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Abstract 

Ethanol is an attractive fuel for direct alcohol fuel cells (DAFCs). In comparison with other 

organic fuels, ethanol has a high energy density. Therefore, direct ethanol fuel cells (DEFCs) are 

considered to be highly attractive power sources for electronic devices and vehicles. In addition, 

ethanol can be oxidized in an ethanol electrolysis cell (EEC) to produce hydrogen for use in fuel 

cells. Although ethanol has a high energy density and DEFCs have a high theoretical efficiency 

(98%), these are based on complete oxidation of ethanol to CO2, while the main products from 

DEFCs and EECs are acetic acid and acetaldehyde. A good understanding of what happens during 

ethanol oxidation in fuel cell hardware is therefore a crucial step in the evolution of these 

technologies. It is particularly important in the development of new catalysts to improve cell 

efficiencies and performances by facilitating the complete oxidation of ethanol.  

The methods reported here provide information on the efficiency and product distribution 

for ethanol oxidation in a DEFC or EEC. They are based on polymer electrolyte membrane (PEM) 

fuel cell technology. In comparison with those reported in the literature, our methodologies are 

shown to have advantages over them by detecting the fuel itself and reaction products from both 

the anode and cathode exhausts. The amounts of ethanol consumed and acetic acid and 

acetaldehyde produced were determined by proton NMR spectroscopy while CO2 was measured 

with a non-dispersive infrared CO2 monitor. The efficiencies of these cells are dependent on the 

cell potential, crossover of ethanol, and stoichiometry of the ethanol oxidation reaction (i.e. the 

average number of electrons transferred per ethanol molecule). The stoichiometry of the EOR 

(ethanol oxidation reaction) was determined by using different methods in this work: an 

electrochemical method, analysis of the amount of ethanol consumed (∆C) and from the product 
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distribution (faradaic and chemical). It was found that the results from these methods were in a 

good agreement.  

In addition, the effects of fuel and product crossover were closely examined. It was shown 

that analysis of only the anode exhaust solution leads to an underestimation of ethanol and products 

due to crossover through the membrane to the cathode. To obtain accurate product distributions, 

the anode and cathode exhausts were combined. In addition, the chemical reaction between ethanol 

and oxygen that occurs in a DEFC was avoided by making measurement in an EEC with N2 gas at 

the cathode.  

The stoichiometry, efficiency, and product distribution for ethanol electrolysis in fuel cell 

hardware has been determined at 80 °C for various anodes prepared with commercial Pt/C, PtRu/C, 

and PtSn/C catalysts. Also, synergetic effects between these catalysts were studied by using mixed 

and bilayer electrodes. It was found that bilayer electrodes increased the overall efficiency of the 

cell by increasing the faradaic efficiency while maintaining high potential efficiency.   

An octahedral PtNi catalyst was prepared by using a literature method and tested in our 

system. In comparison to a Pt, this catalyst was shown to increase selectivity towards complete 

oxidation (to carbon dioxide) at low potentials and thereby increase efficiency. These results are 

contrary to those reported in the literature for this catalyst in a conventional electrochemical cell, 

and demonstrate the importance of the new methodologies in the evaluation and study of new 

catalysts for ethanol oxidation.  
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1. Introduction  

1.1 Introduction to Fuel Cells 

Fossil fuels are currently the primary source for the world energy supply, the combustion of 

which produces a huge amount of greenhouse gases (mainly CO2). These greenhouse gases cause 

environmental problems, particularly global warming and resulting climate change. Meanwhile, 

the dwindling sources as well as the significant increase in the rate of annual consumption of fossil 

fuels lead to an increasing depletion rate. Thus, some of the most important future challenges have 

been identified to be global warming, depletion of fossil fuels, and volatile prices of crude oil.1–5 

Therefore, it is necessary to develop alternative types of affordable, renewable and cleaner power 

sources with low CO2 emissions. Electro-oxidation of some low molecular weight molecules such 

as hydrogen, formic acid, methanol and ethanol in fuel cells can be considered as good alternative 

sources of power.6–13  

A fuel cell is an electrochemical device that converts the chemical energy of a fuel into 

electricity. They are considered attractive power sources with much potential for electronic devices 

and vehicles. The hydrogen fuel cell has been studied for a long time but the major obstacles that 

limit the commercialization of the hydrogen fuel cells are the production, storage and 

transportation of hydrogen. Alternative fuels have been investigated and proposed. The most 

common and studied fuels are liquids such as methanol and ethanol, which can be used as a fuel 

in fuel cells instead of hydrogen.  

In general, the principle of the fuel cell was discovered accidently by Sir William Grove in 

1839. In an electrolyte solution, two platinum electrodes were connected directly instead of using 

a battery to connect them during electrolysis of water. Thus, the polarity was reversed and a small 
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amount of current was produced by combining hydrogen and oxygen at the surface of electrode, 

which later became known as a hydrogen fuel cell.14  

A proper understanding of the fuel cell principles developed at the beginning of second half of 

the 20th century. Before that there were only a few studies and the development of fuel cells was 

slow. However, in the 1959, Francis Thomas Bacon, developed a new hydrogen fuel cell by using 

nickel as electrodes and alkaline electrolytes.14 In the early 1960s, the first application of fuel cells 

was achieved successfully with space technology and was more convenient than using batteries. 

The NASA space program successfully used hydrogen as a fuel in polymer electrolyte membrane 

fuel cells (PEMFCs) and alkaline fuel cells (AFCs) to provide electricity, heat and pure water for 

space shuttle applications and vehicles.15–18 In the past, the development of fuel cells was restricted 

because of the limited knowledge of materials and the high cost of fuel cells.19 

In recent years, fuel cells have been of great interest because they are considered as a renewable 

source of power with potentially electrical efficiencies, are much more safe and have longer 

lifetimes compared with other power sources (like batteries).11,20,21 Interest in them has increased 

drastically, especially when many institutions, companies and groups around the world have 

started to focus on overcoming the challenges of commercializing fuel cells. Many companies 

throughout the world like Toyota, Honda, Mercedes and Hyundai have developed proton exchange 

membrane fuel cells as a power source by using hydrogen and methanol as fuels instead of using 

the internal combustion engine in their cars.22 High efficiency commercial fuel cells have not yet 

been manufactured, but fuel cells are increasingly being used in the public and private sectors. 

They are attractive power sources for transportation, electronic devices such as mobile phones and 

laptop computers as well as to generate power for lighting and heating.20,21  
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Important parameters should be taken into consideration when studying fuel cells such as 

energy and power density. Fuels such as hydrogen, methanol and ethanol can be assessed and 

compared based on these parameters. The energy density can be defined as the amount of energy 

stored in the fuel cell system per unit volume or mass. The power density is the amount of power 

produced from the fuel cell per unit volume, mass or area, where power is in units of watts (W) 

and is defined as the amount of energy produced per unit time (Joule/s).  The theoretical energy 

mass density (De) and the power density (Dp) can be calculated by eqs. 1.1 and 1.2, respectively. 

                                                              𝐷𝑒 =  − 
∆𝐺°

3600 𝑀
                                                                   (1.1) 

                                                             𝐷𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝐸𝑐𝑒𝑙𝑙                                           (1.2) 

Where M = is the molar mass of the fuel (46.07 g/mol for ethanol).  

1.2 Proton Exchange Membrane Fuel Cells (PEMFCs) 

1.2.1 Introduction 

Many types of fuel cells are available throughout the world, typically categorized by the type 

of electrolyte material. The catalysts, operating temperature and even the electrochemical reaction 

in the fuel cell is determined by the type of electrolyte. Furthermore, these different types of fuel 

cell have different performances (power outputs), operating temperatures, efficiencies and 

applications.20,21,23–25 Recently, solid polymer electrolyte membrane fuel cells have become a 

dominate type due to the convenience, high conductivity, and thermal, mechanical and chemical 

stability of the electrolyte. In particular, proton exchange membrane fuel cells (PEMFCs; Figure 

1.1) are the most developed type of polymer electrolyte membrane fuel cell.11,21,22,26,27 
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PEMFCs are being widely used for transport applications because of their high power density, 

high efficiency, durability, low weight, quick start-up and low operating temperature.21,22,26,27 The 

central part of a PEMFC is composed of a membrane and electrode assembly (MEA), which 

consists of two electrodes and a solid electrolyte (proton exchange membrane), as shown in Figure 

1.2. The solid electrolyte serves as separator between the electrodes and between the fuel and 

oxidant, and as bridge for proton transport from the anode to the cathode. The fuel is oxidized 

electrochemically at the anode to produce electrons and protons. The electrons travel through the 

external circuit to the cathode to generate power while the protons (H+) migrate through the 

membrane to the cathode to complete the electrochemical reaction via reduction of oxygen.  

 

Figure 1.1. Schematic diagram of a proton exchange membrane fuel cell. 
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Figure 1.2. Schematic diagram of a membrane electrode assembly (MEA). 

The first-generation of fuel cells used hydrogen as a fuel and oxygen (air) as an oxidant, which 

provides a simple reaction with a high thermodynamic standard potential (1.229 V) and a higher 

theoretical energy density (33.3 kWh kg-1). Over the past years, PEM-type hydrogen fuel cells 

(HFCs) have been used in many applications including for stationary power and transportation.28–

33 Many companies have manufactured vehicles operating with HFCs include buses, boats, 

motorcycles and bicycles. Countries including the USA, Canada, Germany, Brazil, China, United 

Kingdom and Japan have significantly used HFCs.34–38 

In HFCs, hydrogen gas is oxidized at the anode (eq. 1.3) to generate electrons and hydrogen 

ions.  

H2 → 2 H+ + 2 e-                                                    Eº
anode = 0.000 V                                    (1.3) 

Whereas, oxygen is reduced at the cathode to produce water according to eq. 1.4. 

O2 + 4 H+ + 4 e- → 2 H2O                                      Eº
cathode = 1.229 V                                  (1.4) 
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Hence, the overall reaction in HFCs is given by eq. 1.5. 

H2 + O2 → 2 H2O                                                    Eº
cell = 1.229 V                                       (1.5) 

where Eº is the standard electrode potentials versus the standard hydrogen (reference) electrode 

(SHE). The standard cell potential (Eº
cell) is Eº

cell = Eº
cathode - E

º
anode. 

The final product from HFCs is water which means no CO2 emission. Since HFCs are 

commercially available, high-pure hydrogen is required in order to preserve a proper 

electrochemical performance and efficiency.39 The production of pure hydrogen is one of the main 

obstacles to widespread use HFCs because there is no natural resource of hydrogen and production 

costs are high. Hydrogen is mainly produced by electrolysis or by steam reforming of alcohols, 

gasoline and hydrocarbons such as natural gas and coal. The gasoline, natural gas and coal 

resources would increase the greenhouse effect by producing high CO2 emissions.  

The kinetics of the hydrogen oxidation reaction (HOR) are very fast which means that the 

reaction is controlled only by mass transfer limitations.19 However, the production of hydrogen by 

electrolysis of water has low efficiency.40 Whereas, the hydrogen produced from the electrolysis 

and steam reforming methods of alcohols, gasoline and hydrocarbons will contain carbon 

monoxide (CO) and this decreases the performance and efficiency of HFCs. This can be attributed 

to the poisoning effect of CO; even small amount of CO block the active sites of catalysts 

(normally Pt or Pt-based catalysts) and thus prevent the adsorption of hydrogen on the catalyst 

surface.19  

Other obstacles that limit the applications of HFCs are high hydrogen flammability and 

hydrogen storage, which are serious challenge for transportation.41,42 Considerable effort has been 

made to develop new fuel cells that have a similar design as HFCs but operate with other kinds of 

fuel, as described in Section 1.3.  
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1.2.2 Proton Exchange Membranes (PEM) 

The proton exchange membrane (PEM) is an important part of PEMFCs, as mentioned 

above. The most common acidic PEM used in PEMFCs is Nafion®, which is a types of 

perfluorosulfonic acid membrane, developed at the end of 1960s by DuPont.43,44 The Nafion 

polymer consists of a hydrophobic backbone (polytetrafluoroethylene, PTFE) which maintains the 

stability of the membrane and short perfluorinated side chains that terminate in a hydrophilic 

sulfonic acid groups (-SO3H). Figure 1.3 shows the general structure of Nafion. The high 

electronegativity of the acid groups in the presence of water provides a good medium for high 

proton conductivity. The operating temperature of Nafion membrane fuel cells should not normally 

exceed 100 °C. The limited operating temperature of these types of cells can be explained as 

follows: for high proton conductivity, the Nafion membrane requires a high content of water. The 

migration of protons through the PEM is due to the dissociation of the terminal sulfonic acid groups 

in the presence of water.45,46 Increasing the temperature to more than 100 °C can lead to 

dehydration, causing the proton conductivity to decrease significantly.   

 

Figure 1.3. The general structure of Nafion. 

Improving the performance and increasing the power density and efficiency of fuel cells 

can be achieved by enhancing the proton conductivity, stability and electrical insulation of the 

Nafion membranes as well as preventing crossover of fuel and oxidant through the membrane.47–



9 
 

50 However, the major drawbacks of PEMFCs are low operating efficiency and high cost. 

Consequently, further development and research are required to overcome these drawbacks and 

then increase the efficiency. Recently, Nafion membranes have been modified with  

phosphotungstic acid (PWA) to form PWA-Nafion  composite membranes, which generally 

decrease crossover and increase the proton conductivity compared with unmodified Nafion, 

resulting in a high performance of DEFCs.51  

1.2.3 Electrodes 

A PEMFC electrode is mainly composed of two layers, a diffusion layer and a catalyst layer. 

The catalyst layers are normally made up of a Pt or Pt based catalyst while the diffusion layers are 

comprised of two layers, a support layer (also called baking layer) (usually carbon fiber paper, 

glassy carbon or carbon cloth) and a micro-porous layer.48,50 The latter consists of a mixture of a 

hydrophobic polymer and carbon powder. The hydrophobic polymer (usually PTFE) allows 

reactive species access to the catalyst and inhibits water condensation. Generally, the electrodes 

(anode and cathode) are made from a high surface area carbon-based material that is covered with 

a layer of catalyst nanoparticles which is active to oxidize the fuel or reduce the oxidant. The 

catalyst (metals) should be mixed with Nafion solution and carbon powder in the presence of 

solvent (normally isopropanol and water) before being applied to the diffusion layer. The Nafion 

and carbon are used to enhance the ionic and electronic conductivities of the catalyst layer, 

respectively. Platinum is the most common catalyst that has been used for both the anode and the 

cathode in PEMFCs because of its high activity compared with other metals.  
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1.2.4 Oxygen Reduction Reaction (ORR) 

Oxygen (in air) is usually used as the oxidant at the cathode in fuel cells. It combines with 

electrons and protons from the anode to form water with a high thermodynamic potential (1.229 

V). However, the oxygen reduction reaction (ORR) is complex and has very slow (sluggish) 

kinetics relative to the hydrogen oxidation reaction, resulting a significant potential loss which 

limits the performance of PEMFCs.52 The ORR can occur through two pathways according to 

equations 1.6 and 1.7: 

O2 + 4 H+ + 4 e- → 2 H2O                                                                                              (1.6) 

O2 + 2 H+ + 2 e- → H2O2                                                                                                (1.7) 

The first equation represents the full reduction and is referred to as the direct four electron 

pathway. Since the cathode potential affects the standard cell potential (Eº
cell = Eº

cathode - E
º
anode), 

the first pathway is more favored and efficient because of its high thermodynamic standard 

potential (1.229 V). Whereas the second reaction (Eq. 1.7), referred to as partial reduction (indirect 

two-electron pathway), which is unfavored and less efficient with a lower thermodynamic standard 

potential (0.67 V). Furthermore, the second pathway involves hydrogen peroxide which has 

detrimental effect on the electrode and membrane.52 The most widely used electrocatalyst is 

platinum and the crystalline facets and particles shape of Pt have a significant effect on the 

ORR.53,54 A possible reaction mechanism for the full oxygen reduction is as follows:55 

O2 + Pt → Pt-O2                                                                                                             (1.8) 

Pt-O2 + H+ + e- →   Pt-HO2                                                                                            (1.9) 

Pt-HO2 + Pt → Pt-OH + Pt-O                                                                                      (1.10) 
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Pt-OH + Pt-O + 3 H+ + 3 e- → 2 Pt + 2 H2O                                                               (1.11) 

Thus, water is the only the product at the cathode. However, due to the sluggish kinetics of 

the ORR on Pt, a high loading of Pt is required at the cathode to avoid a loss in performance. But 

the high cost of Pt has forced many studies to focus on using Pt-based catalysts and controlling the 

morphology of the catalyst surface in order to achieve higher ORR efficiency.56–58 Furthermore, 

other factors can have a significant effect on the ORR efficiency such as crossover of fuel through 

the membrane to the cathode, which is described in section 1.3.4.   

1.3 Direct Alcohol Fuel Cells (DAFCs) 

1.3.1 Introduction 

Direct alcohol fuel cells are a relatively new type of power source and are regarded as one of 

the most promising alternative renewable energy technologies. A DAFC is a type of PEMFC which 

is fueled directly with an alcohol. It avoids the need for reforming and overcomes the problems 

with hydrogen. In DAFCs, liquid fuels such as methanol and ethanol can be used and have 

advantages over hydrogen because they can be easily handled, transported, and stored and have 

higher volumetric energy densities.21,31–33,39,59  

In DAFCs, a liquid fuel is fed directly to the anode generating electrons from the oxidation 

reaction, while air (or pure oxygen) is passed through the cathode for the reduction reaction. Proton 

exchange membranes (normally Nafion) and platinum-based catalysts are often used in DAFCs.60 

However, another type of DAFC using high a pH environment that can be operated at low 

temperature has been developed, which is called an alkaline fuel cell or anion-exchange membrane 

fuel cell (AEMFC).60 AEMFCs are technically similar to PEMFCs with some differences such as 

operating in an alkaline electrolyte, anion (OH-) migration through the membrane to the anode and 
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water consumption at the cathode, which are opposite to the PEMFC. The reversed direction of 

the anions (OH-) decreases the crossover of fuel to the cathode and the abundance of OH- ions 

increases the rate of the fuel oxidation reaction and thus provides better kinetic.61–64 However, the 

main obstacle with AEMFCs is the low conductivity and low stability of the solid anion-exchange 

membrane which is lower than the conductivity of PEMs. This is exacerbated by the formation of 

carbonate when the carbon dioxide produced reacts with hydroxyl ions, resulting damage the MEA 

and a significant loss in performance and efficiency. Consequently, the PEMFC is still the most 

promising type of fuel cells. 

Direct methanol fuel cells (DMFCs) can be operated at low temperature which makes them 

an attractive power source for portable devices. Methanol is obtained from natural gas or biomass. 

Additionally, various studies have shown that the complete oxidation of methanol to CO2 is 

achieved by using platinum-based catalysts under most conditions. However, the complete 

oxidation of methanol only provides six electrons (equation 1.12) and the power density of 

methanol is only 6.1 kWh kg-1.65–69  

CH3OH + H2O → CO2 + 6 H+ + 6 e-                  Eº
cell = + 0.016 V                                     (1.12) 

The methanol oxidation reaction (MOR) has very slow kinetics relative to the hydrogen 

oxidation reaction, which results in much lower power densities and lower system efficiency. This 

is due to the poisoning effect of adsorbed CO (COad), formed as an intermediate on the surface of 

the catalyst (see Section 1.3.5). Furthermore, methanol is relatively volatile, toxic and has low 

power density. However, ethanol is a good fuel choice for overcoming some of the problems with 

methanol. In fact, ethanol is less toxic and has a higher energy density. It also can be produced 

from agricultural bioprocesses and is considered a renewable energy source. Additionally, ethanol 

has been proven by researchers to have a lower crossover rate because of its higher molar mass.70  
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1.3.2 Direct Ethanol Fuel Cells (DEFCs) 

Ethanol has some advantages over hydrogen and methanol such as its theoretical energy 

density of around 8.0 kWh kg-1, which is higher than for methanol (6.1 kWh kg-1) and reasonably 

close to gasoline (10 kWh kg-1). Moreover, ethanol has low toxicity, simple handling and storage, 

and is produced in large quantities from biomass. Hence, direct ethanol fuel cells (DEFCs) have 

been a topic of interest in the last decades.71–73 However, the high energy density of ethanol is 

based on complete oxidation to CO2, which generates 12 electrons but is difficult to achieve with 

high selectivity. 

In DEFCs, the anode is directly fed with ethanol and the cathode is fed with air. The ethanol 

and oxygen transfer through the diffusion layers to the anode and cathode catalyst layers, 

respectively, where the ethanol is oxidized and the oxygen is reduced. The ethanol should be 

oxidized to CO2 at the anode (eq. 1.13) while oxygen is reduced to water at the cathode (eq. 1.4).  

CH3CH2OH + 3 H2O → 2 CO2 + 12 H+ + 12 e-                  Eº
anode = 0.085 V                     (1.13) 

Whereas, the reactions at the anode and at the cathode in an alkaline fuel cell are described 

by equations 1.14 and 1.15, respectively for complete ethanol oxidation. 

CH3CH2OH + 12 OH- → 2 CO2 + 9 H2O + 12 e-            Eº
anode = - 0.74 V                     (1.14) 

3 O2 + 6 H2O + 12 e- → 12 OH-                                   Eº
cathode = 0.40 V                      (1.15) 

 Thus, the overall reaction of ethanol in DEFCs is described according to eq. 1.16. 

 CH3CH2OH + 3 O2 → 2 CO2 + 3 H2O                              Eº
cell = 1.145 V                          (1.16) 
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The oxidation of ethanol in a PEM-FC generates electrons and protons. The electrons travel 

through the external circuit while the protons migrate through the membrane to the cathode as 

shown in Figure 1.4. 

 

Figure 1.4. Schematic illustration of a DEFC. 

The ethanol oxidation reaction (EOR) is complex and involves many intermediates and 

products due to the presence of a C-C bond. In addition, many parameters influence the rate and 

selectivity of ethanol oxidation, including the catalyst composition, operating temperature, ethanol 

concentration and cell potential. Since the EOR has very slow kinetics, high temperature and high 

overpotentials are required to enhance the performance and efficiency.    
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1.3.3 Performance and Efficiency  

General insight regarding the evaluation of the performance of a fuel cell can be obtained from 

the potential-current output (polarization curve). The potential difference of the cell, between the 

anode and cathode, is a key parameter to describe the behavior of the cell, which uses to determine 

potential efficiency (see below) and power density. At the beginning, it is important to distinguish 

between different concepts of potential when describing the behavior of the cell. The standard cell 

potential (Eº
cell) is the theoretical Nernst potential of the cell when it is operating reversibly under 

standard thermodynamic conditions (activities are one). The reversible cell potential (Erev) (also 

called equilibrium potential (Eeq)) is the theoretical potential difference between the electrodes for 

a cell under thermodynamically reversible conditions with no current flowing. It is based on the 

bulk activities of reactants and products according to the Nernst equation. The actual cell potential 

(Ecell) is the potential of the cell when it is running at non-standard condition and it is measured 

experimentally.  

Figure 1.5 shows a polarization curve of a DEFC obtained in this work. The straight line at the 

top represents the reversible cell potential. Erev is the highest potential that can be obtained for a 

fuel cell. In contrast, the open circuit potential (OCP) is the potential difference between the 

electrodes when there is no current flow. Whereas Eº
cell and Erev are calculated theoretically from 

thermodynamic data, OCP is measured experimentally. Polarization measurements show a loss of 

fuel cell performance (the actual cell potential, Ecell is less than the theoretical reversible cell 

potential, Erev), which is attributed to factors that lead to increased overpotentials, particularly the 

kinetic polarization, ohmic resistance polarization, and concentration polarization as shown in 

Figure 1.5.  
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Figure 1.5. Polarization curve for a DEFC obtained from this work. 

The difference between the actual potential (Ecell) and reversible potential (equilibrium 

potential) is called overpotential. It can be seen from this figure that the OCP is lower than the Erev 

which can be attributed to a mixed potential due to crossover of ethanol (described in section 

1.3.4). As the current increases the overpotential increases and thus the cell potential decreases 

until it reaches zero. The polarization curve can be divided into three regions: the low and 

intermediate current regions are controlled (main factor that causes increase in overpotential) by 

the slow kinetics of reactions (EOR and ORR) and ohmic resistance, respectively. The low and 

intermediate current regions can be modelled and analyzed with the Tafel equation and Ohm’s 

law, respectively. The ohmic resistance (ohmic polarization) increases with increasing resistance 

of the membrane to proton conduction and the electrodes to electron flow. In the high current 

region, the cell potential drops significantly due to concentration polarization (mass transfer 
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limitation) and can reach a limiting current under certain conditions. This is due to the mass 

transport resistance of the fuel and oxidant to the catalyst surface through the diffusion layer. 

In a DEFC, a high overpotential is required to force the reactions to occur due to their slow 

kinetics. The overpotential would be positive for the EOR (anodic reaction) and negative for the 

ORR (cathodic reaction). A fuel cell with the highest potential (lowest overpotential) and high 

limiting current would have the best performance.   

Moreover, the basics of thermodynamics and electrochemistry are required to understand the 

performance and efficiency of fuel cells. The reversible cell potential (Erev) of DEFCs at 

equilibrium under standard conditions can be derived from the thermodynamic data of the overall 

combustion reaction of ethanol (eq. 1.17): ΔG° = -1325 kJ mol-1; ΔH° = -1366 kJ mol-1,74,75  

                        𝐸𝑟𝑒𝑣 =  −
∆𝐺°

𝑛𝐹
=  

1325 × 103

12 × 96485
= 𝐸°𝑐𝑎𝑡ℎ𝑜𝑑𝑒 − 𝐸°𝑎𝑛𝑜𝑑𝑒 = 1.144 𝑉                 (1.17)  

Where ∆Gº is the Gibbs free energy and ∆Hº is the enthalpy change of the overall reaction under 

standard conditions (1.0 atm, 298.15 K and liquid phase for water and alcohols), while F is the 

Faraday constant (96485 C mol-1) and n = 12 is the number of electrons transferred per molecule 

of ethanol for the complete oxidation. The standard cell potential of a DEFC is lower than that of 

a HFC (1.229 V). 

The theoretical energy conversion efficiency (thermodynamic efficiency) is given by eq. 

1.18.  

                                                    ℰ𝑟𝑒𝑣 =  
∆𝐺°

∆𝐻°
=  

1325

1366
= 0.97                                                       (1.18) 
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Hence, the theoretical energy conversion efficiency of DEFCs is 97% at ambient temperature, 

which is much better than that of a HFC (83%) and internal combustion engine (43%) under the 

same conditions.76  

  The potential efficiency (ℰE) is the ratio between the operating (actual) potential (Ecell) and 

reversible cell potential (Erev) and is described by eq. 1.19: 

                                                             ℰ𝐸 =  
𝐸𝑐𝑒𝑙𝑙

𝐸𝑟𝑒𝑣
                                                                        (1.19) 

The faradic efficiency (ℰF) is defined as the ratio of the actual average number of electrons 

obtained per molecule of ethanol (nav) to the theoretical value of 12 (for complete oxidation to 

CO2) (eq. 1.20):77 

                                                                ℰ𝐹 =  
𝑛𝑎𝑣

12
                                                                            (1.20) 

It is a very important parameter for the evaluation of catalyst efficiency since one of the major 

problems in DEFCs is the incomplete oxidation of ethanol. nav can be determined by 

electrochemical methods (e.g. flow rate dependence of the current78) and from the product 

distribution. 

The overall efficiency of a DEFC (ℰcell) can be calculated from the theoretical energy 

conversion efficiency (ℰrev), the potential efficiency (ℰE), the faradaic efficiency (ℰF), and losses 

of ethanol due to crossover through the membrane and reaction  with oxygen (ℰC) according to eq. 

1.21.71,74,75 

                                                   ℰ𝑐𝑒𝑙𝑙 =  ℰ𝑟𝑒𝑣 × ℰ𝐸 × ℰ𝐹 × ℰ𝐶                                                          (1.21) 
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1.3.4 Effects of Crossover  

Crossover is the diffusion of species through the membrane from the anode to the cathode or 

vice versa, resulting in a decrease in performance and efficiency. This is one of the main obstacles 

that limit the commercialization of DAFCs. Various factors influence the crossover rate, including 

operating temperature, fuel concentration and membrane thickness. A decrease in crossover rate 

is found with decreasing operating temperature and fuel concentration, and increasing membrane 

thickness.79–83 Nevertheless, decreasing the temperature decreases the selectivity, performance and 

efficiency, while using a thicker membrane increases the cell resistance.  

In DEFCs, ethanol diffuses through the membrane to the cathode where it reacts chemically 

with oxygen without producing a current. In addition, oxygen can crossover to the anode resulting 

in chemical reaction with ethanol. These processes lead to a decrease in the concentration of fuel 

at the anode and losses in both the potential efficiency and fuel efficiency (ℰF × ℰC). Furthermore, 

there is competitive adsorption at the cathode between the ethanol and oxygen resulting in a 

significant decrease in cathode potential and a further decrease in performance and efficiency. This 

decrease in the cathode potential is known as a mixed potential since both the EOR and ORR occur 

at the same electrode, leading to a decrease in cell potential (Ecell) and thus a further decrease in 

the potential efficiency.75,84 

1.3.5 Mechanisms for the Electrochemical Oxidation of Ethanol 

According to the preferred oxidation-reduction reaction in a DEFC, ethanol should be oxidized 

electrochemically to carbon dioxide at the anode, while oxygen is reduced at the cathode. The 

complete electro-oxidation of ethanol generates 12 e-. However, the high theoretical efficiency 
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(97%) and energy density of the DEFC is based on complete oxidation of ethanol to CO2, while 

the main products from DEFCs are acetaldehyde (eq. 1.22) and acetic acid (eq. 1.23), which only 

involve 2 and 4 electrons, respectively [eg.11,12,63,72,74,78,81]. 

