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ABSTRACT 

When hydrogen or oxygen is produced from water splitting by electrolysis, thermochemical cycles 

or solar-based photocatalytic methods, bubble flow and vapour transfer into the gas phase occur 

during phase transition. This undesirable vapour transfer requires the use of more energy input to 

compensate for the evaporation heat requirement as well as for subsequent gas purification in the 

downstream unit. In this paper, both experimental and modeling studies are performed to examine the 

dynamics of bubble flows and kinetics of water vapour transfer, particularly related to processes of 

hydrogen production. Experimental data are obtained using an advanced laser-based shadow imaging 

system and on-line vapour monitoring system. The bubble dynamics and water vapour transfer 

kinetics are modeled with non-dimensional parameters involving the bubble diameter, velocity and 

trajectories so that the water vapour transfer rate can be quantified under different operating 

conditions for various hydrogen production methods. Also, a predictive model is developed to 

simulate the physical processes of bubble transport in a vertical liquid column, as it occurs in water 

splitting processes such as oxygen generation in the thermochemical copper-chlorine cycle, as well 

as hydrogen generation in electrolytic and photocatalytic processes. 

 
1. INTRODUCTION 

Many environmental problems are related to the production, transformation and use of energy. 

Some of the concerns include, but are not limited to, acid rain, ozone depletion and climate change. 

Therefore, “greener” alternatives for energy production are sought. Hydrogen energy systems are 

potentially effective solutions and can have a significant role in providing better environmental 

sustainability [1]. However, current methods of hydrogen production are often unsustainable as they 

are based primarily on fossil fuels such as natural gas or coal, which release CO2 into the atmosphere. 
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Promising alternatives for sustainable hydrogen production are thermochemical, electrolytic, and 

photocatalytic cycles. 

Thermochemical cycles for hydrogen production use a series of reactions to achieve the 

overall splitting of water into hydrogen and oxygen: 

                   (1) 

Thermochemical water decomposition generally involves at least three distinct steps: hydrogen 

production, oxygen production, and recycling of auxiliary compounds. One of the advantages of 

thermochemical cycles over direct one-step thermal water decomposition is their ability to achieve 

water splitting into hydrogen and oxygen at much lower temperatures (usually below 1,000˚C) [2]. 

One of the promising thermochemical cycles that operates at even lower temperatures is the 

thermochemical Cu-Cl cycle. This cycle splits water into hydrogen and oxygen through intermediate 

copper and chlorine compounds. Several variations of the Cu-Cl cycle have been reported, including 

5-step, 4-step and 3-step cycles [3, 4]. The chemical reactions form a closed internal loop and recycle 

all chemicals on a continuous basis, without emitting any greenhouse gases externally to the 

atmosphere.  

Another method of water splitting is conventional water electrolysis. It yields hydrogen at 

about 99.99% purity compared with 98% purity obtained from fossil fuel based methods [5]. The 

overall efficiency of hydrogen production through water electrolysis depends on two factors: 

electricity-to-hydrogen efficiency and electricity generation efficiency [6]. Past research showed that 

the electrical and thermal properties of the electrolyte, diffusive transport of electroactive species and 

current density are modified by the dispersed phase (i.e. gas bubbles). These affect the macroscopic 

cell performance [7]. Thus, the understanding of gas–liquid flows in electrolytic systems is important 

from the view-point of understanding mass transport, system optimization and improving the 

efficiency.  

The gases released at the electrode surface rise upward due to buoyancy. The presence of the gas 

phase at the electrodes can be detrimental to the overall performance of the process as it blocks the 

active surface area of the electrodes and increases the resistance of the electrolyte [8]. The presence 

of gas bubbles and their motion has a significant impact on the performance of the electrolytic cell 

[9]. Ali and Pushpavanam [10] studied the effects of gas evolution on hydrodynamics of water 

electrolysis in a partitioned electrolytic system using PIV. The results were verified further 

quantitatively by analyzing time averaged velocity profiles along a line. The temporal variation of 

liquid velocity at a point was also analyzed. It was found that velocity components exhibit turbulent 

fluctuations about a mean value [11]. 
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Gas bubbles exist in gas-liquid, gas-solid, and gas-liquid-solid systems such as the prior 

systems. Studies by Clift at al. [12] and Duineveld [13] reported that bubbles with diameters less than 

