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Abstract 

This paper highlights the recent advances in thermochemical hydrogen production with the 

copper-chlorine (Cu-Cl) cycle. Extended operation and performance of HCl/CuCl electrolysis is 

presented. Advances in the development of improved electrodes are presented for various electrode 

materials. Experimental studies for a 300 cm2 electrolytic cell show a stable current density and 

production at 98% of the theoretical hydrogen production rate. Long term testing of the 
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electrolyzer for 1,000 h also shows a stable cell voltage. Different systems to address integration 

challenges are also examined for the integration of electrolysis/hydrolysis and 

thermolysis/electrolysis processes. New results from experiments for CuCl-HCl-H2O and CuCl2-

HCl-H2O ternary systems are presented along with solubility data for CuCl in HCl-H2O mixtures 

between 298 and 363 K. A parametric study of multi-generation energy systems incorporating the 

Cu-Cl cycle is presented with an overall energy efficiency as high as 57% and exergy efficiency 

of hydrogen production up to 90%.  

1. Introduction 

Utilization of hydrogen as a clean energy carrier is a promising alternative to conventional 

fossil fuels. Sustainable, lower cost, and “green” methods of hydrogen production are needed to 

adopt hydrogen on a wider scale. Usage of hydrogen has the potential to significantly reduce the 

emissions of greenhouse gases that contribute to climate change, if produced using renewable 

energy sources. This is one of the reasons why hydrogen is often cited as a future energy carrier 

that can become a significant contributing factor to sustainable energy supply [1], as well as a 

prominent fuel. 

Large-scale sustainable methods of hydrogen production require an energy source such as 

nuclear or solar energy. For large-scale capacities of hydrogen production, thermal energy can be 

supplied by nuclear reactors. Electrolysis is a commercially available technology that uses 

electricity for water splitting and hydrogen production. Thermochemical cycles are promising 

water splitting alternatives that can be linked with nuclear reactors to thermally decompose water 
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into oxygen and hydrogen, through a series of intermediate reactions. The Cu-Cl cycle is a hybrid 

thermochemical cycle, including both electrochemical and thermal steps. This paper outlines 

recent advances in thermochemical hydrogen production with the Cu-Cl cycle.  

The copper-chlorine Cu-Cl cycle is a promising cycle for hydrogen production by 

thermochemical water decomposition due to its lower temperature requirement and better overall 

efficiency than other thermochemical cycles [2-4]. The Cu-Cl cycle consists of a closed loop of 

thermally driven chemical reactions, where water is decomposed into hydrogen and oxygen, and 

all other intermediate compounds are recycled with no emissions to the environment [2,3,5]. This 

paper focuses on the four step Cu-Cl cycle for hydrogen production as described in Fig. 1. The 

four reactions of the Cu-Cl cycle are: 

2CuCl(aq) +2HCl(aq) → 2CuCl2(aq) + H2(g) (electrochemical) at 25-90°C;   step (1) (1) 

2CuCl2(aq) → 2 CuCl2(s) (physical) at 60-200°C;                                step (2) (2) 

2CuCl2(s) + H2O(g) ↔ Cu2OCl2(s) + 2HCl(g) (hydrolysis) at 350-450°C;  step (3) (3) 

Cu2OCl2(s) → 2CuCl(l) + 1
2
 O2(g) (thermolysis) at 520°C;                           step (4) (4) 

In comparison to other thermochemical cycles, the Cu-Cl cycle has the advantage of an 

ability to utilize low-grade waste or process heat to achieve higher thermal efficiency and lower 

cost of hydrogen production than other technologies [6-8]. The Cu-Cl cycle has a reduced electrical 

power requirement, compared to typical water electrolysis, for its CuCl/HCl electrolysis. The 

CuCl2 hydrolysis reaction and Cu2OCl2 thermolysis reaction form a closed loop with the 

CuCl/HCl electrolyzer to produce hydrogen in the cycle. In the hydrolysis reactor, the chemical 



 

4  

 

 

conversion effectiveness decreases as reactants are consumed [9]. Past studies on the conversion 

extent of the solid hydrolysis reactant indicated an optimal conversion of 4 mol to 15 mol of steam 

per mol of HCl produced [10]. Experimental data [11] and thermodynamic analysis [12,13] suggest 

an optimal temperature of the hydrolysis reactor to be approximately 375 °C. Lewis et al. [14] 

examined the conversion extent in the CuCl/HCl electrolyzer. In the Cu2OCl2 thermolysis reactor, 

a conversion extent of 85 % was reported [14]. In this paper, the integration of the electrolyzer and 

hydrolysis reactor in the Cu-Cl cycle is reported in terms of energy and mass flows. A 

crystallization process is also reported to reduce the quantity of H2O entering the hydrolysis 

reactor. 

Past studies have successfully demonstrated the unit operations of each of the processes of 

the Cu-Cl cycle [15,16]. Few studies have examined the integration of reactions and interaction 

between processes. The hydrolysis process and its integration with electrolysis entail significant 

challenges. These include the excess steam requirement of the hydrolysis reaction above the 

stoichiometric amount to obtain >95 % yield of Cu2OCl2. The concentration of the produced HCl 

in the hydrolysis reaction is not sufficient to meet the minimum requirement of the electrolysis 

reaction. Increasing the steam to CuCl2 ratio only further reduces the concentration of HCl. The 

operating temperature of the hydrolysis and electrolysis reactions differs significantly, requiring a 

substantial heat exchange to condense the high temperature effluent and reheat the products for 

subsequent processes in the cycle [10,15,17].  
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Recent results of analysis of the integration of the hydrolysis and electrolysis steps were 

reported by Sayeed et al. [16]. Results of the kinetics in the hydrolysis reactor indicate that excess 

steam is required in the hydrolysis reactor, which subsequently reduces the overall efficiency of 

the Cu-Cl cycle. The adverse effects of excess steam on the cycle efficiency were reduced by using 

a heat recovery steam generator (HRSG) to provide the excess steam required in the reaction. The 

results showed that steam produced in the HRSG is about 14 times higher than that observed from 

the stoichiometric reaction.   