CH3CH2OH → CH3CHO + 2 e- + 2 H+                                                                                                                     (1.22)   

CH3CH2OH + H2O → CH3CO2H + 4 e- + 4 H+                                                                                                   (1.23) 

Indeed, the formation of acetaldehyde and acetic acid decrease the efficiency of DEFCs and 

may cause environmental concerns. Therefore, to fully utilize the high energy density of ethanol, 

complete oxidation to CO2 should be achieved via C-C bond cleavage. Therefore, understanding 

the reaction mechanism is necessary in order to allow high activity catalysts to be designed and to 

improve the efficiency and performance of DEFCs. Consequently, the reaction mechanism has 

been widely studied theoretically (computationally) and experimentally to provide the 

understanding required to develop efficient catalysts. The purpose of this section is to briefly 

describe some of the theoretical studies86,87 and experiments by using differential electrochemistry 

mass spectroscopy (DEMS),85,88–90 voltammetry,91–93 gas chromatography,94,95 nuclear magnetic 

resonance (NMR)96–99 and in situ infrared spectroscopy (IR)75,91 that have been performed to study 

the mechanism of EOR. 

Among all the catalysts that have been examined up to now, platinum (Pt) is widely used and 

has relatively high activity for cleavage of the C–C bond of ethanol.86,90 However, due to the slow 

kinetics of the EOR, high overpotentials are required to force the reaction to occur. At low applied 

potentials, where many active sites are available for C-C bond breaking due to the low oxygen 

coverage (OHad), poisoning species produced by the dissociative adsorption of ethanol, such as 

CO, will form readily and adsorb (accumulate) at the Pt surface. The production of poisoning 
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species causes a decrease of the catalytic activity by inhibiting the adsorption and further oxidation 

of ethanol.86,87,100 In this situation, the coverage of adsorbed hydroxyl species (OHad) limits the 

rate of production of CO2, which is described later in this section.  

Higher applied potentials favor the formation of OHad species, and thus the Pt surface has 

higher activity to remove poisoning species (COad). However, the cleavage of the C-C bond is the 

rate limiting step and it decreases significantly in the presence of a high coverage of OHad species 

at the Pt surface.86,87,92 Under these circumstances, CO2 formation reflects the rate of C-C bond 

cleavage and oxidation of adsorbed CHx species.101 This simple mechanistic model provides a 

working explanation of why pure Pt has been found to be an inefficient catalyst for the complete 

oxidation of ethanol. Consequently, increasing the efficiency of Pt and other catalysts requires 

control of adsorbed oxygenated species to achieve complete oxidation of ethanol to CO2.
86,87,92 

Figure 1.6 shows a theoretical description (based on computational results) of some of the 

possible products and intermediates of ethanol electro-oxidation on a Pt electrode at room 

temperature.75,86 The insets in Figure 1.6 show mechanisms in more detail for some important 

pathways.75 In general, ethanol adsorbs initially in a series of dehydrogenation steps at low 

potentials on the Pt surface, forming acetaldehyde, which is the favorable path with lower energy 

barriers than other paths such as C-C bond breaking, β-hydroxyl- and α-dehydrogenation (Figure 

1.6a). The acetaldehyde can desorb from the electrode surface as the final product or it can be 

easily oxidized or readsorbed via α-dehydrogenation to form adsorbed acetyl (CH3COad).
86 These 

processes are illustrated in Figure 1.6: 
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Figure 1.6. Calculated reaction network and reaction barriers (units, eV) for (a) ethanol 

oxidation on Pt(111) and (b) acetyl oxidation on Pt(100). The insets show mechanisms in 

more detail. Reprinted from Reference,75 Copyright (2006), with permission from Elsevier. 

Reprinted (Adapted) with permission from Reference.86 Copyright (2008) American 

Chemical Society. 

In fact, adsorbed acetyl is the key intermediate for the electro-oxidation of ethanol to both 

acetic acid and CO2.
86,102 Thus, CH3COad can be further oxidized in the presence of OHad species 

to acetic acid, which is effectively a final product, or it can be further oxidized by breaking the C-
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C or C-H bond (maximum rate at 0.3 – 0.4 V vs. RHE), which leads to formation of adsorbed 

intermediates such as COad and CHX,ad through the lowest energy channel or path as shown in 

Figure 1.6b. The CH3 species can interact with adsorbed H at a very low potential (around ˂ 0.2 

V) to form methane (eq. 1.24), or, in the presence of OHad (> 0.5 V), can form CO2 (eq. 1.25):91,101 

Pt-CH3 + Pt-H → CH4                                                                                                          (1.24) 

Pt-CH3 + 2 Pt-OH → CO2 + 5 H+ + 5 e-                                                                                                                     (1.25) 

The CH3 species produced at low potentials (0.2 – 0.4 V) where no adsorbed H species are 

available will accumulate and may interact with OH species at high potentials to lead to higher 

CO2 yields (based on eq. 1.25). 

It is clear from Figure 1.6 that the dissociative adsorption of water (≥ 0.5 V vs. RHE) to form 

OHad at the electrode surface (eq. 1.26) is necessary for further oxidation of adsorbed CO to CO2 

(eq. 1.27), which releases free sites on the electrode surface for further ethanol and intermediate 

species to adsorb and oxidize.86,102 

Pt + H2O → Pt-OHad + H+ + e−                                                                                                                                         (1.26) 

Pt-COad + Pt-OHad → 2 Pt + CO2 + H+ + e-                                                                           (1.27) 

Therefore, bi or tri-metallic Pt based catalysts (section 1.3.7) have been used (Pt is often 

modified with other metals like Ru and Sn) to enhance the dissociative adsorption of water at low 

applied potentials which thus promote the oxidative removal of adsorbed intermediates (COad, 

CHX,ad and CH3COad) on adjacent Pt sites.86,102 Consequently, the activity of ethanol electro-

oxidation is enhanced and the performance of the DEFC improves. 

Recently, differential electrochemistry mass spectroscopy (DEMS) has provided much 

information about the electro-oxidation mechanism of ethanol by detecting gaseous and volatile 
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species such as CO2, CO and acetaldehyde. Acetic acid cannot be detected by DEMS, since it is 

not volatile enough. Furthermore, voltammetry (particularly CV and CO stripping) can be used to 

study the behavior of CO and OH. Figure 1.7 shows cyclic voltammograms (CVs) and the 

corresponding mass spectroscopic voltammograms (MSCVs) for ethanol oxidation on a Pt 

electrode.92  

 

Figure 1.7. Ethanol electro-oxidation on a nanostructured mesoporous platinum (MPPt) 

electrode in 0.01 M ethanol + 0.5 M H2SO4. CVs (A) and MSCVs for m/z = 22 (B), m/z = 

29 (C) and m/z = 15 (D). v = 2 mV s-1; T = 25 ºC. Reprinted from Reference,92 Copyright 

(2016), with permission from Elsevier. 
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The signals at m/z = 22, 29 and 15 correspond to CO2
+, CHO+ and CH3

+ respectively. The 

latter fragment is produced from both acetaldehyde and methane. It is clear from Figure 1.7A that 

the faradaic current at low potentials (˂ 0.38 V) is related to the adsorption/desorption of hydrogen 

and/or ethanol, dehydrogenation of ethanol and/or formation of methane, whereas the electro-

oxidation of ethanol starts at potentials of around 0.38 V and increases up to 0.8 V and then 

decreases.92 The onset of electro-oxidation of ethanol at 0.38 V and decrease at high potentials 

may be explained by the effect of poisoning species; COad at low potentials and OHad at high 

potentials, as mentioned previously in this section. Figures 1.7B and 1.7C show CO2 and 

acetaldehyde formation, respectively, over a wide range of potentials. The CO2 formation starts at 

around 0.5 V which is attributed to an increasing dissociative adsorption of water (based on eqs. 

1.26 and 1.27), while the CO2 formation at low and high potentials drops to zero due to the 

poisoning effects described above. The signal at m/z = 15 is due to methane at low potentials as 

shown in the inset of Figure 1.7b (and eq. 1.24), while at high potentials is due to acetaldehyde 

and is similar to m/z signal 29. 

Electrochemical in-situ Fourier transform infrared spectroscopy (EC-FTIRS) has also been 

used to elucidate the reaction mechanism by identifying the reaction products and adsorbed 

intermediate species involved in the electrochemical reactions. Figure 1.8 shows IR spectra 

recorded during ethanol oxidation at a Pt electrode with 0.5 M ethanol in HClO4/H2O and 

HClO4/D2O electrolytes.91 Enhancing the signal-to-noise ratio and subtracting the background was 

accomplished by using the potential difference technique. Consequently, negative and positive 

peaks correspond to reaction products (appearing species) and reactants (disappearing species), 

respectively. Here, the reference spectrum was recorded at 0.05 V and then the potential was 

increased by 0.1 V up to 1.2 V vs. RHE. From the IR spectra, in both H2O and D2O, a negative 
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band at 2007 cm-1 was formed at around 0.25 V and corresponds to linearly adsorbed CO. The 

intensity of this band increased as the potential was increased up to around 0.6 V vs. RHE, and 

then its intensity decreased, which indicates that COad was the main species blocking (poison) the 

active sites of Pt at low applied potentials. In the H2O electrolyte, the negative band at 2343 cm-1 

corresponds to CO2. This band appears at 0.5 V and increased as the potential was increased up to 

0.8 V, which indicates that CO2 formation was due to oxidative removal of COad by OHad species, 

and then decreases at high potentials due to high coverage of OHad species. These observations are 

in good agreement with the data in Figure 1.7. This band was not observed in the D2O electrolyte 

due to the IR region being dominated by a strong band from D2O.91  

The negative band at 1713 cm-1 in both electrolytes corresponds to the C=O stretching in 

acetaldehyde and acetic acid. In H2O electrolyte, this band is not accurately observed due to the 

strong band from water at around 1615 cm-1. When both acetic acid and acetaldehyde are formed, 

the band at 1713 cm-1 (which corresponds to both acetic acid and acetaldehyde) will be higher than 

the band at 1685 or 1280 cm-1 (correspond only to acetic acid).91 However, as seen from the IR 

spectra, the intensity of the 1713 cm-1 band increases significantly at higher potentials, which 

indicates that both acetaldehyde and acetic acid formation is promoted at higher potentials. Acetyl 

species are not formed under the conditions used here. The positive bands in the D2O electrolyte 

at around 1392 and 2901 cm-1 correspond to adsorbed acetaldehyde species.91 The intensity of 

these bands increases with increasing potential, which indicates that ethanol adsorbs initially in a 

series of dehydrogenation steps at low potentials, leading to the formation adsorbed acetaldehyde. 

This means that ethanol and acetaldehyde adsorb on the electrode surface at very low potentials 

and then they start to desorb with increasing potentials producing in this case free active sites for 

C-C bond breaking. 
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Figure 1.8. Selected IR spectra for the EOR (0.5 M CH3CH2OH) recorded at 1 mVs-1 in 

a) 0.1 M HClO4/H2O and b) 0.1 M HClO4/D2O. Inset: A magnification of the1800–1600 

cm-1 region of the spectrum recorded at 1.0 V, which shows the presence of two bands at 

1713 and 1685 cm-1. Reprinted from Reference,91 Copyright (2016), with permission 

from Elsevier. 

From the results discussed in this section, the formation of acetaldehyde and acetic acid 

can be explained as follows. The onset for acetaldehyde formation is observed at intermediate 

potentials. At low potentials, the formation of COad and CHx,ad  dominate due to the higher activity 

of the catalyst for cleavage of the C-C bonds of ethanol and acetaldehyde. Increasing the potentials 

(up to potentials where no dissociative adsorption of water takes place) leads to an increase in the 

coverage of COad species and a decrease in the activity of the catalyst for cleavage of the C-C 

bond, which then hinders the further re-adsorption of acetaldehyde, resulting in incomplete 

oxidation to acetaldehyde. At high potentials where dissociative adsorption of water takes place 
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significantly, OH species will form and interact with COad resulting in free active sites at the 

electrode surface that enhance the further adsorption and oxidation of ethanol leading to higher 

CO2, acetic acid and acetaldehyde formation. Afterwards, the catalyst activity decreases at higher 

potentials (E > 0.8V) due to the high coverage of OH species leading to the hindrance the C-C 

bond cleavage. Therefore, acetic acid is formed significantly while the formation of CO2 declines 

with increasing potential. 

At low potentials, COad formation is favored from the dissociative adsorption of 

acetaldehyde more than ethanol, which indicates that acetaldehyde may be the more favorable path 

to CO2 than direct C-C bond cleavage of ethanol. In conclusion, poisoning species and C-C bond 

cleavage play a central role in determining the efficiency of DEFCs. 

1.3.6 Product Analysis from DEFCs 

Although not common, a number of research groups have determined product yields from 

DEFCs or under fuel cell operating conditions. Rousseau et al.74 used HPLC to determine the 

product distribution at various catalysts in a DEFC at 80 ºC. It was found that acetic acid was the 

main product at a Pt catalyst. Also, modification of Pt with Sn increased the acetic acid formation, 

while the addition of Ru did not affect the product distribution of the PtSn. Sun et al.85 have studied 

the effect of temperature and ethanol concentration on the CO2 yield from a DEFC using DEMS. 

The CO2 yield was increased significantly with higher temperatures and lower ethanol 

concentrations. Similar studies were reported for ethanol oxidation in DEFCs using gas 

chromatography (GC) by Nakagawa et al.90 and by Seweryn et al.103. Nakagawa et al.  reported 

that acetaldehyde was the main product at Pt, PtRu and PtRuRh at 80 ºC, while the Pt catalyst gave 

the highest selectivity for CO2. In addition, James and Pickup95 used gas chromatography, a 
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conductivity cell (and/or titration with base) and a NDIR CO2 detector successfully to measure the 

concentrations of acetaldehyde, acetic acid and CO2, respectively produced during ethanol 

oxidation in a DEFC.  James and Pickup82 studied the effect of oxygen on the product yields in 

DEFCs. They reported that using oxygen at the cathode leads to overestimation of product yields 

due to crossover. 

NMR has been used successfully to measure the concentration of residual ethanol as well 

as acetic acid and acetaldehyde produced during ethanol oxidation in a DEFC. Figure 1.9 shows 

the 13C NMR spectrum for the anode exhaust from a DEFC with a PtRu/C catalyst, with methanol 

used as an internal standard. The observed products were acetic acid, acetaldehyde and derivatives 

of acetaldehyde (gem-dihydroxyethane at 88 ppm, methoxyhydroxyethane at 96 and 54 ppm, and 

ethoxyhydoxyethane at 94 and 63 ppm).96 

 

Figure 1.9. 13C NMR spectrum for the anode exhaust from a DEFC at 80 °C and 0.2 V 

with 2 M ethanol and a PtRu/C anode. Reprinted from Reference,96 Copyright (2009), 

with permission from Elsevier. 
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1.3.7 Bi and Trimetallic Catalysts 

Although platinum (Pt) has relatively high activity for cleavage of the C–C bond of ethanol, 

it exhibits very slow kinetics for both the EOR and ORR leading to significant loses in performance 

and efficiency. The primary reason for the slow kinetics on Pt is the COad poisoning effect 

described in section 1.3.5. However, there are many strategies that can be used to overcome or 

reduce the poisoning effect and thus increase the overall cell performance. For EOR, many groups 

have developed new catalysts by modifying the Pt with other metals and controlling the 

morphology (crystalline facets) of the catalyst surface.104–112 Metals such as Ru,90,110,113,114 

Sn,93,94,105,115 Ni,116–121 Rh,104,107,110,112 Pd,57,110 Cu,58,122 Ir,105,106,110 and others like Co, Au, Os, Eu 

and Fe57,58,110,123,124 can be used to enhance the bifunctional mechanism and/or ligand (electronic) 

effect of the catalyst.  

The bifunctional mechanism can be described as follows: Pt is modified with oxyphilic 

metals to form bi or trimetallic alloyed catalysts that enhance the dissociative adsorption of water 

at low overpotential to form OHad. The OH can adsorbed on the oxyphilic metals even more 

strongly than CO. Since the dissociative adsorption of water to form OHad is necessary for the 

complete oxidation of COad and CHx,ad to CO2,  the CO and CHx can react with OHad to form CO2, 

leading to a decrease in the poisoning effect of CO. Furthermore, these metals can promote the 

ligand effect, which is defined as a change in the electronic structure of Pt (decrease the electron 

density in the d-orbitals and thereby decrease the backdonation of electrons from Pt to CO), which 

can lead to weakening of the COad bond resulting high CO tolerance and a significant decrease in 

the poisoning effect on Pt.  Thus, the bifunctional mechanism and ligand effect can release 

sufficient free Pt active sites for further adsorption and oxidation, leading to enhanced activity for 

ethanol electro-oxidation and improved performance in DEFCs. 
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 However, an ensemble of three to four Pt atoms are needed to provide an active site for 

cleavage the C-C bond of ethanol.75 Using too much of a secondary and/or tertiary metal dilutes 

the Pt sites and can also result in a OHad coverage that is too high, leading to significant OH 

poisoning and a decrease in selectivity, performance and efficiency. Therefore, controlling the 

ratio between the metals on the catalyst surface is very important to obtain the optimum selectivity 

and performance. In DEFCs, PtRu and PtSn have been shown to give the best performance at low 

overpotentials compared to Pt.75,108,125 However, the selectivity for the complete oxidation to CO2 

is significantly lower than at Pt and acetic acid becomes the main product. From all the work up 

to now, it is clear that there is often an inverse relationship between the selectivity and performance 

of catalysts in DEFCs. Further work is required on the development of new anode catalysts in 

order to increase the selectivity and performance of the catalysts simultaneously. The newest 

approach is to employ catalyst nanoparticles with different shapes and structure, such as the PtNi 

octahedral used in Chapter 7, core-shell particles with a Pt shell over an electropositive core to 

provide a ligand effect,126 or and oxide shell on a Pt core109.  

1.3.8 Proton Exchange Membrane Electrolysis Cells (PEM-ECs) 

All experimental results in this work were performed in a PEM-EC. The PEM-EC employed 

commercial DEFC hardware operated with nitrogen instead of oxygen or air. Nitrogen was used 

to avoid the chemical reaction (eq. 1.28) between ethanol and oxygen described in section 1.3.4. 

Determination of the overall efficiency of a DEFC and the evaluation of anode catalysts requires 

accurate methods for the measurement of nav, and this is very difficult (and has not been achieved) 

in a DEFC. Using oxygen at the cathode, as in a DEFC, leads to overestimation of the products 
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and electrochemical consumption of ethanol due to crossover, and so yields inaccurate nav values. 

In the absence of oxygen, the cathodic reaction is represented by eq. 1.29. 

CH3CH2OH + n O2 → x CO2 + y CH3CHO + z CH3CO2H + m H2O                         (1.28) 

12 H+ + 12 e- → 6 H2                                                                                                   (1.29) 

The overall reaction of the ethanol oxidation in a PEM-EC is represented in eq. 1.30. 

CH3CH2OH + 3 H2O → 6 H2 + 2 CO2                                                                         (1.30) 

Recently, the anode exhaust was analyzed to investigated the effect of oxygen on the 

product distribution at ambient and elevated temperature.82,95 It was found that the yields of CO2 

and acetic acid increased significantly with oxygen at the cathode compared to the yields when a 

mixture of nitrogen and hydrogen was used as shown in Table 1.1.  

Table 1.1. Faradaic yields of CO2 and acetic acid from a cell operating with O2 or N2/H2 at 

the cathode. Reprinted from Reference,82 Copyright (2010), with permission from Elsevier. 

 

Accurate measurement of the product distribution is very important in the evaluation of 

catalysts, and for understanding the mechanisms and how the rates of pathways to the desired 

products can be enhanced. This can lead to development of more efficient catalyst for 

commercialization of DEFCs and ethanol electrolysis cells (EECs). In addition to providing 
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accurate product distributions, EECs can be used to produce hydrogen in a process referred to as 

electrochemical reforming.127,128 

1.4 Thesis Objectives 

 

 The first objective of this thesis was to develop simple and fast methodologies that can be 

routinely used to comprehensively evaluate and compare commercial and new catalysts for the 

oxidation of ethanol. These methodologies should be able to quantify ethanol consumption and 

product distributions during electro-oxidation of ethanol in both EECs and DEFCs. This would 

allow nav and faradaic efficiencies to be routinely determined. A secondary objective was to 

evaluate an electrochemical method for determining nav by comparing the results with those from 

chemical analysis of the cell exhaust (chapter 6). In addition, investigating the crossover of ethanol 

and products through the membrane was undertaken by analysis of the anode and cathode exhausts 

separately (chapter 3).  

  The third objective of this thesis was to study and compare various commercial catalysts 

in order to understand how their performance and selectivity influence EEC and DEFC efficiency. 

This was achieved after combining the anode and cathode exhaust to measure the product 

distributions, average number of electrons and efficiencies as a function of potentials at elevated 

temperature in fuel cell hardware (chapter 4).  

 Another objective of this thesis was to examine the effects catalyst mixtures and bilayers 

on the product distribution and efficiency. It has been clearly shown that catalysts bilayers increase 

the faradaic efficiency while maintaining the high potential efficiency (chapter 5).  
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 The final objective of this thesis was to study the effect of octahedral PtNi alloy catalyst 

nanoparticles on the selectivity, performance and efficiency of the EOR in fuel cell hardware at 

elevated temperature and compare it with the commercial catalysts (chapter 7).  
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2. Experimental 

2.1 Chemicals and Materials 

All chemicals and materials were used as received in this work, except for Nafion membranes. 

Chemicals used include: anhydrous ethanol (Commercial Alcohols Inc.), acetic acid (99.7%, 

Caledon Lab. Chemicals), acetaldehyde (Sigma-Aldrich), sulphuric acid (Fisher Scientific), 

hydrochloric acid (Sigma-Aldrich), propanol (J. T. Baker), hydrogen peroxide (30%, ACP 

Chemicals Inc.), oleylamine (70%, Aldrich Chem. Co.), oleic acid (90%, Aldrich Chem. Co.), 

benzyl ether (98%, Alfa Aesar), tungsten hexacarbonyl (W(CO)6, 97%, Alfa Aesar) and Nafion 

solution (5%, DuPont). Industrial grade nitrogen from Air Liquide was used in fuel cell 

experiments. CO2 (Air Liquide) was used in detector calibration. The as-received Nafion™ 115 

and 117 membranes were pre-treated before using as follows: they were cut into square pieces and 

heated in 3% H2O2 for 1 h at 80°C with stirring, then rinsed and immersed in distilled water for 15 

min at ambient temperature, followed by immersion in 1 M sulfuric acid for two hours at 80 °C 

with stirring. Finally, the membranes were heated at 80°C for 3 h in distilled water with stirring, 

rinsed and then stored in deionized water. 1 

The cells used in this work were a 5 cm2 single-anode commercial fuel cell (Figure 2.1) from 

Fuel Cell Technology Inc., a nine-anode cell (Figure 2.2) constructed by using a custom built 9-

anode plate in 5 cm2 fuel cell from Electro Chem Inc.,2 and a conventional glass cell for 

voltammetry (see Section 2.3).  The cells were operated as electrolysis cells in all experiments. 

Nafion® 115 and 117 membranes were the only PEMs used in this work. All homemade electrodes 

used Toray™ (TGP-H-090; 0.26 mm) carbon fiber paper (CFP) that had been wet-proofed with 

10wt.% PTFE. Commercial Pt anodes and cathodes (4 mg cm-2 loading of Pt black on wet-proofed 
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Toray™ CFP; TGP-H-090) that were used in many of the experiments were donated by Ballard 

Power Systems. Carbon supported Pt (Pt/C; HiSPEC™ 13100, 70% Pt on a high surface area 

advanced carbon support; Alfa Aesar; Lot# M22A026), carbon supported PtRu alloy (PtRu/C; 

HiSPEC™ 12100, 50% Pt and 25% Ru on a high surface area advanced carbon support; Alfa 

Aesar; Lot# P17B047, carbon supported PtSn (PtSn/C; 40% HP PtSn alloy (3:1 atom%) on Vulcan 

XC-72; BASF Fuel Cell Inc.; Lot# F0060910), platinum acetylacetonate (Pt(acac)2, 97%, Aldrich 

Chem. Co.), nickel acetylacetonate (Ni(acac)2, 95%, Aldrich Chem. Co.) and carbon black (Vulcan 

XC-72, Cabot) were also used in this work.  

 

Figure 2.1. Photograph of the 5 cm2 single-anode cell. 
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Figure 2.2. Schematic diagram of the nine-anode fuel cell. Reprinted from reference1. 

 

2.2 Preparation of Electrodes and MEAs 

Electrodes were prepared by applying a catalyst ink over a 5 cm2 piece of carbon fiber paper 

(Toray, 0.26 mm), then drying in a fume hood overnight at ambient temperature. Homemade 

electrodes described in this work were prepared using literature methods.3 The ink was prepared 

by thoroughly dispersing the catalyst in an appropriate mixture of 5% Nafion® solution (Aldrich) 

and iso-propanol and the resulting mixture was sonicated for ca. 30 min. A number of Pt based 

catalysts were prepared and the details are described in the relevant chapters. 

MEAs were prepared by pressing the electrodes onto each side of a Nafion membrane at 

ambient temperature at a pressure of ca. 1.5 MPa. 
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2.3 Electrochemical Measurements 

Electrochemical measurements were conducted with a Hokuto Denko HA-301 potentiostat or 

with an Arbin® Instruments multi-channel potentiostat. Logger Pro3 software was used for 

recording CO2 detector signals. 

Cyclic voltammetry measurements were carried out in a conventional three electrode glass 

cell using a BioLogic SP-50 potentiostat/galvanostat. This instrument used EC-Lab 

electrochemical software for recording results. 

The fuel cell hardware can be operated as a fuel cell (section 1.3.2), in an anode polarization 

mode (section 1.3.8), or in a crossover mode.4 In the crossover mode, ethanol was fed through the 

cathode while N2 was passed through the anode. Then the ethanol would cross through the 

membrane to the anode where it is electrochemically oxidized. The nine-anode cell consists of 

small anodes and thereby was operated in this mode in all experiments to avoid the loss of ethanol 

due to crossover and because the steady flux of ethanol through the membrane provided 

information on the reaction stoichiometry. The 5 cm2 cell was also operated in this mode in the 

work at the beginning of chapter 3, in order to test and develop the analytical methodology under 

controlled mass transport conditions (the rate of ethanol oxidation is limited by its diffusion rate 

through the membrane) and without any loss of ethanol due to crossover. 

Although the cathode was supplied with N2 in all experiments in this work, it acts as a dynamic 

hydrogen reference electrode (DHE). Since the cathode reaction is H+ + e−  → 0.5 H2, it is 

unnecessary to supply hydrogen to the cathode or to use a reference electrode.5 This has been 

demonstrated by comparing anode polarization curves for a direct methanol fuel cell measured  

relative the cathode, and relative to a separate, edge-type DHE.6 The hydrogen evolving cathode 

(DHE) can be considered as a better reference electrode than edge-type DHE. The latter reference 
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electrode can be incorporated into DEFC by attaching two Pt wires to a region of the membrane, 

but the main problem is the dehydration of membrane outside the active region which can result 

in an unstable and inaccurate potential. 

Temperature control of the cells was achieved using a Cole-Parmer temperature controller 

(type K thermocouple, model 89810-02) from which two cartridge heaters were inserted inside 

two holes in the body of the anode and cathode end plates (each plate has a cartridge heater and a 

thermocouple is connected to the anode plate). The temperature controller reading was stable (± 

0.1ºC) throughout the experiments. Regarding to the reproducibility and error, we have conducted 

many preliminary experiments to establish the reproducibility and the consistency of the cell 

assembly. Polarization curves and flow rate experiments (chapter 6) were repeated at least twice 

for each electrode. Since the use of t-test indicates that the results are not significantly different, 

averages of the results were used and reported in this work. Chapter 3 provides some data on 

precision and accuracy, and additional information about the reproducibility is shown in chapter 5 

with a 2nd Pt/C electrode.  

The use of 0.1 M ethanol in this work represents a compromise between electrochemical 

performance (power density) and faradaic efficiency (determined primarily by the CO2 yield, 

which decreases with increasing ethanol concentration 7). Data in the literature for CO2 yields 

obtained with Pt/C catalysts covers ethanol concentrations from 0.01 M 7 to 2 M 8, and so we 

have selected an intermediate value for this work. 

2.4 Product Analysis Instrumentation 

To determine the product distributions in the EOR, two main instruments were used. For CO2 

analysis, a commercial CO2 detector was used. Whereas the analysis of the residual ethanol, acetic 
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acid as well as acetaldehyde and its derivatives were carried out using nuclear magnetic resonance 

(NMR). The calculation of yields from these measurements is described in Appendix A. 

2.4.1 Non-Dispersive Infrared (NDIR) Carbon Dioxide Detector 

All of the CO2 measurements reported in this work were carried out using a commercial 

Telaire 7001 CO2 detector. The detector provides stable and accurate readings due to its dual beam 

Non-Dispersive Infrared technology with a gas flow-through inlet.  