1 mm rise through water and retain their spherical shape due to surface tension. Also, the trajectory 

follows a nearly straight line. However, this is not the case for larger bubbles. Researchers reported 

deformations due to the increase in hydrostatic and dynamic pressures over a bubble’s surface [14], 

[15]. Therefore, large bubbles first deform into oblate spheroids, then become ellipsoidal, and with 

further increase in size, switch into a spherical or ellipsoidal cap shape [16]. The gas-phase density 

can be increased by increasing the pressure or using a higher molecular weight gas. As a result of 

increased gas density, the difference between the densities of two phases decreases, resulting in 

smaller sized bubbles and also a reduction in the buoyancy force [17]. According to this model, the 

bubble volume at the end of detachment remains the same for all bubbles generated from all holes on 

a porous plate [18]. Since the sizes of bubbles after its formation and its wake affect the rise velocity 

and direction of rise, i.e., trajectory in the liquid, they influence the above-mentioned dynamic 

processes, overall turbulence in the system and performance of the equipment to some extent [17, 19, 

20].  

With rising bubbles, past studies have shown a rectilinear path becomes a zigzag or spiral 

pattern, then quasi-rectilinear as the bubble size increases until it becomes a spherical cap. This has 

been observed in liquids of small Morton number [16]. However, the bubble size does not affect the 

trajectory in large Morton numbers as a rectilinear path is observed regardless of diameter [21]. 

Researchers also observed rocking motions for different Reynolds numbers [22]. Ohta et al. [19] 

discussed the trajectory of a larger bubble consisting of primary and secondary structures. The 

primary structure is defined as the structure where the bubble begins to oscillate and rise in a zigzag 

motion as soon as the bubble is released and reaches the terminal velocity. The secondary structure 

follows soon after when the bubble attains a special shape at terminal velocity. 

The presence of water vapour in the produced hydrogen or oxygen gas indicates a latent heat 

loss in the reactor and a power requirement for the separation of hydrogen and water vapour in the 

downstream of the reactor. This may influence the hydrogen production efficiency. So the water 

vapour entrainment in the bubbling processes should be studied. However, these past investigations 

on the interactions of bubble flow dynamics and mass transfer between the liquid and bubbles are 

limited in their abilities and scope of predicting vapour entrainment during water splitting processes. 

In this paper, vapour entrainment for ascending bubbles in a vertical column is examined 

experimentally for various gas production rates on the basis of past studies [23]. The dependence of 

vapour entrainment on the phase transition rate, which is influenced by gas bubble size, liquid depth, 

temperature and concentration, is investigated experimentally. The objective of this paper is to 

develop a phase transition correlation to relate the mass transfer rate to the parameters influencing it. 
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2. EXPERIMENTAL APPARATUS 

In order to examine the water vapour generation and flow characteristics of gas-liquid 

systems, an experimental apparatus has been designed and built at the University of Ontario Institute 

of Technology (UOIT) in the Clean Energy Research Laboratory (CERL). The experimental loop 

examines bubble dynamics through different liquids as well as the amount of mass transferred from 

the liquid to the gas that is carried out to the surface of the liquid while the bubble is rising. In an 

electrolytic step of the Cu-Cl cycle, water is split to produce hydrogen by means of an electric current. 

Hydrogen gas is produced on the cathode of the electrolyzer, whereas oxygen gas is produced on the 

anode. The gas bubbles rise to the surface, carrying a certain amount of moisture from the water. 

The experimental loop was designed in order to quantify the amount of moisture removed 

during electrolysis. The apparatus consists of a 2.708 m high, 203 mm diameter, clear PVC vertical 

column filled with liquid. Nitrogen gas is supplied and bubbles are generated through a porous 

surface. The size and number of bubbles vary with the nitrogen flow rate such that less bubbles with 

bigger diameters are formed for lower flow rates, while more bubbles with smaller diameters are 

formed for higher flow rates. The flow rate of nitrogen is set manually using rotameters. Experimental 

data was recorded for four different flow rates to develop the correlation (i.e. 0.5 L/min, 1 L/min, 1.5 

L/min and 2 L/min) and two flow rates to test the correlation (i.e. 0.25 L/min and 3 L/min). Bubbles 

flowing through the porous surface rise up through the water. Due to the motion of a bubble through 

water, some of the water molecules from the liquid diffuse across the boundary of the bubble and they 

are carried out of the water column. In order to determine the amount of water carried to the surface, 

a humidity analyzer was installed at the gas exit. Type T thermocouples have also been installed at 

five different locations in order to record the temperature of the water as well as the temperature of 

the gas. LabVIEW software was used to view and record the data captured by the humidity sensor 

and thermocouples. A schematic of the experimental setup is presented in Figure 1. 

