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Abstract 

Greenhouse gas (GHGs) emissions from the agriculture sector have been accelerating 

global warming potential (GWP) and greenhouse gas intensities (GHGI). About 8 % of 

GHG emissions in Canada are contributed by the agriculture sector mainly through 

methane (CH4) and nitrous oxide (N2O). Out of these emissions, 50 % is contributed by 

manure and fertilizer application to land. Biochar (BC), a stable carbon-rich product has 

been observed to reduce GHG emissions from soil, increase soil pH, improve soil 

moisture, enhance nutrient retention in soil and increase biomass production in many crop 

plants. However, these effects are not constant across all soil types, environmental and 

climatic conditions, and cropping systems. This study aimed to evaluate the effect of BC 

on GHGs emissions, soil nitrate and ammonium retention, soil pH, plant nitrogen 

concentration and dry matter production in dairy manure (DM) based silage corn 

cropping system in western Newfoundland, Canada. Two sources of dairy manure (DM1, 

DM2), inorganic N (IN), their combination with BC (DM1+B, DM2+B, and IN+B), and 

control (N0) were used as experimental treatments. Results showed that BC application to 

DM1, DM2 and IN reduced cumulative CO2 emission by 16, 25.5 and 26.5 %, CH4 

emission 184, 200 and 293 %, and N2O emission by 95, 86 and 93 %, respectively. BC 

treatments exhibited significantly higher soil moisture (SM) contents at all sampling 

points than non-BC treatments. It also reduced the GWP by 24.9, 34.5, and 37 %, and 

GHGI by 30, 37.5, 43.4 %, respectively. Furthermore, BC enhanced the NO3
-
 and NH4

+
 

retention in topsoil (decreased their leaching to deep soil) which improved plant N 

concentration and dry matter yield of silage corn crop. Conclusively, BC application to 
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soil exhibited to be a promising tool for the mitigation of GHGs emissions, GWP, GHGI 

and to enhance soil fertility and crop dry matter yield simultaneously. 
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Chapter 1 

1. General introduction and Overview 

1.1. Introduction 

1.1.1. Overall scenario of greenhouse gas emissions 

The emission of greenhouse gases (GHGs) into the atmosphere is the greatest 

environmental issue of the current time. The unprecedented increase in GHG emissions 

lead to significant changes on the face of world climate. The main GHGs of consternation 

include carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). These gases 

gather in the atmosphere and cause greenhouse effect which leads to global warming. The 

global warming effect of GHGs can be reported using a global warming potential (GWP) 

value which quantifies the warming effect of GHGs relative to CO2 over a set time period 

(20 years, 100 years or 500 years). The GWP of CH4 and N2O over a time horizon of 100 

years (GWP100) is 25 and 298 times greater than CO2 respectively (IPCC, 2007). The total 

annual anthropogenic GHGs emissions had reached to 49±4.5 (90 % confidence interval) 

gigatons of carbon dioxide equivalent (GtCO2eq) in 2010. Industrialized countries emit 

2.5 times more GHGs than developing countries. Different economic sectors contribute 

towards global GHGs emissions. Energy supply sector contributed 35 % (17 GtCO2eq), 

agriculture, forestry and other land use contributed 24 % (12 GtCO2eq), 21 % (10 

GtCO2eq) by industry, transport 14 % (7 GtCO2eq), and construction sector 6.4 % (3.2 

GtCO2eq) towards a total of 49 GtCO2eq GHGs emission in 2010 (IPCC, 2014a). The 

main controlling forces of GHGs emissions include financial structure, the flow of 
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income, choices of investment, policies, people behavior, consumption patterns, energy 

resources and land use change (IPCC, 2014a).  

1.1.2. Agricultural greenhouse gas emissions 

The agriculture industry is the largest contributor to the global anthropogenic non-CO2 

GHGs emission, accounting for 54 % of the global non-CO2 emissions in 2005 (U.S. 

EPA, 2011). Individual GHGs from the agriculture sector out of total anthropogenic 

emissions from all sources constitute CO2 (15 %), CH4 (50 %) and N2O (66 %). Between 

1990-2010, non-CO2 emissions from the agriculture sector grew by 0.9 % per year, 

totaled to be 5.2-5.8 GtCO2eq per year and comprised about 10-12 % of total 

anthropogenic emissions (IPCC, 2014a; Tubiello et al., 2013). Agricultural N2O 

emissions are anticipated to increase by 35–60 % by 2030 due to increase in the use of N 

fertilizers and manures (FAO, 2003). Agricultural activities and practices that emit GHGs 

include enteric fermentation, dairy manure (DM) storages, and inorganic fertilizer 

application to soil, rice cultivation, manure management, crop residues and biomass 

burning. The emissions from enteric fermentation and soils represent about 70 %, paddy 

rice 9-11 %, biomass burning 6-12 % and manure management accounts for 7-8 % of 

total agricultural emissions. Global emissions from manure management grew by 1.1 % 

per year between 1961-2010 from 0.57 to 0.99 GtCO2eq per year (Herrero et al., 2013) 

and by 3.9 % per year from inorganic fertilizers (0.07 to 0.68 GtCO2 eq per year) 

(Tubiello et al., 2013). Following this trend the inorganic fertilizers will become the 

single largest source of non-CO2 GHGs after enteric fermentation in less than 10 years 

(IPCC, 2014a).  
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1.1.3. Nitrogen loss through nitrate leaching and N2O  

The atmosphere consists of 70 % of inert nitrogen (N2) by volume although there is an 

enormous amount of N in the atmosphere; it is the most absorbed and most limiting 

nutrient in the soil. Nitrogen (N) is essential plant nutrient and inevitable for plant growth 

and development as it is the constituent of all proteins, chlorophyll, coenzymes and 

nucleic acids. Therefore, appropriate C:N ratio is vital for successful crop production. The 

use of inorganic nitrogen (IN) is one of the major contributors towards the increased 

agricultural production in past decades. The total amount of N fertilizers applied to 

cropland increased from 11.3 Tg N per year in 1961 to 107.6 Tg N per year
 
in 2013

 
(Lu 

and Tian, 2017). The N applied to crops or mineralized N from organic sources in soil is 

taken up by plants, lost in gaseous form or leached in the form of nitrates (NO3
-
). Soil 

ammonium (NH4
+
) concentration is usually low as most of the NH4

+
 is readily converted 

to NO3
-
 which is not retained in the soil due to the negative charge on soil clay particles 

(Di and Cameron, 2002). Excessive use of IN and DM application enhance the risk of 

NO3
-
 leaching and consequently increase cost of production, pollute water bodies and 

pose a serious threat to human health (Fan et al., 2017; Forge et al., 2016; Jokela et al., 

2014; Long and Sun, 2012; Masaka et al., 2015). The NO3
-
 leaching losses of 55-59 kg 

per hectare per year with DM  application, 30-35 kg per hectare per year from compost 

application and 25-33 kg per hectare per year from IN application has been reported in a 

six-year maize-alfalfa crop rotation (Basso and Ritchie, 2005). The annual estimated loss 

of NO3
-
-N from a cornfield in Manitoba was 160 kg per hectare per year (Hargrave and 

Shaykewich, 1997), whereas, 39-55 kg per hectare per year NO3
-
 load has been reported 
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in wheat-maize cropping system in Southern Turkey (Ibrikci et al., 2015). IN and DM 

applications in agricultural fields increase the concentration of NH4
+
 and NO3

-
 which 

cause a temporary surplus of these ions in the soil. These ions then undergo nitrification 

and denitrification processes in soil and release N2O as a byproduct (Chapuis-lardy et al., 

2007; Inselsbacher et al., 2011). During nitrification, NH4
+
 is oxidized to NO3

- 
via nitrite 

(NO2
-
) releasing N2O as a byproduct (Wrage et al., 2001). This is a two-step autotrophic 

process. The first step is mostly carried out by ammonia oxidizing bacteria (AOB) and 

ammonia-oxidizing archaea (AOA) whereas, the second step is facilitated by Nitrobacter 

sp., and Nitrospira sp., under aerobic conditions (Clough et al., 2001). Nitrification 

process explained by Hossini et al. (2015) in the Equations (1.1) and (1.2).  

     
           

           (1.1) 

 

     
          

  (1.2)  

 

During denitrification, NO3
-
 is reduced to dinitrogen (N2) via N2O. This heterotrophic 

process takes place under oxygen deficit conditions (Flechard et al., 2007; Toyoda et al., 

2011). The denitrification process is shown in the Equations (1.3), (1.4), and (1.5) as 

described by (Hossini et al., 2015). 

     
             

       (1.3)  
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            (1.4)  

   

                    (1.5)  

 

An important factor which explains the dominance of nitrification and denitrification in 

the soil is “soil compaction”. Soil compaction reduces the soil porosity which leads to 

increased water-filled pore spaces and reduced oxygen diffusion resulting in the 

anaerobic conditions which favor denitrification and N2O production in the soil (Bessou 

et al., 2010). Increase in soil temperature results in the development of anaerobic 

microsites in the soil causing denitrification and N2O emissions (Smith et al., 2003). 

Generally, soils are source of N2O, but under certain conditions like high soil moisture 

(SM) or low N availability, the soil may act as sink of N2O either caused by the 

consumption of N2O by nitrifier during nitrifier denitrification or reduction of N2O to N2 

during denitrification (Chapuis-lardy et al., 2007). Nitrogen is applied frequently to crops 

and is one of the priciest inputs in corn production. The N application averages 12-15 % 

of the variable costs in a corn - silage corn and 18-21 % in corn - corn cropping systems 

(Plastina, 2018). In spite of that, its costbenefit ratio generally surpasses that of other 

fertilizer inputs, but farmers must use N efficiently to maximize its value. At the same 

time, farmers must ensure that adequate supply of N is available to crop and its yield is 

not limited by the shortfall of N throughout the growing season. This means minimizing 

N loss through the application of the right amount of N at right time and developing 

strategies which decrease N losses. There are different strategies adopted to reduce GHGs 
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emissions and NO3
-
 leaching losses including nitrification inhibitors (NI), adaptation of 

fertilizer management practices to increase efficiency and reducing excess N application 

to the soil (Burney et al., 2010), Sustainable agriculture intensification (Garnett et al., 

2013; Thomson et al., 2012), land drainage and biological N fixation (Rees et al., 2013). 

1.1.4. Mitigation options 

Different nutrient management strategies and crop management practices have been 

reported to reduce GHGs emissions and N losses. Carbon (C) sequestration has great 

potential to reduce global warming and climate change. Decreasing the atmospheric C by 

3.5-4 Gt per year could limit the temperature increase to 2
 
°C by 2050 (Meinshausen et 

al., 2009; Minasny et al., 2017), a threshold level beyond which climate change would 

have a significant impact (IPCC, 2014b). This annual reduction in atmospheric CO2 

concentration could be enhanced by increasing soil C sequestration in agricultural soils 

globally by 0.4 % per year, producing a C sink of 1.2 petagrams (Pg) per year (Paustian et 

al., 2016). The soils of agroecosystems have a technical potential of 1.2-3.1 billion ton C 

sequestration per year (Lal, 2011). Different crop management practices can improve soil 

C sequestration including crop residues incorporation (Coppens et al., 2006), burial of 

crop residues and crop rotation (Hirel et al., 2007), addition of perennial crops in rotation, 

no-tillage (West and Post, 2002), legume-based cropping systems (Drinkwater et al., 

1998), cover cropping (Mazzoncini et al., 2011), organic amendments like manure 

(Maillard and Angers, 2014) and biochar (Bera et al., 2016). Nutrient management 

strategies have also been practiced to reduce N losses and improve N use efficiency 

(NUE) that includes the use of slow-release fertilizers (Ye et al., 2013), judicious 
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fertilizer application (Francis, 1992), variable rate technologies (VRT) (Gatti et al., 2018), 

use of nitrification inhibitors (NI) (Zhang et al., 2015), and plant trait selection (Ju et al., 

2015). However, the integration of these practices is complicated to get dual benefits of 

GHGs reduction and mitigation of NO3
-
 losses.  

1.1.5. Role of biochar role in mitigating gaseous and N losses 

Biochar (BC), is a recalcitrant black C material produced by the baking of organic matter 

under low oxygen conditions and relatively low temperature (<700 
o
C) (Dong et al., 

2017; Lehmann and Joseph, 2009; Shackley et al., 2010). It has multifaceted benefits 

including reduction of GHGs emissions (Woolf et al. 2010) and soil compaction, 

improvement of soil pH, aggregate stability (Wang et al., 2017), soil, permeability, 

porosity, water holding capacity (WHC), (Basso et al., 2013; Ulyett et al., 2014; 

Randolph et al., 2017), soil nutrients retention (Uzoma et al., 2011), nutrient availability 

(Subedi et al., 2016), carbon sequestration (Atkinson et al., 2010; Khare and Goyal, 2013; 

Laird, 2008; Matovic, 2011), soil organic matter (SOM), cation exchange capacity (CEC), 

microbial growth and shelter, microbial activity and pollutant degradation (Amendola et 

al., 2017; Reed et al., 2017; Tan et al., 2017; Upadhyay et al., 2014; Wang et al., 2014). 

