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Abstract 

This paper develops a new approximate model to predict the pressure and momentum 

forces on a Savonius style VAWT (vertical axis wind turbine). Flow distributions through and 

around the turbine are examined for analytical predictions of the torque and power output, at all 

rotor angles. A new approximate streamtube method is developed to predict the momentum, lift 

and drag forces on the rotor surfaces by the air stream, based on an integral force balance on the 

turbine blades. Unlike other past analytical methods, the technique predicts both momentum and 

pressure forces imposed on the rotor surface during operation. The calculated results are carefully 

compared with numerical predictions from CFD (computational fluid dynamics). 

 

Nomenclature 

a  radius of semi-cylindrical blade [m] 

A  area per unit turbine height [m2/m] 

Cp  power coefficient 

d  distance to origin [m] 

g  acceleration of gravity [m/s2] 

p  pressure [Pa] 
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Q  torque [N-m]  

R  turbine radius [m] 

S  solidity 

t  time [s] 

u  x-component of velocity [m/s] 

U  free-stream velocity [m/s] 

v  y-component of velocity [m/s] 

V  mean wind velocity [m/s] 

Wx  x-component of relative wind velocity [m/s] 

Greek 

𝛽𝛽  rotor overlap [m] 

𝜃𝜃  rotor position [radians] 

λ  tip speed ratio 

μ   dynamic viscosity of air [Pa-s] 

ρ  air density [kg/m3] 

𝜙𝜙  semi-cylindrical coordinate  

𝛹𝛹  stream function 

Ω   rotor velocity [radians/s] 

Subscripts 

m  momentum 

p  pressure 

x  drag 

y  lift 
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1. Introduction 

Wind power is becoming an increasingly significant source of sustainable power 

generation, for example growing at 23.6% in 2010 [1], and providing a valuable synergy with other 

carbon-free technologies (such as solar, nuclear and geothermal) [2]. Wind power can supplement 

current power generation methods while mitigating environmental degradation and resource 

depletion [3]. Although horizontal axis wind turbines (HAWTs) represent the majority of the 

installed wind capacity, many opportunities exist for small vertical axis wind turbine (VAWT) 

installations to achieve significant future growth. A wide variety of small wind turbine applications 

can be fulfilled by VAWTs. Advantages of a VAWT over a HAWT include a simpler design and 

omni-directional operation (omitting the need for a yaw mechanism). These attributes reduce 

maintenance and installation expenses, due to the reduced complexity of the system, compared to 

a HAWT. 

Several types of VAWT designs are known, each with unique benefits and drawbacks. The 

most common are the Darrieus, H-rotor, and Savonius VAWTs. The Savonius turbine has the 

lowest maximum efficiency of these three VAWTs; however, it has several useful attributes that 

motivate further development. Compared to the other VAWTs, this design can more effectively 

operate in turbulent conditions. For example, it has been shown in several studies that its 

performance is independent of the Reynolds number of the air stream [4, 5]. The L-sigma criterion 

[6], which considers the frontal area of a turbine and the mechanical stresses during operation, 

identified the Savonius VAWT as advantageous over other types of turbines (including HAWTs).  

It was also reported to have better start-up capabilities and lower tip-speed-ratios (λ).  

There is significant potential to combine a Savonius design with a Darrius or H-rotor design 

to effectively utilize the benefits of each geometry in a hybrid type VAWT [7, 8]. Reducing the 
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environmental impact of residential, commercial, and industrial buildings can substantially reduce 

overall carbon emissions, and small wind turbines are a promising technology for renewable power 

production in a populated environment [9]. A HAWT typically provides poor potential in this 

environment [10], but a small hybrid VAWT can provide significant power generation. Recent 

advances in generator technology have identified radial coreless synchronous generators as a 

potential candidate for small VAWT installations, where its small size and low start-up speed 

coincide with the requirements of a Savonius VAWT [11].  

