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Abstract 

In this paper, a new predictive model for the ice layer and water film growth, which occurs due to seawater spray 

impinging on large horizontal surfaces of a supply vessel, is developed using a Stefan-type problem formulation. The 

icing model includes conduction heat transfer in the ice and brine film layer, assuming the volume and distribution of 

brine pockets and air bubbles within the ice accumulation are uniform. The model also uses heat and mass balances to 

predict the freezing fraction, temperature distribution, ice layer and water film thickness. The results show that the 

water film salinity and icing intensity change with time during the icing period. Additionally, the water film salinity 

variations affect the freezing temperature, thermal conductivity and specific heat capacity of ice formation. As a result, 

heat conduction within the accumulated ice changes with time due to the variations of salinity; thus, the conduction 

heat flux has a significant effect on the ice thickness growth rate. This new model is a useful tool for forecasting and 

assessing the potential ice accumulation on marine vessels and structures. 
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Nomenclature 

a Linearization constant, K3 

Bs
 Shape coefficient, - 

b Ice layer thickness, m 

Cd Droplet drag coefficient, - 

ca Specific heat capacity of air, J/kg.K  

cb Specific heat capacity of brine, J/kg.K 

ci Specific heat capacity of ice, J/kg.K 

cw Specific heat capacity of seawater, J/kg.K 

D Water droplet diameter, m  
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Dab Air-water vapour diffusivity, m2/s 

E Collision efficiency, - 

)T(es  Saturated vapour pressure, Pa 

fs Slip factor , - 

g Gravitational acceleration, m/s2 

Hbow Height of vessel bow above surface level, m 

mH  Maximum height of the spray jet, m 

h Height, m 

hc Convection heat transfer coefficient, W/m2.K 

hs Significant wave height, m 

k Von Kármán constant, - 

ka Thermal conductivity of air, W/m.K 

kb Thermal conductivity of brine, W/m.K 

ki Thermal conductivity of ice, W/m.K 

L Characteristic length, m 

lf Latent heat of fusion of pure ice, J/kg  

lv Latent heat of vaporization of water, J/kg 

wevap.,M  Mass flux of evaporation from brine film, kg/m2.s 

iceM  Mass flux of ice formation, kg/m2.s 

waterM  Mass flux of brine film on the ice layer, kg/m2.s 

t,wM  Total mass flux of seawater spray, kg/m2.s 

n Freezing fraction, -  

P Atmospheric pressure, Pa 

Pr Prandtl number 

Q Heat flux, W/m2 

Re Reynolds number, - 

RH Relative humidity of air, % 

r Droplet radius, m 

Sc Schmidt number, - 

Sb  Brine salinity, ppt 

Si Ice salinity, ppt 

Sw  Seawater salinity, ppt  
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T Temperature, K 

Ta Temperature of air, K  

Tb Temperature of brine, ˚C   

Td Temperature of droplets, K  

Tf Freezing temperature of the water film at the water-ice interface, ˚C 

Ti Temperature in the ice layer, K 

Ts Temperature of the water film at the air-water interface, ˚C 

Tw Temperature in the water film, K 

Tw,i Temperature of seawater, K 

t Time, s 

U Wind velocity, m/s 

Uh Droplet velocity at the moment of impact on the plate, m/s 

U10 Wind velocity at a height of 10 m above mean sea level, m/s 

u* Friction velocity, m/s 

vd Droplet velocity, m/s 

sv  Vessel speed, m/s 

swv  Vessel speed relative to the waves, m/s  

x Horizontal distance of the plate from the vessel’s bow, m 

z Height from the water surface, m 

Greek symbols 

α  Angle between vessel heading and wind/wave direction, ˚ 

aα  Thermal diffusivity of air, m2/s 

bα  Thermal diffusivity of brine, m2/s 

iα  Thermal diffusivity of ice, m2/s 

β  Interfacial distribution coefficient, - 

γ  Angle between the direction of wind velocity and vessel speed, ˚ 

ε  Ratio of molecular weights of water vapour and dry air, - 

aυ  Kinematic viscosity of air, m2/s 

aμ  Viscosity of air, Pa.s 

η  Water film thickness, m 

aρ  Density of air, kg/m3 

bρ  Density of brine, kg/m3 



4 
 

iρ  Density of ice, including entrapped brine and air, kg/m3  

wρ  Density of seawater, kg/m3 

σ  Stefan-Boltzmann constant, W/m2.K4  

sτ  Duration of sea spray event, s 

pτ  Period between sea spray events, s 

wτ  Significant wave period, s 

ω  Liquid Water Content (LWC), kg/m3 

1. Introduction 

Atmospheric precipitation and seawater spray are the two major causes of icing phenomena on marine vessels and 

structures in cold seas and ocean regions. Atmospheric icing is created by freezing freshwater such as rain, snow, hail 

and drizzle, with rime ice resulting from supercooled cloud or fog droplets, and hoar frost resulting from the 

deposition of water vapour directly as ice crystals (Ryerson, 2011). Marine icing, or sea spray icing, can be generated 

in two different ways, which are wave spray and wind spray. Wave spray occurs from the impingement of waves with 

the marine vessel or structure. In addition, wind spray occurs when the wind blows droplets off whitecaps from the 

water’s surface. Figure 1 illustrates a typical sea spray icing event on a marine vessel. 

