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Abstract 

 

 Temporal and spatial regulation of the subcellular distribution of 

transcriptional regulators is important to ensure their proper functioning in a cell. 

Mesoderm induction early response 1 α (MIER1α) has been implicated as a tumour 

suppressor in breast cancer. Analysis of MIER1α subcellular localization in breast 

samples revealed a stepwise translocation from the nucleus to the cytoplasm during 

progression to invasive carcinoma (McCarthy et al., 2008). Therefore, an 

investigation of MIER1α nucleocytoplasmic shuttling is critical to unraveling its role 

in breast cancer progression.  

Structurally, MIER1α has conserved domains found in a number of other 

transcriptional regulators, including N-terminal acidic stretches, ELM2 and SANT 

domains. However, none of these domains contain the predicted nuclear import or 

export signals. In this thesis, I show that MIER1α localizes in the nucleus in breast 

carcinoma MCF7 cells without an intrinsic nuclear localization signal (NLS). 

Although MIER1α has been shown to bind to ERα, active nuclear import of MIER1α 

is not through interaction with ERα; instead, it depends on interaction and co-

transport with HDAC1/2 through a “piggyback” mechanism. Deletion analysis 

demonstrated that the entire ELM2 (aa164-283) is required and sufficient for 

nuclear targetting of MIER1α and that a simple mutation, 214W→A in the ELM2 

domain abolishes both the interaction between MIER1α and HDAC1/2 and its 

nuclear localization.  
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Further investigation revealed that MIER1α is exported out of the nucleus 

when cells are treated with insulin, IGF-1, EGF or FGF, but not with 17β-estradiol, 

and this export out of the nucleus is mediated by CRM1. HDAC1 & 2 nuclear 

localization were not affected by MIER1α export, suggesting they are only involved 

in MIER1α nuclear import. Both Mitogen-activated protein kinase (MAPK) and 

phosphoinositide 3-kinase B/Akt (PI3’K/AKT) pathways are activated upon 

treatment with growth factors, and it was further confirmed MIER1α nuclear export 

is triggered by the MAPK pathway, but not the PI3’K/AKT pathway. However, the 

mutation of predicted ERK1/2 consensus phosphorylation sites S10-P and/or S377-P 

motifs in the MIER1α sequence had no effect on its localization. MIER1α returns to 

the nucleus when activation of MAPK pathway diminishes, suggesting this process is 

transient and reversible. Deletion analysis narrowed the required sequence for 

export to the N-terminal region, aa1-163, containing acidic stretches. Overall, these 

results provide details of the mechanism responsible for MIER1α nucleocytoplasmic 

shuttling in a breast cancer carcinoma cell line; a similar mechanism may be 

operating during breast cancer progression.   
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Chapter 1 General Introduction 

1.1 Cancer overview 

In mammals and other multi-cellular organisms, the activities of normal cells 

are tightly regulated by signals in their surroundings. The signals released through 

paracrine, autocrine or endocrine mechanisms ultimately dictate a cell’s fate: to 

grow, to differentiate, to proliferate or to undergo apoptosis. The plethora of 

signalling networks and interconnecting factors ensure the functional homeostasis 

of our bodies. A healthy cell is in harmony with its environment by responding and 

integrating the external messages through a highly regulated signal transduction 

network. This balance, however, can be destroyed and can result in the development 

of cancer. 

Cancer cells are characterized by uncontrolled proliferation (Hanahan & 

Weinberg, 2011). Rather than responding to the signals that control normal cell 

behaviour, cancer cells proliferate in an uncontrolled manner, eventually resulting 

in accumulated abnormalities in several aspects of cell behaviour which distinguish 

cancer cells from normal cells. 

1.1.1 Types of cancer 

Types of cancer are usually named for the organs or tissues from which the 

cancers arises; they may be also further described by the subtypes of cancer 

initiating cells, and how they are characterized histologically. But in brief, one of the 
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most important issues in cancer pathology is the distinction between benign and 

malignant tumours. A benign tumour remains in its original location and does not 

invade the surrounding normal tissue or spread to distant body sites, while 

malignant tumours can invade normal tissue and spread through the body via blood 

circulatory or lymphatic systems, in a process called metastasis. Loss of primary 

organ function or distant organ function as a result of cancer metastasis threatens 

physiological homeostasis, leading to death of the patient.  

Malignant tumours can arise in virtually any part of the body but fall into one 

of six main groups, including: carcinomas, sarcomas, myeloma, lymphomas, 

leukemia and mixed types. The most common cancers are carcinomas, accounting 

for 80 to 90 % of all cancer cases (Canadian Cancer Society, 2017). Carcinomas 

originate from epithelial cells, which either cover surfaces or line internal organs 

such as skin, breast, prostate or lung. Sarcomas are solid tumours appearing in 

connective tissues, such as muscle, bone or fibrous tissue; while only accounting for 

less than 1% of all adult solid malignant cancers (Burningham, Hashibe, Spector, & 

Schiffman, 2012), they are often fatal. Unlike solid tumours, leukemias are cancers 

arising from the blood-forming cells or immune system cells. They manifest as the 

overproduction of white blood cells and account for approximately 8% of human 

malignancies (Canadian Cancer Society, 2015). 

Cancer is an age-related disease (Fig. 1.1A) and 70% of new cancer cases will 

occur in Canadians aged 50 years or older (Statistics Canada, 2014). Cancers 

occurring in ten different body sites account for more than 75% of total cancer 
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incidence; among these breast, prostate, lung and colon/rectum are the four most 

common cancer sites, accounting for more than half of all cancer cases in men and 

women (Fig. 1.1B). Fig. 1.1 is the cancer incidence in Canada reported by Canadian 

Cancer Society (Canadian Cancer Society, 2017). 
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Figure 1.1 Incidence of cancers in 2017 in Canada. 

(Modified from (Canadian Cancer Society, 2017) with permission) (A) 

Distribution of 10-year tumour-based prevalence for selected cancers, Canada, 

January, 1, 2009; 

(B) Distribution of new cancer cases for selected cancers by age group, Canada, 

2009–2013.  
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1.1.2 The development of cancer 

The molecular view of cancer today is that cancer develops over time rather 

than all at once, as a result of the cumulative effect of genetic changes (Podlaha, 

Riester, De, & Michor, 2012). Each change causes the cells to acquire some traits and 

the accumulation of these changes altogether promotes the malignant growth of 

cancer cells. There is clear evidence that the control of cell cycle, cell survival and the 

elimination of unnecessary or damaged cells in normal cellular programs are altered 

during tumourigenesis. 