 In order to better understand the flows with bubble generation and dynamics, it is important 

to map the bubble size, bubble number, and bubble velocity as bubbles rise through the liquid. Hence, 

DynamicStudio Shadow Sizer was employed to measure the bubble dynamics. The particles rising 

through the medium are backlit with an LED light source with a trigger frequency of 400 Hz, pulse 

of 100 µs and delay of 10 µs. A glass diffuser is used in order to obtain an even light sheet so that the 

camera can acquire a shadow image of the moving particles. A FlowSense 2ME camera with an 

effective sensor size of 1600 by 300 pixels was used to capture images. Images were captured in 

single frame mode with a trigger frequency of 91 Hz, delay to open of 3.5  µs, delay to close of 

10,920 µs and exposure time of 40.950 µs. The particle in motion was frozen with the aid of a short 

light flash and a sychronization device. The timer box for imaging applications started automatically 
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so that the camera and LED light array were synchronized at the start of the acquisition process. The 

camera and light system were set up as shown in Figure 1. The stands were custom built so that 

images can be taken at precise specified heights from the gas exit. 

All bubbles from the acquired images were analyzed by the software by the choice in the grey 

level profile. The results obtained after analysis of the images are listed in Table 1. The setup was 

designed according to Refs. [24-26] so that the uncertainty associated with the experiment can be 

minimized. The uncertainty, U, of the experimental results is determined by: 

Ui = �Bi
2 + Pi2           (2) 

where B and P represent the bias and precision error, respectively.  

Consistent operating conditions are maintained during the uncertainty analysis, and the relative 

bias error is taken as the ratio of the bias error to the corresponding reference value. The limit is 

calculated as follows: 
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The measurement devices used in the experiments have a relatively high accuracy and low bias error 

associated with their operation.  

The precision error is double the standard deviation of the results [24]. A sample of 50 

measurements at equilibrium conditions was considered for the precision error calculations. The 

propagation of precision error was determined as follows:  
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The experimental errors due to the equipment (i.e., camera calibration, residual, resolution and PVC 

vessel wall distortion) and analysis, as well as the deviations, are shown in Table 2. 

 

3. BUBBLE FLOW AND MASS TRANSFER MODEL 

3.1 Assumptions 

Various assumptions similar to past studies [17] were adopted. It was assumed that the wall 

does not influence the ascending gas bubbles due to the large distance between the bubbles and the 

wall. Since the volume of the liquid within the column was much larger than the volume of the bubbles 

formed, it was assumed that the liquid is a semi-infinite medium in comparison to bubble volume. 

Also, the added mass coefficient of the liquid is assumed constant and since the Galileo number (
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32

µ
ρ cl gL , indicating the relative importance of buoyancy and viscous forces) is at an order of 104-105 

in the bubble size range of our interest, so the effects of viscous forces on the bubble size are assumed 

to be negligible in terms of comparing the rising and dragging forces. Therefore the liquid flow field 

distant from the bubble surface is assumed inviscid. However, this does not mean the  liquid viscous 

effects on bubble size close to the bubble surface can be neglected due to the existence of a boundary 

layer. The surface tension of the liquid may also play an important role in determining the size of the 

bubbles, which makes it very challenging to give analytical models and solutions. Hence, this paper 

resorts to semi-empirical equations incorporating dimensionless groups such as Morton and Eo 

numbers that reflect the relative importance of surface tension, viscous forces, and other influencing 

factors.   

For the gas, it was assumed to be ideal and the flow was assumed to be incompressible. Since 

the gas injection rate was constant, it was assumed that the bubble size was proportional to the flow 

rate with no allowance for a change in bubble cross-section during ascension. Additionally, the motion 

of the bubble was not affected by the presence of another bubble immediately above it. During 

motion, the gas-liquid interface was acted on by a pressure difference between the gas and liquid and 

by surface tension forces, which are constant and uniform. Also, the operation was assumed to be 

isothermal in order to reduce the modeling complexity arising from the interactions of heat and mass 

transfer. The isothermal conditions were controlled in the experiments when the volumetric ratio of 

gas bubbles to the liquid phase is smaller than 0.0053. In the experiments, the liquid phase 

temperature fluctuations were observed within only 0.2 oC, so the isothermal assumption was 

validated. 

