matrix in 1D is given in

block form as

R(2) =

(
Rnn Rnc

Rcn Rcc

)
,

then the corresponding restriction matrix in 2D is given by

R2 = R(2) ◦ R(2),

with the same block ordering as the blocks in A2.

Using the Tracy-Singh product for the discretized operators allows us to compute

symbols using standard Kronecker products. Given the symbols of the stiffness and

mass operators for the Q2 approximation in 1D, Ãh(θ) and B̃h(θ), respectively, the

symbols of the stiffness and mass matrices in 2D are given by

Ã2(θ1, θ2) = Ãh(θ2)⊗ B̃h(θ1) + B̃h(θ2)⊗ Ãh(θ1),

B̃2(θ1, θ2) = B̃h(θ2)⊗ B̃h(θ1),

respectively.

The above discussion is not limited to Q2, and extends to Qk as follows.
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Remark 5.5.1. The stiffness and mass matrices for the Qk discretization in 2D can

be written as

Ak = A(k) ◦ B(k) + B(k) ◦ A(k), Bk = B(k) ◦ B(k),

respectively, where A(k) and B(k) are stiffness and mass matrices for the Qk discretiza-

tion in 1D, respectively.

Remark 5.5.2. The symbols of the stiffness and mass matrices for the Qk discretiza-

tion in 2D are as follows

Ãk(θ1, θ2) = Ã
(k)
h (θ2)⊗ B̃

(k)
h (θ1) + B̃

(k)
h (θ2)⊗ Ã

(k)
h (θ1),

B̃k(θ1, θ2) = B̃
(k)
h (θ2)⊗ B̃

(k)
h (θ1),

respectively, where Ã
(k)
h and B̃

(k)
h are the stiffness and mass symbols for the Qk dis-

cretization in 1D, respectively.

Remark 5.5.3. The restriction matrix corresponding to the Qk approximation in 2D

is given by

Rk = R(k) ◦ R(k),

with the same block ordering as Ak if R(k) is ordered consistently with A(k).

5.5.2 Fourier representation of grid transfer operators

Now we turn to the representation of biquadratic interpolation and its adjoint op-

erator, restriction, in 2D. The extension of the restriction operator given in (5.12)

and (5.13) from 1D to 2D with blocks ordered as mesh nodes, x-edge midpoints,

y-edge midpoints, and cell centres can be written as R = {RNN ,RCN ,RNC ,RCC},
respectively. Let R̃NN , R̃CN , R̃NC , and R̃CC be their Fourier representations. We

show the representation of transfer operators is given by tensor products of their

symbols in 1D.

Let

α = (α1, α2) ∈
{
(0, 0), (1, 0), (0, 1), (1, 1)

}
,

θα = (θα1
1 , θ

α2
2 ) = (θ1 + α1π, θ2 + α2π), θ := θ(0,0).

We use the ordering of α = (0, 0), (1, 0), (0, 1), (1, 1) for the four harmonics.
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Definition 5.5.1. Assume that T = [tκ1 ] and S = [sκ2 ] are two stencil operators in

1D. The 2D stencil S
⊗

T is given by

S
⊗

T := [rκ]h, with rκ = tκ1sκ2 , and κ = (κ1, κ2),

so that R is the outer product of S and T .

We use this outer-product notation to simplify the computation of the symbol of

the restriction operator in block form. Rewrite (5.12) and (5.13) as

RN =
[
−1

8
0 3

8
1(⋆) 3

8
0 −1

8

]
, (5.29)

and

RC =
[
3
4

1(⋆) 3
4

]
, (5.30)

respectively, by discarding the points outside the stencil of restriction. Then, the four

restriction stencils in 2D for the Q2 approximation can be denoted by

RIxIy = RIy

⊗
RIx := [rκ]IxIy , (5.31)

where Ix, Iy ∈ {N,C}.

We can extend Definition 5.3.2 to a “standard” restriction operator in 2D as follows.

Definition 5.5.2. Let T (θα) = [tκ] be a restriction stencil in 2D given as T =

T2

⊗ T1. We call

T̃ (θα) =
∑

κ∈V
tκe

ικ·θα

eιπα·x/h :=
∑

κ∈V
t̃κ =

∑

(κ1,κ2)∈V
t̃κ1 t̃κ2 , (5.32)

the restriction symbol of T .

Here, by “standard”, we mean the restriction operator is associated with only one

type of meshpoint.

Remark 5.5.4. It is easy to check that in (5.32),

T̃ (θα) =
∑

(κ1,κ2)∈V
t̃κ1 t̃κ2 =

∑

κ1

∑

κ2

t̃κ1 t̃κ2 = T̃1(θ
α1
1 )T̃2(θ

α2
2 ),
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where T̃1(θ
α1
1 ) and T̃2(θ

α2
2 ) are the restriction symbols for T1 and T2, respectively, due

to the tensor product of T2 ⊗ T1.

Note that RIxIy draws values from four types of meshpoints on the fine grid.

Similarly to 1D, the stencil RIxIy can be split into 4 types of substencils, and the

Fourier representation of RIxIy can be written as a (1× 4)-matrix as follows,

R̃IxIy(θ
α) =

(
R̃IxIy ,NN(θ

α) R̃IxIy ,CN(θ
α) R̃IxIy ,NC(θ

α) R̃IxIy ,CC(θ
α)
)
. (5.33)

The subscript JxJy of R̃IxIy ,JxJy(θ
α) (Jx, Jy ∈ {N,C}) denotes the contributions of

the JxJy-type points on the fine grid to the IxIy points on the coarse grid.

Thus, we can use Definition 5.5.2 to calculate R̃IxIy ,JxJy(θ
α).

Theorem 5.5.1. The entries in R̃IxIy(θ
α) in (5.33) are given by,

R̃IxIy ,JxJy(θ
α) = R̃Iy(Jy, θ

α2
2 )R̃Ix(Jx, θ

α1
1 ) (5.34)

where Ix, Iy, Jx, Jy ∈ {N,C}. Note that the notation for the right-hand side of (5.34)

is defined in the proof of Theorem 5.3.1.

Proof. Consider a 2D Fourier mode with frequency with θα, restricted to the coarse

grid by the tensor product restriction operators given in (5.31). Because RIxIy =

RIy

⊗
RIx , RIxIy can be split into four substencils RIxIy ,JxJy , where Jx, Jy ∈ {N,C},

with corresponding symbol R̃IxIy ,JxJy . Since the tensor product preserves the stencil

structure, RIxIy ,JxJy = RIy(Jy)⊗ RIx(Jx), where RIy(Jy) stands for the substencil of

RIy corresponding to the contributions from Jy-type points on the find grid, see (5.14)

and (5.15). Thus, R̃IxIy ,JxJy can be calculated based on Definition 5.5.2. According to

Remark 5.5.4, R̃IxIy ,JxJy = R̃Ix(Jx, θ
α1
1 )R̃Iy(Jy, θ

α2
2 ).

Corollary 5.5.1. The symbol of restriction in 2D can be written as a tensor product

of the restriction symbols in 1D, that is, R̃(θα) is the 4× 4-matrix given by

R̃(θα) = R̃(θα2
2 )⊗ R̃(θα1

1 ),

ordered as mesh nodes, x-edge midpoints, y-edge midpoints, and cell centres.
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Furthermore, the Fourier representation of R is given by the (1× 4)-block-matrix

R̂(θ) =
(
R̃(θ(0,0)) R̃(θ(1,0)) R̃(θ(0,1)) R̃(θ(1,1))

)
.

The Fourier representation of P is given by a (16× 4)-matrix and

P̂ (θ) =
1

4

(
R̂(θ)

)H
.

This approach can be extended to Qk or any other nodal basis for Q2 as long as

the 2D node points are given as a tensor-product of 1D meshes.

Corollary 5.5.2. The restriction symbol for the Qk discretization in 2D can be written

as a tensor product of the corresponding restriction symbols in 1D. That is, R̃
(k)
(θα)

is the k2 × k2-matrix given by

R̃
(k)
(θα) = R̃(k)(θα2

2 )⊗ R̃(k)(θα1
1 ),

ordered correspondingly to the order of R̃(k)(θα1
1 ). Furthermore,

P̂
(k)
(θ) =

1

4

(
R̂

(k)
(θ)
)H
.

5.5.3 A lower bound on convergence in 2D

Here, we also discuss the weighted Jacobi relaxation for the Q2 approximation in 2D.

The symbol of the two-grid error propagation operator is

M̂TGM
h (θ) =

(
I − P̂ (θ)Â2h(2θ)

−1R̂(θ)Â2(θ)

)
Ŝ2(θ),
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where

Â2h(2θ) = Ã2h(2θ2)⊗ B̃2h(2θ1) + B̃2h(2θ2)⊗ Ã2h(2θ1),

Â2(θ) = diag
{
Ã2(θ

(0,0)), Ã2(θ
(1,0)), Ã2(θ

(0,1)), Ã2(θ
(1,1))

}
,

Ŝ2(θ) = diag
{
S̃(θ(0,0)), S̃(θ(1,0)), S̃(θ(0,1)), S̃(θ(1,1))

}
,

R̂(θ) =
(
R̃(θ(0,0)), R̃(θ(1,0)), R̃(θ(0,1)), R̃(θ(1,1))

)
,

P̂ (θ) =
1

4

(
R̂(θ)

)H
,

in which

S̃(θα) = I − ωM̃−1
2 Ã2(θ

α), with

M̃2 =




112
45

0 0 0

0 176
45

0 0

0 0 176
45

0

0 0 0 256
45



.

First, we take a look at the eigenvalues of M̃−1
2 Ã2(θ). Figure 5.11 shows the

eigenvalue distribution of M̃−1
2 Ã2(θ) over [−π

2
, 3π

2
]2. Note that both the smallest and

the biggest eigenvalues are achieved over the low frequencies, [−π
2
, π
2
]2. As shown in

Figure 5.11 and discussed in more detail below, the standard smoothing analysis fails

to predict the two-grid convergence factor in this case as well.

Figure 5.11: The distribution of eigenvalues, λ, of M̃−1
2 Ã2(θ) as a function of θ =

(θ1, θ2).
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Motivated by the analysis in Subsection 5.3.3, we consider the limiting behavior of

M̂TGM
h (θ) when θ → 0. We first look at the range of the restriction operator when

θ = (0, 0). From Corollary 5.5.1, we can calculate R̂(0), given by

R̃(0, 0) =




1 1
2

1
2

1
4

1 3
2

1
2

3
4

1 1
2

3
2

3
4

1 3
2

3
2

9
4



, R̃(π, 0) =




1 0 1
2

0

−1 0 −1
2

0

1 0 3
2

0

−1 0 −3
2

0



,

R̃(0, π) =




1 1
2

0 0

1 3
2

0 0

−1 −1
2

0 0

−1 −3
2

0 0



, R̃(π, π) =




1 0 0 0

−1 0 0 0

−1 0 0 0

1 0 0 0



.

Note that the dimensions of the null spaces of R̃(π, 0), R̃(0, π) and R̃(π, π) are 2, 2,

and 3, respectively. Because P̂ (0) = 1
4
R̂(0)H , we can easily identify seven vectors that

are not treated by coarse-grid correction, and provide a lower bound on the two-grid

convergence behavior.

To find the seven vectors (and the associated eigenvalues of lim
θ→0

M̂TGM
h (θ)), we

consider the high frequencies corresponding to (θ01, θ
0
2) = (0, 0). Let T2 = M̃−1

2 Ã2(π, 0),

T3 = M̃−1
2 Ã2(0, π), and T4 = M̃−1

2 Ã2(π, π). By standard calculation, we have

T2 =




29
28

0 −1
2

0

0 1 0 − 6
11

− 7
22

0 1 0

0 −3
8

0 1



, T3 =




29
28

−1
2

0 0

− 7
22

1 0 0

0 0 1 − 6
11

0 0 −3
8

1



, T4 =




15
14

0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



.

Standard calculation shows that T2 has two eigenvalues, λ̂1,2 = 1 ±
√

9
44
, with the

corresponding eigenvectors x1,2 =
(
0 1 0 ±

√
11
16

)
, which are the in the null space

of R̃(π, 0)H . Denote x̂1,2 =
(
z x1,2 z z

)T
, where z stands for a zero vector with size

1×4. Similarly, it is easy to check that λ̂3,4 = 1±
√

9
44

are the two eigenvalues of T3 cor-

responding to eigenvectors x3,4 =
(
0 0 1 ±

√
11
16

)
. Denote x̂3,4 =

(
z z x3,4 z

)T
.

Finally, the structure of T3 tells us that it has three eigenvalues: λ̂5,6,7 = 1 and
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the corresponding eigenvectors are x5 =
(
0 1 0 0

)
, x6 =

(
0 0 1 0

)
, x7 =

(
0 0 0 1

)
, which are in the null space of R̃(π, π)H . Denote x̂5 =

(
z z z x5

)T
,

x̂6 =
(
z z z x6

)T
, x̂7 =

(
z z z x7

)T
.

The above discussion gives seven eigenvalues of the two-grid operator lim
θ→0

M̂TGM
h (θ),

leading to the following results.

Lemma 5.5.1.

min
ω

{
max

{
|λ∗∗|

}
: λ∗∗ = 1− ωλ̂j, 1 ≤ j ≤ 7

}
=

√
9

44
≈ 0.453, (5.35)

and only ω = ω∗
2 = 1 achieves the minimum.

Proof. Since the smallest and largest values of λ̂j(j = 1, 2, · · · , 7) are 1 −
√

9
44

and

1 +
√

9
44
, respectively, the optimal ω for (5.35) is ω∗

2 =
2

1+
√

9
44

+1−
√

9
44

= 1. It follows

1− ω∗
2

(
1−

√
9
44

)
=
√

9
44
.

Corollary 5.5.3. For any ω, the optimal convergence factor for the two-grid algorithm

using a single weighted Jacobi relaxation (i.e., ν1 + ν2 = 1) on the Q2 discretization in

2D, is not less than
√

9
44
, and this factor can be achieved if and only if ω = ω∗

2.

Two-grid and multigrid performance in 2D

In order to see how the parameter ω∗
2 performs in practice in a multigrid method,

we present two-grid and multigrid results. Table 5.5 shows that ω∗
2 achieves the best

possible results, with measured multigrid convergence factors that coincide with the

LFA-predicted convergence factors. The same convergence factor is also obtained using

full V -cycles, shown in Table 5.6.
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Table 5.5: Two-grid convergence factors for the Q2 approximation in 2D.

❍
❍
❍
❍
❍
❍
❍❍

ρ̂h

Cycle
TG(0, 1) TG(1, 0) TG(1, 1) TG(1, 2) TG(2, 1) TG(2, 2)

ω = ω∗
2
= 1.000, µ = 0.842

ρh=1/128 0.452 0.452 0.288 0.123 0.123 0.091

ρ̂
(100)
h=1/128 0.442 0.442 0.280 0.119 0.119 0.088

ρ̂
(100)
h=1/256 0.442 0.442 0.280 0.119 0.119 0.088

Table 5.6: Multigrid convergence factors for the Q2 approximation in 2D.

❍
❍
❍
❍
❍
❍
❍❍

ρ̂h

Cycle
V (0, 1) V (1, 0) V (1, 1) V (1, 2) V (2, 1) V (2, 2)

ω = ω∗
2
= 1.000, µ = 0.842

ρh=1/128 0.452 0.452 0.288 0.123 0.123 0.091

ρ̂
(100)
h=1/128 0.442 0.442 0.280 0.117 0.117 0.097

ρ̂
(100)
h=1/256 0.442 0.442 0.281 0.116 0.117 0.097

5.5.4 A modified two-grid analysis for the Q2 approximation

in 2D

Considering the classical LFA smoothing and convergence factors, Figure 5.12 indicates

that the optimal ω minimizing the two-grid convergence factor is 1, and that the

LFA smoothing factor fails to predict the two-grid convergence factor for the Q2

finite-element approximation in 2D.

In contrast, we plot the LFA-predicted two-grid convergence factor and max{|λ∗∗|}
as defined in (5.35) as a function of ω, at the left of Figure 5.13. This shows that for

all ω, the two-grid convergence factor is given by max{|λ∗∗|}, and that convergence is

dominated by the harmonic space associated with θ = (0, 0).

The modified prediction given by defining Q0 using the limit in (5.22) and ρ0

as in (5.23) can also be extended to this case. We plot ρ0, compared with the true

convergence factor at the right of Figure 5.13. We see that ρ0 again overpredicts the

convergence factor, as Q0 captures poorly the true effects of CGC for values of (θ1, θ2)
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near (±π
2
,±π

2
). However, ρ0 still offers a reasonable prediction of convergence and of

the optimal relaxation parameter.

Figure 5.12: LFA-predicted two-grid convergence and smoothing factors as a function
of ω for the Q2 approximation in 2D.

Figure 5.13: At left, LFA-predicted two-grid convergence factor and max{|λ∗∗|} as a
function of ω. At right, LFA-predicted two-grid convergence factor and ρ0, for the Q2

approximation in 2D.

Remark 5.5.5. For the Q2 approximation in 1D, we see a improvement on two-grid

behavior by considering different weights for the DOFs at nodes and those at cell centres

for Jacobi relaxation. However, using different weights for DOFs at nodes, x-edges,

y-edges, and element centres for the Q2 approximation in 2D does not offer a better

two-grid convergence factor.

Remark 5.5.6. We note that, in both 1D and 2D, the two-grid convergence factor

gets worse with increasing polynomial degree of the finite-element approximation. This
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has been observed before in the literature [4, 9], and is commonly resolved by increasing

the work done in the relaxation as the polynomial order is increased.

As before, we can also relate Q0 to the Moore-Penrose pseudoinverese considered

in (5.24).