The paper presents recent advances toward an integrated thermochemical Cu-Cl cycle. 

Individual unit operations have been developed, built and tested in combination with subsequent 

intermediate processes. Research and development is also reported for corrosion-resistant 

materials for use in the reactors, membrane development, electrode development, and 

crystallization studies. Results are presented and discussed for a number of case studies. The paper 

describes recent progress of a Canadian-led international team, including a number of institutions 

from Canada, U.S., Slovenia, Romania and Argentina, towards industrialization of the Cu-Cl 

cycle, and extends previous reports of progress by the team [3, 16, 17, 21].  

2. Thermochemical Copper-Chlorine (Cu-Cl) Cycle 

Figure 1 depicts a schematic representation of the four step Cu-Cl cycle for hydrogen 

production. There are different variations of the Cu-Cl cycle, consisting of 3 to 5 main reactions 

which yield a net reaction that decomposes water into hydrogen and oxygen [14]. In this paper, 

the main focus is the 4-step cycle since separation of hydrolysis and drying processes provides key 
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advantages of higher thermal efficiency and more viable practical adaptation [18]. The overall 

thermal efficiency of the Cu-Cl cycle has been estimated to be approximately 40-43% [10,19] 

based on the lower heating value (LHV) of hydrogen. 

In the oxygen production step of the Cu-Cl cycle (step 4), an intermediate compound, solid 

copper oxychloride (Cu2OCl2), is decomposed into oxygen gas and molten cuprous chloride (Cu 

Cl). The solid feed of Cu2OCl2 is supplied to the oxygen production reactor from the CuCl2 

hydrolysis reaction (step 3) that operates at a temperature of 350–450 oC. Gas species leaving the 

oxygen reactor include oxygen gas and potentially impurities of products from side reactions, such 

as CuCl vapor, chlorine gas, HCl gas (trace amount) and H2O vapour (trace amount). The 

substances exiting the reactor are molten CuCl, potentially solid CuCl2 from the upstream 

hydrolysis reaction, due to the incomplete decomposition of CuCl2 at a temperature lower than 

550 oC [20], as well as reactant particles entrained by the flow of molten CuCl. 

3. CuCl/HCl Electrolysis  

 Atomic Energy of Canada Limited (AECL), Gas Technology Institute (GTI) and 

Pennsylvania State University (PSU) are developing the CuCl/HCl electrolyzer.   Work is focused 

on this step because preliminary process design and economic analysis show that the major cost 

and energy drivers are the electrolyzer and its components [21,22].  Early experimental studies 

also showed that catastrophic failure of the electrolyzer could occur under some operating 

conditions.  Research is currently focused on the determination of the optimum design and 

operating conditions, such as membrane type, catalyst loading, temperature and pressure, anolyte 
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and catholyte compositions, and flow rate.  The goal is to meet cost and energy usage targets for 

producing 1-10 kg of H2/day by achieving long lifetimes and lower costs of the catalyst and 

membrane while maximizing current density at the desired cell potential. In the short term (2015), 

hydrogen produced at less the $6/kg H2 by the Cu-Cl cycle would be commercially competitive. 

The long term target (2025) for commercial hydrogen production is a cost of $4/kg H2. Table 1 

presents a summary of ongoing work at AECL, GTI and PSU and some of the conditions of their 

tests. 

Scale-up.  Testing of the one 300 cm2 cell showed a current density of 0.55 A/cm2 at 0.7 

V.  A two 300 cm2 cell stack was then fabricated and tested to ensure that the mass flow distribution 

was even and that there were no shunt currents. At 0.7 V, the current density was 0.36 A/cm2 and 

H2 production was 98% of the theoretical value.   Conversion of Cu(I) to Cu(II) was 65% when 

the flow rate was 210 mL/min.   

Preliminary tests with the five-cell stack showed a large drop off in current within 20 

minutes of the start of the test, indicating much of the Cu(I) was consumed. Two major changes in 

the ancillary equipment were therefore necessary - a higher capacity pump to provide greater flow 

rates and a redesigned recycle system with a larger capacity.  An optimized flow rate will improve 

the reactant mass transfer uniformity to obtain maximum performance. The optimized flow rate 

for the single cell and five cell tests are 250 ml/min and 1 liter/min, respectively. After these 

changes, the polarization curves for the 5 cells overlapped each other as shown in Fig. 2 but the 

current density was low at 0.15 A/cm2, suggesting insufficient Cu(I).  Subsequent tests that 
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included a longer recycle time and an increase in cathode flow rate from 600 to 800 mL/min 

showed higher current densities, 0.15 A/cm2 and 0.19 A/cm2, respectively.  Tests with various flow 

rates at PSU confirmed the importance of flow rate. GTI is also studying the use of the CG2 

membrane in 300 cm2 cells. 

Effect of increasing temperature. Details of the chemistry, the electrolyzer system and 

changes made to accommodate operation at 100 oC are described elsewhere [23].  The results of 

the tests at 40-100 oC are shown in Fig. 3.  At 0.7 V, there was a 15 % increase in current density 

as the temperature was increased from 80 to 100 oC.  Electrochemical Impedance Spectroscopy 

(EIS) measurements showed that the increase in current density was due to decreases in internal 

ohmic and charge transfer resistances [24].   

Lifetime tests. The results of the 168 hour lifetime test at 80 oC are shown in Fig. 4.  The 

time period (168 hours) is based on limitations of the current experimental setup.  The current 

density decreased from an initial value near 0.5 A/cm2 to about 0.3 A/cm2 (the milestone values) 

at the end of the test.  The cell was operational for 168 hours while the membrane was contacted 

by the solution for over 400 hours. The hydrogen production rate was measured and found to be 

≥95 % of the theoretical value predicted by Faraday’s Law.  EIS was used to characterize the 

electrolyzer processes.  Analysis of the EIS data is ongoing but preliminary results indicated that 

the internal ohmic resistance increased with time, which suggests membrane degradation.   