The performance of any wind turbine is highly sensitive to the wind conditions at the 

installation location. Wind conditions can be highly non-uniform and the turbine must operate 

through a wide range of tip-speed-ratios [12], no single blade geometry gives optimal performance 

for all values of λ [13], and the power output of a Savonius VAWT is highly sensitive to the blade 

geometry [14]. In contrast to other methods, where a single maximum power coefficient is defined, 

at one particular wind speed [15, 16], to achieve optimal performance, the blade geometry should 

be designed to effectively match the operating conditions of the installation site. Considering the 

effects of various wind velocity distributions and their effects on λ and the system’s start-up 

capabilities, these factors can significantly improve the total power output. Even sites without 

sufficient wind speed data can utilize spatial estimation techniques to accurately predict the 

conditions at the installation site [17]. The turbine operation involves complicated flow patterns 

that vary with time throughout the rotation of the rotor. Transient numerical simulations can 

provide a useful tool to provide insight about the operation of a Savonius turbine, for a wide range 

of λ, as an alternative to wind tunnels, or field testing of prototype turbines. Transient aerodynamic 

loading is a key issue that influences the overall cost of wind power generation, because it affects 

the operation, availability, power quality, and energy yield of each installation [18]. 



5 
 

Previous research has determined that the predictive accuracy of wind turbine installations 

are more closely linked to the accuracy of the aerodynamic model than the electromechanical 

model [19]. VAWT models can be categorized into three main divisions: (i) momentum 

(streamtube), (ii) discrete vortex, and (iii) cascade models [20]. However, these current predictive 

VAWT models cannot be effectively applied to drag type turbines (such as a Savonius VAWT). 

Steamtube techniques use static airfoil lift and drag coefficients, with local angles of attack and 

relative velocities [21]. The operation of a Darrieus VAWT can be represented well by this 

technique, as corresponding airfoil data is available and there is no significant interaction between 

the rotor blades. A single streamtube was successfully applied to a single blade Savonius VAWT 

[22]. However, it cannot represent the operation when a second blade is added. The discrete vortex 

method has been applied to a Savonius rotor [23 - 25], but a complex iterative solution was required 

to obtain a solution. This method could not accurately represent a stationary rotor (important for 

start-up), and it required calculations to be performed at much higher Reynolds numbers than flow 

conditions of available experimental data [24]. The third approach (cascade model) represents the 

rotation of rotors as a linear series of blades [26]. This technique cannot represent the flow 

interaction between blades or the changing blade profile throughout the rotation. As a result, it 

does not accurately represent the operation of a Savonius turbine. 

In this paper, a new predictive model is developed to analyze the momentum, lift and drag 

forces created from the flow fields generated during the operation of a Savonius VAWT. In 

contrast to previous techniques, where only the momentum force is represented, this model 

considers momentum, lift and drag forces to develop a transient model to predict the operation of 

a Savonius wind turbine. The vector flow field is represented by the superposition of approximate 

flow fields from potential flow theory, to analyze the pressure force, induced by the velocity 
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differential of the passing air stream. The momentum force is predicted from the linear momentum 

equation, and the results combined with pressure force calculations. This formulation provides a 

new analytical tool to predict the operating performance and improve the characteristics of drag 

type VAWTs. 

 

2. Formulation of Flow Field and Velocity Distribution 

Complicated flow fields and velocity distributions are developed during the operation of a 

Savonius wind turbine. As illustrated in Fig. 1, a typical Savonius turbine consists of two curved 

blades, separated by 180°, with a gap and overlap in between the rotor centers. A wide variety of 

blade curvatures and spacings can be utilized, with every design producing distinct operational 

attributes. These flow fields impart multiple forces on the turbine which vary at all rotor positions. 

In this section, the forces on a rotating blade of a Savonius wind turbine are predicted by combining 

a multiple streamtube formulation (linear momentum theory) with pressure forces induced by the 

velocity distribution at the rotor surface. In contrast to typical techniques, both momentum (𝐹𝐹𝑥𝑥,𝑚𝑚) 

and pressure (𝐹𝐹𝑦𝑦,𝑝𝑝 and 𝐹𝐹𝑥𝑥,𝑝𝑝) forces are represented by this method. The torque (Q) on the blade can 

be predicted by the following equation, which includes the momentum, lift and drag forces.  