 

3.2 Mass Transfer Across Interfaces in Two-phase Gas-liquid Flows 

Mass transfer between a droplet and a fluid has been extensively studied in the past. 

Theoretical models for mass transfer rate predictions from rising bubbles have been developed. Some 

of these models have been used for non-Newtonian fluids [27, 28], whereas others for different 

Reynolds numbers as demonstrated in [29-36]. Analogous to heat transfer, mass transfer occurs due 

to diffusion and convection.  

Different types of diffusion have been reported in the past [37]. Diffusion takes place when 

the primary driving mechanism is a concentration gradient.Convection mass transfer refers to the 

transfer of mass between a surface and a moving medium as a result of both mass diffusion and bulk 

fluid motion [37]. Similar to heat transfer, mass transfer is influenced by surface geometry, flow 

velocity, flow regime, fluid properties and composition. Due to the processes that arise as a result of 

fluid motion and its properties, mass transfer is determined based on experimental data. Therefore, 
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the relative magnitude of molecular momentum and mass diffusion in the velocity and concentration 

boundary layers are expressed by the dimensionless Schmidt number defined as follows [37]: 

α
υ

=Sc                     (5) 

           In heat transfer analysis, it is convenient to express the heat transfer coefficient in terms of the 

dimensionless Nusselt number. Likewise, in mass transfer, the mass transfer coefficient is expressed 

in terms of the dimensionless Sherwood number [37]: 

α
cmass Lh

=Sh                    (6) 

where hmass is the mass transfer coefficient in units of m/s primarily indicating the convective 

contribution, and α is the molecular diffusivity in units of m2/s indicating the diffusive contribution, 

obtained from [37]. 

   

 For an internal flow and using bulk motion properties, the above relation can be rewritten as: 
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Another method to determine the Sherwood number is given in terms of the Reynolds and Schmidt 

numbers. The expression is given as follows [38]:  

    (8) 

where c ~ 0.6 is a constant. This expression is used when the bubble can be assumed to be rigid and 

non-deforming. 

 

3.3 Non-dimensional Correlations 

Past studies have shown that the Reynolds (Re), Eotvos (Eo) and Morton (Mo) numbers are 

useful for describing a rising bubble motion because the shape and terminal velocity of the bubble 

are influenced by these three dimensionless parameters [26]. In order to better understand how the 

three numbers describe the bubble’s motion, it is necessary to determine their values. The Reynolds 

number is the ratio of inertial forces to viscous forces in the liquid: 

µ
ρ

υ
cc VLVL

==Re                    (9) 

where V is the bubble’s velocity in m/s, Lc is the diameter of the bubble in units of m,  𝜇𝜇 is the 

dynamic viscosity of the liquid in units of Pa·s, is the density of the liquid in units of kg/m3 and 

ρ
µυ = is the kinematic viscosity of the liquid in units of m2/s. The Eotvos number characterizes the 
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size and shape of the bubble and it is proportional to the buoyancy force divided by the surface tension 

force: 

σ
ρ cgL∆

=Eo                                  (10) 

where ρ∆  is the density change of the two phases and σ  is the surface tension in units of N/m. The 

Morton number is used together with the Eo number in order to characterize the bubble’s shape: 

32

4

Mo
σρ
ρµ

l

g ∆
=                                    (11) 

When a drop deforms, its surface area increases with respect to a spherical drop of the same volume. 

Mass transfer between a droplet and a liquid is proportional to the surface area of the droplet [35]. 

 In order to develop the correlation, Sh was first calculated based on Eq. (8), where Re is given 

by Eq. (9) and Sc is calculated using Eq. (5). Since the applicable scope of α in literature is limited, 

this paper aims to generalize it and extend it to bubble shapes and distance traveled by the bubble. As 

a result, the novel correlation can give information on mass transfer when α and hmass are unknown 

based on shape/size of bubbles and the bubbles rising distance. 