2.4.2 Nuclear Magnetic Resonance (NMR)  

Nuclear magnetic resonance was used in the determination of residual ethanol and acetic 

acid and acetaldehyde produced in the EOR. A Bruker AVANCE III 300 MHz was used at ambient 

temperature with a BACS auto-sampler and the software was Topspin 3.0 with ICON. Fumaric 

acid was used as an internal standard, so that the concentrations of the ethanol and reaction 

products were measured against the peak area of the fumaric acid. 

Due to the high volatility of acetaldehyde it was important that all samples from the anode 

and cathode exhausts were cooled quickly in a mixture of ice and dry ice after exiting the fuel cell. 

The NMR analysis is discussed in the proceeding chapter. 

2.5  Catalyst Characterization Techniques 

2.5.1 X-Ray Diffraction (XRD) 

X-ray diffraction (XRD) patterns for catalysts were obtained on an X-ray diffracometer 

(Rigaku Ultima IV) using a copper x-ray source (Cu Kα radiation, λ = 1.5406 Å) and a scintillation 

counter detector by Dr. Wanda Aylward of Core Research Equipment and Instrument Training 



57 
 

(CREAIT). The x-ray powder diffraction was used to identify crystalline components of the 

catalysts synthesized in this work and to determine particle sizes at a scan rate of 1.5 degrees per 

minute. The scan range was from 10 degrees to 90 degrees and the sample was ground in a mortar 

before measurements. 

2.5.2 Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) 

ICP-OES measurements were carried out on a Perkin Elmer 5300 DV by Adam Beaton of 

CREAIT. The sample for ICP-OES was prepared by mixing ca. 6 mg of catalyst with 6 mL of HCl 

and 2 mL of HNO3 and heated at 65 °C for 22 h. The final solution was filtered and diluted to 15 

mL of water and then analyzed using the ICP-OES. Calibration curves were prepared using various 

concentrations of Pt, and Ni in 2% HNO3. 

2.5.3 Thermogravimetric Analysis (TGA) 

TGA experiments were conducted using a TA instrument Q500 thermogravimetric 

analyzer with thermal advantage software. Experiments were conducted under an air atmosphere. 

TGA is a method of thermal analysis uses to measure the mass of a sample over time as a function 

of temperature. In this work, increasing the temperature (up to 800 ºC) of a sample leads to changes 

in the composition of the sample including evaporation of water (ca. 100 ºC) and burning of carbon 

(ca. 600 ºC), the content of each was determined by the difference in mass. Eventually, the mass 

of metals was determined due to the very high vaporization temperatures of the transition metals 

involved. 
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2.5.4 Transmission Electron Microscopy (TEM) 

Transmission electron microscopy (TEM) was used to study the morphology of the PtNi/C 

octahedral catalyst including the particle size and distribution. TEM experiments were carried out 

at the University of New Brunswick (The Microscopy and Microanalysis Facility) by Steven 

Cogswell using a JEOL 2011 200 keV scanning transmission electron microscope.  

The sample was prepared by carefully grinding PtNi/C powder and was dispersed in 100% 

ethanol and sonicated. Then pipetting a drop of the sample solution onto the TEM grid which has 

a carbon suspension film and allowed to dry overnight. The chemical analysis was carried out 

using an Energy Dispersive X-ray Analysis (EDAX) system.  
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3. Determination of the Efficiency of Ethanol Oxidation in a Proton Exchange 

Membrane Electrolysis Cell 

3.1 Introduction 

 The electrochemical oxidation of ethanol is of fundamental importance to the development 

of our understanding of organic electrocatalysis1,2 and has growing applications in energy 

technology2-5 and sensors.6,7 Direct ethanol fuel cells8,9 (DEFC) offer the potential for efficient and 

clean energy production from biomass, while ethanol electrolysis10-12 provides a renewable source 

of hydrogen for fuel cells. Electrochemical oxidation is widely used as an ethanol sensing 

mechanism in breath alcohol analyzers (breathalyzer). 

In addition to measurement of electrochemical kinetics under a wide range of conditions, 

a full understanding of electrochemical ethanol oxidation requires knowledge of the stoichiometry 

(nav = average number of electrons transferred per ethanol molecule),13,14 product 

distribution,13,15,16 and the nature and coverage of adsorbed intermediates.17-21 Since the efficiency 

of a fuel cell or electrolysis cell is proportional to nav,
14 the reaction stoichiometry plays a critical 

role in the development of energy technologies based on electrochemical ethanol oxidation. It also 

influences the sensitivity of ethanol sensors, and variations in nav with time and operating 

conditions will cause errors in breathalyzer measurements. 

The complete oxidation of ethanol to carbon dioxide, which provides the highest theoretical 

energy efficiency for a fuel cell or electrolyzer, involves the transfer of 12 electrons as shown in 

eq. 3.1. 

  CH3CH2OH + 3 H2O → 2 CO2 + 12 H+ + 12 e-                                         (3.1) 

However, the main products formed during electrochemical oxidation are generally 

acetaldehyde (eq. 3.2) and acetic acid (eq. 3.3), which generate only 2 and 4 electrons, respectively. 
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  CH3CH2OH → CH3CHO + 2 e- + 2 H+                                                     (3.2)   

  CH3CH2OH + H2O → CH3CO2H + 4 e- + 4 H+                                         (3.3) 

Ethyl acetate22-25 from condensation of ethanol with the acetic acid, ethane,26 methane,26-28 

ethane-1,1-diol,23,25 ethoxyhydoxyethane,23, 25 and formic acid29 have also been observed as minor 

products. In addition to greatly deceasing the energy efficiency of DEFCs and ethanol electrolyzers, 

the formation of acetaldehyde, acetic acid and other byproducts can decrease the effectiveness of 

both the anode and cathode catalysts, and has the potential to create significant environmental 

problems. 

 The efficiency of a DEFC (ℰcell) is determined by the theoretical energy conversion 

efficiency (ℰrev; thermodynamic efficiency), the potential efficiency (ℰE = Ecell/Erev, where Ecell is 

the operating potential and Erev is the reversible cell potential), and the faradaic efficiency (ℰF), 

according to eq. 3.4.9, 15 

    ℰcell = ℰrev ∙ℰE ∙ℰF                                                      (3.4) 

The faradic efficiency is the ratio of the average number of electrons obtained per molecule 

of ethanol to the maximum of 12 for the complete oxidation to CO2 (ℰF = nav/12), and is determined 

by the product distribution according to eq. 3.5,16 

    12∙ℰF = nav = ∑ ni ∙fi                                                                                                   (3.5) 

where ni is the number of electrons transferred to form product i and fi is the fraction of ethanol 

converted to product i. Accurate use of eq. 3.5 required all products to be identified and accurately 

quantified.    

  A recent analysis of low carbon power sources for vehicles has concluded that polymer 

electrolyte membrane (PEM) DEFCs, together with batteries, offer the best alternative to internal 

combustion engines.30 However, this is based on the assumption that DEFCs that can operate at 
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50% efficiency will be developed, which will require nav to be close to 12. Currently, the best 

efficiencies are ca. 11% for acid PEM DEFCs and ca. 23% for alkaline cells.9 It has generally been 

found that increasing the electrochemical performance (potential efficiency) of the anode catalyst 

by combining Pt with other metals, such as Ru and Sn, in bi- and tri-metallic catalysts decreases 

the faradaic efficiency.4,15,31,32 However, in most cases, the faradaic efficiencies (or product 

distributions) of new catalysts have not been reported. 

The development of better catalysts for ethanol fuel cells and electrolyzers2-5 requires 

accurate methodologies for routine determination of nav. Although it can be estimated from product 

distributions by use of eq. 3.5,16 it has been shown that product analysis at the anode of a DEFC 

does not provide an accurate measure of the product distribution because of crossover of products 

through the membrane to the cathode, and chemical formation of products due to the crossover of 

ethanol and oxygen through the membrane.24,31,33 Furthermore, accurate measurement of products 

exiting the cathode is difficult due to the high volatility of acetaldehyde29 and condensation of 

acetic acid.33 Although the effects of reaction with oxygen are not present in an electrolysis cell, 

analysis of products that crossover to the cathode remains a problem.33 

Previously, it has been shown that nav for ethanol oxidation can be determined in DEFC 

hardware from the variation of the current (I) as a function of the flow rate (u) of the ethanol 

solution by use of eq. 3.6.34 

                         𝐼 =  𝑛𝑎𝑣𝐹𝐶𝑖𝑛𝑢 (1 − exp (−
𝐼𝑙𝑖𝑚

𝑛𝑎𝑣𝐹𝐶𝑖𝑛𝑢
))                                                                 (3.6) 

where Cin is the concentration of ethanol entering the cell and Ilim is the limiting current at high 

flow rates. Although this equation was developed for a cell operating in crossover mode (Figure 

3.1A), the simplest configuration for development of the theory,35 it has subsequently been shown 
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to also be valid for methanol oxidation in a normal electrolysis cell (anode polarization mode; 

Figure 3.1B), and a model has been developed to account for losses due to crossover.35 

The purpose of the work described in this chapter was to extend the use of eq. 3.6 to an 

ethanol electrolysis cell operating normally (i.e. in anode polarization mode), to verify its accuracy 

by measuring ethanol consumption and product distributions, and to assess the effects of ethanol 

crossover. Proton nuclear magnetic resonance (1H NMR) spectroscopy was used to measure the 

concentrations of acetaldehyde, acetic acid and residual ethanol exiting the cell, while CO2 was 

analyzed with a commercial non-dispersive infrared (NDIR) detector.36 Analyses of the anode and 

cathode exhausts were performed separately in order to quantify the crossover of ethanol and 

products through the membrane. Previously, 1H NMR has been used to quantify products from 

ethanol oxidation with molecular catalysts,37 while solution and solid-state 13C NMR have been 

used to identify and quantify ethanol and product distributions within and exiting a DEFC,23,25 and 

in a cell with a liquid electrolyte.38 

This work was performed in an electrolysis cell rather than a DEFC in order to avoid the 

consumption of ethanol by chemical reaction with oxygen that would be supplied to the cathode 

in a DEFC. Accurate separation the effects of electrochemical and chemical oxidation of ethanol 

in a DEFC has not yet been achieved. 

3.2 Experimental  

3.2.1 The Cell 

 Commercial fuel cell hardware (5 cm2 active area; Fuel Cell Technology Inc.) was used 

for all electrochemical measurements. The anode inlet and both outlets of the cell were modified 

with stainless steel tubing that connected directly to the graphite flow field plates. The flow field 
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channels were sealed with ethyl-2-cyanoacrylate39 in order to minimize absorption of ethanol and 

reaction products into the graphite plates.33 Membrane and electrode assemblies (MEA) were 

prepared by pressing (room temperature; ca.1.5 MPa) two electrodes consisting of 4 mg cm-2 Pt 

black on Toray™ (TGP-H-090) carbon fiber paper onto a Nafion™ 115 membrane in the cell.40 

The two modes of operation employed are shown schematically in Figure 3.1. In both cases, 

the cell was operated as an electrolysis cell, not a fuel cell. Measurements were made under steady 

state conditions at constant cell potentials using a Hokuto Denko HA-301 potentiostat. The flow 

rate of the 0.1 M ethanol (Commercial Alcohols Inc.) solution was controlled with a syringe pump. 

N2 was passed through the anode (crossover mode) or cathode (anode polarization mode) at 9-32 

mL min-1. In both cases, the cathode reaction is H+ + e- → ½ H2 and so the cathode acts a dynamic 

hydrogen electrode (DHE) and provides a relatively stable reference potential. The cell was 

operated at 50 °C in initial experiments in order to achieve a suitable balance of products, limit 

ethanol crossover, and optimize the product collection procedure. It was then operated at 80 °C to 

provide higher CO2 yields and more stringent testing. 
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Figure 3.1. Schematic diagrams of the two cell configurations employed in this work. 

3.2.2 Ethanol and Product Analysis 

 For the experiment in crossover mode, the cathode solution was collected in a sealed vial 

cooled with ice. The residual ethanol concentration was determined by 1H NMR. The cell was 

operated at the selected fuel flow rate for at least 10 min before collecting a sample for analysis. 

Analysis of products and residual ethanol when the cell was operated in anode polarization mode 

was complicated by crossover of all species though the membrane. In addition, the mixtures of 

gases (N2 and CO2) with volatile liquid components (acetaldehyde and ethanol) that are obtained 

make it difficult to obtain accurate analyses of all components.33 Here, 1H NMR spectroscopy was 

used to measure ethanol, acetic acid, and acetaldehyde separately in the anode and cathode 

exhausts, while CO2 was determined in each exhaust by using a NDIR detector.36 The experimental 

design shown schematically in Figure 3.2 allowed residual ethanol and all products to be 
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determined in both exhausts from a single experiment. CO2 from the cathode (N2 stream) was 

measured in real time with a Telaire 7001 CO2 monitor following condensation of ethanol, water 

and products that had crossed the membrane in a 200 mL cold trap. The current and CO2 readings 

were allowed to stabilize, and then averaged over a period of at least 100 s. The trap was cooled 

with ice, dry ice or liquid N2 in the various experiments, but quantitative collection of acetaldehyde 

(boiling point 20 °C) was not achieved in most experiments. Use of liquid N2 is complicated by 

condensation of the CO2. 

 

Figure 3.2. Schematic diagram of the product collection system employed in anode 

polarization experiments. 

 

The anode exhaust solution was collected in a ca. 200 mL trap cooled with ice in the 

experiments at 50 °C and dry ice in the experiments at 80 °C. At the end of each experiment, a 

sample of the solution was collected for analysis by 1H NMR, and then the CO2 in the trap was 

flushed through the CO2 monitor with N2 at 9-35 mL min-1. The CO2 concentration was integrated 

until it reached the reading for the air initially in the trap. 

For analysis by 1H NMR, 400 mL samples collected from the anode and cathode exhausts 

were mixed with 100 mL of D2O containing 32 mM fumaric acid as an internal standard, which 
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gives a singlet peak in the spectra at 6.72 ppm. Spectra were recorded on a Bruker AVANCE III 

300 spectrometer. The D2O in the sampled provided the field frequency lock and spectra were 

referenced to sodium 3-(trimethylsilyl)-2,2,3,3-tetradeuteropropionic propionate at 0 ppm. Figure 

3.3 shows an example of an NMR spectrum of a sample from the anode exhaust. The residual 

ethanol concentration was determined from the triplet at 1.10 ppm.  

 

Figure 3.3. NMR spectrum of the anode exhaust solution from oxidation of 0.100 M 

ethanol at 0.7 V and 50 °C in anode polarization mode. 

The only products detected in the exhaust solution were acetic acid (singlet at 2.01 ppm) and 

acetaldehyde (doublet at 2.15 ppm). Acetaldehyde forms a dimer under the conditions of these 
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experiments,41 as indicated by the doublet at 1.24 ppm, and so the integral of this peak was included 

to give a single acetaldehyde concentration. Ethyl acetate was not detected. 

Analysis of the cell exhausts was performed in triplicate at 0.2 mL min-1 only, since 

uncertainties became too large at higher and lower flow rates. This flow rate gave sufficient 

consumption of ethanol, while sample collection times were reasonable (to evaluate 

precision/reproducibility) and reasonably stable cell performances could be maintained. 

3.3 Results and Discussion 

3.3.1 Operation of the Cell in Crossover Mode 

Initially, the cell was operated in crossover mode in order to develop the analytical 

methodology under well controlled mass transport conditions and without complications due to 

loss of ethanol due to crossover.35 This allowed us to test the cell, and the assumptions made in the 

derivation of eq. 3.6. These include the assumption of linear concentration gradients of ethanol 

across the membrane, that ethanol is quantitatively oxidized at the anode, and that the pressure 

drop across the membrane, concentration gradient in solution perpendicular to the flow direction, 

and lateral diffusion along the flow field are all negligible.34  

The cell was operated in the limiting current region at 0.7 V and 50 °C (as demonstrated 

previously34) with ethanol solution supplied through the cathode flow field (negative electrode) so 

that it had to cross through the membrane to reach the anode, where it was electrochemically 

oxidized. N2 was passed through the anode flow field to prevent interference from oxygen. Figure 

3.4 shows experimental data and theoretical (eq. 3.6) plots of current vs. fuel flow rate for 0.102 

M ethanol supplied to the cathode. The best fit of the theoretical curve to the experimental data 

points was obtained with nav = 4.43 and Ilim = 22.4 mA. These are within the ranges previously 
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reported for these conditions.34 In order to check the assumption that all of the ethanol reaching 

the anode was being oxidized, the ethanol concentration in the solution exiting the cathode flow 

field was measured by NMR spectroscopy. Since ethanol should only cross the membrane or exit 

the cathode flow field, a discrepancy in the residual ethanol concentration would indicate that some 

ethanol reaching the anode was not oxidized, that one or more assumption were invalid, or that 

there were other losses (leakage) due to the hardware.  

 

Figure 3.4. Current at 0.7 V vs. flow rate for oxidation of 0.102 M ethanol in crossover 

mode at 50 °C (points) and best fit curve calculated by using eq. 3.6 with Ilim = 22.4 mA 

and nav = 4.43. 

Figure 3.5 shows the measured concentrations of the residual ethanol content in the cathode 

exhaust (Cout) at different flow rates as a function of the expected ethanol exhaust concentrations 

calculated from eq. 3.735 for Ilim = 22.4 mA and nav = 4.43.  

                                          𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 exp (−
𝐼𝑙𝑖𝑚

𝑛𝑎𝑣𝐹𝐶𝑖𝑛𝑢
)                                                                     (3.7) 
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The good linearity of this plot (R² = 0.984) and slope (0.953) close to one indicates that the 

oxidation of ethanol at the anode was quantitative without significant loss of ethanol into the N2 

stream, and that the assumptions implicit in eq. 3.6 are reasonable. The uncertainties observed in 

Figure 3.5 arise from a number of factors, including variations in nav with flow rate, changes in the 

cell performance with time, and failure to reach a steady state concentration at the lowest flow rate 

because of the long time-scale required.34  

 

Figure 3.5. Experimental vs. calculated (eq. 3.7 with Ilim = 22.4 mA and nav = 4.43) 

concentrations of ethanol exiting a cell under the conditions for Figure 3.4. 

 If it is assumed that ethanol was oxidized quantitatively in this experiment, and that there 

were no losses of ethanol, values of nav can be obtained directly from the concentrations of ethanol 

in the cathode exhaust by using eq. 3.8. 

    nav = I/uF(Cin – Cout)                                                      (3.8) 
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Application of this equation to the experimental data in Figures 3.4 and 3.5 gave an average 

nav of 4.4 ± 0.7. The agreement of this value with that obtained from eq. 3.6 again indicates that 

losses of ethanol were not significant. 

3.3.2 Operation of the Cell in Anode Polarization Mode 

When operating the cell in anode polarization mode, an aqueous solution of 0.100 M 

ethanol was fed to the anode flow field, where ethanol is oxidized to generate electrons, protons, 

carbon dioxide, acetaldehyde, and acetic acid. This is the normal mode of operation of an ethanol 

electrolysis cell, and is also used to evaluate performances of anode catalysts and catalyst layers 

for DEFCs. Nitrogen was fed to the cathode flow field to avoid interference from oxygen and to 

provide a stable reference potential from the reduction of protons to hydrogen (DHE). The aim 

was to fully analyze the ethanol oxidation efficiency by determining nav, accounting for any 

crossover losses, and complete accounting of the fate of ethanol consumption by analysis of the 

ethanol oxidation products.  

3.3.2.1 Mass Transport Limited Region: High Current and Low Crossover 

Figure 3.6 shows polarization curves obtained in anode polarization mode at 50 °C and 

80 °C with 0.100 M ethanol supplied to the anode. At 80 °C the current reached a limiting value 

at 0.6 V. The slight decrease at 0.7 V can be attributed to a decrease in nav (see below). At 50 °C 

the current was at, or close to, the limiting value at 0.7 V. The increase in current when the 

temperature was increased is due to effects of temperature on the mass transport rate, 

electrochemical kinetics, and nav. 
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Figure 3.6. Polarization curves for oxidation of 0.100 M ethanol at 0.5 mL min-1 in 

anode polarization mode at 50 °C (o) and 80 °C (●). 

Figure 3.7 (□) shows the dependence of the experimental current at 0.7 V on the flowrate 

at 50 °C. The best fit theoretical curve (dashed line) from eq. 3.6 is also shown. It has previously 

been shown for methanol oxidation that eqs. 3.6 and 3.7 are both valid under these conditions.35 

The best fit parameters of nav = 3.31 and Ilim = 83.7 mA are reasonable and so support the use of 

eq. 3.6 here. However, the central importance of nav in determining the efficiencies of ethanol fuel 

cells and electrolysis cells makes it essential to know the accuracy of this methodology. To 

determine this, it is necessary to determine the product distribution, and ensure that all of the 

ethanol entering the cell is accounted for. 
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Figure 3.7. Current vs. flow rate for oxidation of 0.100 M ethanol at 50 ºC in anode 

polarization mode at 0.45 V (◊), 0.55 V (●), and 0.70V (□) with best fit curves calculated 

by using eq. 3.6 with Ilim = 17.5 mA and nav = 4.84, Ilim = 38.2 mA and nav = 5.13, and 

Ilim = 83.7 mA, nav = 3.31, respectively. 

Results of the chemical analysis of products and residual ethanol exiting the cell, obtained 

under the conditions used to determine nav at 0.7 V in Figure 3.7, are presented in the first row of 

Tables 3.1 - 3.3. Table 3.1 shows a comparison between the experimental and calculated ethanol 

exhaust concentrations (Cout) obtained by 1H NMR and based on the measured currents (eq. 3.7), 

respectively. It can be seen that only 1.3% of the ethanol entering the cell was detected in the 

cathode exhaust at 0.7 V, indicating that there was little crossover of ethanol at this potential. 

Under mass transport limited conditions, all of the ethanol entering the anode catalyst layer should 

have been oxidized before reaching the membrane.35 The small amount of ethanol that was 

detected in the cathode exhaust may indicate that the cell was not quite at the mass transport limit 
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(see Figure 3.6), or may have been due to crossover through inactive regions of the MEA at the 

edges. The total ethanol measured in the cell exhaust at 0.7 V was somewhat higher than the 

calculated value for nav = 3.3 ± 0.3, suggesting that nav had been underestimated by use of eq. 3.6. 

Indeed, use of eq. 3.8 to calculate nav from the amount of ethanol consumed yielded a value of 3.9 

± 0.2. 

The measured product distribution for these experiments at 0.7 V (Table 3.2) clearly 

demonstrates the effects of crossover,33 and also shows a poor mass balance. Similar amounts of 

CO2 were measured in the anode and cathode exhausts, showing that there was facile crossover of 

CO2 to the cathode. The chemical yield of CO2 was 7.6% from the combined analyses. In contrast, 

there was much less crossover of acetic acid, with only 4.4% of the total chemical yield of 62% 

appearing at the cathode. This can be attributed to the low volatility of acetic acid.33 Acetaldehyde 

was also predominantly observed at the anode, although in this case the anode to cathode ratio 

does not accurately reflect the amount of crossover, since the low mass balance (“sum” column in 

Table 3.2) can be attributed primarily to inefficient collection of acetaldehyde from the cathode 

gas stream.33 This was confirmed by later experiments (below) in which the acetaldehyde 

collection efficiency was improved. 
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Table 3.1. Experimental (NMR) and calculated (eq. 3.7) concentrations of ethanol exiting 

a cell operating in anode polarization with 0.100 M ethanol supplied to the anode at 0.2 

mL min-1. Averages and standard deviations for three consecutive experiments are 

presented. 

T (°C) Potential (V) Cout (mM) 

  anode cathode total eq. 3.7 

50 0.70 52 ± 3 1.3 ± 0.4 53 ± 3 45.6 

50 0.55 75 ± 5 4.0 ± 1.1 79 ± 4 79.3 

50 0.45 79 ± 2 7.7 ± 1.0 87 ± 1 89.4 

80 0.70 59.2 ± 0.9 5.0 ± 0.7 64.2 ± 1.2 61.5 

80 0.50 66 ± 1 7.5 ± 0.9 73.4 ± 0.4 75.3 

80 0.40 71 ± 1 15.7 ± 0.8 86.9 ± 0.4 90.3 

 

The chemical yields of CO2 and acetic acid given in Table 3.2 were used to estimate nav by 

using eq. 3.5. Since the measured acetaldehyde yield was known to be inaccurate, a value estimated 

by mass balance (fcarbon dioxide + facetic acid + facetaldehyde = 1) was used. This gave nav = 4.0 ± 0.2, while 

use of the measured acetaldehyde yield (i.e. assuming that Cout was inaccurate) gave nav = 3.6 ± 

0.4, which was not statistically different. 
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Table 2.2. Summary chemical analysis results for the anode and cathode exhausts of a cell 

operating in anode polarization mode with 0.100 M ethanol at a flow rate of 0.2 mL min-1. 

Chemical yields are given, based the measured quantities of products and the amount of 

ethanol consumed. Averages and standard deviations for three consecutive experiments are 

presented.  

T  

(°C) 

potential 

(V) 

%CO2 %Acetic acid %acetaldehyde 

sum* nav 

anode cathode anode cathode anode cathode 

50 0.70 4.2 ± 0.3 3.4 ± 0.1 59 ± 6 2.7 ± 0.2 8.9 ± 0.6 0.3 ± 0.2 78 ± 7% 4.0 ± 0.2 

50 0.55 6.2 ± 1.4 4.5 ± 0.4 53 ± 2 13 ± 3 13 ± 6 1.9 ± 0.8 92 ± 8% 4.4 ± 0.2 

50 0.45 8.0 ± 0.7 5.1 ± 0.5 27.2 ± 0.4 7.1 ± 0.6 27 ± 6 6.9 ± 1.5 81 ± 8% 4.0 ± 0.1 

80 0.70 13.3 ± 0.4 10.6 ± 0.9 36 ± 2 11.9 ± 0.4 6.0 ± 1.2 2.6 ± 0.3 80 ± 3% 5.3 ± 0.1 

80 0.50 18.6 ± 0.6 11.9 ± 0.1 39 ± 2 14.1 ± 0.6 8.5 ± 0.9 3.7 ± 0.3 96 ± 1% 6.1 ± 0.1 

80 0.40 26.8 ± 1.4 8.8 ± 0.3 33 ± 4 16.6 ± 0.8 9.9 ± 1.4 4.8 ± 0.8 100 ± 5% 6.6 ± 0.2 

* Mass balance varies due to variations in the acetaldehyde collection efficiency. 

 Because of the difficulty in obtaining accurate acetaldehyde analyses, and the expectation 

that faradaic yield of CO2 and acetic acid obtained by NDIR and 1H-NMR were accurate, nav values 

were also determined from the CO2 and acetic acid analyses and the charge balance. Faradaic 

yields (Fi) are presented in Table 3.3 together with nav calculated by using eq. 3.9. 

   nav = 12 / (Fcarbon dioxide + 3 Facetic acid + 6 Facetaldehyde)                              (3.9) 

 

The nav of 4.1 ± 0.2 calculated in this way is not statistically different from the value in 

Table 3.2 based on the mass balance. Consequently, it can be concluded that failure to obtain a 

quantitative analysis of the acetaldehyde produced by the cell does not significantly compromise 

the accuracy of nav. A summary of the nav values obtained by the various procedures is given in 
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Table 3.4, where it can be seen that there is very good agreement between the values from eqs. 3.5, 

3.8 and 3.9 (t tests show that the differences were not significant). However, eq. 3.6 significantly 

underestimated nav in this case, which can be attributed to a systematic error due to a slow decrease 

in the cell performance over the course of the experiment. 

Table 3.3. Faradaic yields for CO2, acetic acid and acetaldehyde from a cell operating in 

anode polarization mode with 0.100 M ethanol at a flow rate of 0.2 mL min-1. CO2 and 

acetic acid yields are based on the combined analyses from the anode and cathode. 

Averages and standard deviations for three consecutive experiments are presented. 

T 

(°C) 

Potential 

(V) 

CO2 yield acetic acid 

yield 

acetaldehyde yield 

from charge balance 

nav 

50 0.70 24 ± 1% 63 ± 4% 13 ± 5% 4.1 ± 0.2 

50 0.55 27 ± 2% 57 ± 6% 15 ± 5% 4.1 ± 0.2 

50 0.45 41 ± 1% 36 ± 2% 24 ± 1% 4.15 ±0.01 

80 0.70 53 ± 2% 35 ± 1% 12 ± 2% 5.2 ± 0.2 

80 0.50 61 ± 2% 35 ± 1% 4 ± 3% 6.3 ± 0.1 

80 0.40 66 ± 1% 31 ± 1% 3.0 ± 0.8% 6.8 ± 0.1 

 

 When the temperature of the cell was raised to 80 °C, the current at 0.7 V increased 

significantly (Figure 3.6), while the amount of ethanol consumed decreased (Table 3.1). The 

increased current and efficiency are consistent with the higher nav (5.55 at 80 °C vs. 3.31 at 50 °C) 

obtained by fitting the currents to eq. 3.6. A similar difference in the ethanol consumed is obtained 

from eq. 3.7 (Table 3.1). The product analyses at 80 °C also show an increase in the efficiency for 

ethanol oxidation to CO2 (Tables 3.2 and 3.3), with nav increasing to 5.2 - 5.3, which is consistent 

with the values of 5.6 ± 0.3 and 5.4 ± 0.2 from eqs. 3.6 and 3.8, respectively (Table 3.4). The 

increased CO2 yield at 80 °C vs. 50 °C is consistent with literature reports (see Table 3.5). It can 
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also be seen from the data in Table 3.1 that there was considerably more crossover of ethanol to 

the cathode at 80 °C relative to 50 °C. 