Remark 5.5.7. We find that

Q0 = QMPP + C,

where C is a rank-one matrix given by

C =
(
e1 e2 e2 e2

)T (
d1 d2 d3 d4

)
,

in which e1 =
(
1 1 1 1

)
, e2 =

(
0 0 0 0

)
, and

d1 =
(
−11/48 −13/48 −13/48 −11/48

)
, d2 =

(
−11/96 0 −13/96 0

)
,

d3 =
(
−11/96 −13/96 0 0

)
, d4 =

(
−5/64 0 0 0

)
.

The column vector in the outer product, C, naturally arises as the interpolation of

a constant coarse-grid function, while the row vector is obtained again by solving for

the rank-one operator D following (5.25).

5.6 Conclusions

In this paper, we apply LFA to analyse and optimize the two-grid convergence factor

for multigrid methods with higher-order finite-element approximations, especially

focusing on optimal parameter choice for quadratic Lagrange elements in 1D and 2D.

We find that minimizing the classical LFA smoothing factor fails to accurately predict

the two-grid convergence factor. Ideal CGC operators are provided to overcome this

failure, and optimal parameters that minimize the two-grid convergence factor are

chosen based on the LFA results. With these parameters, we see good agreement

between the measured convergence factor and predicted LFA convergence factor with

periodic boundary conditions. Compared with the traditional parameter choice, based
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on minimizing the smoothing factor, we note a big improvement in performance with

the corrected parameters. This may also explain why the LFA smoothing factor cannot

predict the two-grid convergence factor for higher-order finite-element approximations

to other types of PDEs, such as the Q2 −Q1 approximation to the Stokes equations,

which was observed in [10].

5.7 Appendix

It is clear that the above analysis can be extended to many relaxation schemes. Here,

we consider a slightly generalized form of Richardson relaxation that leads to improved

results.

5.7.1 Richardson relaxation

The standard Richardson relaxation is given by Sh = I − τAh. Noting that we have

node- and centre-type degrees of freedom, we consider a “generalized” Richardson

relaxation with differening weights on the nodes and centres. The symbol for this

relaxation is given by

Sh(θ) = I −M−1
r Ah(θ),

where

Mr =
1

3h

(
1
ω1

0

0 1
ω2

)
.

Similarly to Jacobi relaxation, we first look at the limiting behavior of the two-grid

error-propagation operator M̂TGM
r (θ) when θ goes to zero. By standard calculation,

we have

lim
θ→0

M̂r
TGM

(θ) =




1
2
− 8(ω1 + ω2) −1

2
+ 8(ω1 + ω2) 3ω1 − 1

4
0

−1
4
+ 4(ω1 + ω2)

1
4
+ 4(ω1 + ω2) −3

2
ω1 +

1
8

0

−1
2
+ 8(ω1 + ω2)

1
2
− 8(ω1 + ω2) −3ω1 +

1
4

0

0 0 0 1− 16ω2



.

Thus,

trace
(
lim
θ→0

M̂TGM
r (θ)

)
= 2− 15ω1 − 28ω2.
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We know lim
θ→0

M̂r

TGM
(θ) has two zero eigenvalues, and that λr1 = 1− 16ω2. Thus, the

other nonzero eigenvalue is λr2 = 2− 15ω1 − 28ω2 − (1− 16ω2) = 1− 15ω1 − 12ω2.

5.7.2 Standard Richardson relaxation

Now, we consider the special case when ω1 = ω2.

Lemma 5.7.1. When ω1 = ω2, the Richardson relaxation has a lower bound ρr =
11
43

≈ 0.256, achieved if and only if ω1 = ωr =
2
43
.

Proof. Setting |1− 16ω1| = |1− 15ω1 − 12ω2|, gives ω1 =
2
43
. Then, ρr = 1− 16ω1 =

11
43

≈ 0.256.

Following this, we define ρ0 as in (5.23) and ρ00 = sup{ρ(Q0Ŝh(0))}, and present

the LFA-predicted two-grid convergence factor as a function of ω for Richardson

relaxation. The left of Figure 5.14 indicates that the ideal (CGC) prediction, ρ0,

offers a good approximation in this case. The right of Figure 5.14, shows that the

convergence behavior is dominated by the harmonics at zero frequency, as measured by

ρ00, which offers a perfect prediction. Recall the optimal convergence factor for Jacobi

relaxation is 0.291; thus, Richardson relaxation is competitive with Jacobi relaxation.

Figure 5.14: At left, LFA-predicted two-grid convergence factor and ρ0 as a function
of ω. At right, LFA-predicted two-grid convergence factor and ρ00 as a function of ω
with Richardson relaxation for the Q2 approximation in 1D.

In Table 5.7, we report the measured V -cycles multigrid convergence factor for

Richardson relaxation with parameters ω1 = ω2 = ωr obtained in Lemma 5.7.1.
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Good agreement between the measured convergence factor with the LFA-predicted

convergence factor is seen; however, little improvement occurs when adding relaxation

to the V -cycle.

Table 5.7: Multigrid convergence factors for the Q2 approximation with Richardson
relaxation in 1D.

❍
❍
❍
❍
❍
❍
❍❍

ρ̂h

Cycle
V (0, 1) V (1, 0) V (1, 1) V (1, 2) V (2, 1) V (2, 2)

ωr = 2

43
, µ = 0.825

ρh=1/128 0.256 0.256 0.233 0.066 0.066 0.058

ρ̂
(100)
h=1/128 0.252 0.251 0.231 0.068 0.069 0.061

ρ̂
(100)
h=1/256 0.261 0.260 0.230 0.070 0.069 0.061

5.7.3 Generalized Richardson relaxation

To potentially obtain better performance, we now consider when ω1 6= ω2. To choose

these weights, we seek to balance convergence for the harmonics at frequency zero

with those at frequency π
2
. By standard calculation,

M̂r
TGM

(π/2) = (Mr1,Mr2),

where

Mr1 =




3/8− 4ω2 − 21/4ω1 3
√
2ω1 +

√
2(16ω2 − 1)/4

5
√
2ω2 + 11

√
2(14ω1 − 1)/32 5/8− 10ω2 − 11/2ω1

21/4ω1 + 4ω2 − 3/8 −3
√
2ω1 −

√
2(16ω2 − 1)/4

−3
√
2ω2 − 5

√
2(14ω1 − 1)/32 5/2ω1 + 16ω2 − 3/8




and

Mr2 =




21/4ω1 + 4ω2 − 3/8 3
√
2ω1 +

√
2(16ω2 − 1)/4

3
√
2ω2 + 5

√
2(14ω1 − 1)/32 5/2ω1 + 6ω2 − 3/8

3/8− 4ω2 − 21/4ω1 −3
√
2ω1 −

√
2(16ω2 − 1)/4

−5
√
2ω2 − 11

√
2(14ω1 − 1)/32 5/8− 10ω2 − 11/2ω1



,

and, the four eigenvalues of M̂r
TGM

(π/2) are
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0, 0, λr3 = 1− 27

2
ω1 − 12ω2, λr4 = 1− 8ω1 − 16ω2.

Now, combining λr3 and λr4 with the two nonzero eigenvalues λr1 and λr2 from zero

frequency, we can calculate a lower bound on the convergence factor of generalized

Richardson relaxation over the modes θ = 0 and θ = π
2
.

Lemma 5.7.2.

ρ∗r := min
(ω1,ω2)

{
max{|λr|} : λr ∈ {λri, i = 1, 2, 3, 4}

}
=

2

29
≈ 0.069, (5.36)

and only ω1 = ω∗
r1 =

1
58

≈ 0.0172 and ω2 = ω∗
r2 =

27
464

≈ 0.0582 achieve the minimum.

Proof. Let ς1 = 16ω2, ς2 = 15ω1 + 12ω2, ς3 = 27
2
ω1 + 12ω2 and ς4 = 8ω1 + 16ω2.

Thus, ρ∗r = min
ω1,ω2

{
max |1 − ςi|, i = 1, 2, 3, 4

}
. Note that ς1 < ς4, ς3 < ς2, and that

(ς2 − ς3) < (ς4 − ς1). The minimum is obtained if and only if

ς1 = ς3, λr1 = −λr4. (5.37)

From (5.37), we have ω1 = ω∗
r1 =

1
58
, ω2 =

27
8
ω1 = ω∗

r2 =
27
464

, and λr1 =
2
29
. Under this

condition, |λr3| = 1− 15 1
58

− 12 27
464

= 5
116

< 2
29
. It follows ρ∗r =

2
29
.

Can we achieve the bound from (5.36)? The answer is yes! Using ωr1 and ωr2 in the

LFA code, we see that the convergence factor is ρ∗r over all low frequencies. Recall the

optimal convergence factor, 0.291, for Jacobi relaxation, and note that ρ∗r ≈ (0.291)2.

Thus, generalized Richardson relaxation improves the convergence factor substantially.

We now exhibit the LFA-predicted two-grid convergence factor numerically as a

function of ω1 and ω2, at the left of Figure 5.15. This shows the optimal convergence

factor is

ρr,opt = 0.072, with ω1 = 0.0170, ω2 = 0.0585, µ = 0.910,

consistent with Lemma 5.7.2, up to rounding errors. The right of Figure 5.15 presents

the prediction ρ0 as a function of ω1 and ω2. We find that the optimal convergence

factor from this data is ρ0,opt = 0.217 with ω1 = 0.014 and ω2 = 0.0705. Even though

ρ0,opt overestimates the true optimal convergence factor, it still can be treated as a

good prediction, particularly in contrast to the smoothing factor µ = 0.910.
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Figure 5.15: At left, ρ as a function of ω1 and ω2. At right, ρ0 as a function of ω1 and
ω2 with generalized Richardson relaxation for the Q2 approximation in 1D.

Table 5.8 presents W -cycle performance using generalized Richardson relaxation

with the parameters defined in Lemma 5.7.2. We see the measured multigrid conver-

gence factor matches well with the LFA-predicted two-grid convergence factor, except

for ν1 + ν2 = 1 with a slightly larger measured convergence factor. It shows that

ν1 + ν2 = 1 is the most cost-effective cycle, compared with different numbers of pre-

and postsmoothing steps.

Table 5.8: Multigrid convergence factors for the Q2 approximation with generalized
Richardson relaxation in 1D.

❍
❍
❍
❍
❍

❍
❍❍

ρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

ωr1 = 1

58
, ωr2 = 27

464
, µ = 0.909

ρh=1/128 0.069 0.069 0.189 0.120 0.120 0.106

ρ̂
(100)
h=1/128 0.076 0.076 0.187 0.118 0.118 0.104

ρ̂
(100)
h=1/256 0.076 0.076 0.188 0.118 0.118 0.104

Remark 5.7.1. While the V -cycle convergence factor for the generalized Richardson

relaxation does not match with the LFA-predicted convergence factor, the measured

convergence factors are similar to the V -cycles results in Table 5.7.

Remark 5.7.2. We can also optimize the two-grid convergence factor with (ν1, ν2) =

(1, 1). However, the LFA-prediction shows that the optimal result of ρ(ν1,ν2) is larger

than (ρ∗r)
2. Thus, optimizing with a single relaxation is the best choice.
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Chapter 6

Local Fourier analysis for mixed

finite-element methods for the

Stokes equations

Abstract

1 We develop a local Fourier analysis of multigrid methods based on block-structured

relaxation schemes for stable and stabilized mixed finite-element discretizations of the

Stokes equations, to analyze their convergence behavior. Three relaxation schemes are

considered: distributive, Braess-Sarazin, and Uzawa relaxation. From this analysis,

parameters that minimize the local Fourier analysis smoothing factor are proposed for

the stabilized methods with distributive and Braess-Sarazin relaxation. Considering

the failure of the local Fourier analysis smoothing factor in predicting the true two-grid

convergence factor for the stable discretization, we numerically optimize the two-grid

convergence predicted by local Fourier analysis in this case. We also compare the

efficiency of the presented algorithms with variants using inexact solvers. Finally,

some numerical experiments are presented to validate the two-grid and multigrid

convergence factors.

1Authors: Y. He and S. P. MacLachlan
This work is submitted as Local Fourier analysis for mixed finite-element methods for the Stokes

equations, to the Journal of Computational and Applied Mathematics, 2018.
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6.1 Introduction

In recent years, substantial research has been devoted to efficient numerical solution

of the Stokes and Navier-Stokes equations, due both to their utility as models of

(viscous) fluids and their commonalities with many other physical problems that lead

to saddle-point systems (see, for example [14], and many of the other references cited

here). In the linear (or linearized) case, solution of the resulting matrix equations is

seen to be difficult, due to indefiniteness and the usual ill-conditioning of discretized

PDEs. In the literature, block preconditioners (cf. [14] and the references therein) are

widely used, due to their easy construction from standard multigrid algorithms for

scalar elliptic PDEs, such as algebraic multigrid [30]. However, monolithic multigrid

approaches [1, 3, 8, 26, 31] have been shown to outperform these preconditioners when

relaxation parameters are properly chosen [2]. The focus of this work is on the analysis

of such monolithic multigrid methods in the case of stable and stabilized finite-element

discretizations of the Stokes equations.

Local Fourier analysis (LFA) [36, 41] has been widely used to predict the convergence

behavior of multigrid methods, to help design relaxation schemes and choose algorithmic

parameters. In general, the LFA smoothing factor provides a sharp prediction of

actual multigrid convergence, see [36], under the assumption of an “ideal” coarse-grid

correction scheme (CGC) that annihilates low-frequency error components and leaves

high-frequency components unchanged. In practice, the LFA smoothing and two-grid

convergence factors often exactly match the true convergence factor of multigrid applied

to a problem with periodic boundary conditions [7, 34, 36]. Recently, the validity of

LFA has been further analysed [29], extending this exact prediction to a wider class of

problems. However, the LFA smoothing factor is also known to lose its predictivity of

the true convergence in some cases [15, 19, 21]. In particular, the smoothing factor

of LFA overestimates the two-grid convergence factor for the Taylor-Hood (Q2 −Q1)

discretization of the Stokes equations with Vanka relaxation [21]. Even for the scalar

Laplace operator, the LFA smoothing factor fails to predict the observed multigrid
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convergence factor for higher-order finite-element methods [19].

Two main questions interest us here. First, we look to extend the study of [21] to

consider LFA of block-structured relaxation schemes for finite-element discretizations

of the Stokes equations. Secondly, we consider if the LFA smoothing factor can predict

the convergence factors for these relaxation schemes. Recently, LFA for multigrid based

on block-structured relaxation schemes applied to the marker-and-cell (MAC) finite-

difference discretization of the Stokes equations was shown to give a good prediction

of convergence [18], in contrast to the results of [21]. Thus, a natural question to

investigate is whether the contrasting results between [18] and [21] is due to the

differences in discretization or those in the relaxation schemes considered. Here, we

apply the relaxation schemes of [18] to the Q2 −Q1 discretization from [21], as well as

an “intermediate” discretization using stabilized Q1 −Q1 approaches.

In recent decades, many block relaxation schemes have been studied and applied

to many problems, including Braess-Sarazin-type relaxation schemes [1, 3, 5, 6, 43],

Vanka-type relaxation schemes [1, 3, 21, 23, 28, 31, 37], Uzawa-type relaxation schemes

[16, 17, 20, 22, 26], distributive relaxation schemes [4, 8, 27, 38, 42] and other types

of methods [11, 35]. Even though LFA has been applied to distributive relaxation

[25, 41], Vanka relaxation [21, 24, 28, 33], and Uzawa-type schemes [16] for the Stokes

equations, most of the existing LFA has been for relaxation schemes using (symmetric)

Gauss-Seidel (GS) approaches, and for simple finite-difference and finite-element

discretizations. Considering modern multicore and accelerated parallel architectures,

we focus on schemes based on weighted Jacobi relaxation with distributive, Braess-

Sarazin, and Uzawa relaxation for common finite-element discretizations of the Stokes

equations.

Some key conclusions of this analysis are as follows. First, while the LFA smooth-

ing factor gives a good prediction of the true convergence factor for the stabilized

discretizations with distributive weighted Jacobi and Braess-Sarazin relaxation, it does

not for the Uzawa relaxation (in contrast to what is seen for the MAC discretization

[18, 25]). For no cases, does the LFA smoothing factor offer a good prediction of the

true convergence behaviour for the (stable) Q2 − Q1 discretization, suggesting that

the discretization is responsible for the lack of predictivity, consistent with the results

in [19, 21]. For both stable and stabilized discretizations, we see that distributive

weighted Jacobi relaxation loses its high efficiency, in contrast to what is seen for
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the MAC scheme [18, 25]. Exact Braess-Sarazin relaxation is highly effective, with

LFA-predicted W (1, 1) convergence factors of 1
9
in the stabilized cases and 1

4
in the

stable case. To realize these rates with inexact cycles, however, requires nested W-

cycles to solve the approximate Schur complement equation accurately enough in the

stabilized case, although simple weighted Jacobi on the approximate Schur comple-

ment is observed to be sufficient in the stable case. For Uzawa-type relaxation, we

see a notable gap between predicted convergence with exact inversion of the resulting

Schur complement, versus inexact inversion, although some improvement is seen when

replacing the approximate Schur complement with a mass matrix approximation, as is

commonly used in block-diagonal preconditioners [32, 39, 40]. Overall, however, we

see that Braess-Sarazin relaxation outperforms both distributive weighted Jacobi and

Uzawa relaxation, for both stabilized and stable discretizations.

We organize this paper as follows. In Section 6.2, we introduce two stabilizedQ1−Q1

and the stable Q2 −Q1 mixed finite-element discretizations of the Stokes equations in

two dimensions (2D). In Section 6.3, we first review the LFA approach, then discuss the

Fourier representation for these discretizations. In Section 6.4, LFA is developed for

DWJ, BSR, and Uzawa-type relaxation, and optimal LFA smoothing factors are derived

for the two stabilized Q1 −Q1 methods with DWJ and BSR. Multigrid performance is

presented to validate the theoretical results. Section 6.5 exhibits optimized LFA two-

grid convergence factors and measured multigrid convergence factors for the Q2 −Q1

discretization. Furthermore, a comparison of the cost and effectiveness of the relaxation

schemes is given. Conclusions are presented in Section 6.6.