A single point mutation is not sufficient to generate a cancer cell from a 

preexisting normal cell. Two main types of genes play a major role in triggering 

normal mouse cells to be transformed: proto-oncogenes and tumour-suppressor 

genes (Alberts, 2008). Proto-oncogenes usually regulate cellular growth. On the 

other hand, tumour-suppressor genes inhibit cell division, promote apoptosis, or 

both. Proto-oncogenes and tumour-suppressor genes coordinate to regulate the 

growth of each tissue and organ in the body. In rat models, the disturbance of cell 

growth control and cell morphology can transform normal rat cells into cancerous 

cells (Alberts, 2008). For example, the co-introduction of myc, a gene that helps cells 

to become immortalized, and ras oncogene, which changes the morphology of cells 

to rat embryo fibroblasts, yields a foci of transformants (Wang, Lisanti, & Liao, 2011). 

The separate existence of myc or ras, would not result in these transformants in 

human cells (Wang et al., 2011); transformation of human cells usually requires the 

collaboration of more than one mutated gene. Experimental results imply that five 
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distinct cellular regulatory circuits need to be altered for normal human cells to 

develop into tumour cells (Alberts, 2008). The first change is the the induction of the 

human telomerase reverse transcriptase (hTERT) gene, as this gene is necessary to 

maintain the telomere. The other four changes involve: (1) the mitogenic signalling 

pathway controlled by Ras-like genes; (2) the cell cycle checkpoint controlled by 

pRb; (3) the guarding pathway controlled by p53; and (4) the signalling controlled 

by protein phosphatase 2A (PP2A). However, the necessity of these five changes was 

determined by in vitro experiment; it is still unclear whether the steps needed in 

vitro reflects the changes that occur in vivo and lead to cancer in humans.  

1.1.3 Hallmarks of cancer 

The traits that cancerous cells acquire are called the “Hallmarks of Cancer.” 

These traits are the characteristics that distinguish cancer cells from normal cells. 

When cell division and the cell death are both interrupted by external factors, 

normal cells can then overwhelm the body’s defenses and become cancerous. The 

hallmarks of cancer are described in two landmark scientific papers by Douglas 

Hanahan of the University of California and Robert Weinberg of the Massachusetts 

Institute of Technology (Hanahan & Weinberg, 2000, 2011).  

1. Self-sufficient cell division The most fundamental trait of cancer cells is that they 

are able to sustain proliferation. Growth-promoting signals in normal tissues are 

carefully controlled and released to maintain a homeostasis of cell number and thus 

normal tissue architecture. Cancer cells, on the contrary, control their own 
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proliferation by producing growth signals themselves or by elevating signal 

receptors. 

2. Resistance to anti-growth signals Cell proliferation is stimulated by signals; also, 

some signals “put the brakes” on cell growth and proliferation. Once growth 

inhibition is interrupted or ignored, cancer cells can have unlimited proliferation.  

Unlimited proliferation is usually a result of mutations or alterations of tumour 

suppressor genes and proto-oncogenes. 

3. Evading programmed cell death Cells are programmed to die in the event they 

become damaged, a mechanism called apoptosis to prevent the propagation of DNA 

errors. On the other hand, the apoptosis signals of cancer cells can be disrupted 

when tumour suppressor genes suffer mutations or other damage. 

4. Limitless replicative ability A solid tumour may be composed of billions of cells, an 

indication of uncontrolled cell division. The telomere is a small portion located at the 

end of each chromosome. In normal cell division, the telomere is shortened every 

time DNA is replicated because the end of the telomere cannot be covered by the 

Okazaki fragment and therefore, get copied. Ultimately, telomeres reach a critical 

point and the cell can no longer divide. Telomerase is an enzyme which can maintain 

telomere length and when it is activated in a cancer cell, telomerase will allow it to 

replicate indefinitely compared to normal non-cancerous cells with self-limited 

replication.  
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5. Sustained angiogenesis The development of new blood vessels is called 

angiogenesis. Angiogenesis is a multi-step process and begins with local degradation 

of the basement membrane. In order to grow, a tumour needs a vast blood supply 

for oxygen and nutrients. It is equally important for blood to supply oxygen and 

nutrients to both normal and tumour cells. Pro-angiogenic factors such as vascular 

endothelial growth factor (VEGF) and fibroblast growth factors (FGFs) are 

upregulated during angiogenesis, while anti-angiogenic factors are down-regulated. 

These signals can stimulate endothelial cells to construct capillaries within a tumour. 

6. Ability to invade and metastasize Metastases are the cause of 90% of human 

cancer deaths. Metastasis is the spread of cancer cells to new areas of the body and 

is defined as the formation of secondary tumour foci. The classical simplification of 

metastasis steps includes: local invasion, intravasation, survival in the circulation, 

extravasation and colonization (Nguyen, Bos, & Massagué, 2009).  In order to invade 

and metastasize to other parts of the body, the related gene expression level 

involved in the regulation of cell-cell and cell-matrix interactions will be altered and 

cells undergo a process called epithelial-mesenchymal transition (EMT). For 

example, loss of E-cadherin and acquisition of vimentin are two critical steps during 

EMT (Myong, 2012). 

7. Ability to survive with hypoxia Even with angiogenesis, cells in the interior of a 

tumour may be in an oxygen-deprived situation called hypoxia. Hypoxia is 

detrimental to normal cells as aerobic metabolism requires oxygen to convert 

glucose to energy. Cancer cells can switch from aerobic to anaerobic glucose 
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metabolism to allow cancer cells to produce energy and survive in oxygen-deprived 

conditions. 

8. Escaping from the immune system The body’s immune system detects and 

destroys abnormal cells to protect the human body when they are functioning 

properly. Cancer cells are able to evade destruction by the body’s immune defenses, 

proliferate and eventually invade other tissues. 

1.1.4 Breast cancer 

Breast cancer is the most common cancer in women and 1 in 8 Canadian 

women is expected to develop breast cancer during their lifetime (Canadian Cancer 

Society, 2015). Breast cancer is not a single disease, but is comprised of many 

biological subtypes with distinct pathological features and clinical implications 

(Iwamoto & Pusztai, 2010; Tang, Wang, & Bourne, 2008). According to different 

histopathological and biological features demonstrated in breast cancer subtypes, 

the relevant therapeutic strategies may vary as well (Blows et al., 2010). Thus, it is 

clinically important to accurately group breast cancers into subtypes for therapeutic 

decision-making. Clinically, this heterogeneous disease is categorized into three 

therapeutic groups (The Cancer Genome Atlas Network, 2012): The estrogen 

receptor (ER) positive group is the most numerous and patients with ER+ status 

receive endocrine therapy. The human epidermal growth factor receptor 2 (HER2) 

Enriched (HER2E) group is a major improvement because of effective therapeutic 

targeting of HER2 with Herceptin. Triple-negative breast cancers (TNBCs, lacking 
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expression of ER, progesterone receptor (PR) and HER2) are a group with only 

chemotherapy as an option for treatment. 