Table 3.4. Summary of nav values obtained in this work.   

Mode 
Temp 

(C) 

Potential 

(V) 

  nav  

i vs. u 

(eq. 3.6) 

Ethanol 

consumed 

(eq. 3.8) 

Faradaic yields 

(eq. 3.9) 

Chemical yields 

(eq. 3.5) 

Crossover       50 0.70 4.4 ± 0.2 4.4 ± 0.7 * * 

Anode pol. 50 0.70 3.3 ± 0.3 3.9 ± 0.2 4.1 ± 0.2 4.0 ± 0.2 

Anode pol. 50 0.55 5.1 ± 0.2 4.7 ± 0.4 4.1 ± 0.2 4.4 ± 0.2 

Anode pol. 50 0.45 4.8 ± 0.2 3.8 ± 0.2 4.15 ± 0.01 4.0 ± 0.1 

Anode pol. 80 0.70 5.6 ± 0.3  5.4 ± 0.2 5.2 ± 0.2 5.3 ± 0.1 

Anode pol. 80 0.50 7.0 ± 0.1  6.0 ± 0.1 6.3 ± 0.1 6.1 ± 0.1 

Anode pol. 80 0.40 7.7 ± 0.2  6.5 ± 0.3 6.8 ± 0.1 6.6 ± 0.2 

* Not determined 

3.3.2.2 Low Current Region with Crossover 

Experiments were also performed at potentials below the mass transport limited region in 

order to explore the use of eq. 3.6 to determine nav under the mixed kinetic and mass transport 

conditions employed in fuel cells and electrolysis cells. Under these conditions, the concentration 

of ethanol does not drop to zero at the anode-membrane interface, and this results in crossover of 
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ethanol to the cathode.35 Since, the derivation of eqs. 3.6 and 3.7 assumes that all of the ethanol 

reaching the anode is oxidized,34 loss of ethanol by crossover would be expected to result in errors. 

Indeed, this was observed for methanol oxidation at potentials below the limiting current region, 

and the model was adapted in order to account for and quantify crossover.35 Here, the loss of 

ethanol into the cathode exhaust was quantified by NMR and current vs. flow rate data were 

analyzed by using both models (eq. 3.6 and a finite difference simulation with crossover) to assess 

the influence of ethanol crossover. nav values from product analyses were used to assess the 

accuracy of the nav values obtained from analysis of I vs. u curves. 

Figure 3.7 (●) shows current as a function of flow rate at 50 °C for an experiment at 0.55 

V, which provided only 46% of the current at 0.7 V. Fitting of these data to eq. 3.6 gave nav = 5.13 

and Ilim = 38.2 mA. The measured ethanol exhaust concentrations are given in row 2 of Table 3.1, 

where it can be see that there was significant crossover of ethanol to the cathode. Approximately 

4% of the ethanol entering the cell was detected in the cathode exhaust, which corresponds to 19% 

of (Cin - Cout-T), where Cout-T is the sum of the ethanol concentrations in the anode (Cout-A) and 

cathode (Cout- C) exhausts. Cout calculated with eq. 3.7 was 79.3 mM for nav = 5.13, which agrees 

well with the experimental total (Cout-T) of 79 mM. 

In order to investigate whether the crossover of ethanol caused an error in the nav obtained 

from eq. 3.6, the experimental I vs. u and Cout-A data were fitted to the simulation35 that includes a 

crossover parameter. The best fit gave nav = 5.19 and Ilim = 39.2 mA, and 4.8% loss of ethanol due 

to crossover. The crossover loss from the simulation agrees well with the experimental value of 

4.0 ± 1.1%, while the insignificant change in nav shows that this small amount of crossover does 

not compromise the accuracy of eq. 3.6. Ilim was increased slightly in the simulation because it is 

the limiting current that would be observed in the absence of crossover. 
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Full product analysis for the anode and cathode exhausts was used to test the accuracy of 

the nav of 5.1 ± 0.2 obtained from I vs. u, and the results are shown in row 2 of Tables 3.2 and 3.3. 

The analysis provided a good mass balance, with nav = 4.4 ± 0.2 (Table 3.2), which agreed within 

the experimental uncertainty with the nav of 4.1 ± 0.2 from the faradaic yields of CO2 and acetic 

acid (Table 3.3). Equation 3.7, based on the amount of ethanol consumed, gave a similar value of 

4.7 ± 0.4. The reasonable agreement of all of these nav values indicates that eq. 3.6 provides a 

useful measure of nav under these conditions. 

Figure 3.7 (◊) shows current as a function of flow rate for an experiment at 0.45 V, which 

provided only 21% of the current at 0.7 V. Fitting of these data to eq. 3.6 gave nav = 4.84 and Ilim 

= 17.5 mA, and use of these parameters in eq. 3.7 gave Cout = 89.4 mM at 0.2 mL min-1. The 

exhaust concentrations are given in row 3 of Table 3.1, where it can be see that there was increased 

crossover of ethanol to the cathode relative to the experiments at 0.55 V and 0.7 V. The measured 

Cout-T was slightly higher than the value from eq. 3.7, suggesting that the nav of 4.84 may have been 

slightly overestimated by use of eq. 3.6. Indeed, calculation of nav from the amount of ethanol 

consumed (eq. 3.8) gave a lower value of 3.8 ± 0.2. This conjecture was supported by analysis of 

the products, which provided nav = 4.0 ± 0.1 based on the mass balance (Table 3.2) and nav = 4.15 

± 0.01 based on the charge balance (Table 3.3). 

It should be noted that nav values obtained from the flow rate dependence of the current (eq. 

3.6) represent averages over the range of flow rates employed, and should not necessarily match 

those measured from ethanol and product analysis at a specific flow rate. Since the CO2 yield 

increases with decreasing ethanol concentration, and the average concentration of ethanol in the 

flow field decreases with decreasing flow rate, nav increases with decreasing flow rate.34 In the 

experiments at 0.45 V, the average ethanol concentration in the anode flow field was ca. 89 mM 
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at 0.2 mL min-1, but only 80 mM over the range of 0.02 - 0.5 mL min-1. This can adequately explain 

the higher nav from eq. 3.6. 

In order to assess the effect of crossover on the nav from eq. 3.6, the experimental I vs. u 

and Cout-A data at 0.45 V were fitted to the simulation with crossover. The best fit gave nav = 4.98, 

Ilim = 18.6 mA, and 10.4% loss of ethanol due to crossover. The measured loss due to crossover 

was 7.7 ± 1.0%, and so again the value from the simulation is reasonable. The slightly higher nav 

from the simulation relative to eq. 3.6 should be more accurate, although the difference is not 

statistically significant. 

Current vs flow rate data at 80 °C for two potentials (0.4 and 0.5 V) below the mass 

transport controlled region are shown in Figure 3.8. Fitting of eq. 3.6 to these data sets gave nav = 

7.68 at 0.4 V and nav = 7.00 at 0.5 V, which are both significantly higher than the value of 5.55 

obtained at 0.7 V. This decreasing nav with increasing potential is consistent with literature 

reports,42,43 as are the higher values relative to those obtained at 50 °C (Table 3.4). Analysis of the 

ethanol (Table 3.1) and products (Tables 3.2 and 3.3) exiting the cell gave somewhat lower nav 

values than eq. 3.6, as can been seen from the summaries in Table 3.4. This can be attributed to 

the effect of flow rate on nav. The ethanol exhaust concentrations in Table 3.1 indicate that ca. 15.7% 

and 7.5% of the ethanol entering the cell crossed over to the cathode at 0.4 V and 0.5 V, 

respectively. Simulations show that these levels of crossover would make nav values from eq. 3.6 

ca. 2-5% too low. 
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Figure 3.8. Current vs. flow rate for oxidation of 0.100 M ethanol at 80 °C in anode 

polarization mode at 0.4 V (◊), 0.50 V (●), and 0.70 V (□) with best fit curves calculated 

by using eq. 3.6 with Ilim = 25.3 mA and nav = 7.68, Ilim = 63.9 mA and nav = 7.00, and Ilim 

= 86.8 mA, nav = 5.55, respectively. 

3.3.3 Discussion 

 It is clear from the results in Table 4 that all four methods for determining nav give similar 

results under a variety of conditions. There are significant uncertainties in all cases, and there may 

be some systematic errors. Crossover of ethanol would be expected to cause an error when eq. 3.6 

is used, although modelling of this indicates that it was not a significant source of error (< 5%) 

here. Loss of acetaldehyde during sample collection would also lead to a systematic error, but this 

has been accounted for by using the mass and charge balances. nav values obtained from the mass 

and changes balances did not differ significantly, indicating good accuracy. 
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From inspection of the results in Table 3.4, it can be seen that the flow rate dependence of 

the current (eq. 3.6) provides a valuable method for routine determination of nav. It can be applied 

as a simple extension of a polarization experiment, and can track changes in the stoichiometry as 

the operating conditions (e.g. T, Cin, pressure) of the cell are changed. In combination with a simple, 

inexpensive, commercial CO2 detector, it can provide the product distribution from eq. 3.9 with 

charge balance, if it is assumed that the only products are CO2, acetic acid and acetaldehyde. A 

conductivity sensor can also be employed to monitor acetic acid production.44 Where necessary, 

the results can be verified and refined by analysis of the combined exhaust solutions by NMR or 

chromatography. The product distribution and nav can be obtained from just the ethanol and acetic 

acid concentrations by applying eq. 3.8 to obtain nav and solving eq. 3.5 with mass balance. This 

simplifies the analytical procedure considerably, and potential errors due to the loss of ethanol into 

the gas stream can be avoided if the CO2 does not need to be measured. 

We have applied eq. 3.6 and the comprehensive analysis methodology reported here to a 

DEFC (i.e. with air at the cathode), but have not achieved a satisfactory accounting of the crossover 

effects and production of CO2, acetic acid and acetaldehyde by the chemical reaction of ethanol 

with oxygen. Although comprehensive analysis of the products and residual ethanol should 

provide this information, changes in the current and product distributions with time produced 

unacceptable uncertainties. Consequently, the anode polarization data presented here provide the 

best estimates available for the stoichiometry and product distribution of ethanol oxidation in a 

DEFC. 

The nav values reported in Table 3.4 and product distributions reported in Tables 3.2 and 

3.3 are consistent with literature reports, and follow similar trends. Representative product 

distributions from the literature are presented in Table 3.5, together with nav for each distribution 
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calculated with eq. 3.5 for chemical yields or eq. 3.9 for faradaic yields. Where only the CO2 yield 

was reported, the range of nav given is for 0% acetic acid to 0% acetaldehyde. At 50 °C, the 

literature nav values range from 2.1 to 4.2, while those in Table 3.4 range from 3.3 to 5.1. The 

higher values in this work, which are due to the higher CO2 yields (Table 3.3), can be attributed to 

the use of a high loading of Pt black (4 mg cm-2) compared with low loadings of 20% Pt on carbon 

(0.028 - 0.04 mg cm-2) in the literature reports.16,42 At 80 °C, the literature nav values range from 

2.6 to 7.3 while those in Table 3.4 range from 5.2 to 7.7, again showing good compatibility in light 

of the high Pt loading and low ethanol concentration employed here. The nav values in Table 3.5 

are generally much higher at 80 °C than 50 °C, as found in this work (Table 3.4). 

Generally, it can be seen from the data in Table 3.5 that the CO2 yield decreases as the 

anode potential is increased, and the results in Table 3.4 also follow this trend. This can be 

attributed to the effect of oxide formation on the Pt surface, which is necessary to oxidize the 

adsorbed CO intermediate, but restricts the number of contiguous site available for ethanol 

adsorption.42,45 Consequently, for efficient oxidation of ethanol, it is important to avoid oxide 

formation on Pt. This requires a second, oxophilic component, such as Ru or Sn, to provide the 

oxide required to form CO2 at lower potentials.32,46,47 However, since the dissociation of the C-C 

bond of ethanol requires 3 adjacent Pt sites,48,49 the presence of a second metal on the Pt surface 

can inhibit dissociation and causes a decrease in CO2 formation. Consequently, the surface 

coverage of the second metal must be low, or it should be present as a separate phase. Oxide 

supports can provide the required oxide sites and have been shown to increase activities while 

maintaining high efficiency for the complete oxidation.50-56 It is an approach that offers great 

potential for the development of efficient DEFCs. However, further work is required in order to 

establish that oxide supported catalysts produce high stoichiometries under fuel cell conditions. 
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Table 3.5. Summary of product yields and calculated nav values from literature reports of 

ethanol oxidation at 50 °C and 80 °C. AAL is acetaldehyde, AA is acetic acid. 

T 

(°C) 

catalyst 
Pt loading 

(mg cm-2) 

[EtOH] 

(mol cm-3) 

potential (V) 

referencea 

Yieldb 

nav
 Ref. 

%AAL %AA %CO2 

50 20% Pt/C 0.028 0.1 scan 37 60 2.7 3.0 16 

50 20% Pt/C 0.04 0.1 0.48 RHE - - 7.8 2.1-4.2 42 

80 20% Pt/C 0.04 0.1 0.48 RHE - - 25.7 2.55-4.83 42 

80 60% Pt/C 3.0 2.0 
-0.4 to -0.6 

cathode 
47.5 32.5 20 4.7 15 

80 Pt black 4.0 0.5 - 41.9 39.5 18.6 3.09 44 

80 Pt black 4.0 0.1 0.4 DHE - - 56 3.8-6.8 57 

80 63% Pt/C 1.0 0.5 -0.1 cathode 14 65 21 5.4 31 

80 63% Pt/C 1.0 0.5 -0.2 cathode 29 57 14 4.6 31 

80 18% Pt/C 1.0 0.2 -0.1 cathode 15 47 37 6.7 58 

80 18% Pt/C 1.0 0.2 -0.2 cathode 21 31 47 7.3 58 

- Not reported. 
a Cathode is the oxygen electrode of a fuel cell. 
b Faradaic or  chemical (italics) yields. 

 

3.4 Conclusions 

The flow rate dependence of the current for a fuel cell operated in anode polarization mode 

can provide a good estimate of the stoichiometry (nav) of ethanol oxidation at a DEFC anode, or in 

a PEM electrolysis cell. Errors due to crossover are typically <5%. The stoichiometry can also be 

conveniently obtained from analysis of the ethanol in the anode and cathode exhausts by NMR, 

which also provides the rate of crossover of ethanol through the membrane. NMR analysis also 
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provides the yield of acetic acid, which allows the yields of acetaldehyde and CO2 to be estimate 

from nav. This is important because of the experimental difficulty of quantitative collection of the 

acetaldehyde. Furthermore, it will be important in the determination of product distributions from 

DEFCs where the chemical reaction of ethanol with oxygen also produces acetaldehyde, acetic 

acid, and CO2. 
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4. Product Distributions and Efficiencies for Ethanol Oxidation in a Proton 

Exchange Membrane Electrolysis Cell 

4.1 Introduction 

The electrochemical oxidation of ethanol in cells with proton exchange membrane (PEM) 

electrolytes is of central importance to the development of energy technologies based on bio-

ethanol. PEM-based direct ethanol fuel cell (DEFC)1,2 power systems are potentially one of the 

best alternatives to internal combustion engines,3 although their efficiencies will need to be 

increased significantly. Alternatively, ethanol electrolysis cells (EEC) can be used to produce 

hydrogen.4–6 In an EEC, ethanol is oxidized at the anode and protons are reduced to hydrogen at 

the cathode. In a DEFC, ethanol is oxidized at the anode and oxygen is reduced to water at the 

cathode. The attraction of these technologies arises from their high theoretical efficiencies and the 

perception that emissions will be low. However, the incomplete oxidation of ethanol at all known 

catalysts currently results in low efficiency cells and large amounts of byproducts.2 

To achieve high energy efficiencies in EECs and DEFCs the faradaic efficiency (εF) for 

the electrochemical oxidation of ethanol to carbon dioxide (eq. 4.1) must be high.2,7 However, in 

practice low yields of CO2 have generally been reported, with the major products being 

acetaldehyde (eq. 4.2) and acetic acid (eq. 4.3). 

  

  CH3CH2OH + 3 H2O → 2 CO2 + 12 e- + 12 H+                                         (4.1) 

  CH3CH2OH → CH3CHO + 2 e- + 2 H+                                                 (4.2)   

  CH3CH2OH + H2O → CH3CO2H + 4 e- + 4 H+                                         (4.3) 
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 The faradaic efficiency is the ratio of the average number of electrons transferred per 

molecule of ethanol (nav) to the maximum of 12 for the complete oxidation to CO2 (εF = nav/12). 

It is determined by the product distribution according to eq. 4.4,8 

    nav = ∑ ni ∙fi                                                                    (4.4) 

where ni is the number of electrons transferred to form product i and fi is the fraction of ethanol 

converted to product i. The importance of nav in determining the efficiency of ethanol oxidation 

technologies makes product analysis of central importance in the development of better anode 

catalysts.9 

 Although there have been many advances in the electrochemical performances (potential 

efficiency) of ethanol oxidation catalysts,9-12 high faradaic efficiencies remain elusive. Pt alloys 

with metals such as Ru and Sn can increase the potential efficiency greatly, but there is generally 

a decrease in faradaic efficiency.7,9,13,14 In contrast, alloying Pt with Rh increases the faradaic 

efficiency, but decreases the potential efficiency.15,16 Currently, one of the best approaches appears 

to be to combine PtRh alloy nanoparticle catalysts with Sn oxide based support materials.17,18 

 There have been many mechanistic studies of the oxidation of ethanol in liquid electrolyte 

cells at ambient temperature,9,11,19 with intermediates and products identified in many cases by 

infrared spectroscopy and/or differential electrochemical mass spectrometry (DEMS).9,11 In 

combination with computational studies,20, 21 these have provided a good understanding of factors 

that influence the product distribution at ambient temperature. However, there have been relatively 

few studies of product distributions for ethanol oxidation at elevated temperatures, in either liquid 

electrolytes or PEM cells. Sun et al.22 conducted a comprehensive DEMS study of CO2 production 

at a carbon supported Pt (Pt/C) electrode in aqueous sulfuric acid over a temperature range of 23–

100 °C. CO2 formation was found to increase with increasing temperature, decreasing ethanol 
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concentration, and decreasing potential between 0.48 and 0.68 V vs. RHE. Measurements of 

products from PEM-DEFCs have mainly been made by analyzing the anode exhaust solution 

only,7,13, 23-30 which provides inaccurate results due to crossover of products to the cathode, and 

chemical oxidation of ethanol by the oxygen supplied to the cathode.26,31 The latter problem can 

be avoided by using nitrogen and/or hydrogen at the cathode,31 while the loss of products by 

crossover can be addressed by analysis of the cathode exhaust.30, 31 However, these methods have 

only been applied simultaneously in one study.32 In that work, the effects of crossover were 

quantified and varies methods for determining nav at a Pt black anode were assessed.  

 The purpose of the work described in this chapter was to investigate and compare the 

potential dependences of product distributions and nav for ethanol oxidation at commercial carbon 

supported Pt, PtRu and PtSn catalysts at 80 °C in a PEM electrolysis cell. Proton nuclear magnetic 

resonance (1H-NMR) spectroscopy was used to measure the concentrations of acetaldehyde, acetic 

acid and residual ethanol exiting the cell, while CO2 was analyzed with a commercial non-

dispersive infra-red (NDIR) detector.32 The accuracy of the nav values obtained by product analysis 

has been verified by comparison with the amount of ethanol consumed. 

 This is only the second study in which errors due to crossover and the chemical oxidation 

of ethanol by oxygen have been avoided.32 It provides the first accurate determination of products 

yields and stoichiometry for ethanol oxidation at carbon supported and alloy catalysts, and the first 

comparison of efficiencies between different catalysts.  
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4.2 Experimental  

4.2.1 The Cell 

A commercial fuel cell (5 cm2 active area; Fuel Cell Technology Inc.) was operated as an 

electrolysis cell by supplying 0.1 M ethanol (Commercial Alcohols Inc.) solution to the anode at 

0.2 or 0.5 mL min-1 with a syringe pump and N2 to the cathode at 35 mL min-1. The cathode acts 

a dynamic hydrogen electrode (DHE) and provides a relatively stable reference potential. The 

anode inlet and both outlets of the cell were modified with stainless steel tubing that connected 

directly to the graphite flow field plates. The flow field channels were sealed with ethyl-2-

cyanoacrylate33 in order to minimize absorption of ethanol and reaction products into the graphite 

plates.31 The cell was operated at 80 °C in all experiments.  

Anodes were prepared using the following commercial catalysts. The carbon supported Pt 

catalyst (Pt/C) was HiSPECTM 13100, 70% Pt on a high surface area advanced carbon support 

(Alfa Aesar; Lot# M22A026). The carbon supported PtRu alloy catalyst (PtRu/C) was HiSPECTM 

12100, 50% Pt and 25% Ru on a high surface area advanced carbon support (Alfa Aesar; Lot# 

P17B047). The carbon supported PtSn alloy catalyst (PtSn/C) was 40% HP PtSn alloy (3:1 atom%) 

on Vulcan XC-72 (BASF Fuel Cell Inc.; Lot# F0060910). Catalyst suspensions were prepared by 

sonication of the catalyst (21-39 mg) in ca. 0.2-0.4 mL of a 1:1 mixture of 1-propanol and Nafion 

solution (Dupont; 5% Nafion) for 3 h at ambient temperature. An appropriate amount of the 

suspension was spread onto Toray carbon fiber paper (CFP; TGP-H-090) with a spatula to give a 

metal loading of 3.2 mg cm-2. Cathodes consisted of 4 mg cm-2 Pt black on TGP-H-090. 

Membrane and electrode assemblies (MEA) were prepared by pressing (room temperature; 

ca. 1.5 MPa) an anode and cathode onto a NafionTM 115 membrane in the cell.34 Electrochemical 
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measurements were made under steady state conditions at constant cell potentials using a Hokuto 

Denko HA-301 potentiostat.  

4.2.2 Ethanol and Product Analysis 

 The product collection apparatus is shown schematically in Figure 4.1. Ethanol and 

reaction products from the anode and cathode were combined before analysis. Liquids were 

collected in a trap cooled with a mixture of ice and dry ice, while CO2 remaining in the N2 stream 

was measured in real time with a commercial non-dispersive infrared CO2 monitor (Telaire 

7001).35 The current and CO2 readings were allowed to stabilize, and then averaged over a period 

of at least 100 s. 

 

Figure 4.1. Schematic diagram of the product collection system. 
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 For analysis by 1H-NMR, 400 µL samples collected from the trap were mixed with 100 µL 

of D2O containing 32 mM fumaric acid as an internal standard, which gives a singlet peak in the 

spectra at 6.72 ppm.32 Spectra were recorded on a Bruker AVANCE III 300 spectrometer. The 

D2O in the sampled provided the field frequency lock and spectra were referenced to sodium 3-

(trimethylsilyl)-2,2,3,3-tetradeuteropropionic propionate at 0 ppm. The residual ethanol 

concentration was determined from the triplet at 1.10 ppm. The residual ethanol concentration was 

determined from the triplet at 1.10 ppm. The only products detected in the exhaust solution were 

acetic acid (singlet at 2.01 ppm) and acetaldehyde (doublet at 2.15 ppm). Acetaldehyde forms a 

dimer under the conditions of these experiments,36 as indicated by a doublet at 1.24 ppm, and so 

the integral of the 1.24 ppm peak was added to give a single acetaldehyde concentration.  

4.3. Results and Discussion 

4.3.1 Polarization Curves 

 Figure 4.2 compares polarization curves for the oxidation of 0.1 M ethanol at the Pt/C, 

PtRu/C, and PtSn/C anodes. As expected from many previous studies,10,12 the current for ethanol 

oxidation at low potentials was much higher at the PtRu/C anode than the Pt/C anode. However, 

the current at the PtRu/C anode levelled off at potentials above 0.5 V, while the current at the Pt/C 

anode increased sharply to a peak at ca. 0.6 V that was approximately double the current at the 

PtRu/C anode. The plateau in the current at the PtRu/C anode suggests that it became limited by 

ethanol diffusion through the CFP backing layer, in which case this mass transport limited current 

(ilim) can be described by eq. 4.5.37 

     ilim = navFADC/l                         (4.5) 
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Where A is the area of the electrode, D is the diffusion coefficient, C is the concentration of ethanol, 

and l is the thickness of the CFP. Since changing the catalyst can only change nav in eq. 4.5, the 

higher currents at the Pt/C anode at potentials ≥ 0.45 V in Figure 4.2 suggest that nav was much 

higher than at the PtRu/C anode over this potential range. 

The currents at the PtSn/C anode in Figure 4.2 were similar to those at the Pt/C anode at 

potentials below 0.35 V, but lower than those for both the Pt/C and PtRu/C anodes at higher 

potentials. The relatively poor performance of this electrode may be due to the lower loading of 

metal on the carbon support (40% vs. 70% and 75% for Pt/C and PtRu/C, respectively). The lower 

limiting current relative to the PtRu/C anode may indicate a lower nav or may be due to an 

additional diffusion limitation in the catalyst layer, which was thicker because of the larger amount 

of carbon support. The PtSn/C catalyst employed here is same type as the PtSn3/C catalysts from 

E-TEK employed and characterized by several other groups.38 The 20% PtSn3/C catalyst has been 

shown to be superior to 20% Pt/C from E-TEK for ethanol oxidation in a DEFC.39 However, it is 

clearly inferior to the more advanced Johnson Matthey Pt/C and Pt/Ru/C catalysts from Alfa Aesar. 

The lower masses of Pt in the PtSn/C and PtRu/C anodes relative to the Pt/C anode was not a 

significant factor here, since the loading of the Pt/C catalyst could be decreased to match their Pt 

masses without a significant decrease in performance. 
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Figure 4.2. Polarization curves for the oxidation of 0.100 M ethanol (0.5 mL min-1) at 

Pt/C, PtRu/C, and PtSn/C anodes at 80 ºC. 

4.3.2. Stoichiometry (nav) from the Consumption of Ethanol and Product Yields 

 If it is assumed that there were no losses of ethanol from the cell or during collection of the 

liquids from the combined anode (liquid + CO2) and cathode (N2 + CO2 + condensed liquids) 

exhausts, nav can be obtained directly from the concentration of ethanol in the exhaust liquid (Cout) 

by using eq. 4.6: 

    nav = i/uF(Cin – Cout)                                                                 (4.6) 

where i is the average current, and u and Cin are the flow rate and concentration, respectively, of 

the ethanol solution entering the cell. In these experiments 3.2% to 65.8% of the ethanol entering 

the cell was consumed electrochemically. Results for ethanol oxidation at the Pt/C, PtRu/C, and 
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PtSn/C anodes are plotted as a function of potential in Figure 4.3, together with values calculated 

from the product yields by using eq. 4.4. The two methods gave similar values, with small 

differences that can be attributed to experimental uncertainty. 

It can be seen from the data in Figure 4.3 that nav was much higher at the Pt/C anode than 

at the PtRu/C and PtSn/C anodes. The maximum nav was 7.9 at 0.5 V, while values of 5.8 and 4.5 

were obtained for PtSn/C and PtRu/C at this potential. These differences are consistent with the 

higher yields of CO2 that have generally been reported for ethanol oxidation at Pt relative to PtRu 

and PtSn.7,13,35 

 

Figure 4.3. nav vs. potential for the oxidation of 0.100 M ethanol (0.2 mL min-1) at Pt/C, 

PtRu/C, and PtSn/C anodes at 80 ºC. Solid points were calculated from the CO2, acetic 

acid, and acetaldehyde yields by using eq. 4.4. Open points were calculated from the 

ethanol consumed by using eq. 4.6. Lines are drawn though the averages of the values 

from eqs.  4.4 and 4.6. 
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Interestingly, the potential dependences were significantly different for the three catalysts. 

Whereas nav varied over only a narrow range at PtRu/C, from 3.2 to 4.5, PtSn/C gave a significant 

peak at ca. 0.55 V, while there were two peaks for Pt/C. The peak at 0.5 V for Pt/C can be attributed 

to CO2 production via the oxidation of adsorbed CO (COads),
40–42 while the peak of nav = 6.1 at 

0.35 V suggests that there may be a pathway to CO2 that does not involve COads as an intermediate. 

4.3.3 Product Distributions 

Although nav is the key parameter that determines the fuel efficiency of a DEFC or EEC, 

accurate determination of the product distribution is also very important. In addition to verifying 

the accuracy of nav values obtained from eq. 4.6, it provides crucial information for analysis of the 

reaction kinetics, and the quantities of byproducts produced by the cell. Since acetaldehyde is an 

intermediate that can be recycled through the cell, whereas acetic acid is a terminal product, 

knowledge of their ratio is necessary to determine the overall system efficiency, and the final 

amount of acetic acid produced. 

Figure 4.4 shows faradaic yields of CO2 vs. potential for the three different anodes. These 

results parallel the nav data in Figure 4.3 because changes in nav are dominated by changes in the 

production of CO2, due to the higher number of electrons transferred. However, the faradaic yields 

exaggerate the amount of CO2 produced for the same reason. They are shown here to allow 

comparisons with literature reports, where faradaic yields have normally been presented.  
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Figure 4.4. Faradiac yields of CO2 vs. potential for oxidation of 0.100 M ethanol at Pt/C 

(□), PtRu/C (●), and PtSn/C (◊) anodes at 80 ºC. 

