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ABSTRACT 

Anthropogenic global changes are the main drivers of global, regional, and local 

biodiversity changes. Measuring and predicting accurate species range shifts in response 

to these anthropogenic influences is important to developing practical conservation 

strategies. In my thesis chapters, I first present a comprehensive literature synthesis of the 

most common published methods and metrics used to define species ranges and quantify 

species range shifts. Methods for measuring species range shifts included observation 

studies, grid-based mapping, convex hull, kriging, species distribution modelling, and 

hybrid methods. Each method is associated with a diversity of metrics that have different 

opportunities, assumptions, and constraints. Second, I use extensive empirical land-cover, 

climate and breeding bird species data in the boreal forest belt of Ontario (Canada) 

between the late 1980s and early 2000s to measure the relative and combined impacts of 

land-cover and climate change on species occupancy dynamics. I found that land-cover 

and climate change were top predictors of local colonization for ~ 1/3 of species 

considered each but that climate change was the top predictor of local extinction for ~ 2/3 

of species considered. Moreover, the interspecific variations in bird responses to global 

changes were not well captured by species traits such as body size, migration pattern, and 

habitat preference. Finally, using the same empirical data as Chapter 2, I quantify the 

changes in local and regional bird species composition (i.e., beta diversity) over time and 

space and determine the influence of land-cover and climate change on changes in avian 

community composition. Bird communities experienced high temporal community 

turnover (i.e., temporal beta-diversity) and changes in their uniqueness in terms of species 
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compositions (i.e., change in local contribution of each grid to beta-diversity). I found 

that temporal beta-diversity in local avian community composition was positively but 

weakly related to warmer and drier summer conditions in our study system. However, the 

changes in grid-based spatial beta diversity (i.e., changes in contribution of local species 

to beta diversity) did not show any relationship with any climate or land-cover change. 

Chapter 2 suggests that it is critical to evaluate underlying approaches for defining 

species ranges and measuring species range shifts. Moreover, Chapter 3 and 4 show that a 

holistic strategy including multiple global change drivers and different aspects of 

biodiversity dynamics should be considered to more comprehensively study the effect of 

global change on biodiversity.   
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CHAPTER 1 

Introduction and overview 

After mastering fire, humans began to play a significant role in shaping the 

environment to meet their demands with the domestication of plants and animals and the 

development of agricultural practices (Kirch, 2005). The effects that humans have on 

earth systems dates to the Pleistocene–Holocene boundary (Smith and Zeder, 2013); 

however, human-induced changes to the environment have accelerated with 

industrialization over the past three hundred years (Ellis et al., 2013). 

In the history of the Earth, there have been several events that led to the extinction 

of a significant proportion of organisms inhabiting the planet (i.e., mass extinctions, 

Primack, 2014). These mass extinctions are believed to be caused by environmental 

catastrophes and climate changes (Bond & Grasby, 2017). We are currently undergoing 

what many believe is a mass extinction event, but unlike previous ones, the current 

extinction crisis is driven by human activities (Millennium Ecosystem Assessment, 

2005).Species extinctions are the end result of a long series of processes (Habel and 

Schmitt, 2018). For example, before becoming globally extinct, a species may undergo a 

decrease in population size and abundance (Lawton, 1995), then the loss of a population 

in a specific area, followed by the loss of the species in multiple communities, and then 

the loss of the species at a local or regional extent (i.e., local extirpation). A number of 

factors may affect the fate of a species under global change including, but not limited to, 
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genetic diversity (Willoughby et al., 2015), species interactions (Brown & Vellend, 2014; 

Valiente‐Banuet et al., 2015), and dispersal ability (Pacifici et al., 2015).  

Current threats to biodiversity include a suite of human disturbances such as 

greenhouse gas emissions, eutrophication, pollution, habitat destruction, conversion and 

fragmentation, overexploitation, and the introduction of invasive species (Rands et al., 

2010; Cardinale et al., 2012). Following technological developments and globalization, as 

well as the substantial increase in the human population, human consumption and 

demands for natural resources (e.g., fossil fuel, water, land) have dramatically accelerated 

since 1950 (Steffen et al., 2004). Human activities likely directly influence more than 

three-quarters of the Earth's ice-free landmass and all marine ecosystems; the remainder is 

indirectly influenced by climate change and the atmospheric deposition of human-derived 

contaminants (Ellis and Ramankutty, 2008; Halpern et al., 2008). Despite anthropogenic 

impacts on natural systems, maintenance of biodiversity is essential for ecosystem 

services and our well-being (Millennium Ecosystem Assessment, 2005; Pecl et al., 2017). 

A predictive framework to identify and distinguish between the different pathways 

linking global change drivers to species and community dynamics is essential to 

understand and predict biodiversity responses to global changes (Dawson et al., 2011; 

Mouquet et al., 2015; Urban et al., 2016). 

1.1. Effects of land-use and climate change on biodiversity 

Biodiversity is the variety of all living things; the diversity of organisms, the 

genetic information that organisms contain and the ecosystems that organisms form. 
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Currently, human-mediated global changes are primary threats to biological diversity and 

the services provided by biodiversity. Among terrestrial global change drivers, land-use 

change (i.e., also known as land-cover change) has had the highest impact on biodiversity 

loss over the past century, with the most plausible future scenarios predicting that 

biodiversity losses due to land-use change are likely to increase (Jetz et al., 2007; Pereira 

et al., 2013, Newbold et al., 2015). The impact of increased anthropogenic land-use can 

result in the removal of habitat (i.e., habitat loss). For example, habitat loss has led to 

declines in the range size of birds (Jetz et al., 2007) and changes in the range size of 

butterflies (Warren et al., 2001). Moreover, natural habitat remnants after habitat loss 

(i.e., a form of habitat fragmentation) can affect the persistence of biodiversity (Fahrig, 

2003; Fahrig, 2013; Wilson et al., 2016). For instance, in their synthesis of the 35 years of 

fragmentation experiments in five continents, Haddah et al. (2015) showed that habitat 

fragmentation led to 13-70 % declines in species richness. Moreover, some forms of land-

cover change, such as from forest to agriculture fields, can also result in habitat 

fragmentation but agriculture fields can have both positive and negative effects on species 

(Teillard et al., 2015).  

Although anthropogenic climate change is a relatively new threat to biodiversity 

compared to land-cover change, the impacts of climate change on natural systems are 

notable (Mantyka-Pringle et al., 2015). For example, ecologists have documented 

climate-driven geographic range changes (Chen et al., 2011). Specifically, they have 

observed poleward range shifts in butterflies (Parmesan et al., 1999) and birds (Hill et al., 

2001; Zuckerberg et al., 2009; Devictor et al., 2008); upslope range shifts in birds (La 
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Sorte & Jetz, 2012; Tingley et al., 2012), plants (Kelly & Goulden, 2008), and 

bumblebees (Kerr et al., 2015); and thermal habitat tracking for multiple marine species 

(Pinsky et al., 2013). These species range shifts will likely result in changes in 

biodiversity at local, regional, and global extents (Bellard et al., 2012; Staudinger et al., 

2013; Pecl et al., 2017). Climate change is multi-faceted but most commonly measured as 

changes in temperature and/or precipitation. One of the consequences of climate change 

is shifts in climate zones that lead to species range shifts. Species that are unable to keep 

pace with the velocity of climate change are more likely to go extinct (Brito-Morales et 

al., 2018). Unfortunately, climate change not only threatens species and communities, but 

also ecosystems and the services that these ecosystems provide (Grimm et al., 2013). 

The interactions between land-cover and climate change can affect different levels 

of biological organization and biodiversity through a wide range of mechanisms, 

including impacts on species’ ability to shift their distributions, population dynamics in 

fragmented habitats, and community compositions (Fischer & Lindenmayer, 2007, 

Bellard et al., 2015; Sirami et al., 2017). One strategy for species to persist in changing 

climatic conditions is to shift their distributions in order to track their optimum range of 

requirements. However, land-cover changes can hinder species’ ability to shift their 

distribution in response to climate change (Opdam & Washer, 2004). For example, 

Jarzyna et al. (2015) showed that habitat fragmentation is a factor explaining how bird 

communities responded to climate change in New York (USA). Many species have 

already shifted their distributions due to climate or land-cover change, and projections for 

the coming century show that many species will likely continue to shift their distributions 
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due to interacting global changes (Segan et al., 2016). However, few studies have 

analyzed the relative and combined effects of multiple global change drivers on species 

range shifts (e.g., Sirami et al., 2017). In my thesis, I empirically studied the relative and 

combined effects of land-cover and climate change on the dynamics of species occurrence 

and community composition in order to address this important research gap. 

A species’ range may shift in space either because of the changes in ecological 

factors (e.g., climate, the abundances of interacting species) or because of evolved species 

traits that influence their range limits (e.g., dispersal, niche characteristics). Interpreting 

the causes of species’ range limits requires one to pay attention to three things: niches, 

spatial and temporal variation in environments, and dispersal (Brown and Lomolino, 

1998). A species’ realized niche is that set of abiotic and biotic environmental factors that 

permit populations to persist. A species’ range is governed by how well its niche 

requirements match a spatially different template of environmental factors (Brown, 1984). 

When this match fails, it is usually because of dispersal or the lack thereof. Dispersal can 

permit a species to occupy habitats in which its niche requirements are not met (Pulliam, 

2000; Holt, 2003). Conversely, barriers and constraints on dispersal can prevent a species 

from occupying perfectly suitable habitats. Species range shift is a dynamic process 

involving local colonization (i.e., extension of range) or extinction (i.e., contraction of 

range) of species within a region. Monitoring species local colonization and extinction 

patterns can inform us about species responses to environmental changes or the 

magnitude of these changes. In my thesis, I focus on the effects of temporal variation in 

multiple global change drivers on species range shift processes at local and regional 
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extents and the relationship between species responses and their ecological and life-

history traits related to dispersal. 

1.2. Methods for measuring species responses to global changes 

Despite large growth in the availability of species occurrence data (e.g., Global 

Biodiversity Information Facility (GBIF)), it remains a challenge to define species ranges 

empirically and to track changes in species ranges through time. One of the reasons for 

the difficulty of this task is the lack of appropriate time series datasets to define species 

ranges. One of the most widely used methods to overcome this limitation is modelling 

species distributions in each period under consideration by using the observed or 

predicted environmental conditions of that period (Elith et al., 2010). Modelling species 

ranges through time and measuring species range shifts based on these models is a 

common approach, but may be compounded by the lack of independent validation 

(Houlahan et al., 2017; Roberts et al., 2017). Experiments provide the strongest form of 

evidence, but are challenging to implement at biogeographical extents (but see Nutrient 

Network, Borer et al., 2014). Observational or empirical studies examining species’ 

responses to global changes are a promising approach (Fisher et al., 2010). Although 

observational studies (e.g., long-term monitoring) are in use for measuring species range 

shifts (e.g., Parmesan, 1999), they lack a consistent methodology to measure changes in 

species ranges through time. Even when using one method to defines species ranges 

through time, different metrics (e.g., changes in total range size, mean altitude of species 

range) may yield different measures of species ranges and range shifts (Tingley & 

Beissinger, 2009). Therefore, the choice of methods and metrics used to measure species 
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ranges and species range shifts is a critical step in research on biodiversity responses to 

global changes.  

1.3. From species to community responses to global changes 

A growing number of studies have tested species’ trait associations with species 

responses to global changes (see reviews in Angert et al. 2011, MacLean & Besseinger 

2017). The responses of species to global changes are assumed to be mainly related to the 

physiological tolerance limits of species to environmental conditions (e.g., temperature) 

(Root et al., 2003, but see Zarnetske et al., 2012; Blois et al., 2013). Ecological traits play 

a significant role in species’ physiological limits; therefore, species' traits can influence 

their ability to cope with global changes in the short or long-term (Pacifici et al., 2017). 

For instance, generalist species, which have larger geographical ranges and greater 

dispersal ability, will be most likely to persist in the face of global change (Warren et al., 

2001; Brook et al., 2008). In contrast, species with severely restricted distributions are 

likely under higher risk, as are species with limited dispersal ability and narrow ranges, 

because species with a narrow range may not be able to keep pace with the warming 

climate within a reasonable time (Sandel et al., 2011). Consequently, not all species will 

be equally affected by environmental changes. For instance, in their global meta-analysis, 

Gibson‐Reinemer et al. (2015) revealed that amphibians (n=30), plants (n=124), birds 

(n=339), mammals (n=49), and insects (n=177) showed high variation in range shifts in 

response to climate change (i.e., temperature, precipitation). 
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Asynchronous species responses (i.e., variation in local colonization and 

extinction events) to global changes will likely lead to changes in local and regional 

communities (Lurgi et al., 2012). Although changes in the number of species in an area 

can be an indicator of changes in biodiversity, changes in community composition can 

give additional insight to community response to global changes (Anderson et al., 2011; 

Legendre, 2014; Socolar et al., 2016; Kuczynski et al., 2018). Therefore, it is important to 

track not only the changes in total species number, but also changes in species 

composition of communities to understand the effects of global changes. 

Species components of biodiversity can be classified as alpha (local), gamma 

(regional), and beta (ratio between gamma and alpha) diversity at different scales of 

observation (Whittaker, 1960). Beta diversity quantifies the degree of differentiation 

among biological communities over time and space by accounting for species turnover 

and species local colonization and extinction patterns, and many approaches were 

proposed to calculate it (see Anderson et al., 2011, Baselga, 2012; Legendre, 2014). 

Recently, studies have begun incorporating beta-diversity into investigations of the 

impacts of global change. For instance, studies have focused on the effects of land-use 

and climate change on avian beta-diversity in Tanzania (Ferger et al., 2017), effects of 

habitat alteration and fragmentation on fish beta-diversity in Ontario (Canada) (Edge et 

al., 2017), effects of climate and land-cover on butterfly beta-diversity in Canada 

(Lewthwaite et al., 2017), and effects of climate change on woody plants beta-diversity in 

the Atlantic Forest, Brazil (Zwiener et al., 2018). However, the number of studies 

focusing on the effects of multiple global change drivers on beta diversity are limited 



9 

 

(Socolar et al., 2016; but see Ferger et al, 2017; Lewthwaite et al., 2017; Kuczynski et al, 

2018). In my thesis, I studied the effects of observed land-cover and climate change on 

community composition changes. Understanding not only species responses, but also 

community responses is critical to inform conservation of biodiversity under global 

change (Socolar et al., 2016) 

1.4. Thesis overview 

My thesis combines a comprehensive systematic review and empirical studies 

including multiple species, synthesis of large datasets, and models to quantify the impacts 

of global changes on species’ local colonization and extinction patterns and species 

community composition over time and space. Overall, my thesis is one of the few 

examples of empirical research that focuses on biodiversity responses to multiple global 

change drivers from methods and metrics to species-specific responses to community 

responses.  

In Chapter 2, I reviewed and synthesized the contemporary methods and metrics 

for quantitatively measuring species range shifts and frame these methods’ advantages 

and disadvantages by discussing opportunities, assumptions, and constraints of the 

different approaches. Although there have been reviews on specific methods (e.g., species 

distribution modelling, Dormann et al., 2012), this chapter is one of the few reviews 

focusing on both methods and metrics in this context. This chapter may serve as a guide 

to researchers and students to decide which methods and metrics are feasible and 

appropriate to address their research questions. 
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In Chapter 3, I conducted an empirical study to test the relative and combined 

impacts of climate and land-cover changes on local colonization and extinction patterns 

of breeding birds of Ontario, and the relationship between species’ responses and their 

life history and ecological traits. This study is one of the few empirical assessments of 

multiple species-specific responses to multiple global change drivers at local and regional 

extents. This chapter shows that not all species respond similarly to land-cover and 

climate change; therefore, it is important to incorporate multiple anthropogenic impacts 

on global change studies. 

In Chapter 4, I conducted an empirical study to test the relative and combined 

effects of climate and land-cover changes on changes in the community composition of 

breeding birds in Ontario over time and space. This chapter is one of the first studies 

focused on the impacts of observed land-cover and climate change on both spatial and 

temporal dynamics of community composition at local and regional extents. This study 

showed that although species-specific responses could be explained by land-cover and 

climate change, these changes in environmental conditions did not always explain 

changes in community composition. 

In Chapter 3 and 4, I used the same datasets of species and environmental 

variables; however, the biological levels of these chapters are different. In Chapter 3 I 

examined species-specific responses whereas in Chapter 4 I examined community 

responses to land-cover and climate change. Moreover, there is a difference in the scale of 

these chapters. I tested the effects of these environmental changes on changes in species-

level local colonization and extinction at a local scale, rate of local colonization and 
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extinction at a regional scale, temporal species turnover at a local scale, and changes in 

the uniqueness of each grid in terms of community composition at a regional scale. In 

Chapter 5, I briefly summarize my findings and discuss some potential future directions 

in this research area. 

The associated data and R codes used in this thesis can be found in each chapter’s 

data accessibility section. 
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2.1. Introduction 

Species geographic distributions (i.e., range) are spatially and temporally dynamic 

(Gaston, 2003). Global changes (e.g., climate and land-use changes), however, are 

leading to changes in species ranges at larger extents and over shorter periods than would 

naturally occur. Many studies have shown that species have been shifting their ranges 

towards the poles (e.g., Parmesan & Yohe, 2003), higher elevations (e.g., Mason et al., 

2015), or deeper depths (e.g., Pinsky et al., 2013) due to the changing climate in the past 

few decades. Measuring and predicting accurate species range shifts in response to 

anthropogenic global changes is important to developing effective conservation strategies 

(Dawson et al., 2011). It is, therefore, surprising that we lack a comprehensive review of 

the most common methods and metrics used to define species ranges and species range 

shifts. 

Studies of ranges shifts necessarily begin by defining a species’ range, followed 

by quantifying changes in this species’ range over time. Common methods for defining a 

range include the direct use of observational data (e.g., Urli et al., 2014), spatial 

projections of species occurrences using spatial analysis or correlative species distribution 

models (SDMs) (Franklin, 2009), and mechanistic models (e.g., Fordham et al., 2013). 

While the use (and abuse) of SDMs for defining a species’ range has been widely studied 

(see reviews in Elith & Leathwick, 2009; Dormann et al., 2012), few studies have 

compared and contrasted different methods for defining species ranges. Recent studies 

that have compared more than one method have focused on integrating species 
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distribution with population abundance (Ehrlén & Morris, 2015), predicting species’ 

vulnerabilities to climate change (Pacifici et al., 2015), testing the performance of 

different methods for predicting species ranges and range shifts (Zurell et al., 2016), and 

integrating mechanisms in models to forecast species’ responses to climate change 

(Urban et al., 2016). None of these studies, however, report on the breadth of methods 

available to define a species’ range. 

After defining the range, there are several ways to quantify changes in the range 

over time. Range change measurements are closely related to quantitative metrics for 

defining the structure of species ranges (Brown et al., 1996; Gaston, 2003). Specifically, 

many studies measure changes in range limits (e.g., Parmesan & Yohe, 2003) and 

size/shape (e.g., Hickling et al., 2005). Moreover, individual-based measurements such as 

changes in the occupancy of species, presence/absence, and abundance can infer species 

range shifts in an area. Similar to studies on species ranges, few studies have tested 

different methods and metrics for measuring species range shifts over time (but see 

Hassall & Thompson, 2010). Most recently, Lurgi et al. (2015) provided a review of 

methods focusing on software platforms for modelling population-based species range 

dynamics, and Lenoir & Svenning (2015) synthesized a review to evaluate geographic, 

methodological and taxonomic shortfalls of studies on species range shifts. 

Here, we provide a comprehensive review of the most common contemporary 

methods and metrics used to define species ranges and species range shifts. First, we 

report on the different methods and metrics used to define species ranges and species 
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range shifts supported by examples from our literature review of studies published in 

2013 and 2014. We then provide a summary of emerging and promising methods and 

metrics that can be used in species range shifts studies. Finally, we discuss the 

opportunities, assumptions, and constraints of different methods and metrics to provide a 

roadmap for the selection of appropriate range and range shift methods and metrics given 

the data and question at hand. 

2.2. Methods and metrics for measuring changes in species ranges over time 

and space 

Using time as a comparative parameter requires defining a reference measurement 

of a species range for each period before calculating the range shift between multiple 

periods. We conducted a literature search to identify key methods and metrics for 

measuring species range shifts. We consider a method to be a procedure (i.e., set of steps) 

or technique (i.e., tool) and a metric to be a specific measure (e.g., mean) (see Appendix 

A.1 in Supporting Information for our detailed literature search methods). In this section, 

we first outline contemporary methods used for defining species ranges, then present 

metrics used for quantitatively measuring the range shift. 

2.2.1. Defining species ranges 

Observational data of a species is required to define the species’ range. However, 

different methods can be applied to the same observational dataset to delineate a species’ 

range. Our literature review revealed six different methods for converting species 
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occurrences to species ranges. These methods, ordered from the least to most data and 

input requirements, are the direct estimation of species range characteristics from 

observations (hereafter referred to as observational study), grid-based mapping, convex 

hull, kriging, species distribution models, and hybrid methods (Fig. 2.1, Appendix A.2). 

Observational studies (n=22) that estimate a species range characteristic (e.g., 

maximum altitude where species can occur) are one of the oldest methods used to study 

species ranges and species range shifts. Our literature review showed that observational 

studies are often based on long-term spatially explicit observation records. For example, 

Urli et al. (2014) analyzed forest inventory data obtained from long-term systematic 

surveys in permanent plots between 1986 and 2007 in Spain. Other observational studies 

are a result of repetition of the same field studies after a period. For example, Moskwik 

(2014) resurveyed 18 transects for two communities of salamanders in the southern 

Appalachian Mountains in 2011, which were previously surveyed by Hairston (1949; 

1951 as cited in Moskwik, 2014) in the 1940s. More recent observational studies take 

advantage of advances in statistical and spatial analysis techniques and an increase in the 

availability of species observation data through citizen science platforms (Sagarin & 

Pauchard, 2010). 

Grid-based mapping (i.e., atlas mapping, n = 13) is a method in which a grid (i.e., 

regular areal unit) system is used to create a distribution map according to species 

observation records. This method is a generalization technique in which species 

observations (usually point data) are transformed to area-bounded data (usually 
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represented by square grids). In grid-based mapping, either species observation data can 

be collected using a gridded-sampling scheme or researchers can convert opportunistic 

species observation data to area-bounded data using a gridded map. If data are collected 

based on a grid-system, researchers can directly use these data as grid-based mapping by 

using the same grid size that was used during sampling. For instance, Amano et al. (2014) 

used data from grid-based sampling of 244 plant species to generate a 10 km x 10 km grid 

map of these species across Britain. 

Convex hull (i.e., minimum convex polygon, n =1) is a spatial analysis technique 

that converts observations (point data) to area-bounded data (polygon surface). This 

method uses Euclidean distance between species occurrences to create an area covering 

all or a subset (e.g., 95%) of the occurrences without any integral angle of the area 

exceeding 180 degrees (Burgman & Fox, 2003). Myers et al. (2013) used convex hull to 

convert observation records of 63 species of mollusks to species ranges for each stage of 

the Late Cretaceous in the North American Western Interior Seaway. 

Kriging (n = 1) is a spatial interpolation technique used to estimate unknown 

values from the known values of neighboring point data (Fortin et al., 2005). Tobin et al. 