6.2 Discretizations

In this paper, we consider the Stokes equations,

−∆~u+∇p = ~f, (6.1)

∇ · ~u = 0,

where ~u is the velocity vector, p is the a scalar pressure of a viscous fluid, and ~f

represents a (known) forcing term, together with suitable boundary conditions. Because

of the nature of LFA, we validate our predictions against the problem with periodic

boundary conditions on both ~u and p. Discretizations of (6.1) typically lead to a linear
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system of the following form:

Kx =

(
A BT

B −βC

)(
U
p

)
=

(
f

0

)
= b, (6.2)

where A corresponds to the discretized vector Laplacian, and B is the negative of the

discrete divergence operator. If the discretization is naturally unstable, then C 6= 0

is the stabilization matrix, otherwise C = 0. In this paper, we discuss two stabilized

Q1 −Q1 and the stable Q2 −Q1 finite-element discretizations.

Remark 6.2.1. Here, we consider the vector Laplacian of the velocity in the Stokes

equations, as is standard. For more general models, the divergence of the symmetric

part of the gradient could be considered, affecting only the symbol of A in what follows.

The natural finite-element approximation of Problem (6.1) is: Find ~uh ∈ X h and

ph ∈ Hh such that

a(~uh, ~vh) + b(ph, ~vh) + b(qh, ~uh) = g(~vh), for all~vh ∈ X h
0 and qh ∈ Hh, (6.3)

where

a(~uh, ~vh) =

∫

Ω

∇~uh : ∇~vh, b(ph, ~vh) = −
∫

Ω

ph∇ · ~vh,

g(~vh) =

∫

Ω

~fh · ~vh,

and X h ⊂ H1(Ω), Hh ⊂ L2(Ω) are finite-element spaces. Here, X h
0 ⊂ X h satisfies

homogeneous Dirichlet boundary conditions in place of any non-homogenous essential

boundary conditions on X h. Problem (6.3) has a unique solution only when X h and

Hh satisfy an inf-sup condition (see [9, 10, 13, 14]).

6.2.1 Stabilized Q1 −Q1 discretizations

The standard equal-order approximation of (6.3) is well-known to be unstable [10, 14].

To circumvent this, a scaled pressure Laplacian term can be added to (6.3); for a

uniform mesh with square elements of size h, we subtract

c(ph, qh) = βh2(∇ph,∇qh),
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for β > 0. With this, the resulting linear system is given by

(
A BT

B −βh2Ap

)(
U
p

)
=

(
f

0

)
= b,

where Ap is the Q1 Laplacian operator for the pressure. Denote S = BA−1BT , and

Sβ = BA−1BT + βC, where C = h2Ap. From [14], the red-black unstable mode

p = ±1, can be moved from a zero eigenvalue to a unit eigenvalue ( giving stability

without loss of accuracy) by choosing β so that

pTSβp

pTQp
= β

pTCp

pTQp
= 1, (6.4)

where Q is the mass matrix. Substituting the bilinear stiffness and mass matrices into

(6.4), we find β = 1
24
. We refer to this method as the Poisson-stabilized discretization

(PoSD).

An L2 projection to stabilize the Q1−Q1 discretization, proposed in [13], stabilizes

with

C(ph, qh) = (ph − Π0ph, qh − Π0qh), (6.5)

where Π0 is the L2 projection from Hh into the space of piecewise constant functions

on the mesh. We refer to this method as the projection stabilized discretization (PrSD).

The 4× 4 element matrix C4 of (6.5) is given by

C4 = Q4 − qqTh2,

where Q4 is the 4 × 4 element mass matrix for the bilinear discretization and q =[
1
4

1
4

1
4

1
4

]T
. In the projection stabilized method, we can write C = Q−h2P , where

P is given by the 9-point stencil

P =
1

4




1
4

1
2

1
4

1
2

1 1
2

1
4

1
2

1
4


 .

Applying (6.4) to C = Q− h2P , we find that β = 1 is the optimal choice.
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6.2.2 Stable Q2 −Q1 discretizations

In order to guarantee the well-posedness of the discrete system (6.2) with C = 0,

the discretization of the velocity and pressure unknowns should satisfy an inf-sup

condition,

inf
qh 6=0

sup
~vh 6=~0

|b(qh, ~vh)|
‖~vh‖1‖qh‖0

≥ Γ > 0,

where Γ is a constant. Taylor-Hood (Q2 −Q1) elements are well known to be stable

[9, 14], where the basis functions associated with these elements are biquadratic for

each component of the velocity field and bilinear for the pressure.

6.3 LFA preliminaries

6.3.1 Definitions and notations

In many cases, the LFA smoothing factor offers a good prediction of multigrid perfor-

mance. Thus, we will explore the LFA smoothing factor and true (measured) multigrid

convergence for the three types of relaxations considered here. We first introduce some

terminology of LFA, following [36, 41]. We consider the following two-dimensional

infinite uniform grids,

Gj
h =

{
xj := (xj1, x

j
2) = (k1, k2)h+ δj, (k1, k2) ∈ Z

2
}
,

with

δj =





(0, 0) if j = 1,

(0, h/2) if j = 2,

(h/2, 0) if j = 3,

(h/2, h/2) if j = 4.

The coarse grids, Gj
2h, are defined similarly.

Let Lh be a scalar Toeplitz operator defined by its stencil acting on l2(Gj
h) as

follows:

Lh
∧
= [sκ]h (κ = (κ1, κ2) ∈ V ); Lhwh(x

j) =
∑

κ∈V
sκwh(x

j + κh), (6.6)
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with constant coefficients sκ ∈ R (or C), where wh(x
j) is a function in l2(Gj

h). Here,

V ⊂ Z
2 is a finite index set. Because Lh is formally diagonalized by the Fourier modes

ϕ(θ,xj) = eiθ·x
j/h = eiθ1x

j
1/heiθ2x

j
2/h, where θ = (θ1, θ2) and i

2 = −1, we use ϕ(θ,xj)

as a Fourier basis with θ ∈
[
− π

2
, 3π

2

)2
(or any interval with length 2π). High and low

frequencies for standard coarsening (as considered here) are given by

θ ∈ T low =
[
−π
2
,
π

2

)2
, θ ∈ T high =

[
−π
2
,
3π

2

)2∖[
−π
2
,
π

2

)2
.

Definition 6.3.1. We call L̃h(θ) =
∑

κ∈V
sκe

iθκ the symbol of Lh.

Note that for all functions ϕ(θ,xj),

Lhϕ(θ,x
j) = L̃h(θ)ϕ(θ,x

j).

In what follows, we consider (3× 3) linear systems of operators, which read

Lh =



L1,1
h L1,2

h L1,3
h

L2,1
h L2,2

h L2,3
h

L3,1
h L3,2

h L3,3
h


 =




−∆h 0 (∂x)h

0 −∆h (∂y)h

−(∂x)h −(∂y)h L3,3
h


 , (6.7)

where L3,3
h depends on which discretization we use.

For the stabilized Q1−Q1 approximations, the degrees of freedom for both velocity

and pressure are only located on G1
h. In this setting, the Lk,ℓh (k, ℓ = 1, 2, 3) in (6.7)

are scalar Toeplitz operators. Denote L̃h as the symbol of Lh. Each entry in L̃h is

computed as the (scalar) symbol of the corresponding block of Lk,ℓh , following Definition

6.3.1. Thus, L̃h is a 3 × 3 matrix. All blocks in Lh are diagonalized by the same

transformation on a collocated mesh.

However, for the Q2 − Q1 discretization, the degrees of freedom for velocity are

located on Gh =
⋃4
j=1 G

j
h, containing four types of meshpoints. The Laplace operator

in (6.7) is defined by extending (6.6), with V taken to be a finite index set of

values, V = VN
⋃
VX
⋃
VY
⋃
VC with VN ⊂ Z

2, VX ⊂
{
(zx +

1
2
, zy)|(zx, zy) ∈ Z

2
}
,

VY ⊂
{
(zx, zy +

1
2
)|(zx, zy) ∈ Z

2
}
, and VC ⊂

{
(zx +

1
2
, zy +

1
2
)|(zx, zy) ∈ Z

2

}
. With

this, the (scalar) Q2 Laplace operator is naturally treated as a block operator, and
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the Fourier representation of each block can be calculated based on Definition 6.3.1,

with the Fourier bases adapted to account for the staggering of the mesh points. Thus,

the symbols of L1,1
h and L2,2

h are 4 × 4 matrices. For more details of LFA for the

Laplace operator using higher-order finite-element methods, refer to [19]. Similarly

to the Laplace operator, both terms in the gradient, (∂x)h and (∂y)h, can be treated

as (4 × 1)-block operators. Then, the symbols of L1,3
h and L2,3

h are 4 × 1 matrices,

calculated based on Definition 6.3.1 adapted for the mesh staggering. The symbols

of L3,1
h and L3,2

h are the conjugate transposes of those of L1,3
h and L2,3

h , respectively.

Finally, L3,3
h = 0. Accordingly, L̃h is a 9× 9 matrix for Q2 −Q1 discretization.

Definition 6.3.2. The error-propagation symbol, S̃h(θ), for a block smoother Sh on

the infinite grid Gh satisfies

Shϕ(θ,x) = S̃hϕ(θ,x), θ ∈
[
− π

2
,
3π

2

)2

,

for all ϕ(θ,x), and the corresponding smoothing factor for Sh is given by

µloc = µloc(Sh) = max
θ∈Thigh

{∣∣λ(S̃h(θ))
∣∣ },

where λ is an eigenvalue of S̃h(θ).

In Definition 6.3.2, Gh = G1
h for the stabilized case (and S̃h(θ) is a 3× 3 matrix)

and Gh =
⋃4
j=1 G

j
h for the stable case (where S̃h(θ) is a 9× 9 matrix).

The error-propagation symbol for a relaxation scheme, represented by matrix Mh,

applied to either the stabilized or stable scheme is written as

S̃h(p, ω,θ) = I − ωM̃−1
h (θ)L̃h(θ),

where p represents parameters within Mh, the block approximation to Lh, ω is an

overall weighting factor, and M̃h and L̃h are the symbols for Mh and Lh, respectively.
Note that µloc is a function of some parameters in Definition 6.3.2. In this paper, we

focus on minimizing µloc with respect to these parameters, to obtain the optimal LFA

smoothing factor.

Definition 6.3.3. Let D be a bounded and closed set of allowable parameters and
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define the optimal smoothing factor over D as

µopt = min
D
µloc.

If the standard LFA assumption of an “ideal” CGC holds, then the two-grid

convergence factor can be estimated by the smoothing factor, which is easy to compute.

However, as expected, we will see that this idealized CGC does not lead to a good

prediction for some cases we consider below. When the LFA smoothing factor fails

to predict the true two-grid convergence factor, the LFA two-grid convergence factor

can still be used. Thus, we give a brief introduction to the LFA two-grid convergence

factor in the following.

Let

α = (α1, α2) ∈
{
(0, 0), (1, 0), (0, 1), (1, 1)

}
,

θα = (θα1
1 , θ

α2
2 ) = θ + π ·α, θ := θ00 ∈ T low.

We use the ordering of α = (0, 0), (1, 0), (0, 1), (1, 1) for the four harmonics. To apply

LFA to the two-grid operator,

MTGM
h = Sν2h MCGC

h Sν1h , (6.8)

we require the representation of the CGC operator,

MCGC
h = I − Ph(L∗

2h)
−1RhLh,

where Ph is the multigrid interpolation operator and Rh is the restriction operator.

The coarse-grid operator, L∗
2h, can be either the Galerkin or rediscretization operator.

Inserting the representations of Sh,Lh,L∗
2h, Ph, Rh into (6.8), we obtain the Fourier

representation of two-grid error-propagation operator as

M̃
TGM

h (θ) = S̃
ν2

h (θ)
(
I − P̃ h(θ)(L̃∗

2h(2θ))
−1R̃h(θ)L̃h(θ)

)
S̃
ν1

h (θ),
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where

L̃h(θ) = diag
{
L̃h(θ00), L̃h(θ10), L̃h(θ01), L̃h(θ11)

}
,

S̃h(θ) = diag
{
S̃h(θ00), S̃h(θ10), S̃h(θ01), S̃h(θ11)

}
,

P̃ h(θ) =
(
P̃h(θ

00); P̃h(θ
10); P̃h(θ

01); P̃h(θ
11)
)
,

R̃h(θ) =
(
R̃h(θ

00), R̃h(θ
10), R̃h(θ

01), R̃h(θ
11)
)
,

in which diag{T1, T2, T3, T4} stands for the block diagonal matrix with diagonal blocks,

T1, T2, T3, and T4.

Here, we use the standard finite-element interpolation operators and their transposes

for restriction. For Q1, the symbol is well-known [36] while, for the nodal basis for Q2,

the symbol is given in [19].

Definition 6.3.4. The asymptotic two-grid convergence factor, ρasp, is defined as

ρasp = sup{ρ(M̃h(θ)
TGM) : θ ∈ T low}.

In what follows, we consider a discrete form of ρasp, denoted by ρh, resulting from

sampling ρasp over only a finite set of frequencies. For simplicity, we drop the subscript

h throughout the rest of this paper, unless necessary for clarity.

6.3.2 Fourier representation of discretization operators

Fourier representation of the stabilized Q1 −Q1 discretization

By standard calculation, the symbols of the Q1 stiffness and mass stencils are

ÃQ1(θ1, θ2) =
2

3
(4− cos θ1 − cos θ2 − 2 cos θ1 cos θ2),

M̃Q1(θ1, θ2) =
h2

9
(4 + 2 cos θ1 + 2 cos θ2 + cos θ1 cos θ2),
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respectively. The stencils of the partial derivative operators (∂x)h and (∂y)h are

BT
x =

h

12



−1 0 1

−4 0 4

−1 0 1


 , BT

y =
h

12




1 4 1

0 0 0

−1 −4 −1


 ,

respectively, and the corresponding symbols are

B̃T
x (θ1, θ2) =

ih

3
sin θ1(2 + cos θ2), B̃

T
y (θ1, θ2) =

ih

3
(2 + cos θ1) sin θ2,

where T denotes the conjugate transpose. Thus, the symbols of the stabilized finite-

element discretizations of the Stokes equations are given by

L̃(θ1, θ2) =



ÃQ1 0 B̃T

x

0 ÃQ1 B̃T
y

B̃x B̃y L̃3,3
h


 :=




a 0 b1

0 a b2

−b1 −b2 −c


 .

For the Poisson-stabilized discretization, the symbol of −L3,3
h is c = c1 = aβh2. For

the projection stabilized method, following (6.5), the symbol of −L3,3
h is

c2 =

(
4 + 2 cos θ1 + 2 cos θ2 + cos θ1 cos θ2

9
− (1 + cos θ1)(1 + cos θ2)

4

)
h2. (6.9)

For convenience, we write −C for the last block of Equation (6.2), and its symbol as

−c in the rest of this paper.

Fourier representation of stable Q2 −Q1 discretizations

The symbols of the stiffness and mass stencils for the Q2 discretization using nodal

basis functions in 1D are

ÃQ2(θ) =
1

3h

(
14 + 2 cos θ −16 cos θ

2

−16 cos θ
2

16

)
, M̃Q2(θ) =

h

30

(
8− 2 cos θ 4 cos θ

2

4 cos θ
2

16

)
,

respectively [19]. Then, the Fourier representation of −∆h in 2D, can be written as a

tensor product,

Ã2(θ1, θ2) = ÃQ2(θ2)⊗ M̃Q2(θ1) + M̃Q2(θ2)⊗ ÃQ2(θ1).
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The tensor product preserves block structuring; that is, Ã2(θ1, θ2) is a 4× 4 matrix,

ordered as mesh nodes, x-edge midpoints, y-edge midpoints, and cell centres. Each

row of Ã2(θ1, θ2) reflects the connections between one of the four types of degrees of

freedom with each of these four types. Similarly, there are four types of stencils for

(∂x)h and (∂y)h.

The stencils and the symbols of (∂x)h for the nodal, x-edge, y-edge, and cell-centre

degrees of freedom are

BN =
h

18




0 0 0

−1 0 1

0 0 0


 , B̃N(θ1, θ2) =

ih

9
sin θ1,

BX =
h

18




0 0

−4 4

0 0


 , B̃X(θ1, θ2) =

2ih

9
sin

θ1
2
,

BY =
h

18

[
−1 0 1

−1 0 1

]
, B̃Y (θ1, θ2) =

2ih

9
sin θ1 cos

θ2
2
,

BC =
h

18

[
−4 4

−4 4

]
, B̃C(θ1, θ2) =

8ih

9
sin

θ1
2
cos

θ2
2
,

respectively. Denote B̃Q2,x(θ1, θ2)
T = [B̃N ; B̃X ; B̃Y ; B̃C ].

Similarly to B̃Q2,x(θ1, θ2)
T , the symbol of the stencil of (∂y)h can be written as

B̃Q2,y(θ1, θ2)
T = [B̃N(θ2, θ1); B̃Y (θ2, θ1); B̃X(θ2, θ1); B̃C(θ2, θ1)].

Thus, the Fourier representation of the Q2 − Q1 finite-element discretization of the

Stokes equations can be written as

L̃h(θ1, θ2) =




Ã2(θ1, θ2) 0 B̃Q2,x(θ1, θ2)
T

0 Ã2(θ1, θ2) B̃Q2,y(θ1, θ2)
T

B̃Q2,x(θ1, θ2) B̃Q2,y(θ1, θ2) 0


 .

Note that the Fourier symbol for the Q2 − Q1 discretization is a 9 × 9 matrix, and

that the LFA smoothing factor for the Q2 approximation generally fails to predict the

true two-grid convergence factor [19, 21]. The same behavior is seen for the relaxation

schemes considered here. Therefore, we do not present smoothing factor analysis for
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this case and only optimize two-grid LFA predictions numerically.