 𝑄𝑄 = 𝑑𝑑 ∙ �𝐹𝐹𝑦𝑦,𝑝𝑝 cos 𝜃𝜃 − 𝐹𝐹𝑥𝑥,𝑝𝑝 sin𝜃𝜃 + 𝐹𝐹𝑥𝑥,𝑚𝑚� (1) 

where d and 𝜃𝜃 represent the distance from the acting point of the force to the axis of rotation and 

rotor position, respectively. As illustrated in Fig. 2, the origin of 𝜃𝜃 is located when the rotor is 

pointing towards the back of the turbine, with respect to the oncoming wind, in counter-clockwise 

rotation. 

The ratio of the blade area to the rotor swept area of a turbine represents the degree to 

which the turbine behaves as a solid in the oncoming air stream. This is characterized by the 
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turbine’s solidity, 𝑆𝑆 = 𝐴𝐴
𝑅𝑅
. This solidity of a turbine corresponds to the blockage effect acting on the 

air stream. A Savonius turbine has a high solidity, as it represents operating conditions where the 

blockage is prominent. The air stream experiences a significant blockage effect as it flows into the 

turbine area. The mean average wind speed is slightly lowered in the region of the turbine, 

including the windward side. As the air stream flows into the turbine rotors, there is a localized 

transfer of momentum from the air to the rotor blade. A momentum balance can represent these 

processes. 

As illustrated in Fig. 1, the momentum imparts a significant portion of the operating forces, 

during both the power and return strokes. As the rotor rotates into the wind (return stroke), the air 

is deflected off the convex curved rotor surface, transferring momentum, and reducing 

performance. A control volume approach will be adopted to represent the forces imposed on the 

rotor blades by the deflected air, with the boundary of the control volume encompassing the rotor 

blades. The difference between the momentum of the air stream entering and exiting the control 

volume yields the forces which oppose the rotor rotation during the return stroke. As the rotor 

rotates with the flow of wind (power stroke), the air impinging on the concave side of the blade is 

represented by its transfer of momentum. The flow, deflected by the curved blade, exits the control 

volume at the tip of the blade. For a semi-cylindrical blade, this is opposite to the instantaneous 

rotation vector. Thus, the sum of the flow entering and exiting the control volume contributes to 

the rotational forces. 

The net rate of change of momentum across the control surface (encompassing the turbine 

blade) is affected by the change in linear velocity as the air flows into and out of the control 

volume. To represent a Savonius turbine, two independent streamtubes will be considered: one for 

the power stroke, and another for the return stroke, respectively. The exit velocity differs for the 
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power and return strokes, which requires a piecewise function.  Thus, to represent the momentum 

force for a rotating Savonius blade, this can be represented by 

 

𝐹𝐹𝑥𝑥,𝑚𝑚(𝜃𝜃) = �
−�𝑊𝑊𝑥𝑥𝜌𝜌𝜌𝜌𝑊𝑊𝑥𝑥 + 𝑊𝑊𝑥𝑥𝜌𝜌𝜌𝜌�−𝑊𝑊𝑥𝑥 ∙ sin

𝜋𝜋
2
��  ,     if  0 ≤ 𝜃𝜃 < 𝜋𝜋

  
 𝑊𝑊𝑥𝑥𝜌𝜌𝜌𝜌𝑊𝑊𝑥𝑥 + 𝑊𝑊𝑥𝑥𝜌𝜌𝜌𝜌𝑊𝑊𝑥𝑥,                                   if  𝜋𝜋 ≤ 𝜃𝜃 < 2𝜋𝜋

 (2) 

where Wx represents the x-component of relative wind velocity (i.e. parallel to the free stream wind 

direction). The area per unit turbine height, A, is a function of the angular position, 𝜃𝜃, to account 

for the changing cross section of the turbine blade, relative to the free-stream, as it rotates about 

the central axis, 

 𝐴𝐴(𝜃𝜃) = 𝑎𝑎 ∙ (1 + |sin𝜃𝜃|) (3) 