(2014) applied kriging to map the gypsy moth’s yearly ranges in three distinct regions of 

Virginia and West Virginia (USA) between 1989 and 2010. Although convex hull and 

kriging were not very common methods observed in our literature review, this does not 

necessarily reflect the applicability of these methods for defining species ranges. 
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By far the most common method for defining species ranges in our review of 

studies on species’ range shift is correlative species distribution models (SDMs) which 

are based on the correlation between species occurrences and environmental variables (n 

= 73). The majority of studies adopted an SDM framework by using only climatic 

variables. For instance, Garcia et al. (2014a) modelled the future distribution of 29 

endemic amphibians in western Mexico according to species occurrence points and seven 

climatic variables by using three different SDM techniques and an ensemble of these 

models. Then, they converted the suitability of the area for occurrence of each species 

(values range from 0 to 1) to the potential range of each species (values are either 0 or 1) 

for current (1950-2000) and three future periods (2020, 2050, and 2080). The widespread 

use and diversity of SDMs is not unexpected as it mirrors recent advances in the 

availability and access of geospatial data for both species occurrences (e.g., Global 

Biodiversity Information Facilities) and environmental variables (e.g., Worldclim), 

analysis platforms (e.g., The R project), and tools (e.g., biomod2). 

The final method observed in our literature review is hybrid methods (n = 17), 

which are combinations of different models or methods. An example of hybrid methods is 

to integrate occupancy models, which are statistical approaches used to model the 

probability of species occurrences by accounting for any spatial and temporal biases in 

the observation process through time and space (MacKenzie & Royle, 2005), with SDMs. 

For instance, Beale et al. (2013) used Bayesian hierarchical occupancy models to test 139 

savannah bird species’ range changes by accounting for the probability of the detection of 

species, climate change, land-use, and protection status of areas in Tanzania. Most hybrid 
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approaches pair SDMs with mechanistic models to overcome the limitations of 

correlative SDMs (Dormann et al., 2012; Singer et al., 2016). For example, Benito et al. 

(2014) combined the results of species distribution models for 176 plant species in the 

southern Iberian Peninsula with dispersal kernel analysis to forecast the range declines of 

these species by 2100. Furthermore, Naujokaitis-Lewis et al. (2013) paired species 

distribution and meta-population models to measure possible range shifts of the hooded 

warbler including environmental conditions and population processes in an area 

encompassing the eastern United States and southern Ontario, Canada in 2080, based on 

ranges defined for the years (1985-2005). 

2.2.2. Measuring species range shifts 

Limit, size, and shape are three main quantitative metrics used to define the 

structure of species ranges (Brown et al., 1996; Gaston, 2003). By focusing on these three 

metrics of range structure, we defined three main classes of metrics for measuring species 

range shifts: changes in range limits, changes in range size, and changes in the probability 

of occurrence or suitability (Fig. 2.2, Appendix A.3). 

In our review, changes in range limits through time were most commonly 

measured. Examples include differences in the i) northernmost and southernmost 

occupied latitude, ii) maximum or minimum elevation, or iii) mean points for latitude, 

longitude, or elevation. Changes in range limits can be measured based on different 

underlying methods for defining species ranges. For example, Grewe et al. (2013) 
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measured the difference in the mean latitude of the 10 northernmost occupied grid cells 

between two periods in an atlas map for 91 insect species in Europe. However, Eskildsen 

et al. (2013) measured changes in the mean latitude of the five northernmost grids 

modelled with SDMs between two periods for 56 insect species in Finland. All the 

method classes for defining species ranges through time except convex hull were used as 

a first step to measure changes in species range limits. 

Our review identified that changes in range size are most often measured as 

changes in the size of occupied or suitable areas. This calculation can be based on 

absolute change such as differences in the number of occupied grids during each period, 

or the relative (ratio) or percentage change according to range size within a defined 

reference period or defined area. For instance, Kujala et al. (2013) studied the changes in 

range sizes of bird species in Great Britain according to differences between the numbers 

of occupied grids between 1968-1972 and 1988-1991. All the method classes for defining 

species ranges in our review except kriging were used as a basis to measure changes in 

range size. The other sub-method for measuring changes in range size is to subtract the 

species ranges during different periods, and then classify areas as loss (or contraction), 

gain (or expansion), or stable (no change) (e.g., Carlson et al. 2014). Only species 

distribution models and hybrid methods were used for calculating loss, gain, and stable 

areas for species ranges. 

The final metric class used for measuring range shift in our dataset measures 

species range shifts as the absolute or proportional change in probability of occurrence or 
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suitability (i.e., the suitability of the environment given a species’ occurrence). For 

instance, Virkkala et al. (2013) used absolute and proportional changes in suitability 

within Finland for 100 bird species for the period 2051-2080 based on ranges defined for 

the years 1971-2000. Moreover, Martin et al. (2013) applied Cohen’s kappa statistic to 

test the similarity of modelled suitable areas between baseline and future projections of a 

butterfly species in Europe. In our review, species distribution models, hybrid methods, 

and one observational study were used to calculate changes in the probability of 

occurrence or suitability as a metric for species range shift. 

2.3. Emerging methods 

The study of species ranges and species range shifts is a rapidly developing 

research area with frequent methodological advances. In this section, we provide an 

overview of some of the most recent and promising methods used to study species range 

shifts as a supplement to our detailed literature review. 

No stand-alone fully mechanistic models (also known as process-based models) 

met our literature review criteria. Here, we summarize key features of mechanistic models 

because the development of these models used to forecast species range shifts under 

global change has the potential to refine our understanding of the species range shift 

process and consequently improve future projections of biodiversity distributions (Leroux 

et al. 2013; Urban et al., 2016). Mechanistic models are explicitly built on ecological 

processes and mechanisms intended to explain species ecology (Dormann et al., 2012). 
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Dispersal, demography, physiology, species interactions, population interactions, and 

evolution are common processes included in mechanistic models (see review in Urban et 

al., 2016). Mechanistic models enable us to test evidence in support of multiple processes 

concurrently in a single framework. For instance, Cabral and Kreft (2012) linked 

interspecific competition and metabolic constraints as a function of body mass and local 

temperature to a stochastic stage-structured population model in lattice space to determine 

the key drivers of the ecological niche of plants. Similarly, mechanistic models can 

combine the effects of multiple processes operating at different spatial and temporal 

scales. For instance, Pagel & Schurr (2012) modelled probabilistic species range 

dynamics of virtual species using a hierarchical Bayesian framework integrating spatial-

temporal population dynamics and species niche parameters. In some cases, features of 

mechanistic models can be integrated into a hybrid model framework (e.g., Talluto et al. 

2016). Indeed, Urban et al. (2016) argue that hybrid correlative-mechanistic models offer 

a useful starting point for integrating mechanisms into range shift studies. 

In parallel to the above data-driven mechanistic models, there have been great 

advances in the development of mathematical models for predicting species range shifts. 

Mathematicians are now applying mechanistic integrodifference equations and reaction-

diffusion models developed for understanding and predicting invasive species spread to 

forecast species range shift under climate change (e.g., Berestycki et al., 2009; Harsch et 

al., 2014). Recent work to parameterize these models (e.g., Leroux et al., 2013; Svenning 

et al., 2014; Urban et al., 2016) holds promise for widespread applications of this theory 

to real world species range shift studies. 
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Methods borrowed from other research areas, such as methods for comparing 

species niches between different geographical areas or times, also hold promise for 

improving predictions of species range shift. For instance, Broennimann et al. (2012) 

suggest a quantitative framework to build a species’ environmental niche by using a 

kernel smoother. Observational data or SDM output can be used as a first step to define 

the niche. Then, the niche similarity of a species among different geographical areas or 

periods can be expressed by measuring changes in the density of occupied environmental 

space. This approach has been adopted to study marine mollusc niches in the Atlantic and 

Gulf Coastal Plains, USA (Saupe et al., 2015) and lizard niches in Australia (Tingley et 

al., 2016). Although the above approaches compare niche environments between areas or 

through time, we also see potential for adopting these as a basis for quantitatively 

measuring species range shifts. 

Novel quantitative methods are also emerging for measuring species range shifts 

on a multidirectional plane rather than only the main compass direction. For instance, 

Gillings et al. (2015) use a circular plane to predict directional change in bird 

distributions in Great Britain. While our literature review focused on studies that used 

quantitative methods to measure species range shifts in geographical space, other 

approaches detect species range shifts by accounting for changes in abundance or 

population dynamics of species or other indicators of changes in species existence in an 

area (see recent review in Ehrlén & Morris 2015). For example, Lehikoinen et al. (2013) 

consider changes in the abundance of three waterbird species as an indicator of species 

range shifts in nine European countries between 1980 and 2010. Although these non-
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geographical measurements and observations allow ecologists to develop and test 

hypotheses for understanding species range shifts, their results do not represent 

quantitative changes in species ranges. 

2.4. Measuring species range shifts in practice 

Given the diverse methods and metrics for defining species ranges and species 

range shifts, deciding which approach is most appropriate for the question at hand is 

difficult. Following the model of Lurgi et al. (2015), we formulate a series of simple 

questions as a guide for researchers attempting to define species ranges and measure 

species range shifts (see Appendix A.4 for additional questions). We summarise the key 

recommendations of the methods in Table 2.1. 

2.4.1. What do we need to apply a method for defining species ranges? 

The common input data of all methods for defining species range is observation 

records of a species in an area through time (Fig.2.1). Observation records can be 

collected systematically or haphazardly. Observational studies, grid-based mapping, 

convex hull, and kriging only require species occurrence data to define species ranges. To 

make a quantitative measurement of any change in a species range, observation studies 

require long-term field studies or multiple field surveys in an area with consistent 

methodologies, and minimum variability in survey efforts (e.g., Stafford et al., 2013). 

Since most species data collected over large extents are not sampled systematically, 

methods using generalizations (e.g., grid-based mapping) or interpolations (e.g., kriging) 
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have been used for overcoming inherent biases in biodiversity data. Besides occurrence 

data, grid-based mapping, convex hull, and kriging require additional pre-defined 

assumptions, rules, and algorithms. For instance, grid-based mapping requires a pre-

defined grid size and rules for how and when to define the presence of a species in the 

area defined by the grid. For example, Hardy et al. (2014) define a grid (1 km2) as 

occupied if this grid has a single occurrence record of a butterfly species in Northwest 

England. Overall, generalization and interpolation methods predict a general pattern of 

species occurrence such as the extent of species occurrence; however, species 

distributions are often patchy rather than uniformly distributed in space. Consequently, 

these methods usually fail to map the true spatial structure of species ranges, which may 

lead to numerically and directionally erroneous range shift estimations. 

SDMs require observations of species as a response variable and environmental 

data such as climate and land cover data as predictor variables. Some techniques (e.g., 

generalized additive models) require data on both the presence and absence of species 

within an area, while other techniques (e.g., ecological niche factor analysis) require only 

data on the presence of a species (Guillera-Arroita et al., 2015). Evidence suggests that 

methods based on presence/absence data may more accurately predict species 

distributions than methods based only on presence data, particularly for wide-ranging 

species (Brotons, 2004). However, predictions of species distributions based on 

presence/absence data may not be reliable if there is bias in the selection of absence 

points (Phillips et al., 2009). 
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All SDMs have three steps: derivation (model fitting), projections, and validation. 

In each step, there are a number of assumptions and decisions to follow (Elith & 

Leathwick, 2009). One of the main assumptions of SDMs is that species are at 

equilibrium with their environment; however, this may not be true for all species (García-

Valdés et al., 2013; Urban et al., 2016). Moreover, key determinants of the performance 

of SDMs include the spatial resolution and extent of the study, selection of appropriate 

environmental variables, and choice of modelling technique (Elith & Leathwick, 2009; 

Guillera-Arroita et al., 2015). Furthermore, most of the metrics applied to SDMs outputs 

for measuring species range shifts require a geographical representation of the presence-

absence of species as input. Therefore, in contrast to observational, grid-based mapping, 

and convex hull studies, the output of SDMs, some hybrid models, and kriging requires 

transforming the response into a binary map (presence/absence of species) by applying a 

probability threshold. There is a wide range of methods for choosing a threshold criterion 

(Liu et al., 2005) for SDMs studies and this choice can be a significant determinant of 

range shift estimations. The simplest choice would be to set a fixed threshold such as 0.5. 

Other thresholds depend on accuracy-based measures (e.g., sensitivity and specificity 

measurements, omission and commission error specifications) or data (e.g., observed vs 

predicted prevalence) (Liu et al., 2005; Nenzén & Araújo, 2011). It is becoming more 

common, however, for studies that apply SDMs to not use thresholds but rather compare 

changes in the probability of occurrence or suitability of the area between multiple 

periods (e.g., Virkkala et al., 2013; Leroux et al., 2016). 
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Hybrid methods incorporate important ecological processes such as population 

and meta-population dynamics, dispersal, biological interactions or physiological 

processes into species range shift models (Singer et al., 2016). Therefore, besides 

observational data of species occurrence, hybrid methods generally require more data and 

information about the environment and biology of a species, such as information on 

species’ dispersal abilities or the intensity of interspecific competition (Urban et al., 

2016). Consequently, if these data are not available for your study species or area, hybrid 

methods may not be feasible. Even if the data are available, the integration of multiple 

sub-models commonly applied in hybrid models can lead to model uncertainties, which 

can result in the propagation of error (Fordham et al., 2013). Sensitivity analysis is a 

critical component of adaptive modelling framework (Urban et al., 2016), which could be 

applied to all types of methods uncovered by our literature review to test the uncertainties 

arising from model inputs (e.g., data, parameter values) and model structure (e.g., model 

equations, parameter types). Moreover, we suggest developing a flowchart detailing the 

integration of methods to provide transparency of any possible uncertainties sourced by 

the chosen methods. 

2.4.2. Does the method for defining species ranges explore the relationship 

between environment and species? 

Observational, grid-based mapping, convex hull, and kriging studies only provide 

a geographical representation of a species range; these methods do not explicitly quantify 

the relationship between species and environment. Therefore, if your research question is 
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to understand or explain the relationship (impact and response) between species and their 

environment, these methods are not suitable as stand-alone analyses (but see Grytnes et 

al. 2014). 

Only SDMs and some hybrid methods allow for explicit study of the relationship 

between the environment and species distribution. Therefore, these may be desirable 

methods if your research questions pertain to understanding species-environment 

relationships. This is one of the strengths of SDMs, as it allows ecologists to map species 

distribution in areas where the observation records of a species are not available and to 

predict possible future states of species ranges (Elith & Leathwick, 2009) but not without 

caution (see Fitzpatrick & Hargrove, 2009). Although SDMs cover the interactions of 

species and environments under consideration, most SDMs are purely correlative and 

therefore do not explicitly represent the ecological processes influencing species-

environment relationships such as dispersal and biotic interactions (Elith & Leathwick, 

2009). 

2.4.3. Does the method examine ecological processes underlying species range 

shifts? 

Species range shift is a cascade process that contains multiple ecological 

processes operating at individual and population levels. These processes include 

dispersal, demography, physiology, species interactions, population interactions, and 

evolution (see review in Urban et al., 2016). Observational studies, grid-based mapping, 
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kriging, convex-hull, and SDMs do not explicitly consider these underlying processes of 

species range shifts. On the other hand, mechanistic models and their hybrids include 

ecological processes to understand species range dynamics (Schurr et al., 2012). For 

instance, Cabral et al. (2013) modelled the responses of eight Proteaceae species to future 

(2050) climate and land-use change by integrating species-specific demographic models 

(i.e., local population models), dispersal kernels, and distribution models. Hybrid methods 

and mechanistic models allow ecologists to include ecological processes to understand 

and forecast species range shifts, which holds greater promise for accurate predictions in 

novel (i.e., future) environments than correlative approaches (Urban et al., 2016). 

2.4.4. Does the method used for defining species ranges influence range shift 

calculations? 

Defining a species’ range is a precursor to measuring species range shift; 

therefore, measurements of species range shifts are strictly dependent on the selected 

method for defining species ranges. For instance, if an observational study, grid-based 

mapping, and SDM is used for defining a species range through time, their outcomes will 

most likely produce numerically different range shift results when applying a single 

metric (e.g., changes in mean latitude of 10 northernmost records). For instance, grid-

based mapping, convex hull, kriging, and SDMs are prone to the overprediction of 

species ranges due to their inability to show the natural patchy structure of species range 

over an area. Consequently, range shift estimates based on the above methods will likely 

be erroneous, particularly when estimating changes in the interior of the range. 
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In summary, when deciding on a method for defining species ranges through time, 

we should first carefully consider whether our study design could meet the data 

requirements, assumptions, and parameters of a chosen method (Appendix A.2). Then, we 

must evaluate how the outputs of the chosen methods relate to the ecology of our study 

species to determine how the adopted method may influence range shift calculations. For 

instance, if our study goal is to understand the effects of species physiological dispersal 

limitations on the success of tracking suitable environmental conditions in the future, 

SDMs and hybrid methods are the only applicable approaches because the study involves 

future predictions. Recently, Zurell et al. (2016) showed that SDM hybrids (SDM and 

dispersal model; SDM and population dynamic model; SDM and a patch-matrix model) 

and a hierarchical Bayesian process-based dynamic range model (DRM) gave more 

reliable results than a pure correlative SDM when calculating changes in latitudinal 

quantiles of species ranges. 

2.4.5. Does the applied metric for measuring species range shift influence range 

shift calculations? 

Species ranges are spatially and temporally dynamic because of population 

dynamics within and at the edge of a species range resulting from continuous events of 

extinction and colonization. To measure the magnitude and intensity of species range 

changes through time, a variety of metrics can be applied (Appendix A.3). However, 

different approaches for measuring range shifts can show different results, even when a 

single method is applied for defining species ranges (e.g., Hassall & Thompson 2010). 
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Overall, most species have patchy abundance distributions with high abundance and well-

established populations within the core of the range (Jarema et al., 2009). Consequently, a 

comprehensive perspective on species range dynamics may be gleaned from the use of 

range shifts metrics that measure internal range dynamics such as difference in the mean 

latitude of all occupied areas weighted by species abundance to include heterogeneity in 

the spatial pattern of species distribution in an area. However, only measuring changes in 

descriptors of the entire species range (e.g., mean altitude of all occupied areas) 

sometimes cannot detect range shift, especially if a species is experiencing changes at 

both peripheries of their range. For instance, Stafford et al. (2013) showed that by using 

the change in the centroid of a species distribution the species range shift to be captured 

only when there was either southern contraction or northern expansion of species ranges. 

While we expect to see rapid responses at range edges, especially at the cool edge (i.e., 

leading edge) rather than the warm edge (i.e., rear edge) of a species distribution (Rehm 

et al., 2015), measuring range shifts with edge metrics is not without issues. For example, 

testing changes in the marginal ends of a range is prone to sampling bias and extreme 

occurrence events by chance (Preuss et al., 2014). In the end, comparing species ranges 

using a multidirectional plane (i.e., considering changes in all compass directions) is a 

promising approach to capture both change in the interior and periphery of a range (e.g., 

Lehikoinen & Virkkala, 2016). We also recommend reporting the results of multiple 

applicable metrics as a way to overcome the variability of the performance of range shift 

metrics and provide more transparency of the consequences of the applied metrics (e.g., 

Zurell et al. 2016). 
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It is important to note that only metrics among the metric class changes in range 

limits can give directional results. For instance, Comte & Grenouillet (2013) and 

Grenouillet & Comte (2014) measured species range shifts of 32 stream fish species in 

France between 1980-1992 and 2003-2009 by modelling species distributions with 

SDMs. In Comte & Grenouillet (2013), they measured species ranges as changes in the 

range limits (range center, upper and lower range limits, and overall range extent); 

however, in Grenouillet & Comte (2014) they measured range shifts according to changes 

in species range size. Both studies showed that fish species have shifted their ranges, but 

only Comte & Grenouillet (2013) reported the direction of the range shift; the mean 

altitudinal change of all species increased by 13.7 m per decade. Therefore, if your 

research question requires a specific directional measurement of species range shift, 

metrics within the class of changes in range limits are most appropriate. 

2.5. Future perspectives 

How to conserve biodiversity in an era of global changes is a primary question in 

conservation biology (Dawson et al., 2011). Land-use and climate change are primary 

causes of species extinction and local changes in species composition (Foley et al., 2005; 

Garcia et al., 2014b). Almost all approaches to conserve biodiversity seek an answer to 

the question of where species were, are or will be. For example, the focus of conservation 

planning under global changes, particularly climate change, is currently on outlining 

conservation strategies for designing protected area networks for climate change 

mitigation (e.g., Tingley et al., 2014; Schmitz et al., 2015). These strategies include 
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identification of micro and macro-refugia, protection of geophysical features, and 

identification and prioritization of key areas to maintain the connectivity of protected 

areas (Schmitz et al., 2015). Although accurate identification of species ranges and 

species range shifts underlies most of these proposed conservation strategies, the 

discussion of strengths and weaknesses of these underlying methods and metrics has not 

garnered as much attention as the discussion of the strengths and weaknesses of different 

climate change mitigation strategies. In our review, we highlight how method 

assumptions and parameters can affect our predictions of species range shifts. It follows 

then that the selection of methods and metrics for defining species ranges and measuring 

species range shifts may have subsequent effects on the identification of refugia, 

corridors, and protected areas. Because protected area networks that do or do not consider 

climate change mitigation strategies are only as good as the methods and metrics used to 

delineate them, we urge the conservation community to evaluate underlying approaches 

for defining species ranges and measuring species range shift with an equal level of 

scrutiny as the conservation strategies these methods and metrics allow. 

Methods and metrics for defining species ranges and measuring species range 

shifts under global changes are fundamental scientific tools in the conservation planner’s 

toolbox. Our review revealed that this toolbox is very complex, with six methods for 

defining ranges as precursors for three classes of metrics for predicting species range 

shifts. The diversity of metrics for measuring species range shifts under global change we 

uncovered may seem overwhelming for newcomers and seasoned users alike. Although 

the production of a decision tree to guide users of the methods and metrics may be useful, 
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we believe that greater critical appraisal of approaches a priori is a more sound way 

forward. Following this, we formulated a series of simple questions researchers can 

consider before embarking on a study of species range shift (Table 2.1). The toolbox 

ecologists are developing is sophisticated and already accounts for many uncertainties in 

data, model formulations, and model outcomes. On the other hand, many studies 

measuring species range shifts do not provide sufficient information to reproduce their 

study - leaving the reader hopeless in interpreting study results. Sometimes, this 

information is fundamental - for example, almost half of the papers we reviewed (43%) 

did not explicitly report the sample size used in their analyses. If the research and applied 

community are to make the most of these studies, we need to be more transparent when 

reporting the methodological decisions and technical details of our studies. 

As we accumulate more and more case studies of species range shifts, we will see 

more meta-analyses of shift patterns. One of the most highly cited meta-analyses in our 

field, Parmesan and Yohe (2003) used data from studies with different underlying 

methods and metrics of measuring species range shifts; specifically, an observational 

study for measuring changes in plant communities in fixed plots along the altitudinal 

gradients of 26 mountains in Switzerland, a grid-based mapping study for measuring 

changes in northern margins of 59 birds in Britain by using the mean latitude of 10 

northernmost occupied grids, and an observational study for measuring changes in the 

latitudinal distribution of 31 butterflies in Sweden by using the mean latitude of five 

northernmost observation records. As the method used to define species ranges and 

metric used to define species range shifts will influence predictions of range shifts, we 
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recommend that future meta-analyses either i) use data from studies with similar methods 

and metrics, for example, Gibson-Reinemer & Rahel (2015) used only observational 

studies in their meta-analysis to test the consistency of plants, birds, mammals, and 

marine invertebrates’ range shifts with climate change in local and regional scales or ii) 

discuss the implications and sensitivity of meta-analytic results to the inclusion of data 

from studies with diverse metrics. In the end, quantitative analyses of different methods 

and metrics for defining species ranges and species range shifts are urgent to understand 

the quantitative effect of different approaches on our predictions of species range shifts 

under global change. 