Organic C is mainly stored in the form of stable aromatic compounds in BC  and is not 

decomposed easily even in suitable environmental conditions (Sohi et al., 2010). It has 

the ability to sequester C for thousands of years due to its recalcitrant chemical 

composition (Fowles, 2007). The application of BC has historic importance in some parts 

of the world in order to sequester C. The Terra Preta soils in the Amazon Basin have a 

large amount of sequestered C as a consequence of the application of BC by American 
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Indian people thousands of years ago (Lehmann et al., 2006). It also possesses the 

nutrient holding ability and improves soil physiochemical and biological life thus 

improves soil structure, aeration, WHC and provides microsites that act as shelter for soil 

microbes (Johnson et al., 2007; Lehmann et al., 2006) resulting in increased soil fertility 

(Koide et al., 2011). It improves the plants nutrient use efficiency which reduces nutrients 

leaching to watercourses thereby reduces environmental pollution (International Biochar 

Initiative, 2012). In addition to C sequestration, recently it has shown a great potential to 

mitigate GHGs emissions from agricultural soils, enhance NO3
-
 retention, improve 

nutrient use efficiency and increase plant yield (Felber et al., 2014; Liu et al., 2012a; 

Taghizadeh-Toosi et al., 2011; Zhang et al., 2011). The nitrate (NO3
-
) and ammonium 

(NH4
+
)

 
retention in BC amended soils is linked with the reduction of N2O emission. The 

BC has high CEC due to the negative charge on its surface which allows it to retain 

cations such as NH4
+
 (Cheng et al., 2006; Yao et al., 2012). The NO3

-
 and NH4

+
 retention 

in BC amended soils can decrease leaching of these nutrients from these soils (Winning, 

2014). A significant decrease in NH4
+
 loss was observed by Lehmann et al. (2002) and 

Angst et al. (2013). Few studies have reported no effect or increase in NO3
-
 leaching after 

BC application which could be due to weak adsorption and subsequent desorption of 

NO3
-
 by BC due to its low anion exchange capacity (Kameyama et al., 2012; Singh et al., 

2010). 

1.2. Purpose of the thesis 

The principal aim of this thesis was to investigate the potential role of BC in mitigating 

GHG losses, global warming potential (GWP), greenhouse gas intensity (GHGI), soil 
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NO3
-
 and NH4

+
 retention, soil pH, N uptake, and dry matter yield of silage corn following 

DM and inorganic N fertilizer application. Studies were carried out with the following 

specific objectives: 

i- To assess the GHGs emissions from organic and inorganic sources of nitrogen 

application in silage corn cropping systems 

ii- To determine the role of BC application in the reduction of GHG emission in 

silage corn cropping systems in western Newfoundland 

iii- To estimate GWP and GHGI of silage corn cropping systems  

iv- To determine the role of BC application on soil NO3
-
 and NH4

+
 retention in silage 

corn amended with DM and IN fertilizer application 

v- To compare the effects of dairy manure and IN alone and co-application of BC on 

soil pH, N uptake and biomass production of silage corn. 
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1.3. Thesis organization 

This thesis is divided into four chapters with the relevant literature reviewed at the start of 

each chapter. 

Chapter one: Provides a brief overview of global GHG emissions, N losses in the form of 

NO3
-
 and N2O into the atmosphere, different mitigation strategies to lessen GHGs 

emissions and NO3
-
 leaching and the potential role of BC as a mitigation strategy.  

Chapter two: This chapter describes a comparative study about the effect of different 

organic and inorganic N sources (DM1, DM2, IN and BC) on GHGs emissions, GWP, and 

GHGI of silage corn grown under field conditions in western Newfoundland, Canada. 

Chapter three: It covers the potential role of BC on the NO3
-
 and NH4

+
 retention, soil pH, 

plant N concentration and dry matter production of different silage corn genotypes.  

Chapter four: This chapter comprised of general discussion, conclusion and 

recommendations of the study. 
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Chapter 2  

2. Biochar amendment reduces greenhouse gases emission in silage corn 

cropping system following dairy manure and inorganic nitrogen application 

2.1. Abstract 

Biochar (BC) is considered as a mitigation tool for agricultural greenhouse gas (GHG) 

emissions. To access the effect of biochar application on the GHG emissions from 

organic and inorganic nitrogen sources applied to silage corn field, a two-year field 

experiment was conducted in Newfoundland, Canada. The treatments comprised of 1) 

dairy manure with high N (DM1:0.37 % N), 2) dairy manure with low N (DM2:0.13 % N), 

3) Inorganic nitrogen (IN), 4) DM1 + BC, 5) DM2 + BC, 6) IN + BC, and 7) Control (N0). 

Overall, BC application to DM1, DM2 and IN reduced cumulative CO2 emission by 16, 

25.5 and 26.5 %, lessened cumulative CH4 emission by 184, 200 and 293 %, lowered 

cumulative N2O emission by 95, 86 and 93 % respectively. It also enhanced the silage 

corn dry matter yield by 6.8, 4.8, and 11 %, decreased global warming potential (GWP) 

by 25, 34.6 and 37 %, and contracted greenhouse gas intensity (GHGI) by 29.8, 37.6, and 

43 % respectively. In conclusion, BC application demonstrated a great potential to 

decrease GHG emissions an increase crop yield simultaneously. 

Keywords: greenhouse gas emissions, global warming potential, greenhouse gas 

intensity, silage corn, dairy manure, biochar  
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2.2.  Introduction 

Greenhouse gases (GHGs) emitted from different sources gather into the atmosphere and 

cause higher atmospheric temperature leading to climate change. Anthropogenic 

greenhouse gas (GHG) emissions have a major contribution towards global warming and 

climate change and have reached to 49.5 Gt CO2 equivalent per year in 2010 (IPCC, 

2014a). According to Intergovernmental Panel on Climate Change (IPCC, 2014a) “global 

GHGs emissions have increased to unprecedented levels and must be pulled down by 40-

70 % compared to 2010 values by mid-century and near to zero by the end of the century 

to limit the increase in global mean temperature to 2 °C”. Agriculture sector contributes 

11-14 % towards global anthropogenic GHG emissions (Conway, 2012; Smith et al., 

2007; Tubiello et al., 2015) and these agricultural emissions are increasing at around 1 % 

per year (Lamb et al., 2016). In 2011, about 8 % of the total GHG emissions in Canada 

were contributed by the agriculture sector largely through methane CH4) and nitrous 

oxide (N2O) (Agriculture and Agri-Food Canada). From 1981-2011, N2O emissions had 

increased by 31 % and CH4 emission by 2 % from agricultural soils in Canada which 

were attributed to increased use of nitrogen fertilizers and dairy industry (Agriculture and 

Agri-Food Canada). Livestock sector produces approximately seven billion tons (7x10
9
 

Mg) of animal manure per year
 
worldwide (Thangarajan et al., 2013). Canadian dairy and 

livestock sector produces about half a million tons of manure daily which equals to 180 

million tons per year (Statistics Canada, 2006). Animal manure is historically known as a 

rich source of macro and micronutrients, when applied to agricultural soil it improves 

nutrient availability, soil organic matter (SOM) contents, soil organic carbon (SOC), 
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cation exchange capacity (CEC), and water holding capacity (WHC) etc. (Bolan et al., 

2004; Diacono and Montemurro, 2010; Maillard and Angers, 2014). Dairy manure (DM) 

application to maize increased C sequestration, soil N, P, K concentrations, N, and K 

uptake, maize biomass and harvest index (Khan et al., 2007). DM application to maize 

crop improved soil water use, increased SOM, N, P, K, Cu, Zn, Mn, improved biomass 

allocation into shoot and grains, increased water productivity by 3-5 % and maize yield 

by 5-10 % (Matsi et al., 2015; X. Wang et al., 2017). However, application of DM and IN 

to agricultural soils cause emission of a significant amount of GHGs including CO2, CH4 

and N2O (Amon et al., 2006; HUANG et al., 2017). Whereas, DM application to soil 

emits 32.7 % more GHGs than IN alone and these emissions may offset the benefits of 

improving SOC by DM application (Barneze et al., 2014; M. Zhou et al., 2017). Short-

chain volatile fatty acids in the DM are easily available to methanogenic archaea and 

cause CH4 outburst into the atmosphere immediately after application (Hrapovic and 

Rowe, 2002; Sherlock et al., 2002). The total amount of IN applied to agricultural soils is 

107.6 Tg N per year
 
worldwide (Lu and Tian, 2017), of which 17 Tg nitrogen is lost 

every year in the form of N2O into the atmosphere and the loss is expected to increase 

four times by 2100 due to increased application of IN (Galloway et al., 2008; Schlesinger, 

2009). Reduction of GHG emission and C sequestration has great potential to reduce 

global warming and climate change. Decreasing the atmospheric carbon by 3.5-4 Gt per 

year would limit the temperature increase to 2
 
°C by 2050 (Meinshausen et al., 2009; 

Minasny et al., 2017), a threshold level beyond which climate change would have a 

momentous impact (IPCC, 2014b). This annual reduction in atmospheric C concentration 

could be enhanced by increasing soil C sequestration in agricultural soils globally by 0.4 
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% per year, producing a C sink of 1.2 petagrams (Pg) per year (Paustian et al., 2016). The 

soils of agroecosystems have a technical potential of 1.2-3.1 billion ton C sequestration 

per year (Lal, 2011). A variety of management practices promote soil C sequestration 

including crop residues incorporation (Coppens et al., 2006), addition of perennial crops 

in rotation, no-tillage (West and Post, 2002), cover cropping (Mazzoncini et al., 2011), 

organic amendments like manure (Maillard and Angers, 2014) and biochar (Bera et al., 

2016). Some of these practices may be disadvantageous as they increase GHG emissions 

into the atmosphere like manure application and crop residues incorporation increase N2O 

emission (Li et al., 2005; M. Zhou et al., 2017). However, it has been reported that BC 

application to soil increase C sequestration (Bruun et al., 2012; Hernandez-Soriano et al., 

2016; D. A. Laird et al., 2010; D. Wang et al., 2017), increase soil microbial biomass (H. 

Zhou et al., 2017), enhance WHC and water use efficiency (Ippolito et al., 2016), improve 

nutrient holding capacity (Hagemann et al., 2017; Laird et al., 2010; Laird et al., 2010), 

increase crop yield (Liu et al., 2017; Usman et al., 2016; Zhang et al., 2011) and decrease 

GHGs emission (Ahmed et al., 2016; Cayuela et al., 2013; Chang et al., 2016; Jia et al., 

2012; Lan et al., 2017; Liu et al., 2012b; Sun et al., 2014; Wang et al., 2013). Integration 

of BC in agricultural systems has been proposed as an effective management option to 

mitigate GHG emissions from soils (Hawthorne et al., 2017; Lehmann, 2007; Thomazini 

et al., 2015; Van Zwieten et al., 2010a). However, before using BC as a C sequestration 

tool, it must be verified that its addition does not create adverse effects, e.g. increased 

GHG emission (Schimmelpfennig et al., 2014). In a two-year field experiment, 

application of BC increased SOC, pH, total N, and crop productivity however there was 

no effect on the GWP and GHGI during the first year, but during the second year it 
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decreased GWP and GHGI by 7-18 % and 12-38 %, respectively, in rice cropping system 

(Zhang et al., 2012). Wheat straw derived BC application at the rate of 24 ton per hectare 

and 48 ton per hectare
 
decreased GWP by 30.7 and 35.6 %, respectively in double rice 

cropping system in China (Liu et al., 2014). BC application in intensive vegetable 

cropping systems with four consecutive vegetable crops had no influence on CH4 

emission while decreased N2O emission by 1.7-25.4 %, net GWP by 89-700 % and GHGI 

by 89-644 %, respectively (Li et al., 2015). BC application to soil can reduce GHG 

emission, GWP and GHGI of maize crop along with improving soil physiochemical and 

biological properties (Sun et al., 2017; Tan et al., 2017; Yang et al., 2017). It modifies the 

nutrient transformations in the soil and reduces the emission of GHGs (Castaldi et al., 

2011; Liu et al., 2012; Laufer and Tomlinson, 2012; Liu et al., 2017a). BC application to 

soil amended with slurry reduced the cumulative N2O and CO2 emission by 63, and 84 %, 

respectively while had no effect on CH4 emissions during first 15 days of slurry 

application (Brennan et al., 2015). Application of BC to maize crop under field conditions 

could reduce N2O emissions by 41.8-52 % (Hüppi et al., 2015; Zhang et al., 2011). In a 

meta-analysis it was found that BC has the potential to reduce N2O emissions by 49±5 % 

and this reduction depends on the degree of polymerization and aromaticity of biochar i.e. 

biochar with low H : Corg ratio reduces N2O emission more than BC having high H : Corg 

ratio (Cayuela et al., 2015). Soil aeration is significantly increased after BC application 

which decreases denitrification and reduces N2O emission (Case et al., 2012; Suddick and 

Six, 2013). Biochar surface absorbs soil NO3
-
 and reduces the substrate for nitrification 

thus help to reduce N2O emissions (Mizuta et al., 2004; Taghizadeh-Toosi et al., 2011). 

Biochar application to soil could also reduce CH4 emission resulting from manure 
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application. After a series of laboratory and field studies it was found that slurry 

application increased N2O and CH4 emissions from the soil while BC application with 

slurry increased plant biomass, increased C sequestration, decreased N2O and CO2 

emission and increased CH4 oxidation (Schimmelpfennig et al., 2014). Application of 

bamboo char and straw char reduced CH4 emissions from waterlogged paddy soil by 51 

% and 91 % respectively, which was attributed to inhibition of methanogenic activity and 

increased CH4 oxidation (Liu et al., 2011). 

There have been numerous studies documenting the GHGs emissions from agricultural 

soils in tropical areas; however, there is a lack of information concerning the GHG 

emissions under field conditions in the cool climatic region of Newfoundland. To address 

this issue and deficit in information, the current study was designed with the following 

objectives: 

i. To assess the GHGs emission from organic and inorganic sources of nitrogen 

application in silage corn cropping systems. 

ii. To determine the role of BC application in enhancing biomass production and 

reduction in GHG emission in silage corn cropping systems in NL. 

iii. To estimate GWP and GHGI of silage corn cropping systems under different dairy 

manure and biochar treatments 
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2.3.  Materials and Methods 

2.3.1. Study site 

A field experiment was carried out at Pynn’s Brook Research Station, Pasadena 

(49°04'21.9"N, 57°33'37.4"W) in Newfoundland, Canada, during 2016 and 2017 growing 

seasons. The soil of this area is classified as rapidly drained, Orthic Humo-Ferric Podzol 

with reddish brown to brown color. The soil has developed on gravely sandy fluvial 

deposit of mixed lithology. Due to high coarse fragments and rapid drainage it has a 

limited agricultural use. The best-suited crops for this soil are hey and forage crops 

(Kirby, 1988). Basic physio-chemical properties of soil can be seen in Table 2.1. 