Pt loading studies.  SEM images of electrode surfaces indicated that Pt loading techniques 

previously used in the CuCl/HCl electrolytic cell resulted in a dense deposit, suggesting that at 
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least some of the Pt was inactive [25] . A dense deposit provides a smaller surface area for the 

electrochemical reaction, possibly covering Pt by carbon, which may render some Pt particles 

inactive. To obtain a thinner deposit, the catalyst ink was applied via an airbrush. SEM images 

shown in Fig. 5 show differences in the Pt surfaces with painting and airbrushing.  When the 

airbrushed Pt loadings were reduced to 0.1 and 0.4 mg/cm2 on the anode and cathode, respectively, 

the current density was 0.55 A/cm2, which was similar to that achieved when the Pt loading was 

0.8 mg/cm2 on each electrode.  

Atomic Energy of Canada Limited (AECL) has been carrying out long term performance 

tests to determine the long term stability of the cell voltage at a constant current density of 0.1 

A/cm2. For these tests the electrode area was reduced to 5 cm2. AECL’s results show that the 

electrolyzer can operate over a long period and display stable cell voltage performance, as seen in 

Fig. 6 for more than 1,000 h of operation. The conditions used to study the long term performance 

of the AECL electrolyzer are summarized in Table 2.  During shutdown periods, the electrolytes 

are still circulated through the cell.  Thus, the voltage is different after each restart. During the 

shutdown period, all of the copper (II) in the system will have been converted back to copper 

(I).  Also, the hydrogen present in the catholyte is purged out of the catholyte during the shutdown 

period.  These two changes will affect the equilibrium potential of the cell.  These transient periods 

may occur as a result of chemistry changes that occur within the system during shutdown. It is 

important to notice that eventually the system is able to return to a cell voltage although noisy at 

steady state.  The noise is not always observed during experimentation, which indicates further 
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investigation is required. Throughout the experiment, a drop in the catholyte HCl concentration is 

observed.  

Another major objective in the development of the CuCl/HCl electrolyzer is to suppress 

copper species crossover from the anolyte to the catholyte during CuCl/HCl electrolysis. Two 

approaches have been adopted.  The first approach is to develop membranes that can suppress 

copper species crossover while the second approach is more focused on the design of the 

electrolyzer itself.  Both approaches together have allowed a significant reduction in the amount 

of copper species that cross over and enter the catholyte during CuCl/HCl electrolysis.  Another 

achievement to report has been the in-situ measurement of the various components that define the 

cell voltage during a long term test. The change in cell voltage with time is measured in-situ and 

it is periodically interrupted to measure the cell impedance. This allows the ohmic resistance of 

the cell to be estimated at a high frequency, where the imaginary impedance is zero. The 

polarization curves are also measured in-situ to determine the equilibrium potential and the 

activation overpotential.  The ohmic resistance and the activation overpotential are used to 

calculate the cell voltage, which are compared to the experimentally determined data.  These 

measurements show that the electrolyzer resistance needs to be reduced in order to improve the 

cell voltage performance.   

Studies of copper (I) diffusion through the membrane of the electrolyzer were also 

investigated.   Copper (I) was maintained as copper (I) by circulating the anolyte through three 

columns containing copper metal – the diffusing copper (I) species was CuCl4
3- in 11 M HCl and 
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CuCl3
2- in 6 M HCl. The catholyte copper concentrations were determined using UV-visible 

spectrophotometry. The results from the experiments showed a linear dependence of the catholyte 

copper concentration on operation time. The linear relationship was valid up to a catholyte 

concentration of ~300 mg/L. The experimental results were used to determine the diffusion 

coefficient, which was found to be 5 x 109 cm2 /s. The results showed that copper (I), an anionic 

copper species, can diffuse through a cation exchange membrane. Since during electrolysis an 

electric field is present between the electrodes, one would expect that the movement of copper (I) 

through the membrane would be limited as the field would oppose the negative charge on the 

anionic copper (I) species.  However, copper (I) was still found to pass through the membrane but 

at a somewhat lower rate. This suggests that the driving force for diffusion is greater than the 

driving force for migration under the experimental conditions of electric field present during the 

test.  In 6 M HCl the diffusion of copper (I) in the absence of an electric field was a factor of 4 

higher than what was observed when 11 M HCl was studied. 

A HYSYS economic model of the fully integrated Cu-Cl cycle is being developed.  The 

model will be optimized for economical hydrogen production by identifying the optimal cell 

operating conditions. A performance model of the electrolyzer will also be developed and analyzed 

with COMSOL. 

4. Thermolysis Process 

The oxygen decomposition reactor is the highest energy consuming device in the Cu-Cl 

cycle. The thermolysis process occurs at 530 oC in the reactor and it is the highest temperature 
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required in the cycle.  Scaling up this process is essential in developing an integrated pilot plant of 

the Cu-Cl cycle. The volume of oxygen reactor depends on the residence time, which determines 

the size of the reactor. The residence time of the oxygen reactor is the time required for the solid 

Cu2OCl2 particles to decompose completely into molten CuCl and oxygen gas. It is necessary to 

validate the residence time experimentally in order to calculate the volume of oxygen reactor. 

Residence times based on experimental studies have been reported by Rosen et al. [7]. This data 

is useful for scaling up the oxygen reactor.  

The minimum size of the oxygen reactor is the size required by the liquid volume of molten 

salt without gas bubbles. The direct contact heat transfer from molten CuCl to solid Cu2OCl2 

(reactant) particles reduces the heat required in the oxygen reactor. The molten bath can be 

sustained by the exothermic reaction occurring in the reactor. The reactor is initially filled with 

molten salt and solid particles are later fed continuously into the reactor. 