where a represents the radius of the turbine’s rotor blade. The relative velocity of the air leaving 

the blade on the return stroke is expressed by −𝑊𝑊𝑥𝑥 ∙ sin 𝜋𝜋
2
 to account for the angle at which the air 

is deflected by the convex curve (− sin 𝜋𝜋
2
). During the power stroke, the air is deflected by 180°, 

allowing Wx to represent the relative exit velocity during the power stroke. The turbine rotation 

causes the control volume to rotate around a central axis, which changes the relative wind velocity 

at the rotor blades, at different values of 𝜃𝜃. The wind velocity (parallel to the free-stream) relative 

to the rotor blade can be expressed as 

 𝑊𝑊𝑥𝑥(𝜃𝜃) = 𝑈𝑈 + 𝑑𝑑 Ω sin 𝜃𝜃 (4) 

As illustrated in Figs. 2 and 3, the variables U, 𝜃𝜃, and d represent the free-stream velocity, angular 

position of the blade surface (relative to the free-stream), and the distance to the acting point of 

the forces. The variable Ω represents the rotor velocity. 

The forces are estimated to act at the position which centers between the front edge of the 

blade and the location of separation (the magnitude of d represents the linear distance from the 

center of rotation to the estimated acting point of the forces). The location of flow separation from 
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the blade is assumed to occur at a location of 𝜙𝜙 ≈ 108.8 ° ≈ 1.90  radians [27], where 𝜙𝜙 

represents the angular position along the rotor surface (Fig. 4), with its origin at the front edge of 

the turbine blade (i.e. the outboard edge at  90° to 270° inboard edge during 270° to 90°). With a 

rotor position at 𝜃𝜃 = 0°, one half of the linear distance (parallel to the free-stream) from the origin 

to the location of flow separation is  

 
d(0) =

1
2

[(𝑎𝑎 − 𝛽𝛽) + 𝑎𝑎 sin 18.8°] (5) 

where 𝛽𝛽 and a  represent the rotor overlap and blade radius, respectively. The first two variables 

(i.e. 1
2

(𝑎𝑎 − 𝛽𝛽)) represent the distance to the center of the rotor, 𝜙𝜙 = 90°, or one half of the rotor. 

The last term (i.e. 𝑎𝑎 sin 18.8°) estimates the remaining distance to the location of flow separation. 

As illustrated in Fig. 5, at 𝜃𝜃 = 180°, the magnitude of d can be represented by 

 𝑑𝑑(180°) = [(𝑎𝑎 − 𝛽𝛽) + 𝑎𝑎 sin 35.6 ° ] (6) 

which is equivalent to 

 
𝑑𝑑(180°) =

1
2

[(𝑎𝑎 − 𝛽𝛽) + 𝑎𝑎 sin 18.8 °] + [(𝑎𝑎 − 𝛽𝛽) + 𝑎𝑎 sin 35.6 ° ] −
1
2

[(𝑎𝑎

− 𝛽𝛽) + 𝑎𝑎 sin 18.8 °]  

(7) 

The cyclic trends in the magnitude of d, caused by the rotor rotation, are represented with the 

following functional form, 

 𝑑𝑑(𝜃𝜃) = 1
2

[(𝑎𝑎 − 𝛽𝛽) + 𝑎𝑎 sin 18.8 °] + �[(𝑎𝑎 − 𝛽𝛽) + 𝑎𝑎 sin 35.6 ° ] − 1
2

[(𝑎𝑎 −

𝛽𝛽) + 𝑎𝑎 sin 18.8 °]� sin  �𝜃𝜃
2
�  

(8) 

Equation (8) is rearranged to obtain the following simplified form, 
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𝑑𝑑(𝜃𝜃) =

1
2

[(𝑎𝑎 − 𝛽𝛽) + 𝑎𝑎 sin 18.8° ] [1 − sin (𝜃𝜃/2) ] + [(𝑎𝑎 − 𝛽𝛽)

+ 𝑎𝑎 sin 35.6° ]  sin (𝜃𝜃/2) 

(9) 

With this formulation a stream function is used, only in regions of the curved blade’s exterior, 

located before the separation point. Although a stream function does not precisely represent the 

flow over a Savonius blade, this assumption provides a useful basis for determining the location 

of flow separation from the rotor, and the subsequent effect of pressure forces on the turbine. 