 

Table 2.1: Basic soil properties of the experimental site at Pynn’s Brook Research Station 

Site characteristics Description 

Soil class Orthic Humo-Ferric Podzol 

Soil texture (10-15 cm depth) Gravelly loamy sand: sand (82±3.4 %), silt 

(11.6±2.4 %), clay (6.4±1.2 %) 

Soil parental material Channery, gravely sandy stratified fluvial deposit 

Elevation 45 m 

Soil drainage class Well to rapidly drained 

Soil pH 6.3 (2016), 6.8 (2017) 

Average bulk density 1.31±0.07 g cm
-3

 

Average porosity 51±0.03 % 

Gravel 20 % in top 5 cm layer 

Average soil organic matter 3.10 % 

CEC 12 cmol/kg 

Previous Crop (2015) Silage corn 
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2.3.2. Experimental setup and treatments 

The experiment comprised of three nitrogen sources amended with BC. Treatments 

included were; 1) DM with high N conc. (0.37 %) designated as DM1, 2) DM with low N 

conc. (0.13 %), designated as DM2, 3) Inorganic nitrogen (IN), 4) DM1+Biochar, 5) 

DM2+Biochar, 6) IN + Biochar, and 7) control (N0). DM was collected from two dairy 

farms (Larch Grove and Rideout Junior) located in Cormack area near Deer Lake, 

Newfoundland and Labrador (NL). Soil and DM samples were sent for detailed nutrient 

analyses to Soil, Plant and Feed Laboratory, Department of Fisheries and Land 

Resources, St. John’s, NL. DM from Larch Grove farm (designated as DM1) exhibited 

high concentration of N, P, K, Ca, Mg, Fe, Mn, Zn, B whereas, DM sourced from Rideout 

Junior farm (designated as DM2) had a low concentration of N, P, K, Ca, Mg, Fe, Mn, Zn, 

B (Table 2.2). DM was applied before seeding in respective plots according to local 

farmers practice i.e. 30,000 liters per hectare. Fertilizers were applied to fulfill the 

required nutrients based on DM and soil analyses reports and regional recommendations 

of the crop. Ammonium nitrate (AN), triple superphosphate (TSP) and murate of potash 

(MOP) were used as nitrogen (N), phosphorus (P), and potash (K) sources, respectively 

and were applied @ 215,110, 225 kg per hectare. DM1, DM2 and the entire IN were 

applied before crop seeding during 2016 while in 2017 DM1 and DM2 were applied to all 

respective treatments (DM1, DM2, DM1+B, DM2+B) before seeding but the IN fertilizer 

was applied in two splits (first dose: 6 leaf stage, second dose: 12 leaf stage). The 

experimental design was a randomized complete block (RCBD) with three replications 

and net plot size was 4.8 meters x 1.5 meters.  



33 

 

 

Table 2.2: Chemical analysis of dairy manures used in the study 

Characteristic                        Larch Grove farm (DM1)                  Rideout Junior farm (DM2) 

(as received basis)                2016                        2017                     2016                        2017 

           

Dry matter (%) 9.33 10.9 3.57 1.70 

pH 6.80 6.80 7.00 7.10 

Total Nitrogen (%) 0.37 0.44 0.14 0.12 

Total Phosphorus (%) 0.06 0.08 0.02 0.01 

Total Potassium (%) 0.38 0.37 0.12 0.12 

Total Calcium (%) 0.16 0.19 0.059 0.04 

Total Magnesium (%) 0.07 0.07 0.02 0.01 

Total Iron (ppm) 49.0 68 19.0 7.00 

Total Manganese (ppm) 23.0 21.0 9.00 5.00 

Total Copper (ppm) 4.70 4.50 33.0 20.0 

Total Zinc (ppm) 17.0 21.0 8.00 5.00 

Total Boron (ppm) 3.00 3.40 1.00 0.50 

Total Sodium (ppm) 911 904 275 241 
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2.3.3. Crop husbandry 

DM and BC were applied one day before seeding and mixed in the soil to 15 cm depth. 

Seeding of silage corn hybrid (Yukon R) was done with the SAMCO 2200 system 

(SAMCO Agricultural Manufacturing Ltd) on May 24 and May 23 during 2016 and 2017, 

respectively. This system has an advantage that it can cover the seed rows with 

degradable polythene sheet while seeding, which allows accumulating maximum heat 

during the cold season for seed germination (Figure 2.1). This sheet had several pin holes 

which allow the trapped air under the sheet to escape and keep it tight to the soil. These 

pin holes weaken the sheet allowing the plants easy access through the sheet while 

maintaining soil temperature. Seeding rate for the crop was 90,900 seeds per hectare. 

Weeds were controlled with the spray of Roundup WeatherMax on July 09, 2016 and 

July 08, 2017 at the rate of 2 L per hectare. BC used in the study was purchased from 

AirTerra Inc. located in Calgary, Alberta, and is a registered BC product with the 

Canadian Food Inspection Agency (CFIA), which is the first in Canada. It was produced 

from yellow pine wood pyrolyzed at 500 
o
C for 30 min in oxygen-limited conditions. BC 

was applied @ 20 tons ha
-1

 (Liu et al., 2012b). The detailed BC analyses report conducted 

by Gabilan laboratory, Salinas, California, USA can be seen in Table 2.3. 
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Figure 2.1: Silage corn seeding with SAMCO 2200 

 

 

  



36 

 

Table 2.3: Physio-chemical properties of biochar used in the study 

Property Wet basis 
Dry weight 

basis 

pH 9 - 

ECe (mmhos/cm 0.43 - 

Moisture (%) 15.2 
 

WHC (mL water per 100g dry char) 74.9 74.9 

Volatile matter (%) 
 

8.5 

Ash (%) 
 

6.7 

Fixed carbon (%) 
 

84.5 

H (%) 
 

0.68 

O (%) 
 

7.84 

N (%) 
 

0.22 

S (%) 
 

0 

H/C 
 

0.1 

O/C 
 

0.07 

Total ash (%) 6 7.1 

Recalcitrant carbon (%) 64.6 76.2 

Neutralizing value (% as CaCO3) 4.2 4.9 

Carbonate value (% as CaCO3) 0.5 0.6 

Butane activity (g/100g dry char) 
 

5.1 

Bulk density (Mg/m
3
) 0.23 0.19 

Particle density (acetone) (g/cc) 
 

1.57 

Solid space (% v/v) 
 

12.5 

Void space (% v/v) 
 

87.5 
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2.3.4. Greenhouse gas sampling and analysis 

GHG samples were collected weekly in the first month and then fortnightly for the whole 

growing seasons using static chamber method (Holland et al., 1999). The Polyvinyl 

chloride (PVC) collars with an inner diameter of 26 cm were inserted permanently to a 

depth of 10 cm in each plot one week before the start of 1
st
 GHGs sampling to mitigate 

any placement disturbance. A 50 cm high PVC chamber with 26 cm diameter and 

covering lid was fixed on the top of each collar during GHGs sampling. Chamber top lid 

had tubing outlets connected with three-way stopcocks with Luer-lock tip. For each 

measurement, four gas samples were taken from the chamber using a 30 mL non-sterile 

syringe fitted with a three-way stopcock (BD Luer-lock tip) at 10 min intervals (0, 10, 20 

and 30 min after lid closure) (Wang et al., 2012; Chen et al., 2015). To minimize any 

effect of diurnal variation in emissions, the samples were taken at the same time of the 

day (9 am - 3 pm) on each sampling occasion. During each GHG sampling event, soil 

moisture (SM) content (volume basis) and EC (5 cm depth), and soil temperature (ST) (5 

cm and 20 cm depth) were also monitored by SM and temperature probes (EC-TM 

model, Decagon Devices Inc.) from each treatment (Figure 2.2). 

GHG samples were transferred to evacuated clear Labco Exetainer® glass vials (Vial 

type 3-soda glass, height 101 mm, diameter 15.5 mm, capacity 12 mL) sealed with gas-

tight neoprene septum. Quantification of GHGs i.e. CO2, CH4 and N2O was carried out by 

gas chromatography (SICON GC-456 Bruker) equipped with thermal conductivity 

detector (TCD), flame ionization detector (FID), and electron capture detector (ECD) 

(Collier et al., 2014). All the fluxes were adjusted for headspace volume and chamber 
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area as explained by (Holland et al., 1999), and calculated by linear regression using all 

time points sampled: F = (dC/dt) x V/A (where, V is volume of the chamber, A is the area 

covered by chamber, and dC/dt is the rate of concentration change). Cumulative GHG 

fluxes during the experimental period were calculated by multiplying the mean fluxes of 

two successive determinations by the length of the period between samplings and adding 

that amount to the previous cumulative total as described in Equation (2.1) (Cai et al., 

2013; Menéndez et al., 2006). 

 
                ∑   

 

   

                        
(2.1)  

Where F is the GHGs flux (mg m
-2

 h
-1

), i is the i
th

 measurement, the term of (ti+1 - ti) is the 

days between two adjacent sampling events, and n is the total number of sampling events. 

 

Figure 2.2: Recording soil temperature, moisture and EC (a), sampling chambers fixed 

over sampling spots in a crop row (b), GHGs sample collection with (c) 
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2.3.5. Global warming potential and greenhouse gas intensity calculation 

Global warming potential is the relative measure of how much warming is caused by a 

certain gas as compared to same mass of CO2. Whereas greenhouse gas intensity is the 

measurement of the total emissions from a system per unit of the produce. GWP of CO2, 

CH4, and N2O and GHGI were calculated by Equation (2.2) and (2.3), respectively (Yang 

et al., 2017; Zhang et al., 2013, 2012; Z. S. Zhang et al., 2014). 

 

                                       (2.2) 

 

 

                                             
                ⁄  (2.3) 

2.3.6. Dry matter production 

Plants were harvested from a 1 m
2
 area at black layer stage from each plot and their fresh 

weight was recorded. Plants were oven dried at 70 
o
C for 48 h and dry matter yield 

(DMY) was calculated from each treatment plot using Equations(2.4) and (2.5). 

Percent dry matter was calculated by; 

 

                        
               

            
       (2.4) 

DMY was calculated by multiplying dry matter percentage with the fresh weight of plants 
 

                                                            (2.5 )  
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2.3.7. Statistical analysis 

The analysis of variance (ANOVA) was used to determine the effect of different 

treatments on the emission of CO2, CH4 and N2O, DMY, GWP and GHGI. Where 

treatment effects were significant, the means were compared with LSD (α = 0.05). The 

data were analyzed using the Statistix 10 software package (Analytical software, FL, 

USA) and figures were prepared using SigmaPlot 12.0 software program (Systat Software 

Inc., San Jose, CA). 
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2.4.  Results 

2.4.1. CO2 flux 

Data presented in Tables 2.4 and 2.5 show that DM1, DM2, and IN alone and in 

combination with BC had significantly (p<0.05) affected CO2 emission during both 

growing seasons. Cumulative CO2 emission was maximum (7,834 kg ha
-1

 season
-1

) in 

DM1 treatment and minimum cumulative CO2 emission (5,576 kg ha
-1

 season
-1

) was 

observed in IN+B treatment during the 2016 growing season (Table 2.4). In the 2017 

growing season, CO2 emission pattern in treatments was the same as 2016, but 

cumulative emission was lower. The DM1 treatment emitted more cumulative CO2 (7,078 

kg ha
-1 

season
-1

) while minimum (3,800 kg ha
-1

 season
-1

) was noted in the IN+B treatment 

(Table 2.5). BC application to DM1, DM2 and IN significantly (p<0.05) reduced 

cumulative CO2 emission by 17, 25 and 26 % in 2016 (Table 1), while it was reduced by 

15, 26 and 27 % in 2017, respectively. Significant temporal variation in CO2 emission 

was noted in both years. Maximum CO2 emission (439 mg m
-2

 h
-1

) was observed 90 days 

after manure application (DAMA) in DM2 treatment and minimum emission (77 mg m
-2

 

h
-1

 ) was noticed in N0 (control) treatment at 146 DAMA during 2016 (Figure 2.3a). In 

2017, CO2 emission at 60 DAMA was greatest (462 mg m
-2

 h
-1

) in DM1 and least 

emission (44 mg m
-2

 h
-1

 ) was recorded in N0 treatment at 29 DAMA (Figure 2.4a).  
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Table 2.4: Cumulative greenhouse gas emission/absorption of  CO2, CH4 and N2O (Kg 

ha
-1

 season
-1

), global warming potential (kg CO2 equivalent), silage corn dry matter yield 

(kg ha
-1

), and greenhouse gas intensity (kg CO2 equivalent per kg dry matter yield), 

during growing season 2016.  