2.6. Data Accessibility 

The database of the literature review is available at figshare: DOI: 

10.6084/m9.figshare.3174478. 
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Table 2.1 Summary of recommendations of methods observed in our literature review for defining species ranges and 

measuring species range shifts according to key decision points of building species ranges through time. Each guiding question 

refers to a guiding question in the main text (1 - 5) and Appendix A.4 (6 - 11). 

Guiding 

questions 

Insights Properties and/or limitations Recommendations 

1. What do we 

need for applying 

a method for 

defining species 

ranges? 

Requirements of methods 

include multiple inputs such 

as input datasets, assumptions, 

and parameters to build 

species ranges. (See Appendix 

A.2). 

 Observational studies, grid-based 

mapping, kriging only require 

species observational datasets. 

 SDMs require species observations 

and environmental variables 

representing study area. 

 Hybrid methods require more fine 

scale data such as parameters of 

population dynamics in addition to 

species observations and 

environmental datasets. 

 The study should meet all 

required assumptions and 

data of the selected 

method. 

2. Does the 

method for 

defining species 

ranges explore 

the relationship 

between 

Some studies are purely 

interested in defining the 

geographical location of a 

species whereas others are 

interested in quantifying the 

relationship between species 

occurrences and 

environmental conditions. 

 

 Observational, grid-based 

mapping, convex hull, and kriging 

studies only provide geographical 

representation of a species range 

(but see Grytnes et al., 2014). 

 SDMs and some hybrid methods 

allow for explicit study of the 

relationship between species and 

 Researchers asking 

questions pertaining to 

species-environment 

relationships should use 

SDM or hybrid methods. 

Researchers not interested 

in species-environment 

relationships should use 

observational, grid-based 
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environment and 

species? 

the environment. However, SDMs 

do not represent processes driving 

species-environment relationships. 

mapping, convex hull, and 

kriging. 

3. Does the 

method examine 

ecological 

processes 

underlying 

species range 

shifts? 

Species range shift is a 

cascade process involving 

multiple ecological processes 

and mechanisms such as 

persistence, dispersal, and 

establishment of species. 

 Hybrid methods involving 

mechanistic models, stand-alone 

mechanistic models, and 

theoretical models are only options 

for integrating the ecological 

processes underlying species range 

shifts. 

 Researcher should be aware of 

possible error propagation when 

coupling multiple methods. 

 If the study aims to 

incorporate ecological 

processes, it should use 

either stand-alone 

mechanistic models or 

mechanistic model 

hybrids. 

4. Does the 

method used for 

defining species 

ranges influence 

range shift 

calculations? 

Observational studies, grid-

based mapping, convex-hull, 

kriging, SDMs, and hybrid 

methods are the methods for 

defining species ranges as a 

primer of range shift 

calculations among the 

reviewed papers (see 

Appendix A.2). 

 Grid-based mapping, kriging, 

convex-hull, SDM and some 

hybrid methods usually 

overestimate species ranges, and 

observational studies tend to 

underestimate species ranges. 

 Researchers should choose 

an appropriate method for 

defining species ranges 

through time by carefully 

considering the required 

inputs, assumptions, and 

parameters. 

5. Does the 

applied metric for 

measuring 

species range 

shift influence 

Changes in range size, limits, 

and probability of occurrence 

or suitability are the main 

metric classes used in the 

reviewed paper for calculating 

 Applying different metrics can 

result in different numerical results 

for range shift for a species in an 

area. 

 If the study aims to 

describe the direction of 

range shift, it should 

report metrics of changes 

in range limits. Report all 
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range shift 

calculations? 

species range shifts. There are 

multiple metrics in each class 

(see Appendix A.3). 

 Metrics of changes in range centre 

sometimes fail to reflect changes 

in range limits. 

 Metrics of changes in range limits 

can ignore changes in the interior 

of range. 

types of metrics (see 

Appendix A.3) whenever 

possible. If not, providing 

results in data repositories 

allow other researchers to 

calculate what they need. 

 

6. Does the 

method’s output 

for defining 

species ranges 

represent the full 

or partial 

geographic range 

of a species? 

Full geographic range of a 

species includes all area 

where the species can occur. 

Partial geographic range 

includes a portion of the full 

range of a species (e.g., a 

single mountain in a species 

occurring across a mountain 

range). 

 Observational, convex hull, 

kriging, and some hybrid studies 

usually provide partial geographic 

range. 

 Grid-based mapping, SDM, and 

some hybrid models can model the 

full geographic range of a species. 

 Researchers should choose 

methods that are 

appropriate for their 

question. 

 

7. Does the 

method for 

measuring 

species ranges 

shift apply to a 

specific period? 

The comparison of species 

ranges can include past, 

current, or future ranges of 

species. 

 All methods for defining species 

ranges are applicable for past 

periods. 

 SDMs and hybrid methods are the 

only methods that can be applied to 

forecast species ranges in the 

future (see Fig.A.4.2). 

 If the study aims to 

forecast species ranges in 

the future, it should use 

either SDMs or hybrid 

methods. 

8. Can the 

method for 

defining species 

The dimension of a study can 

be expressed in three-

dimensions such as latitude-

 All methods of defining species 

ranges at different periods can be 

 Researchers should choose 

methods that are 
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ranges be applied 

in vertical and 

horizontal 

dimension? 

longitude-altitude, two-

dimensions such as latitude-

longitude, or a single 

dimension such as only 

latitude, elevation or depth. 

The dimension of a study can 

also be either vertical (parallel 

to the gravity field such as 

altitude) or horizontal 

(perpendicular to the gravity 

field such as length and width 

of the area). 

used to build species ranges at 

vertical or horizontal dimension. 

 Metrics for measuring changes in 

range limits are most appropriate 

for quantifying changes in vertical 

dimension, although there are 

studies comparing changes in 

range size in vertical dimension 

such as changes in size of 

latitudinal bands where species are 

present. 

appropriate for their 

question. 

9. Does the 

method for 

measuring 

species ranges 

shift apply to a 

specific spatial 

extent? 

Spatial extent is the total area 

encompassed by the study. 

 All methods and metrics for 

defining species ranges and 

measuring species range shifts can 

be applied at all spatial extents (see 

Fig. A.4.3). 

 However, a high computational 

power can be required for defining 

species ranges at a large extent. 

 Researchers should choose 

methods that are 

appropriate for their 

question. 

10. Does the 

method for 

defining species 

ranges apply with 

Spatial grain size (i.e., spatial 

resolution) is the smallest 

geographic unit in a study 

area. 

 Generally, observational studies do 

not require a defined grain size. 

 Methods other than observational 

studies for defining species ranges 

could use a variety grain sizes 

from high to low (see Fig. A.4.4). 

 All methods may be 

applicable. Researchers 

should choose methods 

that are appropriate for 

their question. 
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a specific grain 

size? 

11. Is the method 

for defining 

species ranges 

only applicable to 

specific taxa? 

Taxa and species studied are 

closely related to the 

availability of species data in 

a study area 

 All methods can be applied to any 

taxa if species data are available 

(see Fig. A.4.5). 

 Researchers should choose 

methods that are 

appropriate for the taxa 

they are studying. 

 



 

 

 

78 

 

 

Figure 2.1 Conceptual diagram of methods for defining species ranges. Six methods for 

defining species ranges; observational studies, grid-based mapping, convex hull, kriging, 

species distribution models (SDM), and hybrid methods, found in our literature review 

are illustrated. Box A: Inputs and processes show how each method use observational 

data. Box B: Outputs show three possible output data formats. A data point represents 
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either an observational record of an individual of a species or an observational record of a 

species in a plot, site, or transect. Point data are usually in tabular format. Surface area 

spatially represents a species range in an area with boundaries. The probability surface 

shows the probability of species occurrence in an area or the suitability of an area for a 

species. Probability surfaces can be converted to surface area by using a threshold, and 

surface area can be subsampled as point data. Box C: Metrics show which three classes of 

metrics for measuring species range shifts can be applied to which output of methods for 

defining species ranges (See Appendix A.3). (*) Kriging produces abundance distribution 

if abundance of species is used as input. (**) We illustrated abundance distribution (L: 

lows, H: high) as an output of an SDM-demographic model coupled hybrid method. 

However, the inputs and outputs of hybrid methods strictly depend on which approaches 

applied. For instance, an SDM-dispersal coupled hybrid method would yield occurrence 

probability rather than abundance distribution. 
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Figure 2.2 The coupling of methods for defining species range and metrics for measuring 

species range shift observed in our literature review. We used three metric classes to 

classify metrics for measuring species range shifts; changes in range limits (limit), 

changes in range size (size), and changes in probability or suitability of occurrence 

(prob.). These metrics require defining species ranges. Observational study, grid-based 

mapping, convex hull, kriging, species distribution model (SDM), and hybrid methods, 

were applied for defining species ranges.  
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CHAPTER 3 

An empirical test of the relative and combined effects of land-cover and 

climate change on local colonization and extinction 

 

Semra Yalcin & Shawn J. Leroux 

Department of Biology, Memorial University of Newfoundland, St. John’s, NL 

A1B 3X9, Canada. 

 

A version of this chapter can be found in Global Change Biology: 

Yalcin S. & Leroux S.J. (2018) An empirical test of the relative and combined effects of 

land‐cover and climate change on local colonization and extinction. Global Change 

Biology, 8, 3849-3861. 
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3.1. Introduction 

Human-mediated land-cover and climate change are the main drivers of global, 

regional, and local biodiversity changes (Newbold et al., 2015; McGill, 2015). Land-

cover and climate change may affect biodiversity by fragmenting landscapes (Jarzyna et 

al., 2015), altering population dynamics (Martay et al., 2016) and changing community 

composition (Oliver et al., 2017). In response to human stressors, species can adapt, shift, 

or go extinct. If species cannot adapt to changes in their environment, one strategy for 

species to persist is to shift their spatial distribution to track preferred environmental 

conditions (Parmesan, 2006; Thuiller, 2007; Leroux et al., 2013). Many species have 

already shifted their distributions due to land-cover (e.g., Ameztegui et al., 2016) or 

climate change (e.g., Mason et al., 2015) and projections for the coming century show 

that many species will likely continue to shift their distributions due to global changes 

(e.g., Segan et al., 2016). While we are developing a large body of empirical evidence 

guiding our understanding of biodiversity responses to multiple stressors like land-cover 

or climate change, empirical evidence (i.e., not simulated by forecasting or hindcasting) 

of the relative and combined effects of these stressors on biodiversity is rare (Sirami et 

al., 2017). 

Land-cover changes have been one of the most important drivers of biodiversity 

change since the beginning of the industrialization era (Ellis et al., 2013). Although a 

land-cover transition from a dominantly human-used land to a natural ecosystem (i.e., 
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land abandonment) may have positive effects on biodiversity (Plieninger et al., 2014), a 

land-cover transition from a natural ecosystem to a human-used area can create 

discontinuity of natural habitats, with decreasing habitat area, increasing habitat isolation, 

and greater edge area (Haddad et al., 2015). Moreover, even the most conservative future 

human footprint scenarios predict that biodiversity losses due to land-cover change are 

likely to increase (Foley et al., 2005). More recently, climate change has become a major 

threat to biodiversity and many species are shifting their ranges in response to changing 

climate (Chen et al., 2011). For instance, butterflies shifted their ranges north by a mean 

of 22.1 km between 1966–1975 and 1986–1995 in Great Britain (Mason et al., 2015), 

small mammals shifted their ranges toward upper elevation by a mean of 500 m between 

the 1910s and 2000s in Yosemite National Park, California, USA (Moritz et al., 2008), 

and birds shifted their mean weighted latitude of density by 1.26 km per/year between the 

1970s and 2010s in Finland (Virkkala & Lehikoinen, 2014). 

Several studies have investigated the independent effects of climate change on 

biodiversity by using projected future conditions (Bellard et al., 2012) and sometimes 

these studies include land-use or land-cover projections (Titeux et al., 2016; Radinger et 

al., 2016). For example, Maggini et al. (2014) evaluated the vulnerability of Swiss 

breeding birds to projected climate and land-use change between 2050 and 2100 and they 

showed that breeding birds’ vulnerabilities to these global changes will vary with species’ 

habitat requirements. Empirical tests of biodiversity responses to multiple global change 
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drivers, however, are rare because these tests require detailed land-cover and climate 

change data, as well as data on species occurrence or abundance changes. Among the few 

empirical examples, Eglington & Pearce-Higgins (2012) demonstrate that land-use 

change has a greater impact than climate change on the long-term population trends of 18 

farmland birds in the UK and Sultaire et al. (2016) showed that changes in snow cover 

duration had a greater impact on the southern boundary shift of snowshoe hare than 

changes in forest cover in Wisconsin (USA). Greater empirical evidence of the relative 

and combined effects of environmental change as drivers of species’ range shifts is 

needed to guide conservation planning under global changes (Brook et al., 2008; Oliver 

& Morecroft, 2014; Mantyka-Pringle et al., 2015). 

Species are expected to respond differently to global change stressors. Although 

there is weak evidence that species traits drive distribution shifts (Angert et al., 2011; 

MacLean & Bessinger, 2017), it is desirable to find such trait associations if they exist 

because an understanding of these relationships may allow better prediction and hint at 

general species responses (McGill et al., 2006; Estrada et al., 2016). For instance, species 

possessing traits such as wide physiological tolerance, wide diet breadth, and the ability 

to use various habitat types may have higher chances of persistence, or at least delay local 

extinction under global change (Clavel et al., 2011). Similarly, species with these traits 

will likely colonize new areas faster than more specialized species (i.e., low physiological 

tolerance, small diet breadth, habitat specialist). Furthermore, the ability of individuals to 
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move beyond a home range can inform the ability of species to track preferred conditions 

by shifting its distribution, colonizing into new areas, and establishing new populations. 

For instance, Poyry et al., (2009) showed that butterflies with generalist habitat 

requirements and high dispersal capacity were more likely to shift their ranges further 

north in Finland between 1992-96 and 2000-04 due to climate change than habitat 

specialists and species with low mobility. Trait analysis may enable quantification of the 

vulnerability of different trait groups to global changes, and contributes new information 

to conservation plans in the face of global changes. 

Here, we use extensive empirical land-cover, climate and breeding bird species 

data for Ontario, Canada to measure the relative and combined impacts of land-cover and 

climate change on species occupancy dynamics. We chose to focus a priori on three land-

cover variables and three climate change variables that are commonly used to predict bird 

species range shifts (e.g., Mantyka-pringle et al., 2015; Stralberg et al., 2016). 

Specifically, we test the following hypotheses: (1) changes in breeding bird species 

occurrence can be explained by changes in percentage of anthropogenic land-cover 

changes, mean net primary productivity, mean summer temperature, mean winter 

temperature, and winter precipitation and; (2) interspecific variability in responses can be 

explained by breeding bird trait variation (body mass, migration strategy, and habitat 

preferences). Our study is one of the first studies to test the effects of observed land-cover 
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and climate change on both local species colonization and extinction events with 

consideration of species traits. 

3.2. Materials and methods 

3.2.1. Study species and area 

Bird communities are good model species to understand the relative and combined 

effects of climate and land-cover change on species local colonization and extinction, 

since bird ecology is widely studied and long-term regional and national observation 

records are available (Gregory & Strien, 2010). Moreover, changes in abiotic 

environmental variables, such as temperature and precipitation, are among the key 

determinants of the distributions and spatial patterns of bird diversity (Root, 1988; Pigot 

et al., 2010). We used bird observation datasets from the Ontario Breeding Bird Atlas 

(OBBA) which is an atlas project assembled during two periods, 1981-1985 (Cadman et 

al., 1987) and 2001-2005 (Cadman et al., 2007). During each atlas period, volunteers 

surveyed and identified birds by vocal and visual contact. Atlas grids are based on the 

Universal Transverse Mercator (UTM) grid system covering 3 UTM zones, and grid sizes 

are maximum 10 km x 10 km (mean area= 99.48 ± 4 km2) in the study area. Surveys were 

carried out primarily during the main breeding season (late May to early July), by either a 

complete coverage of an entire atlas grid or a sampling scheme covering a variety of 

habitats in an atlas grid (for additional details on sampling protocols, see Cadman et al., 
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2007). These data have previously been used by several studies investigating 

macroecological patterns of bird communities (e.g., Desrochers et al., 2011; Melles et al., 

2011; Smith et al., 2011; Polakowska et al., 2012; De Camargo & Currie 2015; 

Desrochers et al., 2017). We focused on the 858 atlas grids that were sampled during both 

atlas periods and fully placed between 79-95°W longitude and 46-53°N latitude – an area 

bounding the extent of our land-cover change data (Fig.3.1). 

3.2.2. Changes in bird occurrences 

We estimated change in species occurrences by comparing species detection in a 

grid between the two atlas periods (i.e., 1981-1985 and 2001-2005). We assumed the 

observation of a species in an atlas grid at least once during a 5-year period is evidence 

that the species is present at this grid during this atlas period. Conversely, no detection of 

a bird during a 5-year period implied species absence. We made this assumption in order 

to account for inter-annual variability in species detection and to be conservative in our 

estimates of local colonization and extinction. Changes in the occurrence patterns of 

species in a grid can follow two independent initial conditions; a species is either absent 

or present in a grid in the first atlas. From these initial conditions, we can get four 

trajectories; a species that is absent in a grid in the first atlas can either i) remain absent in 

this grid in the second atlas – we refer to this as ‘absence’ or ii) become present in this 

grid in the second atlas – we refer to this as ‘gain’; a species that is present in a grid in the 

first atlas can either iii) remain present in this grid in the second atlas – we refer to this as 
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‘persistence’ or iv) become absent in this grid in the second atlas – we refer to this as 

‘loss’ (Fig. 3.1). The sum of occurrences of these four trajectories for a species is equal to 

the total number of grids (N=858). Hereafter, we refer to the two sets of trajectories from 

the initial conditions of bird species absence or presence as local colonization and local 

extinction, respectively. Furthermore, we calculated the relative ratio of gain and loss of 

each species according to the number of non-occupied (gain) and occupied (loss) atlas 

grids during the first atlas period to scale local species occurrence patterns up to the 

regional scale, hereafter referred to as colonization and extinction rate, respectively. 

Specifically, the colonization rate (i.e., the proportion of empty cells that have been 

colonized) is calculated as the ratio of the number of gained atlas grids in the second atlas 

period divided by the number of atlas grids where that species was absent during the first 

atlas period. The extinction rate (i.e., the rate at which a species disappears from an 

occupied grid) is calculated as the ratio of the number of lost atlas grids in the second 

atlas period divided by the number of atlas grids where that species was present during 

the first atlas period. These measures of colonization rate and extinction rate control for 

variation in initial conditions. Both colonization and extinction value range between 0 and 

1, where values closer to 1 represent higher colonization and extinction rates. 

Temporal and spatial variability of survey efforts among atlas grids can influence 

the observed patterns of species occurrence changes (Kujala et al., 2013). The number of 

visits (i.e., a single occasion when a grid is surveyed) in an area and length of these each 



 

 

 

89 

 

visit (i.e., time spent during a single survey) are two primary parameters used to define 

bird survey effort (Watson, 2017). Although length of each visit is more detailed 

information than the number of visits, there is a strong correlation between the number of 

visits and total length of visits. Since some of the atlas grids in our study area lacked 

information of the length of each visit, we calculated the difference in the number of 

visits in a grid between the atlas periods to measure differences in sampling effort 

between atlas periods (Jarzyna et al., 2015; Desrochers et al., 2017). Hereafter, we refer 

to this variable as survey effort and we included survey effort as a predictor variable in 

our analyses (see below for details on our analyses and Appendix B.1 for further details 

on survey effort). 

3.2.3. Changes in environmental variables 

We used Global Forest Watch Canada (GFWC)’s anthropogenic changes dataset 

(Lee et al., 2007) to measure the extent of anthropogenic changes in each grid. The 

anthropogenic change dataset includes land-cover alteration due to common human 

terrestrial disturbances (e.g., roads, forestry cut blocks, mines) identified by comparing 

Landsat image pairs captured in any year between 1986 and 2002 (mean number of years 

between image pairs: 12.08 years). The dataset captures terrestrial changes greater than 

0.005 km2 in extent. The supervised classification of images included the manual removal 

and cleaning of the dataset to identify changes as anthropogenic or natural disturbances 

(Lee et al., 2007). These data have previously been used by several studies investigating 
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land-cover change effects; such as the pressure of land developments on Canadian 

protected areas (Leroux & Kerr, 2013). We calculated the physical land-cover changes 

(%) in each grid per total landmass of a grid. Note that the percent change in physical 

land-cover represents the amount of land-cover converted from natural area (i.e., boreal 

forest) to human use (e.g., forest harvesting, agriculture, mining). We also calculated the 

physical land-cover change (%) in 5, 10, 15, and 20 km width buffer areas around each 

grid. We measure land-cover (and climate – see below) change in buffer areas around 

focal grids as there is evidence that species respond to global changes at regional scales 

(Jackson & Fahrig, 2015). Although the GFWC anthropogenic changes dataset enables us 

to compare the extent of physical changes in land-cover among atlas grids, this dataset 

does not report the type of change, such as from forest to agriculture. Therefore, we also 

used mean changes in net primary productivity (NPP) in each atlas grid and its buffer 

areas (5, 10, 15, and 20 km radius circular buffer) to identify the degree of land 

degradation or improvement in terms of landscape productivity (data was taken from Bai 

et al., 2008). Bai et al., (2008) calculated global change in NPP between 1981 and 2003 

in 8 km x 8 km grids by tracing the trend in the normalized difference vegetation index 

(NDVI) as derived from satellite imagery. Both land-cover change data sets do not have 

perfect temporal overlap with our bird occurrence change data set but they do cover the 

main intervening period between the two bird atlases and they represent the best available 

data for our study area. 
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We used bioclimatic variables (see Table B.6.1 for the list of these variables) 

derived from interpolated meteorological observations in North America (McKenney et 

al., 2011). These bioclimatic variables are yearly and have an approximate resolution of 5 

km x 5 km. We first calculated the mean values of each bioclimatic variable in each atlas 

grid and then in 5, 10, 15, and 20 km radius circular buffer areas surrounding each atlas 

grid over two periods which covered the atlas periods, 1975-1990 and 1995-2010, 

respectively. We used these time periods for climatic variables to better capture the 

climatic trend through time (i.e., eliminate noise due to single year climatic variability). 

Then, we extracted the mean changes of each variable in each grid and their buffer areas. 

The climatic trends are qualitatively similar if we used periods with an earlier starting 

point and which ended on the last year of each atlas period (1970-1985 and 1990-2005; 

see Appendix B.2). 

3.2.4. Effects of anthropogenic changes on species local colonization and 

extinction 

To test hypothesis 1 (i.e., effects of anthropogenic changes on species local 

colonization and extinction), we used competing models to explain variation in species 

local colonization (gain (1) vs absence (0)) and local extinction (loss (1) vs persistence 

(0)) in each grid as a function of three model classes; land-cover change (i.e., GFWC 

and/or NPP data), climate change (i.e., temperature and/or precipitation data), or 

combined (i.e., any combination of land-cover and climate data) while controlling for 
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survey effort. Prior to the analysis, we tested for multicollinearity among all explanatory 

variables by applying a variance inflation factor (VIF) test (Zuur et al., 2010). We used 

the vifstep function (as implemented in the R function usdm, Naimi, 2015) to create a set 

of relatively independent variables with a VIF less than 3. From the reduced set of 

variables (n=15; see Table B.6.1), we focused on three land-cover variables; physical 

land-cover change in grids (%) and 20-km buffer areas (%), and changes in mean net 

primary productivity (kgC/ha/year). We selected the 20-km buffer areas for physical land-

cover change variable because it had the lowest VIF value among all land-cover change 

buffer area variables. Our three final climate change variables were change in mean 

temperature of coldest quarter (i.e., winter temperature) (°C), mean temperature of wettest 

quarter (i.e., summer temperature) (°C), and precipitation of driest quarter (i.e., winter 

precipitation) (mm) in grids (see Appendix B.3 for the spatial autocorrelation test of the 

environmental variables). As described in the introduction, these land-cover and climate 

variables are commonly used to predict changes in biodiversity (Burrows et al., 2014, 

Jackson & Fahrig, 2015, Sirami et al., 2017) – particularly birds. Although most of our 

bird species are migrants or partial migrants, we expect mean winter temperature and 

winter precipitation to influence their local occurrence patterns indirectly via their effect 

on plant phenology (Flannigan & Weber, 2000; Forrest & Miller-Rushing, 2010). 