 Figure 4.5 shows chemical yields of CO2, acetic acid, and acetaldehyde as a function of 

potential. These are based only on the measured quantities of these three products, and have been 

calculated by using eq. 4.7: 

  Chemical yield of i = Ni /(Ncarbon dioxide + Nacetic acid + Nacetaldehyde)      (4.7) 

where Ni is the number of moles of ethanol required to produce the amount of product i measured 

in the exhaust from the cell. The measured amount of ethanol consumed by the cell was not used 

here in order to minimize the uncertainty, and to obtain yields that would produce independent 

values of nav when used in eq. 4.4. However, it should be noted that the amount of ethanol required 

to form the measured products agreed very well with the measured decrease in ethanol 
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concentration. The sum of ethanol plus products exiting the cell was 99.3 ± 1.1% of the ethanol 

entering the cell averaged over the three data sets. This indicates that there was not a significant 

loss of ethanol or products, and that no other products were formed in significant (>1%) quantities. 

This is an important result because it means that NMR analysis alone can provide the product 

distribution, with the yield of CO2 calculated from the mass balance. Other minor products that 

have been reported include ethyl acetate,23,28 ethane,40 methane,40 ethane-1,1-diol,28 and 

ethoxyhydroxyethane28. None of these products were detected in this work. 

 

Figure 4.5. Chemical yields of CO2, acetic acid, and acetaldehyde as a function of 

potential for oxidation of 0.100 M ethanol at Pt/C, PtRu/C, and PtSn/C anodes at 80 ºC.  

It can be seen from the data in Figure 4.5 that the highest chemical yields of CO2 were 50% 

for Pt/C at 0.5 V, 7% for PtRu/C at 0.45 V, and 27% for PtSn/C at 0.6 V. At lower potentials, 

which are necessary for the potential efficiency to be reasonable, the CO2 yield remained 

substantial for Pt/C but dropped to very low values (≤ 5%for potentials of ≤ 0.35 V) for PtRu/C 
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and PtSn/C. At low potentials, Pt/C also gave high yields of acetaldehyde, which can be further 

oxidized to CO2 and acetic acid if recycled and thereby increase the overall faradaic efficiency. 

PtRu/C provided high selectivity for the oxidation of ethanol to acetic acid, which can be 

attractive for production of H2 from ethanol electrolysis because acetic acid is an important 

commodity.2 At low potentials, large amounts of acetaldehyde were also produced. PtSn/C also 

produced predominantly acetic acid, but the sample used here did not produce high enough 

currents at low potentials to be useful. The Pt/C catalyst was superior for faradaic efficiency, while 

the PtRu/C provided better potential efficiency and better efficiency for acetic acid production. 

Comparative product distributions from the literature have previously been tabulated and 

reviewed.9,32 Many new catalysts that show improved activities and/or selectivity for the complete 

oxidation of ethanol at ambient temperature in liquid electrolytes have been developed.9,11 

However, we are not aware of any reports of product distributions for ethanol oxidation at elevated 

temperature or in polymer electrolyte cells for these advanced catalysts. 

4.3.4 Efficiencies 

4.3.4.1 Ethanol Electrolysis Cell 

 The energy efficiency for production of hydrogen from the electrolysis of ethanol involves 

a number of factors, including the electrical energy required for the electrolysis and the various 

losses from incomplete oxidation of the ethanol and crossover to the cathode.5 However, in theory 

all of the residual ethanol and products can be collected without a significant loss of energy. 

Consequently, only the electrical energy input and the energy density of the ethanol (8.0 kWh kg-

1) will be considered here.   

The electrical energy consumed (We) is given by eq. 4.8,5 
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    We = (33 kWh kg-1) Ecell / 1.229                  (4.8) 

where Ecell is the applied cell potential, the energy density of the hydrogen produced is 33 kWh kg-

1 and the thermodynamic potential for electrolysis of water is 1.229 V. Consequently the energy 

consumed is proportional to the cell potentials vs. DHE in Figure 4.2. The PtRu/C anode therefore 

produced the highest electrical efficiency at currents up to ca. 100 mA while the Pt/C anode was 

more efficient at higher currents and could produce hydrogen at higher rates. Pt/C provides the 

added advantages of lower ethanol consumption and lower amounts of byproducts that would need 

to be utilized to maintain the overall efficiency of the system. At 0.5 V and 35 mA cm-2 the cell 

with the Pt/C anode consumed ca. 13 kWh kg-1 of electrical energy to provide hydrogen with an 

energy density of 33 kWh kg-1. Based on the measured nav of 7.94, this would require ca. 5.8 kg 

of ethanol per kg of hydrogen, corresponding to 46 kWh kg-1 of chemical energy. The total energy 

input was therefore ca. 59 kWh kg-1 with concurrent production of ca. 3.5 kg of acetic acid. 

Electrolysis of water typically requires 50 kWh kg-1, making this a potentially attractive 

technology for co-production of hydrogen and acetic acid, if the current density can be increased 

to be competitive with the ca. 1 A cm-2 level currently used for water electrolysis.5 

4.3.4.2 Direct Ethanol Fuel Cell 

 Since nav cannot be accurately determined in a DEFC because of the chemical reaction of 

ethanol with oxygen, values from ethanol electrolysis (Figure 4.3) are used here to estimate the 

efficiencies of DEFCs. This, for the first time, allows catalysts to be compared based on the overall 

efficiency that they will provide. If the loss of ethanol due to crossover is neglected for simplicity, 

the overall efficiency of a DEFC (εDEFC) can be calculated by using eq. 4.9: 

                                          εDEFC = εrev x εE x εF                                                   (4.9) 
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 where εrev is the theoretical efficiency of 96% at 80°C, εE is the potential efficiency (εE = Ecell/Erev, 

where Erev is the reversible cell potential of ca. 1.15 V), and εF = nav/12. The potential efficiency 

includes losses due to the anode (ηanode) and cathode (ηcathode) overpotentials as well as the ohmic 

resistance of the cell (R) (eq. 4.10).  

   εE = (Erev - ηcathode - ηanode - iR)/Erev                             (4.10)   

If it is assumed that the overpotential of the DHE cathode was negligible, (ηanode + iR) is 

given approximately by the difference between the cell potential in Figure 4.2 and the standard 

potential of +0.084 V for reaction 4.1. In order to assess the effects that the different anodes would 

have on the efficiency of a DEFC through equations 4.9 and 4.10, values of ηcathode were modelled 

by fitting a representative43 iR corrected cathode polarization curve to a Tafel relationship (eq. 

4.11), with b = 47 mV (the low value can be attributed to ethanol crossover44) and a current of 1 

mA at 0.81 V vs. DHE.  

    ηcathode = 1.23 V - 0.81 V + blog(i/mA)     (4.11) 

The average nav at each potential in Figure 4.3 was used to calculate εF. Figure 4.6 shows 

the calculated DEFC efficiencies as a function of the current density.  

 It can be seen from the data in Figure 4.6 that the highest efficiency for a DEFC would 

have been obtained with the Pt/C anode over the whole current range. The PtSn/C anode would 

give the lowest efficiency at all currents, while PtRu/C would give slightly higher efficiencies and 

somewhat higher current densities. These results highlight the importance of developing catalysts 

with high selectivity for the oxidation of ethanol to CO2, since this is the dominant factor 

influencing DEFC efficiency.  
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Figure 4.6. Predicted efficiency vs. current density for DEFCs operating at 80 °C with 0.1 

M ethanol at 0.5 mL min-1 with Pt/C (□), PtRu/C (●) and PtSn/C (◊) anodes.  

 It should be noted that the comparison of efficiencies calculated using eq. 4.10 depends on 

the cathode overpotentials employed. If the cathode overpotentials are higher, the PtRu/C anode 

can provide the highest overall efficiency in the intermediate current region, but the efficiencies 

with all anodes would be lower than shown in Figure 4.6. It should also be noted that the PtSn/C 

catalyst employed here had a significantly lower Pt loading than the Pt/C and PtRu/catalysts, which 

were also newer and more advanced. Consequently, the comparison of its efficiency with these 

state of the art catalysts does not accurately reflect the potential for advanced PtSn/C catalysts to 

contribute to DEFC and EEC technologies. 

 



114 
 

4.4 Conclusions 

 Proton NMR spectroscopy provides a simple, reliable, and accurate method for 

determining the stoichiometry, efficiency, and product distribution for ethanol electrolysis in fuel 

cell hardware. It is essential that the exhausts from both the anode and cathode are collected and 

analyzed because of the crossover of ethanol and all products through the membrane. However, 

the two exhausts can be combined for analysis unless knowledge of the extent of crossover is 

required. The combination of ethanol consumed and the quantities of acetic acid and acetaldehyde 

produced provide the necessary information without the need for analysis of the CO2 produced, 

since the yield of CO2 can be obtained from the mass balance. 

The results for the commercial Pt/C, PtRu/C, and PtSn/C catalysts investigated here show 

that Pt/C would provide the highest efficiency for a fuel cell and for an electrolysis cell at high 

current densities, due to the higher stoichiometry of the ethanol oxidation reaction. However, 

PtRu/C provides better electrolysis efficiency than Pt/C at low current densities due to the lower 

overpotentials required. Also, PtRu/C will be the preferred catalyst if the acetic acid produced can 

be valorized. 
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5. Pt and PtRu Catalyst Bilayers Increase Efficiencies for Ethanol Oxidation in 

Proton Exchange Membrane Electrolysis and Fuel Cells 

5.1 Introduction  

 Bio-ethanol is an attractive renewable fuel for use in fuel cells for many reasons, including 

its high energy density, relative safety, and the well-developed infrastructure for its production and 

distribution.1-2 Direct ethanol fuel cells (DEFC) are potentially one of the best low emission power 

sources for transportation,3 and have many other potential applications.2,4 Alternatively, ethanol 

can be oxidized in an ethanol electrolysis cell (EEC) to produce hydrogen for use in fuel cells.5 

Hydrogen fuel cells are already well developed, and can provide much higher power densities than 

DEFCs.6-7 

 One of the fundamental advantages of fuel technology over the use of heat engines is the 

prospect of higher efficiencies. This will become increasingly important as renewable fuels are 

substituted for fossil fuels. The efficiency of a DEFC is determined by the thermodynamic 

efficiency (εrev = 97% at 25 °C),8 the potential efficiency (εE = Ecell/Erev, where Ecell is the cell 

potential and Erev is the reversible cell potential of ca. 1.15 V),8 the faradaic efficiency (εF), and 

fuel losses due to crossover of ethanol and oxygen through the membrane (εC), according to 

equation 5.1.1 

                                           εDEFC = εrev εE εF εC                                                                (5.1) 

The faradaic term arises from the lower number of electrons transferred (n) for the partial 

oxidation of ethanol to acetaldehyde (n = 2; eq. 5.2) and acetic acid (n = 4; eq. 5.3), relative to 

complete oxidation to CO2 (n = 12; eq. 5.4). It is the ratio of the average number of electrons 

transferred (nav) to the maximum of 12 (εF = nav/12). 
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  CH3CH2OH → CH3CHO + 2 e- + 2 H+                                          (5.2)   

  CH3CH2OH + H2O → CH3CO2H + 4 e- + 4 H+                                         (5.3) 

  CH3CH2OH + 3 H2O → 2 CO2+ 12 e- + 12 H+                                         (5.4) 

 The stoichiometry of the ethanol oxidation reaction (nav) is also a central parameter in the 

electrolysis of ethanol, since it determines the ratio of hydrogen production to the consumption of 

ethanol. It can be determined more accurately in an EEC, where ethanol is only consumed 

electrochemically, than a DEFC were ethanol also reacts chemically with oxygen.9 In this work, 

nav has been determined in an EEC by measurement of the amount of ethanol consumed (eq. 5.5),9 

    nav = i/uF(Cin – Cout)                                                    (5.5) 

where i is the average current, u is the flow rate of the ethanol solution, Cin is the initial ethanol 

concentration, and Cout is the concentration of ethanol in the combined anode and cathode exhausts. 

 The multiplication of the potential and faradaic efficiency terms in eq. 5.1 means that both 

must be high to provide a competitive overall efficiency. However, this has not yet been achieved.1 

For proton exchange membrane cells, Pt anode catalysts can provide relatively high faradaic 

efficiencies,9, 11 but potential efficiencies are low. Alloying of Pt with Ru and/or Sn (for example) 

can significantly increase the potential efficiency,12 but results in lower faradaic efficiencies.13-15 

The purpose of the work reported in this chapter was therefore to explore the effects of combining 

discrete Pt and PtRu catalysts as a mixture or in separate layers in the anode of an EEC. It was 

postulated that the acetaldehyde intermediate formed at the PtRu catalyst could be oxidized at the 

Pt catalyst to increase the faradaic efficiency, while maintaining the higher potential efficiency of 

the PtRu catalyst.  
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5.2 Experimental 

 A commercial fuel cell (5 cm2 active area; Fuel Cell Technology Inc.) with small 

modifications10 was used with a 4 mg cm-2 Pt black cathode, Nafion™ 115 membrane (acidic 

polymer electrolyte) and various anodes. The gaskets were 0.25 mm fibre-glass reinforced Teflon 

on each side of the membrane. The compression was ca. 15 kg cm-2.16 Ethanol (Commercial 

Alcohols Inc.) solution (0.100 M in water) was supplied to the anode at 0.2 or 0.5 mL min-1 with 

a syringe pump and N2 was passed over the cathode at 35 mL min-1 to avoid interference from 

oxygen. The cathode acts a Dynamic Hydrogen Electrode (DHE). Electrochemical measurements 

were made at 80 °C under steady state conditions and constant cell potentials using a Hokuto 

Denko HA-301 potentiostat. 

Anodes were prepared using commercial carbon supported Pt (HiSPEC® 13100, 70% Pt 

on a high surface area advanced carbon support (Alfa Aesar; Lot# M22A026)) and PtRu alloy 

(HiSPEC® 12100, 50% Pt and 25% Ru on a high surface area advanced carbon support (Alfa Aesar; 

Lot# P17B047)) catalysts. Suspensions of the catalyst in a ca. 1:1 mixture of 1-propanol and 

Nafion® solution (Dupont; 5% Nafion) were spread onto TorayTM carbon fiber paper (CFP; TGP-

H-090) with a spatula to give a metal loading of 3.2 mg cm-2. For preparation of the bilayer anodes, 

a 1.6 mg cm-2 Pt layer was applied to the CFP, allowed to dry, and then coated with a 1.6 mg cm-

2 PtRu layer (designated as Pt on PtRu relative to the membrane; see Figure 5.2A), or vice versa 

(PtRu on Pt). Electrodes were allowed to dry overnight at ambient temperature to remove residual 

propanol. Smooth, uniform catalyst layers with a thickness of ca. 40 μm were obtained. 

 Each membrane and electrode assembly was broken in over a period of days. The cell was 

flooded with water for one day at room temperature to hydrate the membrane and then flushed 

with water at 80 °C for 1 h. It was then operated at 0.7 V for at least 2 h before recording 
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polarization curves from 0.7 V to 0.1 V and from 0.1 V to 0.7 V (0.05 V steps for 300 s). There 

was only minor hysteresis between the two curves. Preliminary CO2 measurements were made and 

then the cell was shut-down and flushed with water. The reported measurements were made after 

one of more days of stable operation, from 0.7 to 0.1 V following operation at 0.7 V for at least 1 

h. 

For analysis of the reaction products and residual ethanol, the anode and cathode exhausts 

were combined in a trap cooled with a mixture of ice and dry ice. CO2 remaining in the N2 stream 

was measured in real time with a commercial non-dispersive infrared CO2 monitor (Telaire 

7001).15 The current and CO2 readings were allowed to stabilize, and then averaged over a period 

of at least 100 s. The liquid collected in the trap was analyzed by 1H-NMR as previously 

described.10 The measured concentrations of ethanol, acetic acid, acetaldehyde and CO2 were used 

to determine the faradaic yield of each product. The average charge balance was 98.4 ± 2.2% and 

the average mass balance was 99.4 ± 1.4%, indicating that the product collection efficiency was 

high and that no other products (such as CH4 which would have been lost into the gas stream) were 

formed in significant quantities. Other possible minor products9 would have been seen in the NMR 

spectra if produced in significant quantities. 

5.3 Results and Discussion  

5.3.1 Polarization Curves  

Figure 5.1 shows polarization curves for the oxidation of 0.100 M ethanol at anodes 

prepared with the Pt and PtRu catalysts individually, with a homogeneous mixture of the two 

catalysts, and with discrete layers of the catalysts. The data for the individual catalysts has been 

previously presented and discussed.9 The PtRu catalyst oxidizes ethanol at a lower potential than 
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Pt because Ru- OH is formed at lower potentials than Pt-OH. However, the main product is acetic 

acid rather than CO2. Pt, which oxidizes as much as 50% of the ethanol to CO2,
9 provides higher 

currents than PtRu at potentials above ca. 0.45 V because of the higher number of electrons 

transferred per molecule of ethanol. Based on this analysis of the differences between Pt and PtRu, 

the mixed Pt + PtRu layer would be expected to provide higher currents than Pt alone at low 

potentials, but lower currents at high potentials, and that is what is observed in Figure 5.1. However, 

there was a narrow region at ca. 0.45 V where the mixed layer gave higher currents than either 

catalyst alone, indicating that there was a synergy between the two catalysts. 

 

Figure 5.1. Polarization curves for the oxidation of 0.100 M ethanol (0.5 mL min-1) at Pt 

(····),  PtRu (- - -), Pt+ PtRu (●), Pt on PtRu (▲) and PtRu on Pt (■) anodes at 80 ºC. 

 Since PtRu provides the fastest oxidation of ethanol at low potentials, and produces 

significant amounts of acetaldehyde at low potentials,9 it was envisaged that a Pt layer on top of a 

PtRu layer could be used to oxidize the acetaldehyde before it left the catalyst layer, and thereby 
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increase the overall efficiency of ethanol oxidation. This is shown schematically in Figure 5.2A. 

Because of the low activity of the Pt catalyst at low potentials, most of the ethanol will diffuse 

through the Pt layer to the PtRu layer, although some will be oxidized in the Pt layer (not shown 

in Figure 5.2A). However, the polarization curve for the Pt on PtRu bilayer in Figure 5.1 is not 

consistent with this scenario because the currents observed at potentials below 0.3 V were lower 

than at the PtRu anode, and the polarization curve was not significantly different from that for the 

mixture of Pt with PtRu. Curiously, reversing the order of the two catalyst layers produced higher 

currents than all of the other anodes for potentials below 0.5 V, although Pt produced higher 

currents at higher potentials.  
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Figure 5.2. Schematic diagrams of some of the reactions and transport processes within 

bilayer anodes. 

 Overall, the mixed anode and both bilayers showed significant synergy between the Pt and 

PtRu catalysts. In order to understand this, and the differences seen in the polarization curves for 

the various anodes containing both Pt and PtRu, product distributions were measured as a function 

of potential. These, combined with the currents, allow the net rate of formation of each product to 

be obtained, which provides insight into the synergies between the two catalysts. 
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5.3.2 Product Distributions 

Figure 5.3A shows faradaic yields of CO2, acetic acid, and acetaldehyde obtained from 

analysis of the products in the cell exhaust. Two different Pt anodes were tested in order to check 

an anomalous dip in the CO2 yield seen at ca. 0.4 V. Full product analysis for the second Pt anode 

focused on the 0.3 – 0.45 V region and so the data for the two Pt anodes is plotted separately. It 

has been speculated that the two peaks seen in the CO2 yield at Pt may be due to a change in 

mechanism.9 

The yields of CO2 obtained for the bilayers and mixed Pt + PtRu layer were intermediate 

between those for Pt and PtRu alone, with the exception of the PtRu on Pt bilayer at 0.4 V which 

gave a slightly higher yield than Pt alone. At 0.2 and 0.3 V, the CO2 yields for the bilayer and 

mixed anodes were closer to those for PtRu, but increased sharply at higher potentials to become 

closer to the values for Pt. This is highly significant because the CO2 yield is the dominant factor 

determining the faradaic efficiency, and the high CO2 yields for the bilayer anodes are obtained at 

much higher current densities than for Pt. Most notably, at 0.4 V the PtRu on Pt bilayer produced 

a CO2 yield of 59% at 28 mA cm-2, while the Pt anode provided 56% CO2 at 13 mA cm-2. 

Acetic acid yields for the mixed and bilayer anodes were also intermediate between those 

for Pt and PtRu alone (Figure 5.3B), and closer to those for PtRu at low potentials and Pt at high 

potentials. However, acetaldehyde yields were generally lower at the mixed and bilayer anodes 

than either the Pt or PtRu anodes. For the PtRu on Pt anode, the yield of acetaldehyde was only 

56% of the yield for the PtRu anode, on average. This validates the strategy of using Pt to oxidize 

the acetaldehyde produced by the more active PtRu catalyst before it can leave the anode, 

illustrated in Figure 5.2. Both the mixed and bilayers anodes gave very low yields of acetaldehyde 

at 0.35 V and higher.  
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Figure 5.3. Faradaic yields of CO2 (A), acetic acid (B), and acetaldehyde (C) vs. potential 

for oxidation of 0.100 M ethanol (0.2 mL min-1) at Pt (····), PtRu (- - -), Pt + PtRu (●), Pt 

on PtRu (▲) and PtRu on Pt (■) anodes at 80 ºC.  

The average acetaldehyde yield was only 1.1% for the PtRu on Pt anode over the potential range 

of 0.35 - 0.7 V. Neither the order of the two layers nor whether the catalysts were mixed affected 

the acetaldehyde yield significantly. This, together with the relatively small yields of acetaldehyde 

at all of the anodes at > 0.4 V (Figure 5.3C), indicates that there was some other, more important 

factor responsible for the high activity and CO2 to acetic acid ratios for the PtRu on Pt bilayer 

anode. 
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5.3.3 Stoichiometry and Efficiency 

Figure 5.4 shows nav as a function of potential for the oxidation of ethanol at the Pt, PtRu, 

mixed and bilayer anodes, obtained from the concentration of ethanol consumed (eq. 5.5). At most 

potentials, nav values for the mixed and bilayer anodes were intermediate between those for the Pt 

and PtRu catalysts alone, as would be expected. However, from 0.35 to 0.45 V nav for the bilayer 

anodes was close to, and even exceeded, the values for Pt. nav was generally lower for the mixed 

anode, and at low potentials was close to the values for PtRu alone. 

 

Figure 5.4. nav from eq. 5.5 vs. potential for the oxidation of 0.100 M ethanol (0.2 mL 

min-1) at Pt (····; data for 2 different anodes), PtRu (- - -), Pt + PtRu (●), Pt on PtRu (▲) 

and PtRu on Pt (■) anodes at 80 ºC.   

The high nav at 0.40 V for the bilayers, relative to Pt or PtRu alone, leads to significant 

increases in fuel efficiency for ethanol electrolysis, and the higher current densities would decrease 
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system costs. Use of the bilayers would also increase the thermal efficiency (εrev εE) and overall 

efficiency of a DEFC, because the cell potential would be higher and less ethanol would be 

consumed. However, this is difficult to demonstrate and quantify with a DEFC because of the 

effects of crossover of ethanol to the cathode, where it reacts chemically with oxygen.9,10,17 

Consequently, representative DEFC efficiencies were calculated by using eq. 5.1, with Ecell 

estimated from the anode potentials vs. DHE in Figure 5.1 and a cathode polarization curve for the 

same cell.9,18 The results are shown in Figure 5.5 as functions of the power density (A) and current 

density (B) of the DEFC. Since the loss of fuel due to crossover will depend on many factors, 

including the membrane, cell design and operating conditions, it was not included in these 

efficiency estimates (i.e. εC = 1 in eq. 5.1). 

Surprisingly, the Pt catalyst would provide the best efficiency at the lowest power and 

current densities. Although the PtRu and PtRu on Pt anodes gave much higher currents at low 

potentials, which provide the highest potential efficiencies, this is more than offset by the lower 

stoichiometry (e.g. nav = 6.1 for Pt at 7.5 mA cm-2 vs. nav = 3.8 for PtRu on Pt at 6.3 mA cm-2). At 

higher power densities (ca. 4 - 9 mW cm-2), the PtRu on Pt anode would provide significantly 

higher efficiencies than Pt due to the lower anode potential, since the stoichiometries were similar. 

The Pt on PtRu anode would also be more efficient than Pt at ca. 5 – 7 mW cm-2. Neither the PtRu 

anode nor the mixed Pt + PtRu anode would provide better efficiency or maximum power density 

than the Pt anode. These differences between the efficiencies of the anodes are paralleled in the 

plots of efficiency vs. current density. 
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Figure 5.5. Predicted efficiency vs. power density (A) and current density (B) for DEFCs 

operating with 0.100 M ethanol at 80 °C at Pt (····), PtRu (- - -), Pt + PtRu (●), Pt on PtRu 

(▲) and PtRu on Pt (■) anodes. 

5.3.4 Reaction Rates 

The polarization curves shown in Figure 5.1 are somewhat misleading because the currents 

are determined by the rates of three simultaneous reactions (eqs. 5.2 – 5.4). Since the relative rates 

of these reactions vary with potential, the current does not provide an accurate reflection of the 
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rate at which ethanol is oxidized (consumed). However, this can be extracted from the data by 

using eq. 5.6 

   rate of ethanol oxidation (mol s-1) = i/nav F                              (5.6) 

 Figure 5.6 shows the calculated ethanol oxidation rates as a function potential, based on 

nav values obtained from eq. 5.5, and the average currents measured during collection of the 

samples for NMR analysis. The rate of ethanol consumption at the Pt anode was initially very low 

because of the low currents and high CO2 yields, but increased sharply at potentials above 0.35 V 

as the current increased.  Ethanol consumption at low potentials was much faster at the other 

anodes, and began to level off at high potentials as the currents plateaued.  

 

Figure 5.6. Ethanol consumption rate vs. potential for the oxidation of 0.100 M ethanol 

(0.2 mL min-1 and 80 ºC) at Pt (····), PtRu (- - -), Pt+ PtRu (●), Pt on PtRu (▲) and PtRu 

on Pt (■) anodes. 
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Curiously, the ethanol consumption rates were similar for the mixed, bilayer, and PtRu anodes, 

and increased approximately linearly with potential up to ca. 0.4 V. Thus, although the current 

increased exponentially with potential (Tafel behavior), indicating control by an electron transfer 

rate, the rate of ethanol consumption does not appear to have been limited by an electron transfer 

step.   

Further insight into this behavior can be obtained from the potential dependence of the rate 

of formation of each product, shown in Figure 5.7. The rates of CO2 formation increased 

approximately exponentially with potential between 0.2 and 0.4 V, as expected for a process 

limited by the rate of an electron transfer. It leveled off at higher potentials, presumably due to the 

effects of concentration polarization (mass transport limitation). The mixed and bilayer anodes 

produced CO2 at similar rates to the Pt anode, while the rate was significantly lower at PtRu. It can 

therefore be concluded that CO2 was produced primarily by the Pt catalyst in the mixed and bilayer 

anodes. The higher rate of CO2 production at the PtRu on Pt anode relative to the Pt on PtRu anode 

or mixed anode appears to be inconsistent with this, since less ethanol would reach the Pt layer 

because of consumption in the PtRu layer, as illustrated in Figure 5.2B. However, this apparent 

anomaly can be explained by the increase in CO2 yield that occurs at Pt anodes as the ethanol 

concentration is decreased.11,19,20 This is supported by, and explains, the higher CO2 yields 

obtained with the PtRu on Pt anode (Figure 5.3). 
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Figure 5.7. Product production rates vs. potential for the oxidation of 0.100 M ethanol 

(0.2 mL min-1 and 80 °C) at Pt (····), PtRu (- - -), Pt + PtRu (●), Pt on PtRu (▲) and PtRu 

on Pt (■) anodes.  

 In contrast to the normal exponential dependence of the rate of CO2 formation on potential, 

the rate of acetic acid formation increased linearly with potential for the PtRu, mixed and bilayer 

anodes at low potentials. This suggests that the rate of acetic acid formation at these anodes was 

controlled by a chemical step. The rate of acetaldehyde formation generally decreased with 

increasing potential, except for the Pt anode which gave a pronounced peak at ca. 0.4 V. The 
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complex variations in acetaldehyde production with potential arise because it is simultaneously 

produced and consumed by both catalysts. 

At potentials from 0.2 V to 0.35 V, the rate of acetic acid production was very low at the 

Pt anode, due to the low currents and yields. Over this potential range, the PtRu, mixed and bilayer 

anodes produced acetic acid at similar rates that were much higher than for Pt. It can therefore be 

concluded that acetic acid was formed primarily by the PtRu in the mixed and bilayer anodes. The 

order of the layers did not have a significant effect because only a small amount of ethanol was 

consumed by the Pt catalyst at low potentials. At higher potentials, the increased consumption of 

ethanol by the Pt layers caused the rate of acetic acid formation to drop below the rate for the PtRu 

anode. 