To predict the pressure forces (𝐹𝐹𝑦𝑦,𝑝𝑝 and 𝐹𝐹𝑥𝑥,𝑝𝑝), consider an unsteady flow field represented 

by a series of steady streamlines that change with angular position. By combining potential and 

doublet flow, the pressure distribution along the convex side of a semi-cylindrical blade surface, 

with no blade separation, can be predicted by [27], 

 
𝑝𝑝𝑠𝑠 = 𝑝𝑝0 +

1
2
𝜌𝜌𝑈𝑈2(1 − 4 sin2 𝜙𝜙) (10) 

where po and ps represent the ambient and surface pressures, respectively.  

Combining the surface pressure, Eq. (10), with the relative wind speed, Eq. (4), the 

operational force induced by the pressure differential on a semi-cylindrical Savonius blade can be 

predicted. The 2-D components of the pressure forces along the blade can be represented by 

 

 
𝐹𝐹𝑝𝑝,𝑥𝑥 =  −� �𝑝𝑝0 +

1
2
𝜌𝜌𝑊𝑊𝑥𝑥

2(1 − 4 sin2 𝜙𝜙) cos𝜙𝜙 𝑎𝑎� 𝑑𝑑𝑑𝑑
𝜉𝜉2(𝜃𝜃)

𝜉𝜉1(𝜃𝜃)
 (11) 

 
𝐹𝐹𝑝𝑝,𝑦𝑦 =  −� �𝑝𝑝0 +

1
2
𝜌𝜌𝑊𝑊𝑥𝑥

2(1 − 4 sin2 𝜙𝜙) sin𝜙𝜙 𝑎𝑎� 𝑑𝑑𝑑𝑑
𝜉𝜉2(𝜃𝜃)

𝜉𝜉1(𝜃𝜃)
 (12) 

where the integral limits are defined as  𝜉𝜉1(𝜃𝜃) = 0 − 𝜃𝜃 and 𝜉𝜉2(𝜃𝜃) = 𝜋𝜋 − 𝜃𝜃, which correspond to 

the transient positioning of a rotor blade as it rotates around the central axis. 

 Equations (11) and (12) predict the pressure forces induced by the variations in the flow 

field, along the rotor blades. The effects of flow separation experienced by the turbine operation 
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are included in these equations. As illustrated in Figs. 1, 4 and 5, the flow around the semi-

cylindrical blade has an effect on performance for both the power and return stokes. During the 

power stroke, the flow around the outside of the curved blade is represented, which includes a lift 

and drag component. However, during a significant portion of the stroke, the flow separation will 

limit these forces, because of boundary layer detachment.  

With a correction factor, C, to represent the interaction between multiple rotor blades, 

equations (2), (11) and (12) are combined to predict the torque on the rotor blades, Eq. (1), allowing 

the torque coefficient (per unit height) to be determined by  

 
𝐶𝐶𝑄𝑄 = 𝐶𝐶

𝑄𝑄
 4𝜌𝜌𝑅𝑅2𝑈𝑈2 (13) 

where 2𝑎𝑎 − 𝛽𝛽 represents the turbine radius, R. Similarly, the power coefficient (per unit height) 

can be determined by 

 
𝐶𝐶𝑃𝑃 = 𝐶𝐶

𝑄𝑄Ω
2𝜌𝜌𝑅𝑅𝑈𝑈3 (14) 

With the above formulation, these coefficients can be used to predict the general trends and overall 

effects of blade interaction on torque and power output.  