6.4 Relaxation for Q1 −Q1 discretizations

6.4.1 DWJ relaxation

Distributive GS (DGS) relaxation [8, 27] is well known to be highly efficient for

the MAC finite-difference discretization [36], and other discretizations [11, 12]. Its

sequential nature is often seen as a significant drawback. However, Distributive

weighted Jacobi (DWJ) relaxation was recently shown to achieve good performance

for the MAC discretization [18]. Thus, we consider DWJ relaxation for the finite-

element discretizations considered here. The discretized distribution operator can be

represented by the preconditioner

P =



Ih 0 (∂x)h

0 Ih (∂y)h

0 0 ∆h


 .

Then, we apply blockwise weighted-Jacobi relaxation to the distributed operator

LP ≈ L∗ =




−∆h 0 0

0 −∆h 0

−(∂x)h −(∂y)h −(∂x)
2
h − (∂y)

2
h + L3,3∆h


 , (6.10)

where we note that the operators (∂x)
2
h and (∂y)

2
h are formed by taking products of

the gradient operators and, thus, do not satisfy the identity (∂x)
2
h + (∂y)

2
h = ∆h.

The discrete matrix form of P is

P =

(
I BT

0 −Ap

)
,

where Ap is the Laplacian operator discretized at the pressure points. For distributive

weighted-Jacobi relaxation (with weights α1, α2), we need to solve a system of the form

MDδx̂ =

(
α1diag(A) 0

B α2h
2I

)(
δÛ
δp̂

)
=

(
rU

rp

)
, (6.11)
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then distribute the updates as δx = Pδx̂. We use h2 in the (2, 2) block of (6.11),

because the diagonal entries of the (2, 2) block will be of the form of a constant times

h2 (up to boundary conditions), for both stabilization terms. The error propagation

operator for the scheme is, then, I − ωPM−1
D L.

The symbol of the blockwise weighted-Jacobi operator, MD, is

M̃D(θ1, θ2) =




8
3
α1 0 0

0 8
3
α1 0

−b1 −b2 h2α2


 .

By standard calculation, the eigenvalues of the error-propagation symbol, S̃D(α1, α2, ω,θ) =

I − ωP̃M̃−1
D L̃, are

1− ω

α1

y1, 1− ω

α1

y1, 1−
ω

α2

y2, (6.12)

where y1 =
3a
8
and y2 =

−b21−b22+ac
h2

.

Noting that y1 =
3a
8
is very simple, we first consider a lower bound on the optimal

LFA smoothing factor corresponding to y1.

Lemma 6.4.1.

µ∗ := min
(α1,ω)

max
θ∈Thigh

{∣∣1− ω

α1

y1
∣∣
}

=
1

3
,

and this value is achieved if and only if ω
α1

= 8
9
.

Proof. It is easy to check that a = 2(4−cos θ1−cos θ2−2 cos θ1 cos θ2)
3

∈ [2, 4] for θ ∈ T high. The

minimum of y1 is y1,min = 3
4
with (cos θ1, cos θ2) = (0, 1) or (1, 0) and the maximum is

y1,max =
3
2
with (cos θ1, cos θ2) = (1,−1) or (−1, 1). Thus, µ∗ = y1,max+y1,min

y1,max−y1,min
= 1

3
under

the condition ω
α1

= 2
y1,min+y1,max

= 8
9
.

Remark 6.4.1. The optimal smoothing factor for damped Jacobi relaxation for the

Q1 finite-element discretization of the Laplacian is 1
3
with ω

α
= 8

9
. Thus, this offers

an intuitive lower bound on the possible performance of block relaxation schemes that

include this as a piece of the overall relaxation.

From (6.12), we see that the only difference between the eigenvalues of DWJ

relaxation for the Poisson-stabilized and projection stabilized methods is in the third

eigenvalue, which depends on y2 and, consequently, on the stabilization term.
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Poisson-stabilized discretization with DWJ relaxation

For the Poisson-stabilized case, y2 =
−b21−b22+ac

h2
with c = βαh2 and β = 1

24
. By

standard calculation, y2,min = 8
27
, with

(
cos θ1, cos θ2

)
= (−1,−1), and y2,max = 64

51

with
(
cos θ1, cos θ2

)
= ( 8

17
, 0) or (0, 8

17
) .

Theorem 6.4.1. The optimal smoothing factor for the Poisson-stabilized discretization

with DWJ relaxation is 55
89
, that is,

µopt = min
(α1,ω,α2)

max
θ∈Thigh

{∣∣λ(S̃(α1, α2, ω,θ))
∣∣
}

=
55

89
≈ 0.618,

and is achieved if and only if

ω

α2

=
459

356
,
136

267
≤ ω

α1

≤ 96

89
. (6.13)

Proof. min
(α2,ω)

max
θ∈Thigh

{∣∣1 − ω

α2

y2
∣∣
}

=
y2,max − y2,min

y2,max + y2,min

=
55

89
with the condition that

ω
α2

= 2
y2,max+y2,min

= 459
356

. Because 55
89
> 1

3
, we need to require |1− ω

α1
y1| ≤ 55

89
for all y1

to achieve this factor. It follows that 136
267

≤ ω
α1

≤ 96
89
.

Projection stabilized discretization with DWJ relaxation

For the projection stabilized discretization, y2 depends on c2 given in (6.9), and

standard calculation gives y2,min = 8
27

with
(
cos θ1, cos θ2

)
= (−1,−1) and y2,max =

3
2

with (cos θ1, cos θ2) = (−1
2
, 1) or (1,−1

2
).

Theorem 6.4.2. The optimal smoothing factor for the projection stabilized discretiza-

tion with DWJ relaxation is 65
97
, that is,

µopt = min
(α1,ω,α2)

max
θ∈Thigh

{∣∣λ(S̃(α1, α2, ω,θ))
∣∣
}

=
65

97
≈ 0.670,

and is achieved if and only if

ω

α2

=
108

97
,
128

291
≤ ω

α1

≤ 108

97
. (6.14)

Proof. min
(α2,ω)

max
θ∈Thigh

{∣∣1 − ω

α2

y2
∣∣
}

=
y2,max − y2,min

y2,max + y2,min

=
65

97
with the condition that
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ω
α2

= 2
y2,max+y2,min

= 108
97
. Since 65

97
> 1

3
, we need to require |1− ω

α1
y1| ≤ 65

97
for all y1 to

achieve this factor, which leads to 128
291

≤ ω
α1

≤ 108
97
.

Comparing the Poisson-stabilized and projection stabilized discretizations using

DWJ, we see that the optimal LFA smoothing factor for the Poisson-stabilized dis-

cretization slightly outperforms that of the projection stabilized discretization. In

both cases, a stronger relaxation on the (3, 3) block of (6.10) would be needed in order

to improve performance to match the lower bound on the convergence factor of 1
3
.

6.4.2 Braess-Sarazin relaxation

Although DWJ relaxation is efficient, we see clearly in the above that it “underpeforms”

in relaxation to weighted Jacobi relaxation for the scalar Poisson problem. Furthermore,

proper construction of the preconditioner, P , is not always possible or straightforward,

especially for other types of saddle-point problems. Considering these obstacles, we

also analyse other block-structured relaxation schemes. Braess-Sarazin-type algorithms

were originally developed as a relaxation scheme for the Stokes equations [6], requiring

the solution of a greatly simplified but global saddle-point system. The (exact) BSR

approach was first introduced in [6], where it was shown that a multigrid convergence

rate of O(k−1) can be achieved, where k denotes the number of smoothing steps on

each level. As a relaxation scheme for the system in (6.2), one solves a system of the

form

MEδx =

(
αD BT

B −C

)(
δU
δp

)
=

(
rU

rp

)
, (6.15)

where D is an approximation to A, the inverse of which is easy to apply, for example

I, or diag(A). Solutions of (6.15) are computed in two stages as

Sδp =
1

α
BD−1rU − rp,

δU =
1

α
D−1(rU − BT δp),

where S = 1
α
BD−1BT + C, and α > 0 is a chosen weight for D to obtain a better

approximation to A. We consider an additional weight, ω, for the global update, δx, to

improve the effectiveness of the correction to both the velocity and pressure unknowns.

There is a significant difficulty in practical use of exact BSR because it requires
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an exact inversion of the approximate Schur complement, S, which is typically very

expensive. A broader class of iterative methods for the Stokes problem is discussed in

[43], which demonstrated that the same O(k−1) performance can be achieved as with

exact BSR when the pressure correction equation is not solved exactly. In practice,

an approximate solve is sufficient for the Schur complement system, such as with a

few sweeps of weighted Jacobi relaxation or a few multigrid cycles. In what follows,

we take D = diag(A) and analyze exact BSR; to see what convergence factor can be

achieved. In numerical experiments, we then consider whether it is possible to achieve

the same convergence factor using an inexact solver. The symbol of ME is given by

M̃E(θ1, θ2) =




8
3
α 0 b1

0 8
3
α b2

−b1 −b2 −c


 .

The symbol of the error-propagation matrix for weighted exact BSR is S̃E(α, ω,θ) =
I − ωM̃−1

E L̃. A standard calculation shows that the determinant of L̃ − λM̃E is

πE(λ;α) = (1− λ)(a− 8

3
αλ)

[
(1− λ)(b21 + b22) + (

8

3
αλ− a)c

]
. (6.16)

We first establish a lower bound on the LFA smoothing factor for the stabilized method

with BSR.

Theorem 6.4.3. The optimal LFA smoothing factor for the Poisson-stabilized and

projection stabilized discretizations with exact BSR is not less than 1
3
.

Proof. From (6.16), two eigenvalues of M̃−1
E L̃ are given by

λ1 = 1, λ2 =
3a

8α
,

which are independent of the stabilization term, c. From Lemma 6.4.1, we know that

for λ2, the optimal smoothing factor is 1
3
, under the condition that ω

α
= 8

9
. Note that

if |1− ωλ1| ≤ 1
3
, then 2

3
≤ ω ≤ 4

3
. Because there is another eigenvalue, λ3, the optimal

LFA smoothing factor is not less than 1
3
.

Similarly to DWJ, we see that the Jacobi relaxation for the Laplacian discretization

places a limit on the overall performance of BSR. From (6.16), the third eigenvalue of
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M̃−1
E L̃ is λ3 =

ac+b
8
3
αc+b

, where b = −(b21+ b
2
2) ≥ 0 (because both b1 and b2 are imaginary).

Thus, we only need to check whether we can choose α and ω so that |1 − ωλ3| ≤ 1
3

over all high frequencies, while also ensuring |1− ωλ1| ≤ 1
3
and |1− ωλ2| ≤ 1

3
.

Theorem 6.4.4. The optimal smoothing factor for both the Poisson-stabilized and

projection stabilized discretizations with exact BSR is

µopt = min
(α,ω)

max
θ∈Thigh

∣∣λ(S̃(α, ω,θ))
∣∣ = 1

3
,

if and only if
ω

α
=

8

9
,
3

4
≤ α ≤ 3

2
.

Proof. Note that a ∈ [2, 4], and choose α such that 2 = amin ≤ 8
3
α ≤ amax = 4. If c is

positive, the following always holds

3

4α
=
amin

8
3
α

≤ aminc+ b
8
3
αc+ b

≤ ac+ b
8
3
αc+ b

≤ amaxc+ b
8
3
αc+ b

≤ amax

8
3
α

=
3

2α
.

Furthermore, if ω
α
= 8

9
, we have

2

3
=

3

4α
· 8
9
α ≤ ωλ3 ≤

3

2α
· 8
9
α =

4

3
. (6.17)

For both discretizations, we can check that c > 0 over the high frequencies. From

(6.17), it is easy to see that |1− ωλ3| ≤ 1
3
, with α = 9

8
ω ∈ [3

4
, 3
2
].

6.4.3 Numerical experiments for stabilized discretizations

We now present LFA predictions, validating DWJ, (inexact) BSR, and the related

Uzawa iteration against measured multigrid performance for these schemes. We

consider the homogeneous problem in (6.1), with periodic boundary conditions, and a

random initial guess, x
(0)
h .

Convergence is measured using the averaged convergence factor, ρ̂
(k)
h = k

√
‖d(k)

h
‖2

‖d(0)
h

‖2
,

with k = 100, and d
(k)
h = b−Kx(k)h . The LFA predictions are made with h = 1/128, for

both the smoothing factor, µ, and two-grid convergence factor, ρh. For testing, we use

standard W (ν1, ν2) cycles with bilinear interpolation for Q1 variables and biquadratic
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interpolation for Q2 variables, and their adjoints for restriction. We consider both

rediscretization and Galerkin coarsening, noting that they coincide for all terms except

the stabilization terms that include a scaling of h2. The coarsest grid is a mesh with 4

elements.

PoSD with DWJ

From the range of parameters allowed in (6.13), we select α1 = 1.451, α2 = 1.000,

and ω = 1.290 (for convenience, satisfying the equality in (6.13)) to compute the

LFA predictions. Figure 6.1 shows the spectrum of the two-grid error-propagation

operators for DWJ relaxation with rediscretization and Galerkin coarsening. Note

that the two-grid convergence factor is the same as the optimal smoothing factor for

rediscretization, but not for Galerkin coarsening.

Figure 6.1: The spectrum of the two-grid error-propagation operator using DWJ
for PoSD. Results with rediscretization are shown at left, while those with Galerkin
coarsening are at right. In both figures, the inner circle has radius equal to the LFA
smoothing factor.

In order to see the sensitivity of performance to parameter choice, we consider the

two-grid LFA convergence factor with rediscretization coarsening. From (6.13), we

know that there are many optimal parameters. To fix a single parameter for DWJ, we

consider the case of ω = 459
356

and, at the left of Figure 6.2, we present the LFA-predicted

two-grid convergence factors for DWJ with variation in α1 and α2. Here, we see strong

sensitivity to “too small” values of both parameters, for α1 < 1 and α2 < 0.9, including

a notable portion of the optimal range of values predicted by the LFA smoothing
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factor. At the right of Figure 6.2, we fix α2 =
356
459
ω and vary ω and α1. The two lines

are the lower and upper bounds from (6.13), between which LFA predicts the optimal

convergence factor should be achieved. Note that not all of the allowed parameters

obtain the optimal convergence factor. Here, we see great sensitivity for large values

of ω, but a large range with generally similar performance as in the optimal parameter

case.

Figure 6.2: The two-grid LFA convergence factor for the PoSD using DWJ and
rediscretization. At left, we fix ω = 459

356
and vary α1 and α2. At right, we fix α2 =

356
459
ω

and vary ω and α1.

In Table 6.1, we present the multigrid performance of DWJ with W -cycles for

rediscretization coarsening. These results show measured multigrid convergence factors

that coincide with the LFA-predicted two-grid convergence factors. Similar results

are seen for V -cycles with rediscretization. For Galerkin coarsening, nearly identical

W -cycle results are seen when ν1 + ν2 > 2, but divergence is seen for W -cycles with

ν1 + ν2 = 1 or 2, and for all V -cycles tested.

Table 6.1: W -cycle convergence factors for DWJ with rediscretization for PoSD.

❍
❍
❍
❍
❍

❍
❍❍

ρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

α1 = 1.451, α2 = 1.000, ω = 1.290, µ = 0.618

ρh=1/128 0.618 0.618 0.382 0.236 0.236 0.146

ρ̂
(100)
h=1/64 0.564 0.568 0.349 0.215 0.214 0.133

ρ̂
(100)
h=1/128 0.561 0.568 0.348 0.215 0.214 0.132
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PrSD with DWJ

From the range of parameters allowed in (6.14), we choose α1 = 1, α2 = 1, ω = 108
97
.

Figure 6.3 shows that the smoothing factor provides a good prediction for the two-grid

convergence factor with rediscretization, but not with Galerkin coarsening.

Figure 6.3: The spectrum of the two-grid error-propagation operator using DWJ
for PrSD. Results with rediscretization are shown at left, while those with Galerkin
coarsening are at right. In both figures, the inner circle has radius equal to the LFA
smoothing factor.

Similarly to the discussion above, we consider the sensitivity to parameter choice

for DWJ applied to PrSD. To fix a single parameter for DWJ, we consider the case of

ω = 108
97
. At the left of Figure 6.4, we present the LFA-predicted convergence factors

for DWJ with variation in α1 and α2, again seeing a strong sensitivity to “too small”

values of the parameters. At the right of Figure 6.4, we fix α2 = 97
108
ω. The two

lines are the lower and upper bounds from (6.14), between which LFA predicts the

optimal convergence factor should be achieved. Note that not all of the parameters

in this range obtain the optimal convergence factor. We see that, for small α1, the

convergence factor is very sensitive to large values of ω.
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Figure 6.4: The two-grid LFA convergence factor for the PrSD using DWJ and
rediscretization. At left, we fix ω = 108

97
and vary α1 and α2. At right, we fix α2 =

97
108
ω

and vary ω and α1.

In Table 6.2, we present the multigrid performance of DWJ relaxation with W -

cycles for rediscretization coarsening. We see that the measured multigrid convergence

factors match well with the LFA-predicted two-grid convergence factors. For Galerkin

coarsening, as in the case of PoSD, we see divergence when ν1+ν2 ≤ 2, but performance

matching that of rediscretization for ν1 + ν2 > 2. Here, V -cycle results are similar to

the W -cycle results for both rediscretization and Galerkin coarsening approaches.

Table 6.2: W -cycle convergence factors for DWJ with rediscretization for PrSD.