5.3.5 Mechanisms 

Although the simple model illustrated in Figure 5.2 provides significant insight into the 

performances and product distributions obtained from the bilayer anodes, it does not explain why 

both bilayers provided better performances than a mixture of the Pt and PtRu catalysts, and much 

better performances than PtRu alone. Further insight can be obtained by considering mechanistic 

information and models that have been reported in the literature. It is generally accepted that the 

initial stages of ethanol oxidation at Pt based anodes proceed through two successive 

electrochemical dehydrogenation steps (eqs. 5.7 – 5.9) that lead to the formation of adsorbed 

acetaldehyde (eq. 5.8) and an adsorbed CH3COH species (eq. 5.9).21-22 

CH3CH2OH → (Pt-O-CH2CH3 or Pt-CH(CH3)OH) + H+ + e-                                         (5.7)  

Pt-O-CH2CH3 → Pt-CHO-(CH3) + H+ + e-                                                                  (5.8)   

Pt-CH(CH3)OH → Pt-C(CH3)OH + H+ + e-                                                                             (5.9) 
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Pt-C(CH3)OH (i.e. CH3COHad) is thought to be the precursor to the formation of acetic 

acid and CO2,
23 while acetaldehyde is produced by desorption following reaction 5.8, or through 

the reaction of adsorbed ethanol with a surface hydroxyl group.24 

 In contrast to the dehydrogenation of ethanol to adsorbed C2 species, the C-C of 

acetaldehyde is broken during adsorption.22 Consequently, acetaldehyde generates adsorbed C1 

species at lower potentials than ethanol.22, 25 Cleavage of the C-C bond to form COad and CHx,ad is 

thought to be a chemical step.26 

 These mechanistic differences between acetaldehyde and ethanol oxidation presumably 

play a significant role in the synergy observed here between layers of Pt and PtRu catalysts. In the 

low potential region between 0.2 and 0.4 V where the synergy is strongest, most of the ethanol is 

oxidized by the PtRu catalyst to produce acetaldehyde and acetic acid. For the Pt on PtRu anode, 

some of the acetaldehyde crosses the membrane to the cathode,10 but most diffuses into the Pt layer, 

where it can adsorb and dissociate to COad and CHx,ad. At the 80 °C operating temperature of the 

cell, these C1 species are oxidized almost exclusively to CO2 at Pt. This is indicated the excellent 

mass balances obtained for ethanol oxidation at all anodes, since significant formation of other, 

undetected C1 products, such as CH4, would lead to low mass balances. The high yields of CO2 

observed at 0.2 – 0.35 V for the Pt anode in Figure 5.3 demonstrate that Pt can efficiently oxidize 

the acetaldehyde intermediate to CO2 under the conditions employed here, since ethanol is 

dehydrogenated to acetaldehyde prior to breaking of the C-C bond at low potentials.22 This is also 

supported by the >75% yield of CO2 that has been reported for the oxidation of acetaldehyde at a 

carbon supported Pt anode at 80 °C.27 

It was envisaged that the Pt on PtRu bilayer configuration (Figure 5.2A) would be superior 

to the PtRu on Pt configuration (Figure 5.2B) because more of the acetaldehyde produced in the 
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PtRu layer would pass into the Pt layer. However, this effect appears to have been outweighed by 

the effect the PtRu layer on the concentration of ethanol in the Pt layer. Rationalization of the 

performance of the mixed anode relative to the bilayer anodes is more difficult. Having Pt 

nanoparticles close to all of the PtRu nanoparticles should be beneficial for oxidation of 

acetaldehyde, but this is not supported by the yields of acetaldehyde which were similar to (94% 

of, on average) those for PtRu alone. The effect of ethanol concentration for the mixed anode 

should have been intermediate between the effects for the two bilayer configuration, but the low 

CO2 yields show that this was not the case. The main synergistic effect in the mixed electrode, 

seen at 0.4 V in the polarization curve (Figure 5.1), correlates with the anomaly in the product 

distribution at 0.4 V for Pt alone (Figure 5.3). The addition of PtRu eliminates the peak in 

acetaldehyde production seen for Pt alone in this region (Figure 5.3C), possibly by decreasing the 

local ethanol concentration. 

5.4 Conclusions  

The goals of combining Pt and PtRu catalysts to increase the low potential performance of 

anodes for ethanol oxidation, and decreasing acetaldehyde production, have been achieved. There 

is a synergy between the Pt and PtRu catalysts in both the mixed anode and bilayer structures that 

appears to be due to the oxidation at the Pt catalyst of acetaldehyde produced at the PtRu catalyst. 

The PtRu on Pt bilayer structure provides the added benefit that the PtRu layer decreases the 

ethanol concentration before it reaches the Pt layer, which leads to higher CO2 yields. Since all of 

the anodes employed in this work had the same total metal loading (3.2 mg cm-2), the bilayer 

anodes contained less Pt than the Pt anode and so would lower the cost in addition to increasing 

performance and efficiency.  
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The importance of determining the stoichiometry of ethanol oxidation, and the product 

distribution, is demonstrated by the efficiencies presented in Figure 5.5 and the product production 

rates presented in Figure 5.7. Even with the strong synergy between the Pt and PtRu catalysts 

observed for the PtRu on Pt anode, the Pt catalyst alone produced the highest overall efficiency 

(18.5%). This highlights the need for further improvement of CO2 yields at low potentials. The 

data in Figure 5.7 show that Tafel analysis of the total current will produce ambiguous results, 

since a large component of the current is not limited by electron transfer kinetics. Accurate analysis 

of the kinetics of ethanol oxidation will require fitting of the rates of each reaction to a detailed 

mechanistic model. 
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6. Determination of the Stoichiometry of Ethanol Oxidation from the Flow Rate 

Dependence of the Current in a Proton Exchange Membrane Electrolysis Cell 

6.1 Introduction  

Ethanol is an attractive fuel for direct liquid fuel cells.1, 2 However, the high theoretical 

efficiency of 97% for a direct ethanol fuel cell (DEFC) is based on complete oxidation of ethanol 

to CO2 (eq. 6.1), which generates 12 electrons (n = 12), while the main products from a DEFC are 

acetic acid (eq. 6.2; n = 4) and acetaldehyde (eq. 6.3; n = 2).3-5  

  CH3CH2OH + 3 H2O → 2 CO2 + 12 e- + 12 H+                                          (6.1) 

  CH3CH2OH + H2O → CH3CO2H + 4 e- + 4 H+                                          (6.2) 

  CH3CH2OH → CH3CHO + 2 e- + 2 H+                                                 (6.3)   

Since the overall efficiency of a DEFC is proportional to the number of electrons transferred,3 

measurement of the stoichiometry of ethanol oxidation (average number of electrons transferred 

per molecule, nav) plays a crucial role in the development of more efficient anode catalysts for 

DEFCs.3,6 Simple and fast methods are required for routine evaluation of the efficiency of catalysts 

over a wide range of conditions. 

 The faradaic efficiency (εF) of a DEFC is determined by the ratio of nav to the maximum 

of n = 12 for the complete oxidation of ethanol to carbon dioxide (εF = nav/12), while nav is 

determined by the product distribution according to eq. 6.4,7 

    nav = ∑ni∙fi                                                                    (6.4) 

where ni is the number of electrons transferred to form product i and fi is the fraction of ethanol 

converted to product i (CO2, acetic acid and acetaldehyde account for > 99% of the ethanol 

consumed8). Various experimental methods are available for measuring nav, including analysis of 
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the amount of ethanol consumed,9,10 the product distribution,7,10 and several electrochemical 

methods11,12. 

 Determination of nav from the dependence of the current on the flow rate of the ethanol 

solution, in proton exchange membrane fuel cell (PEMFC) hardware, is particularly 

convenient.11,13 In this method, the concentration of the ethanol solution decreases as it passes 

through the flow field, causing the local current to decrease. As the flow rate is decreased, the 

average concentration of ethanol in the flow field decreases, and so the current decreases. 

Modelling of this effect provides the following relationship (eq. 6.5) between the steady-state 

current (I) and the flow rate (u) of the ethanol solution:11   

                                𝐼 =  𝑛𝑎𝑣𝐹𝐶𝑖𝑛𝑢 (1 − exp (−
𝐼𝑙𝑖𝑚

𝑛𝑎𝑣𝐹𝐶𝑖𝑛𝑢
))                                                             (6) 

where Cin is the concentration of ethanol entering the cell and Imax is the current limit at high flow 

rates. In the derivation of this equation,11 it was assumed that the current is proportional to the 

ethanol concentration, that there are negligible concentration gradients perpendicular to the flow 

direction, and that the effect of lateral diffusion along the flow field is negligible. 

 Eq. 6.5 has been shown to be valid for methanol oxidation in a number of cell 

configurations,13 including the anode polarization method employed in this work, and has provided 

reasonable accuracy for determining nav values for both methanol13 and ethanol10 oxidation in the 

few cases where it has been tested. It can be routinely applied during polarization measurements 

(steady state current vs. potential) and avoids the need for analysis of the cell exhaust, which is 

complicated by crossover effects and loss of ethanol and products during their collection.10 

However, further evaluation of the validity and accuracy of eq. 6.5 is necessary before it can be 

employed with confidence as a routine, stand-alone method. There is evidence that it can 

underestimate nav when there is crossover of ethanol through the membrane, and overestimate nav 
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when it varies significantly with concentration.10 The flux of ethanol crossing the membrane to the 

cathode is dependent on the concentration of ethanol at the interface between the anode and the 

membrane, which depends on the current and the properties of the catalyst layer (specific activity, 

thickness, porosity, etc.). 

 The purpose of the work described in this chapter was to comprehensively evaluate the 

accuracy of the eq. 6.5 (electrochemical method) by comparison with results from chemical 

analysis of the cell exhaust. Results are presented for six different anodes prepared from three 

different commercial catalysts and their combinations in a mixture and two bilayer structures. The 

cell was operated as an ethanol electrolysis cell (also described as anode polarization)13, 14 in which 

ethanol is oxidized at the anode, while protons are reduced to hydrogen at the cathode. This avoids 

inaccuracies that arise due to the chemical reaction of ethanol with oxygen when measurements 

are made in a DEFC.15 Chemical analysis of the cell exhaust by nuclear magnetic resonance (NMR) 

and infrared (IR) spectrometry has been reported previously for the same anodes,6, 8 with the 

accuracy of nav verified by the mass and charge balances, and agreement of values obtained from 

the amount of ethanol consumed and the product distribution.   

6.2 Experimental 

 A commercial PEMFC (5 cm2 active area; Fuel Cell Technology Inc.), modified as 

previously described,10 was operated as an electrolysis cell by supplying 0.1 M ethanol 

(Commercial Alcohols Inc.) solution to the anode at flow rates of 0.02, 0.05, 0.09, 0.2 and 0.5 mL 

min-1 with a syringe pump and dry N2 to the cathode at 35 mL min-1. The cell was operated at 80 

ºC in all experiments. Use of N2 at the cathode produces a stable potential because protons are 

reduced to hydrogen, creating a dynamic hydrogen electrode (DHE).16, 17 Ren et al.16 have shown 

that overpotentials for hydrogen evolution in a similar cell were negligible, while Li and Pickup17 
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demonstrated that anode potentials in a direct methanol fuel cell did not differ significantly when 

measured against a hydrogen evolving cathode or an independent DHE. Since, hydrogen is 

produced within the cathode catalyst layer, it is unnecessary to supply hydrogen to the cathode.    

Anodes were prepared with commercial carbon supported Pt (Pt/C; HiSPEC™ 13100, 70% 

Pt; Alfa Aesar), PtRu alloy (PtRu/C; HiSPEC™ 12100, 50% Pt and 25% Ru; Alfa Aesar), and 

PtSn alloy (PtSn/C; 40% Pt3Sn; BASF Fuel Cell Inc.) catalysts, as previously described.6,8  

Catalyst suspensions, prepared by dispersing the catalyst in a 1:1 mixture of 1-propanol and Nafion 

solution (Dupont; 5% Nafion) by sonication for 3 h, were spread onto Toray carbon fiber paper 

(CFP; TGP-H-090). Metal loadings of 3.2 mg cm-2 and Nafion loadings of ca. 20 mass% were 

used for all anodes. Cathodes consisted of 4 mg cm-2 Pt black. Membrane and electrode assemblies 

were prepared by pressing (room temperature; ca. 1.5 MPa) an anode and cathode onto a NafionTM 

115 membrane in the cell. Electrochemical measurements were made under steady state conditions 

at constant cell potentials using a Hokuto Denko HA-301 potentiostat.  

 For each anode, many preliminary experiments were conducted over a period of two days 

to condition the membrane and electrode assembly before collection of the electrochemical data 

reported here and the chemical analyses reported previously.6,8 This included flushing the cell with 

water, operating with ethanol at 0.7 V for at least 2 h and then recording polarization curves several 

times between 0.1 V and 0.7 V (0.05 V steps for 300 s). When applying the electrochemical method 

(eq. 5) for determination of nav, the current at each potential was allowed to stabilize at each flow 

rate and then averaged over a period of at least 20 s. In order to ensure that steady-state currents 

were obtained, long stabilization times were employed, ranging from 300 s at 0.5 mL min-1 to 2500 

s at 0.02 mL min-1. 
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 The procedures for determining nav by chemical analysis have been previously described.6,8 

The cell was operated at constant potential with an ethanol flow rate of 0.2 mL min-1. CO2 was 

measured in real time with a commercial non-dispersive infrared CO2 monitor (Telaire 7001), 

while residual ethanol, acetic acid, and acetaldehyde in a sample of the liquid exiting the cell were 

measure by proton NMR spectrometry. Three different methods where employed to determine nav 

from each set of analysis results. These were based on the amount of ethanol consumed, the 

chemical yields of products, and the faradaic yields of products. This provides an assessment of 

precision, and the average of the three results minimizes inaccuracies due to loss of ethanol or 

products (mainly acetaldehyde) during collection of the cell exhaust.10  

6.3 Results and Discussion 

6.3.1 Polarization Curves 

Figure 6.1 shows polarization curves for the oxidation of 0.1 M ethanol at various flow 

rates at a PtRu/C anode. The shape of the curves did not change greatly with flow rate, and all 

reached a limiting current at high potentials, where the current is limited by diffusion of ethanol 

through the carbon fiber paper backing layer of the anode.13, 18 The limiting current decreased as 

the ethanol flow rate was decreased (eq. 6.5) because a greater fraction of the ethanol entering the 

cell was consumed, and so the average ethanol concentration in the flow field was lower.  
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Figure 6.1. Polarization curves for the oxidation of 0.100 M ethanol at 0.02 (○), 0.05 (■), 

0.09 (□), 0.2 (▲) and 0.5 (●) mL min-1 at a PtRu/C anode and 80 ºC.  

 6.3.2 Stoichiometry (nav) from the Flow Rate Dependence of the Current. 

Figure 6.2 shows plots of current vs. flow rate for selected data from Figure 6.1, together 

with the best fits (non-linear least squares)19 to eq. 6.5. Values of nav from these fits are plotted in 

Figure 6.3 together with values obtained by analysis of the products and residue ethanol in the 

exhaust from the cell.8 The three different nav obtained from the exhaust analysis reflect the 

uncertainties in the analyses,10 while the uncertainties from the fitting of eq. 6.5 are plotted as error 

bars showing the standard deviation calculated from Monte Carlo simulation.19 
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Figure 6.2. Plots of current vs. flow rate for selected data from Figure 6.1 (points) together 

with the best fits to eq. 6.5 (lines). 

 The agreement between the results in Figure 6.3 from the electrochemical method (eq. 6.5) 

and the chemical analysis methods is very good. Comparison of the average result and standard 

deviation from analysis of the exhaust at each potential with the value and standard deviation of 

the result from eq. 6.5, using a t test (95% confidence), indicates that there are no significant 

differences. This is a very important finding because eq. 6.5 was derived based on the assumption 

that the current was mass transport controlled. It should therefore be valid for the data in Figures 

6.1 and 6.2 from 0.5 and 0.7 V, but could be inaccurate at lower potentials for a number of reason. 

Firstly, there is crossover of ethanol through the membrane when the current is below the mass 

transport limit, and this leads an additional decrease in the concentration of ethanol in the anode 

flow field.10, 13 Secondly, eq. 6.5 would become inaccurate if the electrochemical kinetics were not 

first order in ethanol, since a linear relationship between the current and concentration was 
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assumed in the derivation of eq. 6.5.  However, the agreement between the electrochemical and 

chemical results in Figure 6.3 demonstrates that neither of these factors caused significant 

inaccuracies. 

 
Figure 6.3. nav vs. potential for the oxidation of 0.100 M ethanol at a PtRu/C anode at 80 

ºC. Black (●) points were obtained by using eq. 6.5, red (○) points are from the amount 

of ethanol consumed, blue (□) and green (■) points are from the faradaic and chemical 

yields of products, respectively. For clarity, error bars are only shown for the data from 

eq. 6.5. 

 The effect of crossover on the use of eq. 6.5 has previously been investigated for both 

methanol13 and ethanol10 oxidation. By simulation,13 it was shown that crossover produced a small 

underestimation of nav for ethanol oxidation, typically by 2-5%.10 The results in Figure 6.3 reaffirm 

the conclusion that inaccuracies of eq. 6.5 due to crossover are not significant.  

 Figure 6.4 summarizes results for a number of other anodes, which all support the 

conclusion that eq. 6.5 provides good accuracy over the whole potential range from predominantly 
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kinetic control of the current at 0.2 V to mass transport control at potentials above ca. 0.5 V. For 

the mixed Pt/C + PtRu/C anode and the Pt/C on PtRu/C bilayer anode, there were no significant 

differences (95% confidence t test), between the nav values from eq. 6.5 and chemical analysis.  

For the PtSn/C anode the differences where statistically different at 0.2, 0.3, and 0.5 V. 

However, the standard deviation at 0.5 V from eq. 6.5 was unusually low and the difference in nav 

values was only 7% (6.15 ± 0.16 from eq. 6.5 vs. 5.73 ± 0.11 from chemical analysis). The low nav 

values from eq. 6.5 for the PtSn/C anode at 0.2 and 0.3 V can be attributed to the effects of 

crossover, since upward corrections of 2% and 7%, respectively, would bring them into agreement 

with the values from chemical analysis.      

 
Figure 6.4. nav vs. potential for the oxidation of 0.100 M ethanol at PtSn/C (green 

triangles), Pt/C + PtRu/C (red squares) and Pt/C on PtRu/C bilayer (black circles) anodes 

at 80 ºC. Solid points are from eq. 6.5, while open points are from chemical analysis 

(averages from the amount of ethanol consumed and yields of products). For clarity, error 

bars are only shown for the values from eq. 6.5. 
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6.3.3 Discrepancies Between nav Values from Eq. 6.5 and Chemical Analysis.  

 Previously, it has been found that eq. 6.5 can yield significantly higher nav values than 

those obtained from chemical analysis, and this was attributed to a dependence of nav on the 

concentration of ethanol.10 The data in Figures 6.3 and 6.4 show that this is not a significant effect 

in most cases, but it can become significant when yields of CO2 are high. It is well established that 

at 80 °C the yield of CO2 at Pt anodes increases sharply as the concentration of ethanol is 

decreased,20, 21 and it has been shown that this can significantly influence the accuracy of eq. 6.5 

when data over a wide range of flow rates is employed.11 In fact, eq. 6.5 has been used to 

demonstrate the flow rate dependence of nav at a Pt black anode.11   

 Figure 6.5 shows data for a Pt/C anode, which produced the highest yields of CO2 (51-75% 

faradaic yields) of the electrodes that we have employed.6 In this case, nav from eq. 6.5 only agreed 

with nav from chemical analysis at 0.6 and 0.7 V. As the potential was decreased below 0.6 V, nav 

from eq. 6.5 rose sharply to impossibly high values (greater than the value of 12 for complete 

oxidation of ethanol to CO2) at potentials below 0.4 V. 

 In order to explore whether the failure of eq. 6.5 at potentials below 0.5 V for the Pt/C 

anode was due to a concentration dependence of nav, the current vs. flow rate data points were 

analyzed in pairs using eq. 6.5. For example, use of the 0.09 mL min-1 and 0.5 mL min-1 data points 

at 0.4 V in eq. 6.5 yields an exact solution of nav = 6.9. This is much closer to the value of 5.33 ± 

0.11 from chemical analysis that was obtained at a flow rate of 0.2 mL min-1 that is between these 

two flow rates (fitting of all of the data to eq. 6.5 gave nav = 11.4 ± 0.6 in this case). Use of the 

0.05 mL min-1 and 0.2 mL min-1 data points in eq. 6.5 yields nav = 8.8 at 0.4 V, showing that nav 

increased with decreasing flow rate, as expected from the effect of ethanol concentration on the 

yield of CO2. Use of the 0.02 mL min-1 and 0.09 mL min-1 data points at 0.4 V in eq. 6.5 yields nav 
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= 13.5, which is greater than 12 and therefore unreasonable. These comparisons make it clear that 

the failure of eq. 6.5 when applied to all of the data point from 0.02 to 0.5 mL min-1 was due to the 

concentration dependence of nav. 

 
Figure 6.5. nav vs. potential for the oxidation of 0.100 M ethanol at a Pt/C anode at 80 ºC, 

from eq. 6.5 using the currents at all flow rates (●), the amount of ethanol consumed (○), 

and the faradaic (□) and chemical (■) yields of products. Triangular (purple) data points 

were obtained by fitting eq. 6.5 to the currents at 0.09, 0.2, and 0.5 mL min-1. 

 In order to demonstrate this further, the effects of a linear dependence of nav on ethanol 

concentration were simulated using a finite difference method that has previously been described.13 

The best fit to the data for the Pt/C anode at 0.4 V is shown in Figure 6.6, together with the flow 

rate dependence of the current calculated from eq. 6.5 by using the nav obtained by chemical 

analysis, and the flow rate dependence of nav obtained from the best fit simulation. The best fit 

parameters used in the simulation (nav for 0.1 M ethanol (nav (0.1 M)) = 5.2; dnav/dC = -58 M-1; 

Imax = 31.1 mA) were obtained by minimizing the squares of the differences between the measured 
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and simulated currents and the concentration of ethanol exiting the cell. It was also assumed that 

there was crossover of 10% of the ethanol through the membrane, although this did not have a 

significant influence on the fitting parameters. Since inclusion of the concentration of ethanol 

exiting the cell forces nav at 0.2 mL min-1 to be close to the value from chemical analysis, the 

simulation does not prove that the high nav from eq. 6.5 is due to the concentration dependence of 

nav. However, it does confirm that this is a reasonable explanation. It was not possible to obtain 

reasonable values of nav(0.1 M) and dnav/dC without using the concentration of ethanol exiting the 

cell to constrain them, since a constant (and unreasonable) nav of ca. 11 always gave a better fit to 

the current vs. flow rate data. 

 
Figure 6.6. Plots of current (●) and nav (○) vs. flow rate for the oxidation of 0.100 M 

ethanol at a Pt/C anode, at 0.4 V and 80 ºC. The dashed line is the best fit obtained from 

a simulation based on a linear dependence of nav on ethanol concentration (see text), while 

the dotted line was obtained by using in eq. 6.5 with nav = 5.33 from chemical analysis.  
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 Simulation of the 0.35 V data for the Pt/C anode gave a best fit with nav(0.1 M) = 6.2 and 

dnav/dC = -58 M-1, while eq. 6.5 gave an unreasonable nav of 33. Simulations of the data at 0.3 and 

0.2 V also gave reasonable fits and values relative to those from chemical analysis, as shown in 

Figure 6.7. At these potentials there was very little dependence of the current on flow rate because 

the effect of ethanol consumption was cancelled by the change in nav. The fact that the experimental 

current vs. flow rate profiles at different potentials can be reproduced by the simulation, using 

similar nav profiles, provides strong evidence that the unreasonable nav values from eq. 6.5 are due 

to the concentration dependence of nav. 
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Figure 6.7. Plots of current (solid points) and nav (open point) vs. flow rate for the 

oxidation of 0.100 M ethanol at a Pt/C anode at 80 ºC, at 0.2 V (▲), 0.3 V (■), and 0.35 

(●) V. Lines show simulations of the current based on nav(0.1 M) = 4.1 and dnav/dC = -79 

M-1 at 0.2 V, nav(0.1 M) = 4.5 and dnav/dC = -75 M-1 at 0.3 V, and nav(0.1 M) = 6.2 and 

dnav/dC = -58 M-1 at 0.35 V. 

 Errors due to the concentration dependence of nav can generally be mitigated by employing 

a smaller range of flow rates. This is illustrated in Figure 6.5 by the triangular (purple) data points 

which were obtained by fitting eq. 6.5 to the currents at just 0.09, 0.2, and 0.5 mL min-1. This 

method also provided more accurate nav values for a PtRu/C on Pt/C bilayer anode, as shown in 

Figure 6.8. In this case, nav from the full fit (0.02 to 0.5 mL min-1) was too high at most potentials, 

while the 0.09 to 0.5 mL min-1 fit gave values that were generally in better agreement with those 

from chemical analysis.  
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Figure 6.8. nav vs. potential for the oxidation of 0.100 M ethanol at a PtRu/C on Pt/C 

bilayer anode at 80 ºC. Solid points are from eq. 6.5 (● for 0.02 to 0.5 mL min-1; ■ for 

0.09 to 0.5 mL min-1), while open points are from chemical analysis (average and standard 

deviation from the amount of ethanol consumed and yields of products). 

6.4 Conclusions 

 The dependence of the current of a PEM electrolysis cell on the ethanol flow rate (eq. 6.5) 

has been shown to consistently provide accurate stoichiometries for ethanol oxidation at various 

anodes over a full range of potentials. Errors due to crossover are small, and variations in 

stoichiometry with concentration can be identified by comparing results over different flow rate 

ranges. When there are significant changes in nav with concentration, a restricted range of flow 

rates should be employed. 

 Determination of nav by using eq. 6.5 is a valuable method for rapid assessment of a 

catalyst’s electrochemical performance (potential efficiency) and fuel efficiency (faradaic 
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efficiency); the two key factors that determine the overall efficiency of a DEFC.8 The faradaic 

efficiency (nav /12) can be obtained concurrently with measurement of a polarization curve without 

any addition equipment. The methodology can be routinely applied, and is well suited for rapid 

assessment of the effects of operating conditions (potential, temperature, concentration, pressure) 

and changes over time.  
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7. Product Distributions and Efficiencies for Ethanol Electrolysis at PtNi 

Octahedra  

7.1 Introduction 

Growing environmental concerns are driving the development of alternative kinds of renewable 

and clean energy sources with low CO2 emissions. In this context, ethanol is one of the most 

important renewable energy sources because it is relatively safe, easily transported, and has a high 

energy density. It is widely used in gasoline, and can potentially be used more efficiently in fuel 

cells, either directly in direct ethanol fuel cells (DEFC) or following reforming, or electrolysis, to 

produce hydrogen.1–3  

Nevertheless, the large-scale commercialization of DEFCs or electrolysis cells (EECs) has 

been obstructed by obstacles that need to be overcome such as the low current densities for the 

ethanol oxidation reaction (EOR), crossover through the membrane and low faradaic efficiencies.4–

6 The complete oxidation of ethanol to carbon dioxide is still the major problem in electrocatalysis. 

For efficient use of ethanol in DEFCs or EECs, it should be oxidized completely to carbon dioxide 

at the anode to generate 12 electrons, while oxygen is reduced to water at the cathode in a DEFC 

or water is reduced to hydrogen in an EEC. However, the main products from DEFCs and EECs 

are acetaldehyde and acetic acid, which provide low faradaic efficiency by only generating 2 and 

4 electrons, respectively.7,8  

The catalysts most commonly used in DEFCs and EECs are based on platinum nanoparticles, 

which provide a high number of low coordination atoms and have relatively high selectivity for 

cleavage of the C–C bond of ethanol.9–13 Following adsorption on the active sites of Pt, the ethanol 

molecules can dissociate and oxidize to various species through two or more pathways. One path 

produces strongly adsorbed CO and CHx intermediates and a second path mainly leads to the 
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formation of acetic acid and/or acetaldehyde. Further oxidation of intermediates requires OHad 

species to form CO2. However, Pt is easily poisoned by adsorbed oxygenated species such as COad 

at low overpotentials and OHad at high overpotentials. COad and OHad are adsorbed very strongly 

on the surface of the Pt at low and high overpotentials, respectively. Even small amounts of these 

species can block the catalyst’s active sites, leading to a decrease in the catalytic activity and the 

selectivity by inhibiting the adsorption, dissociation, and further oxidation of ethanol.14–16  Since 

dissociative adsorption of water to form OHad is necessary for the complete oxidation of COad and 

CHx to CO2, the formation of OHad species is the rate limiting step for the complete oxidation at 

low overpotentials, while the cleavage of the C-C bond is the rate limiting step at high 

overpotentials. Therefore, modification of existing catalysts and synthesis of new catalysts are 

required to activate the formation of OHad species at low overpotentials and to enhance the 

cleavage of the C-C bond at high overpotentials. Using oxophilic metals such as Ru, Sn, Ni, Co, 

Fe, Cu and Pd, as well as controlling the morphology (crystalline facets) of the catalyst surface 

can improve the efficiency and performance of DEFCs and EECs by facilitating the complete 

oxidation of ethanol.11,17–20 

In recent years, modification of Pt nanoparticles with oxophilic metals to form bi and 

trimetallic alloy nanostructures has attracted great interest.19–21 This strategy is one of the most 

important methods used to reduce the catalyst cost and mitigate the effect of CO poisoning. The 

formation of OHad on the surface of the oxophilic metal at low overpotentials promotes COad 

oxidation, while changes in the electronic structure of the surface Pt atoms can result in weaker 

binding of COad.
14 However, measurements of product distributions have shown that the 

modification of Pt with Ru and/or Sn decreases the selectivity of the catalysts for complete 

oxidation of ethanol to CO2.
21,22  
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Nickel has been shown to promote the catalytic activity of Pt for ethanol oxidation.14,23,24 An 

octahedral PtNi/C nanocatalyst was applied for the study of ethanol oxidation at ambient 

temperature.23 The electrochemical performance of the PtNi/C octahedra was found to be much 

higher than commercial Pt/C.23,24 In situ FTIR measurements showed that the poisoning effect of 

COad was significantly less at PtNi/C as compared with commercial Pt/C.23  

The aim of the work described in this chapter was to measure the performance and the 

selectivity of the reported octahedral PtNi/C alloy catalyst in a proton exchange membrane ethanol 

electrolysis cell (PEM-EEC). In particular, this work focusses on the stoichiometry, product 

distributions and efficiencies for ethanol oxidation at octahedral PtNi/C, and comparison with a 

commercial Pt/C catalyst. It is important to know whether Ni increases the selectivity for C-C bond 

cleavage, like Rh, or decreases it like Ru and Sn.  