An option for the normal configuration for the process vessel for the oxygen reactor is a 

vertical cylindrical section closed by dished ends [8]. Several designs are possible [26] but in order 

to simplify design and minimize costs, standard reactor designs are recommended. When limiting 

the size of oxygen reactor to a specified volume, the number of reactors can be estimated by N = 

V / (D2Hπ/4). The aspect ratio AR (ratio of the reactor’s height to its diameter, H/D) is selected 

based on the capital cost, mixing, and heat transfer characteristics of the oxygen reactor. A 

reasonable compromise of these competing effects is to use an aspect ratio of around 2, which is 

frequently used for chemical reactors [27].  
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The wall thickness of the reactor is dependent on reactor diameter, and consideration must 

be given to manufacturing of the reactor. Transportation of vessels over 4.6 m in diameter is 

difficult because of standard road bridge dimensions and overhead electric lines [28]. Taking these 

factors into consideration, the maximum reactor diameter analyzed was 4.2 m. To avoid a very 

large size reactor, multiple smaller oxygen reactors can be used. Table 3 shows dimensions and 

numbers of oxygen reactors for different hydrogen production rates and residence times.  

5. System Integration of Unit Operations  

In this section, the experimental and numerical results of thermolysis/electrolysis 

integration, hydrolysis/electrolysis integration, solubility, and HCl/Cu-Cl2 separation processes 

are presented.  

5.1 Crystallization and Solubility of CuCl2-CuCl-HCl-H2O System 

The experiment on crystallization and solubility of the ternary process has been reported 

by Wang et al [15].  This paper reports further results from investigations carried out by researchers 

at UOIT. In Table 4, the crystallization properties of a CuCl2-CuCl-HCl solution are presented for 

1 litre of the solution between 20 °C and 80 °C on the basis that the crystallization process operates 

on the solubility curve. For each temperature, a solution is selected based on the ratio of CuCl2-

CuCl-HCl in the solution to best match the concentration of the electrolyzer effluent. 

The effect of temperature of the solution on the crystallization effectiveness (𝜁𝜁) is reported 

in Fig. 7. The amount of solids is determined by the product of crystallization effectiveness and 

the molar input. As presented in Fig. 7, the crystallization of CuCl is negligible between 80 °C and 
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60 °C, while 18 % of CuCl2 is crystallized. Table 4 shows that the HCl concentration is increased 

from 6.09 to 8.55 M from 80 °C to 60 °C, which may contribute to the relative quantities of CuCl 

and CuCl2 solids. As presented in Fig. 8, a significant portion of the energy input to the hydrolysis 

reactor is used to convert water to steam, particularly when the steam requirement is high. Fig. 8 

also highlights the importance of maintaining a low steam requirement in the hydrolysis reactor 

since higher steam requirements require a significantly higher energy input than the theoretical 

minimum requirement for water electrolysis, 286 kJ/mol. 

As illustrated in Fig. 9, the quantity of H2O in the electrolyzer effluent rises significantly 

with a lower conversion extent. An input electrolyte solution of 2 M CuCl and 6 M HCl, and a 50 

% conversion in an electrolyzer, will produce an effluent of 1 M CuCl2 and 42.7 M of H2O. This 

increases the minimum hydrolysis input energy to 2,940 kJ/mol of CuCl2, if the effluent stream is 

directly fed to the hydrolysis reactor to provide the steam and CuCl2 reactants. In contrast, utilizing 

a crystallizer in the temperature range of 80 °C to 60 °C, will result is a loss of 85 kJ/mol into the 

crystallizer, to produce 0.17 M of CuCl2 solids. To produce 1 M of CuCl2 solids will require 502 

kJ/mol of thermal energy contained in the solution. This is a comparable value in magnitude to the 

minimum energy requirement of the hydrolysis reactor with an excess steam requirement of 8 (507 

kJ/mol of CuCl2). 

5.2 Integration of Thermolysis and Electrolysis 

Experiments were performed to better understand the physics of liquid-solid systems and 

the dissolution rate of copper chloride (CuCl) in hydrochloric acid (HCl). The first experiment 
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consists of dropping CuCl(s) into water to analyze the flow dynamics of the particle. The second 

set of experiments consisted of dropping CuCl(s) particles in HCl(aq) and recording the time 

required for dissolution. Initially, the particles were dropped in stagnant HCl(aq) and local 

saturation could be observed. To speed up the dissolution rate and avoid local saturation occurring 

near the particle surface, nitrogen was injected from the bottom of the container.  

The results pertaining to the CuCl (s) particle in quiescent 12 M HCl (aq) are presented in 

Fig. 10 (a). It is observed that the particle’s area decreases linearly as follows: 

Y = -0.0053X + 9.4377         (5) 

where Y represents the surface area, and X is time. This representation returned an R-squared value 

of 0.98505, which indicates a good correlation between the points. The data pertaining to the 

dissolution rate of CuCl(s) in 12 M HCl(aq) in the presence of nitrogen as the mixing agent has a 

similar trend as observed in Fig. 10 (b). A linear dissolution rate is observed as follows: 

Y = -0.0125X + 13.636         (6) 

This returned an R-squared value of 0.97971, which indicates a good correlation between the 

points. The results indicate that when nitrogen bubbles are introduced as a mixing agent, the time 

to dissolve a particle with the same area was reduced by about half.  

5.3 Solubility Comparison of Binary and Ternary Systems 

The flow that discharges from the anode side of the copper (I) chloride electrolysis process 

will be a quaternary system of CuCl, CuCl2, HCl, and H2O. After leaving the anode, this flow will 
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be passed to a crystallizer to produce a concentrate of copper (II) chloride, which is recycled in the 

process. A quaternary solubility model is needed for the design of the cupric chloride concentration 

process, where it will be used to determine temperature and hydrochloric acid concentration 

conditions under which cupric chloride can be selectively precipitated from the solution. In the 

design of the electrolyzer, a quaternary solubility model is required to determine the necessary 

conditions for equilibrium in the electrolytic reaction. 