The highest amount of seawater spray generally occurs up to 15-20 m over the water surface. Within these heights, 

sea spray creates almost 50% to 90% of the icing on marine vessels (Cammaert, 2013). Several parameters have an 

impact on a sea spray event which leads to ice accumulation: the size and design of marine vessels and structures, the 

size and distribution of droplets, wind velocity, air temperature, vessel speed, droplet temperature, salinity, sea or 

ocean conditions, and the angle between vessel heading and wind/wave direction (Cammaert, 2013; Dehghani-Sanij et 

al., 2017; Jørgensen, 1985). A number of past studies reported that sea spray is a significant source of the icing 

phenomenon in cold seas and ocean regions (Aksyutin, 1979; Brown and Roebber, 1985; Cammaert, 2013; 

Makkonen, 1984; Shekhtman, 1968; Shellard, 1974; Tabata et al., 1963; Zakrzewski, 1986, 1987). Sea spray icing 

happens more than 80% of the time of reported icing events on marine vessels and structures in freezing conditions 

(Aksyutin, 1979; Brown and Roebber, 1985; Shekhtman, 1968; Zakrzewski, 1987).  

The modeling of atmospheric icing for freezing freshwater from precipitation, cloud droplets and wet snow was 

reviewed by Makkonen (2000). He studied several factors, such as collision efficiency, sticking efficiency and 

accretion efficiency for the formation and growth of ice accumulation on structures. This study illustrates that the size 
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of droplets is one of the main factors for computing the collision efficiency. Furthermore, two forces affect a droplet 

during its flight above marine platforms: “aerodynamic drag” and “inertia”. As a result, the bigger droplets tend to 

collide with an obstacle because inertia forces are larger compared to the drag forces; the droplets also do not deflect 

significantly. Ryerson and Gow (2000) surveyed and estimated the properties of seawater spray and the conditions of 

weather and sea, as well as the amount of ice accumulation for sea spray icing on the vessel superstructures. This 

survey showed that: (1) the salinity of seawater was about 33‰ for two icing events (Ryerson, 1995); (2) by 

measuring approximately 7,000 droplets over 39 spray events, the range of droplet diameters was from 14 to 7700 μm 

(Ryerson, 1995); (3) the mean median volume diameter for all 39 spray events was 1094 μm, in the range of 169 to 

6097 μm for single spray events (Ryerson and Gow, 2000); (4) the most severe icing on the trawler vessels occurs 

when wind velocities are larger than 20.6 m/s (Borisenkov and Panov, 1972); (5) when the temperature of air is less 

than -5.0˚C and the velocity of wind is high, the temperature of seawater does not have a significant effect on the icing 

rate (Jørgensen, 1982). 

Zakrzewski (1987) developed an improved model to determine the vertical distribution of the liquid water content 

(LWC) for wave-induced spray during the spray event. This formula was obtained based on Russian field data from 

the Sea of Japan. Furthermore, He calculated the time-averaged seawater spray flux for the components placed on the 

marine vessels. The time-averaged spray could be estimated for every specified wind velocity, fetch, vessel speed and 

heading angle. The observed results demonstrated that the seawater spray flux proliferates with wind velocity, vessel 

speed, and vessel heading. However, for a vessel heading of 90˚, vessel speed does not affect the seawater spray flux. 

Moreover, seawater spray flux on large vertical plates was larger than on the cylindrical components for marine 

structures and vessels. Jones and Andreas (2012) provided two empirical correlations to compute wind spray droplet 

concentrations close to the ocean or sea surface for wind velocities from 0 to 28.8 m/s. These empirical correlations 

are functions of the droplet radius and U10, which is the wind velocity at a height of 10 m above mean sea level. To 

calculate the vertical distribution of the LWC for the wind-induced spray, this model gives more accurate results. To 

determine the salinity of the accumulated ice layer and water film, Makkonen (1987) and Horjen (1990) developed an 

algebraic relationship for a stationary icing model. The evaporative mass flux was included in the model of Horjen 

(1990). In addition, Makkonen (1987) presented an explicit relationship for the freezing temperature of the brine as a 

function of salinity during phase equilibrium conditions.  
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The fundamentals of sea spray icing on marine vessels and structures were reviewed by Dehghani-Sanij et al. 

(2017). The processes and models of droplet trajectories, mass flux of sea spray, liquid water content (LWC), heat 

balance at the phase interface, and freezing equations were studied. These are key aspects to predict the icing rate and 

the quantity of the accumulated ice on marine platforms in cold seas and ocean regions. Myers and Hammond (1999) 

theoretically investigated a one-dimensional model for the growth of the ice layer and water film through impinging 

supercooled water droplets by analyzing the Stefan problem. To compute the ice layer and water film thicknesses, they 

used mass and heat balances as well as a phase change condition. In this study, two distinct boundary conditions, 

including a cooling condition and fixed temperature at the substrate, are employed. This study also analyzes and 

obtains the temperature distribution in the ice layer and water film. In another investigation, Brakel et al. (2007) 

studied and developed a one-dimensional model for the growth of ice accumulation by incoming supercooled droplets 

using an asymptotic analysis and a numerical method. They considered both dry- and wet- growth icing in this study. 

The results showed that there is a good agreement between the numerical model and asymptotic solution.  

The main objective of this paper is to develop a new model to predict the freezing fraction, temperature 

distribution, and ice layer and water film thicknesses on horizontal icing surfaces of marine vessels and offshore 

structures involving seawater. Sea spray icing on a horizontal surface of marine platforms is analyzed with heat 

conduction in the ice and brine film calculated from the solution of a one-dimensional Stefan problem. The results are 

compared with other models for validation and verification purposes.   