Treatment CO2 CH4 N2O GWP DMY GHGI 

DM1 7834±476a 1.26±0.9a 1.69±0.2a 8372±433a 19797±173c 0.42±0.02a 

DM1+B 6430±169b -1.42±0.1b -0.15±0.1d 6350±203b 21050±125a 0.30±0.01b 

DM2 7652±31a 0.83±0.5 a 2.17±0.1a 8319±293 a 19567±240c 0.42±0.01 a 

DM2+B 5666±16b -1.01±0.4 b 0.59±0.1bc 5819±202 cd 20433±176b 0.28±0.01 bc 

IN 7566±37a 0.86±0.5 a 1.80±0.3a 8126±332 a 18813±135d 0.43±0.02 a 

IN+B 5576±29b -1.69±0.6 b 0.24±0.1bc 5607±268 d 20533±176ab 0.27±0.01 c 

N0 5961±11b -0.10±0.2ab 0.89±0.0b 6224±105 bc 15300±152e 0.40±0.00 a 

Means sharing common letters in each column are not significantly different (at 0.05 

probability level).  
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Table 2.5: Cumulative greenhouse gas emission/absorption of  CO2, CH4 and N2O (Kg 

ha
-1

 season
-1

), global warming potential (kg CO2 equivalent), silage corn dry matter yield 

(kg ha
-1

), and greenhouse gas intensity (kg CO2 equivalent per kg dry matter yield), 

during growing season 2017 

Treatment CO2 CH4 N2O GWP DMY GHGI 

DM1 7078±639a 11.6±3a 1.95±0.27a 7953±660a 15983±258bc 0.49±0.04a 

DM1+B 5957±714ab -6.5±3bc 0.33±0.13b 5894±653b 17160±105a 0.34±0.04c 

DM2 5601±806abc 11.5±2a 1.63±0.10a 6377±770b 15667±218c 0.40±0.04b 

DM2+B 4100±754bc -9.1±5bc -0.01±0.51b 3868±999cd 16483±44ab 0.23±0.06d 

IN 5248±740abc 9.9±3a 1.47±0.20a 5936±659b 14580±408d 0.40±0.05b 

IN+B 3800±465c -19±5c 0.19±0.16b 3382±539d 16483±130ab 0.20±0.03d 

N0 3997±561bc -0.28±5ab 0.96±0.56ab 4277±745c 11200±152e 0.38±0.06bc 

Means sharing common letters in each column are not significantly different (at 0.05 

probability level) 
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2.4.2. CH4 flux 

Experimental treatments (DM1, DM2, and IN alone and in combination with BC) had 

significantly (p<0.05) affected CH4 emission during 2016 and 2017 growing seasons 

(Table 2.4 &  2.5). Comparison of treatment’s means showed that cumulative CH4 

emission was greatest (1.26 kg ha
-1

 season
-1

) in DM1 treatment, whereas, IN+B treatment 

exhibited maximum (1.69 kg ha
-1

 season
-1

) cumulative CH4 absorption during 2016 

growing season (Table 2.4). However, DM1, DM2, and IN treatments were statistically 

non-significant with each other. In the 2017 growing season, cumulative CH4 emission 

was higher as compared to 2016 and DM1 treatment emitted more cumulative CH4 (11.6 

kg ha
-1

 season
-1

), while maximum absorption (19.5 kg ha
-1

 season
-1

) was noted in the 

IN+B treatment (Table 2.5). BC application to DM1, DM2 and IN treatments significantly 

(p<0.05) reduced cumulative CH4 emission/increased absorption by 213, 221 and 295 % 

in 2016 (Table 1), while it was 156, 179 and 291 % in the 2017 growing season, 

respectively. There was a significant temporal variation in CH4 emission/absorption 

during both years, which may be attributed to great variation in soil temperature during 

both growing seasons (Helbig et al., 2017). Maximum CH4 emission (0.13 mg m
-2

 h
-1

) 

was noted in DM1 treatment after 103 DAMA and maximum absorption (0.17 mg m
-2

 h
-1

) 

was observed in IN+B treatment at 20 DAMA during 2016 (Figure 2.3b). In 2017 

growing season, DM2 treatment emitted more CH4 emission (1.78 mg m
-2

 h
-1

) at 127 

DAMA and IN+B treatment showed the highest absorption (1.2 mg m
-2

 h
-1

) at 127 

DAMA (Figure 2.4b). 
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2.4.3. N2O flux 

Data presented in Tables 2.4 and  2.5 show that DM1, DM2, and IN treatments alone and 

in combination with BC had significantly (p<0.05) affected N2O emission during both 

growing seasons. Cumulative N2O emission was maximum (2.17 kg ha
-1

 season
-1

) in DM2 

treatment compared to minimum cumulative N2O emission (-0.15 kg ha
-1

 season
-1

) that 

was observed in DM1+B treatment during 2016 growing season (Table 2.4). Whereas, in 

2017 DM1 treatment produced more cumulative N2O (1.95 kg ha
-1

 season
-1

) while 

DM2+B treatment emitted minimum (-0.01 kg ha
-1

 season
-1

) N2O (Table 2.5). BC 

application to DM1, DM2 and IN significantly (p<0.05) reduced cumulative N2O 

emission by 108, 72 and 86 % in 2016 (Table 2.4), while in 2017 it was reduced by 82, 

100 and 86 %, respectively (Table 2.5) Significant temporal variation in N2O emission 

was also noted in both years. N2O emission was greatest (0.25 mg m
-2

 h
-1

) in DM2 

treatment at 34 DAMA and minimum emission (-0.07 mg m
-2

 h
-1

) was noted in the 

DM1+B treatment at 117 DAMA during 2016 (Figure 2.3c). In 2017, N2O emission at 

127 DAMA was greatest (0.15 mg m
-2

 h
-1

) in DM1 and least emission (-0.05 mg m
-2

 h
-1

) 

was recorded in the DM1+B treatment at 46 DAMA (Figure 2.4c).  

2.4.4. Global warming potential, dry matter yield and greenhouse gas intensity 

GWP and GHGI of all experimental treatments are shown in Table 2.4 for the 2016 

growing season and in Table 2.5 for the 2017 growing season. There was a significant 

(p<0.05) effect of treatments on the GWP and GHGI during both years. During 2016, the 

highest GWP (8,372 kg CO2 equivalent) and the lowest GWP (5,607 kg CO2 equivalent) 
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were observed in DM1 and IN+B, respectively. DMY ranged from 15,300 kg ha
-1

 in the 

control to 21,050 kg ha
-1

 in DM1+B. Maximum GHGI (0.43 kg CO2 equivalent kg
-1

 dry 

matter) was in IN whereas minimum (0.27 kg CO2 equivalent kg
-1

 dry matter) was 

observed in IN+B. BC application to DM1, DM2, and IN reduced GWP by 24, 30, and 31 

% respectively, increased dry matter production by 6.3, 4.4, and 9 %, and decreased 

GHGI by 28.9, 33 and 36.8 % respectively. During 2017, the maximum GWP (7,954 kg 

CO2 equivalent) and the lowest (3,382 kg CO2 equivalent) were observed in DM1 and 

IN+B respectively. DMY ranged from 11,200 kg ha
-1

 in control to 17,160 kg ha
-1

 in 

DM1+B. GHGI was highest in DM1 (0.49 kg CO2 equivalent kg
-1

 dry matter) whereas 

minimum (0.20 kg CO2 equivalent kg
-1

 dry matter) was observed in IN+B. BC 

application to DM1, DM2, and IN reduced GWP by 26, 39, and 43 %, increased DMY  by 

7, 5, and 13 %, and decreased GHGI by 31, 42 and 50 %, respectively. 
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Figure 2.3: Temporal greenhouse gas emission during growing season 2016 

(a) CO2 (b) CH4 (c) N2O, Solid circle (DM1), empty circle (DM1+B), solid triangle 

(DM2), empty triangle (DM2+B), Solid square (IN), empty square (IN+B), solid diamond 
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Figure 2.4: Temporal greenhouse gas emission during growing season 2017 

(a) CO2 (b) CH4 (c) N2O, Solid circle (DM1), empty circle (DM1+B), solid triangle 

(DM2), empty triangle (DM2+B), Solid square (IN), empty square (IN+B), solid diamond 
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2.5.  Discussion 

2.5.1. Meteorological conditions:  

Newfoundland has a unique climate and characterized with relatively short and cool 

growing period from May to October. Relatively low temperature was recorded during 

crop seeding (May) and harvesting (October) periods during both study years. However, 

mean maximum, mean minimum and mean average temperature was slightly lower 

during 2017 than 2016 with few exemptions. The average seasonal rainfall was 

significantly lower (30 % less) in 2017 compared to 2016 (Table 2.6). Well distributed 

rainfall was recorded during 2016 whereas the second growing season was characterized 

not only by low rainfall but also a completely dry period during June where the crop was 

at the active growth stage.  
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Table 2.6: Weather conditions (biweekly average) during silage corn growing season in 

2016 and 2017 at Pynn’s Brook Research Station 

 

Growth period 

Mean 

max. 

Temp. 

(oC) 

Mean 

min. 

temp. 

(oC) 

Average 

temp. (oC) 

Rain 

(mm) 

Mean 

Max. 

Temp. 

(oC) 

Mean 

Min. 

temp. 

(oC) 

Average 

temp. 

(oC) 

Rain 

(mm) 

2016 2017 

May 01-15 12.06 0.26 6.16 37 12.8 -1.46 5.66 11 

May 16-31 16.06 2.68 9.37 47 13.06 0.0 6.53 47 

June 01-15 14.86 4.40 9.63 107 15.33 3.53 9.43 35 

June 16-30 23.26 7.73 15.5 41 21.46 8.40 14.93 45 

July 01-15 21.0 7.93 14.46 42 23.33 8.8 16.06 29 

July 16-31 24.81 10.93 17.87 40 24.18 8.31 16.25 12 

August 01-15 23.06 10.06 16.56 27 23.8 9.46 16.63 58 

August 16-31 21.75 10.0 15.87 112 22.12 6.87 14.5 32 

September 01-15 18.4 7.46 12.93 98 19.06 7.53 13.3 80 

September 16-30 14.2 3.26 8.73 35 15.33 2.86 9.1 76 

October 01-20 14.05 0.4 7.22 118 12.8 2.4 7.6 76 

Total    704    501 
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Figure 2.5: (a) Air temperature and rainfall at Pynn’s Brook Research Station (b) soil 

temperature at 5cm depth, and (c) soil moisture at different greenhouse gas sampling 

dates during growing season 2016.  

Solid circle (DM1), empty circle (DM1+B), solid triangle (DM2), empty triangle 

(DM2+B), Solid square (IN), empty square (IN+B), solid diamond (N0) 
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Figure 2.6: (a) Air temperature and rainfall at Pynn’s Brook Research Station (b) soil 

temperature at 5cm depth, and (c) soil moisture at different greenhouse gas sampling 

dates during growing season 2017.  

Solid circle (DM1), empty circle (DM1+B), solid triangle (DM2), empty triangle 

(DM2+B), Solid square (IN), empty square (IN+B), solid diamond (N0) 
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2.5.2. CO2 emission 

Maximum CO2 emission reached the peak of 439 mg m
-2

 h
-1

 at 90 DAMA in the 2016 

growing season. This peak could be directly related to highest ST and lowest SM, during 

the period between 79-90 DAMA (Figure 2.5b). In 2017, the maximum CO2 emission 

peak occurred at 60 DAMA when ST was the highest (25 
o
C) and SM was the lowest of 

the whole growing season (Figure 2.6). Similarly, the minimum CO2 emission events in 

both growing seasons were related to ST and SM. During 2016, minimum CO2 emission 

was observed at 146 DAMA when ST was the lowest (9.8
 o

C) and SM was the maximum 

(35.7 %) (Figure 2.5), while in 2017, minimum emission was recorded at 29 DAMA 

when ST was relatively low (16.5 
o
C) and SM was relatively high (31 %). There was a 

significant reduction in CO2 emission in BC treatments (DM1+B, DM2+B, IN+B) as 

compared to non-BC treatments (DM1, DM2, IN) (Figure 2.6). DM incorporation to soil 

increased cumulative CO2 emission over the season. DM application increases the soil 

CO2 emission directly from C compounds in the DM and also by inducing a priming 

effect on native soil C (Bol et al., 2003). It had been reported in several studies that BC 

application reduces CO2 emission. BC application to DM amended soil reduced 

cumulative CO2 emission by 84 % most probably due to sorption of CO2 on BC surface 

or a reduction in the availability of labile C (Brennan et al., 2015). Both positive and 

negative response of BC have been reported on CO2 emission, for example, (Spokas and 

Reicosky, 2009)of the sixteen BC types evaluated,  three have reduced, five have 

increased and eight have no impact on CO2 emissions from agricultural soils (Spokas and 

Reicosky, 2009). Manure treatments (DM1, DM2) have high CO2 emission rates than IN 
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and BC treatments, which can also be supported with previous studies (Agegnehu et al., 

2016; Lentz et al., 2014; Schimmelpfennig et al., 2014). The decline in dissolved organic 

carbon (DOC) from native SOC after BC addition reduced the decomposition of organic 

C which reduced CO2 emission from the soil by 64-68 % (Lu et al., 2014). BC induced 

negative priming effect and slowed the breakdown of SOM by different mechanisms 

including; (1) sorption of enzymes responsible for SOM breakdown, (2) shift in microbial 

metabolism, (3) enhanced stability of soil aggregates and microbial community shift 

towards low C turnover bacteria taxa (Zheng et al., 2018), and (4) decreased 

bioavailability of SOC via adsorption on BC large surface area (Sheng and Zhu, 2018).  

2.5.3. CH4 flux 

The studied site acted both as a source and a sink of CH4. During the 2016 growing 

season, the highest CH4 emission (0.13 mg m
-2

 h
-1

) occurred at 103 DAMA when the SM 

was the highest (36.5 %) (Figure 2.5), whereas in 2017, the highest emission (1.78 mg m
-2

 

h
-1

) was recorded at 127 DAMA when the SM was the highest (40 %) (Figure 2.6). 

Minimum CH4 emission of -0.17 mg m
-2

 h
-1 

(from IN+B in 2016 and -1.2 mg m
-2

 h
-1

 

(from IN+B) in 2017 was not related to SM or ST. Increase in CH4 production after DM 

application as in this experiment has been reported in previous studies. Short-chain fatty 

acids present in DM become available to methanogenic archaea after application to land 

and cause CH4 outbursts (Hrapovic and Rowe, 2002; Sherlock et al., 2002). Significant 

reduction in CH4 emission was observed in BC treatments (DM1+B, DM2+B, IN+B) as 

compared to non-BC treatments (DM1, DM2, IN). The decrease in CH4 emission after BC 

application might be due to the stimulation of methanotrophic activity or the increased 
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abundance of the methanotrophic proteobacterial community (Feng et al., 2012; Liu et al., 

2011). Kim et al (2017) studied the effect of BC and slow release fertilizer (SRF) on rice 

yield and CH4 emission and concluded that BC suppressed methanogenesis by increasing 

the oxygen supply in the soil through increased aeration.  