New solubility data for the CuCl-HCl-H2O system was produced and covered a 

hydrochloric acid concentration range of 1 to 12 mol/kg and a temperature range of 298 K to 363 

K [35]. A detailed diagram of the apparatus is given in Fig. 11. The studies, which involved 

withdrawing and analyzing samples at regular intervals until the cuprous chloride concentration 

remained constant, revealed fast kinetics at room temperature, with equilibrium reached in less 

than five minutes for all acid concentrations. The copper concentration was determined via a 

complexometric titration method described by Schwarzenbach and Flaschka [29] .  Hydrochloric 

acid concentration was determined using a TitroLine® autotitrator with 0.1000 M sodium 

hydroxide as titrant.  Calcium 1, 2-cyclohexanediaminetetraacetic acid solution was added to the 

samples prior to sodium hydroxide titration to prevent interference from copper hydroxide 

formation. The results from the experiment are reported in Table 5. A potential source of error in 

this investigation is the oxidation of copper (I) to copper (II) by air. During experimentation, the 

reactor was monitored for any visual signs of oxidation, including colour changes in the slurry as 
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well as the development of any blue hue on the cuprous chloride that had deposited on the reactor 

walls above the liquid level. 

Thermodynamic models were produced in this investigation using OLI system software 

(simulation software for electrolyte chemistry) [30]. The OLI model outputs for the two ternary 

systems can be used to indicate the feasibility of separating cupric chloride from cuprous chloride. 

From the comparison in Fig. 12, the cupric chloride solubility is depressed as the hydrochloric acid 

concentration is increased, until it reaches a minimum, after which it increases again. At the same 

time, the cuprous chloride solubility continuously increases with a higher hydrochloric acid 

concentration. These trends yield regions of low cupric chloride solubility and high cuprous 

chloride solubility. This difference in solubility becomes more pronounced as the temperature 

decreases. The separation of cuprous from cupric chloride by selective crystallization may be 

feasible in these regions. 

6. Advanced Materials  

Studies were conducted to identify and test potential replacement membranes for use in the 

membrane electrode assembly (MEA) investigated in a previous study [22]. The primary method 

in this paper to prevent copper crossover is to modify the membrane through polymerization with 

some promising compounds such as pyrrole and/or aniline. These polymers reduce the porosity of 

the membrane in such a way that they allow the passage of protons but prevent or reduce other 

molecules, such as copper cations, to permeate to the cathode area. Such membrane materials have 

been shown as effective to reduce the rate of methanol crossover in direct methanol fuel cells 
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(DMFC) [31-34]. The membrane materials that have been shown to have higher selectivity of 

protons over methanol are expected to also have higher selectivity of protons over Cu species. 

6.1 Silane Composite Electrodes  

Ceramic carbon electrodes (CCE) were produced through a sol-gel method incorporating 

a selection of amine containing silanes with increasing numbers of primary and secondary amines. 

Electrochemical analysis was performed using cell polarization, cyclic voltammetry, and 

electrochemical impedance spectroscopy. The materials were also characterized with 

thermogravametric analysis to assess bulk physical properties. Current electrode technologies rely 

on a Pt catalyst containing MEA designed for PEM water electrolysis [RW.ERROR - Unable to 

find reference:595]. Past studies have shown that a platinum catalyst is not required at the anode 

as the oxidation is occurring at a transition metal centre [36,37]. In aqueous media, Cu(I) will form 

anionic complexes such as CuCl2
- or CuCl3

2-1. The slow transport of these species to the anode 

surface severely limits the overall electrochemical reaction. By protonating existing amine groups 

imparted by the functionalized silanes, there should be an increase in the transport of these anionic 

species.  

Capacitive CV’s and EIS were collected in the absence of CuCl to analyze the surface area 

and ionic conductivity of the different anode materials. These measurements were made in a full-

cell MEA configuration constructed from the CCE anode electrode (the test electrode), a Nafion 

115 membrane, and a standard Pt-based cathode. Details of these electrochemical measurements 

are described in detail elsewhere [38, 39]. The CV results indicated that the capacitive surface area 
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is independent of silane loading (Fig. 13). When normalized for the mass of carbon present on the 

CCE, the materials showed very similar capacitances. The results showed that the silane loadings 

between 27-53 wt% had a negligible effect on the surface area of the carbon electrodes. This result 

was expected since the percentage composition by volume of silane is not significant enough to 

alter the surface area of the CCE. 

The CuCl/HCl electrolysis cell performance was evaluated by plotting current at cell 

potentials of 0.7 and 1.1 V as a function of anolyte flow rate (Fig. 14). Using this method, the cell 

response was evaluated to increase the flow at the anode surface. This can also be used to predict 

the cell’s response to higher concentrations of anolyte materials. At 1.1 V, all of the samples 

showed a linear response to increased flow rate. The 32.4 wt% silane showed the highest 

performance of all samples. The 27.2 wt% sample showed a steeper response to the increased flow 

rate meaning that at even higher flow rates, the 27.2 wt% sample may outperform the 32.4 wt% 

sample. Similar behavior was observed for the 0.7 V comparison. The 32.4 wt% sample also 

showed the highest current response at 0.7 V. The 27.2 wt% sample showed very comparable 

currents with a steeper response to the increased flow rates (Fig. 14). While the 27.2 wt% sample 

showed a slightly lower current response, at higher flow rates or concentrations, the 27.2 wt% 

sample should perform the best of all tested CCE’s. 

From the produced silanes, some target composition ranges were identified (Table 6). 