Gene expression profiling is a potentially powerful tool aimed at identifying 

the “molecular portrait” of invasive breast cancer, and breast tumours were 

accordingly classified into four intrinsic subtypes with distinct clinical outcomes 

(Table 1.1) (The Cancer Genome Atlas Network, 2012). The rationale for this 

classification lies in the distinct gene expression patterns in each subtype and 

reflects the precise molecular level differences. Based on the recent development of 

high information content assays including DNA methylation, microRNA (miRNA) 

expression and protein expression, The Cancer Genome Atlas Network characterizes 

more completely the molecular architecture of breast cancer using six different 

technology platforms. The integrated molecular analyses of breast carcinomas 

significantly extend the knowledge base to produce a comprehensive catalogue of 

what is likely the genomic drivers of the most common invasive breast cancer 

subtypes (Table 1.1). The biological outcome of the four main breast cancer 

subtypes caused by genetic and epigenetic abnormalities may indicate that plasticity 

and heterogeneity observed in clinic occurs within these major biological subtypes 

of breast cancer.  
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Table 1.1 Highlights of genomic, clinical and proteomic features of invasive 
breast tumour subtypes 

(Modified from (The Cancer Genome Atlas Network, 2012) with permission). 

Subtype Luminal A Luminal B Basal-like HER2E 

ER+/HER2-(%) 87 82 10 20 

HER2+(%) 7 15 2 68 

TNBCs(+) 2 1 80 9 

TP53 pathway TP53 mut (12%); 
gain of MDM2 
(14%) 

TP53 mut (32%); 
gain of MDM2 
(31%) 

TP53 mut (84%); 
gain of MDM2 
(14%) 

TP53 mut (75%); 
gain of MDM2 
(30%) 

PIK3CA/PTEN 
pathway 

PIK3CA mut 
(49%); PTEN 
mut/loss (13%); 
INPP4B loss (9%) 

PIK3CA mut 
(32%) PTEN 
mut/loss (24%) 
INPP4B loss 
(16%) 

PIK3CA mut 
(7%); PTEN 
mut/loss (35%); 
INPP4B loss 
(30%) 

PIK3CA mut 
(42%); PTEN 
mut/loss (19%); 
INPP4B loss 
(30%) 

RB1 pathway Cyclin D1 amp 
(29%); CDK4 gain 
(14%); low 
expression of 
CDKN2C; high 
expression of RB1 

Cyclin D1 amp 
(58%); CDK4 gain 
(25%) 

RB1 mut/loss 
(20%); cyclin E1 
amp (9%); high 
expression of 
CDKN2A; low 
expression of RB1 

Cyclin D1 amp 
(38%); CDK4 gain 
(24%) 

mRNA expression High ER cluster; 
low proliferation 

Lower ER cluster; 
high proliferation 

Basal signature; 
high proliferation 

HER2 amplicon 
signature; high 
proliferation 

Copy number Most diploid; 
many with quiet 
genomes; 1q, 8q, 
8p11 gain; 8p, 
16q loss; 11q13.3 
amp (24%) 

Most aneuploid; 
many with focal 
amp; 1q, 8q, 8p11 
gain; 8p, 16q loss; 
11q13.3 amp 
(51%); 8p11.23 
amp (28%) 

Most aneuploid; 
high genomic 
instability; 1q, 
10p gain; 8p, 5q 
loss; MYC focal 
gain (40%) 

Most aneuploid; 
high genomic 
instability; 1q, 8q 
gain; 8p loss; 
17q12 focal 
ERRB2 amp 
(71%) 

DNA mutations PIK3CA (49%); 
TP53 (12%); 
GATA3 (14%); 
MAP3K1 (14%) 

TP53 (32%); 
PIK3CA (32%); 
MAP3K1 (5%) 

TP53 (84%); 
PIK3CA (7%) 

TP53 (75%); 
PIK3CA (42%); 
PIK3R1 (8%) 

DNA methylation – Hypermethylated 
phenotype for 
subset 

Hypomethylated – 

Protein 
expression 

High oestrogen 
signalling; high 
MYB; RPPA 
reactive subtypes 

Less oestrogen 
signalling; high 
FOXM1 and MYC; 
RPPA reactive 
subtypes 

High expression 
of DNA repair 
proteins, PTEN 
and INPP4B loss 
signature (pAKT) 

High protein and 
phosphoprotein 
expression of 
EGFR and HER2 

Percentages are based on 466 tumour. Amp, amplification; mut, mutation. 
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In summary, the hallmark characteristics distinguish cancer cells from 

normal ones. The transformation of a normal cell into a cancerous one requires 

deregulation of multiple cellular activities regulated by gene expression patterns. 

Gene expression is mainly controlled by transcription regulation and post-

translational regulation (see section 1.2).  

1.2 Transcriptional regulation 

Transcription is the process of RNA synthesis. The DNA code is transcribed 

into a sequence of messenger RNAs (mRNA), which are then translated to proteins. 

Transcription factors (TFs) are sequence-specific DNA-binding factors involved in 

the process of transcription and are key cellular components that control gene 

expression. Thus, their activities determine how cells function and respond to the 

environment. Currently, there is keen interest in research into human 

transcriptional regulation, but much remains to be explored. 

1.2.1 Transcription factors recognize specific DNA sequences 

Research in recent decades has contributed to the understanding of how TFs 

recognize their cognate binding sites in the genome and then initiate gene 

regulatory functions. Structural analysis of protein-DNA recognition motif and 

sequence-dependent DNA  recognition have revealed why many TFs preferentially 

bind to a specific DNA sequence (Rohs et al., 2010). The physical interactions 

between the amino acid side chains of the TFs and the accessible chemical and 

conformational signature of the base pairs determine the preference of TFs for a 
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given nucleotide at a typical position. These two recognition types are so-called 

base- and shape-readout, respectively. Furthermore, high-throughput datasets have 

revealed that TFs have distinct DNA-binding profiles, even when they exhibit a high 

degree of similarity in their DNA-binding domains. This means that they can 

precisely regulate gene expression through temporal and spatial regulation (Noyes 

et al., 2008; Sibly et al., 2012).  

The full picture of the assembly of multi-protein complexes on transcriptional 

regulation cannot be entirely provided by the high-throughput in vitro technology 

about specific individual TFs. Sequence-based computational models for describing 

the DNA-binding specificities of TFs are generated for predicting the binding 

specificity to any new site (Zhou et al., 2015). These sequence-based DNA motif 

methods have the benefit of easily visualizing DNA sequence motif. However, these 

models only describe the DNA base readout by a TF and do not include the binding 

affinity. Recently, probabilistic models incorporating DNA structure-derived 

features perform better than DNA-sequence based models (Sharon, Lubliner, & Segal, 

2008). Hence, the integrated genomic and structural information about protein-DNA 

binding models is taken into both base- and shape-readout mechanisms. 