2. Model formulation 

The prediction and assessment of the icing rate and the quantity of ice accumulation on marine platforms is a 

challenging and complex problem, because marine weather conditions change substantially. Some researchers have 

made different assumptions to compute the growth rate of ice on marine vessels and structures by various theoretical 

and numerical methods. One of these assumptions is to neglect atmospheric icing, since freezing owing to sea spray is 

the main cause of icing phenomena in cold seas and ocean regions (Aksyutin, 1979; Brown and Roebber, 1985; 

Cammaert, 2013; Makkonen, 1984; US Navy, 1988; Shekhtman, 1968; Shellard, 1974; Tabata et al., 1963; 

Zakrzewski, 1986, 1987). Another common assumption is that wave spray is regarded as being periodic for sea spray 

events. To predict and analyze the icing phenomenon on horizontal surfaces of marine platforms, a typical horizontal 

plate from the superstructure of a supply vessel is investigated. Figure 2 shows a schematic of the proposed problem 

with associated heat fluxes. Beyond for the estimation of the growth rate of ice on marine platforms, the calculation of 
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the trajectory of droplets is an important issue in the icing phenomena. Also, the position and orientation of surfaces 

that are located on marine vessels and structures play a considerable role in icing.  

2.1. Droplet Trajectory 

To determine the trajectory and velocity of the water droplets upon impact on marine platforms, several forces 

should be considered: air drag, gravity, and body forces (Dehghani et al., 2016a, 2016b; Fu et al., 2006; Kulyakhtin 

and Tsarau, 2014; Kulyakhtin et al., 2014; Lozowski et al., 2000; Lorenzini and Saro, 2013; Macdonald and 

McCartney, 1987; Makkonen, 2000). The motion of the droplets is governed by (Lozowski et al., 2000): 

( ) 







−−−−−= 1

ρ
ρgUvUv

ρ
ρ
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d

add                                                                                                              (1) 

In this equation, vd, t, Cd, D, aρ , dρ , g and U are the droplet velocity, time, drag coefficient, droplet diameter, air 

density, droplet density (assumed to be equal to the density of seawater), gravitational acceleration, and wind velocity, 

respectively. The drag coefficient of the droplet, Cd, can be computed by (Langmuir and Blodgett, 1946; Lozowski et 

al., 2000): 

38.03
37.0d Re1024.6

Re
73.4

Re
0.24C −×++=                                                                                                                           (2) 

where Re is the Reynolds number of the droplet. The parameter of Re is given by: 

Uv
υ
DRe d
a

−=                                                                                                                                                                 (3) 

where aυ is the air kinematic viscosity. According to Dehghani et al. (2016b), the initial droplet velocity is equal to 

47.14 m/s. The droplet velocity can be defined by combining Eqs. (1) to (3) and solving these equations using a 

numerical time stepping technique. 

2.2. Sea spray impingement 

As mentioned previously, sea spray has two principal but distinct sources, which are wave-induced spray and 

wind-induced spray. Wave spray is generally a major source of icing: it is mostly a concise and periodic water flux 

that is generated near the bow of vessels and the base of offshore structures. Also, wind spray is another (minor) 

source, but it is a constant water flux that is generated in the airstream in windy conditions (Dehghani-Sanij et al., 

2015, 2017; Schrøder Hansen, 2012).  

The total mass flux of seawater spray, t,wM , during a spray event can be computed by:  
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)τt(MMM swave,wwind,wt,w <+=                                                                                                                                 (4) 

where sτ is the duration of the spray event. The amount of the total mass flux of seawater spray on a flat plate per unit 

area and unit time for wind spray and wave spray is obtained by (Horjen, 1983; Zakrzewski, 1987): 

[ ]wavewindhst,w )z(ω)z(ωUEBM +=                                                                                                                            (5) 

where sB is the shape coefficient, E is the collision efficiency, Uh is the droplet velocity at the moment of impact on 

the plate, and ω is the LWC. The collision efficiency for a horizontal plate can be considered equal to 1.  

The LWC is a measure of the mass of water in a cloud in a determined amount of dry air. The LWC of the wind 

spray is written as follows (Jones and Andreas, 2012): 
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where wρ is the density of seawater, k is the Von Kármán constant, fs is the slip factor, u* is the friction velocity, and h 

is the height, which is specified as the upper limit of the source region for spray droplet generation. For sm19U10 < , 

1h = m and for sm19U10 ≥ , sh5.0h = where hs is the wave height. The function vg(r) is the terminal velocity of the 

droplets. Then, the vertical distribution of the LWC of the wind spray can be written as: 

dr
dr

)z,r(ωdE)z(ω
max

min

r

r
wind ∫=                                                                                                                                       (7) 

If sm19U10 < , the maximum droplet radius assumed to contribute to icing is 100 μm and if sm19U10 ≥ , it is 200 

μm. The minimum droplet radius assumed to contribute to icing is 5 μm (Jones and Andreas, 2012).  

The vertical distribution of the LWC of the wave spray in the seawater spray event is expressed by the following 

formula (Zakrzewski, 1987): 




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
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)Hz(expvh101457.6)z(ω bow2

sws
5

wave                                                                                                       (8) 

where Hbow is the height of the bow above the surface level. This study will use a coordinate system where z = 0 at the 

water surface. The parameter of swv is the vessel speed relative to the waves, which is calculated from (Aksyutin, 

1979):  
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)απcos(vτ
π2

gv swsw −+=                                                                                                                                              (9) 

Here wτ is the significant wave period, g is the gravitational acceleration and α is the angle between the vessel heading 

and the wind/wave direction (the wind and wave direction are assumed to be equal in this study). The maximum 

height of the spray jet can be determined by (Lozowski et al., 2000): 

g2
vhH

2
sw

sm +=                                                                                                                                                                (10) 

The term 
g2

v2
sw is based on an assumption that the ejection velocity of the droplets is approximately equal to the vessel 

speed relative to the waves and also air drag on the water droplets in motion is negligible (Lozowski et al., 2000). 

Note that spray jets do not occur in every vessel-wave collision (Aksyutin, 1979; Lozowski et al., 2000; Panov, 1976).  

The duration of a spray event is written as follows (Zakrzewski, 1987):  

2
10

ssw
s U

hvCτ =                                                                                                                                                                  (11) 

Here, C is an experimental constant, which is dependent on the shape and size of the ship hull (Zakrzewski, 1987). 