2.5.4. N2O flux 

The experimental site was a source as well as a sink of N2O. The highest N2O emission 

peak (0.25 mg m
-2

 h
-1

 from DM2) at 34 DAMA was correlated to the highest ST (19.9 
o
C) 

during 2016 (Figure 2.5). Whereas, the high emission peak (0.15 mg m
-2

 h
-1 

from DM1) at 

127 DAMA in 2017 growing season was related to the highest SM (33.5 %) at that day 

(Figure 2.6). BC amendment suppressed N2O emissions from DM1, DM2 and IN during 

both years. The decrease in N2O emissions with BC incorporation was observed by 

several researchers previously (Augustenborg et al., 2012; Singh et al., 2010; Spokas and 

Reicosky, 2009; Taghizadeh-Toosi et al., 2011; Van Zwieten et al., 2010b; Yanai et al., 

2007). There are several mechanisms by which BC could reduce N2O emissions. 

Application of BC improves soil aeration by reducing the soil bulk density resulting in a 

decrease in the activity of denitrifiers in paddy fields (Zhang et al., 2010). Reduction of 

N2O emissions after BC amendment had been explained due to different mechanisms 

including modification of SM, increased aeration, inhibition of nitrifier and denitrifier 

communities (Laird et al., 2009; Yanai et al., 2007). BC application to soil accelerates; 

(1) the growth of soil microbes (e.g. Bradyrhizobiaceae and Hyphomicrobiaceae families) 

that can decrease N2O emission by supporting denitrification of NO3
-
 to N2, (2) the 

mycobacterial reduction of NO3
-
 to NH4

+
, and (3) adsorption of NH4

+
 on BC surface 
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decreasing the abundance of microorganisms involved in nitrification of NH4
+ 

to nitrite 

(NO2
-
) (Anderson et al., 2011). BC particles adsorb NH4

+
 on their surface and, reduce its 

availability for nitrification, as a result, N2O emission is declined (Berglund et al., 2004; 

Lehmann et al., 2006).  

2.6.  Conclusion 

BC application reduced the cumulative GHG emission during both growing seasons from 

silage corn cropping system in western Newfoundland. Overall, BC application to DM1, 

DM2 and IN decreased cumulative CO2 emission by 16, 25.5 and 26.5 %, cumulative CH4 

emission by 184, 200 and 293 %, and cumulative N2O emission by 95, 86 and 93 %, 

respectively. BC treatments exhibited significantly higher SM contents at all sampling 

points than non-BC treatments. BC incorporation also reduced the GWP by 24.9, 34.5, 

and 37 %, and GHGI by 30, 37.5, and 43.4 % in DM1, DM2 and IN treatment, 

respectively. Based on the results of this study, it is concluded that BC application to soil 

with DM and IN fertilizer have a great potential to reduce GHGs emissions, global 

warming and climate change without compromising the dry matter yield of silage corn 

crop in western Newfoundland.  
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Chapter 3  

3. Biomass production, and nitrogen dynamics of silage corn as influenced by 

organic and inorganic nitrogen sources and biochar amendment 

3.1. Abstract 

Most of the nitrogen (N) applied to crops is leached down in the form of nitrates (NO3
-
)
 

resulting in reduced N use efficiency. To assess the potential of biochar (BC) application 

for the mitigation of NO3
-
 leaching and retention of NO3

-
 and ammonium (NH4

+
) , a two 

year field study was conducted with two dairy manure sources (DM1, DM2), inorganic N 

(IN), their combination with BC and a control (no N). Three silage corn genotypes 

(A4177G3RIB, DKC26-28 RIB, Yukon R) were used. BC application significantly 

reduced the NO3
-
 and NH4

+
 movement to deep soil and it enhanced their retention in 

topsoil, increased soil pH, enhanced N concentration in plant tissues and increased dry 

matter yield in all silage corn genotypes. On average, BC addition to DM1, DM2, and IN 

enhanced N uptake by 13.5, 11.5 and 17.3 % and dry matter yield by 6, 5.5, and 8.75 %, 

respectively. Conclusively, BC application to soil could improve soil pH, reduce NO3
-
 

and NH4
+
 loses by increasing their residence time in soil, hence N concentration and dry 

matter production in silage corn cropping systems in western Newfoundland. 

Keywords: nitrate/ammonium retention, silage corn, dairy manure, biochar   
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3.2.  Introduction 

Dairy manure (DM) and inorganic nitrogen (IN) fertilizers are the major sources of plant 

nutrients and are being applied to crops worldwide to boost the agricultural productivity 

(Jokela et al. 2014; Wang et al. 201 7c; Parker et al. 2018). DM application improves 

physiochemical properties of soil and agronomic performance of plants e.g. soil organic 

carbon (SOC), bulk density, soil aggregation, nutrient status and uptake, crop growth and 

yield (Forge et al., 2016; Martínez et al., 2017). However, excessive IN fertilizers and 

DM application enhance the risk of NO3
-
 leaching in different cropping systems and 

consequently increase cost of production, pollute water bodies and pose a serious threat to 

human health (Fan et al., 2017; Forge et al., 2016; Jokela et al., 2014; Long and Sun, 

2012; Masaka et al., 2015). It has been reported that 34-92 % of the N is leached from 

manure application to soil was in the form of NO3
-
 and 14-57 % in dissolved organic 

nitrogen (DON) form (Fan et al., 2017). However, soil NO3
- 
concentration and leaching is 

site-specific and is mainly driven by rainfall, management practices (cover crop, fertilizer 

sources, crop rotation), and soil texture (Gaines and Gaines, 1994; Jabloun et al., 2015; 

Jean et al., 2000). For instance, NO3
-
 leaching losses of 55-59 kg per hectare per year with 

DM application, 30-35 kg per hectare per year
 
from compost application and 25-33 kg per 

hectare per year
 
from IN application has been reported in a six-year corn - alfalfa crop 

rotation (Basso and Ritchie, 2005). Significant variation in NO3
- 
losses has been observed 

in different cropping systems, but corn-based cropping systems have been found to have 

the highest NO3
- 

leaching (Hargrave and Shaykewich, 1997; Hernandez-Ramirez et al., 

2011; van Es et al., 2006). The annual estimated loss of NO3
-
 from cornfield amended 
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with Ammonium nitrate (NH4NO3) in Manitoba was 160 kg per hectare per year 

(Hargrave and Shaykewich, 1997), whereas, in Southern Turkey, the annual NO3
-
 load 

was 39-55 kg per hectare per year in wheat-corn cropping system when a mixture of 

NH4NO3, ammonium sulfate (NH4)2 SO4, urea (NH2)2 CO, and compound fertilizer was 

applied (Ibrikci et al., 2015). These N losses indicate ineffectiveness in the current 

nutrient management strategies or management practices that result not only in 

environmental pollution but also an economic loss to the farmers (Güereña et al., 2013). 

Different nutrient management strategies and crop management practices have been 

practiced to reduce N losses and improve N use efficiency (NUE). These include, slow-

release fertilizers (Ye et al., 2013), burial of crop residues and crop rotation (Hirel et al., 

2007), judicious use of fertilizers (Francis, 1992), legume-based cropping systems 

(Drinkwater et al., 1998), variable rate technologies (VRT) (Gatti et al., 2018), use of 

nitrification inhibitors (NI) (Zhang et al., 2015), and plant trait selection (Ju et al., 2015).  

Biochar (BC) is a form of black carbon (C) created by thermal degradation of organic 

material (e.g., wood, manure, leaves, etc.) in zero or low oxygen environments (Lehmann 

and Joseph, 2009). BC is recalcitrant in nature (Spokas, 2010) and its reactive surfaces 

are capable of sorbing and exchanging nutrients and native organic matter (Liang et al., 

2006); therefore, there is a great potential and interest in utilizing BC as a soil amendment 

to sequester C and improve soil fertility in agricultural soils. Additionally, BC application 

could be one of the best approaches to improve N retention in topsoil, reduce NO3
-
 

leaching and improve soil fertility in agricultural systems (Haider et al., 2015; Knowles et 

al., 2011; Laird et al., 2010; Lehmann, 2007). BC application decreases soil bulk density, 
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increases porosity, pH, nutrient use efficiency, N2-fixation, soil saturation, water holding 

capacity (WHC) (Busch et al., 2012; Busscher et al., 2010; Harter et al., 2014; Hussain et 

al., 2017; Jervin et al., 2017; Kammann et al., 2012; Karhu et al., 2011), enhances 

Ammonium (NH4
+
) retention and availability, increases urease activity preventing 

ammonia losses, and eventually reduces NO3
-
 leaching loses (Amendola et al., 2017; Cao 

et al., 2017; Huang et al., 2017; Sun et al., 2017). BC amendment increased hydraulic 

conductivity, soil water availability and infiltration (Asai et al., 2009; Baronti et al., 2014; 

Buss et al., 2012; Ippolito et al., 2012), and improved soil aeration (Case et al., 2012; 

Cayuela et al., 2013) and nutrient retention (Clough et al., 2013; Ventura et al., 2012; L. 

Wang et al., 2017). BC can also increase soil microbial activities, alter microbial 

community structure and extracellular enzymatic activities (Foster et al., 2016; Gul et al., 

2015; Lu et al., 2015). There is a significant effect of feedstock source and pyrolysis 

process on characteristics of BC that consequently affect the physiochemical and 

biological properties of soil (Borchard et al., 2014; Gul et al., 2015; Lentz and Ippolito, 

2012; Schmidt et al., 2014; Spokas and Reicosky, 2009; Vitkova et al., 2017). 

Application of BC produced at 550 
°
C increased soil NO3

-
 concentration, nutrient uptake, 

and corn dry matter yield (Haider et al., 2015; Smider and Singh, 2014). Pinewood BC 

amendment at the rate of 0.5, 2.5 and 10 % w/w in sandy soil reduced NO3
-
 leaching by 

26, 42 and 96 %, respectively (Sika and Hardie, 2014). BC amendment to soil may 

increase NO3
-
 residence time in soil possibly due to unconventional H-bonding in micro 

and nano-pores (Kammann et al., 2015), or development of functional groups and organo-

mineral complexes on BC surface (Joseph et al., 2013; Lin et al., 2013; Prost et al., 2013), 

acting as slow-release fertilizer which allows plants to absorb more NO3
- 

from the soil 
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(Hagemann et al., 2017; Kameyama et al., 2012; Uzoma et al., 2011). A significant 

increase in inorganic N pool (NH4
+
-N, NO3

-
-N), leaf N concentration, photosynthesis rate, 

and pod yield have been recorded with BC application (Xu et al., 2015). Incorporation of 

rice straw BC to acidic soil accelerated nitrification but decreased NO3
-
 leaching and 

improved N adsorption (Zhao et al., 2014). BC amendment to a degraded Chernozem soil 

at 5 % (w/w) application rate significantly improved spinach growth, increased uptake of 

K in plant tissues, free amino acid contents, and proline content but limited Ca, Mg and 

Na concentrations (Zemanová et al., 2017). Contrary to reported above (Tammeorg et al., 

2014) observed that BC application did not improve N uptake and grain yield of wheat, 

faba bean and turnip rape in a three-year field experiment. In Newfoundland, most of the 

cultivated soils are acidic and sandy and the growing season is short with frequent rainfall 

events. The average precipitation received in this area is 1113 mm per year with less than 

410 mm as snow during last 30 years (1986-2016) recorded from the nearest weather 

station in Deer Lake by Environment Canada (Badewa, 2017). This is a most favorable 

condition for N leaching. Most of the N applied to sandy soils is lost and is not available 

to crops (Gaines and Gaines, 1994; Jabloun et al., 2015; Jean et al., 2000), which results 

in low crop productivity and economic loss. Therefore, I hypothesized that BC 

amendment would reduce nitrate leaching; enhance soil pH and biomass production of 

silage corn in the podzolic soil. This research project was planned with the following 

specific objectives; 

i- To investigate the role of BC amendment on soil’s NO3
-
 and NH4

+
 dynamics after 

dairy manure and IN fertilizer application in silage corn cropping systems. 
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ii- To compare the effects of DM, IN alone and co-application of BC on soil pH, N 

concentration and biomass production of silage corn.  

3.3. Material and Methods: 

3.3.1. Study site 

A field experiment was conducted at Pynn’s Brook Research Station, Pasadena 

(49°04'21.9"N, 57°33'37.4"W), Newfoundland and Labrador (NL), Canada, during 2016 

and 2017 growing seasons. The soil was classified as rapidly drained, Orthic Humo-Ferric 

Podzol with reddish brown to brown color, and developed on gravely sandy fluvial 

deposit of mixed lithology (Kirby, 1988). Moreover, this soil has limited agricultural use 

because of its high coarse fragment contents and rapid drainage (Kirby, 1988). Basic 

physio-chemical properties of the soil are described in Table 2.1. 