1.2.2 Transcription factor regulation 

The expression and or the activity of TFs themselves can be regulated. For 

example, the so-called “guardian of genome” p53’s gene expression is regulated by 

directing binding of several types of TFs (Saldaña-Meyer & Recillas-Targa, 2011). 
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Post-translational modifications (PTMs) is another way that can rapidly and 

reversibly regulate TF functions, including subcellular localization, stability and 

interactions with cofactors (Tootle & Rebay, 2005). Phosphorylation of E-twenty-six 

(ETS) family members, for example, at Serine/Threonine (S/T) residues in response 

to a variety of upstream signals, exerts broad spectrum effects on their activity. In 

addition, it has been shown that TFs activity may be regulated by glycosylation and 

some TFs are included in this cadre of targets including ETS transcription factor Elf-

1 is O-GlcNAc glycosylated (Juang, Tenbrock, Nambiar, Gourley, & Tsokos, 2002) and 

nuclear factor I (NFI) isoform which undergo N-glycosylation (Kane et al., 2002). 

Other potential PTMs, such as acetylation and sumoylation are also involved in the 

activity regulation of TFs (Zhou et al., 2015). 

Regulation of subcellular localization is another means to control the 

activities of TFs or other proteins with nuclear targets. Active nuclear import and 

export of transcriptional regulators are based on the recognition of specific signals 

in the protein sequence. A nuclear localization signal (NLS) in the protein sequence 

can direct it to the nucleus, while a nuclear export signal (NES) can lead the 

molecule to be transported out of the nucleus (Nardozzi, Lott, & Cingolani, 2010). 

Alternatively, subcellular localization can be regulated through a piggyback 

mechanism by binding to another molecule, transport signal masking, or by 

cytoplasmic retention (Cautain, Hill, Pedro, & Link, 2015). For example, activation-

induced deaminase (AID), functioning as a mutator by deaminating cytosine and 

thus converting it into uracil, is unable to diffuse into the nucleus despite its small 
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size and its nuclear entry requires active import mediated by a conformational 

nuclear localization signal. In contrast, its C-terminus is a determinant for AID 

cytoplasmic retention (Patenaude et al., 2009). Another example is the cytoplasmic 

retention of hormone nuclear receptors. For instance, nuclear hormone receptor 

estrogen receptor α (ERα) is sequestered by metastasis-associated protein (MTA-1) 

in the cytoplasm and executes its non-genomic activity (Kumar et al., 2002). 

Therefore, the subcellular distribution of TFs can determine their biological effect on 

the cell: genomic effects when they localize to the nucleus, and non-genomic effects 

in the cytoplasm.  

1.2.3 Transcriptional repression and activation 

The first and most fundamental order on gene regulation is achieved by the 

preferential binding of a TF to specific DNA sequence in promoters or enhancers. 

Higher orders of regulation are accomplished by PTMs on TFs domains and 

recruiting chromatin-modifying enzymes to induce chromatin structural changes 

(Geertz & Maerkl, 2010). TFs bind to sequence-specific binding sites in the context of 

free DNA. However, when the recognition sites are buried in chromatin, TFs need to 

achieve proper binding by exploiting various strategies (Hahn, 2005) through their 

cofactors to regulate gene expression (Stampfel et al., 2015). Gene expression is not 

only regulated by TFs but also by epigenetic modifications.  

Epigenetic modifications include DNA methylation and histone modifications. 

DNA methylation is a post-replication modification predominantly found in 
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cytosines of the dinucleotide sequence CpG. Specifically, DNA methylation 

contributes to a silent chromatin state together with proteins that modify 

nucleosomes (Jaenisch & Bird, 2003). The nucleosome is the fundamental unit of 

chromatin, and it is composed of an octamer of the four core histones (H3, H4, H2A 

and H2B). The histones N-terminal “tails” are unstructured and possess a large 

number of amino acid residues that are targets for PTMs, particularly lysine and 

arginine. There are at least eight distinct types of modifications found on histones, 

including acetylation, methylation (lysines, arginines), phosphorylation, 

ubiquitylation, sumoylation and crotonylation. The extra complexity lies in that 

methylation at lysines or arginines could have three different forms: mono-, di-, or 

tri-methylation. Of all the known modifications, acetylation has the most potential to 

unfold chromatin. This vast array of epigenetic modifications allows an organism to 

respond to the environment through changes in gene expression. 

In order to initiate transcription, nucleosomal DNA has to disassemble first. 

The cooperative TFs binding, chromatin-remodeling complexes and actively 

transcribing Pol II can all mediate histone displacement. The cofactors of TFs can act 

as activators or repressors on gene regulation. For example, histone 

acetyltransferases (HATs) and histone deacetylases (HDACs) are two counteracting 

enzyme families controlling the acetylation state of the lysine residues of the core 

histones. The acetylation of lysine residue removes the positive charge on the 

histones and thereby the interaction of the N termini of histones with the negatively 

charged DNA decreases. As a consequence of acetylation, the condensed chromatin 
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is transformed into a relaxed structure which facilitates gene transcription. But this 

relaxed state can be reversed by deacetylation, which is performed by HDACs. Once 

the lysine is deacetylated, the chromatin is back to the condensed state. Acetylation 

or deacetylation cannot be done by HATs or HDACs alone and is always coupled by 

other molecules to complete this reaction. For example, the deacetylase activity of 

HDAC3 strictly requires interaction with its transcriptional co-repressor nuclear 

receptor co-repressor (N-CoR) (Zhou et al., 2015).  

1.2.4 Roles of transcription regulators in cancer 

Many TFs are inactive under normal physiological conditions and their 

expression and activity are tightly regulated. A high proportion of oncogenes and 

tumour suppressor genes encode TFs. Many human cancers are dependent on the 

inappropriate expression or activation and inactivation of TFs as well as mutation. 

For instance, somatic mutations in the p53 gene are some of the most frequent 

alterations in human cancers (Olivier, Hollstein, & Hainaut, 2010). Hence, TFs 

represent highly desirable and logical points of therapeutic interference.  

Cellular signal transduction induced by the genetic and epigenetic changes is 

dysregulated in cancer cells. In each pathway, the extracellular signal is received by 

a receptor and conveyed into the nucleus. TFs and their cofactors are at the end of 

the signalling pathway, which can regulate gene expression or repression (Nebert, 

2002). In clinical trials, progression-free survival of patients with cancers who were 

previously regarded as untreatable, were improved by drugs that target intracellular 
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signalling pathways. However, alternate signalling pathways that are not targeted by 

drugs or a downstream mutation within the kinase-mediated signalling cascades has 

curtailed the benefit (Gonda & Ramsay, 2015). The cancer phenotype is not only 

defined by the misregulation of key transcriptional regulators but the misregulation 

is also critical for cancer development and maintenance. It can therefore be 

proposed that when these transcriptional regulators act as therapeutic targets, they 

are less prone to be bypassed by an alternative pathway (Gonda & Ramsay, 2015). 