Moreover, summer climatic conditions can affect on bird breeding success (e.g., clutch 

size, nest survival), food availability and abundance, and predation risk, which can impact 

species persistence through time (Dickey et al. 2008; Skagen & Adams, 2012). In our trait 
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analysis (see below), we outline how we expect local colonization and extinction rates to 

differ across species. 

We then selected focal species for our analysis by applying a minimum required 

number of events per parameter (EPV) rule to avoid any issues of over- or underestimated 

parameter variance and confidence interval coverage (Peduzzi et al., 1996). Although 

EPV values are preferably 10 or greater, Vittinghoff & McCulloch (2006) suggested that 

the rule of 10 EPV can be relaxed as 5 samples per predictor. In our case, the maximum 

number of parameters in a single model is 8 (i.e., 3 land-cover, 3 climate change, 1 survey 

effort, 1 intercept). Therefore, we selected species that had a minimum of 40 observations 

across the two components of the local colonization (i.e., gain/absence) or local extinction 

(i.e., loss/ persistence) trajectories. In the end, we fit local colonization models for 122 

(out of 207) species and local extinction models for 82 (out of 172) species. The total 

number of species in our analysis is 122 (i.e., all species used for local colonization 

models contain all species used in local extinction models). Out of 122 studied species, 

our study area is the northern limit for 62 species (e.g., American Goldfinch, 

Blackburnian Warbler, Northern Parula), the southern limit for 6 species (e.g., Gray Jay, 

Boreal Owl, Boreal Chickadee), and not at a limit for 54 species (e.g., Dark-eyed Junco, 

European Starling, Merlin). 

We fit 65 competing generalized linear models with a binomial error structure and 

a logit link for local colonization and extinction models per species. This model set 
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included a null (i.e., intercept only) model, a model with only survey effort as the 

independent variable (i.e., survey effort class), all possible models with climate change-

only independent variables (n = 7 models; climate change model class), all possible 

models with land-cover change only independent variables (n = 7 models; land-cover 

change model class) and all possible models with both climate and land-cover change 

independent variables (n = 49 models; combined model class) (see Table B.6.2 for the list 

of models). We included all possible combinations of our land-cover and climate 

variables as we had a priori reason to select these as predictors of bird local colonization 

and extinction (see above). We used Akaike Information Criterion (AIC) to rank the 

competing models according to the weight of evidence of each model for each species. 

We began by fitting all 65 local colonization and local extinction models for each species 

but the final number of models considered was greatly reduced after we excluded models 

with pretending variables (sensu Anderson, 2008) or uninformative parameters (sensu 

Arnold, 2010) from the model set of each species. After excluding pretending variables, 

we ran 31 different local colonization model sets (i.e., there were 31 different model sets 

used across 122 species with data for local colonization) and 14 different local extinction 

model sets (i.e., there were 14 different model sets used across 82 species with data for 

local extinction). The univariate null (i.e., intercept-only) and survey effort models were 

retained for all species and survey effort was always included as a covariate in each 

model. We used Moran’s I statistics to assess residual spatial autocorrelation for each 

fitted models’ residuals (see Appendix B.4). 
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To assess the importance of land-cover and climate change, we first calculated the 

percent of species where each model class (i.e., survey effort, land-cover change, climate 

change, or combined) were ranked as a top model (i.e., model with ∆AIC=0 after ranking 

the competing models). Then, for each species, we calculated model-averaged odds ratios 

(i.e., exponential of variable coefficients) to identify variable importance for local 

colonization and extinction. We include models with ∆AIC < 4 in our model averaging 

analysis in order to retain the most information (Burnham et al., 2011). The odds ratio of 

a variable shows the odds that a grid will be colonized or not (i.e., local colonization 

models) and abandoned or not (i.e., local extinction models) under a given exposure of an 

anthropogenic change. Odds ratios higher than one indicate that this variable correlates 

with higher odds of colonization or extinction than a variable with a negative odds ratio. 

3.2.5. Trait analyses 

We developed specific predictions for how species traits such as mean body mass, 

migration strategy, and habitat preference may influence bird species occurrence changes. 

These traits have previously been used by several studies investigating trait-based 

responses to global changes (e.g., Angert et al., 2011; Estrada et al., 2016). Successful 

movement of birds to favourable environmental conditions depends on species’ dispersal 

potential. We expected to observe a higher colonization rate of species that are more 

mobile because higher dispersal distance enables species to quickly move to new suitable 

areas. Previous studies show that body size is positively correlated with dispersal ability 



 

 

 

96 

 

of birds (Paradis et al., 1998; Sutherland et al., 2000; Tittler et al., 2009; Garrard et al., 

2013). Larger species are considered to be able to move quickly and for longer distances 

than smaller species (Paradis et al., 1998; Angert et al., 2011). Consequently, we 

predicted that large birds will show a higher colonization and a lower extinction rate than 

small-bodied birds because large birds are likely more mobile and thus more likely to find 

suitable habitat nearby to migrate or forage. We calculated mean body mass (g) as the 

average of adult male and female values weighted by sample size (including subspecies) 

from Dunning (2007). Moreover, the migratory patterns of birds can also be an indicator 

of species vagility. We obtained migratory strategies of species from multiple sources 

(Rodewald, 2015; All about Birds, 2017; The Boreal Songbird Initiative, 2017). We 

classified migratory strategy of birds into three classes, namely, resident, partial migrant, 

and migrant. Partial migrants include species with part of a population that is resident and 

part that is migrant. Birds having irregular movements were also included in this group. 

Migratory species can disperse further than resident species (Paradis et al., 1998; 

Sutherland et al., 2000), however, migratory birds may also show higher site fidelity than 

resident species. Higher site fidelity can lower the chance of successfully tracking the 

shifting environmental niche due to abrupt land-cover and climate change. Consequently, 

given the possible interaction between dispersal and site fidelity, we predict migrant 

species will show higher colonization rate than partial migrant and resident species and 

resident species will show higher extinction rate than migrants. Finally, the rate of species 

local colonization and extinction is most likely correlated with species’ ecological 
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generalization. If the landscape includes favorable conditions for species on the move due 

to climate change, the chance of successfully reaching and colonizing new suitable areas 

would increase. Moreover, if anthropogenic changes focus primarily on one type of 

habitat, species within this habitat will instantaneously be the first responder to these 

changes. Our study area mostly covers boreal forests that are likely prone to industrial 

development and land conversions, as well as natural disturbances such as fire, drought 

and insect outbreaks (Bradshaw et al., 2009). Therefore, we predict that forest species 

will show higher extinction rate than non-forest and wetland species. We gathered 

information of species’ habitat preferences from All about Birds (2017) and The Boreal 

Songbird Initiative (2017), and we re-classified habitat preferences as forest, non-forest, 

and wetland species. 

We first explored the distribution of colonization and extinction rates across mean 

body mass, migratory status, and habitat preferences of species. Then, we applied linear 

models to test whether the observed variation in local colonization and extinction rate 

(see methods) of 122 and 82 species, respectively, can be explained by mean body mass 

(ln-transformed), migratory strategy, and habitat preferences and all combinations of 

these traits including a null (i.e., intercept only) model (n=10 models; Table B.6.3). We 

used ∆AICc to rank the models and to determine the most parsimonious model among the 

candidate models. As above, we removed pretending or uninformative variables from our 
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model sets. We report all models with ∆AICc < 4. All analyses were conducted in R 

version 3.4.3 (R Core Team, 2016). 

3.3. Results 

3.3.1. Effects of anthropogenic changes on species occurrence changes 

We observed high variation in colonization and extinction trajectories among 

species. For instance, White-throated Sparrow was the most abundant species during both 

atlases with the highest number of persistent grids (n=361 grids), whereas Bufflehead was 

the least abundant species with the highest number of absence grids (n=818). Moreover, 

Northern Flicker had the highest number of gains (n=315 grids) and Great Blue Heron 

had the highest number of losses (n=181 grids). The result of all species can be found on 

online repository (see Data Accessibility). 

We observed considerable spatial variation in land-cover and climate change 

variables between 1981-1985 and 2001-2005 within our study area (see Fig. B.6.1). Mean 

physical land-cover change (i.e., amount of area converted from natural area to human 

use) in grids within our study area was 6.22 % [min: 0 – max: 65.66 %] and mean 

physical land-cover change within neighbouring 20 km buffer area of atlas grids was 6.61 

% [min: 0 – max: 23.27 %]. Mean net primary productivity change was 0.39 kgC/ha/year 

[min: -38.05 – max: 23.02 kgC/ha/year]. Mean winter temperature increased by an 

average of 1.41 ± 0.13 °C, and mean summer temperature increased by an average of 0.42 
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± 1.6 °C whereas winter precipitation change varied among the studied grids with a mean 

change of - 1.61 ± 5.31 mm. 

3.3.2. Local colonization models 

In the local colonization models, 26.7 % (n=34 species) of species’ colonization 

response had a top ranking model included a model from the land-cover model class; 

whereas 29.9 % (n=38 species) of species’ colonization responses had top-ranked models 

that included a model from the climate model class and 29.1 % (n=37 species) of species 

colonization responses had top-ranked models that included both land-cover and climate 

variables (i.e., combined model class). A model with only survey effort was the top 

ranked model for 10.2% (n=13 species) of species (Fig. 3.2a). Change in net primary 

productivity either included in a land-cover change or combined model class was the best 

predictor of colonization of 37 % of species. The physical land-cover change in a 20-km 

buffer around each grid was the least common variable for explaining colonization events 

among species, included into 12.6 % of species’ top models (Fig. 3.2b). Overall, the top 

ranked models explained between 1.7 and 32% (mean=15%) of the variation in local 

colonization per species (See Appendix B.5 for further details on model fit). 

The odds of colonization calculated by the averaged model coefficient estimates 

vary among species and predictor variables (Fig. 3.3a). For instance, 16 species showed 

higher odds of colonization with exposure to physical land-cover change in grids whereas 
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6 species showed lower odds of colonization with exposure to this variable. Similarly, the 

odds ratio of a grid being colonized with exposure to changes in winter precipitation was 

higher for 26 species and lower for 14 species and changes in net primary productivity 

showed a positive association with the odds of colonization for 42 species out of 47 that 

included this variable in their model set. Changes in mean winter temperature increased 

the odds of colonization of 14 species and decreased the odds of colonization of 5 species. 

Exposure to changes in mean winter temperature increased the odds of colonization up to 

more than 200 times, for instance, a one °C increase in change in mean winter 

temperature (i.e., warmer temperature) increased the colonization probability of Common 

Tern by 226 times in our study area. Changes in mean summer temperature increased the 

odds of colonization of 26 species and decreased the odds of colonization of 9 species 

(Fig. 3.3a). These patterns were consistent for species at the northern limit, southern limit 

or not at their limit in the study area except that change in winter precipitation decreased 

the odds of colonization for all species at their southern limit (n=3, Fig.B.6.5). 

3.3.3. Local extinction models 

In the local extinction models, 61.4 % (n= 54 species) of species’ extinction 

response had a top-ranking model which included a model from the climate model class; 

whereas 6.8% (n=6 species) and 9.1% (n=8 species) of species ‘colonization responses 

had top-ranked models which included a model from the land-cover or combined (i.e., 

land-cover and climate change) model class, respectively. A model with only survey 
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effort was the top ranked model for 13.6% (n=12 species) of species extinction responses 

and a model with only the intercept was the top ranked model for 2.3% (n=2 species) of 

species extinction responses (Fig. 3.2a). Change in mean summer temperature was the 

most common variable among top models explaining species local extinction. Sixty-one 

% of species’ top models included change in mean summer temperature as a variable. 

Change in net primary productivity was the least common variable for explaining 

extinction events among species, only included into 3.4 % of species’ top models (Fig. 

3.2c). Overall, the top ranked models explained between 0 and 41% (mean=17%) of the 

variation in local colonization per species (See Appendix B.5 for further details on model 

fit). 

The odds of a species going locally extinct in a grid calculated by the averaged 

model coefficient estimates vary with exposure to different variables (Fig. 3.3b). For 

instance, the odds of local extinction had a negative association with changes in winter 

precipitation. We found that an increase in winter precipitation in a grid decreased the 

probability of a species being extinct in that grid. We also found that an increase in 

summer temperature decreased the odds of extinction of most species (n=54). Similarly, 

we found that 2 species out of 6 with models including mean winter temperature as a 

predictor showed a decrease in their odds of extinction with exposure to an increase in 

winter temperature in a grid over time (Fig. 3.3b). Moreover, 4 species showed lower 

odds of extinction with exposure to physical land-cover change in grids whereas 6 species 
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showed higher odds of extinction with exposure to physical land-cover change in 20 km 

buffer areas. Similarly, changes in net primary productivity positively associated with 

odds of extinction of 6 species. 

The relative importance of each model class for explaining local colonization and 

extinction are qualitatively similar if we use ∆AIC ≤ 2 as our cut-off for top model 

identification (Fig. B.6.2). Likewise, the patterns we report for all species are 

qualitatively similar for species where our study area is at their northern limit, southern 

limit, or center of the range except when mentioned above (See Fig. B.6.3 and B.6.5). 

3.3.4. Relationships between regional colonization and extinction rate and 

species traits 

Mean regional colonization rate (i.e., ratio between the number of grids where 

species was observed only during the second atlas and the total number of grids where 

species was not present during the first atlas) of the 122 species is 0.23 ± 0.13. White-

throated Sparrow expanded its distribution over more than half of the empty grids 

(colonization rate= 0.58), whereas Eastern Bluebird was only able to expand to 5% of the 

empty grids. Mean regional extinction rate (i.e., ratio between the number of grids where 

species was observed only during the first atlas and the total number of grids where 

species were present during the first atlas) of 82 species is 0.45 ± 0.13. Common 

Nighthawk had the highest extinction rate (0.76); it went extinct in 138 grids out of 182 
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grids where it was present during the first atlas period. Conversely, White-throated 

Sparrow had the lowest extinction rate (0.22); it went extinct in 103 grids out of 464 grids 

where it was present during the first atlas period. 

Among all studied species (n=122), Ruby-throated Hummingbird is the smallest 

bird (mean body mass = 3.22 g) and Common Loon is the largest bird (mean body mass = 

4,980 g). Seventy species are migratory (e.g., Black-throated Blue Warbler), 16 species 

are resident (e.g., Gray Jay), and 36 species are partial migrant (e.g., Canada Geese) in 

Ontario. Forty-four species are forest (e.g., Blue-headed Vireo), 46 species are non-forest 

(e.g., Mourning Dove), and 32 species are wetland (e.g., Rusty Blackbird) specialists 

(Fig. B.6.6). The data for all species can be found on an online repository (see Data 

Accessibility). 

The top colonization rate model based on AICc values included mean body mass 

and habitat preferences, and it explained 12 % of variance in colonization rate among 

species with ωAICc = 0.39 (Table 3.1). This model predicts that decrease in local 

colonization for an increase in mean body mass (ln) and wetland and non-forest species 

will have lower local colonization rate compared to forest species (see Table B.6.4 for the 

coefficient tables of the top model). There was substantial colonization rate model 

selection uncertainty with three models ranked ∆AICc < 4. These top-ranking models 

included covariates of only mean body mass or habitat preferences and these models 

explained between 8 and 9 % of the variation in species colonization rate. The top 
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extinction rate model included only habitat preferences and this model explained 8 % of 

variance in extinction rate among species with ωAICc = 0.42 (Table 3.1). This model 

predicts that wetland species will have higher local extinction rate compared to forest 

species. Mean body mass was detected as a pretending variable, therefore, the only other 

model ranked ∆AICc < 4 was intercept. 

3.4. Discussion 

We took advantage of extensive land-cover change, climate change, and bird 

observation data to provide one of the few empirical tests of the relative and combined 

effects of global change drivers on species local colonization and extinction. We found 

that models with climate change, the combination of climate and land cover change, and 

land-cover change were the top ranked models of local colonization for 30%, 29%, and 

27% of Ontario breeding birds, respectively. Conversely, models with climate change, the 

combination of climate, and land cover change, and land-cover change were the top 

ranked models of local extinction for 61%, 9%, and 7% of Ontario breeding birds, 

respectively. Overall, our study provides empirical evidence that land-cover and climate 

change impact different sets of species or act in synergy to influence species local 

colonization and extinction (Sirami et al., 2017). Counter to our expectation yet 

consistent with recent meta-analyses (MacLean & Beissinger, 2017), the interspecific 

variations in bird responses to global changes were not well captured by bird traits such 

as body size, migration pattern, and habitat preference. 
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Geographic ranges of species are primarily constrained by species-specific 

environmental tolerances (e.g., Coristine & Kerr, 2015) and climate is considered as an 

important deterministic factor of avian distribution (Jiménez-Valverde et al., 2011). 

Therefore, local and regional changes in climatic conditions such as precipitation and 

temperature are expected to be a driver of species range changes (Burrows et al., 2014). 

Our empirical analysis in Ontario, Canada found that models with climate change 

variables were top ranked models explaining local extinction for 62% of species (Fig. 3.2) 

and changes in mean summer temperature was the most common predictor in top local 

extinction models. However, for local colonization, only 31% of bird species had models 

from the climate change model class as top ranked models (Fig. 3.2) and changes in mean 

winter precipitation was the most common predictor in the top climate-only local 

colonization models. While we found strong evidence that climate change may be a 

primary correlate of species local extinctions, there remains a substantial number of 

species showing weak to no relationship with climate change. Consequently, our findings 

suggest that climate change may not the sole determinant of local colonization or 

extinction for many breeding birds in Ontario. These results are consistent with Currie & 

Venne (2017) who found that climatic conditions were not main factors determining 

changes in bird distributions between 1979 and 2010 in North America. 

The qualitative relationship between the three climate variables we considered; 

changes in mean winter temperature, mean summer temperature, and winter precipitation, 
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and local colonization and extinction of the study species was highly variable (Illán et al., 

2014; Braunisch et al., 2014). For instance, an increase in mean summer temperature is 

predicted to increase (n=28) or decrease (n=9) the odds of breeding bird colonization 

events whereas it is always predicted to decrease the odds of breeding bird extinction 

events (n=57). In most cases, however, even the top ranked model had considerable 

residual variation in local colonization and extinction (see Appendix B.5) which suggests 

that other drivers may be key determinants of Ontario breeding bird occurrence changes. 

We propose three possible explanations for the variability in species responses to 

climate change and why climate change is not always a top predictor of bird local 

colonization and extinction in our study area. First the observed changes in climatic 

conditions may not be large enough to cause occurrence change for some species in our 

study area (Araújo et al., 2013) or microclimatic characteristics of each grid such as soil 

type or topographical complexity may buffer the observed climate changes within the grid 

(Williams et al., 2008). Therefore, we may have not yet detected the relationship between 

species colonization and extinction and observed climate change in 10 km x 10 km 

resolution grids. Second, some species may have lagged responses to climate change 

which results in their failure to track changing climate. For instance, DeVictor et al., 

(2012) found that bird and butterfly communities in Europe showed a 212 and 135 km 

lag, respectively, when tracking the temporal change in annual temperature between 1990 

and 2008 based on averaged temperature of the period between 1961 and 1990. Finally, it 
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is possible that other abiotic (e.g., land-use change; Sirami et al., 2017) and biotic (e.g., 

species interactions; Brown & Vellend, 2014) factors are more important than climate 

change for explaining species local colonization and extinction. 

Species distribution in a region may relate to the availability of key habitats; their 

area, spatial extent and configuration within the landscape (Rittenhouse et al., 2012; Sohl, 

2014; Haddad et al., 2015) and habitat loss has been demonstrated as one of the primary 

drivers of species extinctions (Jetz et al., 2007). Therefore, changes in landscape 

characteristics in an area can influence species occupancy and dynamics (Leroux et al., 

2017; Thompson et al., 2017). In our study, we found that models including changes in 

habitat quality (i.e., changes in net primary productivity; Bai et al., 2008) and/or changes 

in habitat quantity (i.e., changes in the amount of common human infrastructure on the 

landscape; Lee et al., 2007) were top ranked models explaining local species colonization 

events for 27% of species and local extinction events for 8 % of species (Fig. 3.2). The 

direction of the relationship between changes in habitat quality and quantity, however, 

was variable across the bird community (Fig. 3.3). For instance, the odds of observing 

colonization events increased with increasing landscape productivity for 42 species (e.g., 

Blue Jay) but decreased with increasing landscape productivity for 5 species (e.g., Red-

winged Blackbird). 

Landscape features surrounding local areas could buffer the impacts of 

anthropogenic changes in an area (DeFries et al., 2010). If the surrounding areas do not 
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compensate for the lack of resources in an area, then a species may have to abruptly 

change its distribution in that region. Conversely, where surrounding areas provide an 

additional resource for a species to persist in an area, the species can show a slow 

response to local habitat degradation. Consistent with this, the odds of observing 

extinction events increased with increasing physical land-cover changes in 

neighbourhood areas for 8 species (e.g., Hooded Merganser) but decreased with 

increasing physical land-cover changes in neighbourhood areas for Red-eyed Vireo. 

These results suggest that future empirical work and theoretical forecasting should 

incorporate neighbourhood effects into their analyses. Overall, these results are congruent 

with Eglington & Pearce-Higgins (2012), Ameztegui et al., (2016) and Bodin et al., 

(2013) who also demonstrate that land cover/use change is an important predictor of 

species colonization and extinction. 

Changes in landscapes such as habitat destruction and alteration may severely 

restrict the movement of some species and, thus their ability to cope with climate change 

through tracking of suitable climate through space (Thomas 2010; Robillard et al., 2015). 

Therefore, land-cover change when coupled with climate change may influence species 

occurrence change due to climate change. We found that models with combined variables 

(i.e., land cover and climate change) were top ranked models explaining local extinction 

for 11 % of Ontario breeding bird species and top ranked models explaining local 

colonization for 30 % of species (Fig. 3.2). The most common combined variables are 
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changes in mean summer temperature and physical land-cover change in a 20km buffer 

around each grid and changes in net primary productivity and mean summer temperature 

for colonization and extinction, respectively. While we did not investigate interactive 

effects of land-cover and climate change, our analysis provides empirical evidence 

consistent with other recent studies (Jarzyna et al., 2015; Paprocki et al., 2015; 

Cunningham et al., 2016) that these global change drivers can act in tandem to influence 

species colonization and extinction (Sirami et al., 2017). 

We demonstrate that breeding birds in Ontario show high variations in their 

responses to observed land-cover and climate change between 1980s and 2000s. Counter 

to Clavel et al., (2011), and Auer & King (2014), our results do not suggest any strong 

evidence for generalized bird responses to global changes as predicted by habitat 

preferences, migration strategy, or body size (Table 3.1). Our results, however, are 

congruent with a recent meta-analysis by MacLean & Beissinger (2017) who showed that 

traits related with dispersal ability, reproductive potential, and ecological generalization; 

namely, body size, fecundity, and diet breath, showed no significant relationship with 

species colonization and extinction across different taxa. 