❍
❍
❍
❍
❍

❍
❍❍

ρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

α1 = 1, α2 = 1, ω = 108/97, µ = 0.670

ρh=1/128 0.670 0.670 0.449 0.300 0.300 0.201

ρ̂
(100)
h=1/64 0.652 0.652 0.436 0.291 0.292 0.196

ρ̂
(100)
h=1/128 0.651 0.652 0.435 0.291 0.291 0.195

PoSD with BSR

Next, we consider BSR for PoSD, first displaying the two-grid LFA convergence factor

as a function of α for rediscretization coarsening with ω = 8
9
α in Figure 6.5. Comparing

the convergence factor with µ2, for ν1 = ν2 = 1, we see a good match over the interior

of the interval 3
4
≤ α ≤ 3

2
predicted by Theorem 6.4.4. For larger values of ν1 + ν2,
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this agreement deteriorates as is typical when the behavior of coarse-grid correction

becomes dominant.

At the right of Figure 6.5, we see good agreement between ρ and µ when ν1+ν2 = 1

with fixed α = 1. In both cases, similar behaviour is seen with Galerkin coarsening.

Figure 6.5: Two-grid and smoothing factors for BSR with rediscretization for PoSD.
At left, comparing ρ with µ2 for ν1 = ν2 = 1 with ω = 8

9
α. At right, comparing ρ with

µ for ν1 + ν2 = 1 with α = 1.

Motivated by the above, we use α = 1 and ω = 8
9
for multigrid experiments with

rediscretization, solving the Schur complement equation exactly. Table 6.3 shows

that the measured multigrid convergence factors match well with the LFA-predicted

two-grid convergence factors for W -cycles with rediscretization coarsening, and similar

results are seen for Galerkin coarsening.

Table 6.3: W -cycle convergence factors for BSR with rediscretization for PoSD.

❍
❍
❍
❍
❍

❍
❍❍

ρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

ρh=1/128 0.333 0.333 0.111 0.079 0.079 0.062

ρ̂
(100)
h=1/64 0.324 0.323 0.112 0.075 0.075 0.058

ρ̂
(100)
h=1/128 0.323 0.323 0.112 0.075 0.075 0.058

For practical use, we consider solving the Schur complement system inexactly,

using a few sweeps of Jacobi. For a two-grid method, similar performance to Table

6.3 can be obtained with only 2 sweeps of relaxation per Schur complement solve, but

degradation is seen for W -cycles, particularly as ν1 + ν2 increases.
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To maintain the performance observed for exact BSR, we could simply use more

Jacobi iterations on the Schur complement system; however, experiments showed that

this did not lead to a scalable algorithm. Instead, we consider solving the Schur

complement system by applying a multigrid W (1, 1)-cycle using weighted relaxation

with weight ωI , shown in Table 6.4. Following [43], we refer to this as inexact

Braess-Sarazin relaxation (IBSR). From Table 6.4, we observe that using only 1 or

2 W (1, 1)-cycles on the approximate Schur complement achieves convergence factors

matching those in Table 6.3, and that the W (1, 1) cycle is the most cost effective.

Table 6.4: W -cycle convergence factor for IBSR with inner W (1, 1)-cycle for the PoSD.
In brackets, minimum value of the number of inner W (1, 1)-cycles that achieves the
same convergence factors as those of LFA predictions for exact BSR.

❍
❍
❍
❍
❍
❍
❍❍

ρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

(α, ω, ωI) = (1, 8/9, 1)

ρh=1/128(LFA) 0.333 0.333 0.111 0.079 0.079 0.062

ρ̂
(100)
h=1/64 0.368(2) 0.346(2) 0.131(2) 0.075(2) 0.075(2) 0.059(1)

ρ̂
(100)
h=1/128 0.343(2) 0.351(2) 0.111(2) 0.075(2) 0.075(2) 0.063(1)

PrSD with BSR

We now consider BSR for the PrSD. At the left of Figure 6.6, we see a good agreement

between the two-grid convergence factor and µ2 for ν1 = ν2 = 1 for some parameters

in the range defined in Theorem 6.4.4 when using rediscretization. A larger interval of

agreement is seen for the corresponding results for Galerkin coarsening. In both cases,

agreement between the two-grid convergence factor and µν1+ν2 degrades as ν1 + ν2

increases, as expected.

Note that Theorem 6.4.4 demonstrates that the smoothing factor for BSR is a

function of ω
α
(but the same is not necessarily true for the convergence factor). In Figure

6.6, we plot the LFA smoothing and convergence factors for BSR with rediscretization

as a function of ω, with α = 0.8 and see that these factors generally agree, although

the smoothing factor slightly underestimates the convergence factor. As two-grid

convergence is, however, sensitive to the choice of α, the smoothing factor generally

underestimates the convergence factor for other values of α.
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Figure 6.6: Two-grid and smoothing factors for BSR with rediscretization for PrSD.
At left, comparing ρ with µ2 for ν1 = ν2 = 1 with ω = 8

9
α. At right, comparing ρ with

µ for ν1 + ν2 = 1 with α = 4
5
.

Fixing ω = 8
9
α with α = 1.2 (as suggested by Figure 6.6 for ν1 = ν2 = 1), Table 6.5

shows that the measured multigrid convergence factors again match well with the LFA-

predicted two-grid convergence factors for W -cycles with rediscretization coarsening.

Note, however, the degradation for ν1 + ν2 = 1, where the smoothing factor analysis

predicts a convergence factor of 1
3
that is not realized. However, the convergence

factor of 1
3
can be achieved by choosing α = 4

5
and ω = 8

9
α in the BSR scheme with

either W (1, 0) or W (0, 1) cycles, but these choices lead to a slight degradation with

ν1 + ν2 > 1. Similar results are seen for Galerkin coarsening with α = 1 and ω = 8
9
α

with the notable exception that the smoothing factor prediction was matched by both

the two-grid LFA convergence factor and true W -cycle convergence in this case for all

experiments.

Table 6.5: W -cycle convergence factors for BSR with rediscretization for PrSD.

❍
❍
❍
❍
❍

❍
❍❍

ρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

ρh=1/128 0.673 0.673 0.111 0.079 0.079 0.062

ρ̂
(100)
h=1/64 0.585 0.585 0.112 0.075 0.075 0.058

ρ̂
(100)
h=1/128 0.584 0.584 0.112 0.075 0.075 0.058

For practical use, we again consider solving the Schur complement system inexactly,

using the Jacobi iteration. As was the case for PoSD, we can recover performance
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consistent with the exact BSR results in Table 6.5 only for the case of two-grid cycles

with ν1 + ν2 = 1 when using 3 Jacobi iterations on the Schur complement.

Again we consider solving the Schur complement system by applying a multigrid

W (1, 1)-cycle. Table 6.6 shows that this IBSR is seen to be effective, requiring 1 to

4 W (1, 1) cycles on the Schur complement system to math the convergence seen in

Table 6.5. Again, W (1, 1) cycles are seem to be most cost effective.

Table 6.6: W -cycle convergence factor for IBSR with inner W (1, 1)-cycle for the PrSD.
In brackets, minimum value of the number of inner W (1, 1)-cycles that achieves the
same convergence factors as those of LFA predictions for exact BSR.

❍
❍
❍
❍
❍
❍

❍❍
ρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

(α, ω, ωI) = (6/5, 16/15, 1.1)

ρh=1/128 (LFA) 0.673 0.673 0.111 0.079 0.079 0.062

ρ̂
(100)
h=1/64 0.680(4) 0.677(1) 0.112(3) 0.075(2) 0.075(2) 0.059(1)

ρ̂
(100)
h=1/128 0.659(1) 0.662(1) 0.112(3) 0.075(2) 0.075(2) 0.067(1)

6.4.4 Stabilized discretizations with Uzawa relaxation

Multigrid methods using Uzawa relaxation schemes [16, 17, 26] are popular approaches

due to their low cost per iteration. We consider Uzawa relaxation as a simplification

of BSR, determining the update as the (weighted) solution of

Mδx =

(
αD 0

B −Ŝ

)(
δU
δp

)
=

(
rU

rp

)
,

where αD is an approximation to A and −Ŝ is an approximation of the Schur comple-

ment, −BA−1BT − C.

Here, we consider an analogue to exact BSR with D = diag(A). The choice of Ŝ

is discussed later. In this setting, we observe that minimizing the LFA smoothing

factor does not minimize the LFA convergence factor. Thus, we consider minimizing

the two-grid convergence factor numerically for ν1 + ν2 = 1 and ν1 = ν2 = 1 with

rediscretization coarsening, and compare with measured multigrid performance.

We consider three approximations to the Schur complement, starting from the
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true approximate Schur complement, C +B(αdiag(A))−1BT . Motivated by the stable

finite-element case, we also consider replacing B(αdiag(A))−1BT in this matrix by a

weighted mass matrix, yielding Ŝ = C + δQ. Finally, motivated by the finite-difference

case and efficiency of implementation, we consider taking Ŝ = σh2I, for a scalar weight,

σ, to be optimized by the LFA. Note that, due to the constant-coefficient stencils

assumed by LFA, this corresponds to using a single sweep of Jacobi to approximate

solution of either of the two above approximations.

For the case of C +B(αdiag(A))−1BT , the optimized LFA two-grid convergence

factors for ν1 + ν2 = 1 with rediscretization coarsening are 0.428 for PoSD and 0.436

for PrSD. These are notably worse than the BSR smoothing factor of 1
3
, which is

achieved for W (1, 0) or W (0, 1) cycles. Here, W (1, 0) cycles reflect this convergence,

achieving measured convergence factor rates of 0.417 for PoSD and 0.526 for PrSD.

Increasing the number of relaxation sweeps per iteration yields some improvement in

the predicted LFA convergence factors when optimizing parameters again, but not

enough to outperform repeated W (1, 0) cycles.

For the mass-matrix-based approximation, Ŝ = C + δQ, the optimized two-grid

convergence factors for ν1 + ν2 = 1 with rediscretization coarsening are 0.5 for PoSD

and 0.417 for PrSD. While poorer convergence might be expected in both cases,

the addition of an extra parameter, δ, allows the (slight) improvement for PrSD. In

both cases, we observe consistent performance with numerical experiments, achieving

convergence factors of 0.493 for PoSD and 0.392 for PrSD using W (0, 1) or W (1, 0)

cycles.

Finally, for the diagonal approximation Ŝ = σh2I, we achieve notably better

performance optimizing with ν1 = ν2 = 1 than for ν1 + ν2 = 1. For PoSD, the

optimized two-grid LFA convergence factor is 0.382, while it is 0.497 for PrSD. In

practice, we achieve slightly worse convergence factors using W (1, 1) cycles with

rediscretization coarsening, of 0.531 for PoSD and 0.543 for PrSD. These are both

significantly worse than the convergence factors of 1
9
observed using inexact BSR;

however, it must be noted that W -cycles on the Schur complement system were

needed in that case. A better approximation to inverting the true approximate Schur

complement would be to apply multigrid to it, just as was done for IBSR above. Here,

we observe that significant work may be needed to achieve convergence similar to that

of Uzawa where the Schur complement is exactly inverted, requiring 10 W (1, 1)-cycles
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on the approximate Schur complement to achieve a convergence factor of 0.416 for

PoSD and 0.522 for PrSD, suggesting that the Jacobi version of Uzawa is ultimately

more efficient.

6.4.5 Comparing cost and performance

As discussed in [18], the costs per iteration of DWJ and inexact BSR are roughly equal,

so long as the cost of iteration on the BSR approximate Schur complement is close

to that of a single Jacobi step. In contrast, 2 sweeps of Uzawa, with Ŝ = σh2I, have

cost comparable to a single sweep of inexact BSR. Thus, for both PoSD and PrSD,

inexact BSR is seen to be most cost effective, with W (1, 1) convergence factors of 1
9
,

compared to about 0.25 for 2 W (1, 1) cycles of Uzawa and 0.35 or 0.44 for a single

W (1, 1) cycle of DWJ. While the added cost of W -cycles on the Schur complement

are significant, they clearly pay off in this case.

6.5 Relaxation for Q2 −Q1 discretization

As explored in [19], classical LFA smoothing factor analysis is unreliable for Q2

discretizations, making it unsuitable for analysis of the standard stable Q2 − Q1

discretization of the Stokes equations. Thus, we consider only numerical (“brute

force”) optimization of two-grid LFA convergence factors in this setting.

For DWJ, we find optimal convergence factors of 0.619 for ν1 + ν2 = 1 and 0.558

for ν1 = ν2 = 1. While the former is quite comparable to convergence predicted and

achieved for both stabilized discretizations with ν1+ ν2 = 1, we see a significant lack of

improvement with increased relaxation, in contrast to the equal-order case. The same

is observed for multigrid W -cycle performance, with W (1, 0) convergence measured at

0.620 and W (1, 1) convergence measured at 0.510.

For exact BSR, we find optimal convergence factors of 0.551 for ν1 + ν2 = 1 and

0.250 for ν1 = ν2 = 1. While these are slightly larger than the comparable factors of 1
3

and 1
9
, respectively, for the stabilized discretizations, they still reflect good performance

of the underlying method.

At left of Figure 6.7, we show the spectral radius of the error-propagation symbol for



206

exact BSR as a function of Fourier frequency, θ, noting that predicted reduction over

the high frequencies is not as good as would be needed to equal two-grid convergence

in the equal-order case. In order to see how the convergence factor changes with the

parameters α and ω, we display the convergence factor as a function of α and ω at the

right of Figure 6.7. The optimal choice, of α = 1.1 and ω = 1.05, occurs in a narrow

band of ω values, but larger range of α values lead to reasonable results.

Figure 6.7: At left, the spectral radius of the error-propagation symbol for exact
BSR applied to the Q2 −Q1 discretization, as a function of the Fourier mode, θ. At
right, the LFA-predicted two-grid convergence factor for BSR applied to the Q2 −Q1

discretization as a function of α and ω, with (ν1, ν2) = (1, 1).

As always, an inexact solve of the Schur complement system is needed to yield a

practical variant of BSR. While 2 sweeps of Jacobi appears sufficient to achieve scalable

W -cycle convergence when ν1 + ν2 > 2, we find 3 sweeps are needed to achieve W (1, 1)

convergence factors of 0.240, in contrast to results in [43] and for the equal-order

discretizations considered here, where a much stronger iteration was needed. Similar

results were seen for V (1, 1) cycles when 3 sweeps of Jacobi were used for the Schur

complement system.

Finally, we consider the same three variants of Uzawa relaxation as examined above

for the equal-order case. For Ŝ = B(αdiag(A))−1BT , the best convergence factor found

for ν1 + ν2 = 1 was 0.729, while better convergence was predicted for Ŝ = δQ, with

factor 0.554. This is to be expected, perhaps, since the Q1 mass matrix is well-known

to be a better approximation of the true Schur complement than the classical BSR

approximate Schur complement. However, approximating either by a single sweep of

Jacobi, yielding Ŝ = σh2I, gives a convergence factor 0.717. While 2-grid cycles with
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ν1 + ν2 = 1 match the predicted convergence factor, W -cycles did not converge for

these parameters.

Comparing, then, the efficiency of inexact BSR and DWJ for the Q2 − Q1 dis-

cretization, we see that inexact BSR, where W (1, 1) cycles achieve a convergence factor

of 0.24 provides roughly the same reduction as 3 cycles with 1 DWJ sweep per cycle,

where LFA predicts ρ = 0.619. Noting that inexact BSR is relatively more expensive

in this case, with cost dominated by the two diagonal scalings per sweep on the Q2

velocity degrees of freedom, we suggest a proper implementation study is needed to

determine which, if either, provides best performance in practice.

6.6 Conclusions

In this paper, LFA is presented for block-structured relaxation schemes for stabilized

and stable finite-element discretizations of the Stokes equations. The convergence and

smoothing factors exhibited here provide optimized parameters for DWJ and BSR for

the stabilized discretizations. The convergence of (inexact) BSR clearly outperforms

multigrid with both DWJ and Uzawa relaxation. While the LFA smoothing factor loses

its predictivity of the two-grid convergence factor for the stable Q2 −Q1 discretization

and for Uzawa relaxation for both stabilized and stable discretizations, the two-grid

LFA convergence factor can still provide useful predictions. We consider as well the

inexact case for BSR, with Jacobi iterations or multigrid cycles used to approximate

solution of the Schur complement system, as is suitable for use on modern parallel and

graphics processing unit (GPU) architectures. From numerical experiments, we see

that inexact BSR can be as good as the exact iteration for solving the Stokes equations,

with the same choices of parameters and, hence, generally recommend this as the most

efficient and robust of the approaches considered. The analysis and LFA predictions

demonstrated here offer good insight into the use of block-structured relaxation for

other types of saddle-point problems, which will be considered in future work.
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Chapter 7

Local Fourier analysis of

BDDC-like algorithms

Abstract

1 Local Fourier analysis is a commonly used tool for the analysis of multigrid and

other multilevel algorithms, providing both insight into observed convergence rates and

predictive analysis of the performance of many algorithms. In this paper, we adapt

local Fourier analysis to examine variants of two- and three-level BDDC algorithms,

to better understand the eigenvalue distributions and condition number bounds on

these preconditioned operators. This adaptation is based on a new choice of basis for

the space of Fourier harmonics that greatly simplifies the application of local Fourier

analysis in this setting. The local Fourier analysis is validated by considering the two

dimensional Laplacian and predicting the condition numbers of the preconditioned

operators with different sizes of subdomains. Several variants are analyzed, showing the

two- and three-level performance of the “lumped” variant can be greatly improved when

used in multiplicative combination with a weighted diagonal scaling preconditioner,

with weight optimized through the use of LFA.

Keywords: BDDC, domain decomposition, local Fourier analysis, multiplicative

methods
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7.1 Introduction

Domain decomposition methods are well-studied approaches for the numerical solution

of partial differential equations both experimentally and theoretically [1, 10, 12, 27],

due to their efficiency and robustness for many large-scale problems, and the need for

parallel algorithms. Among the main families of domain decomposition algorithms

are Neumann-Neumann [27], FETI [13], Schwarz [12, 27], and Optimized Schwarz

[10, 15]. Balancing domain decomposition by constraints (BDDC) is one family of

non-overlapping domain decomposition method. While BDDC was first introduced by

Dohrmann in [6], several variants have recently been proposed. BDDC-like methods

have been successfully applied to many PDEs, including elliptic problems [18, 22], the

incompressible Stokes equations [17, 19], H(curl) problems [9], flow in porous media

[29], and the incompressible elasticity problem [7, 8]. Theoretical analysis of BDDC

has primarily been based on finite-element approximation theory [4, 7, 11, 23, 24].