3.3.2. Experimental setup 

The experiment comprised of seven treatments with organic and inorganic N sources and 

BC. Treatments included were; 1) DM with high N conc. (0.37 %) designated as DM1, 2) 

DM with low N conc. (0.13 %), designated as DM2, 3) IN, 4) DM1 + BC, 5) DM2 + BC, 

6) IN + BC, and 7) control (N0). The experimental design was a randomized complete 

block (RCBD) in a factorial setting with three replications. Plots were 1.5 m wide and 4.8 

m long. DM procured from Larch Grove and Rideout’s dairy operations located at 

Cormack area near Deer Lake, NL was used. DM samples were collected from these two 

dairy operations and were sent to Soil, Plant and Feed Laboratory, Department of 
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Fisheries and Land Resources, St. John’s, NL for detailed analysis. Larch Grove’s DM 

had a high concentration of macro and micronutrients and was designated as DM1 while 

DM from Rideout’s dairy had a low concentration of macro and micronutrients and was 

titled as DM2 (Table 2.2). Representative soil sample collected from the experimental site 

was also sent to the same laboratory for physiochemical analyses. DM was applied each 

year before seeding in corresponding plots @ 30,000 liters per hectare (local farmers 

practice). Inorganic fertilizers were applied to fulfill the required NPK nutrients based on 

DM and soil analyses reports. Ammonium nitrate (NH4NO3), triple superphosphate (TSP) 

and murate of potash (MOP) were used as nitrogen (N), phosphorus (P), and potash (K) 

sources, and were applied at the rate of 215,110, 225 kg ha
-1

,
 
respectively. DM1, DM2 and 

the entire IN were applied before crop seeding during 2016 while in 2017 DM1 and DM2 

were applied to all respective treatments (DM1, DM2, DM1+B, DM2+B) before seeding 

but the IN fertilizer was applied in two splits (first dose: 6 leaf stage, second dose: 12 leaf 

stage). BC was applied only once in 2016 and incorporated to top 15 cm of the soil before 

DM application. BC is produced at AirTerra Inc. located in Calgary, Alberta, and is a 

registered BC product with the Canadian Food Inspection Agency (CFIA). This BC was 

produced from yellow pine wood pyrolyzed at 500 
o
C for 30 min by slow pyrolysis in 

oxygen-limited conditions. BC was applied @ 20 tons ha
-1

 as reported by (Liu et al., 

2012b). The detailed BC analyses report conducted by Gabilan laboratory, Salinas, 

California, USA can be seen in (Table 2.3).  
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3.3.3. Crop husbandry 

Three silage corn genotypes, Yukon R, A4177G3 RIB, and DKC26-28 RIB were selected 

and used as test hybrids in this experiment. Selection of these hybrids was made on the 

basis of high biomass production performance in a previous field trial conducted during 

2015 and low heating unit requirements. Detailed information about hybrids can be seen 

in Table 3.1. Seeding was done on May 24, 2016 and May 23, 2017 with the SAMCO 

2200 system (SAMCO Agricultural Manufacturing Ltd.). SAMCO 3 in 1 machine which 

sows seed, sprays the soil with pre-emergence herbicide, and lays a thin layer of 

biodegradable plastic film over the seedbed. This operation protects the young plants 

from late frost, increases the soil temperature and thereby maximizes silage corn yield per 

hectare. Biodegradable plastic provides additional heat units which enhance seed 

germination during cold and frost days (Figure 2.1). Seeding rate for the crop was 90,900 

seeds per hectare. Weeds were controlled with the spray of Roundup WeatherMax on July 

09, 2016 and July 08, 2017 at the rate of 2 L per hectare.  

Table 3.1: Silage corn genotypes used in the experiment. 

Number Genotype name CHU Company Trait 

1 Yukon R 2150 Brett Young RR2 

2 A4177G3 RIB 2175 Pride VT3/RR 

3 DKC26-28 RIB 2150 DEKLAB GENVT2P 

CHU = corn heat units, RIB= Refuge is in the bag, RR = Roundup Ready, VT3= VT 

TriplePro insect protection, RR2 = resistance gene to Roundup® and Factor 540® 
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3.3.4. Soil sampling and analysis 

Soil sampling for NO3
-
 and NH4

+
 determination was done from 20 cm and 40 cm depths 

at four stages (seedling emergence, 6 leaves, 12 leaf and black layer stage) during 2016 

and (6 leaves, 12 leaves, tasseling and black layer stage) in 2017. Samples were collected 

with augur and sealed in marked plastic bags and transferred to the laboratory within six 

hours of collection, where they were stored at -20 
°
C until further analysis. Soil samples 

were sieved through a 2 mm sieve to remove stones and other residues. Sieved soil (5 g) 

was weighed in a pre-weighed aluminum dish, and dried overnight in an oven at 105 
°
C 

and final dry weight was recorded. Moisture factor was calculated by weight difference. 

Sieved soil sample (5 g) was taken into a 125 mL Erlenmeyer flask and 50 mL, 2 molars 

KCl (potassium chloride) solution was added  (1:10 soil to solution ratio) and shaken for 

30 min on a reciprocating shaker (Cao et al., 2017; Carter et al., 2008; Heman et al., 

2016; Sika and Hardie, 2014), and filtered into sterile 50 mL plastic tubes. The filtrate 

was stored at -20 
°
C until further analysis. NO3

-
 and Ammonium NH4

+
 concentrations in 

the soil extract were determined using AutoAnalyzer (Seal analytical continuous flow 

analyzer (AA3 HR) (Cao et al., 2017; Heman et al., 2016). NO3
-
 is reduced to nitrite 

(NO2
-
) by a cadmium-copper reduction column at a pH of 8, NO2

-
 ion then reacts with 

sulfanilamide to form a diazo compound. This compound then reacts with N-1-

naphthylethylenediamine dihydrochloride to form a reddish-purple azo dye. NH4
+
 was 

determined using the salicylate chemistry and the results obtained were calculated using 

the formulas in Equations (3.1), (3.2), and (3.3).  
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Moisture factor was calculated by dividing weight of moist soil by dried soil weight 

                      
                     

                   
  (3.1)  

 

Soil NO3
-
 and NH4

+
 in moist soil was calculated by;  

    
       

                                   

     
       

                              

(3.2)  

Nitrate and ammonium quantity was multiplied with 10 as the soil-to-solution ratio was 

1:10 in extract. 

 

Soil NO3
-
 and NH4

+
 in dry soil was calculated by; 

 

    
       

                                      
       

                   (3.3) 

 

3.3.5. Soil pH determination 

Soil pH was determined from the samples collected for NO3
-
 and NH4

+
 determination at 

three crop growth stages during 2016 and two stages in 2017. Air-dried soil samples (10 

g) were taken in long plastic tubes and 20 mL, 0.01 M CaCl2
 
(calcium chloride) was 

added to each tube. It was stirred for 30 minutes and let it stand for one hour (Carter et al., 

2008). The pH was measured using benchtop pH meter (Oakton Instruments) (Zhang et 

al., 2014).  
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3.3.6. Dry matter production 

Plants were harvested from a 1 m
2
 area at black layer stage from each plot and their fresh 

weight was recorded. Plants were oven dried at 70 
o
C for 48 h and dry matter yield was 

calculated from each treatment plot using the formula given in Equation (2.4) and (2.5). 

3.3.7. Plant tissue nitrogen concentration 

Three dried plants from each treatment were grounded using Wiley Mill (Arthur H. 

Thomas) and then with CryoMill (Retsch, Germany) to a fine powder. Ground plant 

samples (4.5±0.5 mg) were weighed in tin capsules and analyzed with PerkinElmer CHN 

2400 Series II for total nitrogen contents. 

3.3.8. Statistical analysis 

The analysis of variance (ANOVA) was used to determine the effect of different 

treatments on soil NO3
-
 and NH4

+
, soil pH, plant N concentration and biomass production. 

Where treatment effects were significant, the means were compared with LSD (α = 0.05). 

The data were analyzed using the Statistix 10 software package (Analytical software, FL, 

USA) and figures were prepared using SigmaPlot 12.0 software program (Systat Software 

Inc., San Jose, CA).  
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3.4.  Results 

3.4.1. Nitrate and ammonium dynamics 

Soil NO3
-
 and NH4

+ 
concentration in DM, IN alone and BC amended treatments varied 

significantly (p<0.05) during both growing seasons from IN, manure treatments (DM1, 

DM2, IN) and control (N0).  

Nitrate and ammonium during 2016 

DM1, DM2 and the entire IN were applied before crop seeding. The NO3
-
 concentration in 

all treatments ranged from 7.3-55 (mg g
-1

 dry soil) in top 20 cm soil layer at seedling 

emergence stage of the crop. Soil NO3
-
 concentration in all treatments and stages at 20 cm 

depth is shown in the Figure 3.1a and 40 cm depth in Figure 3.1b. BC treatments 

(DM1+B, DM2+B, and IN+B) have high soil NO3
-
 concentration, but it was not 

significantly different from their non-BC treatments (DM1, DM2 and IN) (Figure 3.1a) as 

N was applied at the same rate in all plots (DM treatments received some IN as well to 

balance the N requirement of the crop). Soil NO3
-
 concentration in deep soil (40 cm) 

ranged from 4.3-35.3 (mg g
-1

 dry soil) in all treatments. BC treatments have relatively 

low NO3
-
 concentration in deep soil layer as compared to non-BC treatments which 

indicate less NO3
-
 movement to the deep soil at seedling emergence stage of the crop 

(Figure 3.1b). Soil NO3
-
 increased after seedling establishment and it reached to 78-120 

(mg g
-1

 dry soil) in all treatments (except control where it was 6.5 mg g
-1

 dry soil) in 

topsoil layer at 6 leaf stage of the crop. Here BC treatments have significantly higher 

NO3
-
 concentration (p<0.05) than non-BC treatments and the control (Figure 3.1a) which 

was due to the retention of NO3
-
 in BC amended soil as more NO3

-
 moved to deep soil 
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layer in non-BC treatments (Figure 3.1b). At 12 leaf stage there was a significant effect of 

BC treatments on NO3
-
 concentration (p<0.05) in the topsoil as most of the NO3

-
 in DM1, 

DM2, and IN leached to deep soil but BC treatments have more NO3
-
 retained in the 

topsoil layer. At black layer stage there was very little NO3
-
 amount left in soil ranging 

from 1.13 (mg g
-1

 dry soil) in control to 4.9 (mg g
-1

 dry soil) in DM1+B in topsoil and 

1.40 (mg g
-1

 dry soil) in control to 2.5 (mg g
-1

 dry soil) in DM1 treatments in deep soil 

layer. Soil NH4
+
 concentration in all treatments and stages at 20 cm depth is shown in the 

Figure 3.1c and 40 cm depth in Figure 3.1d. There was significantly higher NH4
+
 

concentration present in the topsoil layer at seedling emergence stage as compared to 

other stages and dropped to near zero at black layer stage. The NH4
+
 concentration ranged 

from 3.2 (mg g
-1

 dry soil) in the control treatment to 80.1 (mg g
-1

 dry soil) in DM1+B at 

seedling emergence stage. There was significantly higher NH4
+
 concentration in BC 

treatments as compared to non-BC treatments and control in 20 cm soil depth (Figure 

3.1c). No significant difference between BC and non-BC treatments with respect to the 

NH4
+
 concentration at 40 cm soil depth was observed whereas control treatment had the 

lowest NH4
+ 

at seedling emergence stage. At 6 leaf stage NH4
+
 in the topsoil layer 

decreased as compared to seedling emergence stage, and BC treatments had significantly 

high NH4
+
 than non-BC treatments and control. Whereas in deep soil layer NH4

+
 

increased as compared to the seedling stage with significantly lower NH4
+
 in BC 

treatments than non-BC treatments as most of the NH4
+ 

retained in BC in topsoil. At 12 

leaf stage NH4
+ 

concentration further decreased and it ranged from 1.2 (mg (g
-1

 dry soil) 

in control to 25.4 (mg (g
-1

 dry soil) in DM1+B at 20 cm depth whereas, in deep soil NH4
+
 

ranged from 1.4 (mg (g
-1

 dry soil) in control to 20 (mg (g
-1

 dry soil) in DM1+B. At black 
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layer stage NH4
+
 dropped to near zero. Maximum NH4

+
 i.e. 1.1 (mg (g

-1
 dry soil) was 

found in DM1+B whereas 0 (mg (g
-1

 dry soil) in control treatment. 

Nitrate and ammonium during 2017 

DM1 and DM2 were applied to all respective treatments (DM1, DM2, DM1+B, DM2+B) 

before seeding but the IN fertilizer was applied in two splits (first dose: two days after 6 

leaf stage sampling, second dose: one day before 12 leaf stage sampling). Soil NO3
-
 and 

NH4
+
 concentrations were measured at four crop growth stages (6 leaves, 12 leaves, 

tasseling and black layer stage). Soil NO3
- 

concentration was low at 6 leaf stage as 

compared to 12 leaves and tasseling stage. Manure treatments (DM1, DM2, DM1+B, 

DM2+B) have high NO3
- 

concentration in soil than IN, and IN+B as fertilizer was not 

applied to any treatment before seeding. DM1+B, and DM2+B had low NO3
- 

concentration at 40 cm soil depth as most of the NO3
- 

retained in topsoil in biochar 

(Figure 3.2a). At 12 leaf stage, NO3
- 
concentration increased in DM+BC treatments and 

BC helped to reduce NO3
- 
movement to the deep soil (Figure 3.2b). At the tasseling stage, 

as there was fertilizer (NH4NO3) application one day before sampling so there was high 

NO3
- 
observed in all treatments except control. There was more NO3

- 
in BC treatments at 

20 cm depth and in DM1, DM2, and IN at 40 cm depth (Figure 3.2c). At black layer stage, 

soil NO3
-
 deceased in all treatments with significantly high NO3

-
 concentration in BC 

treatments than DM1, DM2, IN and control (Figure 3.2d). Soil NH4
+
 concentrations were 

lowest at both soil depths at 6 leaves stage of the crop. But after that an increase in NH4
+
 

was observed in DM1, DM1+B, DM2, DM2+B at 12 leaves the stage with the highest 

NH4
+
 as 41.2 (mg g

-1
 dry soil) in DM1+B at 20 cm soil layer. At tasseling stage as 

sampling was done one day after fertilizer application there was an increase in NH4
+
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concentration and it reached a maximum of 46.3 (mg g
-1

 dry soil) in IN+B. At black layer 

stage the NH4
+
 was significantly higher in DM1+B, DM2+B, and IN+B than DM1, DM2, 

IN and control (Figure 3.2c). 
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Figure 3.1: Soil nitrate (NO3
-
) and ammonium (NH4

+
) concentrations (mg g

-1
 dry soil) in 

experimental treatments at four crop growth stages during 2016 

(a) NO3
-
 at 20 cm depth (b) NO3

-
 at 40 cm depth (c) NH4

+
 at 20 cm depth (d) NH4

+
 at 40 

cm depth, filled circle (seedling emergence), empty circle (6 leaves stage), filled triangle 

(12 leaves stage), empty triangle (Black layer stage) 
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Figure 3.2: Soil nitrate (NO3
-
) and ammonium (NH4

+
) concentrations (mg g

-1
 dry soil) in 

experimental treatments at four crop growth stages during 2017 

(a) NO3
-
 at 20 cm depth (b) NO3

-
 at 40 cm depth (c) NH4

+
 at 20 cm depth (d) NH4

+
 at 40 

cm depth, filled circle (seedling emergence), empty circle (6 leaves stage), filled triangle 

(12 leaves stage), empty triangle (Black layer stage) 
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3.4.2. Soil pH 

Soil pH in experimental treatments was measured at three crop growth stages in 2016 and 

at two stages during 2017. There was a significant temporal variation in soil pH in all 

treatments measured at different crop growth stages in both seasons (Figure 3.3). BC 

treatments have high soil pH at each sampling event than non-BC treatments. Generally, 

soil pH increased with DM  application; however, a significant increase was noticed with 

BC amendment and declined as the season proceeded. For example, DM1, DM2, and IN 

treatments exhibited pH values of 6.23, 6.17 and 6.02 at the seedling stage during 2016. 