Zakrzewski (1987) used C as equal to 20.62. Spray frequency is a major factor to determine wave spray icing. 

Zakrzewski (1987) reported that the spray jet is created by every second wave on a fishing trawler. According to 

Horjen (2015), the mechanism of spray generation varies between a marine vessel and semi-submersible drill rig. 

Two experimental correlations are obtained to estimate the significant wave height and period based on several 

observations for Norwegian waters. To calculate hs, the following empirical correlation is used (Horjen, 1990, 2013, 

2015) based on Norwegian wave height data (Jørgensen, 1985): 

723.0
10s U752.0h =                                                                                                                                                           (12) 

Also, for obtaining wτ the correlation below is employed (Horjen, 1990, 2013, 2015):  

252.0
sw h161.6τ =                                                                                                                                                           (13) 

Horjen (2013, 2015) considered that both every significant and every second significant wave generate spray in the 

numerical works. The total time period between spray events is estimated by (Aksyutin, 1979; Lozowski et al., 2000):  

sw

2
w

p vπ2
τgτ =                                                                                                                                                                    (14) 
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This relation is based on the assumption that every significant wave encounter produces spray. The seawater spray 

mass flux against time during the sea spray events is shown in Fig. 3. Note that only the wind spray remains in-

between sea spray events ( pswind,wt,w τtτ,MM <<=  ). An average value for the seawater spray mass flux is 

assumed in the model calculations. 

2.3. Mass fluxes  

A mass balance is utilized to estimate the ice layer and water film thicknesses. The mechanism of the ice 

accumulation process occurs so that the sea spray mass flux is transferred by the relative wind velocity and collides 

with the surface. The water droplet impinges on the surface and cools until freezing. The portion that does actually 

freeze on impact is called the freezing fraction, n, and the remaining fraction (1-n) is brine film.  

By employing a mass balance for a horizontal plate, this can be written as: 

 MMMM wevap.,watericet,w
 ++=                                                                                                                                    (15) 

where iceM is the mass flux of ice formation on the plate, waterM is the mass flux of water film on the ice accumulation 

layer and evap.,wM  is the mass flux of evaporation from the brine film. Then iceM can be written as follows:  

 
dt
dbρMnM it,wice ==                                                                                                                                                    (16) 

where n is the freezing fraction that is between 0 and 1, iρ is the density of ice accumulation, including entrapped brine 

and air, b is the ice layer thickness, and
dt
db is the time derivative of b. The mass flux of evaporation from the brine 

film, wevap.,M is assumed to be negligible (Myers and Charpin, 2004; Myers et al., 2002; Schrøder Hansen, 2012). To 

compute waterM , it can be written as follows: 

dt
ηdρM)n1(M bt,wwater =−=                                                                                                                                       (17) 

where bρ is the density of brine, η is the water film thickness, and
dt
ηd is the time derivative of η . Note that for dry-

growth icing (rime), n is equal to 1, and for wet-growth icing (glaze), n is less than 1.  

2.4. Heat fluxes  

According to Fig. 2, there are several heat fluxes present in the icing process: convection or sensible heat flux 

(losing energy), Qc; evaporation (losing energy), Qe; heat capacity of the impinging water droplets (losing energy), 
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Qd; radiation (losing energy), Qr; kinetic energy of incoming droplets (gaining energy), Qk; aerodynamic heating 

(gaining energy), Qv; release of latent heat (gaining energy), Qf ; and heat flux by conduction, Qa. Note that Qv is 

significant at the high speeds characteristic of aircraft flight and the Qk is normally small (Lozowski et al., 1983); 

hence, these heat fluxes are omitted in this study. Additionally, the authors ignore the effect of water flow on heat 

balance; however, it has an impact on the heat balance. 

Heat loss by convection with the surrounding air is obtained by:       

)TT(hQ ascc −=                                                                                                                                                            (18) 

where hc is the heat transfer coefficient, Ts is the temperature of the water film at the air-water interface, and Ta is the 

air temperature. The heat transfer coefficient is specified by body geometry, length, Reynolds number and Prandtl 

number. For a flat plate (or for planar components) in a turbulent flow parallel to the surface, an average heat transfer 

coefficient over a length L can be expressed by (Rohsenow and Choi, 1961): 

8.033.0a
c RePr

L
k037.0h =                                                                                                                                              (19) 

where ka is the thermal conductivity of air, L is the characteristic length of the component, Pr is the Prandtl number 

for the airflow, and Re is the Reynolds number of the component, which is defined using the relative wind velocity 

and the characteristic length of the component ( ars υLURe= ). The characteristic dimension is taken to be the 

maximum dimension along the direction of the relative wind for the planar components.  

Heat loss by evaporation to the surrounding air is calculated as follows (Bergman et al., 2011): 

( ) ( ))T(e.RH)T(eC)T(e.RH)T(e
cP
lε

Sc
PrhQ assass

a

v
63.0

ce −=−





=                                                                         (20) 

Here Sc is the Schmidt Number, ε is the ratio of molecular weights of water vapour and dry air, P is the atmospheric 

air pressure, vl is latent heat of vaporization of water at the surface temperature, ac is the specific heat capacity of dry 

air at a constant pressure, RH is the relative humidity of air, and )T(es is the saturated vapour pressure, which has 

been linearized by the following relation (Myers, 2001): 

TeE)T(e 00s +≈                                                                                                                                                                           (21)  

where 03.27e0 =  Pa/K and 6803E0 −= Pa. The relation above is accurate to within 8% over the range from 257 to 73 