Silane loading was found to be optimized between approximately 4.8 and 6.8 mmol of silane per 

gram of carbon in the CCE material. The silane-to-carbon ration (in units of mmol gC-1) value was 
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found to be consistent across the three silane types tested. Comparing the three materials, it was 

observed that there is an increase in current response from the CCE samples from the 3-

aminopropyl-trimethoxysilane (1N) materials to the 3-trimethoxysilyl-propyl-ethylenediamine 

(2N) materials, with the 3-trimethoxysilylpropyl-diethylenetriamine (3N) materials showing the 

best overall performance. Additionally, the 2N and 3N materials showed an increased stability and 

resistance to copper crossover. The 2N and 3N materials showed limiting currents comparable to 

or potentially better than those seen in past studies without the use of a Pt catalyst [35,40]. It is 

important to note that there is a discrepancy between the current responses recorded through 

potential stair step/LSV and those measured with potentiostatic holds. The increase in the current 

response from the potential stair step/LSV measurements can be attributed to a preloading of CuCl 

at the surface of the electrode. 

6.2 Nafion/polypyrrole (Ppy) Composite Membranes 

Other electrode composites have also been investigated as possible electrode membrane 

materials. In this section, a series of Nafion/polypyrrole (Ppy) composite membranes (Nafion 

NRE212, Nafion 115 (N115) (1100 EW) and Nafion 117 (N117)) were fabricated and their 

selectivity for protons over both Cu and methanol are compared. Proton conductivity was 

determined via electrochemical impedance spectroscopy (EIS). EIS measurements were taken by 

applying a 100 mV sinusoidal voltage across the electrodes over a frequency range of 10 MHz to 

100 Hz. All EIS data was fitted to the simple equivalent circuit, consisting of the membrane 

capacitance, connected in parallel to the membrane ionic resistance (Rm) and both connected in 
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series with a contact resistance. The typical EIS response is a semi-circle Nyquist plot, where the 

diameter of the semi-circle corresponds to Rm [41-43].  

Water contents obtained by Karl Fisher (KF) titration are listed in Table 7. The water 

content ranges from 6.1 to 16.1 %, for pure Nafion membranes, and from 1.7 to 6.7 % for Nafion 

pyrrole membranes. In all cases, the presence of Ppy yielded lower water content over the 

unmodified membrane. This data is in agreement with the TGA data, and also prior reports that 

observed a decrease in water content that was ascribed to decrease porosity in the composite 

membranes [32].  

The proton conductivities determined from these plots are listed in Table 7. All unmodified 

membranes displayed proton conductivity values between 0.09 and 0.10 S/cm, which is in 

agreement with literature values reported for Nafion [44-46]. When composites are formed, there 

is a significant reduction in proton conductivity in all cases. The largest reduction occurs for NRE 

212, which is most likely due to the fact it is the thinnest membrane and likely contains the highest 

wt % Ppy. The proton conductivities measured in this study are still in a range suitable for full cell 

applications and in agreement with those reported for Nafion/Ppy composites in DMFC 

applications [47]. The expected area specific resistances (ASR) for each membrane when 

assembled in an MEA configuration (i.e. through plane) are listed in Table 7. 

Methanol permeability has been measured for the unmodified Nafion membranes and as 

well the Nafion/Ppy membranes (Table 7). The methanol permeability values measured for Nafion 

are comparable with those reported in the literature [48]. The values for N115 and N117 are quite 
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close as expected since the samples are made by the exact same chemical process. NRE 212 has a 

lower permeability, which can be explained by the presence of capping groups in its structure to 

promote stability. Each composite shows a significant reduction in methanol permeability over its 

unmodified counterpart (ca. a 50 – 67 % reduction).  

7. System Modeling for Cycle Enhancements 

Multi-generation systems are often attractive due to their higher energy and exergy 

efficiencies than individual cycles (i.e., steam or gas turbine cycles). An increase in efficiency 

often allows, for the same output, less resources (or exergy) consumed. This section highlights 

recent studies with multi-generation systems involving the Cu-Cl cycle. Oxygen as a product of 

the Cu-Cl cycle is also treated as a byproduct, which is sufficiently pure for use or sale [49] in 

other industrial processes. All the systems also have the capability of providing cooling, hot water 

and drying air. 

A LiBr-H2O absorption cooling system (ACS) is considered in the study for the multi-

generation system, which uses excess energy of solar/nuclear heat transfer fluid to derive a cooling 

effect. The absorption cooling system is used instead of a conventional cooling system in order to 

utilize waste heat. Hot water at 42 °C is supplied to a community by the integrated system. Also, 

drying air for industrial or residential applications is obtained by heating ambient air to the drying 

temperature (50 °C) using excess heat of the exhaust gases.  

Solar thermal energy, concentrated by a heliostat solar tower, is the energy source of 

System I (Fig. 15). Molten salt (which has a composition of 60 % NaNO3 and 40 % KNO3, on a 
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mass basis) is considered as the heat transfer fluid (HTF) to supply heat to the Cu-Cl cycle. Molten 

salt has an advantage in that the solar heat can be stored for tens of hours for use at night, or when 

sunlight is not available [50]. The efficiency of the solar energy and conversion processes are not 

considered in the present study. Heat is supplied to the copper oxychloride decomposition step 

(step 4) since this step has the highest temperature heat requirement (530 °C) in the cycle. Heat is 

also transferred to the hydrolysis step (step 3) of the Cu-Cl cycle and then hydrogen production 

(step 1) and drying processes (step 2). The temperature of the molten salt is increased to 650 °C, 

so as to match the heat requirements of the Cu-Cl cycle [50]. The temperature of the molten salt 

in a low temperature storage tank is higher than 250 °C which is about 30 °C higher than the 

melting point of the molten salt. A hydrogen storage tank and fuel cell unit are also integrated with 

the Cu-Cl cycle for energy management. Energy management with a hydrogen storage option is 

promising, since hydrogen can be converted to electricity efficiently in the fuel cells during peak 

hours. 