Some transcriptional regulators are already under-investigation as potential 

therapeutic targets (Berg et al., 2002; Yardley et al., 2013). For example, a vector-

based DNA Myb vaccine showed some antitumour efficiency against the metastatic 

spread in a model of mammary cancer (Carpinteri, 2012). 

Multicellular organisms are strictly ordered and require extensive 

coordination and communication between cells; many TFs and cofactors are 

involved in this hierarchical communication. In response to external stimuli, TFs and 

cofactors turn on/off appropriate gene expression. Growth factors act as one of the 

external stimuli which can activate multiple pathways and lead to pleiotropic effect 

on cell biology.  

1.3 Growth factors and their function 

Cellular phenomena—proliferation, differentiation, migration and 

survival/death are not autonomous; much of this is regulated by extracellular 

proteins (growth factors) that positively and negatively regulate these actions. 
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Regulation is achieved via transmembrane receptors that growth factors bind on the 

extracellular surface of cells in order to transduce cellular signalling events in the 

cytoplasmic compartment (Lemmon & Schlessinger, 2011). Once the ligand binds to 

the respective receptors, it will trigger intracellular signalling events in both 

transcription-dependent and independent pathways in the target cells (Brunet, 

Datta, & Greenberg, 2001). Briefly, growth factors are divided into cytokines, and 

polypeptide growth factors (Vlasova & Bohjanen, 2016), both of which affect nearly 

every biological process (Vlasova & Bohjanen, 2016). Cytokines, often compared 

with growth factors, are a class of signalling molecules that primarily affect the cells 

of the immune system (An, 2009). From here on, we will mainly focus on 

polypeptide growth factors that affect most cells of the body. 

1.3.1 Growth factors and their receptors 

Polypeptide growth factors types: Polypeptide growth factors can act by multiple 

means paracrine, endocrine and autocrine systems (Hull & Harvey, 2014). There are 

multiple “superfamilies” of peptide growth factors that contain subfamilies of 

proteins, with related primary sequences. For example, fibroblast growth factor 

(FGF) superfamily contains at least 22 distinct members (Zhang et al., 2006).  

Growth factors are ligands for transmembrane receptors. Each growth factor 

superfamily has a corresponding family of related receptors with high specificity. 

Family members can bind to a single receptor and there are also ones that bind to 

multiple receptors. For instance, the aforementioned FGF family of 22 structurally-
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related molecules can bind to four high affinity, ligand-dependent FGF receptor 

tyrosine kinase molecules (FGFR1-4) (Zhang et al., 2006). The activation of FGFR 

results in the stimulation of various signal transduction cascades implicated in 

multiple aspects of embryonic development, tumour growth, angiogenesis, wound 

healing, and physiology (Ornitz & Itoh, 2001; Powers, McLeskey, & Wellstein, 2000). 

Growth factor receptors: Growth factor receptors are plasma membrane-spanning 

proteins that bind with a specific growth factor on the external surface of a cell and 

transduce a signal that regulates cell division. They contain an intracellular domain 

with enzymatic function that is activated by growth factor binding. For example, 

epidermal growth factor (EGF) is an approximately 6 kDa molecule and binds to a 

170 kDa plasma membrane receptor (EGFR) resulting in receptor dimerization, 

autophosphorylation (in trans) and activation of various downstream signalling 

pathways (Zhang et al., 2006). Growth factor receptors also define cancer 

hierarchies (Venere, Lathia, & Rich, 2013) and increased expression or activation of 

receptor tyrosine kinases occur frequently in human breast carcinomas. For 

example, breast cancers are classified into different subtypes depending on the 

expression of ER, PR or Her2 (refer to Table 1.1). Epithelial breast cancer cells are 

well recognized as commonly over-expressing the Insulin-like Growth Factor-1 (IGF-

I) receptor (Christopoulos, Msaouel, & Koutsilieris, 2015), which is a high-affinity 

receptor for both insulin and IGF-I (Belfiore & Frasca, 2008). EGFR is frequently 

over-expressed in TNBC (Nakai, Hung, & Yamaguchi, 2016) and an over-expression 
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of EGFR is correlated with poor prognosis of colon cancers as well (Sasaki, Hiroki, & 

Yamashita, 2013). 

1.3.2 Growth factor function 

A. Growth factors can regulate proliferation: Few cells can proliferate without the 

stimulus of growth factors. Thus, in this regard, growth factors play a significant role 

during development. The presence of IGF-1 dramatically enhanced early stage 

proliferation of EGF/FGF-responsive neural stem cells in vitro (Supeno et al., 2013). 

In other cases, growth factors (i.e. transforming growth factor β (TGFβ)) can inhibit 

cell proliferation (Zermati et al., 2000). 

B. Positive and negative regulation in development by GFs: The complexity of 

embryogenesis is reflected in the presence of complex interactions between growth 

factor signalling pathways. Recent studies have demonstrated that growth factor 

receptors are expressed by pre-implantation embryos and growth factor deprivation 

can result in suboptimal growth as well as developmental abnormalities (Richter, 

2008). Pre-implantation embryos also express many growth factors of their own, 

including EGF, insulin-like growth factor1 (IGF-1), IGF-2, VEGF, platelet-derived 

growth factor (PDGF) and fibronectin (Richter, 2008). These autocrine growth 

factors are believed to be the primary reason for embryonic development (Richter, 

2008). In some cases, growth factors and their receptors can act as development 

inhibitors. An example of that is Met, the receptor of Hepatocyte growth factor 

(HGF), which regulates skeletal muscle differentiation; a novel spliced isoform 
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Δ13Met has been found, which can inhibit muscle cell differentiation (Park et al., 

2015). 

C. Growth factors regulate transcription: Many different types of stimuli can cause 

the activation of protein kinases, which can further affect gene expression. Growth 

factor-dependent MAPK and PI3K/AKT pathway activation can phosphorylate many 

downstream transcription factors. These phosphorylated transcription factors (TFs) 

are activated and will further up-regulate or down-regulate gene expression 

(including other transcriptional factors’ gene expression).  

D. Growth factors and wound healing: Wound sites release several growth factors, 

including IGF, EGF, FGF, PDGF, TGF and so on. The clinical application of growth 

factors to stimulate the healing of wounds is currently being investigated (Grazul-

Bilska et al., 2003). 

Taken together, a cell receives extracellular signals through ligand-receptor 

interaction and the signal is sensed through activation of related pathways in the 

cytosol. The signals then have to be transduced into the nucleus, where signals 

eventually reflect on the genomic level of gene expression/repression. The signal, 

from the external to cytosol to nucleus, is through tiers of activation and 

translocation of molecules.  
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1.4 Nuclear-cytoplasm exchange system 

A cell consists of different cellular compartments, which are associated with a 

diverse range of biochemical processes (Sprenger et al., 2008). Protein function is 

always related to its subcellular localization and proteins must be targeted to the 

appropriate compartment to ensure proper function. Therefore, a protein’s cellular 

role may be inferred by localizing to distinct compartments (Rezácová, Borek, Moy, 

Joachimiak, & Otwinowski, 2008). Understanding protein subcellular localization is 

not only important for elucidating its function in cells, but also for the organization 

of the cell as a whole (Scott, Calafell, Thomas, & Hallett, 2005). 