K (Myers, 2001).  
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The heat capacity of the impinging water droplets to the equilibrium surface temperature is given from (Kulyakhtin 

and Tsarau, 2014), 

)TT(cM)TT(cMQ wind,dswwind,wwave,dswwave,wd −+−=                                                                                              (22) 

where wc is the specific heat capacity of seawater, and Td,wave and Td,wind are the droplet temperatures of the wave spray 

and wind spray immediately prior to impingement, respectively. The water droplet diameters in the wind spray are 

usually small, measuring less than 100 μm (Kulyakhtin and Tsarau, 2014). Thus, the temperature of the droplets will 

generally reach the air temperature in less than 0.1 s (Andreas, 1990); hence, the authors considered awind,d TT =  in 

this study. The temperature of the droplets in the wave spray is between the air temperature and seawater temperature, 

because the droplet diameters are mostly larger (1 to 2 mm) (Kulyakhtin and Tsarau, 2014). To estimate the 

temperature of the droplets of wave spray, an iterative procedure will be developed based on the model of Stallabrass 

(1980).    

The radiative heat flux is defined by the following formula (Bergman et al., 2011; Chung and Lozowski, 2010):  

)TT(aσQ asr −=                                                                                                                                                           (23) 

where σ is the Stefan-Boltzmann constant, and a is a linearization constant that linearly approximates the black body 

radiation heat exchange between the icing surface and the airflow, where the emissivity of both is taken to be one. 

The latent heat flux due to the freezing of a certain fraction of the impinging water droplets can be obtained by 

(Horjen, 1990): 

dt
db)β1(ρlM)β1(lQ ificeff −=−=                                                                                                                            (24) 

where fl is the latent heat of fusion of pure ice and )β1(l f − is the latent heat of fusion of the saline ice accumulation 

(Makkonen, 1987). Also, β is the interfacial distribution coefficient at the interface of ice and brine, which can be 

determined as follows: 

b

i

S
Sβ =                                                                                                                                                                           (25) 

In the relationship above, Si is the salinity of ice formation and Sb is the salinity of brine.  

2.5. Salt concentration 

The salinity of sea or ocean water is one of the most important factors in the growth rate of sea spray icing. 

According to Jørgensen (1982), icing begins at higher temperatures when salinities are lower (Ryerson and Gow, 
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2000). Generally, the range of seawater salinity is approximately 33‰ to 37‰ (HyperPhysics site). Further, seawater 

salinity is typically 35‰ in most marine areas (Marine science site). As a result, all water droplets that are generated 

by wind spray and wave spray are saline; hence, only a portion of the impinging water freezes after impacting on 

objects located on marine platforms, and the excess water remains on the icing surfaces.  

According to Makkonen (1987) and Szilder et al. (1995), during the freezing of a water film with a salinity of Sb, 

the ice formation can entrap only a part of the salt, namely bSβ , and the remainder will be rejected in the solution. 

Therefore, the salinity of the water film is related to the freezing temperature as follows (Schwerdtfeger, 1963): 


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
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

                                                                                         (26) 

where Tf is the freezing temperature in units of ˚C. In Eq. (26), the absolute value of brine salinity is used. Kulyakhtin 

and Tsarau (2014) expressed that when the brine temperature goes down to -23˚C, the water, with all the salt included 

in it, will freeze.  

Based on studies conducted by Horjen (2013, 2015), to calculate the salinity of the water film for a stationary icing 

model with no convective movement of the brine film is adopted by the following formula: 

f

it
wevap.,water

wwater
b

l
)QQ(MM

SMS
+

++
=





                                                                                                                             (27)       

where Qi is the conduction heat flux through the ice formation layer at the water-ice interface and Qt is the net heat 

flux in the brine film at the air-water interface, which is equal to (Horjen, 2013):  

rdect QQQQQ +++=                                                                                                                                                   (28) 

By neglecting wevap.,M and from Eq. (24) and Eq. (27), after simplification, the following formula can be obtained. 

 wb S
n)β1(1

1S
−−

=                                                                                                                                                     (29) 

In the equation above, n is the freezing fraction. According to Makkonen (1987), the temperature of the water film at 

the air-water interface can be calculated by:  

3
bbs S600S0.54T −−=                                                                                                                                                  (30) 

Here, Ts is in units of ˚C. In Eq. (30), the absolute amount of brine salinity is employed.  
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2.6. Heat transfer formulation 

To predict and analyze the phenomenon of sea spray icing and the quantity of ice accumulation on the horizontal 

surfaces of marine platforms, a one-dimensional model will be used, as illustrated in Fig. 2. In this paper, conduction 

heat transfer through the ice layer is considered; also, the one-dimensional Stefan problem will be analyzed.  

The governing equations for each layer are expressed by: 
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where wT is the temperature in the water film, iT is the temperature in the ice layer, kb is the thermal conductivity of 

brine, ki is the thermal conductivity of ice, bρ is the density of brine, iρ is the density of ice formation, cb is the specific 

heat capacity of brine, and ci is the specific heat capacity of ice accretion. 

In the ice accumulation layer, pure ice, brine pockets and air bubbles exist (Blackmore et al., 2002; Makkonen, 

1987). In reality, the volume and distribution of the brine pockets and air bubbles and the concentration of brine 

pockets in the ice layer are not uniform. As a result, the thermal conductivity, density, and specific heat capacity of ice 

accretion are a function of time, position and temperature. The ice formation can be called “spongy ice” (Makkonen, 

1987). In this study, the authors assume that the volume and distribution of brine pockets and air bubbles and the 

concentration of the brine pockets within the accumulated ice are uniform. Thus, Eqs. (31) and (32) can be considered 

as follows: 
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where iα and bα are the thermal diffusivity of ice formation and brine, respectively. By using a phase change or Stefan 

condition at the ice-water interface, the following equation can be obtained: 
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The equation above illustrates that the velocity of the interface is commensurate with the heat flux across it. To solve 

the problem, several boundary and initial conditions are needed, which are expressed as follows.  