 

5. Results and Discussion 

In this section, the transient power output of a Savonius wind turbine is explored by 

comparing the new analytical model with previous experiments and CFD predictions. Transient 

power coefficients are first developed for a single blade Savonius turbine, negating any blade 

interaction, and allowing investigation of a Savonius VAWT’s operation by identifying both 

accuracies and inaccuracies in the new predictive model. Secondly, transient torque coefficients 

(with the new predictive model and CFD simulations) are developed and compared with previous 
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experimental data, to help identify the effect of blade interaction on power output. The 

simplifications and assumptions adopted in developing the model can help to better understand the 

complex flow phenomena rotating a Savonius VAWT.  

As illustrated in Fig. 2, the simulated turbine has semi-cylindrical rotor blades with a rotor 

radius, a, of 0.50 m and an overlap, 𝜷𝜷, of 0.10 m. A wind velocity of 10 m/s is assumed for 

consistency between the analytical and numerical predictions, with the turbine operating at a tip-

speed-ratio, 𝝀𝝀, of 0.5. As the wind flows around the rotating rotor blades, a pressure differential is 

developed along the blade surface. The numerical CFD data [28] are formulated with 2-D rotating 

blade (transient) simulations, which predict an average power coefficient of 0.062 and 0.176 for 

the single and double blade VAWT, respectively. These results closely match past experimental 

results throughout the entire range of angular position, including accurate predictions through the 

transitions angles between the power and return strokes of the rotors rotation (see Refs. [29] and 

[30] for experimental results).  

Figure 6 illustrates the single blade numerical predictions, normalized by dividing by a 

reference Cp of 0.19 (the highest instantaneous output predicted by the CFD simulations). From 

180° to 360°, during the power stroke, close agreement is achieved between the normalized CFD 

and analytical predictions. However, there are some discrepancies from 0° to 90°, between the 

analytical and CFD predictions. In particular, the estimated torque is higher than the CFD 

predictions for the first 90° of rotation, likely due to over-estimated lift forces at these angular 

positions, since Eq. (12) predicts equivalent pressure lift forces Fy,p at 0° and 180°. 

As illustrated in Figs. 6 and 7, the effect of varying the rotor blade number has a significant 

impact on the power output because of the blade interaction. A second rotor blade can alter the 

mass flow rate into the control volume of the blades, as well as alter the pressure distributions on 
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the concave side of the rotor blades, particularly during the return stroke. Adding a second rotor 

blade increases the power output by a factor of 2.8. This positive effect on power output can be 

attributed to deflected air from the power stroke entering the concave side of the return stroke, 

through the overlap opening, thereby lowering the negative pressure on the backside of the return 

rotor blade. Secondly, some of the air will deflect off the convex side of the return stroke and 

increase the momentum of the air impacting the front surface of the power stroke [31]. Both of 

these geometrically induced flow fields have a positive effect on performance and they increase 

the power output from the turbine. The result for the analytical formulation is that two blades 

cannot be calculated with two independent single blade calculations, considered independently 

with a 180° offset, i.e. 𝐶𝐶𝑝𝑝,2(𝜃𝜃) ≠ 𝐶𝐶𝑃𝑃,1(𝜃𝜃) + 𝐶𝐶𝑃𝑃,1(𝜃𝜃 + 180°).  As further illustrated by Fig. 7, which 

compares this negated relation of two single-blade turbines combined with a 180° offset of rotor 

position, with the two-blade numerical predictions, significant variability is evident between the 

two curves. 

In Fig. 8, ∆CQ  is obtained based on the difference in the numerical predictions for a one 

or two rotor blade turbine (with all other parameters unchanged), thus predicting the trends 

associated with changes in operational forces generated by blade interaction. This information can 

be used to predict C as a function of θ. A sinusoidal trend line closely follows the trends as follows, 

 
𝐶𝐶 = 0.065 + 0.15 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜃𝜃
2
� (15) 

The sinusoidal shape with two peaks during one rotation can be explained by the cyclical trends 

in the two forces discussed previously. Equation (15) provides important insights into the overall 

effects of the flow interaction between rotors in a two-blade design. The effects of adding a second 

blade to a Savonius wind turbine causes a complex interaction of vortices, and changes to the flow 
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separation regime within the turbine. As illustrated in Fig. 8, these effects can be accurately 

predicted, to a relatively high degree of accuracy, with a simple sinusoidal function. 