BC addition to these treatments significantly increased pH to 6.46, 6.34, and 6.21 

respectively (Fig. 8). There was a reduction in soil pH in all treatments except IN, IN+B, 

and the control at 12 leaf stage compared to seedling stage. The mean values of soil pH at 

12 leaf stage in all treatments were 6.20, 6.31, 6.15, 5.20, 6.15, 6.23, and 6.0 in DM1, 

DM1+B, DM2, DM2+B, IN, IN+B, and the Control. At black layer stage, soil pH further 

decreased in all treatments with relatively high pH in BC amended treatments. At the end 

of the growing season of 2016 (black layer stage), the BC amended treatments have high 

soil pH by 0.18, 0.10, and 0.06 units than non-BC amended treatments. At six-leaf stage 

during 2017, soil pH was stable, however again decreased at black layer stage in 2017 but 

BC treatments have relatively high pH. The mean values of soil pH at black layer stage 

(2017) in all treatments were 5.87, 6.05, 5.50, 5.70, 5.68, 5.73, and 5.50 in DM1, DM1+B, 

DM2, DM2+B, IN, IN+B, and control treatment with an overall increase by 0.14 unit in 

BC than non-BC amended treatments. 
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Figure 3.3: Soil pH at 20 cm depth at different crop growth stages during 2016 and 2017 

Solid circle (DM1), empty circle (DM1+B), solid triangle (DM2), empty triangle 

(DM2+B), Solid square (IN), empty square (IN+B), solid diamond (N0) 
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3.4.3. Plant tissue N concentration 

DM and IN alone and co-application with BC significantly (p<0.05) influenced the N 

concentration in silage corn genotypes. BC amended treatments enhanced the N 

concentration in silage corn tissues, however, maximum N concentration was noted in 

IN+B treatment, compared to the minimum concentration in the control treatment. 

Among the genotypes, A4177G3 RIB exhibited higher N concentration compared to 

DKC26-28 RIB and Yukon R during 2016 (Table 3.2). Overall, maximum mean N 

concentration was noted in IN+BC treatment compared to control treatment. BC addition 

to DM1, DM2, and IN enhanced N concentration by 10, 13 and 27 % respectively. In 

2017, A4177G3 RIB exhibited the highest tissue N concentration in IN+BC treatment, 

whereas lowest was noted in DKC26-28 RIB in control treatment. Overall, BC addition to 

DM1, DM2, and IN enhanced N concentration by 17, 8 and 7.6 % respectively. N 

concentration was maximum in DM1+BC treatment compared to control treatment 

whereas, A4177G3 RIB genotype was the most efficient in N uptake followed by Yukon 

R and DKC26-28 RIB. 
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Table 3.2: Plant tissues nitrogen concentration (%) in silage corn genotypes under 

different experimental treatments during growing season 2016 

Treatments A4177G3 RIB DKC26-28 RIB Yukon R Mean 

DM1 1.25±0.15
abcd

 1.03±0.03
defg

 1.07±0.17
cdefg

 1.11±0.07
BC

 

DM1+B 1.28±0.01
abc

 1.07±0.13
cdefg

 1.32±0.05
ab

 1.22±0.05
AB

 

DM2 1.09±0.06
bcdefg

 1.17±0.12
bcdef

 0.99±0.12
efg

 1.08±0.06
BC

 

DM2+B 1.45±0.05
a
 1.08±0.04

bcdefg
 1.14±0.05b

cdefg
 1.23±0.06

AB
 

IN 1.18±0.03
bcde

 0.93±0.06
fg

 0.96±0.04
efg

 1.02±0.03
C
 

IN+B 1.47±0.02
a
 1.16±0.11

bcdefg
 1.28±0.04

abc
 1.30±0.05

A
 

N0 1.11±0.01
bcdefg

 0.93±0.02
fg

 0.92±0.09
g
 0.99±0.05

C
 

 1.26±0.03
A
 1.05±0.03

B
 1.10±0.04

B
  

Means sharing common letters are not significantly different at 0.05 probability level.  

Table 3.3: Plant tissues nitrogen concentration (%) in silage corn genotypes under 

different experimental treatments during growing season 2017  

Treatments A4177G3 RIB DKC26-28 RIB Yukon R Mean 

DM1 1.40±0.03
abcd

 1.08±0.00
fg

 1.24±0.05
def

 1.24±0.05
C
 

DM1+B 1.41±0.01
abcd

 1.45±0.03
abc

 1.50±0.06
ab

 1.45±0.02
A
 

DM2 1.40±0.03
abcd

 1.10±0.06
fg

 1.22±0.04
defg

 1.24±0.05
C
 

DM2+B 1.45±0.08
abc

 1.26±0.07
cdef

 1.31±0.02b
bcde

 1.34±0.04
ABC

 

IN 1.47±0.03
ab

 1.10±0.16
fg

 1.32±0.01
bcde

 1.30±0.07
BC

 

IN+B 1.54±0.07
a
 1.31±0.03

bcde
 1.33±0.01

bcde
 1.39±0.04

AB
 

N0 1.14±0.03
efg

 1.03±0.16
g
 1.09±0.13

fg
 1.08±0.06

D
 

 1.40±0.03
A
 1.19±0.04

C
 1.29±0.03

B
  

Means sharing common letters are not significantly different at 0.05 probability level.  
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3.4.4. Dry matter yield 

The application of DM1, DM2 and IN alone or in combination with BC had significantly 

(p<0.05) affected dry matter yield (DMY) of silage corn. BC amended treatments 

(DM1+B, DM2+B, and IN+B) yielded significantly (p<0.05) higher biomass than without 

BC and the control treatment. Genotype × N source interaction (p<0.05) had significantly 

influenced dry matter yield during both years. Yukon R produced the maximum dry 

matter yield of 21 Mg ha
-1

 in DM1+BC treatment, compared to minimum dry matter 

production (14 Mg ha
-1

) by A4177G3 RIB in the control treatment (Table 3.4). N sources 

had a significant effect on dry matter production in all genotypes. BC addition to IN, 

DM1, and DM2 increased dry matter yield by 5, 3, and 4.5 % in A4177G3 RIB, 3.6, 7.5 

and 8 % in DKC26-28 RIB, 6, 4, and 8 % in Yukon R, respectively. Overall, BC 

application to IN, DM1 and DM2 increased the dry matter production by 5, 5, and 7 % 

respectively during 2016. Similarly, in 2017 growing season, the highest dry matter yield 

of 17.1 Mg ha
-1

 was observed in Yukon R while minimum 10.1 Mg ha
-1

 in A4177G3 RIB 

in the control treatment (Table 3.5). BC addition to IN, DM1, and DM2 increased dry 

matter yield by 6.8, 3, and 7 % in A4177G3 RIB and 7.6, 9 and 12.5 % in DKC26-28 RIB 

and 6.8, 5, and 11.5 % in Yukon R, respectively. Overall BC application to IN, DM1 and 

DM2 increased the dry matter production by 7, 6, and 10.5 %, respectively. 
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Table 3.4: Dry matter yield (Mg ha
-1

) of three silage corn genotypes during growing 

season 2016 

Treatment/Genotype A4177G3 RIB DKC26-28 RIB Yukon R Mean 

DM1 18.0±0.14
ij
 19.3±0.28

de
 19.7±0.17

b
 19.0±0.28

C
 

DM1+B 19.0±0.12
ef

 20.0±0.12b
c
 21.0±0.12

a
 20.0±0.29

A
 

DM2 18.0±0.18
ij
 18.3±0.11

hi
 19.5±0.24

d
 18.6±0.25

D
 

DM2+B 18.6±0.15
fgh

 19.8±0.17
cd

 20.4±0.17
b
 19.6±0.28

B
 

IN 17.6±0.18
j
 17.9±0.16

ij
 18.8±0.13

ef
 18.1±0.19

E
 

IN+B 18.4±0.29
ghi

 19.5±0.16
cde

 20.5±0.17
c
 19.5±0.32

B
 

N0 14.0±0.15
l
 14.3±0.15

l
 15.3±0.15

i
 14.5±0.21

F
 

 17.6±0.35
C
 18.4±0.41

B
 19.3±0.40

A
  

Means sharing common letters are not significantly different at 0.05 probability level 

 

Table 3.5: Dry matter yield (Mg ha
-1

) of three silage corn genotypes during growing 

season 2017 

Treatment/Genotype A4177G3 RIB DKC26-28 RIB Yukon R Mean 

DM1 14.1±0.13
hijk

 14.9±0.19
fg

 15.9±0.25
bcd

 15.0±0.22
C
 

DM1+B 15.1±0.23
ef

 16.1±0.09
bc

 17.1±0.10
a
 16.1±0.25

A
 

DM2 14.0±0.08i
jk

 14.1±0.16
hij

 15.6±0.21
cde

 14.6±0.23
D
 

DM2+B 14.5±0.06
ghi

 15.6±0.04
de

 16.4±0.04
b
 15.5±0.24

B
 

IN 13.6±0.18
k
 13.7±0.39

jk
 14.5±0.40

gh
 13.9±0.18

E
 

IN+B 14.6±0.11
fg

 15.7±0.11
cd

 16.4 ±0.13
b
 15.6±0.24

B
 

N0 10.1±0.15
m

 10.3±0.03
m

 11.2±0.15
l
 10.5±0.14

F
 

 13.7±0.35
C
 14.3±0.41

B
 15.3±0.42

A
  

Means sharing common letters are not significantly different at 0.05 probability level 
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3.5.  Discussion 

Soil NO3
-
 retention after BC addition had been reported in various studies. In this study, 

NO3
-
 and NH4

+
 concentration increased in BC amended treatments in the top 20 cm soil 

layer where BC prevented the downward movement of NO3
-
 and NH4

+
 to a deep soil 

layer. Manure and inorganic nitrogen fertilizer application increased NO3
-
 and NH4

+
 in all 

manure and BC amended treatments compared to the control. For example, increased soil 

NO3
-
 was observed after swine slurry application (Bertora et al., 2008). BC amended 

treatments further increased NO3
-
 and NH4

+
 concentration than manure and IN treatments 

alone which could be attributed to the adsorption of these ions on BC surfaces which 

decreased their downward movement. Acid functional groups present on BC surface i.e. 

carboxylic, hydroxyl, lactone, lactol, phenol and carbonyls which have a negative charge 

and attract NH4
+
 ions (Amonette and Joseph, 2009; Brennan et al., 2001; Montes-Morán 

et al., 2004; Zheng et al., 2010). Other functional groups i.e. chromenes, ketones and 

pyrones etc. also exist on BC surface which facilitate NO3
-
 adsorption to its surface 

(Amonette and Joseph, 2009; Montes-Morán et al., 2004). Another possible mechanism 

could be unconventional H-bonding between NO3
-
 and BC surface, which might increase 

the NO3
-
 adsorption on BC surface (Kammann et al., 2015; Lawrinenko, 2014; Mukherjee 

et al., 2011). Over the time, the adsorbed N could be desorbed and become available in 

soil (Kameyama et al., 2012; Taghizadeh-Toosi et al., 2012), depending on BC adsorption 

capacity, amount of BC applied, soil cation and anion exchange capacity, soil microbial 

community and crop N demand (Clough et al., 2013). Application of BC to soil increased 

soil N mineralization, enhanced nitrification (NH4
+
 → NO2

- 
→ NO3

-
) by 34 %, 
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suppressed denitrification (NO3
- 

→ NO2
- 

→ NO → N2O → N2) by 37 %, and reduced 

cumulative N2O emission by 91 % in a sandy loam soil (Case et al., 2015). BC induced 

reduction in denitrification can be explained by changes in soil aeration brought by low 

soil bulk density and high WHC  which lower the denitrifier activity (Karhu et al. 2011; 

Basso et al. 2013). Most of the biochars decrease soil acidity due to their high pH 

buffering capacity and alkaline nature (pH > 7) at least 1.5 units higher than acid soils 

(pH < 5.5). BC used in this study was alkaline (pH = 9), and at each sampling point, BC 

amended treatments exhibited high soil pH compared to non-BC amended treatments and 

the control. The carbonates and oxides formed during pyrolysis from the cations (Ca, Mg, 

K, Na etc.) in feedstock react with H
+ 

and monomeric aluminum species in acidic soils 

and increased soil pH (Brewer et al., 2012; Enders et al., 2012; Novak et al., 2009). In 

addition to the carbonates and oxides, –COO
− 

(–COOH) and –O
−
 (–OH) also play 

important role in BC alkalinity (Yuan et al., 2011).  