The nuclear membrane separates nuclear and cytoplasmic compartments in 

eukaryotic cells and supports as a structural frame of the nucleus. The nuclear 

membrane, acting as a barrier between cytosol and nucleus, prevents the free 

nuclear to cytoplasmic diffusion of molecules; such movement is directed by signals 

to translocate (Cooper & Hausman, 2000). Nuclear pore complexes (NPC) penetrate 

through the nuclear membrane and serve as a transporting channel for 

macromolecules between the two compartments. Many essential regulatory 

molecules are shuttled between compartments; as example, histones and TFs are 

imported into the nuclear compartment, while transfer RNA (tRNA), ribosomal RNA 

(rRNA), and messenger RNAs (mRNA) are transcribed in the nucleus and exported 

out to the cytoplasm where they function in translation (Beck & Hurt, 2016).  
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1.4.1 Nuclear pore complexes 

Macromolecules can transiently dock and interact with nucleoporins during 

the transportation process. NPCs create an aqueous channel through which 

macromolecules are transported (Adam, 2001). The NPC is a large protein complex 

that can be easily detected by electron microscopy and acts as a molecular 

transportion gate between cytoplasm and nucleus (Appen & Beck, 2016). The mass 

of NPCs in higher eukaryotes is about 125 MDa and the proteins that comprise the 

complex are called nucleoporins (Nups) (Adam, 2001). Each NPC is composed of 

about 50-100 different Nups. Morphologically, NPCs contain a membrane-embedded 

central core structure, cytoplasmic and nuclear extensions which form cytoplasmic 

filaments and nuclear baskets, respectively, which act as cargo docking sites (Beck & 

Hurt, 2016) (Fig. 1.2). The membrane-embedded central core contains three stacked 

rings. The middle ring spans and crosses the fused inner and outer nuclear 

membranes and is sandwiched by the cytoplasmic and nucleoplasmic rings from 

both distal ends (Beck & Hurt, 2016). The cytoplasmic ring constitutes of eight 50 

nm filaments and the nuclear ring is connected to a basket-like assembly of eight 

thin terminal rings (Fig. 1.2). Macromolecules bearing transport signals translocate 

through the center of an NPC gate. 

The number of NPCs depends on the demands of cells for nucleocytoplasmic 

exchange and varies dramatically with cell size and the demands of cellular activities, 

such as proliferation. For example, there are about 3000-5000 NPCs in a 

proliferating human cell (Kabachinski & Schwartz, 2015). The commonly used 
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human cell line, Hela, contain on average 3000 NPCs in each nucleus (Kabachinski & 

Schwartz, 2015).  

As the sole gateway for the exchange of material between nucleus and 

cytoplasm, NPCs support two modes of transport: passive diffusion and receptor-

facilitated translocation (Naim et al., 2007).  Small molecules such as metabolites can 

passively diffuse through the pore without assistance, but it becomes increasingly 

slow as the size of the particle approaches ~10 nm in diameter, which corresponds 

to a protein with a molecular weight of about 45 kDa (Naim et al., 2007). Passive 

diffusion is only reasonably fast for proteins smaller than 20-30 kDa. In contrast, 

larger proteins, RNAs, and their complexes require active transport into the nuclues. 

But not all molecules whose molecule weight is less than 20-30 kDa will diffuse 

passively in the cells. For example, histones and tRNAs enter the nucleus through 

carrier-mediated transport, even though their molecular weight is less than 20-30 

kDa (Suntharalingam & Wente, 2003).  
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Figure 1.2 Schematic representation of the NPC 

(Modified from (Grünwald, Singer, & Rout, 2011) with permission) Cytoplasmic and 

nuclear extensions of the NPC's periphery are indicated on the cytoplasmic and the 

nuclear surface. 
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1.4.2 Transport machinery 

Facilitated transport requires specific interactions between the molecule 

being translocated and the NPC. This nucleocytoplasmic transport is mainly 

mediated by transport receptors belonging to the superfamily of importin-β-like 

proteins called karyopherins. Based on the direction to which these receptors carry 

their cargo, they are classified as importins or exportins which can directly interact 

with the proteins on the surface of NPCs. As the name implies, importins are 

accountable for directing the cargo to the nucleus, whereas exportins shuttle the 

molecules from nucleus to cytoplasm (Yuh & Blobel, 2001).  

Nucleoporins (Nups) are often grouped into three types: (i) transmembrane 

Nups which anchor the NPCs in the nuclear envelope; (ii) phenylalanine-glycine 

repeats (FG-repeats), and (iii) structural Nups, which act as a scaffold to interact 

with transmembrane Nups and FG-Nups. Amongst them, FG-Nups play dual roles in 

nucleocytoplasmic exchange: first, they function as a permeability barrier of the 

NPCs; second, karyopherins can transiently interact with FG-Nups and transport the 

cargo through NPCs, which the FG-Nups support as an anchor (Wälde & Kehlenbach, 

2010). 

Another part of the machinery is Ran(Ras-related nuclear protein), a member 

of the Ras family of small G proteins, which is essential for the translocation of 

proteins and RNA through NPCs (Sazer & Dasso, 2000). The prime function of Ran is 
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to regulate the binding of cargo molecules and will be further discussed in section 

1.4.3.2. 

1.4.3 Cargoes and signals 

Eukaryotic cells must accomplish the rapid and receptor-mediated transport 

of thousands of proteins and RNAs into and out of the nucleus and karyopherins are 

taking care of this bidirectional transport (Pemberton & Paschal, 2005). This parcel-

like delivery model raises the question of how karyopherin: cargo recognition 

occurs. Many studies have shown proteins that undergo nuclear import or export 

generally contain a NLS or NES, respectively (Lange et al., 2007; Weis, 2003).   

1.4.3.1 NLS-dependent and independent nuclear import 

In 1984, a NLS was first characterized from SV40 Large T antigen and 

consisted of a short sequence of basic amino acids (Dingwall & Laskey, 1991). The 

NLS region in SV40 Large T antigen had a stretch of five basic amino acids 

127PKKKRKV133 and was defined as monopartite NLS (Kalderon, Richardson, 

Markham, & Smith, 1984). Subsequently, a related signal of two basic clusters 

separated by about ten residues was identified in Xenopus nucleoplasmin and 

defined as bipartite (Dingwall, Robbins, Dilworth, Roberts, & Richardson, 1988).  

The sequences identified in SV40 T-Ag and Xenopus nucleoplasmin are now referred 

to as classical NLSs (cNLSs) and require the karyopherins importin-α and importin-β 

for nuclear transport (Lange et al., 2007).  