By applying the heat balance at the air-water interface, b+η, the equation below can be written as:   

rdecw,a QQQQQ +++=                                                                                                                                                (36) 

where w,aQ is the heat conduction in the water film. By substituting Eqs. (18), (20), (22) and (23) into the above 

equation, the following relationship can be obtained. 

ηby),t,y(TBA
dy

dT
www

w +=−=                                                                                                                               (37) 

where Aw and Bw are coefficients independent of the water film temperature. They are determined as: 
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                                                                                                                                   (39) 

For the ice-water interface, b, the ice accretion and brine are at the freezing temperature, Tf, Thus, 

fiw T)t,b(T)t,b(T ==                                                                                                                                                   (40) 

Also, at the surface between the ice and substrate, a constant temperature is considered. Therefore, 

subi T)t,0(T =                                                                                                                                                                  (41) 

The initial conditions are given by:  

0t,0)0(b)0(η ===                                                                                                                                                    (42) 

By considering a constant temperature below freezing at the substrate, the process of icing happens in two separate 

phases. In the first phase, all the impinged water droplets will freeze immediately, but in the second phase, both the 

water film and ice layer increase at the same time. During the first phase, when only ice accumulation is increasing, 

since the freezing fraction, n, is equal to 1, the thickness of the ice layer can be obtained by the following relationship: 

t
ρ

M
)t(b

i

t,w


=                                                                                                                                                                  (43) 

Non-dimensionalization of the heat equation for the ice layer is performed by taking the time-scale from Eq. (43), 

thereby yielding: 
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Here *b is the non-dimensional height-scale. The right hand side of Eq. (44) is very small ( 1λi << ). Thus,  
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The dimensional form of the above equation can be written as: 
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y
T
2
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2
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∂
∂                                                                                                                                                                         (48) 

To solve Eq. (48) and obtain the temperature distribution in the ice layer, two boundary conditions are required. One 

of them is Eq. (41) and another, by employing the heat balance at the air-ice interface, is given by: 

rdeci,a QQQQQ +++=                                                                                                                                                (49) 

where i,aQ is the heat conduction term in the ice layer. By substituting Eqs. (18), (20), (22) and (23) in Eq. (49), the 

following relationship can be obtained. 
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where the coefficients of Ai and Bi are defined as: 
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Then the temperature distribution in the ice layer is written as follows:                   

subi TyGT +=                                                                                                                                                                 (53) 
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where G is a constant coefficient. Eq. (53) illustrates that the temperature profile is linear in y. These problems are 

called “quasi or pseudo-steady” (Myers and Hammond, 1999). Time enters through the moving boundary conditions, 

exerted at )t(by = . 

In the second phase, a water film increases on the surface of the ice layer. As in the previous phase, the energy 

equations, (33) and (34), can be simplified to quasi-steady forms. Thus,  

0
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where ψ is the fraction of brine that stays liquid. The water film has to remain thin, unless there is a slow growth of 

water, 1ψ << , which permits time for the temperature to adjust.  

The temperature distribution in the ice layer is given as follows: 
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Also, the temperature distribution in the water film is equal to: 
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In the water film, there is a temperature gradient. The temperature gradient will be large when the freezing fraction, n, 

is near 0, and will be small when the freezing fraction, n, is near 1. Note that during the icing conditions, there will be 

a turbulent mixture of the water film, so by considering the average value of the water film temperature, Eq. (57) will 

be more accurate.   

By taking the derivative of Eqs. (56) and (57) and substituting these equations in the Stefan condition (Eq. (35)), 

the equation below will be obtained: 
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This equation shows that several parameters have an impact on the growth rate of the icing on marine vessels and 

offshore structures. Some of the major parameters include: wind velocity, vessel speed, air temperature, seawater 
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salinity, height from the water surface, angle between vessel heading and wind/wave direction, droplet size, relative 

humidity, droplet temperature and time. By substituting Eq. (16) in Eq. (58), the following equation can be obtained: 
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By solving the equation above, the freezing fraction, n, will be determined. For this purpose, the parameters of b, 

η, Tf and Tsub should be replaced in Eq. (59). The parameters of b and η are defined by integrating Eqs. (16) and (17), 

respectively. Also, the freezing temperature of brine film, Tf, can be calculated by Eq. (26). According to Myers and 

Charpin (2004), Tsub will usually be equal to the ambient temperature, Ta.  

3. Results and discussion 

To solve the algebraic equations and obtain the freezing fraction, temperature distribution, and the ice layer and 

water film thicknesses, several parameters and properties will be used. According to Cox and Weeks (1983) and 

Horjen (2013), the density of ice can be approximated by: 
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where av′ is the volume fraction of air in the ice (in this study considered equal to 0), p,iρ is the density of pure ice 

( p,iρ = 917 kg/m3 (Brakel et al., 2007; Pringle et al., 2007)), bρ is the density of brine, Tb is the temperature of brine, 

and the parameters of )T(P b3 and )T(Q b3 are two third degree polynomials of the brine temperature, as follows (Cox 

and Weeks, 1983; Horjen, 2013): 
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The temperature of brine, Tb, can be computed by (Assur, 1958):  
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Here, C104113.5a 2 −×= , C107007.9b 2 −×= and C0533.6c = . The density of brine, bρ , is given by (Horjen, 

2013): 

bb S8.01000ρ +=                                                                                                                                                          (64) 

The thermal conductivity of brine, kb, can be calculated by (Lange and Forke, 1952; Pringle et al., 2007):  

bb T013.0523.0k +=                                                                                                                                                      (65) 

The Prandtl number, Pr, and the Schmidt number, Sc, respectively, are given as:  
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μPr =                                                                                                                                                                     (66) 
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μSc =                                                                                                                                                                   (67) 