It has been shown that the condition number of the preconditioned BDDC operator

can be bounded by a function of H
h
(where h is the meshsize, and H is the subdomain

size), independent of the number of subdomains [29]. A nonoverlapping domain

decomposition method for discontinuous Galerkin based on the BDDC algorithm is

presented in [3], and the condition number of the preconditioned system is shown to be

bounded by similar estimates as those for conforming finite element methods. BDDC

methods in three- or multilevel forms have also been developed [25, 30, 31].

Since BDDC algorithms are widely used to solve many problems with high efficiency

and parallelism, better understanding of how this methodology works is useful in the

design of new algorithms. Local Fourier analysis (LFA), first introduced by Brandt [2]

and well-studied for multigrid methods [5, 26, 28, 32, 33], is an analysis framework

that provides predictive performance estimates for many multilevel iterations and

preconditioners. However, to our knowledge, there has been no research applying local

Fourier analysis to BDDC-like algorithms. The same is true of the closely related

finite element tearing and interconnect (FETI) methodology [13, 14, 16]. Because

LFA can reflect both the distribution of eigenvalues and associated eigenvectors of

a preconditioned operator, here, we adopt LFA to analyze variants of the common
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“lumped” and “Dirichlet” BDDC algorithms, based on [20], to guide construction of

these methods. To do this, we introduce a novel basis for the Fourier analysis that is

well-suited for application to domain decomposition preconditioners.

Applying the two-level BDDC algorithm requires the solution of a Schur complement

equation (coarse problem), which usually poses some difficulty with increasing problem

size. Two- and three-level variants are, thus, considered in this paper. However, as is

well-known in the literature, the performance of BDDC degrades sharply from two-level

to three-level methods, particularly for large values of H/h. Since our analysis shows

that the largest eigenvalues of the preconditioned operator for the lumped BDDC

algorithm are associated with oscillatory modes, we propose variants of BDDC based

on multiplicative preconditioning and multigrid ideas. From the condition numbers

offered by LFA, we can easily compare the efficiency of these variants. Furthermore,

LFA can provide optimal parameters for these multiplicative methods, helping tune

and understand sensitivity to the parameter choice.

This paper is organized as follows. In Section 7.2, we introduce the finite element

discretization of the Laplace problem in two dimensions and the lumped and Dirichlet

preconditioners. Two- and three-level preconditioned operators are developed in

Section 7.3. In Section 7.4, we discuss the Fourier representation of the preconditioned

operators. Section 7.5 reports LFA-predicted condition numbers of the BDDC variants

considered here. Conclusions are presented in Section 7.6.

7.2 Discretization

We consider the two-dimensional Laplace problem in weak form: Find u ∈ H1
0 (Ω) := V

such that

a(u, v) =

∫

Ω

∇u · ∇v dΩ = 〈f, v〉, ∀v ∈ V, (7.1)

where Ω ⊂ R
2 is a bounded domain with Lipschitz boundary ∂Ω. Here, we consider

the Ritz-Galerkin approximation over Vh, the space of piecewise bilinear functions on a

uniform rectangular mesh of Ω = [0, 1]2. The corresponding linear system of equations

is given as

Ax = b. (7.2)



215

We partition the domain, Ω, into N nonoverlapping subdomains, Ωi, i = 1, 2, · · · , N ,

where each subdomain is a union of shape regular elements and the nodes on the

boundaries of neighboring subdomains match across the interface Γ =
⋃
∂Ωi\∂Ω. The

interface of subdomain Ωi is defined by Γi = ∂Ωi

⋂
Γ. Here, we consider Ω = [0, 1]2,

with both a discretization mesh (with meshsize h) and subdomain mesh (with meshsize

H = ph) given by uniform grids with square elements or subdomains.

The finite-element space Vh can be rewritten as Vh = VI,h
⊕

VΓ,h, where VI,h is the

sum of the subdomain interior variable spaces V
(i)
I,h . Functions in V

(i)
I,h are supported in

the subdomain Ωi and vanish on the subdomain interface Γi. VΓ,h is the space of traces

on Γ of functions in Vh. Then, we can write the subdomain problem with Neumann

boundary conditions on Γi as

A(i)x(i) =

(
A

(i)
II A

(i)T

ΓI

A
(i)
ΓI A

(i)
ΓΓ

)(
x
(i)
I

x
(i)
Γ

)
=

(
b
(i)
I

b
(i)
Γ

)
, (7.3)

where x(i) = (x
(i)
I , x

(i)
Γ ) ∈ V

(i)
h = (V

(i)
I,h , V

(i)
Γ,h), and T denotes the conjugate transpose.

Then, the global problem (7.2) can be assembled from the subdomain problems (7.3)

as

A =
N∑

i=1

R(i)TA(i)R(i), and b =
N∑

i=1

R(i)T b(i),

where R(i) is the restriction operator from a global vector to a subdomain vector on

Ωi.

7.2.1 A partially subassembled problem

In order to describe variants of the BDDC methods, we first introduce a partially

subassembled problem, following [20], and the corresponding space of partially sub-

assembled variables,

V̂h = VΠ,h
⊕

Vr,h, (7.4)

where VΠ,h is spanned by the subdomain vertex nodal basis functions (the coarse degrees

of freedom). The complementary space, Vr,h, is the sum of the subdomain spaces V
(i)
r,h ,

which correspond to the subdomain interior and interface degrees of freedom and are

spanned by the basis functions which vanish at the coarse-grid degrees of freedom. For

a 4 × 4 mesh, the degrees of freedom in VΠ,h are those corresponding to the circled
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nodes at the left of Figure 7.1, while the degrees of freedom in Vr,h correspond to all

interior nodes, plus duplicated (broken) degrees freedom along subdomain boundaries.

Figure 7.1: At left, the partially broken decomposition given in Equation (7.4), with
circled degrees of freedom corresponding to VΠ,h and all others corresponding to
Vr,h. This matches the periodic array of subdomains induced by the subsets S∗

I,J

introduced in Equation (7.23) for p = 4. At right, a non-overlapping decomposition
into subdomains of size p× p for p = 4, corresponding to the subsets SI,J introduced
in Equation (7.19), where LFA works on an infinite grid and characterizes operators
by their action in terms of the non-overlapping partition denoted in green.

The partially subassembled problem matrix, corresponding to the variables in the

space V̂h, is obtained by assembling the subdomain matrices (7.3) only with respect to

the coarse-level variables; that is,

Â =
N∑

i=1

(R̄(i))TA(i)R̄(i), (7.5)

where R̄(i) is a restriction from space V̂h to V
(i)
h .

7.2.2 Lumped and Dirichlet preconditioners

In order to define the preconditioners under consideration for (7.2), we introduce a

positive scaling factor, δi(x), for each node x on the interface Γi of subdomain Ωi. Let

Nx be the set of indices of the subdomains that have x on their boundaries. Define

δi(x) = 1/|Nx|, where |Nx| is the cardinality of Nx. The scaled injection operator, R1,

is defined so that each column of R1 corresponds to a degree of freedom of the global
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problem (7.2). For subdomain interior and coarse-level variables, the corresponding

column of R1 has a single entry with value 1. Columns that correspond to an interface

degree of freedom x ∈ Γi,h (the set of nodes in Γi) have |Nx| non-zero entries each of

δi(x).

Based on the partially subassembled problem, the first preconditioner introduced

for solving (7.2) is

M−1
1 = RT

1 Â
−1R1.

The preconditioned operator M−1
1 A has the same eigenvalues as the preconditioned

FETI-DP operator with a lumped preconditioner, except for some eigenvalues equal

to 0 and 1 [14, 20]. We refer to M1 as the lumped preconditioner.

A similar preconditioner for A augments this using discrete harmonic extensions in

the restriction and interpolation operators [20], giving

M−1
2 = (RT

1 −HJD)Â−1 (R1 − JTDHT )︸ ︷︷ ︸
:=R2

, (7.6)

where H is the direct sum of H(i) = −(A
(i)
II )

−1(A
(i)
ΓI)

T , which maps the jump over

a subdomain interface (given by JD) to the interior of the subdomain by solving a

local Dirichlet problem, and gives zero for other values. For any given v ∈ V̂h, the

component of JTDv on subdomain Ωi is given by

(
JTDv(x)

)(i)
=
∑

j∈Nx

(
δj(x)v

(i)(x)− δi(x)v
(j)(x)

)
, ∀x ∈ Γi,h. (7.7)

Extending the interface values using the discrete harmonic extension minimizes the

energy norm of the resulting vector [27], giving a better stability bound. Furthermore,

the preconditioned operator M−1
2 A has the same eigenvalues as the BDDC operator

[18], except for some eigenvalues equal to 1 [20]. We refer to M2 as the Dirichlet

preconditioner.

Standard bounds (see, e.g., [20]) on the condition numbers of the preconditioned

operators are that, for M−1
1 A, there exists C1,0 ≥ 0 such that κ ≤ C1,0

H
h
(1 + logH

h
)

and, for M−1
2 A, there exists C2,0 ≥ 0 such that κ ≤ C2,0(1 + logH

h
)2.
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7.3 Two- and three-level variants

In both of the above preconditioned operators, we need to solve the following partially

subassembled problem, now written in block form

Âx̂ =

(
Arr ÂTΠr
ÂΠr AΠΠ

)(
x̂r

x̂Π

)
=

(
Arr 0

ÂΠr ŜΠ

)(
I A−1

rr Â
T
Πr

0 I

)(
x̂r

x̂Π

)
=

(
d̂r

d̂Π

)
= d̂,

(7.8)

where ŜΠ = AΠΠ − ÂΠrA
−1
rr Â

T
Πr, x̂r contains the subdomain interior and interface

degrees of freedom, and x̂Π corresponds to the coarse-level degrees of freedom, which

are located at the corners of the subdomains. We write Â in (7.8) in factorization

form to easily separate the action on the coarse degrees of freedom, and to find the

corresponding symbol of Â−1. If we define

P =

(
−A−1

rr Â
T
Πr

I

)
,

then the Schur complement is the Galerkin coarse operator, ŜΠ = P T ÂP , and block-

factorization solve for Â can be seen to be equivalent to a two-level additive multigrid

method with exact F -relaxation using

SF =

(
A−1
rr 0

0 0

)
.

In the partially subassembled problem (7.8), we need to solve a coarse problem

related to ŜΠ. We can either solve this coarse problem exactly (corresponding to a

two-level method, where the Schur complement is inverted exactly) or inexactly (as a

three-level method), where the lumped and Dirichlet preconditioners defined above

are used recursively to solve this problem.

7.3.1 Exact and inexact solve for the Schur complement

Let

K1 =

(
Arr 0

ÂΠr ŜΠ

)
, K2 =

(
I A−1

rr Â
T
Πr

0 I

)
,
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and note that the product of K1 and K2 is Â. For i = 1, 2, j = 0, 1, 2, let Gi,j denote

the preconditioned operators for two- and three-level variants of BDDC, where i and j

denote using Mi and Ms,j (with Ms,0 := ŜΠ) as preconditioners for the fine and coarse

problems, respectively, where M−1
s,j stands for applying the preconditioner Mj to the

Schur complement problem. By standard calculation, we can write

Gi,j = RT
i K−1

2 PjK−1
1 RiA,

with

Pj =
(
I 0

0 M−1
s,j ŜΠ

)
.

Remark 7.3.1. When j = 0, Gi,j is a two-level method, solving the Schur complement

problem exactly, as P0 ≡ I. Note that, for the three-level variants (j = 1, 2),

PjK−1
1 =

(
I 0

0 M−1
s,j ŜΠ

)(
A−1
rr 0

−Ŝ−1
Π ÂΠrA

−1
rr Ŝ−1

Π

)
=

(
A−1
rr 0

−M−1
s,j ÂΠrA

−1
rr M−1

s,j

)
.

Thus, Gi,j can be applied without directly applying the inverse of ŜΠ.

Standard bounds (see, e.g., [31]) on the condition numbers of the three-level

preconditioned operators are that there exists Ci,j such that κ(Gi,j) ≤ Ci,jΥiΥj , where

Υ1 =
H
h
(1 + logH

h
) and Υ2 = (1 + logH

h
)2.

7.3.2 Multiplicative preconditioners

As we shall see, the bounds above are relatively sharp and the performance of both

preconditioners degrades with subdomain size and number of levels. To attempt to

counteract this, we consider multiplicative combinations of these preconditioners with

a simple diagonal scaling operator, mimicking the use of weighted Jacobi relaxation in

classical multigrid methods. We use Gf
i,j to denote the multiplicative preconditioned

operator based on Gi,j with diagonal scaling on the fine level. Here,

Gf
i,j = Gi,j + ωD−1A(I −Gi,j), i = 1, 2, j = 0, 1, 2, (7.9)

where D is the diagonal of A and ω is a chosen relaxation parameter.
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Another variant is the use of multiplicative preconditioning on the coarse level

with a similar diagonal scaling. We use Gc
i,j to denote the resulting multiplicative

preconditioner. Here,

Gc
i,j = RT

i K−1
2 Pc

jK−1
1 RiA, i, j = 1, 2, (7.10)

where

Pc
j =

(
I 0

0 Gc,j

)
,

in which

Gc,j =M−1
s,j ŜΠ + ωD−1

s ŜΠ(I −M−1
s,j ŜΠ),

where Ds is the diagonal of ŜΠ.

Instead of using a single sweep of Jacobi in Gc,j, we can consider a symmetrized

Jacobi operator Gs
c,j, where I − Gs

c,j = (I − ω1D
−1
s ŜΠ)(I −M−1

s,j ŜΠ)(I − ω2D
−1
s ŜΠ);

that is,

Gs
c,j = Gc,j + ω2(I −Gc,j)D

−1
s ŜΠ,

then Gc
i,j changes to

Gs,c
i,j = RT

i K−1
2 Ps,c

j K−1
1 RiA, i, j = 1, 2. (7.11)

When ω1 = ω2, G
s,c
i,j is a symmetric preconditioner for A, although we note that our

LFA predicts a positive real spectrum for the nonsymmetric forms, Gf
i,j and G

c
i,j, as

well.

Finally, we can also apply the multiplicative operators based on diagonal scaling

on both the fine and coarse levels. We denote this as

Gf,c
i,j = Gc

i,j + ω2D
−1A(I −Gc

i,j), i = 1, 2, j = 1, 2, (7.12)

where D is the diagonal of A and ω2 is a chosen relaxation parameter.

In the following, we focus on analyzing the spectral properties of the above precon-

ditioned operators by local Fourier analysis [28]. The main focus of this work is on

the operators K1,K2, and Pj, because the Fourier representations of other operators

are just combinations of these three and some simple additional terms.
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7.4 Local Fourier analysis

To apply LFA to the BDDC-like methods proposed here, we first review some ter-

minology of classical LFA. We consider a two-dimensional infinite uniform grid, Gh,

with

Gh =
{
xi,j := (xi, xj) = (ih, jh), (i, j) ∈ Z

2
}
, (7.13)

and Fourier functions ψ(θ,xi,j) = eιθ·xi,j/h on Gh, where ι
2 = −1 and θ = (θ1, θ2).

Let Lh be a Toeplitz operator acting on l2(Gh) as

Lh
∧
= [sκ]h (κ = (κ1, κ2) ∈ Z

2); Lhwh(x) =
∑

κ∈V
sκwh(x+ κh),

with constant coefficients sκ ∈ R (or C), where wh(x) is a function in l2(Gh). Here,

V is taken to be a finite index set. Note that since Lh is Toeplitz, it is diagonalized

by the Fourier modes ψ(θ,x).

Definition 7.4.1. We call L̃h(θ) =
∑

κ∈V
sκe

ιθκ the symbol of Lh.

Note that for all grid functions, ψ(θ,x),

Lhψ(θ,x) = L̃h(θ)ψ(θ,x).

Remark 7.4.1. In Definition 7.4.1, the operator Lh acts on a single function on Gh,

so L̃h is a scalar. For an operator mapping vectors on Gh to vectors on Gh, the symbol

will be extended to be a matrix.

7.4.1 Change of Fourier basis

Here, we discuss domain decomposition methods. While the classical basis set for LFA,

denoted Eh below, could be used, we find it is substantially more convenient to make

use of a transformed “sparse” basis, introduced here as FH . This basis allows a natural

expression of the periodic structures in domain decomposition preconditioners. We

treat each subdomain problem as one macroelement patch, and each subdomain block

in the global problem is diagonalized by a coupled set of Fourier modes introduced in

the following. Because each subdomain has the same size, p× p, we consider the high
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and low frequencies for coarsening by factor p, given by

θ ∈ T low =

[
−π
p
,
π

p

)2

, θ ∈ T high =

[
−π
p
,
(2p− 1)π

p

)2∖[
−π
p
,
π

p

)2

.

Let θ(q,r) = (θ
(q)
1 , θ

(r)
2 ), where θ

(q)
1 = θ

(0)
1 + 2πq

p
and θ

(r)
2 = θ

(0)
2 + 2πr

p
for 0 ≤ q, r < p.

For any given θ(0,0) ∈ T low, we define the p2-dimensional space

Eh(θ
(0,0)) := span{ψ(θ(q,r),xs,t) = eιθ

(q,r)·xs,t/h : q, r = 0, 1, · · · , p− 1}, (7.14)

as the classical space of Fourier harmonics for factor p coarsening.

For any xs,t ∈ Gh, we consider a grid function defined as a linear combination

of the p2 basis functions for Eh(θ
(0,0)) with frequencies {θ(q,r)}p−1

q,r=0 and coefficients

{βq,r}p−1
q,r=0 as

es,t :=

p−1∑

q,r=0

βq,rψ(θ
(q,r),xs,t).