31 
 

Consecutive residues from the N-terminal lysine of monopartite NLS are 

referred to as P1, P2 and a lysine in P1 position is mandatory for monopartite cNLS 

(Conti & Kuriyan, 2000; Fontes, Teh, & Kobe, 2000; Hodel, Corbett, & Hodel, 2001), 

followed by basic residues in positions P2 and P4 to yield a consensus sequence of 

K-K/R-X-K/R, where X stands for any amino acid. Quantitative analyses of the 

accumulation percentage of nuclear import of eGFP fused with different NLSs 

demonstrated that a monopartite NLS is more efficient than a bipartite NLS (Ray, 

Tang, Jiang, & Rotello, 2015). Since the discovery of the NLSs in SV40 T antigen and 

nucleoplasmin, many other NLSs have been described, as well.  

The formation of the import complex is mediated by specific sites on 

importin-α by recognizing the NLS in the molecules to be imported (Conti, Uy, 

Leighton, Blobel, & Kuriyan, 1998). Importin-α is composed of a tandem series of 

Armadillo (ARM) repeats which form a banana-like molecule, producing a curving 

structure with two NLS-binding sites (Stewart, 2007). Classically, the adaptor 

protein importin-α recognizes the NLS present in the cargo and forms a dimer with 

importin-β. Importin-α binds to importin-β through a domain known as the 

importin-β binding (IBB) domain, which is located in the N-terminus. IBB can 

compete with NLS and replace the NLS-binding sites, leading to the release of cargo 

proteins (Lott & Cingolani, 2011). The cargo:importin-α:importin-β complex is 

transported through NPC and dissociated by the binding of RanGTPase.  

The import of many nuclear proteins is thought to be mediated by the 

classical NLS. However, it is now accepted that import signals unrelated to the 
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classical NLS exist (Freitas & Cunha, 2009). These NLS-independent molecules could 

be imported through interaction with other proteins that contain a functional NLS, 

called a piggyback mechanism, or rely on importin-β-related molecules. For instance, 

β-catenin, which mediates a late step of the Wnt/Wingless pathway, is imported into 

the nucleus by binding directly to importin-β or β-like import factors (Fagotto, Gluck, 

& Gumbiner, 1998).  

1.4.3.2 NES-dependent and independent nuclear export 

Typically, basic residues (e.g. K, R) are enriched in NLSs.  In contrast, a 

leucine-rich nuclear export signal (NES) is present in cargos exported to the 

cytoplasm. NES also contain critical hydrophobic residues, which are necessary for 

recognition by the nuclear export receptor CRM1 (Fung, Fu, Brautigam, & Chook, 

2015). The most conserved NES pattern is the LXXXLXXLXL motif where “L” is a 

hydrophobic residue (Leucine) and “X” is any other amino acid. The spacing 

between the hydrophobic amino acid residues varies, although the most conserved 

pattern is LXXLXL, while some fit the LXXXLXL pattern. However, it has been 

determined that approximately 15% of protein NESs do not conform to either of the 

LXXLXL or LXXXLXL patterns, indicating a significant degree of flexibility in the 

export signal (L. Cour et al., 2004).  

 CRM1 is an essential exportin utilized in all types of cells, and it exports 

numerous cargos including proteins and RNAs (Cullen, 2003; Delaleau & Borden, 

2015). NESs bind weakly to CRM1, which ensures that once transport is completed, 
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these cargos are easily released (Fischer et al., 2015). The way molecules bind to 

CRM1 through NESs for exportation is called the canonical pathway; also, a non-

canonical CRM1 export mechanism exists as well.  

During the whole cycle of nucleocytoplasmic shuttling, Ran plays a major role 

in assisting loading or discharging cargo. For nuclear import, the cargo molecule 

with an accessible NLS binds to an importin molecule and this complex transports 

into the nucleus through NPC (Cingolani, Petosa, Weis, & Müller, 1999; Conti et al., 

1998). RanGTP can then bind to importin and cause the dissociation of imported 

complexes by direct or indirect competition (Chook & Blobel, 1999; Cautain et al., 

2015). Subsequently, the RanGTP-importin complex is recycled to the cytoplasm. 

Conversely, RanGTP binds to CRM1 and promotes the tight assembly of exported 

complexes in the nucleus (Cassar et al., 2007). Once the complex is exported to the 

cytoplasm, RanGTP is hydrolyzed to RanGDP by RanGAP. RanGDP weakens the 

affinity between NES and exportin, causing the dissociation of cargoes (Koyama & 

Matsuura, 2010). RanGDP is then recycled in the cytoplasm by Nuclear Transport 

Factor 2 (NTF2) back to the nucleus where Ran is loaded with GTP by the guanine 

nucleotide-exchange factor regulator of chromosome condensation (RCC1). The 

import and export cycle is illustrated in Fig. 1.3.  
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Figure 1.3 Ran directs nucleocytoplasmic transport 

(Modified from (Clarke & Zhang, 2008) with permission) (A) The GTP–GDP cycle of Ran. Ran 

is loaded with GTP by the guanine nucleotide-exchange factor RCC1. RanGTP adopts a 

distinct conformation that allows it to interact with a transport factor from the importin-

β superfamily, also known as the karyopherins. Hydrolysis of GTP to GDP by Ran requires 

the interaction of a Ran GTPase-activating protein, RanGAP1, and is stimulated by Ran-

binding protein-1 (RanBP1) or RanBP2. RanGDP has a different conformation that does not 

interact strongly with karyopherin and can be considered inactive. Mutants of Ran block the 

GTP–GDP cycle: RanT24N has a reduced affinity for nucleotides and forms a stable complex 

with RCC1, thereby blocking RanGTP formation, whereas RanQ69L cannot hydrolyse GTP 

and is locked in the GTP-bound conformation. (B) Ran shuttles across the nuclear envelope 

through nuclear pores, but is concentrated in the nucleus because of nuclear transport 

factor-2 (NTF2)-mediated active import. In the nucleus, a high concentration of RanGTP is 

generated by nucleotide exchange. This is catalysed by chromatin-bound RCC1 and might be 

promoted by the nucleotide dissociation factor MOG1 and the accessory factor RanBP3 (not 

shown). RanGTP causes the dissociation of imported complexes, which contain proteins that 

carry a nuclear localization signal (NLS), by binding to importin-β and ejecting the cargo. 

Conversely, binding of RanGTP to chromosome-region maintenance protein-1 (CRM1) 

promotes the assembly of export complexes containing proteins with a nuclear export signal 

(NES). In the cytoplasm, RanGTP meets RanGAP1 and RanBP1 or RanBP2, which stimulates 

GTP hydrolysis and the export complexes dissociate. The importins and exportins are 

recycled by transport back across the pore. 