Species responses to land-cover/use and climate change are diverse and complex 

to predict (Sirami et al., 2017; Urban et al., 2016). Our empirical analysis shows high 

variability in the response of Ontario breeding birds to the relative and combined effects 

of land-cover and climate change. The portions of unexplained residual variation in our 
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models suggest that other drivers (e.g., stochasticity or interspecific interactions such as 

competition) may play a key role in Ontario breeding bird local colonization and 

extinction. A greater understanding of the diverse drivers of species occurrence dynamics 

may be gleaned through the development of mechanistic models (Urban et al., 2016; 

Chapter 1) and the integration of continued observational studies based on long-term 

monitoring data and experimental studies to ascertain specific factors causing species 

local colonization and extinction. In many cases, landscape level experiments may not be 

feasible. In these cases, we see an important role for carefully designed microcosm 

experiments (e.g., Gilarranz et al., 2017) to gain insight on the relative and combined 

effects of multiple global change drivers on species occurrence dynamics. In the end, to 

develop successful conservation strategies for biodiversity, a holistic approach should be 

followed in which we consider the impacts of multiple anthropogenic pressures on 

biodiversity. 

3.5. Data Accessibility 

The R code and associated data (climate, land-cover, and survey effort data, 

species occurrence pattern per grid, species traits, regional extinction and colonization 

rate) are available on Figshare doi: 10.6084/m9.figshare.5371477 
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Table 3.1 Results of model selection examining the effect of species mean body mass 

(ln), migratory status (migrant, partial migrant, and resident), and habitat preferences 

(forest, non-forest, and wetland) on observed regional colonization and extinction rate. 

The regional colonization rate is calculated as the ratio of the number of gained grids 

divided by the number of atlas grids where a species was absent during the first atlas. The 

regional extinction rate is calculated as the ratio of the number of lost grids divided by the 

number of atlas grids where a species was present during the first atlas. We included 10 

linear models in the model set. Models are ranked with Akaike Information Criterion, 

corrected for small sample size (AICc). Key: k, number of estimated parameters; LL, log-

likelihood; R2: R-squared value; ΔAICc, the difference in the AICc; ωAICc, model 

weights. 

Regional colonization rate models 

Model k LL ∆AICc ωAICc R2 

Mean Body Mass + Habitat preference 5 79.00 0.00 0.39 0.12 

Mean Body Mass 3 76.61 0.47 0.30 0.08 

Habitat preference 4 77.07 1.69 0.17 0.09 

Regional extinction rate models 

Model k LL ∆AICc ωAICc R2 

Habitat 4 56.80 0.00 0.42 0.08 

Intercept 2 53.32 2.59 0.11 0 
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Figure 3. 1 The colonization and extinction patterns of White-throated Sparrow. Changes 

in the occurrence patterns of the species in a grid were assigned by comparing the species 

observation records during two atlas periods (see 3.2). A species is either absent or 

present in a grid in each atlas period. According to the initial occurrence condition of the 

species, there are four trajectories; a species that is absent in a grid in the first atlas can 

either a) become present in this grid in the second atlas – we refer to this as ‘gain’ or b) 

remain absent in this grid in the second atlas – we refer to this as ‘absence’; a species that 

is present in a grid in the first atlas can either c) remain present in this grid in the second 



 

 

 

128 

 

atlas – we refer to this as ‘persistence’ or d) become absent in this grid in the second atlas 

– we refer to this as ‘loss’. Local colonization models include the ‘gain’ (1) and ‘absence” 

(0) trajectories and local extinction models include the ‘persistence’ (0) or ‘loss’ (1) 

trajectories. 
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Figure 3. 2 The distribution of species’ top models (∆AIC=0) (a) among model classes, 

(b) distribution of variables included in top local colonization models for each model 

class, (c) distribution of variables included in top local extinction models for each model 
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class. A top ranked model can have one or more variables. For example, change in mean 

summer temperature (∆mST) was in a top model ranked climate change model class for 

54% of species and a top model ranked combined class model for 10 % of species in local 

extinction models. %LCC= physical land-cover change in grids, %LCCb = physical land-

cover change in 20 km buffer area, ∆NPP = changes in net primary productivity, ∆mWT= 

changes in mean temperature of coldest quarter (i.e., winter), ∆mST = changes in mean 

temperature of wettest quarter (i.e., summer), and ∆WP = changes in precipitation of 

driest (i.e., winter) quarter. See Fig. B.6.2 for the results when we use a cut-off of ∆AIC ≤ 

2 to identify top models. See Fig.B.6.3 for the results broken down for species at their 

northern limit, southern limit or not at their limit in the study area. 
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Figure 3. 3 The odds (relative risk) ratio of each variable for (a) local colonization and 

(b) extinction models across all species. The odds ratio shows the odds of observing gain 

(or loss) over absence (or persistence) with exposure to a variable. The dashed line (odds 

ratio = 1) represents a qualitative cut-off in variable effects. Specifically, when odds ratio 

>1, the variable has a positive association with the outcome and when the odds ratio < 1, 

the variable has a negative association with the outcome. Each grey point shows a single 

species’ odds ratio for a variable. The number of dots varies by number of times that a 
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predictor was included in a species model. Blue points show the median odds ratio for a 

variable. The points are jittered along the x-axis for presentation purposes. %LCC= 

physical land-cover change in grids, %LCCb = physical land-cover change in 20 km 

buffer area, ∆NPP = changes in net primary productivity, ∆mWT= changes in mean 

temperature of coldest quarter (i.e., winter), ∆mST = changes in mean temperature of 

wettest quarter (i.e., summer), and ∆WP= changes in precipitation of driest (i.e., winter) 

quarter. See Fig. B.6.4 for the results of survey effort (SE) and S6.5 for odds ratios 

broken down for species at their northern limit, southern limit or not at their limit in the 

study area. Note that the y-axis scale differs among panels. 
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4.1. Introduction 

The impacts of global changes on biodiversity have been widely recorded and 

predicted for many species in different taxonomic groups and in different regions 

(Hickling et al., 2006; Bellard et al., 2012). For instance, Foden et al. (2013) showed that 

24-50% of birds, 22-44% of amphibians and 15-32% of corals out of 16,857 total species 

assessed were highly vulnerable to climate change projected by low to high emission 

scenarios for 2050 and 2090. The most vulnerable groups were amphibians and birds in 

the Amazon basin and corals in the central Indo-west Pacific (Foden et al., 2013). 

Species, however, show a high variation in their responses to global change drivers such 

as increased anthropogenic pressures on habitats and altered climate conditions (Yalcin & 

Leroux, 2018). Novel species assemblages will probably arise due to asynchronous 

species response to global changes (Devictor et al., 2008). Although these community 

changes can sometimes have positive effects in ecosystems such as local increases in 

species richness, increased anthropogenic activities likely cause biotic homogenization 

(De Solar et al., 2015; Frishkoff et al., 2016; Cardinale et al., 2018). Novel communities 

can cause negative impacts on local communities by altering species interactions (Gilman 

et al., 2010), increasing species extinction (Alstad et al., 2016), and accelerating species 

invasions (McCann, 2000).  

Species richness is a widely used community property to measure changes in 

community structure because species are often the units of interest in conservation 
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planning; however, this measure can underestimate change in community composition 

(Hillerbrand et al., 2018). For instance, Dornelas et al. (2014) argued that the number of 

invasive species can compensate for the number of species losses which can result in no 

change in species richness despite large turnover in species composition at regional and 

local extents. Changes in community composition are a result of the dynamic interplay of 

species losses and gains (Newbold et al., 2015). Furthermore, Zweiner et al. (2018) 

showed that although local plant richness will likely increase in the tropics according to 

climate change models, the expansion of plant species ranges would cause plant 

homogenization and an increase in community similarities by 2070. Consequently, it is 

important to assess changes in community composition and not just species richness in 

order to accurately measure change, especially when research is informing biodiversity 

conservation (Socolar et al., 2016; Cardinale et al,. 2018).  

Beta diversity is a group of metrics used for defining the dissimilarity in species 

composition along spatial or temporal gradients (Tuomisto, 2010; Anderson et al., 2011; 

Legendre & De Caceres, 2013). The analysis of beta diversity allows testing of different 

hypotheses about the processes driving biodiversity change. The underlying ecological 

processes and mechanisms of community change are species turnover (i.e., replacement) 

and nestedness (Baselga, 2010). Species turnover is the simultaneous gain (or loss) of a 

species in one site paired by loss (or gain) of a different species in another site whereas 

nestedness is a process where the species found in one site are a subset of the species 
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found in another site having higher richness (Anderson et al., 2011). Species losses or 

gains result in species nestedness if species loss (or gain) is in only one of the sites, and 

leads to the poorest assemblage being a strict subset of the richest one. A recent meta-

analysis showed that beta diversity partitioned according to species losses and gains can 

be more informative for explaining the drivers of spatial variability in community 

composition compared to metrics showing total community dissimilarity alone (Soininen 

et al., 2018). Although beta-diversity metrics have been under consideration for 

community ecology for a while (Jost, 2007), there are relatively few studies investigating 

the response of beta-diversity to multiple environmental changes (Sirami et al., 2016; but 

see Ferger et al., 2017; Lewthwaite et al., 2017; Kuczynski et al., 2018).  

One of most widely used concepts in global change ecology, especially in 

modelling of species distributions, is the environment-assembly concept which 

emphasizes that community composition is regulated by the potential of overlapping 

species fundamental niches and local environmental conditions of an area (Soberón, 

2007; Jackson & Blois, 2015). Following this concept, after abrupt changes in climate and 

land-cover conditions, it is expected that species shift their ranges to track suitable 

environmental conditions instead of adapting to these changes in a short period (see 

review in Yalcin & Leroux, 2017). These responses can result in the reorganization of 

local and regional community composition and structure. Here, we undertake an 

empirical study to test the general hypothesis that changes in local and regional species 



 

 

 

137 

 

composition are driven by changes in environmental conditions. Our objectives were to 

quantify the changes in local and regional species composition over time and space and 

determine the drivers of these changes. We used the Atlas of Breeding Birds of Ontario, 

Canada, land-cover and climate change datasets to investigate changes in beta diversity 

between 1981-85 and 2001-05 and test the following specific hypotheses (1) temporal 

beta diversity increases with increased dissimilarity in climate and land-cover change in a 

site over time, and (2) the change in species composition uniqueness of a site with respect 

to the regional community composition is related to climate and land-cover change. We 

formalized general hypotheses because our primary goal is to understand community 

level responses to climate and land cover change and every species can respond 

differently to each specific variable.  

 

4.2. Material and Methods  

4.2.1. Changes in species composition  

To test the effects of climate and land-cover change on changes in community 

composition, first we calculated the changes in species composition in each sampling unit 

through time (Hypothesis 1) and changes in each sampling unit’s compositional 

uniqueness in terms of species composition through time (Hypothesis 2; Fig.1).  
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We used May to July bird observations from the Atlas of Breeding Birds of 

Ontario between 1981-85 and 2001-2005, sampling 3,727 and 4,945 spatial sampling 

units (hereafter called grid), respectively (Cadman et al., 1987; 2007). We focused on the 

1005 grids, 99.55 ± 3.76 km2 in size, which were surveyed during both atlases within the 

boreal forest belt of Ontario. We focus on this study region as it is experiencing rapid 

environmental change (Schindler & Lee, 2010; Yalcin & Leroux, 2018). In our analysis, 

we used 408 grids that were surveyed during at least 2 years of both 5-year atlas periods 

to minimize any bias in sampling intensity among grids (Virkkala & Lehikoinen, 2017). 

We converted the occurrences of the species recorded to community matrices for 221 

species over 408 grids (data are available online but citation is removed for double-blind 

review).  

To calculate change in species composition in each grid through time (i.e., 

temporal beta diversity; Hypothesis 1), we estimated temporal changes in community 

composition in each grid between the first and second atlas by using Sørensen 

dissimilarity coefficients for presence-absence data (see TBI R function, Legendre, 2014). 

The value of temporal beta diversity index (TBI) ranges between 0 and 1; higher values 

indicating higher dissimilarity between periods. TBI values are different than 0 when 

species losses or gains occurred in a grid. Following Kuczynski et al. (2018), we further 

decomposed each grid’s TBI value into contributions attributed to species losses and 

species gains (Fig.1). Next, to calculate change in each site’s compositional uniqueness in 
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terms of species community through time (Hypothesis 2), we first computed spatial beta 

diversity among all grids for each atlas period by using the beta.div R function (see 

Legendre, 2014). Then, following Legendre & De Caceres (2013), we calculated the 

“local contribution to beta diversity” (LCBD) for each grid in each atlas period by using 

Hellinger distance as dissimilarity coefficient. Local contributions to beta diversity 

(LCBD) represents the degree of uniqueness of a site in terms of their species 

composition compared to a site with average species composition in an area (Legendre & 

De Caceres, 2013). Therefore, LCBD values show the distance to an average community 

and LCBD is standardized such that the sum is equal to 1 and high values mean high 

uniqueness in terms of species composition of a grid (Legendre & De Caceres, 2013). We 

further computed the differences between second and first atlas LCBD values to quantify 

changes in the degree of contribution of each grid to regional spatial beta diversity (i.e., 

ΔLCBD; Kuczynski et al., 2018).  

Temporal and spatial variability of survey efforts among atlas grids can influence 

species observations (Kujala et al., 2013) and calculation of biodiversity metrics (Arnott 

et al., 1998). Therefore, it is important to account for the effect of sampling effort in 

biodiversity studies. Sampling effort can be measured by the number of visits (i.e., events 

where a grid is surveyed as a single occasion) in a grid. As in Yalcin and Leroux (2018), 

we calculated the difference in the number of visits in a grid between the atlases to 

measure difference in sampling effort between periods.  
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4.2.2. Climate and land-cover changes  

Natural Resources Canada interpolated meteorological observations in an 

approximate 5 km x 5 km resolution to produce bioclimatic variables for each year 

between 1950 and 2013 (McKenney et al., 2011). We used mean summer and winter 

temperature, and summer and winter precipitation because bird species respond to abiotic 

environmental conditions, especially seasonal conditions (Pigot et al., 2010). We chose 

temperature and precipitation variables of two seasons (winter and summer), which most 

likely affect the annual climate trends, which might be ecologically relevant to bird 

biology such as for reproduction success and/or resource availability, and which show 

low correlation with each other. Moreover, these climatic variables have previously been 

used by several studies investigating the effects of climate change on avian distributions 

and biodiversity (e.g., Venier et al., 2004, Jarzyna et al., 2015). For each grid, we 

calculated mean summer and winter temperature (i.e., warmest and coldest quarters, 

respectively), and summer and winter precipitation (wettest and driest quarters, 

respectively) over two periods covering the atlas periods, 1975-1990 and 1995-2010, 

respectively. We used these periods for climatic variables to better capture the climatic 

trend through time (i.e., eliminate noise due to single year climatic variability). We then 

computed the difference in each bioclimatic variable between the second and first atlas.  

Global Forest Watch Canada (GFWC) measured land-cover alterations due to 

anthropogenic developments and activities (e.g., roads, forestry applications, and mines) 
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in Ontario between 1986 and 2002 by using Landsat image pairs (Lee et al., 2007). 

Recent studies have used these data to investigate the impacts of land-cover change on 

butterfly species ranges (Leroux et al., 2013), bird occupancy dynamics (Yalcin & 

Leroux, 2018), and on patterns of human footprint within and around protected areas 

(Leroux & Kerr 2013). We used GFWC’s anthropogenic changes dataset to calculate the 

physical land-cover changes (%) in each grid per total landmass of a grid and within 20-

km neighbouring areas around each grid. The physical land-cover changes (%) variable 

shows the amount of change in natural land-cover; however, it does not give information 

on the type of landscape change. To assess changes in landscape productivity, we also 

calculated mean changes in net primary productivity in each atlas grid by using a global 

net primary productivity (NPP) dataset taken from Bai et al. (2008).  

4.2.3. Statistical analyses  

To determine the effects of climate and land-cover change on community change, 

we used competing models to explain variation in temporal beta diversity (TBI), 

contributions of species gain (TBIgain) and loss (TBIloss) to TBI in each site (Hypothesis 

1), and changes in local contributions to beta diversity (ΔLCBD; Hypothesis 2) as a 

function of all possible combinations of climate change and land-cover change variables 

while controlling for survey effort. We used variance inflation factor (VIF) to test for 

multicollinearity among all explanatory variables by using the vifstep R function (usdm R 

package, Naimi, 2015) and we created a set of relatively independent variables with a VIF 
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less than 3 (Zuur et al., 2010). We included all possible combinations of every variable as 

we had a priori reason to select these as predictors of community change as in previous 

studies (Mantyka-Pringle et al., 2015; Stralberg et al., 2016).  

In total, we fit 129 competing general linear models for each community change 

model category (TBI, TBIgain, TBIloss, ΔLCBD). Each model set included a null (i.e., 

intercept only) model, a model with only survey effort, 127 models with all possible 

combinations of variables (e.g., changes in mean summer temperature, changes in winter 

temperature; see Appendix C.1 for the list of all models). We used small-sample-size 

corrected Akaike Information Criterion (AICc) to measure the weight of evidence in 

support of each competing model within a model set. We excluded models with 

uninformative parameters (sensu Anderson, 2008; Arnold 2010) from the model set of 

each response variable. We applied model averaging to all models with ΔAICc <4 to 

quantify variable coefficients (Burnham et al., 2011).  

4.3. Results  

4.3.1. Changes in species compositions  

The regional species pool included 205 species during the first atlas and 215 

species during the second atlas. There were 48 species recorded uniquely during the first 

atlas and 58 species recorded uniquely during the second atlas. Among these species, 43 

and 70 species had more than 200 observations during the first and second atlas, 
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respectively. American Robin (Turdus migratorius, n=325 grids) and White-throated 

Sparrow (Zonotrichia albicollis, n=348 grids) were the most common species in the first 

and second atlas, respectively.  

Temporal beta diversity (TBI) showed high spatial variation among the studied 

grids (mean ± standard deviation = 0.74 ± 0.14) (Fig. 4.2). The mean contribution of 

species gain (i.e., local colonization) was 0.41 and species loss (i.e., local extinction) was 

0.33. Among all studied grids, the community composition change was driven by species 

losses in 176 grids and species gains in 232 grids from Atlas 1 to Atlas 2.  

Local contribution to beta diversity (LCBD) of each grid showed a similar trend in 

both atlases (mean ± standard deviation=0.002±0.001) (Fig. 4.3). Common Goldeneye 

(Bucephala clangula) and Common Loon (Gavia immer) showed the highest species 

contribution to beta diversity in both atlases. Changes in local contribution to beta 

diversity (ΔLCBD) varied across grids where all grids showed change in community 

structure, 216 grids showed a positive ΔLCBD (i.e., community differentiation) and 192 

grids showed a negative ΔLCBD (i.e., community homogenization).  

4.3.2. Changes in environmental variables  

We observed sizable change in climate and land-cover between the two atlas 

periods. Mean summer temperature in our study grids increased by an average of 1.34 ± 

2.10 ◦C and mean winter temperature increased by an average 2.47 ± 0.15 ◦C. Summer 
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total precipitation increased by an average of 1.53 ± 16.75 mm and winter total 

precipitation decreased by an average -0.42 ± 4.03 mm. Mean physical land-cover change 

(i.e., from natural state of land-cover to anthropogenic use) in grids was 4.91 ± 6.27 % 

and mean physical land-cover change within 20 km buffer area around the grids was 5.41 

± 4.31 %. Mean net primary productivity change was 2.47 ± 8.73 kgC/ha/year.  

4.3.3. Drivers of community changes  

After discarding the uninformative variables, the temporal beta diversity model set 

only included changes in mean summer temperature and total summer precipitation as 

predictor variables. Models with the combination of these variables explained between 0 

and 9 % of the variation in TBI in grids, and only two models were within ΔAIC <4 of 

the top ranked model (Table 4.1). The top ranked model included both these two climatic 

variables and survey effort, and explained 9 % of variation in temporal beta diversity (i.e., 

TBI). The survey effort only model explained < 1 % of variation in TBI. Model averaged 

beta coefficients of models within ΔAIC <4 of the top ranked model showed that 

temporal beta index values were negatively correlated with changes in mean summer 

temperature (mean=-0.017, confidence interval=[-2.43, -0.011]), positively correlated 

with changes in mean summer precipitation (0.0009 [5.89e-05, 0.0017]), and not 

correlated with survey effort (-0.004 [-0.007, 0.0002] – confidence interval overlaps 

zero).  
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After discarding the uninformative variables, the model set for contribution of 

species gain to TBI included physical land-cover change as the only predictor. Models in 

this set explained between 0 and 7 % of the variation in temporal beta diversity due to 

species gains, and two models were within ΔAIC <4 of the top ranked model (Table 1). 

The top ranked model included physical land-cover change and survey effort, and 

explained 7 % of the variation in species gains contribution to TBI. We found that the 

contribution of species gain to TBI was weak but positively correlated with physical 

landcover change (0.004 [0.0007, 0.007]) and survey effort (0.015 [0.009, 0.022]).  

None of the environmental change predictors were informative for explaining 

temporal beta diversity due to species losses. Ten percent of the variation in TBIloss was 

explained by survey effort (Table 4.1) and TBIloss was negatively correlated with survey 

effort (-0.02 [-0.02, -0.01]). 

We found no evidence that climate or land-cover change variables were related to 

changes in the local contribution to beta diversity. Ten percent of the variation in ΔLCBD 

was explained by survey effort (Table 4.1) and changes in local contribution to beta 

diversity was negatively correlated with survey effort (-0.0001 [-0.00015, -8.64e-05]).  

4.4. Discussion  

We conducted one of the first studies to incorporate observed changes in climate 

and land-cover through time into the analysis of the drivers of observed community 
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changes (see Mantyka‐Pringle et al., 2015, Winegardner et al., 2017, Ferger et al., 2017 

for other recent examples). Our study area, the boreal forest belt of Ontario (Canada), is 

undergoing rapid climate and land-cover change (Schindler & Lee, 2010). Our data 

suggest that both winter and summer seasons are becoming warmer, the wet season (i.e., 

summer) is becoming wetter and the dry season (i.e., winter) is becoming drier. The 

alteration of natural lands is prominent, whereas, primary productivity increased during 

our study period. While all these changes in environmental conditions are happening, our 

results revealed that the bird communities have reorganized in our study area over time 

and space. Change in land-cover and climate, however, were only weakly correlated to 

temporal beta diversity and not correlated to changes in local contribution of each grid to 

beta-diversity (ΔLCBD). 

We empirically tested the effect of climate and land-cover changes on observed 

bird community changes by using beta diversity components. Temporal beta-diversity 

measures change in species composition through time for each site (see review in 

Anderson et al., 2011). Breeding bird communities experienced high temporal 

community turnover in the boreal forest belt of Ontario (Canada) between the late 1980s 

and early 2000s. Specifically, an average of 75% of species had either colonized or 

become extinct within a given grid. We found that the temporal turnover of local avian 

community composition was positively but weakly related to warmer and drier summer 

conditions in our study system (Fig. 4.2, Table 4.1). This finding is consistent with 
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Jarzyna et al. (2015) who also found that temporal beta diversity of breeding birds of 

New York (USA) between 1980-85 and 2000-2005 was positively associated with the 

trend of maximum temperature of the breeding season (i.e., warm period). Species 

turnover may reflect the direct effects of the physical limiting factors of climatic 

conditions on biodiversity (Soininen et al., 2018). For example, changes in mean summer 

temperature can directly affect population dynamics by influencing reproductive success 

(Visser et al., 2009) of migratory breeding birds – a species group which makes up the 

majority species in our study system. Evidence from fish assemblages in France 

(Kuczynski et al., 2017), and butterfly and bird communities in Switzerland (Zellweger et 

al., 2017) also corroborates our findings. 