7.2 Experimental 

7.2.1 Chemicals and Materials 

Carbon supported Pt (Pt/C; HiSPEC™ 13100, 70% Pt; Alfa Aesar), platinum acetylacetonate 

(Pt(acac)2, 97%, Aldrich Chem. Co.), nickel acetylacetonate (Ni(acac)2, 95%, Aldrich Chem. Co.), 

anhydrous ethanol (Commercial Alcohols Inc.), acetic acid (99.7%, Caledon Lab. Chemicals), 

oleylamine (70%, Aldrich Chem. Co.), oleic acid (90%, Aldrich Chem. Co.), benzyl ether (98%, 

Alfa Aesar), tungsten hexacarbonyl (W(CO)6, 97%, Alfa Aesar), Nafion solution (5%, DuPont) 

and carbon black (Vulcan XC-72, Cabot) were used as received in this work. The as-received 

NafionTM 115 and 117 membranes were pre-treatment before using as follows: they cut into square 

pieces and heated in 3% H2O2 for 1 h at 80°C. Using distilled water, the membranes were rinsed 

until cooled down and immersed for 15 min at ambient temperature. Then the pieces of membranes 
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were heated at 80°C in 1 M sulfuric acid for 1 h followed by heating at 80°C for 3 h in distilled 

water, after rinsing. 

7.2.2 Synthesis of the PtNi/C Catalyst 

A sampled of the carbon supported PtNi (~30 wt% metal on carbon) catalyst was initially 

prepared following the procedure reported in ref.23,24.  A larger batch was then prepared by the 

same method as follows. 200 mg of Pt(acac)2 and 100 mg of Ni(acac)2 in 20 mL of oleylamine, 10 

mL of oleic acid and 70 mL of benzyl ether were heated to 130 °C under N2 protection with 

vigorous stirring.  Then 600 mg of W(CO)6 was rapidly added and the mixture was heated at 225°C 

for 40 min under N2. Toluene (5 mL) and ethanol (15 mL) were added to the cooled solution 

followed by sonication for 5 min. The PtNi nanoparticles were isolated by centrifugation at 6000 

rpm for 10 min, and then dispersed in toluene by sonication for 10 min. A carbon black suspension, 

prepared by sonication for 10 min of 200 mg of carbon in toluene (5 mL), was added and the 

mixture was then sonicated for 3 h, filtered and the PtNi/C catalyst was washed several times with 

toluene and ethanol.23,24 For further purification,24 batches of the PtNi/C catalyst were mixed with 

20 mL of acetic acid and then heated at 60 °C for 2 or 4 h. The suspensions were filtered, washed 

several times with ethanol and dried at 70 °C in an oven for 30 min. 

7.2.3 Physical Characterization  

The crystal structure of the PtNi/C octahedral catalyst was investigated by using X-ray powder 

diffraction (XRD; Rigaku Ultima IV X-ray diffractometer with a copper X-ray source (Cu Kα 

radiation, λ = 1.5406 Å) and a scintillation counter detector). The composition of the PtNi/C 

octahedral catalyst was determined by thermal gravimetric analysis (TGA; TA Instruments Q500 
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TGA) and inductively coupled plasma optical emission spectrometry (ICP-OES). The sample for 

ICP-OES was prepared by mixing ca. 6 mg of catalyst with 6 mL of HCl and 2 mL of HNO3 and 

heated at 65 °C for 22 h. The final solution was filtered and diluted to 15 mL of water and then 

analyzed using a Perkin-Elmer 5300 DV inductively coupled plasma – optical emission 

spectrometer. Transmission electron microscopy (TEM) was used to study the morphology of the 

PtNi/C octahedral catalyst including the particle size and distribution, with a JEOL 2011 scanning 

transmission electron microscope. 

7.2.4 Electrochemical Characterization  

Electrochemical characterization of the catalysts was performed with a 

potentiostat/galvanostat using EC-Lab electrochemical software (CV measurements) as well as a 

5 cm2 commercial proton exchange membrane fuel cell hardware operated as an EEC22,25 and nine 

anode PEM-EEC cell26. 

A conventional three-electrode glass cell was used for cyclic voltammetry (CV). The counter 

electrode was a platinum wire and the reference electrode was a saturated calomel electrode (SCE). 

A catalyst coated glassy carbon disk was used as the working electrode. All CV experiments were 

carried out in a N2-purged 1.0 M sulfuric acid electrolyte at ambient temperature, and potentials 

are referred to SCE. The working electrode was prepared by suspension of ca. 2 mg of PtNi/C or 

Pt/C catalyst in 120 μL of water, 30 μL of 2-propanol and 50 μL of 5% Nafion solution. Following 

sonication for 2 h, 3 μL of the catalyst suspension was pipetted onto a polished glassy carbon disk 

and allowed to dry overnight at ambient temperature. Before measurement of the ethanol oxidation 

activity, the working electrodes were cycled from -0.2 to 0.8 V at 100 mV s-1 in 1 M H2SO4 for 3 

cycles. Then each working electrode was cycled between -0.2 V and 0.8 V in 0.1 M ethanol + 1.0 
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M H2SO4 solution at scan rate of 10 mV s-1 for 3 cycles. For each sample, three cycles of CV were 

collected and the last two cycles were averaged.  

The 5 cm2 commercial fuel cell setup, software and apparatus have been previously 

described.25,28 The cell was operated in anode polarization mode to avoid the chemical reaction 

between oxygen and ethanol.25 The anode was prepared by mixing ca. 52 mg of PtNi/C catalyst, 

after treatment with acetic acid for 4 h, with ca. 258 μL of 5% Nafion and 200 μL of 1-propanol, 

and sonication for 3 h at ambient temperature. The resulting suspension was spread onto Toray 

carbon fiber paper (CFP; TGP-H-090) to give a metal (Pt+Ni) loading of 3.2 mg cm-2 and a Nafion 

loading of ca. 20 mass%. The cathode consisted of 4 mg cm-2 Pt black on TGP-H-090. A similar 

cell with nine 0.236 cm2 anodes,26 operated as an EEC in crossover mode,  was used to provide 

kinetic and stoichiometric information for the ethanol oxidation reaction. 

7.3 Results and Discussion 

7.3.1 Physical Characterization of the PtNi/C Catalyst 

Herein, the large batch of PtNi/C was used for the physical characterization, before treatment 

with acetic acid. The XRD spectrum of the PtNi/C catalyst is presented in Figure 7.1. Alloy 

formation was confirmed by comparing the peak positions of the as-prepared PtNi/C catalyst and 

peak positions for pure Pt and Ni from the ICDD (International Centre for Diffraction Data, PDF 

# 03-065-9445) database. The XRD shows peaks for the face centered cubic (fcc) structure of 

crystalline Pt. All the diffraction peaks of the PtNi/C were slightly shifted to higher and lower 

angles as compared with those for Pt and Ni, respectively, which confirm alloy formation. The 

mean size of the PtNi particles was estimated to be  8.3 nm by applying the Scherrer equation to 

the most intense PtNi alloy (111) peak,27 which is near to the average size of 9.0 nm reported by 
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Choi et al.24. Heating in acetic acid at 60 °C for 4 h produced only minor changes in the XRD (Fig. 

7.1), with small shifts to lower angles and a slight broadening, indicating a decrease in the average 

particle size to 8.0 nm. This is consistent with the loss of Ni. 

 

Figure 7.1. X-ray diffraction patterns of the as prepared bulk PtNi/C sample, and follow 

treatment with acetic acid for 4 h. 

Several quantitative analysis techniques were used to determine the loadings of the metals 

in the catalyst. TGA showed that the loading of metals (Pt and Ni) in the PtNi/C catalyst was 30.96% 

before treatment with acetic acid and decreased slightly following treatment with acetic acid for 2 

h and 4 h, to 30.62% and 30.30%, respectively. These results are in good agreement with ref 24 

which indicate that some loss of Ni occurred when the catalyst was treated with acetic acid.  

Furthermore, the loadings of Pt and Ni based on ICP-OES for the PtNi/C catalyst before 

treated with acetic acid were 23.6 mass% and 4.4 mass% respectively. These results show a 
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difference between the TGA and ICP-OES techniques. This difference can be attributed to the 

experimental errors such as loss some carbon or metals during the sample transfer or sample 

preparation, resulting in the TGA and ICP-OES results being overestimated and underestimated, 

respectively. The Pt:Ni atomic ratio determined by ICP-OES was close to 1.6 (Pt63Ni37/C) which 

is the same as one value reported previously,24 but less than 2.3 that is another value that has been 

reported in the literature.23 There was also a small amount of W (0.5%) from the W(CO)6 employed 

in the synthesis. Heating the as prepared catalyst in acetic acid at 60 °C for 4 h increased Pt content 

to 24.9 mass% and decreased the Ni and W contents to 3.4% and 0.4%, respectively. The increase 

in the Pt:Ni atomic ratio to 2.2 is consistent with the previously reported preferential loss of Ni 

from the catalyst surface. 24 

The morphology of the PtNi/C catalyst was characterized by TEM and selected images are 

displayed in Figure 7.2. It is clear from Figure 7.2 that the PtNi nanoparticles (dark) have relatively 

homogenous structures with a typically octahedral shape, in good agreement with refs.23,24. These 

images showed that the PtNi nanoparticles were distributed and dispersed well over the carbon 

support. The mean edge length of the PtNi nanoparticles is ca. 9.0 ± 1 nm, which is in good 

agreement with the mean particles size obtained from XRD and reported previously.23,24 
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Figure 7.2. TEM images of the PtNi/C catalyst before treatment with acetic acid. 

7.3.2 Electrochemical Measurements 

7.3.2.1 Cyclic Voltammetry 

CVs for the PtNi/C catalyst before and after treatment with acetic acid and for a commercial 

Pt/C catalyst are shown in Figures 7.3 and 7.4. These experiments were carried out at ambient 

temperature in 1.0 M sulfuric acid. The CVs are normalized in terms of the mass of Pt (A per mg 

of Pt) and all of the potentials reported in this section (CV measurements) are versus SCE. Figure 

3 shows the CVs for PtNi/C and Pt/C catalysts carried out in sulfuric acid electrolyte in the absence 
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of ethanol. It is clear from this figure that the catalysts exhibit peaks with different areas in the 

hydrogen adsorption-desorption region from -0.20 V to 0.15 V. The area under the peaks in this 

region is proportional to the area of Pt that is electrochemically active. Although quantitative 

comparisons are difficult because of the differences in background currents (comparisons are 

shown in Table 7.1), it can be seen that the PtNi/C catalyst initially had a low active area relative 

to Pt/C. Following 2 h of treatment with acetic acid almost the same behavior was observed over 

all potentials, indicating no significant change in active area. In contrast, the PtNi/C after 4 h 

treatment with acetic acid showed higher activity in the hydrogen region, which indicates that this 

sample had a higher number of Pt active sites relative to the other samples. After 4 h treatment 

with acetic acid, the PtNi/C showed larger current than those on the Pt/C and other PtNi/C samples 

in the electronic double-layer region (between 0.15 and 0.6 V vs. SCE).  The as-prepared and 2 h 

treatment samples did not show high activities (large current) over all potentials and this can be 

attributed to the non-alloyed Ni and residual organic solvents that strongly adsorbed on the active 

sites including the carbon supported and effect on the activity of the catalyst. Previous studies have 

shown that transition metals such as Ni and Sn  can block Pt active sites and decrease the charge 

in the hydrogen region.28,29 In general, the larger current in the electronic double-layer region is 

characteristic of carbon supported catalysts.30–32 Thus, the larger current for the PtNi/C after 4 h 

treatment can be attributed to removal of the residual oleic acid and oleyl amine from the carbon 

surface. In conclusion, treatment of the catalyst with acetic acid for 4 h is necessary to remove the 

non-alloyed Ni atoms and the residual organic solvents blocking the active sites and this provides 

a higher number of Pt active sites and increase the catalytic activity.  
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Table 7.1. Surface areas and utilizations of the PtNi/C and Pt/C catalysts determined from 

the hydrogen desorption charges in Fig. 7.3. 

Catalyst 

Geometric area 

(cm2) 

Electrochemical 

area (cm2) 

Utilization (%) 

Pt/C 16 6.7 41 

As-prepared PtNi/C 4.4 0.60 13 

2 h treatment PtNi/C 4.0 0.66 16 

4 h treatment PtNi/C 4.1 1.2 30 

 

Generally, catalyst properties such as the shape and size of particles, as well as composition 

and alloying, have a significant influence on the activity of catalysts that have the same mass of Pt 

due to differences in active areas.23,24,33,34 Although the comparison in Figure 7.3 is on a Pt mass 

basis, the PtNi/C catalyst showed significantly lower activity in the hydrogen region than the Pt/C 

catalyst after subtracting the background current. This indicates that the PtNi/C sample had a lower 

number of Pt active sites than Pt/C for the same mass (content) of Pt. 
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Figure 7.3. Cyclic voltammograms (100 mV s-1; 1 M H2SO4(aq)) of Pt/C (─ ─; 0.32 mg 

Pt cm-2), the as prepared PtNi/C (····; 0.11 mg Pt cm-2) and PtNi/C following treatment 

with acetic acid for 2 h (- - -; 0.10 mg Pt cm-2) and 4 h (──; 0.11 mg Pt cm-2). 

Figure 7.4 shows the ethanol oxidation reaction characteristics using CV for the PtNi/C 

and Pt/C catalysts in an aqueous solution of 0.1 M ethanol and 1.0 M sulfuric acid. At potentials 

lower than 0.65 V, the PtNi/C catalyst exhibited higher catalytic activity as compared with Pt/C in 

both scans, which can be attributed to easier dissociative adsorption of water to form OHad species 

at low potentials on the catalyst’s surface in the presence of Ni,35,36 resulting in less poisoning 

effect and higher catalytic activity. The different samples of PtNi/C had similar catalytic activities 

on the reverse scan at low potentials. At higher potentials (≥ 0.65 V), the PtNi/C catalyst after 

treatment with acetic acid for 4 h showed significantly higher catalytic activity relative to the Pt/C 

and the other samples of PtNi/C in both the forward and reverse scans. Furthermore, the PtNi/C 

after 2 h treatment with acetic acid had higher catalytic activity than the PtNi/C before treatment 
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at potentials lower than 0.65 V. While the PtNi/C before and after 2 h treatment had similar 

behavior at high potentials and their catalytic activities were higher than Pt/C at intermediate 

potentials and similar at higher potentials. In comparison with Pt/C, the forward current peak for 

the PtNi/C catalyst was shifted to lower potential which indicates that the PtNi/C surface had less 

poisoning effect over this range of potentials.  

The differences in the voltammogram for ethanol oxidation at the PtNi/C and Pt/C catalysts 

can be explained as follow: generally, the ethanol oxidation reaction is enhanced (promoted) 

significantly with increasing the active areas and/or decreasing the poisoning effect. Based on the 

results in Table 7.1 and Figure 7.3, the PtNi/C had a lower number of Pt active sites than Pt/C for 

the same mass of Pt. In contrast, the presence of Ni increases the dissociative adsorption of water 

to form OHad and weaken the Pt-CO bond, which lead to a decrease in the poisoning effect at low 

potentials.35,36 Thus, this can provide higher catalytic activity at the PtNi/C as well as decrease the 

onset potential (close to 0.2 V) and shift the forward current peak to low potential. Whereas, the 

Pt/C had higher active area, the poisoning effect played a central role at low potentials where the 

surface is blocked with COad and this inhibits the ethanol oxidation reaction, resulting in lower 

catalytic activity and a shift in the onset potential and the forward current peak to higher potential. 

The PtNi/C catalyst following treatment with acetic acid showed different behaviors for 

ethanol oxidation and this can be explained by the effect of poisoning species particularly the 

residual organic solvents and the non-alloyed Ni atoms. The active sites of the as-prepared catalyst 

were blocked by these species. Following 4 h of treatment the active area was increased (as shown 

in Table 7.1 and Figure 7.3) by removing these species and this increased the catalytic activity 

over all potentials. While 2 h of treatment did not affect significantly the active area, it did have a 
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significant effect on the onset potential and catalytic activity at intermediate potentials as shown 

in Figure 7.4.  

Moreover, the CV curves of the PtNi/C catalyst present broad and higher current peak on 

the reverse scan as compared to the forward scan. This indicates that the PtNi/C catalyst had higher 

activity and less poisoning effect (higher CO tolerance) at low potentials.23,37 While Pt/C had lower 

current peak on the reverse scan and this can be explained by the strongly adsorbed COad that 

rapidly blocks the active sites as the potentials decreased, which decreases the catalytic activity. 

Generally, strong Pt-OH and Pt-O bonds were formed and accumulated at high potentials leading 

to blocking of the active sites, ethanol adsorption and surface reaction, resulting in decreased 

catalytic activity.16,38,39 This can be used to explain the sharp fall in current at potentials higher 

than ca. 0.6 V in the forward scan, as shown in Figure 7.4. The free electrochemical active sites 

increased on the reverse scan OH and O species are desorbed from the Pt surface (reduction of 

surface Pt(II)) with decreasing the potentials.38,39 Following the reverse scan at the PtNi/C, the 

ability of the reactive species like ethanol to adsorb on the free active sites and even displace the 

strongly adsorbed OH and O species can be increased significantly with decreasing the potential. 

This can increase the dissociative adsorption of ethanol to form COad and thus increased complete 

oxidation of ethanol to CO2 by reacting COad and OHad species at the PtNi/C surface, resulting 

higher in an activity.  

Treatment of the PtNi/C catalyst with acetic acid had a significant effect on the current for 

ethanol oxidation on the forward scan, but a much smaller effect on the reverse scan. Notably, the 

onset of ethanol oxidation was shifted to a much lower potential following 4 h in acetic acid, while 

the shift was much smaller for 2 h in acetic acid. Additionally, the forward current peak was shifted 

to lower potential following 4 h treatment as compared to 2 h treatment with acetic acid, which 
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indicates higher catalytic activity obtained for 4 h treatment with acetic acid. Residual organic 

solvents from the synthesis and non-alloyed Ni atoms may block the Pt active sites and have a 

negative effect on the ethanol oxidation reaction leading to a decrease in the catalytic activity. 

Therefore, removing the residual organic solvent and the non-alloyed Ni atoms, which is easier 

than for alloyed Ni atoms, is necessary, and can be accomplished by treatment with acetic acid. 

Choi et al.24 reported that the Ni content decreased with increasing treatment time.  

 

 

Figure 7.4. Active area normalized cyclic voltammograms (10 mVs-1), in 1 M H2SO4(aq) 

containing 0.1 M ethanol, at Pt/C (─ ─), the as prepared PtNi/C (····) and PtNi/C 

following treatment with acetic acid for 2 h (- - -) and 4 h (──). The inset shows an 

expansion of the 0.1 to 0.4 V region on the forward scan. 
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7.3.2.2 Ethanol Electrolysis in a Multi-Anode PEM Cell at 80 °C. 

 

A multi-anode cell was used for preliminary evaluation of the PtNi/C for ethanol oxidation 

at 80 °C in a PEM cell, and for assessing the effects of treatment with acetic acid. This cell allows 

several catalysts to be tested and compared under the same conditions at the same time. Three 

electrodes prepared with each catalyst were used in order to assess the significance of differences 

between catalysts and to determine the reproducibility of the electrodes. All potentials reported in 

this section are versus DHE. The cell was operated in crossover mode in order to avoid the loss of 

ethanol due to crossover. In this mode, ethanol was fed through the cathode while N2 was passed 

through the anode at a flow rate of ca. 30 mL min-1. Then the ethanol would cross through the 

membrane to the anode where it is electrochemically oxidized.6,26  

Figure 7.5 shows polarization curves for the oxidation of 0.1 M ethanol at different samples 

of PtNi/C catalyst and at Pt/C. Two batches of PtNi/C catalyst were prepared by using the same 

method on a small (black line) and large (red line) scale and tested in the nine-anode cell. The 

sample from the first batch was used without treatment with acetic acid, while the sample from the 

second batch was treated with acetic acid for 4 h. Note that the second batch (large scale 

preparation) was used for the physical characterization and the other electrochemical 

measurements (including measurements in a 5 cm2 cell) in this chapter. Figure 7.5 shows that the 

two PtNi/C samples had almost the same activity at all potentials, which indicates that the catalyst 

treatment with acetic acid did not affect the catalytic activity at 80 °C in the PEM cell. This 

observation indicates that the species that blocked the Pt surface in the CV experiments were 

removed during start-up and conditioning of the PEM cell. In comparison with Pt/C, the PtNi/C 

had similar current at low potentials but lower current at high potentials.   
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Figure 7.5. Polarization curves for the oxidation of 0.100 M ethanol in a nine-anode PEM 

cell in crossover mode at Pt/C and different samples of PtNi/C at 0.5 mL min-1 and 80 ºC.  

The nine-anode cell was also used to measure the efficiency of the PtNi/C catalyst for the 

complete oxidation of ethanol, by passing the N2 from the cell exhaust though a CO2 detector. 

Figure 7.6 shows faradaic yields of CO2 for the two samples of PtNi/C catalyst and for Pt/C at 0.5 

V. The relatively stable CO2 readings demonstrate, for the first time, that the nine-anode cell is 

suitable for CO2 measurements.  The average yield of CO2 increased from 21% to 30% after the 

PtNi/C catalyst was treated with acetic acid for 4 h while the CO2 yield was 80% for the Pt/C. At 

this potential, the PtNi/C showed less selectivity for complete oxidation relative to the Pt/C. The 

increase in selectively for the complete oxidation at the PtNi/C can be attributed to the increase in 

number of Pt active sites after treatment of the catalyst with acetic acid for 4 h and changing the 

Pt:Ni ratio at the catalyst surface, as discussed earlier. Hence, the treatment with acetic acid did 

not affect the catalytic activity but significantly affected the selectivity of the catalyst.  
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Figure 7.6. Faradaic yields of CO2 for the oxidation of 0.100 M ethanol in a nine-anode 

PEM cell in crossover mode at Pt/C and different samples of PtNi/C at 0.2 mL min-1, 0.5 

V and 80 ºC.  

7.3.2.3 Ethanol Electrolysis in a 5 cm2 PEM Cell at 80 °C  

Polarization Curve. — The PtNi/C catalyst was treated with acetic acid for 4 h and tested 

in a 5 cm2 PEM cell in anode polarization mode at 80 °C. The anode polarization mode provides 

higher current and faradaic efficiencies compared with the cross over mode and can be used to 

evaluate performances of anode catalysts for DEFCs. 

Figure 7.7 shows polarization curves for the oxidation of 0.1 M ethanol at PtNi/C, Pt/C and 

PtRu/C anodes. The data for Pt/C and PtRu/C have been presented and discussed in Chapter 4.22 

The PtNi/C and Pt/C catalysts had very similar performances at potentials lower than 0.35 V, while 

at potentials higher than 0.4 V the PtNi/C showed lower currents than Pt/C. In comparison with 

PtRu/C, the PtNi/C had lower performance at low and high potentials but similar performance at 
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intermediate potentials as shown in Figure 7.7. Generally, the effect of Ni and Ru can be explained 

as follow: the presence of Ni and Ru can enhance the bifunctional mechanism and ligand 

(electronic) effect of the catalyst which increases the formation of the adsorbed OHad species and 

weakens the  COad bonds, but the most dominate effect of Ru is the bifunctional mechanism.35,36,40–

42 This effect should improve the ethanol oxidation reaction at low potentials where the OHad could 

form and react with COad, resulting more free active sites and thus higher catalytic activity should 

be observed. While at the Pt/C catalyst, high potentials are required to increase the catalytic activity 

by enhancing the dissociative adsorption of water to form OHad to oxidize the COad species and 

clear the Pt active sites for further ethanol oxidation.  

Herein, the CVs did not give a good indication of what would happened in a fuel cell 

particularly at low potentials where the current measured in the PEM cell at the PtNi/C was similar 

and lower than those measured at the Pt/C and PtRu/C, respectively. The CVs (Figure 7.4) showed 

the effect of Ni by enhancing the catalytic activity of the PtNi/C at low potentials as compared 

with Pt/C. The poor performance of the PtNi/C in the 5 cm2 cell at low potentials compared with 

Pt/C can be attributed to the lower Pt active areas for the same content of Pt, less amount of Pt and 

large Pt particle size (9 nm compared with 3.6 nm for the Pt/C), where the current in this region is 

proportional to the Pt active areas, and poisoning effect. At potentials higher than 0.45 V, the 

differences in the catalytic activity between the PtNi/C and Pt/C can be attributed to a difference 

in average number of electrons (nav), which is discussed in Section 7.3.3. 
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Figure 7.7. Polarization curves for the oxidation of 0.100 M ethanol in anode polarization 

mode at Pt/C, PtRu/C and PtNi/C at 0.5 mL min-1 and 80 ºC. 

7.3.3 Stoichiometry and Product distribution 

7.3.3.1 Average Number of Electrons (nav)   

Table 7.2 shows nav values for the oxidation of 0.10 M ethanol at a PtNi/C anode at 80°C, 

obtained by using three different methods: analysis of the amount of ethanol consumed (∆C) and 

from the product distribution (faradaic and chemical).21,22,25 Figure 7.8 compares the average 

values of nav obtained for the PtNi/C and Pt/C anodes under the same conditions, which can be 

used to determine the faradaic efficiency. At lower potentials (≤ 0.4 V), the PtNi/C had higher 

efficiency than Pt/C with a maximum nav of 6.90 at 0.35 V.  While at potentials ≥ 0.45 V, the 

PtNi/C had lower efficiency than Pt/C with nav decreasing to 4.74 at 0.70 V for the PtNi/C.  
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Table 7.2. nav vs. potential for the oxidation of 0.100 M ethanol (0.2 mL min−1) at PtNi/C 

anode at 80 ºC. 

Potential (V) nav (∆C) nav (Faradaic) nav (Chemical) 

0.70 4.80 4.65 4.74 

0.60 4.99 5.01 5.00 

0.50 5.17 5.29 5.22 

0.45 5.60 5.67 5.63 

0.40 6.90 6.64 6.82 

0.35 6.90 6.88 6.90 

0.30 6.79 6.81 6.80 

0.20 6.51 6.57 6.53 

 

 

Figure 7.8. nav vs. potential for the oxidation of 0.100 M ethanol (0.2 mL min-1) at Pt/C 

and PtNi/C anodes at 80 ºC. 
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7.3.3.2 Product Distribution  

The reaction mechanism of the ethanol oxidation reaction is complex and involves many 

adsorbed intermediates and products. Determining the product distribution in conjunction with 

electrochemical measurements is important for understanding the mechanism and how the rates of 

the desired pathways can be enhanced. This can lead to development of more efficient catalyst for 

commercialization of DEFCs and EECs. Figure 7.9 shows the faradaic and chemical yields of CO2, 

acetic acid and acetaldehyde obtained from the analysis of the products in the cell exhaust. The 

current produced and the measured quantities of CO2, acetic acid and acetaldehyde were used to 

calculate the faradaic yields, while the chemical yields were calculated based on the measured 

quantities of these products and the amount of ethanol consumed. A NDIR detector was used to 

determine CO2 while amounts of ethanol consumed, and acetic acid and acetaldehyde produced 

were measured by using 1H NMR spectroscopy.25  The chemical yield of CO2 obtained for PtNi/C 

was almost constant at low potentials and a decreased at high potentials, from 40% at 0.2 V to 10% 

at 0.7 V. In contrast, higher acetic acid yields were obtained at high potentials, reaching 86% at 

0.7 V. The high yield of acetic acid at high potentials indicates that acetic acid was easily formed 

when the catalyst surface was covered with OHad species.  
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Figure 7.9. Faradaic and chemical yields of CO2, acetic acid, and acetaldehyde as a 

function of potential for oxidation of 0.100 M ethanol at a PtNi/C anode at 80 ºC. 

 Figure 7.10 shows a comparison between the yields of CO2 for PtNi/C and Pt/C under the 

same conditions. It can be seen from Figure 7.10 that the potential dependence of the CO2 yields 

for both the PtNi/C and Pt/C are similar to those for the nav values, shown in Figure 7.8. This can 

be attributed to the high number of electrons transferred during CO2 formation, relative to 

acetaldehyde and acetic acid formation. PtNi/C provided higher selectivity than Pt/C for the 

complete oxidation of ethanol to CO2 at low potentials, while at high potentials, PtNi/C was less 

selective for the complete oxidation of ethanol to CO2 than Pt/C.  