 The Buckingham PI theorem was employed to determine whether Sh can be correlated with 

the aforementioned parameters. The non-dimensional correlation will have the following form [39]: 

                                   (12) 

where values of t are the various independent parameters influencing the mass transfer and m are the 

coefficients. Mass transfer in bubbles is dependent on different variables such as the surface tension, 

viscosity, velocity of the rising bubble, size and shape of the bubble, distance it travels and the 

temperature of the surrounding liquid. Table 3 lists the key parameters needed for the analysis of mass 

transfer across the interface, their units and dimensions in terms of mass (M), length (L), time (T) and 

temperature (K). 

An equation expressing the mass transfer coefficient as a function of the mass transfer 

parameters can be written as follows: 

( )ρασµ ,,,,,,,, HgdDVfhmass =                   (13) 

 Eq. (13) can also be written as:  
ljihfe

mass D
HgDDDV

D
d

D
h 














































= 2

32

2 µ
ρ

µ
σρ

µ
ρα

µ
ρ

ρ
µ

                                 (14)
 

After investigating Eq. (14), five dimensionless terms were determined, which are expressed in 

Table 4. Thus, the following equation was obtained based on the dimensional analysis: 
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where  ,  ,  ,   are coefficients to be determined. In order 

to determine the coefficients in Eq. (15), experimental data were utilized. Diameters of gas bubbles 

were obtained using DynamicStudio using the steps described in the previous section.  

 

4. RESULTS AND DISCUSSION 

DynamicStudio software, an advanced edge detection algorithm to extract the bubble shape 

information, was used to acquire and process the images. The “shadow sizer processing” method was 

used to extract information such as size, position, shape and velocity of bubbles. Prior to image 

processing, a set of calibration images was acquired. This step was necessary because it enables the 

measurement of a scale factor. The scale factor was used to determine the conversion of pixel units 

into metric units. Figure 2 depicts the acquired image at a flow rate of 2 L/min. It can be seen that the 

gas bubbles are irregular in shape and their diameters are different. Due to their irregular shape, it is 

expected that more mass is transferred across the boundary compared to spherical bubbles. It is 

important to note that bubbles rise up in a spiral motion which enhances the mass transfer across the 

interface. After aquiring the images, they were processed using the Shadow Image module of 

DynamicStudio. In order to ensure that all gas bubbles were analyzed by the software, a grey level 

profile of the bubbles was determined.  

The images were then processed in order to obtain useful information such as diameter, area, 

shape, position and velocity of the bubbles. The velocity information was extracted by combining a 

correlation algorithm and measuring displacement between two successive images via a dedicated 

particle-tracking algorithm. Figure 3 depicts the processed image with velocity vectors. These results 

have been used to calculate the Sherwood, Reynolds and Eotvos numbers in order to develop 

correlations that determine the amount of mass transfer across the interface of the gas bubble as it 

rises through the liquid. Diffusive mass transfer occurs across the interfacial boundaries of the gas 

bubbles.  

Once the diameters of different size gas bubbles were obtained using DynamicStudio, it was 

possible to calculate the three dimensionless groups represented in Table 4. The dimensionless groups 

were calculated using MATLAB. Equations (8) through (10) were used to calculate the Reynolds 

number, Eotvos number and Sherwood number. Scatter plots were then generated using MATLAB. 

A relationship between Sh and Re, Sh and Eo and Sh and H/D can be observed in Figures 4, 5 and 7, 

respectively. No relationship observed between Sh and d/D (see Figure 6) therefore it is expected that 

the corresponding term in Eq. (15) does not influence the correlation. From Figure 7 it can be deduced 

that Sh number increases as the diameter of the bubbles increases. Although a negative exponent 

would be expected due to the decreasing function represented in Figure 7, the correlation returned a 
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positive exponent for H/D. This is due to the antecedent terms being a function of the diameter of the 

bubbles and the distance traveled, therefore the terms of the correlation are not independent of each 

other. Figure 8 shows the plot of Sh/Re0.6267Eo0.4659 in order to demonstrate the dependency of the 

developed correlation on the diameter and distance traveled by the bubbles. MATLAB Optimization 

toolbox was employed to optimize exponents m1, m2, m3, and m4. Multifunction Genetic Algorithm 

was utilized and exponents were obtained as given in Eq. (16).  
5754.00

4659.06267.0 EoReSh 













=

D
H

D
d   (16) 

As expected, after optimization m3=0 therefore the term d/D does not influence the correlation. The 

developed model was then tested and the results are given in Figures 9 and 10. This experimental data 

and correlation provide useful information for better understanding of diffusive mass transfer through 

bubbles, particularly for applications related to hydrogen production. 