We further analyzed temporal beta-diversity by partitioning this metric into its 

components of species gain (i.e., local colonization) and loss (i.e., local extinction). This 

partitioning of the biodiversity metric enables us to understand the processes driving 

species turnover in an area (Legendre, 2014; Kuczynski et al., 2018). In our study system, 

species gains (i.e., local colonization) had a higher contribution than species losses (i.e., 

local extinction) to temporal beta diversity (Fig. 4.2). We found that the contributions of 

species gain to temporal beta diversity were positively correlated with changes in physical 

land-cover (i.e., human alteration of natural areas) but no evidence showing a relationship 

between environmental change and the contributions of species loss to temporal beta 

diversity. Ferger et al. (2017) also showed land use intensity explained more of the 
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variation in the replacement of individuals and species in 63 diverse bird communities 

during 2010-2012 in Mt. Kilimanjaro (Tanzania).  

Local colonization and extinction patterns of breeding birds of Ontario showed 

high variation in their response to climate and land-cover change (Yalcin & Leroux, 

2018). These variations in individual species level responses may result in a large amount 

of residual variation in our community level models. Moreover, species can show time-

lagged responses to climate change (Menéndez et al., 2006; Devictor et al., 2012; Savage 

& Vellend, 2015). Most of our studied species are forest migratory birds that are highly 

mobile species. These populations likely move quickly in response to land-cover change 

(Newbold et al., 2013). Although climatic tolerances are an important factor where 

species’ ranges can occur, the availability of suitable neighbouring areas can more 

strongly affect the realized geographic distribution of a species (Rich & Currie, 2018). 

These species-specific responses should impact the community composition of an area, 

and these responses can vary among different taxa. For instance, Zellweger et al. (2017) 

showed that although climate and vegetation structure were important environmental 

factors affecting community structure of 1765 plant, 185 butterfly, and 144 bird species 

during 2004-2008 in Switzerland, climatic filtering effects were more pronounced in plant 

than in butterfly and bird assemblages.  

Change in local contribution of a grid to overall beta-diversity in an area is a 

pairwise comparison of community composition at a regional extent which includes 
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spatial and temporal components of changes in biodiversity (Legendre & Caceres, 2013). 

In our study area, more grids showed community differentiation (n=216) than community 

homogenization (n=192). Despite observing biologically meaningful change in 

environmental variables (i.e., land-cover and climate change, the changes in grid-based 

spatial beta diversity (i.e., changes in contribution of local species to beta diversity) did 

not show any relationship with any climate or land-cover change (Fig. 4.3, Table 4.1). 

Community differentiation as measured by LCBD is a result of gains and losses of 

species in a grid and the grid uniqueness rank relative to the average community 

composition in the region. Therefore, a change in uniqueness of a grid in terms of species 

composition reflects both spatial and temporal beta-diversity in a grid driven by species 

turnover and nestedness. Species turnover may reflect species sorting by environmental 

filtering and dispersal processes (Soininen et al., 2018), whereas nestedness is often 

related to extinction and colonization dynamics (Si et al., 2016). Consequently, our model 

might not able to capture these complex drivers of change in local contribution of a grid 

to overall beta-diversity. Alternatively, climate and land-cover changes are not key 

drivers of these changes. Our contrasting findings related to the drivers of changes in TBI 

and changes in LCBD highlight the value of including both temporal and spatial 

components of beta-diversity to understand biodiversity responses to global changes 

(Winegradner et al., 2017).  
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Any stochastic processes driving observed local colonization and extinction of a 

species in a region such as random variation in species persistence or incomplete 

sampling can result in high model residuals (Araujo & Guisan, 2006). Therefore, we 

controlled for the variation in survey effort in a grid between atlases by adding the 

difference of the number of visits between the two atlas periods as a covariate in all 

models. Our analysis revealed that variation in survey effort only explained a small 

portion of the variation in beta-diversity metrics (Table 4.1). Future work may incorporate 

other processes known to impact changes in community assemblage and structure such as 

species interactions. Including not only species identities but also species interaction 

patterns into biodiversity studies would be helpful to improve biodiversity analysis 

(Urban et al., 2016). For instance, as observed in Belmaker et al. (2015), understanding 

co-occurrence patterns of species in a community may enable us to predict potential 

future assemblages. Joint species distribution models also can be one of the methods to 

include more than one species into consideration when predicting future community 

assemblages (Ovaskainen et al., 2016).  

Although our system experienced an overall increase in the total number of 

species between two atlases, our findings showed that there were substantial 

compositional changes through time and space. These community changes can result in 

novel communities which in return can affect the community size, composition and 

structure such as through changes of keystone species, changes in species interactions, 
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and ecological drift of dominant species (Jackson & Blois, 2015). Moreover, 

compositional changes can alter ecosystems, ecosystem services, and ecosystem 

resilience (Cardinale et al., 2012; Pecl et al., 2017). Global changes result in changes in 

species compositions, usually, homogenizing species assemblages by restricting specialist 

species and favoring generalist species (Clavel et al., 2011). Land-cover change coupled 

by climate change will likely continue to increase similarity among communities in space 

and time (Sirami et al., 2016). Beta diversity is an essential metric to guide practical 

conservation management (Socolar et al., 2016); our study shows that it is critical to 

incorporate multiple metrics in biodiversity change assessments.  

4.5. Data Accessibility 

The R code and associated data are available on Figshare: doi: 

10.6084/m9.figshare.6368939 
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Table 4.1 Results of model selection of all models without uninformative parameters 

examining the effect of changes in mean summer temperature (∆MST), mean summer 

precipitation (∆MSP), physical land-cover change (%∆LC), and difference in survey 

effort (SE) on observed temporal beta diversity (TBI), the contribution of species loss 

(TBIloss) and gain (TBIgain), and changes in local contribution of a grid to beta-diversity 

(∆LCBD). Intercept term, I; k, number of estimated parameters; LL, log-likelihood; 

∆AICc, the difference in the AICc; ωAICc, model weights; R2, R-squared value. 

Model: TBI ~ k LL ∆AICc ωAICc R2 

I + ∆MST + ∆MSP + SE 5 228.98 0 0.77 0.09 

I + ∆MST + SE 4 226.75 2.42 0.23 0.08 

I + ∆MSP + SE 4 214.93 26.06 0 0.02 

I+ SE 3 211.86 30.17 0 0.006 

I 2 210.43 31 0 0 

Model: TBIloss ~ k LL ∆AICc ωAICc R2 

I + SE 3 95.197 0 1 0.1 

I 2 73.969 40.4 0 0 

Model: TBIgain ~ k LL ∆AICc ωAICc R2 

I + SE + %∆LC 4 46.511 0 0.863 0.07 

I + SE 3 43.654 3.7 0.137 0.05 

I 2 32.565 23.8 0 0 

Model: ∆LCBD ~ k LL ∆AICc ωAICc R2 

I + SE 3 2135.499 0 1 0.1 

I 2 2114.733 39.5 0 0 
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Figure 4. 1 Computational steps assessing changes in community composition in space 

and time. We used two community matrices of 221(p) species over 408(n) grids in two 

atlas periods (a, b) to calculate the temporal beta diversity index (i.e., TBI) (c) and its 

decomposition into gain and loss of species components (d). The value of TBI ranges 

between 0 and 1 with higher values indicating higher dissimilarity between periods. We 
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further computed dissimilarity matrices of spatial beta diversity in each atlas period (e, f) 

to calculate the index of local contribution of each grid to beta diversity (LCBD) in each 

atlas period (h, g), and its change between atlases (∆LCBDt2-t1) (i). LCBD values sum to 1 

with higher values indicating higher contribution of a grid to beta diversity or higher 

uniqueness of a grid in terms of species composition than the average overall species 

diversity in the region. In our analysis, we focus on βtemporal (i.e., TBI), species gain and 

loss components of βtemporal, and ∆LCBD.  
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Figure 4. 2 The patterns of temporal beta-diversity metrics of breeding birds of Ontario 

between 1981-1985 and 2001-2005; a) spatial pattern of temporal beta diversity index 

(TBI) within 408 grids; b) distribution of TBI and the contribution of species loss (TBIoss) 

and gain (TBIgain) among grids. Circle size of grids is proportional to the value of the 

given metrics within the maps. 
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Figure 4. 3 The patterns of beta-diversity metrics of breeding birds of Ontario between 

1981-1985 and 2001-2005; a) spatial pattern of changes in local contribution of a grid to 

beta-diversity (∆LCBD); b) distribution of local contribution of a grid to beta-diversity 

(LCBD) during 1981-1985 (LCBD1981-85) and 2001-2005 (LCBD2001-05), and ∆LCBD 

among grids. Circle size of grids is proportional to the value of the given metrics within 

the maps. 
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CHAPTER 5 

Summary 

Climate and land-cover changes are affecting many ecological systems, and their 

impacts will only increase in the coming decades (McGill, 2015; Newbold et al., 2015; 

Jarzyna et al., 2015; Oliver et al., 2017). One of the predominant responses of species to 

changing environments is to shift their ranges (Mason et al., 2015; Segan et al., 2016). 

Therefore, quantitative measurements of species range shifts, or components of species 

range shifts (e.g., colonization and extinction patterns), can help us understand the 

impacts of global change drivers on ecological systems. Moreover, since species are 

codependent (i.e., direct and indirect species interactions; Tylianakis et al., 2008), 

tracking community changes due to global change drivers can help us to understand how 

communities respond to changing environments (Ferrier & Guisan, 2006; Franklin et al., 

2016). The quantitative assessment of the effects of climate and land-cover changes on 

species and communities is an urgent topic, especially for developing effective mitigation 

strategies (Urban et al., 2016). 

The three primary objectives of my dissertation were i) to synthesize current 

methods and metrics that have been used to calculate or predict species range shifts, ii) 

determine the relative effects of observed climate and land-cover change on species local 

colonization and extinction patterns, and iii) determine the relative effects of observed 
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climate and land-cover changes on changes in community structure over time. I found 

that: 

(i) There are six methods for representing a species’ range (observational studies, 

grid-based mapping, convex hull, kriging, species distribution modeling, and 

hybrid methods) which combine with three metric classes for measuring species 

range shifts (changes in range limits, range size, and probability or suitability of 

occurrence). Each method and metric requires different assumptions and 

requirements (e.g., data, computational power). I developed a series of questions 

to discuss opportunities, assumptions, and constraints of the different methods to 

provide a guide for researchers attempting to define species ranges and measure 

species range shifts. When it is applicable, I suggest using multiple metrics such 

as overall changes in range size and changes in range limits (e.g., latitudinal range 

shift) to measure changes in species ranges. I argue that the way ecologists 

measure species ranges and range shifts deserves more scrutiny, particularly when 

considering conservation applications.  

(ii) My empirical analysis showed high variability in the response of Ontario 

breeding birds to the relative and combined effects of land-cover and climate 

change. Land-cover and climate change differentially affected individual species’ 

local colonization and extinction events. Although land-cover, climate, and their 

combined changes were equally important for species local colonization, climate 
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change was the most important predictor of species local extinctions. Moreover, 

while bird species showed considerable interspecific variation in response to land-

cover and climate change, species traits weakly explained heterogeneity in species 

response rates including body size, habitat preference, and migratory status. 

(iii) My empirical analysis revealed that breeding bird communities showed high 

temporal community turnover between the early 1980s and 2000s in Ontario. 

Moreover, each study site experienced changes in its spatial pairwise uniqueness 

regarding species composition over time. The temporal turnover of avian 

community composition was positively, but weakly related to warmer and drier 

summer conditions in the boreal forest belt of Ontario. However, land-cover and 

climate change variables were uninformative in explaining changes in the local 

contribution of a site to beta-diversity. The difference in drivers of changes in 

temporal beta-diversity and those drivers of changes in local contribution of each 

site to beta-diversity highlight the value of including both temporal and spatial 

components of beta-diversity for understanding community response to global 

changes. The results of Chapter 3 and 4 show that although land cover and climate 

changes can explain some of the species local colonization and extinction events, 

they do not show a strong correlation with community changes in a region. One 

explanation is that communities do not respond to environmental changes as an 
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intact unit; therefore, our models were not able to strongly capture these 

community responses as species-specific colonization and extinction patterns. 

Predicting species range shifts is a primary research topic for ecology and conservation 

biology. It has been demonstrated that methodological choices influence range shift 

predictions and the conservation outcomes based on these predictions (Elith et al., 2010; 

Guisan et al., 2013; Porfirio et al., 2014). For example, Zurell et al. (2016) reviewed 

different methods for predicting species ranges and range shift, Urban et al. (2016) 

reviewed integrating mechanisms in models to forecast species’ responses to climate 

change, and Faurby & Araújo (2018) compared different species distribution models for 

estimating species range shift predictions. There exists, however, no comprehensive 

synthesis of methods and metrics for defining species ranges and measuring species range 

shifts. Here, I filled this gap by reviewing the literature and identifying the most common 

methods and metrics for defining species ranges and measuring range shifts. My synthesis 

can be used as a starting point for new researchers studying biodiversity responses to 

global changes and as a comprehensive reference for current experts in this field. Future 

work can extend the ideas explored here to address the effectiveness of the different 

methods and metrics for measuring species range shifts. A quantitative assessment of the 

effectiveness of methods and metrics may allow us to standardize our methodological 

approaches and better inform conservation planning. 
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The effects of global changes on species ranges have been mostly studied by 

projecting future conditions, typically only using climate change projections (see review 

in Sirami et al., 2017; Chapter 2). Studies that test the effects of multiple stressors, such 

as land-cover and climate change, on species range shifts with empirical data are rare. 

Empirical evidence is necessary to build stronger inference for the effects of global 

changes on biodiversity. Understanding and predicting how biodiversity is and will 

respond to cumulative global changes should be a research priority in applied ecology. In 

my data chapters, I contribute to filling this gap by analyzing observed species-specific 

and community responses to the relative and combined impacts of observed climate and 

land-cover change. Given the increased availability of remote sensing datasets (Qi & 

Dubayah, 2016; Fritz et al., 2017; Wulder et al., 2018) and biodiversity data (e.g., Global 

Biodiversity Information Facility, Ocean Biogeographic Information System), the use of 

observational or empirical approaches to studying biodiversity responses to global 

changes is becoming more feasible. Consequently, more empirical tests with different 

taxa and systems will build on my case studies and improve our understanding of the 

general effects of global change drivers on biodiversity.  

In this thesis, I used four data sources for Chapter 3 and 4: Ontario breeding bird 

atlases, regional climate models by Environment Canada, anthropogenic changes maps by 

Global Forest Watch Canada, and changes in global net primary productivity map by 

Food and Agriculture Organization of the United Nations. Although Ontario Breeding 
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Bird Atlas is an extensive dataset of observations of species occurrences during 5-years 

periods, it may have some data limitations such as sampling bias such as in spatial 

coverage, sampling intensity, and observer expertise. I screened the atlas data based on 

several data selection criteria. Specifically, I only considered the atlas grids sampled 

during both atlases, grids that are completely within our study area, and species that have 

a certain number of observations during both atlases. All observations reported in the 

atlas were observations of breeding birds (e.g., nest, breeding calls, fledged or downy 

young).  Therefore, the presences of species are most likely highly accurate. By applying 

at least one observation during a 5-year period as the measure of occurrence, I attempted 

to be conservative in our estimates of local colonization and extinction events. However, 

future studies can also address any detection bias related with observers’ expertise, terrain 

conditions, or species behavior. In addition to these selection criteria, I included the 

difference in the number of visits between two atlases as a covariate in all models run for 

both Chapter 3 and Chapter 4.  

Both land cover variables (anthropogenic change and global net primary 

productivity change index map) were based on satellite imagery. Satellite remote sensing 

has shown increased opportunity for informing land cover conditions at a landscape, 

regional, and global scale (Kerr & Ostrovsky, 2003). Although both datasets may have 

accuracy issues due to spatial resolutions, both datasets represent the general trend in 

changes in land cover characteristic in our study resolution (i.e., 10 km x 10 km) that is 
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also widely used spatial resolution in the studies of bird species. I used Environment 

Canada climate dataset based on weather and climate station information. These station 

data were interpolated to the surface area of Ontario and this regional climate model can 

be considered as the best resources for representing past climate in this region. 

Species responses to global change drivers are highly complex (Socolar et al. 

2016; Pecl et al. 2017).  Understanding both species-level and community-level responses 

through time and space can enhance our knowledge of global change ecology. The 

difference in results from my species-level and community-level analyses shows that the 

approach used in the analysis of biodiversity responses to global change driver is 

important. We need to incorporate multiple facets of biodiversity changes into our 

analysis by integrating principles from multiple disciplines such as population ecology, 

community ecology, landscape ecology, and macroecology. This multidisciplinary 

approach global change ecology can be achieved by considering additional factors not 

included in my research. For example, future work may explicitly investigate changes in 

population size or density of occupied metapopulation patches (Leroux et al, 2017) and 

changes in compositional and structure of biotic assemblage and interactions (Brown & 

Vellend, 2014). Investigating the response of species co-occurrence patterns can further 

give insight into species interaction under global changes. Moreover, incorporating 

phylogenetic relatedness into trait analysis can be a next step to test the effects of traits on 

species responses. While I considered habitat loss in my research, future work should 
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investigate particular drivers and patterns of habitat loss (e.g., roads, urbanization) and 

change as well as the impacts of habitat fragmentation on patterns in abundance, 

distribution, and diversity at different spatial scales and extents over time. This holistic 

approach can improve our understanding of species responses to global change drivers 

that can be used in conservation efforts for biodiversity. 
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APPENDICES 

APPENDIX A  

Appendices for Chapter 2: Diversity and suitability of contemporary 

methods and metrics to quantify species range shifts 

Appendix A.1. Detailed methods for literature survey 

We conducted a literature search to identify key methods and metrics for 

measuring species range shifts. We consider a method to be a procedure (i.e., set of steps) 

or technique (i.e., tool) and a metric to be a specific measure (i.e., mean). We searched 

the Thomson Reuters Web of Knowledge Core Collection (on January 5th, 2015) for 

publications using the topic terms ‘species range shift’ across categories of ecology or 

environmental science. This query included searches of the following fields within a 

record: title, abstract, and author keywords and resulted in 3,132 papers published 

between 1987 and 2014. We reduced our pool of candidate papers to those published in 

2013 and 2014 (n = 730) for two reasons: i) our goal was to identify the most common 

methods and metrics for measuring species range shift in the literature and we expect key 

methods and metrics to be used in many different papers, and ii) we expected more recent 

publications to make use of a variety of methods and metrics (i.e., older publications may 

not use more modern approaches that rely on advances in statistical computing). 
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We reviewed all the papers published in 2013 and 2014, and retained papers (n = 

124) that met the following criteria: (1) the aim or scope of the paper was related to 

measuring or predicting species range shifts, or (2) the aim or scope of the study required 

a measurement or prediction of range shifts, and (3) the paper presents a quantitative 

method for measuring or predicting species range shifts with real world datasets in 

sufficient detail to reproduce the study (Fig. A.1.1). We recorded the methods and metrics 

applied to measure or predict range shifts (archived in figshare, Yalcin & Leroux, 2016). 

Yalcin, S. & Leroux, S. (2016) Datasets: diversity and suitability of contemporary 

methods and metrics to quantify species range shifts. figshare. 

https://dx.doi.org/10.6084/m9.figshare.3174478.v1 Retrieved: May 19, 2016. 

 

 

https://dx.doi.org/10.6084/m9.figshare.3174478.v1
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Figure A.1.1 Steps of literature review. *A paper was excluded if it had no clear method 

section or no quantitative method, if it only reported species richness changes, species 

turnover rate, or range metrics, if it was a review/synthesis paper, or a simulation study 

without any case study, if it focused on geographical changes not between time (e.g., niche 

change), or if part of the inputs (e.g., modelled range size or range shift) were taken from a 

previous study. 
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Appendix A.2 Summary of the objectives, inputs, assumptions, outputs and limitations of the six methods for 

defining species ranges observed in our literature review. 

Table A.2.1 Summary of the objectives, inputs, assumptions, outputs and limitations of the six methods for defining species 

ranges observed in our literature review. 

Methods for 

defining 

species range 

Objectives Inputs Assumptions Outputs Limitations 

Observationa

l studies 

To create a 

data matrix 

showing 

species 

occurrence 

state in a 

sampled zone 

during a 

specific time 

Observation 

records (e.g., 

occurrence, 

count, 

abundance) of a 

species in a 

sampling unit 

(e.g., quadrat, 

transect) within a 

study area 

 

The sampled 

species occurrences 

are 

 independently 

and randomly 

collected from 

the distribution 

of a species, 

 adequate to 

represent the 

pattern of 

A dataset 

composing each 

observation 

showing 

occurrence state 

of a species 

within a study 

area during a 

period 

Sensitive to sample size, 

sampling protocol, 

sampling bias 
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 species 

distribution in 

an area. 

 

Grid-based 

mapping 

To map a 

species’ range 

as presence or 

absence in a 

constant size 

spatial unit 

(grid) within a 

study area 

 Observation 

records of a 

species 

 A grid map 

with a pre-

defined 

spatial extent 

and resolution 

related to the 

study species 

 A rule for 

converting 

species 

observations 

from the point 

to grid format 

The collected 

records of a species 

are adequate for 

representing the 

pattern of species 

distribution in each 

grid and in the 

study area. 

 A gridded-

map (polygon) 

showing 

presence/abse

nce of species 

in each grid 

 A dataset 

composing 

each grid 

information 

showing 

occurrence 

state of a 

species in each 

grid within a 

study area 

 Sensitive to the spatial 

resolution of grid and 

the rule of considering 

presence of a species 

in a grid 

 Grid-based maps can 

include unsuitable 

areas within the 

species range 

(overestimation of 

range). 

Convex hull To map a 

species’ range 

according to 

the distance of 

 Observation 

records of a 

species 

The sampled 

species occurrences 

are independently 

and randomly 

An area (polygon) 

showing the 

presence of 

species. 

 Sensitive to the 

sampling coverage of 

the area and sample 

size (if observation 
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observation 

points of the 

species to 

each other in a 

sampled area 

 Selected 

algorithm and 

parameters 

for applying a 

convex hull 

analysis 

collected from the 

distribution of a 

species. 

 

records fall in a line 

such as sampling along 

a road, the area of 

convex hull can be 

zero) 

 Sensitive to 

observation record 

outliers 

 Sensitive to spatial 

error in observation 

records 

 Convex hull can 

include unsuitable 

areas within the 

species range 

(overestimation of 

range). 

Kriging To map a 

species’ range 

according to 

the known 

value of 

observation 

 Observation 

records of a 

species 

 Selected 

algorithm and 

parameters 

for 

The occupancy (or 

abundance) of a 

species in an area is 

closely related to 

observations and 

density distribution 

An area (raster) 

showing the 

probability of 

presence or 

abundance of a 

species. 

 Sensitive to spatial 

coverage of samples 

and sample size 

 Kriging can include 

unsuitable areas within 

the species range 
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records in a 

defined area 

developing a 

kriging 

surface (such 

as linear, 

Gaussian, 

exponential 

variogram 

type) 

of observations in 

space and time. 

(overestimation of 

range). 

 Thresholding is 

required to have binary 

occurrence map of a 

species range. 