In comparison with the product distributions of Pt/C and PtRu/C reported in ref.22, the 

measured product distributions for PtNi/C clearly demonstrates the effects of Ni and octahedral 

shape on the selectivity and efficiency (Figure 7.8) of the PtNi/C catalyst. The selectivity for the 

complete oxidation was higher for PtNi/C than for the Pt/C at low potentials and for the PtRu/C at 

all potentials. The enhancement of the selectivity and efficiency of PtNi/C toward oxidation of 

ethanol at low potentials compared with Pt/C can be attributed to the formation of OHad and 
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weakening of the COad bond. The different behaviors of the poisoning species (COad and OHad) at 

low and high potentials can be observed at the surface of PtNi/C and Pt/C.35,36,42,43 Increasing the 

potential, more OHad and O species would be adsorbed strongly on the PtNi/C surface occupying 

most of the active sites (oxidation of the Pt surface), where they adsorbed on Pt even more strongly 

than CO, lead to inhibition of C-C bond cleavage. At Pt/C, OHad can form at high potentials and 

react with the accumulated adsorbed CO, resulting higher selectivity. It can be seen from the data 

in Figure 7.10 that CO2 yields were decreased significantly at potentials higher than 0.5 V at Pt/C. 

This can be attributed to the increasing coverage of OHad species that block the active sites.  

Previous studies have shown that a high coverage of surface oxidants (particularly OH and O 

species) inhibits the ability of the catalyst to cleave the C-C bond and thus decreases COad 

formation.16,38,39  

 

Figure 7.10. Chemical yields of CO2 vs. potential for oxidation of 0.100 M ethanol at 

Pt/C and PtNi/C anodes at 80 ºC. 
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 The acetaldehyde yields were higher at low potentials compared to the yields at high potentials. 

Since the acetaldehyde is an intermediate that can be easily further oxidized in the cell, bilayer 

catalyst can be used to enhance the further oxidation of acetaldehyde to CO2 and acetic acid and 

thus increase the faradaic efficiency of ethanol oxidation.21  

A comparison of the present performance results with the literature is the best way to get insight 

on the promoting effect of the temperature and the electrolyte. In situ FTIR was used to monitor 

the intermediates and products of the ethanol oxidation reaction on the octahedral PtNi/C at 

ambient temperature in a liquid electrolyte.23 Sulaiman reported that the PtNi/C catalyst exhibits 

higher current than Pt/C (46% Pt), but based on the IR results acetic acid was the main product at 

all potentials on PtNi/C. The CO2 yields were almost constant at low potentials and increased at 

high potentials, which indicates that the PtNi/C had higher selectivity for the complete oxidation 

at higher potentials.23 Increasing temperature leads to increased catalytic activity and efficiency 

due to the effect of temperature on the kinetics and mass transport. DEFCs operate at elevated 

temperatures (> 70 °C) with a polymer electrolyte. Consequently, the catalytic activity, selectivity 

and efficiency of new catalysts should be evaluated under these conditions, in addition to studies 

at ambient temperature in a liquid electrolyte. Our results show that the selectivity of Pt for 

complete oxidation of ethanol to CO2 can be increased at low potentials by modification with Ni.  

7.3.4 Efficiency 

 In this work, the cell was operated as an ethanol electrolysis cell (EEC) to obtain accurate 

nav values by avoiding the chemical reaction between oxygen and ethanol that occurs in a DEFC. 

These accurate nav values were used to estimate the efficiencies of DEFCs as described 

previously.22 Figure 7.8 shows the overall efficiency (εDEFC) of a DEFC vs. current density (A) 
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and power density (B). It can be seen from Figure 7.11 that the PtNi/C would provide higher 

efficiencies than Pt/C at the lowest current and power densities, while PtNi/C would give lower 

efficiencies at the highest current and power densities. Consequently, from the best of our 

knowledge, the PtNi/C is the best catalyst at low potentials whereas the best catalyst at higher 

potentials is still Pt/C. The latter could provide higher current densities at higher potentials as 

compared to the PtNi/C. Although the PtNi/C and Pt/C had similar performances at low potentials, 

the higher nav values for PtNi/C provide higher faradaic efficiencies at low potentials.  These 

results indicate that the selectivity of the catalyst has a vital effect on the efficiency. Developing 

catalysts with high selectivity for the complete oxidation of ethanol to CO2 can improve the 

efficiency of a DEFC.  
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Figure 7.11. Efficiency vs.  current density (A) and power density (B) for DEFCs 

operating with 0.100 M ethanol at 80°C at PtNi/C and Pt/C anodes. 
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7.4 Conclusions 

In summary, the treatment of the PtNi/C octahedra with acetic acid for 4 h had a large effect 

on the activity and selectivity for ethanol oxidation. It was found that increasing the treatment time 

increased the active Pt area by removing residual organic solvents and non-alloyed Ni atoms. 

Following 4 h treatment the current in CVs was enhanced and the selectivity for complete was 

oxidation significantly increased in the nine-anode cell compared with as-prepared PtNi/C. In 

comparison with the polarization curves, the CVs did not give a clear insight into the performance 

of the PtNi/C catalyst under fuel cell conditions. The selectivity was increased significantly at the 

PtNi/C compared with Pt/C at low potentials, but acetic acid was the main product at high 

potentials. The nav values and product distributions showed that the presence of the alloyed Ni 

atoms with an octahedral shape increased the faradaic efficiency of the catalyst at low potentials 

and thus the PtNi/C has the highest faradaic efficiencies at low potentials. 
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8. Summary and Future Work 

8.1 Summary 

New methodologies for determining the product distribution in a proton exchange membrane 

ethanol electrolysis cell were developed that allowed accurate analysis of residual ethanol and 

products from both the anode and cathode exhausts. Nitrogen was used at the cathode to avoid 

chemical reaction between oxygen and ethanol. Moreover, the accuracy of the results was tested 

by comparing four different methods to measure the stoichiometry (nav) of ethanol oxidation: a 

purely electrochemical method, analysis of the amount of ethanol consumed (∆C) and from the 

product distribution (faradaic and chemical). The results from chemical analysis were found to be 

in a good agreement with those from the electrochemical method in most cases, and discrepancies 

were used to guide refinement of the methods.  

The methodology developed in this work for measurement of products and residual ethanol 

from ethanol electrolysis can also be applied to DEFCs. However, the effects of crossover need to 

be avoided or corrections need to be made. The loss of ethanol and products through the membrane 

to the cathode was quantified by analysis of the anode and cathode exhausts separately. It was 

shown that inaccuracies due to crossover where avoided when the anode and cathode exhausts 

were combined prior to analysis.  

Many research groups have evaluated catalysts and determined product yields in cells with 

liquid electrolytes at ambient temperature. In this work, the effects of temperature were examined 

in fuel cell hardware. It was found that the performance and efficiency of the EOR were increased 

at higher temperatures, in good agreement with other reported in the literature. Furthermore, the 

effect of potential on the product distribution and efficiency was investigated for various 

commercial catalysts in an electrolysis cell at elevated temperature. Pt was found to provide higher 
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selectivity for the complete oxidation of ethanol to CO2 than either PtRu or PtSn at all potentials 

and the current was higher than both at high potentials, but lower than for PtRu at low potentials. 

Also, the effect of combining Pt and PtRu catalysts as a mixture and in bilayer electrodes was 

measured as a function of potential. A synergistic effect was discovered, that was particularly 

strong for a PtRu on Pt bilayer. It was found that the decrease in the ethanol concentration in the 

PtRu layer, before it reaches the Pt layer, leads to higher CO2 yields. Furthermore, the Pt layer can 

oxidized acetaldehyde produced in the PtRu layer to CO2, resulting in a high faradaic efficiency 

while maintain the high potential efficiency of PtRu. From our results, it was found that the 

selectivity had higher influence than performance on the efficiency of the cell.  

Finally, the selectivity, performance and efficiency of the EOR in an electrolysis cell were 

investigated for an octahedral PtNi catalyst at elevated temperature. Also, the effect of treatment 

with acetic acid for different periods of time was examined. It was found that there was a 

significant increase in selectivity for CO2 after 4 h treatment with acetic acid. The PtNi catalyst 

was found to be much more selective for the complete oxidation, and therefore more efficient than 

Pt/C at low potentials. While at higher potentials, the PtNi had lower selectivity and efficiency 

compared to Pt.  

In this work, the efficiencies of the DEFCs were accurately estimated for the first time as a 

function of current and power density based on full product analysis from both anode and cathode 

exhausts. The accurate determination of nav allows different anodes to be compared based on the 

overall efficiency. 
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8.2 Future Work 

Based on the results obtained in this work, there are some areas that should be further explored. 

Since an electrochemical method has been used to determine the stoichiometry of the EOR, further 

work is required to solve the discrepancy in the nav values obtained from this method and from the 

amount of ethanol consumed and product analysis. Also, further work is required to understand 

the effect of Ni and octahedral shape on the EOR. Using a normal cell at ambient temperature, in 

situ infrared spectroscopy (IR) and CO stripping voltammetry could be useful techniques to 

provide a general idea about the behavior of adsorbed CO species on the catalyst surface in order 

to understand the mechanism in more detail.  

Since the octahedral PtNi catalyst had higher selectivity at low potentials than the Pt, further 

work is required to test normal and spherical PtNi nanoparticles to compare with octahedral shape 

in order to study the effect of the particle shape. In addition, modification with other metals and 

variation of the particle size and composition can be studied. Since PtRu had the highest 

performance at low potentials but lowest selectivity for the complete oxidation, modification of 

PtNi with Ru and other metals such as Sn, Rh, and Ir, to make binary and tertiary catalysts could 

enhance the performance and efficiency. The performance of a PtNi catalyst was found to 

increased significantly at low potentials after modification with Ru and Sn.1-3 Also, the 

modification of the catalysts can be conducted by the same procedure as the preparation of 

octahedral PtNi to form octahedral particles or other active shapes with more edges and corners 

such as polyhedra. There are lots of promising anode candidates in the literature that should be 

tested and compared with each other. 

It can be said that the preparation method and desired metals as well as controlling size, 

composition, shape, uniformity and morphology are very powerful and efficient tools that can be 
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applied to a broad range of catalysts to enhance the performance and efficiency. A variety of such 

techniques can be considered for the synthesis of nanoparticles catalysts, metal oxides and 

supported materials and to enhance the selectivity and catalytic activity by the synergetic effect 

between the catalyst and support such as PtRh/SnO2.
4 Another option would be to use mixed and 

bilayer electrodes to increase the efficiency and performance of catalysts. In order to do this, 

bilayer electrode of PtNi and PtRu may increase the efficiency and performance of fuel cells. This 

means that PtNi should provide high selectivity resulting higher faradaic efficiency, while the PtRu 

can maintain the higher output potential which leads to increase the potential efficiency.  

Finally, the selectivity, activity and efficiency of catalysts could also be affected by using 

oxygen at the cathode, which was influence the overall performance of the fuel cell. Therefore, 

these catalysts should be tested in a DEFC with oxygen at the cathode in order to study the effect 

of oxygen on the efficiency and performance. 
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A. CO2 and NMR Measurements 

A1. CO2 Measurements 

A1.1 Faradaic Yield 

The faradaic yield of the CO2 is determined by the experimental and theoretical rates of 

CO2 formation according to eq. A1, 

       𝑓𝑎𝑟𝑎𝑑𝑎𝑖𝑐 𝐶𝑂2 𝑦𝑖𝑒𝑙𝑑 =  
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝐶𝑂2 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝐶𝑂2 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
                              ( 𝐴1) 

The experimental CO2 rate in mol s-1 is obtained from the CO2 detector and is determined by eq. 

A2. While the theoretical CO2 rate is calculated based on the measured current (eq. A3). The 

theoretical moles of CO2 is determined by eq. A4. 

         𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝐶𝑂2 =  
𝐶𝑂2 (𝑝𝑝𝑚) ∗ 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 (𝐿 𝑚𝑖𝑛−1)

60 ∗ 106 ∗ 𝑉𝑚 
       (𝐴2) 

         𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝐶𝑂2 =  
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝑚𝐴)

𝑛𝐹
                                                        (𝐴3) 

          𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐶𝑂2 =  
𝑄

𝑛𝐹
=  

𝐼𝑡

𝑛𝐹
                                                                                 (𝐴4) 

Where Vm is the volume of any gas in L mol-1, Q is the charge produced from the EOR, n is the 

number of electrons transferred to form one molecule of CO2 and F = 96500 A s mol-1 is the 

faraday constant. The CO2 reading (CO2 (ppm)) was allowed to stabilize and then average over a 

period of at least 100 s. 

In chapter 3 (and appendix B), the experimental rate of CO2 from the anode can be calculated 

according to eq. A5. 

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝐶𝑂2 =  
𝐶𝑂2(𝑝𝑝𝑚)𝑎 ∗ 𝑡𝐶𝑂2 

∗ 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 (𝐿 𝑚𝑖𝑛−1)

60 ∗ 106 ∗ 𝑉𝑚 ∗ 𝑡𝑒𝑥𝑝
  (𝐴5) 
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Where CO2 (ppm)a is the average of all CO2 readings from the anode, tCO2 is the time in seconds 

required to flush the collected CO2 from the anode through the CO2 detector, while texp is the length 

of experiment in seconds.  

A1.2 Chemical Yield 

The chemical yield of CO2 is calculated according to eq. A6, 

            𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝐶𝑂2 𝑦𝑖𝑒𝑙𝑑 =  
𝑚𝑜𝑙 𝑜𝑓 𝐶𝑂2/2

𝑚𝑜𝑙 𝑜𝑓 𝑒𝑡ℎ𝑎𝑛𝑜𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
                                                        (𝐴6) 

Where the moles of CO2 (determined by eq. A7) is divided by 2 since two moles of CO2 are 

produced from one mole of ethanol. While the moles of ethanol consumed is determined by NMR.  

            𝑚𝑜𝑙 𝑜𝑓 𝐶𝑂2 =  𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝐶𝑂2 ∗ 𝑡𝑖𝑚𝑒 (𝑠)                                                     (𝐴7) 

A2. NMR Measurements 

The concentration of the analyte (residual ethanol, acetic acid and acetaldehyde) was 

determined by its NMR area according to eq. A8. 

𝑎𝑛𝑎𝑙𝑦𝑡𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑟𝑒𝑎 𝑓𝑜𝑟 𝑎𝑛𝑎𝑙𝑦𝑡𝑒∗𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑟𝑒𝑎 𝑓𝑜𝑟 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
                           (𝐴8)   

Where the normalized area is the NMR peak area of the analyte or internal standard divided by the 

number of protons that contribute to the peak. 

A3. Faradaic Yields of Acetic Acid and Acetaldehyde 

The faradaic yields of acetic acid and acetaldehyde can be calculated by eq. A9, 

               𝑓𝑎𝑟𝑎𝑑𝑎𝑖𝑐 𝑦𝑖𝑒𝑙𝑑 =  
𝐶𝐴𝑢

𝐼𝐹𝑛
                                                                                                           (𝐴9) 
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Where CA is the concentration in mM obtained from NMR, u is the flow rate of ethanol in mL s-1, 

I is the measured current in mA, F is the faraday constant, and n is the number of electrons 

transferred to form acetic acid (n = 4) and acetaldehyde (n = 2). 
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Current and CO2 Traces for Pt black 
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B. Current and CO2 Traces for Pt black 

 

Figure B1. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

50°C at Pt black anode. At each potential, the cell was running at different flow rates (0.5, 

0.2, 0.09, 0.05 and 0.02 mL min-1). 

 

Figure B2. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

50°C at Pt black anode. At each potential, the experiment was performed in triplicate at 

0.2 mL min-1. 
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Figure B3. CO2 (from cathode) at different potentials vs.  time for oxidation of 0.100 M 

ethanol at 50°C at Pt black anode. At each potential, the experiment was performed in 

triplicate at 0.2 mL min-1. The data collection started between 300 s to 1500 s after the 

current stabilized.  

 

Figure B4. CO2 (from anode) at different potentials vs.  time for oxidation of 0.100 M 

ethanol at 50°C at Pt black anode. At each potential, the experiment was performed in 

triplicate at 0.2 mL min-1.  
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Table B1. Concentrations of residual ethanol and products in mM for oxidation of 0.100 

M ethanol at 50°C at Pt black anode (0.2 mL min-1). Note that the CO2 

concentration is the value that would be obtained if it remains in the 

ethanol solution, and that only 0.5 mol of ethanol are consumed to produce 1 

mol of CO2. 

Potential (V) CO2 AA AAL AAL dimer ethanol 

0.7 (1) 7.41 28.85 2.24 1.94 53.88 

0.7 (2) 7.31 26.87 2.53 1.78 50.63 

0.7 (3) 7.57 29.73 2.45 1.86 55.77 

0.55 (1) 5.38 17.05 2.37 1.50 74.90 

0.55 (2) 4.75 13.59 0.82 0.76 79.35 

0.55 (3) 5.12 11.56 1.79 1.75 82.42 

0.45 (1) 4.08 4.35 2.67 1.47 87.35 

0.45 (2) 4.03 4.95 1.84 2.03 85.76 

0.45 (3) 3.67 4.01 3.25 1.67 88.16 
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Figure B5. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

80°C at Pt black anode. At each potential, the cell was running at different flow rates (0.5, 

0.2, 0.09, 0.05 and 0.02 mL min-1). 

 

Figure B6. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

80°C at Pt black anode. At each potential, the experiment was performed in triplicate at 

0.2 mL min-1. 
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Figure B7. CO2 (from cathode) at different potentials vs.  time for oxidation of 0.100 M 

ethanol at 80°C at Pt black anode. At each potential, the experiment was performed in 

triplicate at 0.2 mL min-1. The data collection started between 700 s to 2000 s after the 

current stabilized.  

 

Figure B8. CO2 (from anode) at different potentials vs.  time for oxidation of 0.100 M 

ethanol at 80°C at Pt black anode. At each potential, the experiment was performed in 

triplicate at 0.2 mL min-1.  
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Table B2. Concentrations of residual ethanol and products in mM for oxidation of 0.100 

M ethanol at 80°C at Pt black anode (0.2 mL min-1). Note that the CO2 

concentration is the value that would be obtained if it remains in the 

ethanol solution, and that only 0.5 mol of ethanol are consumed to produce 1 

mol of CO2. 

Potential (V) CO2 AA AAL AAL dimer ethanol 

0.7 (1) 19.52 16.28 1.19 1.18 64.77 

0.7 (2) 19.76 15.44 1.98 1.16 64.92 

0.7 (3) 19.06 15.40 1.47 1.37 62.84 

0.5 (1) 15.41 14.21 1.86 1.21 73.55 

0.5 (2) 15.93 14.07 2.35 1.31 72.94 

0.5 (3) 15.85 14.30 1.77 1.28 73.63 

0.4 (1) 8.81 6.11 3.09 2.03 86.49 

0.4 (2) 7.23 6.90 2.54 2.30 87.19 

0.4 (3) 7.74 7.15 2.66 2.13 87.08 
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Appendix C 

 

Current and CO2 Traces for Pt/C, PtRu/C and 

PtSn/C 
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C. Current and CO2 Traces for Pt/C, PtRu/C and PtSn/C 

 
Figure C1. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

80°C at Pt/C anode (0.2 mL min-1). 

 
Figure C2. CO2 at different potentials vs.  time for oxidation of 0.100 M ethanol at 80°C 

at Pt/C anode (0.2 mL min-1). The data collection started between 700 s to 1400 s after 

the current stabilized.  
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Table C1. Concentrations of residual ethanol and products in mM for oxidation of 0.100 

M ethanol at 80°C at Pt/C anode (0.2 mL min-1). Note that the CO2 

concentration is the value that would be obtained if it remains in the 

ethanol solution, and that only 0.5 mol of ethanol are consumed to produce 1 

mol of CO2. 

Potential (V) CO2 AA AAL AAL dimer ethanol 

0.7 33.38 46.35 0.79 0.54 34.18 

0.6 55.05 35.24 0.65 0.59 36.26 

0.5 45.01 20.82 0.99 0.55 54.62 

0.45 26.61 17.06 3.11 1.89 63.41 

0.4 8.32 6.46 2.92 2.03 83.72 

0.35 7.87 3.39 2.14 1.78 88.85 

0.3 3.87 1.64 1.27 1.08 93.68 

0.2 1.45 0.74 1.09 0.82 96.76 
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Figure C3. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

80°C at PtRu/C anode (0.2 mL min-1). 

 

Figure C4. CO2 at different potentials vs.  time for oxidation of 0.100 M ethanol at 80°C 

at PtRu/C anode (0.2 mL min-1). The data collection started between 500 s to 1400 s after 

the current stabilized.  
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Table C2. Concentrations of residual ethanol and products in mM for oxidation of 0.100 

M ethanol at 80°C at PtRu/C anode (0.2 mL min-1). Note that the CO2 

concentration is the value that would be obtained if it remains in the 

ethanol solution, and that only 0.5 mol of ethanol are consumed to produce 1 

mol of CO2. 

Potential (V) CO2 AA AAL AAL dimer ethanol 

0.7 3.87 50.44 0.95 1.07 42.92 

0.6 4.97 51.03 1.14 0.80 45.66 

0.5 6.97 45.71 0.89 0.97 50.51 

0.45 6.66 40.02 1.12 0.79 52.44 

0.4 5.75 37.91 1.07 1.07 55.44 

0.35 3.44 29.95 1.73 1.47 64.62 

0.3 2.08 20.90 1.86 1.95 72.17 

0.2 0.23 3.36 1.95 1.79 92.99 
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Figure C5. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

80°C at PtSn/C anode (0.2 mL min-1). 

 

Figure C6. CO2 at different potentials vs.  time for oxidation of 0.100 M ethanol at 80°C 

at PtSn/C anode (0.2 mL min-1). The data collection started between 600 s to 1500 s after 

the current stabilized.  
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Table C3. Concentrations of residual ethanol and products in mM for oxidation of 0.100 

M ethanol at 80°C at PtSn/C anode (0.2 mL min-1). Note that the CO2 

concentration is the value that would be obtained if it remains in the 

ethanol solution, and that only 0.5 mol of ethanol are consumed to produce 1 

mol of CO2. 

Potential (V) CO2 AA AAL AAL dimer ethanol 

0.7 14.62 34.79 3.02 2.41 52.58 

0.6 24.11 28.98 1.98 1.30 54.41 

0.5 20.91 26.68 2.07 1.56 57.40 

0.45 13.81 24.72 2.54 2.36 61.43 

0.4 6.02 21.27 2.17 2.70 70.51 

0.35 2.39 17.11 2.92 2.37 76.11 

0.3 1.59 14.52 2.09 1.92 79.44 

0.2 0.78 8.05 1.51 0.89 88.32 
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Appendix D 

 

Current and CO2 Traces for Pt/C and PtRu/C 

catalyst bilayers 
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D. Current and CO2 Traces for Pt/C and PtRu/C catalyst bilayers 

 

Figure D1. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

80°C at Pt on PtRu anode (0.2 mL min-1). 

 

Figure D2. CO2 at different potentials vs.  time for oxidation of 0.100 M ethanol at 80°C 

at Pt on PtRu anode (0.2 mL min-1). The data collection started between 500 s to 700 s 

after the current stabilized.  
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Table D1. Concentrations of residual ethanol and products in mM for oxidation of 0.100 

M ethanol at 80°C at Pt on PtRu anode (0.2 mL min-1). Note that the CO2 

concentration is the value that would be obtained if it remains in the 

ethanol solution, and that only 0.5 mol of ethanol are consumed to produce 1 

mol of CO2. 

Potential (V) CO2 AA AAL AAL dimer ethanol 

0.7 22.63 39.44 0.56 0.47 48.50 

0.6 27.16 36.02 0.55 0.42 49.76 

0.5 27.34 32.31 0.59 0.67 53.47 

0.45 24.59 29.83 0.63 0.60 53.78 

0.4 18.68 29.99 0.82 0.88 59.17 

0.35 11.60 26.73 1.05 1.17 65.76 

0.3 4.23 20.30 1.97 1.86 73.05 

0.2 1.24 5.57 1.89 2.09 89.45 
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Figure D3. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

80°C at PtRu on Pt anode (0.2 mL min-1). 

 

Figure D4. CO2 at different potentials vs.  time for oxidation of 0.100 M ethanol at 80°C 

at PtRu on Pt anode (0.2 mL min-1). The data collection started between 500 s to 700 s 

after the current stabilized.  
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Table D2. Concentrations of residual ethanol and products in mM for oxidation of 0.100 

M ethanol at 80°C at PtRu on Pt anode (0.2 mL min-1). Note that the CO2 

concentration is the value that would be obtained if it remains in the 

ethanol solution, and that only 0.5 mol of ethanol are consumed to produce 1 

mol of CO2. 

Potential (V) CO2 AA AAL AAL dimer ethanol 

0.7 25.48 47.20 1.04 0.74 38.45 

0.6 33.48 43.31 0.85 0.49 38.98 

0.5 39.02 38.39 0.79 0.49 40.73 

0.45 37.04 36.35 0.74 0.81 44.60 

0.4 31.72 32.90 1.28 0.82 49.25 

0.35 17.79 27.57 1.19 1.14 59.47 

0.3 7.31 17.85 1.85 1.65 73.08 

0.2 1.66 4.02 2.11 1.75 90.84 
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Figure D5. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

80°C at Pt + PtRu anode (0.2 mL min-1). 

 

Figure D6. CO2 at different potentials vs.  time for oxidation of 0.100 M ethanol at 80°C 

at Pt + PtRu anode (0.2 mL min-1). The data collection started between 500 s to 700 s 

after the current stabilized.  
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Table D2. Concentrations of residual ethanol and products in mM for oxidation of 0.100 

M ethanol at 80°C at Pt + PtRu anode (0.2 mL min-1). Note that the CO2 

concentration is the value that would be obtained if it remains in the 

ethanol solution, and that only 0.5 mol of ethanol are consumed to produce 1 

mol of CO2. 

Potential (V) CO2 AA AAL AAL dimer ethanol 

0.7 18.13 53.53 0.89 0.99 32.21 

0.6 27.00 49.67 0.89 0.75 35.37 

0.5 27.51 47.39 0.90 0.77 38.25 

0.45 21.00 45.22 1.27 1.22 42.54 

0.4 12.84 39.23 1.68 1.37 49.00 

0.35 7.40 29.98 1.69 1.59 57.07 

0.3 3.01 21.12 2.38 2.13 73.86 

0.2 0.75 3.96 2.08 1.68 91.20 
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Appendix E 

 

Determination of the stoichiometry of ethanol 

oxidation from the flow rate dependence of the 

current in a proton exchange membrane 

electrolysis cell  
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E. Determination of the stoichiometry of ethanol oxidation from the flow rate 

dependence of the current in a proton exchange membrane electrolysis cell  

 

Figure E1. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

80°C at Pt/C anode. At each potential, the cell was running at different flow rates (0.5, 

0.2, 0.09, 0.05 and 0.02 mL min-1). 

 

Figure E2. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

80°C at PtRu/C anode. At each potential, the cell was running at different flow rates (0.5, 

0.2, 0.09, 0.05 and 0.02 mL min-1). 
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Figure E3. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

80°C at PtSn/C anode. At each potential, the cell was running at different flow rates (0.5, 

0.2, 0.09, 0.05 and 0.02 mL min-1). 

 

Figure E4. Current at different flow rates vs.  time for oxidation of 0.100 M ethanol at 

80°C at Pt on PtRu anode. At each flow rate, the cell was running at different potentials 

(0.7, 0.6, 0.5, 0.4, 0.3 and 0.2 V). 

0.5 V 

0.7 V 

0.6 V 

0.45 V 

0.35 V 

0.4 V 

0.3 V 

0.2 V 
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Figure E5. Current at different flow rates vs.  time for oxidation of 0.100 M ethanol at 

80°C at PtRu on Pt anode. At each flow rate, the cell was running at different potentials 

(0.7, 0.6, 0.5, 0.4, 0.3 and 0.2 V). 

 

Figure E6. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

80°C at Pt + PtRu anode. At each potential, the cell was running at different flow rates 

(0.5, 0.2, 0.09, 0.05 and 0.02 mL min-1). 
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Appendix F 

 

Product distributions and efficiencies for ethanol 

oxidation at PtNi octahedra 
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F. Product distributions and efficiencies for ethanol oxidation at PtNi octahedra 

 

Figure F1. Current at different potentials vs.  time for oxidation of 0.100 M ethanol at 

80°C at PtNi anode (0.2 mL min-1).  

 

Figure F2. CO2 at different potentials vs.  time for oxidation of 0.100 M ethanol at 80°C 

at PtNi anode (0.2 mL min-1). The data collection started between 200 s to 900 s after the 

current stabilized.  
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Table F1. Concentrations of residual ethanol and products in mM for oxidation of 0.100 

M ethanol at 80°C at PtNi anode (0.2 mL min-1). Note that the CO2 

concentration is the value that would be obtained if it remains in the 

ethanol solution, and that only 0.5 mol of ethanol are consumed to produce 1 

mol of CO2. 

Potential (V) CO2 AA AAL AAL dimer ethanol 

0.7 11.17 47.38 0.59 0.45 45.49 

0.6 13.40 46.26 0.31 0.34 47.28 

0.5 16.23 38.73 0.17 0.22 51.22 

0.45 18.96 34.50 0.22 0.31 55.35 

0.4 17.58 13.71 0.86 0.94 76.60 

0.35 9.01 5.29 1.00 1.10 89.14 

0.3 4.74 2.38 0.89 0.93 94.57 

0.2 2.14 0.73 0.68 0.37 97.81 
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Figure F3. Thermogravimetry of the as-prepared bulk sample of PtNi/C.  

 

Figure F4. Thermogravimetry of the bulk sample of PtNi/C following heating in acetic acid at 

60 °C for 2 h. 
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Figure F5. Thermogravimetry of the bulk sample of PtNi/C following heating in acetic acid at 

60 °C for 4 h. 

 

 

 

 

 

 

 

 

 

 

 