As illustrated in Fig. 9, the new formulation can estimate the power coefficient of a two-

blade Savonius VAWT with relative accuracy. This figure compares calculated output, for a two-

blade Savonius VAWT, with numerical predictions. By comparing the transient torque coefficient 

for one and two-blade turbines, the flow interaction can be investigated. The positive effect on 

performance, caused by the blade interaction in a two blade design, is an important attribute of a 

Savonius wind turbine. The addition of a second rotor blade and its subsequent affect on the 

transient power coefficient is an important consideration for accurate predictions of power output 

for a Savonius wind turbine. 

In Fig. 10, the sensitivity of C on the predictive results is presented. The value of C is 

reduced to two separate values: 𝐶𝐶 = 0.03 + 0.15 𝑠𝑠𝑠𝑠𝑠𝑠 �𝜃𝜃
2
� and 𝐶𝐶 = 0.15 𝑠𝑠𝑠𝑠𝑠𝑠 �𝜃𝜃

2
�. Reducing the 

magnitude of C can more closely match the results of the predictive model to experimental data, 

by compensating for some inconsistencies between the assumptions of the model and the complex 

fluid flow which operates a Savonius wind turbine.  

 This analysis highlights the transient difference in torque and power output for a single and 

double blade configuration. Although it does not represent the detailed and complex behaviour of 

vortices that are generated, and partly captured by the second blade in the two-blade design, it 

provides a useful new design tool for overall trends and key features. It improves over past 

analytical models in terms of physical mechanisms that affect the turbine’s transient behaviour. 

Design modifications based on the new analytical model can be made to improve system 

performance. For example, with a hybrid design, the flow interactions between the inner Savonius 
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design can be analyzed with the model, in conjugation with outer lift type turbines (typically 

Darrieus or H-rotor designs) to improve the performance and power output.  

Advancements in the understanding of the complex interactions between two blades can 

help to improve turbines which utilize a Savonius style rotor blade. The simplicity and accuracy 

of Eq. (15), with a variable used to represent a set of physical flow interactions and changes in the 

turbine’s flow field, offers valuable utility to the development and improvement of VAWT 

designs. Although this predictive model can approximate the transient output of a Savonius 

VAWT, further research associated with different operating conditions is required to determine 

the model’s range of validity. These results are beneficial to understanding the torque and power 

output effects, for a two-blade Savonius wind turbine, among other similar configurations. 

 

6. Conclusions 

In this paper, a new approximate formulation was developed to predict the power output 

and dynamic forces on a Savonius VAWT. The velocity field associated with the flow over a semi-

cylindrical rotor was combined with a momentum theory solution to provide a new method to 

represent the transient power coefficient of a VAWT. A sinusoidal function was developed to 

predict the interaction associated with the addition of a second rotor blade. These results provide 

a useful tool to analyze the operation of a Savonius VAWT. Using this new predictive formulation, 

significant opportunity exists to improve the performance of a Savonius style VAWT.  
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(a) 

 

(b) 

Figure 1: Two-blade configuration of a Savonius wind turbine (a) analytical flow field pattern 

and (b) numerical velocity contours 
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Figure 2: Geometrical variables of a Savonius VAWT 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Location of d on a Savonius wind turbine 
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Figure 4: Flow field pattern for single blade configuration with rotor at 315° rotation 

 

 

 

Figure 5: Flow field characteristics for single blade configuration with rotor at 180° rotation 
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Figure 6: Transient power coefficient with C = 1 for a single rotor Savonius VAWT 

 

  

Figure 7: Predicted transient power coefficient for a two-blade Savonius VAWT 
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Figure 8: Varying rotor angles for a two-blade Savonius VAWT (representing C for a two-blade 

design) 

 

 

Figure 9: Predicted torque of a two-blade Savonius VAWT 
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Figure 10: Predicted torque on a two-blade Savonius VAWT 
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