We note that any index (s, t) has a unique representation as (pm+ k, pn+ ℓ) where

(m,n) ∈ Z
2 and k, ℓ ∈ {0, 1, · · · , p− 1}. From (7.14), we have

epm+k,pn+ℓ =

p−1∑

q,r=0

βq,re
ι(θ

(0)
1 + 2πq

p
)xs/heι(θ

(0)
2 + 2πr

p
)xt/h

=

p−1∑

q,r=0

βq,re
ιθ

(0)
1 xs/heι

2πq(pm+k)
p eιθ

(0)
2 xt/he

2πr(pn+ℓ)
p

=

p−1∑

q,r=0

βq,re
ι 2πqk

p eιθ
(0)
1 xs/he

2πrℓ
p eιθ

(0)
2 xt/h

=

( p−1∑

q,r=0

βq,re
ι 2πqk

p e
2πrℓ
p

)(
eιθ

(0,0)·xs,t/h
)
.

Thus, we can write

epm+k,pn+ℓ = β̂k,ℓe
ιθ·xs,t/H , (7.15)

with

θ = pθ(0,0), and β̂k,ℓ =

p−1∑

q,r=0

βq,re
ι 2πqk

p e
2πrℓ
p . (7.16)
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Thus, for any point (s, t) with mod(s, p) = k and mod(t, p) = ℓ, es,t can be recon-

structed from a single Fourier mode with coefficient β̂k,ℓ. Thus, on the mesh Gh defined

in (7.13), the periodicity of the basis functions in Eh(θ
(0,0)) can also be represented by

a pointwise basis on each p× p-block.

Based on (7.15), we consider a “sparse” p2-dimensional space as follows

FH(θ) := span{ϕk,ℓ(θ,xs,t) = eιθ·xs,t/Hχk,ℓ(xs,t) : k, ℓ = 0, 1, · · · , p− 1}, (7.17)

where θ ∈ [−π, π) and

χk,ℓ(xs,t) =

{
1, if mod(s, p) = k, and mod(t, p) = ℓ,

0, otherwise.

Note that, with this notation, (7.15) can be rewritten as

epm+k,pn+ℓ = β̂k,ℓϕk,ℓ(θ,xs,t). (7.18)

Theorem 7.4.1. Eh(θ
(0,0)) and FH(pθ

(0,0)) are the same.

Proof. While the derivation above shows directly that Eh(θ
(0,0)) ⊂ FH(pθ

(0,0)), we

revisit this calculation now to show that the mapping {βq,r} → {β̂k,ℓ} is invertible and,

hence, FH(pθ
(0,0)) ⊂ Eh(θ

(0,0)) as well.

Let X be an arbitrary vector with size p2 × 1, denoted as

X =
(
X0 X1 · · · Xp−2 Xp−1

)T
,

where

Xr =
(
β0,r β1,r · · · βp−2,r βp−1,r

)
, r = 0, 1, · · · , p− 1.

Then, we define a p2 × 1 vector, X̂ , based on (7.16), as follows

X̂ =
(
X̂0 X̂1 · · · X̂p−2 X̂p−1

)T
,
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where

X̂ℓ =
(
β̂0,ℓ β̂1,ℓ · · · β̂p−2,ℓ β̂p−1,ℓ

)
, ℓ = 0, 1, · · · , p− 1,

in which

β̂k,ℓ =

p−1∑

r=0

( p−1∑

q=0

βq,re
ι 2πqk

p

)
e

2πrℓ
p , q, r = 0, 1, · · · , p− 1.

Let T be the matrix of this transformation, X̂ = T X , and

T1 =




(eι
2π
p
0)0 (eι

2π
p
1)0 (eι

2π
p
2)0 · · · (eι

2π
p
(p−1))0

(eι
2π
p
0)1 (eι

2π
p
1)1 (eι

2π
p
2)1 · · · (eι

2π
p
(p−1))1

(eι
2π
p
0)2 (eι

2π
p
1)2 (eι

2π
p
2)2 · · · (eι

2π
p
(p−1))2

...
...

...
...

...

(eι
2π
p
0)p−2 (eι

2π
p
1)p−2 (eι

2π
p
2)p−2 · · · (eι

2π
p
(p−1))p−2

(eι
2π
p
0)p−1 (eι

2π
p
1)p−1 (eι

2π
p
2)p−1 · · · (eι

2π
p
(p−1))p−1




.

Note that T1Xr defines a vector whose (k + 1)-th entry is

p−1∑

q=0

βq,re
2πqk/p and, thus, we

see that T = T1 ⊗ T1.

Note that T1 is a p × p Vandermonde matrix based on values dk = eι
2πk
p , where

k = 0, 1, 2, · · · , p− 1. It is obvious that dj 6= dk if j 6= k. Consequently, det(T1) 6= 0.

Thus, T1 is invertible, and so is T . It follows that Eh(θ
(0,0)) and FH(pθ

(0,0)) are

equivalent.

Remark 7.4.2. Let z = eι2π/p, be the primitive p-th root of unity, and note that

(T1)i,j = z(j−1)(i−1). Thus, T̃1 =
1√
p
T1 is the unitary discrete Fourier transform (DFT)

matrix with T̃1

−1
= T̃1

T
, where T denotes the conjugate transpose. Thus, T −1

1 = 1
p
T T
1 .

Similarly, T is a scaled version of the two-dimensional unitary Fourier transform

matrix, and T −1 = 1
p2
T T .

In the rest of this paper, we use the basis of FH as the foundation for local Fourier

analysis on the p× p periodic structures of the BDDC operators. The “sparse” (or

“pointwise”) nature of the basis in FH allows a natural expression of the operators in

BDDC and, as such, is more convenient than the equivalent “global” basis in Eh.

Note that the presentation above assumes that the original Fourier space, Eh, is
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considered with harmonic frequencies in domain [−π
p
, (2p−1)π)

p
)2, and the sparse basis in

FH considers a single mode, θ ∈ [−π, π)2. In both cases, it is clear that any frequency

set covering an interval of length 2π in both x and y components can be used instead.

7.4.2 Representation of the original problem

On Gh, we call each node, (I, J), where mod(I, p) = 0 and mod(J, p) = 0 a coarse-

level point index. We construct a collective grid set associated with (I, J) for each

subdomain as

SI,J =
{
x(I+k,J+ℓ) : k, ℓ = 0, 1, · · · , p− 1

}
. (7.19)

The degrees of freedom in A can be divided into subsets, SI,J , whose union provides a

disjoint cover for the set of degrees of freedom on the infinite mesh Gh. Throughout

the rest of this paper, the index (I, J) corresponds to the coarse point at the lower-left

corner of the subdomain under consideration, unless stated otherwise. The left of

Figure 7.2 shows the meshpoints for this decomposition for p = 4.

Figure 7.2: At left, the location of degrees of freedom in SI,J defined in Equation
(7.19) for one subdomain with p = 4. At right, the location of degrees of freedom in
S∗
I,J defined in Equation (7.23) for one subdomain with p = 4.

For each SI,J , we use a row-wise ordering of the grid points (lexicographical

ordering). This will fix the ordering of the symbols in the following; for any other

ordering, a permutation operator would need to be applied. In the following, we do

not show the specific position of each element in a vector or matrix, and they are

assumed to be consistent with the ordering of the grid points. Based on the set SI,J ,



226

we define the p2-dimensional space

E(θ) = span
{
ϕk,ℓ(θ) : k, ℓ = 0, 1, · · · , p− 1

}
, (7.20)

where ϕk,ℓ(θ) =
(
ϕk,ℓ(θ,xI+s,J+t)

)p−1

s,t=0
is a p2×1 vector with only one nonzero element,

defined in (7.17), in the position corresponding to (I + k, J + ℓ). For both E(θ) and
ϕk,ℓ(θ), we have simply taken the infinite mesh representation of FH and truncated it

to a single p × p block of the mesh, which is sufficient to define the symbol of A in

this basis. Let Φh be a p2 × p2 diagonal matrix, whose diagonal elements are functions

ϕ(θ,x) = eιθ·x/H , where x ∈ SI,J , so E(θ) = Range(Φh).

Note that each subdomain contains p2 degrees of freedom, and that the correspond-

ing symbol is not a scalar due to the definition of the Fourier basis in (7.20). We treat

the block symbol as a system, presented as a p2 × p2 matrix. Let AI,J be the periodic

Laplace operator on SI,J . Then, its symbol Ã satisfies

AI,Jφ(θ,x) = Ã(θ)φ(θ,x), ∀φ(θ,x) ∈ E(θ), (7.21)

where Ã is a p2 × p2 matrix. Equation (7.21) is equivalent to

AI,J
∑

0≤k,ℓ≤p−1

αk,ℓϕk,ℓ = ΦhÃα, (7.22)

for any vector α, whose elements are denoted as αk,ℓ. Since (7.22) holds for any αk,ℓ,

we have Ã = ΦT
hAI,JΦh, where T is the (conjugate) transpose. Note that Φ−1

h = ΦT
h

and the entries in these matrices have the same form, e±ιθ·xI,J/H .

We consider the action of Ã(θ) on a vector in terms of the coefficients of the

Fourier basis functions. Considering a point in SI,J , if the values of a function at

neighbouring points are expressed by αk,ℓϕk,ℓ, the entries in Ã(θ)α give the coefficients

of the Fourier expansion of the original operator A on Gh acting on the function in

E(θ) with coefficient α. We note that a similar approach was employed for LFA for

vector finite-element discretizations in [21].



227

7.4.3 Representation of preconditioned operators

Now we turn to calculating the Fourier representations of M−1
1 and M−1

2 . First, we

define a collective grid set associated with (I, J) for the partially subassembled problem

for each subdomain as

S∗
I,J = {x(I+k,J+ℓ) : k, ℓ = 0, 1, · · · , p} \ {x(I+p,J),x(I,J+p),x(I+p,J+p)}, (7.23)

see the right of Figure 7.2. We first consider the stencil ofM−1
1 acting on one subdomain,

S∗
I,J .

Recall the scaling operator, R1, where each column of R1 corresponding to a degree

of freedom of the global problem in the interiors and at the coarse-grid points has a

single nonzero entry with value 1, and each column of R1 corresponding to an interface

degree of freedom has two nonzero entries, each with value 1
2
. Since we consider

periodic Fourier modes on each subdomain, the interface degrees of freedom share the

same values scaled by an exponential shift. For example, at the left of Figure 7.2, the

degrees of freedom located at the left boundary and the right boundary have the same

coefficient of the (shifted) exponential, as do the degrees of freedom located at the

bottom and top. Thus, R1 is its own Fourier representation, since the neighborhoods

do not contribute to each other. Note that R1 maps the p2-dimensional Fourier basis

from E(θ), used to express Ã(θ) onto a (p+ 1)2 − 3 dimensional space with similar

sparse basis on S∗
I,J that is suitable for expressing the symbol of Â and its inverse.

We now focus on Â presented on one subdomain. Let Â(I,J) be a (p+1)2× (p+1)2

matrix, which is the partially subassembled problem on one subdomain including its

four neighbouring coarse-grid degrees of freedom, as

Â(I,J) =


A

(I,J)
rr

(
Â

(I,J)
Πr

)T

Â
(I,J)
Πr A

(I,J)
ΠΠ


 =

(
A

(I,J)
rr 0

Â
(I,J)
Πr Ŝ

(I,J)
Π

)
I

(
A

(I,J)
rr

)−1 (
Â

(I,J)
Πr

)T

0 I


 ,

(7.24)

where A
(I,J)
rr is a

(
(p+ 1)2 − 4

)
×
(
(p+ 1)2 − 4

)
matrix corresponding to the interior

and interface degrees of freedom on the subdomain and A
(I,J)
ΠΠ corresponds to the

four coarse-level variables on one subdomain. Note that A
(I,J)
ΠΠ = 2

3
I and Ŝ

(I,J)
Π =

A
(I,J)
ΠΠ − Â

(I,J)
Πr (A

(I,J)
rr )−1(Â

(I,J)
Πr )T . We use index (I, J) as a superscript in order to

distinguish this from the matrix in (7.8), but note that it is independent of the
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particular subdomain, (I, J), under consideration. Let
˜̂
A be the Fourier representation

of the partially subassembled problem with the corresponding symbol being a
(
(p+

1)2 − 3
)
×
(
(p+ 1)2 − 3

)
matrix,

˜̂
A =

(
Ãrr 0

ÃΠr S̃Π

)(
Ĩ (Ãrr)

−1ÃTΠr
0 Ĩ

)
= K̃1K̃2,

where Ãrr is a
(
(p+1)2− 4

)
×
(
(p+1)2− 4

)
Fourier representation of A

(I,J)
rr computed

as was done for Ã above and S̃Π is the representation of the global Schur complement,

ŜΠ. Let S0 = Â
(I,J)
Πr (A

(I,J)
rr )−1(Â

(I,J)
Πr )T be a 4× 4 matrix corresponding to the vertices

adjacent to one subdomain, representing one macroelement of the coarse-level variables.

Direct calculation shows this matrix has the same nonzero structure as the element

stiffness matrix for a symmetric second-order differential operator on a uniform square

mesh, with equal values for the connections from each node to itself (denoted s1), its

adjacent vertices (s2), and its opposite corner (s3). Since Ŝ
(I,J)
Π = 2

3
I − S0 gives the

macroelement stiffness contribution, assembling the coarse-level stiffness matrix over

2× 2 macroelement patches yields S̃Π as the symbol of the 9-point stencil given by



−s3 −2s2 −s3
−2s2

8
3
− 4s1 −2s2

−s3 −2s2 −s3


 ,

acting on the coarse points.

ÃΠr is the representation of the contribution from interior and interface degrees

of freedom to the coarse degrees of freedom, and has only 12-nonzero elements per

subdomain, with 3 contributing to each corner of the subdomain. We take the coarse-

level point xI,J as an example. At the right of Figure 7.2, xI,J obtains contributions

from the points xI+1,J ,xI+1,J+1,xI,J+1 and the corresponding stencils are

[
∗ −1

6

]
,

[
−1

3

∗

]
,

[
−1

6

∗

]
,

where ∗ denotes the position on the grid at which the discrete operator is applied,

namely xI,J . The symbols of these three stencils are given by −1
6
eιθ1/p,−1

3
eι(θ1+θ2)/p,

−1
6
eιθ2/p, respectively. Since xI,J is adjacent to three other subdomains, the coarse

degree of freedom at xI,J also obtains contributions from those subdomains, and the
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other 9 contributing stencils are computed similarly. Finally, the representation of

M−1
1 A is given by

G̃1,0(θ) = R̃T
1 (
˜̂
A)−1R̃1Ã = R̃T

1 K̃−1
2 K̃−1

1 R̃1Ã.

For the Dirichlet preconditioner in (7.6), we also need to know the LFA representa-

tion of the operators JD and H. Since JD is a pointwise scaling operator, its symbol

in the pointwise basis of FH is itself. According to the definition of H, the symbol

of H is given by H̃ = Ã−1
rr,IÃ

T
Γ,I , where Ãrr,I is the submatrix of Ãrr corresponding

to the interior degrees of freedom, and ÃTΓ,I is the submatrix of
˜̂
A corresponding to

the contribution of the interface degrees of freedom to the interior degrees of freedom.

Both of these are computed in a similar manner to Ã and
˜̂
A as described above. Thus,

the LFA representation of M−1
2 A can be written as

G̃2,0(θ) = (R̃T
1 − H̃J̃D)K̃−1

2 K̃−1
1 (R̃1 − J̃TDH̃T )Ã.

The details of the 3-level variants of LFA are similar to those given above. We now

consider a segment of the infinite mesh given, on the fine level, by a p × p array of

subdomains, with each subdomain of size p × p elements. On the first coarse level

(corresponding to the Schur complement ŜΠ in (7.8)), we then consider a single p× p

subdomain of the infinite coarse mesh, and apply the same technique recursively. To

accommodate this, we adapt the fine-level Fourier modes to be ϕ∗(θ,x) := eιθ·x/H
′

,

where H ′ = p2h. The coarse-level Fourier modes are then the same as (7.20). Thus,

G̃i,j(θ) is a p
4 × p4 matrix for the three-level variants.

7.5 Numerical results

7.5.1 Condition numbers of two-level variants

In the LFA setting, θ = (θ1, θ2) ∈ [−π, π)2. Here we take dθ = π/n as the discrete

stepsize and sample the Fourier space at 2n evenly distributed frequencies in θ1 and

θ2 with offset ±dθ/2 from θ1 = θ2 = 0 to avoid the singularity at zero frequency. For

each frequency on the mesh, we compute the eigenvalues of the two-level operators,

and define κ := emax

emin
, where emin and emax are the smallest and biggest eigenvalues over
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all frequencies.

Table 7.1 shows the condition numbers for the two-level preconditioners with

variation in both subdomain size, p, and sampling frequency, n. When n = 2, the

condition number prediction is notably inaccurate, but we obtain a consistent prediction

for n ≥ 4 (and very consistent for n ≥ 8). For G̃1,0, the condition number increases

quickly with p as expected. Compared with G̃1,0, G̃2,0 has a much smaller condition

number that grows more slowly with p. For G̃1,0, we know there exists C1,0 such that

the true condition number of the preconditioned system (on a finite grid) is bounded

by C1,0
H
h
(1 + logH

h
) [20]; from this data, we see that our LFA prediction is consistent

with this, with constant C1,0 ≈ 0.6. For G̃2,0, we know there exists C2,0 such that the

true condition number of the preconditioned system (on a finite grid) is bounded by

C2,0(1 + logH
h
)2 [20]; from this data, again we see that our LFA prediction is consistent

with this, with constant C2,0 ≈ 0.4.

Table 7.1: LFA-predicted condition numbers of two-level preconditions as a function
of subdomain size, p, and sampling frequency, n.