CONCLUSIONS 

Water vapour entrainment in gas-liquid two-phase flow is a common mass and heat transport 

phenomenon existing in most water splitting processes for hydrogen production. This paper has 

examined the relations between the flow dynamics and mass transfer kinetics of multiphase flows 

involving inert gas bubbles and the amount of water vapour entrained by the gas. Experimental data 

were obtained for the change of bubble humidity and velocity to simulate the bubbles rising in a 

quiescent liquid. A new correlation was developed to relate the bubble dynamics and water vapour 

generation rate with Reynolds and Sherwood numbers particularly involving the amount of mass 

transferred across the interfacial boundary. The experimental data and model presented in this paper 

can provide a better understanding of the gas bubble dynamics and water vapour generation kinetics 

related to hydrogen production. 
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NOMENCLATURE 

d   Minor diameter of bubble  (m) 

D   Major diameter of bubble (m) 

α    Diffusivity (m2/s) 

Eo   Eotvos number 

hmass   Mass transfer coefficient (m/s) 
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H   Water level (m) 

jA,i    Diffusion flux (mol/m2s) 

L   Length (m) 

mn   Coefficient, n=1, 2, 3, 4 

M   Mass (kg) 

Mo   Morton number 

Re   Reynolds number 

Sc   Schmidt number 

Sh   Sherwood number 

V     Velocity (m/s) 

w   Mass mole fraction 

Greek Symbols 

μ   Dynamic viscosity of a fluid ( 𝑘𝑘𝑘𝑘
𝑚𝑚∙𝑠𝑠

) 

   Kinematic viscosity (m2/s) 

ρ   Density (kg/m3) 
σ   Surface tension (N/m) 

Subscripts 
A   Species A 

B   Species B 

c   Characteristic 

l   Surrounding liquid 

s   Surface 
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Fig. 1. Schematic of experimental setup 

 

 
Fig. 2. Aquired image for 2 L/min 

 
Fig. 3. Processed image for 2 L/min 
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Fig. 4. Scatter plot for Re versus Sh 

 

Fig. 5. Scatter plot for Eo versus Sh 

 
Fig. 6. Scatter plot for d/D versus Sh 
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Fig. 7. Scatter plot for H/D versus Sh 

 

 
Fig. 8. Scatter plot for H/D versus Sh/Re0.6267Eo0.4659 

 
Fig. 9. Actual and modeled Sherwood number at 0.25 L/min 
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Fig. 10. Actual and modeled Sherwood number at 3 L/min 

 

 

 

Table 1 – Results with DynamicStudio for 2 L/min 

 
 

Table 2 – Experimental uncertainties 

 
 

 

 

 

 

Centroid X* 
(mm)

Centroid Y* 
(mm)

Area 
(mm2)

Perimeter 
(mm)

Equivalent 
Diameter 

(mm)

Major 
Axis** 
(mm)

Minor 
Axis*** 
(mm)

X-direction 
velocity 

(m/s)

Y-direction 
velocity 

(m/s)
27.18 19.87 166.70 18.30 5.69 4.28 1.90 0.00 0.30
38.49 18.68 38.59 9.30 2.74 2.30 0.82 -0.03 0.31
40.19 35.89 110.11 15.10 4.62 3.66 1.49 0.12 0.32
53.20 15.62 40.87 8.69 2.82 2.10 0.96 0.16 0.37
57.60 31.77 31.26 7.63 2.46 1.80 0.86 0.16 0.36
63.25 27.98 50.33 9.76 3.13 2.22 1.11 -0.06 0.28
67.83 8.42 46.21 9.61 3.00 2.35 0.97 0.01 0.30
68.77 27.81 36.76 8.24 2.67 1.97 0.92 0.18 0.32
80.72 15.78 53.23 9.15 3.21 2.06 1.28 0.21 0.21

* measured with reference to the frame of the image; **  x-direction axis; *** y-direction axis
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Table 3 – Various parameters influencing mass transfer 

 
 

Table 4 – Correlations of  Terms 
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