Species 

distribution 

model (SDM) 

To model a 

species’ range 

in an area as 

the probability 

of occurrence 

within each 

grid cell 

according to 

the 

relationship 

between 

observation 

records and 

environmental 

variables in a 

sampled area 

 Observation 

records of a 

species 

 Absence of 

species or 

background 

data can be 

required 

based on the 

selected 

modelling 

approach. 

 Spatially 

explicit data 

for 

 Independently 

and randomly 

sampled 

observations 

from the 

distribution of a 

species 

 Species are in 

equilibrium with 

their 

environment. 

 Current 

relationships 

between climate 

and distribution 

are constant 

 A fitted 

function of the 

relationship 

between 

species 

occurrences 

and 

environmental 

variables 

 Continuous 

surface 

(raster) of 

environmental 

suitability for 

species 

 Over-fitting of a model 

due to multicollinearity 

of environmental 

variables 

 Overestimation of 

species range due to 

exclusion of ecological 

processes (e.g., 

dispersal) 

 Sensitive to the 

threshold used for 

converting continuous 

outputs of SDM to 

binary 

(presence/absence of 

species) results 
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(environmenta

l space) or in a 

different 

geographic 

space or time. 

environmenta

l variables 

 An algorithm 

(approach) 

for fitting a 

model of 

species 

observations 

based on 

environmenta

l variables 

 Tuning the 

selected 

algorithm. 

over space and 

time. 

 Species 

composition and 

species 

interactions 

remain static. 

occurrence in 

an area 

 Presence/abse

nce of suitable 

areas for 

species after 

applying a 

threshold of 

probability. 

 The uncertainty about 

model inputs and 

model structure should 

be considered. 
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Hybrid 

methods 

Goal(s) and 

prediction(s) 

of each 

coupled 

method can 

vary, such as 

to predict (1) 

the probability 

of occurrence 

of a species 

within a study 

area, (2) the 

occupancy 

statue of a 

species in 

patches within 

an area, (3) 

the abundance 

of a species in 

an area, 

(4) binary 

probability of 

species 

survivability 

 Observation 

records of a 

species 

 Additional 

datasets 

related to sub-

methods used. 

For instance, 

if SDM and 

dispersal 

kernels are 

used in a 

study, 

additional to 

observation 

records of a 

species, 

environmenta

l variables 

and dispersal 

distance of a 

species are 

required. 

Depends on which 

sub-methods are 

applied. If SDM is 

one of the 

combined methods 

in hybrid method 

approach, all SDM 

assumptions are 

applicable. 

Moreover, if SDM 

and dispersal kernel 

of a species are 

used, any valid 

assumption related 

to dispersal of the 

species should be 

considered. 

Depends on which 

sub-methods are 

applied. For 

instance, if a 

SDM and 

demographic 

model is coupled, 

the output is 

abundance 

distribution of the 

species in an area. 

Depends on which sub-

methods are applied. 

 Hybrid methods are 

usually data-intensive 

approaches. 

 The uncertainty about 

model inputs and 

model structure, and 

the possibility of error 

propagation due to 

these uncertainties 

should be considered. 
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Appendix A.3. Definitions and examples of metrics for measuring species range shifts and the total number of 

studies (n) observed in our literature review 

Table A.3.1 Definitions and examples of metrics for measuring species range shifts and the total number of studies (n) 

observed in our literature review. We report on metrics used in more than one study (the reference list of the studies archived in 

figshare, Yalcin & Leroux, 2016). 

Metric type Measurement 

approach 

Measured 

parameter 

Specifications Example Number 

of studies 

(n) 

Changes in 

range limits 

Central tendency b 

and extremes c 

 Altitude 

 Latitude 

 Longitude 

 Geographic 

center a 

within the study 

area d 

Changes in mean elevation of all 

observation records in a study 

area. 

19 

weighted by a 

value e within the 

study area 

Changes in mean elevation of 

sites occupied by the species 

weighted by abundance. 

5 

a defined number 

of data unit f 

within the study 

area 

Changes in mean latitude of the 

10 northernmost or uppermost 

records between periods. 

11 
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a portion of 

the study area 

Changes in mean latitude of 20 

% of the most northern species 

occurrences. 

13 

Changes in 

range limits 

Overall extent 

(range) 

 Altitude 

 Latitude 

 

within the study 

area 

Changes in elevation range 

(maximum elevation and 

minimum elevation) of all 

observation records. 

6 

Changes in 

range limits 

Absolute value Distance 

between defined 

points 

within the study 

area 

Distances between the most 

distant sites where species were 

recorded. 

11 

Changes in 

range limits 

The frequency 

distribution 

# of 

observational 

unit 

within the study 

area 

Changes in the altitudinal 

frequency distribution of species 

occurrences within 10 equal 

altitudinal groups. 

2 

Changes in 

range size 

Absolute value Range size or 

length 

of the study area Absolute changes in the size of 

suitable area. 

25 

Proportional or 

percentage change 

(rate of change) 

Percent change in the length of 

the occupied hydrographic 

network relative to the total 

network length. 

34 

Changes in 

range size 

Absolute value Range size or 

length 

of defined loss, 

gain, and stable 

area 

Size of area with loss, gain, 

stable species occurrence 

through time. 

8 
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Proportional or 

percentage change 

(rate of change) 

Percent change in the size of area 

gained and (or) loss and (or) 

stable areas divided by the total 

size of suitable area at a later 

period. 

42 

Changes in 

probability of 

occurrence or 

suitability 

Absolute value Probability of 

occurrence or 

suitability 

of the study area Changes in the probability of 

occurrence measured as the 

number of plots per altitudinal 

classes divided by the total 

number of plots per each 

altitudinal class. 

10 

Proportional or 

percentage change 

(rate of change) 

Percent change calculated as the 

different in percent mean 

probability of occurrence 

between two periods. 

2 

Changes in 

probability of 

occurrence or 

suitability 

Similarity index Probability of 

occurrence or 

suitability 

of the study area Change measured as Cohen's 

kappa similarity index. 

3 
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a Geographic center is the centroid of a study area according to its latitude and longitude. b Measurements of central tendency are 

mean, median and their stand deviations. c Measurements of extremes are minimum, maximum, and their standard deviations. d 

Study area can vary across studies, it can be all modelled suitable areas, occupied grids, patched or transects, or study zones such as 

lakes. e Weighted value can be species density, abundance, area size where species is present. f Data unit can be records, occupied 

grids, patches, or transects. 

References:  Yalcin, S. & Leroux, S. (2016) Datasets: diversity and suitability of contemporary methods and metrics to quantify 

species range shifts. figshare. https://dx.doi.org/10.6084/m9.figshare.3174478.v1   

https://dx.doi.org/10.6084/m9.figshare.3174478.v1
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Appendix A.4. Additional questions to guide method and metric selection 

based on data collected from our literature review 

The following questions are additional to the questions in the section of 

‘Measuring species ranges and species range shifts in practice’ of the main manuscript to 

provide a guide to researchers attempting to define species ranges and measure species 

range shifts. Numbers of the questions are following the question numbering in the main 

text. 

6. Does the method for measuring species range shifts apply to specific periods? 

Changes in species ranges are usually measured through time. We defined four 

timeframes observed in our database: far past (< 20th century), past (1900 - current), 

current, and simulation time (not bound to the calendar timeline; see full description in 

Fig. A.4.1). Then, we classified each study according to the combinations of timeframes 

used. For example, the “past to current” class represents studies that measured range that 

shift according to the past distribution of species in contrast to the current distribution. 

The most common timeframe was current to future (46% of total studied timeframes) 

followed by past to current (41.6% of total studied timeframes) and far past to current 

(5.6% of total studied timeframes) (Fig. A.4.2a). For measuring species range shifts, past 

to current is most common among range limit studies, whereas current to future is most 

abundant in range size studies (Fig. A.4.2b). Among studies measuring ranges at past to 
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current in our dataset, the most common methods for defining species range through time 

are grid-based mapping and observation studies, whereas SDM is the most common 

method using current to future (Fig. A.4.2c-d-e). For forecasting species range in the 

future, only SDM and hybrid methods can be applied; however, all methods are 

applicable for defining species ranges in the past if all required inputs (e.g., data) are 

satisfied. 

7. Does the method’s output for defining species ranges represent the full or partial 

geographic range of a species? 

Observation studies are usually individual-oriented and encompass local or 

regional extent, which results in the measurement of species range shifts at a partial and 

localized range (see Kerr et al., 2015 for an example of a global analysis of observation 

data). Therefore, the measured changes in species range by observational studies are 

usually snapshots of the changes in the area of occupancy within a given study area. Grid-

based maps generally overestimate the presence of a species in a grid (Gaston & Fuller, 

2009). Although grid-based maps can represent the full range of a species in a certain 

region, these maps usually show unsuitable or unoccupied habitat as occupied areas by a 

species. The ability of grid-based maps to show the actual area occupied by species is 

closely related to the species’ actual geographic distributions and the size of the grid. For 

example, Sheth et al. (2012) showed that grid-based maps underestimate the range of a 
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species with small geographical distribution and calculated range size varies with 

different grid sizes. Convex hull and kriging methods are generally local studies, in which 

only the partial range of a species can be captured in the outputs. Similar to grid-based 

maps, convex hull, and kriging can overestimate the occurrence of a species because they 

cannot accommodate holes in the predicted range. SDM outputs are usually a 

representation of the full potential range of a species within a given study area. However, 

SDMs generally overestimate a species’ actual distribution because these models attempt 

to map the fundamental niche of a species based on observation data from the realized 

niche of a species (Syfert et al., 2013). Hybrid methods include ecological processes by 

using surrogate data for these processes (e.g., demographic rates as a surrogate of 

reproduction) that are usually collected at local extents or sometimes over the entire 

known species’ range, and hybrid methods are capable of modelling species’ partial (e.g., 

Benito et al., 2014) and full ranges (e.g., Cabral et al., 2013). 

8. Can the method for defining species ranges be applied in vertical and horizontal 

dimension? 

The dimension of a study can be expressed in two-dimensions such as latitude and 

longitude, or in a single dimension such as only latitude, elevation or depth. The vertical 

dimension is a plane that is parallel to the gravity field. For instance, Bodin et al. (2013) 

looked at the changes in the optimum elevation of tree species in France, which is an 
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example of a vertical (altitudinal) dimension study. On the other hand, the horizontal 

dimension can be defined as a plane that is perpendicular to the gravity field. For 

example, Virkkala & Lehikoinen (2014) studied 94 birds’ species range shifts in Finland 

in horizontal dimension by using 50 km latitudinal blocks. The most common study 

dimension in our database is horizontal (82.26 %) followed by vertical dimension (8.87 

%) and both horizontal and vertical dimension in a study (8.87 %). Although there are 

studies including measurements of changes in both vertical and horizontal dimension, we 

found no research on the range shifts on 3-dimensional terrain. All method classes were 

used for measuring range shifts in the horizontal dimension; on the other hand, only 

observational studies, grid-based mapping, and SDMs were used for measuring vertical 

range shift. However, technically, all primary methods could be applied in the horizontal 

or vertical dimension. 

9. Does the method for measuring species ranges shift apply to a specific spatial 

extent? 

We classified the spatial extent of studies into four categories; local, regional, 

continental, and global. That is, local is a sub-country or sub-province extent, regional is a 

single country or province, continental is multiple countries or a geographical continent, 

and global is multiple geographical continents. For instance, we classified a national park 

in Italy as a local extent (e.g., Mason et al., 2014), Spain as a regional extent (e.g., Lloret 
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et al., 2013), North America as a continental extent (e.g., Ordonez & Williams, 2013), 

whereas study area covering all oceans between -60º and 60º latitude as a global extent 

(e.g., Couce et al., 2013). There were three papers that measured range shifts across two 

spatial extents and one simulation study; therefore, the total number of studied spatial 

extent in our dataset is 126. The most common spatial extent used in our dataset was 

regional (50 % of total studied extents) followed by local extent (28.3 % of total studied 

extents), then continental (16.9 % of total studied extents) (Fig. A.4.3a). Among regional 

studies, SDM is most common method for defining species range through time (Fig. 

A.4.3b). Observation studies are most common method measuring range shifts in local 

extents. For changes in range size and limit, regional and local studies are most common 

extents (Fig. A.4.3c-d-e). 

10. Does the method for defining species ranges apply with a specific grain size? 

We listed grain size of each study in km2. If a paper reported the spatial resolution 

in a geodesic metric such as arc second, this value was converted to km2 as its value at the 

equator. There were 22 papers that did not use any spatial grain in their analysis; on the 

other hand, there were six papers that used two or more different spatial resolutions. 

Consequently, 142 grain sizes were reported in our database. The grain size used a range 

between 9×10-7 km2 and 12,321 km2 for studies in our database. The most common 

spatial grain size used is 1 km2 (16.2 % of all reported grain sizes), followed by 100 km2 
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(11.3 % of all reported grain sizes) and 25 km2 (8.5 % of all reported grain sizes) (Fig. 

A.4.4a). The spatial resolution of SDM studies varies greatly (range: 25×10-6 km2 - 

12,321 km2, median: 20.25 km2), in contrast to grid-based mapping (range: 1 km2 - 

6160.5 km2, median: 100 km2). Changes in suitability/probability of occurrence have 

larger grain size than changes in range limits and size. 

11. Is the method for defining species ranges only applicable to specific taxa? 

We classified each species studied in our set of papers into six groups according to 

their habitat preferences (freshwater, marine, and terrestrial) and their trophic classes 

(autotroph and heterotroph). Then, we crossed their habitat preferences and trophic 

classes to get six species group. We considered species within a same group in a single 

study as one data point in our analysis. For example, if there are multiple tree species 

used in a paper, these species were counted as one terrestrial autotroph in our database. 

Species were converted to 174 groups including 7 papers that had two or more species 

group according to species habitat preferences and trophic classes. The most common 

studied species in our dataset are terrestrial heterotrophs (44.2 % of all reported species 

group entities) followed by terrestrial autotrophs (34.5 % of all reported species group 

entities) and freshwater heterotrophs, marine heterotrophs, and marine autotrophs (6.9 % 

of all reported species group entities) (Fig. A.4.5a). Among terrestrial heterotrophs, 

SDMs are the most common method for defining species range through time followed by 
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observational studies and grid-based mapping (Fig. A.4.5b). SDM studies are also the 

most common method for terrestrial autotrophs. Our findings suggest that the applied 

method for measuring species range shift can be related to the habitat preferences of 

studied species. Such that, all method classes were applied for terrestrial heterotrophs and 

autotrophs; however, marine and freshwater species’ range shift is measured more often 

by changes in range size (Fig. A.4.5c-d-e). Moreover, there are a higher number of 

studies for terrestrial species than marine or freshwater species; this tendency is likely a 

result of the open access availability of species datasets for analysis. More terrestrial 

species data is available than marine or freshwater species. 
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Figure A.4.1 The combination of time frames of studies retained in our literature review. 

Far past represents time spans earlier than the 20th century (e.g., last glacial maxima). 

Past time includes years between the year 1900 and the current time. Here, current 

represents the reference year that is subject to each studies' definition. Simulation year is 

the time interval that is not bound with the calendar years. 
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Figure A.4.2 Temporal projections of the studies. a) The proportional distribution of 

temporal projections among all studies, methods and metrics observed in our literature 

review. b) The proportional distribution of temporal projections among metrics measuring 

range shifts. c) The proportional distribution of temporal projections among each method 

for defining species ranges. d) The proportional distribution of temporal projections 

among each method for defining species ranges. e) The proportional distribution of 

temporal projections among each method for defining species ranges. See text for the 

definitions of time projection groups. 
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Figure A.4.3 Spatial extents of the studies retained in our literature review. The sizes of 

the discs are proportional to the ratio of the number of papers in each extent class to the 

total number of papers in the final set. The discs are 50 times magnitude of the ratio. a) 

The proportional distribution of used spatial extents among all studies. b) The 

proportional distribution of spatial extents among metrics measuring range shift; top: 

changes in range limits, middle: change in range size, bottom: changes in probability or 

suitability of occurrence c) The proportional distribution of spatial extents among studies 

measuring changes in range limits and across methods for defining species ranges. d) The 

proportional distribution of spatial extents among studies measuring changes in range size 

and across methods for defining species ranges. e) The proportional distribution of spatial 

extents among studies measuring changes in probability or suitability of occurrence and 

across methods for defining species ranges. 
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Figure A.4.4 Spatial resolutions of the studies retained in our literature review. Spatial 

resolution is shown as log10 scale of a grid size (km2). a) The proportional distribution of 

spatial resolutions among all studies. b) The proportional distribution of spatial 

resolutions among metrics measuring range shift; top: changes in range limits, middle: 

change in range size, bottom: changes in probability or suitability of occurrence c) The 

proportional distribution of spatial resolutions among studies measuring changes in range 

limits and across methods for defining species ranges. d) The proportional distribution of 

spatial resolutions among studies measuring changes in range size and across methods for 

defining species ranges. e) The proportional distribution of spatial resolutions among 

studies measuring changes in probability or suitability of occurrence and across methods 

for defining species ranges. 
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Figure A.4.5 Studied species’ habitat preferences and trophic classes. Each species is 

classified according to its trophic class (autotroph or heterotroph), and habitat preferences 

into three categories: terrestrial, freshwater, and marine. a) The proportional distribution 

of species group among all studies. b) The proportional distribution of species group 

among metrics measuring range shift; top: changes in range limits, middle: change in 

range size, bottom: changes in probability or suitability of occurrence c) The proportional 

distribution of species group among studies measuring changes in range limits and across 

methods for defining species ranges. d) The proportional distribution of species group 

among studies measuring changes in range size and across methods for defining species 

ranges. e) The proportional distribution of species group among studies measuring 

changes in probability or suitability of occurrence and across methods for defining 

species ranges. 
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APPENDIX B  

Appendices for Chapter 3: An empirical test of the relative and combined 

effects of land-cover and climate change on local colonization and extinction 

Appendix B.1. Survey effort analysis 

Survey effort is usually expressed by the total time spent in an area during a 

sampling season or period. It is expected to see an increase in the total length of visits as 

the total number of visits is increased. Instead of the reported effort (i.e., hours), we used 

the difference in the number of total visits during the 5-year period of an atlas of the two 

atlases as a covariant in all models for testing the climate and land-cover change effects 

on explaining colonization and extinction events of species (Fig. B.1.1). This approach 

gave us the opportunity to use all observations in the datasets. 
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Figure B.1.1 Spatial patterns of the difference in the number of visits (i.e., survey effort) 

in each grid between the atlas periods. 
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Appendix B.2. Different approaches to calculate climate change variables 

Here, we compare our approach to calculating climate change to alternative 

approaches. We calculated mean values of winter temperature and winter precipitation 

between 1970-1985 and 1990-2005 in each grid, and then calculated the difference 

between these two periods in each grid (Fig. B.2.1, red points). We aimed to capture not 

only changes in climatic conditions but also climatic trends by calculating the average 

conditions over a long period. We also tested two different approaches to calculate 

changes in climatic conditions. First, we calculated the mean winter temperature, mean 

summer temperature, and winter precipitation in each grid by only including years 

between 1970-1985 and 1990-2005. These two periods covered same number of grids but 

ended in the last year of each atlas (Fig. B.2.1, green points). Secondly, we used climate 

data covering 1950 to 2013 to build the linear models of mean winter temperature, mean 

summer temperature, and winter precipitation in each grid. We then used these linear 

models to predict annual values OBBA years (1981-1985) and (2001-2005), and 

calculated the difference between OBBAs (Fig. B.2.1, blue points). Our approach (1975-

1990 – 1995-2010) and stopping at final year of each OBBA (1970-1985 and 1990-2005) 

showed a very similar pattern. Only the western part of our study area (left side of the 

graph panel) showed lower values of changes in mean winter temperature in our approach 

compared to the second approach. The linear modelling approach underestimated mean 

winter temperature changes. For winter precipitation change, every approach showed a 
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high variability among grids, probably because precipitation is always a difficult variable 

to measure or model. Overall, adding recent years did not cause a bias towards having a 

higher magnitude of changes in climatic condition. 
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Figure B.2.1 Changes in (a) mean winter temperature, (b) mean summer temperature, and 

(c) winter precipitation at each grid for three different climate change scenarios (see text 

for details). 
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Appendix B.3. Spatial autocorrelation analysis of environmental variables 

There is evidence that land-use and climate change can possess similar patterns of 

spatial autocorrelation. For example, Boakes et al. (2009) showed the global pattern of 

land-use change has a clumped pattern in which the neighboring area of a degraded land 

is more vulnerable to change than an intact area. In the boreal forest, forest cutblocks will 

not occur unless there are roads to access these areas for cutting. As such, we expect some 

clustering in the human footprint in our study region. We tested the spatial autocorrelation 

of environmental variables by calculation Moran’s I values. We used the same 

neighbourhood parameters to create a spatial weight matrix by using contiguity 

neighbours of all sampling units (i.e., grids). Then we plotted the correlograms at 10 km 

discrete distance classes (Fig. B.3.1). Below we can see the spatial pattern of Moran’s I 

values of changes in net primary productivity (Fig.B.3.1d) is more similar to those of our 

climate variables (Fig.B.3.1a ,b,c) than spatial patterns in land-cover change 

(Fig.B.3.1e,f). In the end, understanding patterns in land-use vs climate change is a 

challenge faced by any study attempting to look at the relative and combined impacts of 

multiple human stressors. Similar to our approach, Frishkoff et al. (2016), Radinger et al. 

(2016), and Tayleur et al. (2015) are some recent examples which used a grid or an 

enclosed area system to estimate the effects of climate and land-use or land-cover on 

species occurrences or distribution changes. 
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Figure B.3.1 Correlogram of spatial dependence in environmental variables a) mWT= 

changes in mean winter temperature, b) WP= changes in winter precipitation, c) mST= 

changes in mean summer temperature, d) NPP=Changes in net primary productivity, e) 

%LCC = physical land-cover change in grids , e) %LCCb = physical land-cover change in 

20 km buffer area at 10 km discrete distance classes. Red dot shows the first distance 

where Moran’s I value equals to 0 (i.e., the distance where no negative or positive spatial 

autocorrelation is observed). The spatial distribution of high values and/or low values in 

the dataset is more spatially clustered than would be expected if underlying spatial 

processes were random. 
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Appendix B.4. Spatial autocorrelation analysis of model residuals 

We used the fitted models' residuals to calculate Moran's I values to test for 

residual spatial autocorrelation in our data. First, we included any grid that shared a 

boundary or corner with a grid (queen type neighbor) in the neighborhood for that grid. 

Then, we created a spatial weight matrix by using contiguity neighbours with row-

standardised weights (style W). 

We used a Moran’s I test for each species’ fitted colonization and extinction 

model’s residual to test for a correlation between the residual value and the spatial lag of 

the residual value by averaging all the values of model residuals for the neighbouring 

grids. For the global Moran’s I statistic, the null hypothesis (I0) states that the spatial 

distribution of values (top models’ residuals) is randomly distributed in our study area. 

The alternative hypothesis is set as “greater”, i.e., H1: I > I0. Moran’s I statistic ranges 

from -1 (strong negative spatial autocorrelation) to +1 (strong positive spatial 

autocorrelation), and values that are around zero are considered to have no spatial 

autocorrelation. 

We found that only 1 (out of 82) local extinction models (i.e., top models for 1 

species) and 10 (out of 123) local colonization models (i.e., top models for 10 species) 

have p < 0.05 for the Moran’s I statistical analysis (Fig.B.4.1). These species have 

positive Moran’s I statistics (z-score) which suggests that the spatial distribution of 
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species local colonization and extinction events is more spatially clustered than would be 

expected if underlying spatial processes were random. However, the maximum Moran’s I 

values of these species is < 0.16 suggesting that the possible spatial autocorrelation of 

these species occurrence patterns are not strong. 