G̃1,0 G̃2,0
❍
❍

❍
❍

❍
❍
❍❍

n

p
4 8 16 32 4 8 16 32

2 4.14 11.11 27.95 67.55 2.23 3.02 3.94 5.01

4 4.36 11.94 30.27 73.44 2.32 3.15 4.13 5.26

8 4.42 12.18 30.94 75.16 2.34 3.19 4.17 5.32

16 4.44 12.25 31.12 75.61 2.35 3.19 4.19 5.33

32 4.44 12.26 31.16 75.72 2.35 3.20 4.19 5.34

64 4.44 12.27 31.17 75.75 2.35 3.20 4.19 5.34

128 4.44 12.27 31.18 75.76 2.35 3.20 4.19 5.34

Ci,0(n = 32) 0.47 0.50 0.52 0.53 0.41 0.34 0.29 0.27

Optimizing the weight parameters for G̃f
1,0 and G̃f

2,0 by systematic search with

different n and p, we see that the optimal parameter ω is dependent on p, but largely

independent of n. Table 7.2 shows that significant improvement can be had for the

M1 preconditioner, but not for M2, see Table 7.3. We again see small n (e.g., n = 4 or

8) is enough to obtain a consistent prediction for these condition numbers.
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Table 7.2: Condition numbers for two-level lumped preconditioner with fine-grid
multiplicative combination with diagonal scaling, G̃f

1,0. In brackets, value of weight
parameter, ω, that minimizes condition number.

❍
❍
❍
❍
❍
❍
❍❍

n

p
4 8 16 32

2 2.06(2.1) 3.18(2.3) 5.43(2.5) 9.71(2.6)

4 2.17(1.5) 3.29(2.3) 5.64(2.5) 9.99(2.6)

8 2.18(1.4) 3.32(2.3) 5.70(2.5) 10.08(2.6)

16 2.18(1.4) 3.32(2.3) 5.72(2.5) 10.10(2.6)

32 2.18(1.4) 3.33(2.3) 5.72(2.5) 10.10(2.6)

64 2.18(1.4) 3.33(2.3) 5.72(2.5) 10.10(2.6)

Table 7.3: Condition numbers for two-level Dirichlet preconditioner with fine-grid
multiplicative combination with diagonal scaling, G̃f

2,0. In brackets, value of weight
parameter, ω, that minimizes condition number.

❍
❍
❍

❍
❍
❍
❍❍

n

p
4 8 16 32

2 1.82(2.2) 2.36(1.7) 3.12(2.0) 4.20(1.8)

4 2.03(1.1) 2.54(1.6) 3.33(2.0) 4.44(1.8)

8 2.07(1.1) 2.59(1.6) 3.39(2.0) 4.50(1.8)

16 2.08(1.1) 2.60(1.6) 3.40(2.0) 4.52(1.8)

32 2.08(1.1) 2.60(1.6) 3.40(2.0) 4.52(1.8)

64 2.08(1.1) 2.61(1.6) 3.40(2.0) 4.52(1.8)

In order to see the sensitivity of performance to parameter choice, we consider

the condition numbers for the two-level lumped and Dirichlet preconditioners in

multiplicative combination with diagonal scaling on the fine grid with p = 8, as a

function of ω, in Figure 7.3. We see that the condition number of G̃f
1,0 shows strong

sensitivity to small values of ω. For G̃f
2,0, however, many allowable parameters obtain

a good condition number.
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Figure 7.3: Condition numbers for two-level lumped and Dirichlet preconditioners in
multiplicative combination with diagonal scaling on the fine grid with p = 8, as a
function of relaxation parameter, ω.

7.5.2 Eigenvalue distribution of two-level variants

In this section, we take n = 32, yielding 2n points in each dimension and (2n)2 = 4096

values of θ, although similar results are seen for smaller values of n. We also consider

only p = 8, although similar results are seen for other values of p. For G̃f
1,0 and G̃f

2,0,

we use the optimal values of ω, shown in the tables above. The histograms in Figure

7.4 show the density of eigenvalues for the two-level preconditioned operators. For

these values of n and p, our LFA computes a total of 262144 eigenvalues, giving 64

eigenvalues for each of 4096 sampling points. For all cases, the eigenvalues around

1 (represented in two bins in the histogram, covering the interval from 0.9 to 1.1)

appear with dominating multiplicity, accounting for about 200,000 of the computed

eigenvalues.

Note that there is a gap in the spectrum of G̃1,0 that increases in size with p (not

shown here). A notable difference between G̃1,0 and G̃2,0 is that, while there is still

a small gap in the spectrum of G̃2,0, it is not very prominent. Note also that the

spectra are real-valued, with only roundoff-level errors in the imaginary component.

Comparing the eigenvalues for G̃f
1,0 and G̃f

2,0 with those for G̃1,0 and G̃2,0, we see that

the eigenvalues are much more tightly clustered for G̃f
1,0, but still exhibit a gap in the

spectrum. The eigenvalues of G̃f
2,0, in contrast, appear to lie in a continuous interval.

We note that little improvement is seen in the spectrum of G̃f
2,0, in comparison with

G̃2,0. Also interesting to note is that, in contrast to all other cases, the smallest
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eigenvalue of G̃f
1,0 is less than 1.

Remark 7.5.1. As the LFA predicts both eigenvectors and eigenvalues, we can examine

the frequency composition of the eigenvectors associated with these eigenvalues. The

largest eigenvalue of G̃1,0 is found to be dominated by oscillatory modes, but this is

not true for G̃2,0. This motivates the proposed multiplicative method based on simple

diagonal scaling, which is well known to effectively damp oscillatory errors in the

classical multigrid setting.

Figure 7.4: Histograms showing density of eigenvalues for two-level preconditioned
operators with p = 8. Top left: G̃1,0, Top right: G̃2,0, Bottom left: G̃f

1,0, Bottom right:

G̃f
2,0.

7.5.3 Condition numbers of three-level variants

For the three-level preconditioned operators, we need to find all the eigenvalues of

a p4 × p4 matrix for each sampled value of θ. For the two-level variants, we saw
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that sampling with n = 4 is sufficient to give useful accuracy of the LFA predictions.

Here, we also see similar behavior in Table 7.4, which shows the condition numbers of

G̃i,j(i, j = 1, 2) for varying p an n. We see that, as expected from the theory, these

condition numbers show degradation from the two-level case. It is not surprising that

G̃2,2 has the smallest condition number of these variants, since M2 is applied to both

fine and coarse levels.

Table 7.5 presents the condition number of variants G̃f
i,j and G̃

c
i,j, based on the

multiplicative combination with diagonal scaling on the fine level and coarse level,

respectively, and some improvement is offered. For fixed p, the optimal ω is found to

be robust to n (not shown here). In general, we see better performance for G̃f
i,j in

comparison to G̃c
i,j , and G̃

f
1,1 offers significant improvement over G̃1,1. For other values

of i, j, however, only small improvements are seen.

Table 7.4: Condition numbers of three-level preconditioners with no multiplicative
relaxation.

p G̃1,1 G̃1,2 G̃2,1 G̃2,2

4(n = 2) 9.18 5.43 7.27 4.24

4(n = 4) 9.65 5.68 7.63 4.47

4(n = 8) 9.79 5.74 7.73 4.53

4(n = 16) 9.82 5.76 7.76 4.54

4(n = 32) 9.83 5.76 7.77 4.55

8(n = 2) 46.66 15.46 24.73 7.55

8(n = 4) 50.00 16.15 26.53 7.94

8(n = 8) 50.96 16.33 27.05 8.04
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Table 7.5: Condition numbers of three-level preconditioners with fine-scale or coarse-
scale multiplicative preconditioning. All results were computed with n = 4, and the
experimentally optimized weight, ω, is shown in brackets.

p G̃f
1,1 G̃f

1,2 G̃f
2,1 G̃f

2,2

4 6.80(1.4) 4.28(1.4) 6.14(1.6) 4.04(1.1)

8 28.75(1.7) 9.16(1.7) 20.94(1.6) 6.73(1.5)

p G̃c
1,1 G̃c

1,2 G̃c
2,1 G̃c

2,2

4 6.04(1.6) 5.47(1.1) 4.67(1.6) 4.30(1.0)

8 31.91(2.0) 15.17(1.4) 15.57(2.1) 7.46(1.2)

In order to see the sensitivity of performance to parameter choice, we consider

three-level preconditioners with weighted multiplicative preconditioning on both fine

and coarse scales, G̃f,c
1,1 and G̃f,c

2,2, with p = 4 and n = 4. At the left of Figure 7.5,

we present the LFA-predicted condition number for G̃f,c
1,1 with variation in ω1 and

ω2. Here, we see strong sensitivity to “small” values of ω1, for example ω1 < 1.5,

and also to large values of ω1 with small values of ω2. We note general improvement,

though, in the optimal performance for large ω1 with suitably chosen ω2, albeit with

diminishing returns as ω1 continues to increase. Fixing ω1 = 4, we find ω2 = 1.7 offers

best performance, with optimal condition number of 2.66. At the right of Figure

7.5, we consider G̃f,c
2,2 as a function of ω1 and ω2. Here, we see stronger sensitivity to

large values of ω2, and to large values of ω1 and small values of ω2, but a large range

of parameters that give generally similar performance. Fixing ω1 = 4, we find that

ω2 = 1.2 achieves the optimal condition number of 3.72. Similar performance was seen

for G̃f,c
1,2, G̃

f,c
2,1, and G̃

s,c
i,j . Slight improvements can be seen by allowing even larger values

of ω1, giving an LFA-predicted condition number for G̃f,c
1,1 of 2.25 with ω1 = 5.0 and

ω2 = 2.0, but a much smaller band of values of ω2 leads to near-optimal performance

as ω1 increases. For G̃f,c
2,2, this sensitivity does not arise, but the improvements are

even more marginal, achieving an LFA-predicted condition number of 3.63 for ω1 = 5.8

and ω2 = 1.3.

Motivated by Figure 7.5, we fix ω1 = 4 with n = 4, and optimize the condition

numbers for the three-level preconditioners with two multiplicative preconditioning

steps per iteration, either both on the coarse level, G̃s,c
i,j , or one on each level, G̃f,c

i,j ,
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with respect to ω2. From Table 7.6, notable improvement is seen for all i, j with G̃f,c
i,j ,

particularly for G̃f,c
1,1 and G̃f,c

2,1. We also note that there is little variation in the optimal

parameter for each preconditioner between the p = 4 and p = 8 cases. It is notable that

we are able to achieve similar performance for the multiplicative preconditioner based

on M1 as seen for M2, and that both show significant improvement from the classical

three-level results shown in Table 7.4, when used in combination with multiplicative

preconditioning on both fine and coarse levels.

Figure 7.5: Condition number of three-level preconditioners with multiplicative pre-
conditioning on both the fine and coarse scales as a function of ω1 and ω2, with p = 4
and n = 4. At left, condition number for G̃f,c

1,1; at right, condition number for G̃f,c
2,2.

Table 7.6: Condition numbers of three-level preconditioners with symmetric weighting
of multiplicative preconditioning on the coarse scale, G̃s,c

i,j , and weighting of multiplica-

tive preconditioning on both fine and coarse scales, G̃f,c
i,j . All results were computed

with n = 4, and the experimentally optimized weight, ω2, is shown in brackets.

p G̃s,c
1,1 G̃s,c

1,2 G̃s,c
2,1 G̃s,c

2,2

4 5.43(1.4) 5.34(0.9) 4.22(1.3) 4.18(0.9)

8 17.45(1.2) 14.13(1.0) 8.31(1.1) 6.88(0.9)

p G̃f,c
1,1 G̃f,c

1,2 G̃f,c
2,1 G̃f,c

2,2

4 2.66(1.7) 3.85(1.3) 3.24(1.8) 3.72(1.2)

8 5.16(1.8) 7.59(1.7) 4.88(1.8) 5.70(1.5)
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7.6 Conclusions

In this paper, we quantitatively estimate the condition numbers of variants of BDDC

algorithms, using local Fourier analysis. A new choice of basis is proposed to simplify

the LFA, and we believe this choice will prove useful in analysing many domain

decomposition algorithms in the style used here. Multiplicative preconditioners with

these two domain decomposition methods are discussed briefly, and both lumped and

Dirichlet variants can be improved in this way. The coarse problem involved in these

domain decomposition methods can be solved by similar methods. LFA analysis of

three-level variants is also considered. Degradation in convergence is well known when

moving from two-level to three-level variants of these algorithms. We show that the

LFA presented above, in combination with the use of multiplicative preconditioners

on the coarse and fine levels provide ways to mitigate this performance loss. Future

work includes extending these variants of the preconditioned operators, using LFA

to optimize the resulting algorithms, and considering other types of problems with

similar preconditioners.
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Chapter 8

Conclusions and future work

In this thesis, to address the lack of existing research on analysis of vector potential

formulations of MHD, we have provided a theoretical analysis for the existence and

uniqueness of solutions of both the continuum two-dimensional resistive magnetohy-

drodynamics model and its discretization, closing the open question of existence and

uniqueness of solutions. Furthermore, under moderate conditions, we have proved that

Newton’s method yields well-posed linearizations and converges to the solution of the

weak formulation.

To better understand the performance of monolithic multigrid methods for solving

saddle-point problems, we have employed LFA to analyze common block-structured

relaxation schemes, including Braess-Sarazin, Uzawa, and distributive Jacobi relax-

ation, for the Stokes equations. Both the Marker-and-Cell (MAC), and finite-element

discretizations (stable and stabilized) have been discussed. LFA helps us understand

and optimise these relaxations when solving such saddle-point system with multigrid

methods. Comparisons have been made among these relaxations. All in all, inexact

Braess-Sarazin relaxation generally outperforms both Uzawa and distributive weighted

Jacobi relaxations for the discretizations considered here.

To improve the validity of LFA smoothing analysis, we have designed a modified

two-grid LFA for higher-order finite-element discretizations of the Laplace problem,

remedying the failure of classical smoothing analysis. Proper parameters have been

proposed for the Jacobi relaxation scheme in this setting. This study has shown how

coarse-grid correction works for these discretizations, not only reducing low-frequency

error components, but also some of those with high-frequency. These findings add
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to our understanding of the poor predictivity of smoothing analysis for Taylor-Hood

elements for the Stokes equations as well, and might be useful for other types of

relaxation schemes. We note that this work has some limitations. This study has

only examined the weighted Jacobi relaxation, and further investigation into general

relaxation schemes for higher-order finite-element discretizations needs to be performed.

To enrich the applicability of extant LFA, we have developed LFA for BDDC, one

of the nonoverlapping domain decomposition methods, to close a gap where there is no

such LFA research. Our study has provided a framework for LFA with an innovative

Fourier basis, which greatly simplifies the analysis. Quantitative estimates of the

condition number of the preconditioned systems have been presented. From this LFA,

improved performance has been achieved for some two- and three-level variants of

BDDC.

The results presented here show that LFA could be applied to other problems to

develop efficient algorithms of both multigrid and domain decomposition type. Further

research is proposed in the following areas:

1. Many types of problems lead to saddle-point structure. Thus, possible extensions

of our LFA work include:

• The same approach used to analyse the MAC scheme for the Stokes equations

can be adapted to analyze many optimal control problems. The construction

and analysis of fast numerical methods for control problems governed by

PDEs are in urgent demand. Often, the discretization of control problems

leads to saddle-point systems, and analyzing this type of problem using

LFA has potential to yield value insight.

• In some approaches to the eigenvalue problem, for example, using Newton’s

method, saddle-point systems naturally arise. Thus, it is likely that these

tools can be effectively applied to eigenvalue problems.

• Not much research on all-at-once solution of time-dependent problems with

LFA exists. However, time-dependent problems commonly arise in science

and engineering applications, and receive much attention. Extending the

application of LFA to this field offers promise, particularly for “parallel

in time” approaches, such as parareal and multigrid reduction in time

(MGRIT).
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• We are confident that our analysis of BDDC using LFA, especially the use

of a “sparse” Fourier basis, will serve as a fundamental tool for analysis

of other types of domain decomposition methods, as well as for other

approaches such as the classical nested dissection factorization algorithm.

Note that there is no existing LFA research for such direct solvers, which

we view through the lens of inexact solution of the subdomain problems.

We hope that LFA will be valuable in constructing and analysing good

preconditioners from many classes of algorithms.

2. Existing work on the analysis of higher-order finite-element methods using LFA

mostly focuses on pointwise relaxation. However, in practical use, collective

relaxation has been developed for many PDEs. There is a need to understand

the solution of these discretizations using collective relaxation, especially for

multivariate problems. Furthermore, nowadays, modern parallelism is a trend

within scientific computing. Thus, a natural addition to the work presented here

is the solution of higher-order finite-element discretizations with multiplicative

and additive Schwarz smoothers, including Q2 and P2 elements for the Laplace

problem, and P2 − P1 elements for the Stokes equations, with Vanka-type relax-

ation. These discretizations are tractable with a combination of existing LFA

tools and the extensions presented here. It would be interesting to better under-

stand additive Schwarz smoothers in particular to develop efficient algorithms

for modern parallel architectures.

3. Another interesting direction for future work is the design of efficient LFA

algorithms. In practical use of LFA, we sample in both frequency, θ, and over

parameters to optimize eigenvalues of the two-grid error-propagation operator.

Note that this needs much computational work; for example, for three-level

BDDC, for each frequency and set of parameters, we solve an eigenvalue problem

of dimension p4. The same will be true for other types of domain decomposition

methods. Thus, a more efficient LFA strategy is needed. One approach is to

use gradient-based optimization (suggested by Jed Brown), based on smoothed

approximations of the condition number to isolate the dominant modes that

are responsible for the smallest and largest eigenvalues of the operators in the

LFA framework. This should reduce the number of frequencies needing to be

sampled while optimizing the parameters, as well as the work needed for this

optimization, while preserving the accuracy of the algorithm.
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