Hera aμ is the air viscosity, aα is the thermal diffusivity of air, and Dab is the air-water vapour diffusivity. The dynamic 

viscosity of air, aμ , is expressed by (Tracy et al., 1980): 
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where 5
o 108325.1μ −×= , 16.296To = , 120C =  and 15.273TT a += . Also, the density of air is (Tracy et al., 1980): 
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Pρ
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a +
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In the formula above, P is the atmospheric air pressure and Ta (air temperature) is in units of C . The kinematic 

viscosity of air is given by: 

a

a
a ρ

μυ =                                                                                                                                                                          (70) 

The standard atmospheric pressure, P, can be written as follows (Tracy et al., 1980): 

[ ] m2000z1000,)z102569.2(1101325P
2553.55 <<−×−= −                                                                                   (71) 

where z is the height. The thermal conductivity of ice accumulation is dependent on the configuration of ice, which 

includes pure ice, brine pockets and air bubbles. Pringle et al. (2007) developed a model for estimating the thermal 

conductivity of ice by considering the first-order temperature dependence of the individual conductivities in the ice. 

Additionally, the authors neglected the conductivity of the air bubbles. This formula is written as follows: 
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where Si is the salinity of ice formation, T is the temperature in ˚C and the thermal conductivity is in units of W/mK. 

The above formula is based on a geometrical configuration of bubbly brine inclusions. Note that Fichefet and 

Maqueda (1997) considered a constant thermal conductivity of sea ice equal to 2.03 W/mK. The specific heat capacity 

of ice formation, ci, can be determined by (Ono, 1967):  

2
i

i T
S3115.4T0018.0505.0c ++=                                                                                                                                  (73) 

In this relation, ci, has units of Cal/gr˚C. To estimate the temperature in Eqs. (72) and (73), a temperature equal to Tf 

was assumed.  

Other parameters in the modeling of the horizontal icing process are illustrated in Table 1. Figure 4 shows the 

droplet velocity changes during flight on a marine vessel when the average diameter of the water droplets is assumed 

equal to 1.5 mm. As a result, the droplet velocity at initial times is very large. Then the droplet velocity will decrease 

until the terminal velocity is reached. Figure 5 indicates the freezing fraction changes with air temperature at three 

different times. As can be seen in this figure, when the air temperature goes below -1.85˚C (271.3 K), ice 

accumulation begins. Tabata et al. (1963), Tabata (1969), Lundqvist and Udin (1977), and Cammaert (2013) showed 

that ice accretion will form on marine platforms once the air temperature is approximately -2˚C (271.15 K). As a result 

from Fig. 5, with increasing time, freezing occurs at lower air temperatures; for instance, there is a lower air 

temperature for the freezing fraction equal to 1 when time increases. Thus, time has a considerable effect on the 

freezing fraction. Figure 6 illustrates the changes in the freezing fraction with time for several air temperatures. At 

initial times, water droplets will freeze quickly because the droplet collision adapts to the sub-zero substrate 

temperature, such that there is nearly dry-growth rime icing at air temperatures of 266 K and 264 K. By increasing 

time, both the ice layer and brine film will grow simultaneously; however, with increasing time at a constant air 

temperature, the growth rate of ice accumulation is less than the brine film. Additionally, Fig. 6 shows that the amount 

of the freezing fraction at lower air temperatures is greater compared to higher air temperatures. Therefore, the air 

temperature is an important factor in increasing icing rates.    

Figure 7 shows the changes of ice formation thickness with time for different air temperatures. As observed in this 

figure, with increasing time and decreasing air temperature, the thickness of ice accumulation will increase despite the 
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change of salinity in the ice layer. There is a feedback mechanism between the icing intensity and the brine film 

salinity, such that with increasing icing intensity, the brine film salinity will increase (Horjen, 2015); then, due to the 

increased salinity over time, the icing intensity will decrease. Additionally, salinity has a smaller impact on the 

freezing fraction at lower air temperatures. In other words, the icing intensity will increase at lower air temperatures. 

As described in Figs. 5-7, the parameters of time, air temperature, and salinity can play a significant role in the growth 

rate of ice on vessels and marine platforms.  

Table 2 indicates the changes of air temperature and the thickness of ice accumulation at different times for dry-

growth icing. Also, Table 3 displays the changes of the freezing fraction and the ice layer and water film thicknesses 

for wet-growth icing at Ta=266.1 K. Figure 8 shows and compares the changes of the ice layer and brine film 

thicknesses with time for two distinct conditions, which are expressed in Tables 2 and 3. According to Fig. 8 and 

Table 3, the thicknesses of the ice layer and water film, when time is equal to 5 min, are 1.057 mm and 0.064 mm, 

respectively. In other words, after impinging on the surface, the water droplets will freeze immediately at initial times 

(approximately less than 5 min); this is called the first phase. However, for the second phase, both the water film and 

ice layer increase at the same time, but the growth rate of these layers varies over time. 

Figures 9 and 10 represent the influence of the seawater spray salinity and wind velocity, respectively, when the 

time is equal to 1 h. In these figures, the authors consider that one parameter is variable, while the other parameters are 

kept constant. According to Fig. 9, by decreasing the salinity, the freezing fraction is equal to 1 below higher air 

temperatures. As a result, the salinity affects several parameters, such as density, specific heat capacity and freezing 

temperature. When the wind velocity increases, the freezing fraction drops (Fig. 10), because the wind velocity has a 

significant effect on the total flux of seawater spray and convection, evaporation, and the heat capacity of the 

impinging droplets. 