System I also comprises a steam turbine cycle, which has a low pressure and high pressure 

steam turbine, and LiBr-H2O ACS. The steam turbine cycle and absorption system utilize solar 

energy. The second Cu-Cl based integrated system utilizes nuclear energy. A Generation IV 

Supercritical Water Cooled Reactor (SCWR) is a match with the Cu-Cl cycle. The HTF can be 

either water or molten salt in this case. Unlike solar based systems, the nuclear plant can 

continuously supply heat to the Cu-Cl cycle using water as the HTF. The coolant (water) inlet and 

exit temperatures are set as 350 and 625 °C, respectively. Also, the coolant pressure and mass flow 
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rate are 25 MPa and 1320 kg/s [51]. The LiBr-H2O ACS is also introduced for cooling, indicating 

multi-generation of hydrogen, process heat, and cooling from System II. A hydrogen storage and 

fuel cell unit are also used in System II (Fig. 16). 

The energy efficiency of System I can be expressed as follows: 

    

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚𝐻𝐻2  × 𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻2+𝑊̇𝑊𝑛𝑛𝑛𝑛𝑛𝑛+𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑚̇𝑚𝑎𝑎𝑎𝑎𝑎𝑎×�ℎ𝑎𝑎𝑎𝑎𝑎𝑎−ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0�+𝑚̇𝑚ℎ𝑜𝑜𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤×�ℎℎ𝑜𝑜𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−ℎ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,0�

𝑚̇𝑚ℎ𝑡𝑡𝑡𝑡×(ℎ1−ℎ12)    (7) 
  
where m , LHV , netw , coolingQ , and h are the mass flow rate, lower heating value, net work output, 
refrigeration capacity and specific enthalpy respectively. 
 
The exergy efficiency of System I can be expressed as follows: 

 

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝐸𝐸𝐸̇𝐸𝐻𝐻2+𝑊̇𝑊𝑛𝑛𝑛𝑛𝑛𝑛+𝐸𝐸𝐸̇𝐸𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑚̇𝑚𝑎𝑎𝑎𝑎𝑎𝑎×�𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎−𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎,0�+𝑚̇𝑚ℎ𝑜𝑜𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤×�𝑒𝑒𝑒𝑒ℎ𝑜𝑜𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,0�

𝑚̇𝑚ℎ𝑡𝑡𝑡𝑡×(𝑒𝑒𝑒𝑒1−𝑒𝑒𝑒𝑒12)   (8) 

         
where Ex and ex are the total and specific exergy of the flow streams. The energy efficiency of 

System II is given as follows: 

 

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝑚̇𝑚𝐻𝐻2  × 𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻2+𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑚̇𝑚𝑎𝑎𝑎𝑎𝑎𝑎×�ℎ𝑎𝑎𝑎𝑎𝑎𝑎−ℎ𝑎𝑎𝑎𝑎𝑎𝑎,0�+𝑚̇𝑚ℎ𝑜𝑜𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤×�ℎℎ𝑜𝑜𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−ℎ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,0�

𝑚̇𝑚ℎ𝑡𝑡𝑡𝑡×(ℎ1−ℎ12)+𝑊̇𝑊𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
    (9) 

 
where ,in CuClW is the work supplied to the Cu-Cl cycle. The exergy efficiency of System II is: 

𝜂𝜂𝑒𝑒𝑒𝑒 =
𝐸𝐸𝐸̇𝐸𝐻𝐻2+𝐸𝐸𝐸̇𝐸𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑚̇𝑚𝑎𝑎𝑎𝑎𝑎𝑎×�𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎−𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎,0�+𝑚̇𝑚ℎ𝑜𝑜𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤×�𝑒𝑒𝑒𝑒ℎ𝑜𝑜𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,0�

𝑚̇𝑚ℎ𝑡𝑡𝑡𝑡×(𝑒𝑒𝑒𝑒1−𝑒𝑒𝑒𝑒12)+𝑊̇𝑊𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
    (10) 

Fig. 17(a) shows the energy and exergy efficiencies of System I and its sub-units. The 

overall energy efficiency of System I is about 70%, whereas the exergy efficiency is 57%. If the 
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heat released by the condenser of the steam turbine cycle is not utilized as hot water, the energy 

efficiency drops to about 51%. The exergy efficiency of the Rankine cycle (STC) is greater than 

its energy efficiency, since the exergy of heat input is lower than the energy of the heat input. 

The energy and exergy efficiencies of System II and its sub-units are shown in Fig. 17(b). 

The overall energy efficiency of System II is 51 % and the exergy efficiency is 41 %. The 

absorption cooling system and the Cu-Cl cycle used in System II have similar efficiency values as 

System I. The energy percentages of all outputs for both systems vary by about 11 % for hydrogen 

production. The energy percentages of hot water and drying air are 31 % and 14 % for System I 

and 19 % and 20 % for System II. The exergy percentages, however, are 4 % in total for System I 

and 3 % in total for System II, since drying air and hot water temperatures are close to the reference 

temperature, The exergies of power and hydrogen generation have the highest exergy content in 

System I, 27 % and 64 %, respectively. The exergy of the hydrogen production of System II is 

about 94 % of total exergy output of the system.   

8. Conclusions 

Recent advances in the thermochemical Cu-Cl cycle have been presented in this paper. A 

long-term electrolyzer performance test of more than 1600 h was successfully conducted to 

demonstrate the promising potential of the electrolyzer for hydrogen production within the 

Cu-Cl cycle. Experimental and numerical results for mass transfer in multiphase systems 

involving gas-liquid bubble frequency and solubility of CuCl in HCl solution have been 

presented. The molten salt reactor design for scaling up the Cu-Cl cycle was also reported. 
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Decreasing the flow rate of the anolyte in the electrolyzer caused the rate of diffusion of 

copper (I) through the membrane to decrease. Decreasing the HCl concentration from 11 

to 6 M increased the amount of copper (I) that entered the catholyte by a factor of 4. 