 

Figure B.4.1 The Moran’s I statistic of the fitted a) local colonization and b) local 

extinction models' residuals for each species are shown as black dots when p > 0.05 (i.e., 

where we cannot reject the null hypothesis). The red crossed black dots show cases when 

p < 0.05.   
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Appendix B.5. Distribution of R2 among the top local colonization and 

extinction models 

The median Nagelkerke’s R2 value of top local colonization models of all species 

was 0.15 ± 0.06 (Fig. B.5.1a). Models in the land-cover change class explained the 

highest amount of variation in local colonization (median Nagelkerke’s R2 = 0.17) 

followed by models in the combined model class (median Nagelkerke’s R2=0.16) and 

models in the climate change model class (median Nagelkerke’s R2=0.13) (Fig. B.5.1a). 

American Crow’s top model (ωAIC=0.84) had the highest Nagelkerke’s R2 (0.32) 

whereas White-winged Crossbill’s top model (ωAIC=0.7) had the lowest Nagelkerke’s R2 

(0.02). These models only had changes in winter precipitation as a predictor. 

The median Nagelkerke’s R2 value of top extinction models for all species was 

0.16 ± 0.08 (Fig. B.5.1b). Models in the combined model class explained the highest 

amount of variation in local extinction (median Nagelkerke’s R2 = 0.23) followed by 

models in the climate change (median Nagelkerke’s R2=0.19) and land-cover (median 

Nagelkerke’s R2=0.9) model classes. The top model with the highest Nagelkerke’s R2 

(0.41) belongs to Black-throated Green Warbler and this model included changes in mean 

summer temperature (ωAIC=0.7). The top model of Osprey only included the intercept 

term (ωAIC=0.7) and had the lowest Nagelkerke’s R2 (~ 0) (Fig. B.5.1b). 
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Figure B.5.1 Distribution of top model’s (∆AIC=0) Nagelkerke's R2 among model classes 

of (a) local colonization models and (b) local extinction models. For example, for local 

colonization models, 7 models had Nagelkerke’s R2 = 0.2. Of these models, 1 was from 

the intercept-only model class, 1 was from the land-cover change model class, 2 were 

from the climate change model class, and 3 were from combined model class. 
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Appendix B.6. Additional figures and tables 
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Figure B.6.1 Spatial patterns of variables used in the analysis; a) ∆mWT= changes in 

mean winter temperature, b) ∆WP= changes in winter precipitation, c) ∆mST= changes in 

mean summer temperature, d) ∆NPP=Changes in net primary productivity, e) %LCC = 

physical land-cover change in grids, and f) %LCCb = physical land-cover change in 20 

km buffer area. 
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Figure B.6.2 The distribution of species (a) among model classes when models are 

defined by 0 ≤∆AIC≤ 2, (b) distribution of variables included in top colonization models 

for each model class top models (0 ≤∆AIC≤ 2), (c) distribution of variables included in 

top extinction models for each model class top models (0 ≤∆AIC≤ 2). Specifically, if 
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intercept is within 0 ≤∆AIC≤ 2 then the intercept model is considered the top ranked 

model, if survey effort model is within 0 ≤∆AIC≤ 2 and the intercept is not within 0 

≤∆AIC≤ 2 then the survey effort model is considered the top ranked model. If other 

models (i.e., land-cover change, climate change, combined) are within 0 ≤∆AIC≤ 2 and 

the intercept or survey effort models are not within 0 ≤∆AIC≤ 2 then these other models 

are considered as top models. %LCC = physical land-cover change in grids, %LCCb = 

physical land-cover change in 20 km buffer area, ∆NPP=Changes in net primary 

productivity, mWT= changes in mean winter temperature, ∆mST= changes in mean 

summer temperature, and ∆WP= changes in winter precipitation. 
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Figure B.6.3 The distribution of species’ top models (∆AIC=0) among species range 

classification for local (a) colonization models and (b) extinction models. Full coverage 

are species that do not have north or south limits within our study area, Northern limited 

are species with their northern limit within our study area and Southern limit are species 

with their southern limit in our study area. 
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Figure B.6.4 Distribution of the effect of survey effort on the odds ratio of local 

colonization and extinction models. The dashed line (odds ratio = 1) represents a 

qualitative cut-off in variable effects. When odds ratio >1, the variable has a positive 

association with the outcome and when the odds ratio < 1, the variable has a negative 

association with the outcome. Each grey point shows a single species’ odds ratio for a 

variable. Blue points show the median odds ratio for a variable. The points are jittered 

along the x-axis for presentation purposes.   
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Figure B.6.5 The odds ratio of each variable among species range classification (i.e., 

northern limit, southern limit, not at limit in study area) for local colonization and 

extinction models across all species. The dashed line (odds ratio = 1) represents a 

qualitative cut-off in variable effects. When odds ratio >1, the variable has a positive 

association with the outcome and when the odds ratio < 1, the variable has a negative 

association with the outcome. Each grey point shows a single species’ odds ratio for a 

variable. Blue points show the median odds ratio for a variable. The points are jittered 
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along the x-axis for presentation purposes. %LCC= physical land-cover change in grids, 

%LCCb = physical land-cover change in 20 km buffer area, ∆NPP = changes in net 

primary productivity, ∆mWT= changes in mean temperature of coldest quarter (i.e., 

winter), ∆mST = changes in mean temperature of wettest quarter (i.e., summer), and 

∆WP= changes in precipitation of driest (i.e., winter) quarter.   
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Figure B.6.6 The relationship between species traits and species colonization and 

extinction rate. Each point shows a single species’ colonization or extinction rate. Blue 

lines show the median colonization and extinction rate of a trait group in the a) and d), 

and the linear model fit in e) and f).   
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Table B.6.1 The list of all variables considered in the study. We ran a VIF analysis 

(multicollinearity among covariates) by using a VIF threshold lower than 3. After each 

run, the variable that has the highest VIF value is excluded until all remaining variables 

have a VIF value lower than 3. Then we selected 6 variables to include into our models 

(see methods). 
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Variable 

Did it pass VIF <3 test? 
Was it in the final variable 

list? 

Variable resolution Variable resolution 

Grid 

Buffer area 

Grid 

Buffer area 

5 

km 

10 

km 

15 

km 

20 

km 

5 

km 

10 

km 

15 

km 

20 

km 

Landmass Yes NA NA NA NA No NA NA NA NA 

Survey effort Yes NA NA NA NA Yes NA NA NA NA 

Annual mean temperature No No No No No No No No No No 

Mean diurnal range Yes No No No No No No No No No 

Isothermality No No No No No No No No No No 

Temperature seasonality No No No No No No No No No No 

Max temperature of 

warmest period 
Yes No No No No No No No No No 

Min temperature of coldest 

period 
Yes No No No No No No No No No 

Temperature annual range No No No No No No No No No No 

Mean temperature of 

wettest quarter 
Yes No No No No Yes No No No No 

Mean temperature of driest 

quarter 
Yes No No No No No No No No No 

Mean temperature of 

warmest quarter 
No No No No No No No No No No 

Mean temperature of 

coldest quarter 
Yes No No No No Yes No No No No 

Annual precipitation No No No No No No No No No No 

Precipitation of wettest 

period 
Yes No No No No No No No No No 
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Precipitation of driest 

period 
Yes No No No No No No No No No 

Precipitation seasonality No No No No No No No No No No 

Precipitation of wettest 

quarter 
No No No No No No No No No No 

Precipitation of driest 

quarter 
Yes No No No No Yes No No No No 

Precipitation of warmest 

quarter 
No No No No No No No No No No 

Precipitation of coldest 

quarter 
No No No No No No No No No No 

Global Forest Watch 

Canada Land-cover change 

(%) 

Yes No Yes No Yes Yes No No No Yes 

Net primary productivity 

change 
Yes No No No No Yes No No No No 
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Table B.6.2 The list of all local colonization and extinction models considered in the 

analysis. %LCC= physical land-cover change in grids, %LCCb = physical land-cover 

change in 20 km buffer area, ∆NPP = changes in net primary productivity, ∆mWT= 

changes in mean temperature of coldest quarter (i.e., winter), ∆mST = changes in mean 

temperature of wettest quarter (i.e., summer), and ∆WP= changes in precipitation of driest 

(i.e., winter) quarter, SE= survey effort, k: number of parameters. 

Model Class k Variables included in the models 

Intercept 1 Intercept 

Survey effort 2 SE 

Land-cover change 3 SE+%LCC 

3 SE+∆NPP 

3 SE+%LCCb 

4 SE+%LCC +∆NPP 

4 SE+%LCC +%LCCb 

4 SE+∆NPP+%LCCb 

5 SE+%LCC +∆NPP+%LCCb 

Climate change 3 SE+∆MWT 

3 SE+∆WP 

4 SE+∆MST 

4 SE+∆MWT+∆WP 

4 SE+∆MWT+∆MST 

4 SE+∆WP+∆MST 

5 SE+∆MWT+∆WP+∆MST 

Combined (Land-cover & 

Climate) 

4 SE+%LCC +∆MWT 

4 SE+%LCC +∆WP 

4 SE+%LCC +∆MST 

4 SE+∆NPP+∆MWT 

4 SE+∆NPP+∆WP 

4 SE+∆NPP+∆MST 

4 SE+%LCCb +∆MWT 
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4 SE+%LCCb +∆WP 

4 SE+%LCCb +∆MST 

5 SE+%LCC +∆NPP+∆MWT 

5 SE+%LCC +∆NPP+∆WP 

5 SE+%LCC +∆NPP+∆MST 

5 SE+%LCC +%LCCb +∆MWT 

5 SE+%LCC +%LCCb +∆WP 

5 SE+%LCC +%LCCb +∆MST 

5 SE+%LCC +∆MWT+∆WP 

5 SE+%LCC +∆MWT+∆MST 

5 SE+%LCC +∆WP+∆MST 

5 SE+∆NPP+%LCCb +∆MWT 

5 SE+∆NPP+%LCCb +∆WP 

5 SE+∆NPP+%LCCb +∆MST 

5 SE+∆NPP+∆MWT+∆WP 

5 SE+∆NPP+∆MWT+∆MST 

5 SE+∆NPP+∆WP+∆MST 

5 SE+%LCCb +∆MWT+∆WP 

5 SE+%LCCb +∆MWT+∆MST 

5 SE+%LCCb +∆WP+∆MST 

6 SE+%LCC +∆NPP+%LCCb +∆MWT 

6 SE+%LCC +∆NPP+%LCCb +∆WP 

6 SE+%LCC +∆NPP+%LCCb +∆MST 

6 SE+%LCC +∆NPP+∆MWT+∆WP 

6 SE+%LCC +∆NPP+∆MWT+∆MST 

6 SE+%LCC +∆NPP+∆WP+∆MST 

6 SE+%LCC +%LCCb +∆MWT+∆WP 

6 SE+%LCC +%LCCb +∆MWT+∆MST 

6 SE+%LCC +%LCCb +∆WP+∆MST 

6 SE+%LCC +∆MWT+∆WP+∆MST 

6 SE+∆NPP+%LCCb +∆MWT+∆WP 

6 SE+∆NPP+%LCCb +∆MWT+∆MST 

6 SE+∆NPP+%LCCb +∆WP+∆MST 

6 SE+∆NPP+∆MWT+∆WP+∆MST 
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6 SE+%LCCb +∆MWT+∆WP+∆MST 

7 SE+%LCC +∆NPP+%LCCb +∆MWT+∆WP 

7 SE+%LCC +∆NPP+%LCCb +∆MWT+∆MST 

7 SE+%LCC +∆NPP+%LCCb +∆WP+∆MST 

7 SE+%LCC +∆NPP+∆MWT+∆WP+∆MST 

7 SE+%LCC +%LCCb +∆MWT+∆WP+∆MST 

7 SE+∆NPP+%LCCb +∆MWT+∆WP+∆MST 

8 SE+%LCC +∆NPP+%LCCb 

+∆MWT+∆WP+∆MST 
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Table B.6.3 The list of all regional colonization and extinction rate models considered in 

the analysis. 

Variables included in the models Number of parameters 

Mean Body Mass (MBM) 3 

Habitat preference 4 

Migration 4 

MBM + Habitat preference 5 

Habitat preference + Migration 6 

Habitat preference * Migration 9 

MBM + Migration 5 

MBM + Habitat preference + Migration 7 

MBM * Habitat preference * Migration 17 

Intercept 2 
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Table B.6.4 The estimated variable coefficients of colonization and extinction rate top 

models. 

Top models Variable 
Estimat

e 

Std. 

error 
t value 

Regional colonization 

rate ~ Mean Body Mass 

(MBM) + Habitat 

preference 

Intercept 0.32 0.03 9.88 

log(MBM) -0.01 0.001 -1.95 

factor(Habitat)Non-forest -0.04 0.03 -1.41 

factor(Habitat)Wetland -0.07 0.03 -2.08 

Regional extinction rate 

~ Habitat preference 

Intercept 0.42 0.02 18.52 

factor(Habitat)Non-forest 0.03 0.03 1.05 

factor(Habitat)Wetland 0.10 0.04 2.64 
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APPENIDX C  

Appendices for Chapter 4: An empirical test of the effects of climate and 

land-cover change on biodiversity through time 

Appendix C.1. Additional figures and tables 

Table C.1. List of all models used in the analysis. I, intercept term; SE, survey effort; 

∆MST, changes in mean summer temperature; ∆SP, changes in summer precipitation; 

∆MWT, changes in mean winter temperature, ∆WP, changes in winter precipitation; 

∆NPP, changes in net primary productivity; % LC, % change in physical land-cover in 

grids; % LC20, % change in physical land-cover within 20-km neighbouring areas of 

grids. 

Model Variables included 

Model 1 I 

Model 2 I + SE 

Model 3 I + ∆MST + SE 

Model 4 I + ∆SP + SE 

Model 5 I + ∆MWT + SE 

Model 6 I + ∆WP + SE 

Model 7 I + ∆NPP + SE 

Model 8 I + % LC + SE 

Model 9 I + % LC20 + SE 

Model 10 I + ∆MST + ∆SP + SE 

Model 11 I + ∆MST + ∆MWT + SE 

Model 12 I + ∆MST + ∆WP + SE 

Model 13 I + ∆MST + ∆NPP + SE 

Model 14 I + ∆MST + % LC + SE 
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Model 15 I + ∆MST + % LC20 + SE 

Model 16 I + ∆SP + ∆MWT + SE 

Model 17 I + ∆SP + ∆WP + SE 

Model 18 I + ∆SP + ∆NPP + SE 

Model 19 I + ∆SP + % LC + SE 

Model 20 I + ∆SP + % LC20 + SE 

Model 21 I + ∆MWT + ∆WP + SE 

Model 22 I + ∆MWT + ∆NPP + SE 

Model 23 I + ∆MWT + % LC + SE 

Model 24 I + ∆MWT + % LC20 + SE 

Model 25 I + ∆WP + ∆NPP + SE 

Model 26 I + ∆WP + % LC + SE 

Model 27 I + ∆WP + % LC20 + SE 

Model 28 I + ∆NPP + % LC + SE 

Model 29 I + ∆NPP + % LC20 + SE 

Model 30 I + % LC + % LC20 + SE 

Model 31 I + ∆MST + ∆SP + ∆MWT + SE 

Model 32 I + ∆MST + ∆SP + ∆WP + SE 

Model 33 I + ∆MST + ∆SP + ∆NPP + SE 

Model 34 I + ∆MST + ∆SP + % LC + SE 

Model 35 I + ∆MST + ∆SP + % LC20 + SE 

Model 36 I + ∆MST + ∆MWT + ∆WP + SE 

Model 37 I + ∆MST + ∆MWT + ∆NPP + SE 

Model 38 I + ∆MST + ∆MWT + % LC + SE 

Model 39 I + ∆MST + ∆MWT + % LC20 + SE 

Model 40 I + ∆MST + ∆WP + ∆NPP + SE 

Model 41 I + ∆MST + ∆WP + % LC + SE 

Model 42 I + ∆MST + ∆WP + % LC20 + SE 

Model 43 I + ∆MST + ∆NPP + % LC + SE 

Model 44 I + ∆MST + ∆NPP + % LC20 + SE 

Model 45 I + ∆MST + % LC + % LC20 + SE 

Model 46 I + ∆SP + ∆MWT + ∆WP + SE 

Model 47 I + ∆SP + ∆MWT + ∆NPP + SE 

Model 48 I + ∆SP + ∆MWT + % LC + SE 
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Model 49 I + ∆SP + ∆MWT + % LC20 + SE 

Model 50 I + ∆SP + ∆WP + ∆NPP + SE 

Model 51 I + ∆SP + ∆WP + % LC + SE 

Model 52 I + ∆SP + ∆WP + % LC20 + SE 

Model 53 I + ∆SP + ∆NPP + % LC + SE 

Model 54 I + ∆SP + ∆NPP + % LC20 + SE 

Model 55 I + ∆SP + % LC + % LC20 + SE 

Model 56 I + ∆MWT + ∆WP + ∆NPP + SE 

Model 57 I + ∆MWT + ∆WP + % LC + SE 

Model 58 I + ∆MWT + ∆WP + % LC20 + SE 

Model 59 I + ∆MWT + ∆NPP + % LC + SE 

Model 60 I + ∆MWT + ∆NPP + % LC20 + SE 

Model 61 I + ∆MWT + % LC + % LC20 + SE 

Model 62 I + ∆WP + ∆NPP + % LC + SE 

Model 63 I + ∆WP + ∆NPP + % LC20 + SE 

Model 64 I + ∆WP + % LC + % LC20 + SE 

Model 65 I + ∆NPP + % LC + % LC20 + SE 

Model 66 I + ∆MST + ∆SP + ∆MWT + ∆WP + SE 

Model 67 I + ∆MST + ∆SP + ∆MWT + ∆NPP + SE 

Model 68 I + ∆MST + ∆SP + ∆MWT + % LC + SE 

Model 69 I + ∆MST + ∆SP + ∆MWT + % LC20 + SE 

Model 70 I + ∆MST + ∆SP + ∆WP + ∆NPP + SE 

Model 71 I + ∆MST + ∆SP + ∆WP + % LC + SE 

Model 72 I + ∆MST + ∆SP + ∆WP + % LC20 + SE 

Model 73 I + ∆MST + ∆SP + ∆NPP + % LC + SE 

Model 74 I + ∆MST + ∆SP + ∆NPP + % LC20 + SE 

Model 75 I + ∆MST + ∆SP + % LC + % LC20 + SE 

Model 76 I + ∆MST + ∆MWT + ∆WP + ∆NPP + SE 

Model 77 I + ∆MST + ∆MWT + ∆WP + % LC + SE 

Model 78 I + ∆MST + ∆MWT + ∆WP + % LC20 + SE 

Model 79 I + ∆MST + ∆MWT + ∆NPP + % LC + SE 

Model 80 I + ∆MST + ∆MWT + ∆NPP + % LC20 + SE 

Model 81 I + ∆MST + ∆MWT + % LC + % LC20 + SE 

Model 82 I + ∆MST + ∆WP + ∆NPP + % LC + SE 
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Model 83 I + ∆MST + ∆WP + ∆NPP + % LC20 + SE 

Model 84 I + ∆MST + ∆WP + % LC + % LC20 + SE 

Model 85 I + ∆MST + ∆NPP + % LC + % LC20 + SE 

Model 86 I + ∆SP + ∆MWT + ∆WP + ∆NPP + SE 

Model 87 I + ∆SP + ∆MWT + ∆WP + % LC + SE 

Model 88 I + ∆SP + ∆MWT + ∆WP + % LC20 + SE 

Model 89 I + ∆SP + ∆MWT + ∆NPP + % LC + SE 

Model 90 I + ∆SP + ∆MWT + ∆NPP + % LC20 + SE 

Model 91 I + ∆SP + ∆MWT + % LC + % LC20 + SE 

Model 92 I + ∆SP + ∆WP + ∆NPP + % LC + SE 

Model 93 I + ∆SP + ∆WP + ∆NPP + % LC20 + SE 

Model 94 I + ∆SP + ∆WP + % LC + % LC20 + SE 

Model 95 I + ∆SP + ∆NPP + % LC + % LC20 + SE 

Model 96 I + ∆MWT + ∆WP + ∆NPP + % LC + SE 

Model 97 I + ∆MWT + ∆WP + ∆NPP + % LC20 + SE 

Model 98 I + ∆MWT + ∆WP + % LC + % LC20 + SE 

Model 99 I + ∆MWT + ∆NPP + % LC + % LC20 + SE 

Model 100 I + ∆WP + ∆NPP + % LC + % LC20 + SE 

Model 101 I + ∆MST + ∆SP + ∆MWT + ∆WP + ∆NPP + SE 

Model 102 I + ∆MST + ∆SP + ∆MWT + ∆WP + % LC + SE 

Model 103 I + ∆MST + ∆SP + ∆MWT + ∆WP + % LC20 + SE 

Model 104 I + ∆MST + ∆SP + ∆MWT + ∆NPP + % LC + SE 

Model 105 I + ∆MST + ∆SP + ∆MWT + ∆NPP + % LC20 + SE 

Model 106 I + ∆MST + ∆SP + ∆MWT + % LC + % LC20 + SE 

Model 107 I + ∆MST + ∆SP + ∆WP + ∆NPP + % LC + SE 

Model 108 I + ∆MST + ∆SP + ∆WP + ∆NPP + % LC20 + SE 

Model 109 I + ∆MST + ∆SP + ∆WP + % LC + % LC20 + SE 

Model 110 I + ∆MST + ∆SP + ∆NPP + % LC + % LC20 + SE 

Model 111 I + ∆MST + ∆MWT + ∆WP + ∆NPP + % LC + SE 

Model 112 I + ∆MST + ∆MWT + ∆WP + ∆NPP + % LC20 + SE 

Model 113 I + ∆MST + ∆MWT + ∆WP + % LC + % LC20 + SE 

Model 114 I + ∆MST + ∆MWT + ∆NPP + % LC + % LC20 + SE 

Model 115 I + ∆MST + ∆WP + ∆NPP + % LC + % LC20 + SE 

Model 116 I + ∆SP + ∆MWT + ∆WP + ∆NPP + % LC + SE 
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Model 117 I + ∆SP + ∆MWT + ∆WP + ∆NPP + % LC20 + SE 

Model 118 I + ∆SP + ∆MWT + ∆WP + % LC + % LC20 + SE 

Model 119 I + ∆SP + ∆MWT + ∆NPP + % LC + % LC20 + SE 

Model 120 I + ∆SP + ∆WP + ∆NPP + % LC + % LC20 + SE 

Model 121 I + ∆MWT + ∆WP + ∆NPP + % LC + % LC20 + SE 

Model 122 I + ∆MST + ∆SP + ∆MWT + ∆WP + ∆NPP + % LC + SE 

Model 123 I + ∆MST + ∆SP + ∆MWT + ∆WP + ∆NPP + % LC20 + SE 

Model 124 I + ∆MST + ∆SP + ∆MWT + ∆WP + % LC + % LC20 + SE 

Model 125 I + ∆MST + ∆SP + ∆MWT + ∆NPP + % LC + % LC20 + SE 

Model 126 I + ∆MST + ∆SP + ∆WP + ∆NPP + % LC + % LC20 + SE 

Model 127 I + ∆MST + ∆MWT + ∆WP + ∆NPP + % LC + % LC20 + SE 

Model 128 I + ∆SP + ∆MWT + ∆WP + ∆NPP + % LC + % LC20 + SE 

Model 129 I + ∆MST + ∆SP + ∆MWT + ∆WP + ∆NPP + % LC + % LC20 + SE 

 