The authors compared the predicted results with past results reported by Dehghani-Sanij et al. (2016). A number of 

past studies assumed that conduction heat transfer inside the ice formation layer was negligible, and therefore 

neglected it (Dehghani-Sanij et al., 2016; Horjen, 1990, 2013, 2015; Kulyakhtin and Tsarau, 2014; Lozowski et al., 

2000; Makkonen, 1987, 2010). Dehghani-Sanij et al. (2016) predicted the growth rate of icing and the quantity of ice 

accumulation on a horizontal surface of marine platforms. Figure 11 shows and compares the thicknesses of ice 

formation and water film for two different approaches with identical parameters. As illustrated in this figure, in the 

case that heat conduction is considered within the ice layer (solid line), by increasing time at a constant air 
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temperature (266.1 K), the rates of growth of ice formation and brine film are different. For comparison purposes, 

when the heat conduction is assumed negligible in the ice accretion (dash lines), and time increases at a constant air 

temperature, the rates of growth of both the ice layer and brine film are the same. As a result, the conductive heat flux 

inside the ice accumulation layer has a considerable effect on the growth rate of icing because of the changes of the 

water film salinity and the icing intensity over time.   

4. Conclusions 

A new predictive model was developed to analyze the icing process on horizontal surfaces of marine vessels and 

offshore structures in cold seas and ocean regions. In this paper, conduction heat transfer within the ice layer was 

considered. It was assumed that the volume and distribution of brine pockets and air bubbles inside the ice 

accumulation were uniform. The freezing fraction, temperature distribution, ice layer and water film thicknesses were 

predicted using heat and mass balances as well as phase change conditions. The results showed that the variations of 

air temperature, wind velocity, time, and salinity affect the growth rate of the ice formation on vessels and marine 

platforms. With the change of time, the water film salinity and the icing intensity will vary. By decreasing the air 

temperature, the icing intensity will increase. Moreover, the variations of water film salinity affect the thermal 

conductivity, the specific heat capacity of ice accumulation, and the freezing temperature. As a result, heat conduction 

within the accumulated ice layer has a substantial impact on the growth rate of icing of marine vessels and structures 

during the freezing conditions in cold seas and ocean regions.   
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Fig. 1. Schematic of the formation and movement of a spray cloud on  

a marine vessel (Dehghani-Sanij et al., 2015, 2016)  
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Fig. 2. Schematic illustration of the proposed model 

 
 

 

 

 

 

Fig. 3. Schematic illustration of the distribution of seawater spray mass flux during the sea spray events 

 
 



29 
 

 

 

 

 

 

 

Fig. 4. Variations of the droplet velocity versus time at U = 20.6 m/s and D = 1.5 mm 

 

 

 

 

 

Fig. 5. Variations of the freezing fraction versus air temperature at three different times 
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Fig. 6. Variations of the freezing fraction versus time for several air temperatures 

 

 

 

 

Fig. 7. Variations of the ice formation thickness versus time at different air temperatures  
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Fig. 8. Variations of the ice layer and water film thicknesses for rime and glaze icing 

 

 

 

 

 

 
Fig. 9. Variations of freezing fraction versus air temperature at two different salinities  
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Fig. 10. Variations of freezing fraction versus air temperature at two different wind velocities  

 
 
 
 

 

Fig. 11. Comparison of ice layer and water film thicknesses for different models 

 
 



33 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Parameter values 

Parameter Value Parameter Value 

a 8.1×107 K3 (Lozowski et al., 2000; Chung  and 
Lozowski, 2010) RH 80% 

sB  1 for plate (Makkonen, 1987; Horjen, 1983) Sw 34‰  

ca 1005 J/kg.K (Tracy et al., 1980; Eng. Toolbox, 
2016) Tw,i

** 2˚C 

cw ≈ 3.93×103 J/kg.K (Schrøder Hansen, 2012) U 20.6 m/s (Borisenkov and Panov, 1972; 
Lozowski et al., 2000) 

D* 1.5 mm vs 12.9 m/s (Lozowski et al., 2000) 

Dab 0.26×10-4 m2/ s (Ranz and Marshal, 1952) x 20 m 

fs 1 (Jones and Andreas, 2012) z 10 m 

Hbow 4 m  α  0˚ (Lozowski et al., 2000) 

k 0.40 (Kulyakhtin and Tsarau, 2014) aα  ≈ 15.67×10-6 m2/s (Eng. Toolbox, 2016) 

ka 0.0243 W/m.K (Eng. Toolbox, 2016) β  1/3 (Horjen, 2013, 2015) 

L 1 m γ  180˚ 

lf 3.34×105 J/kg (Green and Perry, 2008) ε  0.622 (Kato, 2012; Makkonen, 1989) 

lv 2.27×106 J/kg (Green and Perry, 2008) wρ  ≈ 1027 kg/m3 (Schrøder Hansen, 2012) 

P 105 Pa σ  5.67×10-8 W/m2.K4  

* Droplet diameter of wave spray 

** The temperature of seawater-surface is generally between -1.7 and 5˚C (Environment and Climate Change, Met 101)  
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Table 2. Variations of air temperature and thickness of ice layer at different times for rime icing  

Time  
(min) 

Air temperature  
(K) 

Ice layer thickness  
(mm) 

5 264.4 1.13 
15 263.9 3.39 
30 263.3 6.79 
45 262.9 10.18 
60 262.6 13.57 
90 262.2 20.35 

120 261.9 27.16 
 

 

 

 

 

Table 3. Variations of the freezing fraction and ice layer and water film thicknesses for glaze icing at Ta=266.1 K 

Time  
(min) 

Freezing fraction Ice layer thickness  
(mm) 

Water film thickness  
(mm) 

5 0.9354 1.057 0.064 
15 0.9129 3.094 0.259 
30 0.8836 5.991 0.691 
45 0.8557 8.702 1.286 
60 0.8268 11.21 2.058 
90 0.7644 15.55 4.200 

120 0.7006 19 7.114 
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