Solubility data for the CuCl-HCl-H2O ternary system was obtained at 298, 318, 333, 348, 

and 363 K. A comparison of the OLI model predictions for both the CuCl-HCl-H2O and 

CuCl2-HCl-H2O ternary systems showed regions where selective precipitation should be 

feasible. Thermodynamic analyses based on energy and exergy efficiencies were 

successfully performed to investigate the performance of the Cu-Cl cycle linked with multi-

generation systems.  The overall energy efficiency of System I is 70 % whereas the exergy 

efficiency is 57 %. The overall energy efficiency of System II is 51 % and its exergy 

efficiency is 41 %.Acknowledgements 
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Institution Study Objectives Active 
Area 
(cm2) 

Temperature, 
oC 

HCl 
concentration, M 

AECL  Long term CuCl/HCl cell 

performance studies 

 5 45 11 M 

AECL Copper (I) diffusion studies  25 45 11 M 

GTI Scale-up 

Increase to 5-cell stack 

300 60 6-7 

GTI Membrane 6.45 60 6-7 

PSU Effect of temperature 5 40-100 6-7 
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PSU Lifetime 5 80 6-7 

PSU Pt loading 5 80 6-7 

 

Table 1: Summary of ongoing work at AECL, GTI and PSU and conditions of the tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anolyte   0.5 M CuCl in 11 M HCl 
Anode     Catalyst free Graphite 
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Cathode    Pt Electrocatalyst 
Membrane     Nafion® N1110 
Current Density 0.1 A/cm2 
Temperature    45°C 
Catholyte    11 M HCl 
Catholyte Flow Rate  0.6 L/min 
Anolyte Flow Rate 0.6 L/min 
Electrode Area 5 cm2 

 

Table 2: Experimental conditions during long term CuCl/HCl electrolysis experiments 
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Residence Time 
(h) 

H2 
(ton/day) 

O2 
(ton/day) 𝐃𝐃(𝐦𝐦) × 𝐇𝐇(𝐦𝐦) × 𝐍𝐍 

2 
100,000 800,000 4.14 × 8.29 × 2 
50,000 400,000 4.14 × 8.29 × 1 
25,000 200,000 3.29 × 6.58 × 1 

1 
100,000 800,000 4.14 × 8.29 × 1 
50,000 400,000 3.29 × 6.58 × 1 
25,000 200,000 2.61 × 5.22 × 1 

0.5 
100,000 800,000 3.29 × 6.58 × 1 
50,000 400,000 2.61 × 5.22 × 1 
25,000 200,000 2.07 × 4.14 × 1 

 

Table 3: Dimensions and numbers of oxygen reactors (neglecting bubble volume) for different 
hydrogen production rates and different residence times 
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 Saturated solution for 1 litre of 
solution [mol] 

Saturated solution for 1 litre of solution 
normalized to a constant quantity of HCl [mol]  

T [°C] CuCl CuCl2 HCl CuCl CuCl2 HCl 
20 1.46 2.31 8.66 1.03 1.63 6.09 
40 1.68 3.06 9.73 1.05 1.92 6.09 
60 2.08 3.26 8.55 1.48 2.32 6.09 
80 1.48 2.82 6.09 1.48 2.82 6.09 

Table 4: Crystallization properties 
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298 K 318 K 333 K 348 K 363 K 
HCl 
(mol/kg) 

CuCl 
(mol/kg) 

HCl 
(mol/kg) 

CuCl 
(mol/kg) 

HCl 
(mol/kg) 

CuCl 
(mol/kg) 

HCl 
(mol/kg) 

CuCl 
(mol/kg) 

HCl 
(mol/kg) 

CuCl 
(mol/kg) 

1.2820 0.1175 1.0811 0.1379 1.0867 0.2043 1.3302 0.3350 1.3622 0.4463 
3.7856 0.6702 3.8032 0.9109 3.8076 1.0734 3.8083 1.3181 3.9267 1.6366 
6.1608 1.5819 6.2678 1.9905 6.3385 2.2578 6.4787 2.6679 7.2798 3.5526 
7.1370 1.9815 7.1568 2.4272 7.0652 2.6135 7.1835 3.1121 9.5042 4.5744 
10.0924 3.0516 10.3550 3.7892 10.2655 4.0062 10.1334 4.4491 11.3487 5.4435 
11.7939 3.7330 10.9241 4.0662 11.8436 4.7969 11.9511 5.2175 

  

Table 5: Cuprous chloride solubility in hydrochloric acid at temperatures from 298 K to 363 K 
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Sample 
Code 

wt% 
Silane 

Mass Loading 
(mg/cm2) 

Carbon Loading 
(mg/cm2) 

mMol 
Si/gC 

B1P73S2 27.1790 1.78 1.2962 3.3930 
B1P69S1 32.4223 2.66 1.7976 4.3616 
B1P69S2 50.7222 2.79 1.3749 9.3574 
B1P69S3 53.4536 3.65 1.6989 10.4399 
B1P60S2 62.4869 4.24 1.5906 15.1431 

Table 6: 3-Aminopropyl-trimethoxysilane (1N) full cell CCE sample information  
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Membrane loss % at 
200 oC 
(TGA) 

wt% at 
900 oC 
(TGA) 

% 
H2O  
KF 

σH+ 
S/cm 

ASR  
Ωcm2 

PMeOH 
×106 cm2/s 

PCu 
×106 cm2/s 

NRE212 14.02 0.02 6.44 0.1026 0.0495 0.953 0.637 
NRE212/Ppy 5.75 6.124 4.17 0.0133 0.382 0.361 n/a 
N115 8.67 0.03 6.12 0.0905 0.140 1.520 0.686 
N115/Ppy  6.53 7.22 1.70 0.0149 0.852 0.557 n/a 
N117 14.63 0.00 16.05 0.0973 0.188 1.693 1.05 
N117/Ppy  8.58 5.74 6.68 0.0330 0.555 0.847 n/a 

Table 7: Summary of membrane physical properties (ASR = area specific resistance  
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 

 



 

57  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

58  

 

 

Fig. 11 
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Fig. 12 
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Fig. 13 
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Fig. 14 
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Fig. 15 
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Fig. 16 
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Fig. 17 
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