BC increased NH4
+
 retention in the soil and improved N uptake (Sun et al., 2017), 

enhanced lettuce yield and nutrient concentrations in plant tissues (Upadhyay et al., 2014; 

Woldetsadik et al., 2017), increased soil pH, CEC, Ca, total C, N uptake and biomass 

production of wheat up to 250 % (Van Zwieten et al., 2010a). It diminished the nutrient 

losses due to winter freeze-thaw cycle and increased N uptake in the subsequent crop 

(Zhou et al., 2017). Gunes et al. (2014) reported that BC application increased uptake of 

N, P, K and reduced Fe, Cu, Zn, and Mn in lettuce grown in alkaline soils. DM 

application to soil decreased the soil pH while BC amendment increased soil pH along 

with increasing Lolium perenne biomass by 29 % in a growth experiment 

(Schimmelpfennig et al., 2014). There was significantly low dry matter recorded during 
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2017 because 30 % less rain was received in this season especially during the crop active 

growth period (July-August). However, BC increased dry matter yield during both years. 

Maximum DMY was observed in Yukon R while maximum N concentration was 

observed in A4177G3 RIB. The N concentration of corn hybrids is influenced by their 

genetic characters and environment (Gautam et al., 2011). The increase in plant N 

concentration and DMY  could be attributed to improvement in soil fertility, soil physical 

properties and nutrient retention after BC application. Contrasting effects of BC 

application on N uptake and plant yield had been reported in the literature depending 

upon BC feedstock, pyrolysis conditions, soil type etc. (Agegnehu et al., 2016; Borchard 

et al., 2014; Griffin et al., 2017; Lentz et al., 2014; Lentz and Ippolito, 2012; Schmidt et 

al., 2014; Tammeorg et al., 2014; Upadhyay et al., 2014; Vitkova et al., 2017; Wang et 

al., 2016; Woldetsadik et al., 2017). 

3.6.  Conclusion 

Application of BC to DM1, DM2, and IN increased the soil NO3
-
, NH4

+
 retention, soil pH, 

plant N concentration, and DMY. BC application to these treatments decreased leaching 

which improved plant N concentration and DMY of silage corn crop. BC application also 

decreased soil acidity. At each sampling interval, high soil pH was observed in BC 

treatments than non-BC treatments. On an average, BC addition to DM1, DM2, and IN 

enhanced N concentration by 13.5, 11.5 and 17.3 %, respectively. Overall BC application 

to IN, DM1 and DM2 increased the dry matter production by 6, 5.5, and 8.75 %, 

respectively. 
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Chapter 4 

4. General discussion and conclusion 

The specific objectives of this thesis were: 

i- To assess the GHGs emissions from organic and inorganic sources of nitrogen 

application in silage corn cropping systems 

ii- To determine the role of BC application in the reduction of GHG emission in 

silage corn cropping systems in western Newfoundland 

iii- To estimate GWP and GHGI of silage corn cropping systems  

iv- To determine the role of BC application on soil NO3
-
 and NH4

+
 retention in silage 

corn amended with DM and IN fertilizer application 

v- To compare the effects of dairy manure and IN alone and co-application of BC on 

soil pH, N uptake and biomass production of silage corn. 

This thesis sought to achieve these objectives through two main experimental works as 

described in chapters 2 and  3. Estimation of GHG emission, GWP and GHGI under DM, 

and IN application and the potential role of BC in mitigating GHG emissions, GWP and 

GHGI have been described in chapter 2. Whereas, NO3
-
 and NH4

+
 retention/losses in the 

soil with DM, and IN application alone and combined application of BC, plant N uptake, 

soil pH and dry matter yield of silage corn genotypes are presented in chapter 3.  
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4.1. Effect of biochar application on GHGs emission, GWP and GHGI  

About 8 % of the total GHGs emissions in Canada are contributed by the agriculture 

sector largely through methane (CH4) and nitrous oxide (N2O) (Kebreab et al., 2006). 

N2O emissions from agricultural soils represent 3 % of anthropogenic sources in 

Canada (Environment and Climate Change Canada, 2017). DM and inorganic 

fertilizers application to agricultural soils emit significant amount of GHGs including 

CO2, CH4 and N2O (Amon et al., 2006; Burton et al., 2008; Kebreab et al., 2006), and 

emissions were more pronounced with DM application than chemical fertilizers 

(Barneze et al., 2014; M. Zhou et al., 2017). The C compounds in the DM increase the 

soil CO2 emission by inducing a priming effect on native soil C (Bol et al., 2003). 

However, application of BC decreases the decomposition of soil organic matter 

(SOM) present in the soil so, it remains in the soil for a longer period (Cui et al., 

2017) and reduces the cumulative CO2 emission either by the sorption of CO2 on its 

surface or by reducing the availability of labile C (Brennan et al., 2015). In the present 

study DM1 (low N dairy manure) and DM2 (high N dairy manure) treatment produced 

significantly higher CO2 emission than IN and BC amended treatments, which is in 

accordance with some previous studies (Agegnehu et al., 2016; Lentz et al., 2014; 

Schimmelpfennig et al., 2014). BC application induces negative priming effect and 

decelerates the breakdown of SOM by the sorption of enzymes responsible for SOM 

breakdown, shifting the microbial metabolism, by increasing the stability of soil 

aggregates (Zheng et al., 2018) and by reducing the bioavailability of soil organic 

carbon (SOC) via adsorption on BC large surface area (Sheng and Zhu, 2018). It 
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decreases the dissolved organic carbon (DOC) from native SOC and reduces the 

decomposition of SOC after IN addition which reduces CO2 emission from the soil 

(Lu et al., 2014). High CH4 emission after DM application as observed in our 

experiment had been reported in other studies (Troy et al., 2013). Short-chain fatty 

acids present in manure are readily available to methanogenic archaea and cause CH4 

emissions after application to the soil (Hrapovic and Rowe, 2002; Sherlock et al., 

2002). Significant reduction in CH4 emission was observed in BC amended treatments 

(DM1+B, DM2+B, IN+B) as compared to non-BC treatments (DM1, DM2, IN). The 

decrease in CH4 emission after BC application may be due to the stimulation of 

methanotrophic activity or the increased abundance of methanotrophic proteobacterial 

community abundance (Feng et al., 2012; Liu et al., 2011). The BC suppresses 

methanogenesis by increasing the oxygen supply in the soil through increased 

aeration (Kim et al., 2017). There are several mechanisms by which BC could reduce 

N2O emissions. It improves soil aeration by reducing the soil bulk density which 

decreases the activity of denitrifiers in the soil (Zhang et al., 2010). The reduction in 

N2O emissions after BC application may be due to modification of SM, increased 

aeration, inhibition of nitrifier and denitrifier communities (Laird et al., 2009; Yanai 

et al., 2007). Application of BC (1) may accelerate the growth of soil microbes which 

reduce N2O emission by supporting denitrification of NO3
-
 to N2 (2) facilitates the 

mycobacterial reduction of NO3
-
 to NH4

+
 (3) adsorbs NH4

+
 on its surface (4) decrease 

the abundance of microorganisms involved in nitrification of NH4
+ 

to nitrite (NO2
-
) 

(Anderson et al., 2011) (5) act as “electron shuttle” facilitating electron transfer to soil 

denitrifying microbes (Cayuela et al. 2013 ). BC adsorb NH4
+
 on its surface and 
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reduces its availability for nitrification as a result, N2O emission is declined (Berglund 

et al., 2004; Lehmann et al., 2006). Application of BC to soil increased soil N 

mineralization, suppressed denitrification and reduced cumulative N2O emission by 

91 % in a sandy loam soil (Case et al., 2015). Application of pine wood chips BC 

produced at 550 
o
C to kurosol soil (pH = 5) increased the NO3

-
 concentration in the 

soil and decreased the abundance of narG (a gene involved in NO3
-
 reduction to NO2

-
) 

(Bai et al., 2015). It also increased the abundance of nosZ (a gene involved in N2O 

reduction to N2) by providing suitable conditions for nosZ including increased soil pH 

and microbial respiration (Van Zwieten et al., 2014). Similarly, some other studies 

also confirmed that BC increased the abundance of nosZ, nirK, and nirS (both NO2
-
 

reductase genes) and favored the last step of denitrification (converted N2O to N2) 

which ultimately decreased N2O emission (Cayuela et al., 2013; Ducey et al., 2013; 

Harter et al., 2014; Van Zwieten et al., 2010b). Molar H:C ratio of BC also affects 

N2O emission. BCs with high H: Corg ratio is more effective in reducing N2O 

emission. For example, BC having a molar H: Corg ratio less than 0.3 (have high 

degree of aromaticity) decreased N2O emission by 73 % whereas, BCs with a molar 

H: Corg ratio more than 0.5 decreased N2O emission by 40 % (Cayuela et al., 2015). 

BC with high H:C ratio reduces the bioavailability of C for the growth of denitrifying 

communities (Van Zwieten et al., 2014). It has been reported in several studies that 

BC application improves soil aeration and increase oxygen supply, these conditions 

decrease the rate of denitrification in the soil. In the present study, more NO3
-
 and 

NH4
+
 was observed to be retained in BC amended soils as described in chapter 3. So 

that, the reduction in N2O emissions was most probably due to the reduction in 
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denitrification or due to complete denitrification (reduction of N2O to N2) after BC 

application (Cayuela et al. 2013, 2014, 2015). 

4.2. Biochar effects NO3
-
 and NH4

+
 retention, soil pH, plant N concentration and 

dry matter production 

In this study, DM and IN application to soil increased NO3
-
 and NH4

+
 retention 

(concentration) in 20 cm soil in all treatments compared to the control treatment. The BC 

application reduced the movement of NO3
-
 and NH4

+
 to 40 cm deep soil layer which 

could be attributed due to the adsorption of these ions to BC surface area. Similar results 

have been reported in a 4-year long field experiment where BC increased the NO3
-
 

concentration in topsoil and decreased its movement to deep soil layer (Haider et al., 

2017). Acid functional groups present at BC surface i.e. carboxylic, hydroxyl, lactone, 

lactol, phenol and carbonyls attract NH4
+
 ions (Amonette and Joseph, 2009; Brennan et 

al., 2001; Montes-Morán et al., 2004; Zheng et al., 2010). Some other functional groups 

i.e. chromenes, ketones and pyrones also exist on BC surface which facilitates NO3
-
 

adsorption to its surface (Amonette and Joseph, 2009; Montes-Morán et al., 2004). 

Unconventional H-bonding between NO3
-
 and BC surface possibly increased the NO3

-
 

adsorption on BC surface (Kammann et al., 2015; Lawrinenko, 2014; Mukherjee et al., 

2011). Over the time, the adsorbed N could be desorbed and become available in soil 

(Kameyama et al., 2012; Taghizadeh-Toosi et al., 2012). Application of BC to soil 

augmented soil N mineralization, boosted nitrification and inhibited denitrification (Case 

et al., 2015). Most of the biochars increase soil acidity due to their high pH buffering 

capacity and alkaline nature. In the present study, BC amended treatments exhibited high 



119 

 

soil pH as compared to non-BC and the control treatments at each sampling point. The 

carbonates and oxides formed during pyrolysis from the cations (Ca, Mg, K, Na etc.) in 

feedstock react with H
+ 

and monomeric aluminum species in acidic soils and increase soil 

pH (Brewer et al., 2012; Enders et al., 2012; Novak et al., 2009). The BC increased NH4
+
 

retention in the soil and improved N uptake (Z. Sun et al., 2017), enhanced lettuce yield 

and nutrient concentrations in plant tissues (Upadhyay et al., 2014; Woldetsadik et al., 

2017), increased soil pH, CEC, Ca, total C, N uptake and biomass production of wheat up 

to 250 % (Van Zwieten et al., 2010a). The increase in plant N concentration and dry 

matter yield (DMY) could be attributed to improvement in soil fertility, soil physical 

properties and nutrient retention after BC application (Mukherjee et al., 2014; Randolph 

et al., 2017). 

4.3. Conclusion and Recommendations 

BC application to DM1, DM2 and IN significantly reduced GHG emissions, decreased 

GWP and lowered GHGI of silage corn cropping system tested in western Newfoundland. 

It also improved soil pH, increased soil NO3
-
 and NH4

+
 retention, enhanced N 

concentration in plant tissues, and DMY of silage corn during the two-year field 

experiment. BC amended treatments reduced CO2 emission by 22 %, CH4 emission by 

225 %, N2O emission by 91 %, GWP by 32 %, and GHGI by 37 % compared to the 

control treatment. Additionally, BC amended treatments also improved Plant N 

concentration by 16 %, dry matter yield by 6.7 % of silage corn during two consecutive 

growing seasons. This study was conducted in a cool climate system. The soil of the 

study site was rapidly drained, Orthic Humo-Ferric Podzol which have loamy sand 
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texture with pH of 6.3. Based on the results of this two-year field study it was concluded 

that: 

i- Different sources of N have a significant impact on GHGs emissions, IN 

(NH4
+
 and NO3

-
) concentrations in soil, soil pH, plant N concentration and 

DMY of silage corn in cool climate cropping system. 

ii- Pinewood BC could be used to mitigate GHG emissions, decrease GWP and 

GHGI with great success, and to increase soil pH, decrease NH4
+
 and NO3

-
 

losses to the deep soil, increase plant N concentration and DMY. 

iii- BC maintains high soil moisture which favors crop growth during a dry spell. 

Further studies exploring the role of soil bulk density, porosity, SOC contents on GHGs 

emissions are required as BC amendment to soil modifies soil physical properties. It also 

affects soil biota which affects the emission of GHGs (methanogenic, methanotrophic 

communities, soil nitrifying and denitrifying microbe’s population) which can provide 

more insights into the mechanism underlying the BC role in GHGs emission reduction. 
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