  

http://us.expasy.org/uniprot/Q9HD48
http://us.expasy.org/uniprot/Q9H6Z4
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1.4.4 Nucleocytoplasmic exchange system aberration and cancer  

The dynamic distribution of molecules between nucleus and cytoplasm is 

tightly modulated in normal cells. The mislocalization of molecules may alter their 

usual biological function, thus disturbing the homeostasis of cells and causing 

diseases such as cancer (Conforti et al., 2015). For example, the cyclin-dependent 

kinase inhibitor 1A (CDKN1A) and CDK inhibitor 1B (CDKN1B) act as tumour 

suppressors in the nucleus but they acquire oncogenic properties when mislocalized 

in the cytoplasm, which leads to increased cell migration and invasion (Besson, 

Dowdy, & Roberts, 2008; Conforti et al., 2015). Growing evidence illustrates that 

misregulation of nucleocytoplasmic shuttling is involved in many aspects of the 

cancer cell phenotype, including promotion of cell survival, carcinogenesis, tumour 

progression, and drug resistance (Hung & Link, 2011).  

Given that tumour suppressor proteins (TSP) execute the antineoplastic 

functions within the nucleus, mechanisms that misregulate their nuclear export or 

cytoplasmic ratio effectively will result in their functional inactivation (Gravina et al., 

2014). This can result from alterations in the shuttling machinery, which is 

frequently detected in cancer. For instance, in the breast cancer cell line ZR-75-1, a 

substantial amount of p53 was localized in the cytoplasm and a truncated form of 

importin-α was identified. This truncated importin-α is not functional for nuclear 

localization and p53 accumulates in the cytoplasm in this truncated overexpressing 

cells (Kim et al., 2000). Another example is elevated expression of CRM1 that is 
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detected in many tumours, such as cervical and pancreatic cancers, and its high 

expression level is related to poor outcome (Huang et al., 2009; Shen et al., 2009).  

1.5 Mesoderm early response gene 1 (MIER1) 

1.5.1 Immediate early response genes 

Gene transcription is regulated through many complementary processes and 

one of them is the timing of induced gene expression when responding to an 

external signal. Immediate early response genes (IEGs) are a particular group of 

genes activated directly by intracellular signalling in response to growth factors (e.g. 

PDGF; EGF; FGF), mitogens, developmental and immunological signals, and stress 

(i.e. ultraviolet) (Healy, Khan, & Davie, 2012; O’Donnell, Odrowaz, & Sharrocks, 

2012). By definition, activation of these genes does not require prior protein 

synthesis. Many IEGs encode TFs, which in turn regulate delayed primary response 

genes (Bahrami & Drabløs, 2016). IEG expression does not require de novo protein 

synthesis which supports a rapid cellular response. Hence, their expression can lead 

to the initiation or termination of transcription for other genes, which ultimately 

carry out the functions relayed by the original signal. Thus, isolation and 

characterization of IEGs may help to identify the pivotal points in the signal 

transduction cascade that are critical for determining the response of the target cell. 
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1.5.2 Xenopus mesoderm induction early-response gene (xmier1) 

Embryos from the amphibian Xenopus laevis were used as a model system to 

study early response genes in FGF signalling transduction in the laboratory of Drs. 

Paterno and Gillespie (Ryan, Gillespie, 1994; Ryan, Paterno, & Gillespie, 1998; 

Paterno et al., 1997; Teplitsky, et al., 2003). FGF contributes to the 

induction/maintenance of mesoderm and in an effort to elucidate the particular 

early response genes that are active in the FGF signalling cascade, the prospective 

ectoderm of a blastula stage embryo was incubated with FGF-2 and differentially 

expressed genes identified by the differential display technique. This led to a novel, 

developmentally regulated gene discovered in Xenopus that was designated 

mesoderm induction early response 1 (mier1), since it is expressed during 

mesoderm induction (Paterno et al., 1997).  

In response to FGF-2 treatment, xmier1 steady-state levels were shown to 

increase 3-4 fold and the increase did not require de novo protein synthesis, 

demonstrating that xmier1 is one of the IEGs. FGF is highly implicated in cell 

differentiation, mitogenesis, motility and angiogenesis (Grose & Dickson, 2005). It is 

capable of inducing embryonic cells to differentiate into mesodermal tissues. 

Therefore, the FGF responding genes, such as xmier1, serve to propagate the growth 

factor’s signal at different time points in development. Later, a human homolog of 

xmier1, hMIER1, was discovered (Paterno et al., 1997, 1998). 
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1.5.3 hMIER1 isolation, genomic structure and isoforms 

A human orthologue of xmier1 was cloned from human testis cDNA library in 

our laboratory and designated as hMIER1α (Paterno et al., 1998, 2002). hMIER1 is a 

single copy gene located on Chromosome 1p31.2 and spans 63 kb (Fig. 1.4A). 

Seventeen exons encode this gene in humans; the size of most exons is smaller than 

160bp and most introns range 630 bp to 11.7 kp in size. As shown in Fig. 1.4B, 

alternative splicing, alternative promoter usage or polyadenylation signal (PAS) 

usage generates 12 distinct hMIER1 transcripts (Paterno et al., 2002).  

Alternate 5’ ends result from alternate promoter usage or alternate inclusion 

of exon 3A to generate three distinct amino terminal regions, N1, N2 and N3. The 

four variant 3’ ends --a, bi, bii and biii --result from alternative splicing or alternate 

PAS usage; while bi, bii and biii give rise to the same 102aa C-terminal of β isoform. 

The three distinct N-terminal domains, in combination with two C-terminal regions, 

gives six distinct hMIER1 proteins: N1α (457aaa), N1β (536 aa), N2α (432 aa), N2β 

(511 aa), N3α (433 aa), and N3β (512 aa).  
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Figure 1.4 Structure of the human MIER1 gene and splice variants 

(Modified from (Paterno et al., 2002) with permission) Schematics illustrating the 

organization of the hMIER1 gene and the various hMIER1 transcripts. (A) 

Exon/intron organization of the hMIER1 gene. hMIER1 is a single copy gene located 

at 1p31.2 (adapted from http://genome-

www.stanford.edu/cgibin/genecards/carddish?MI-ER1). The two alternate starts of 

translation, ML- and MAE- are indicated. Exon numbers are indicated below each 

schematic. (B) Schematics illustrating the variants 5’ and 3’ ends of hMIER1 

transcripts. Alternate promoter usage or alternate inclusion of exon 3A generates 

three distinct 5 ends. Activation of MLP-P1 promoter produces N-terminal ends “N1” 

and “N2”, and MAEP-P2 promoter activation will generate N-terminal end “N3”. The 

difference between N1 and N2 lies at N1 includes the skipped exon 3A (74bp in 

length) which is inserted after the first two amino acid residues, while N2 does not 

(Paterno et al., 2002). The four variants at 3’ ends, a, bi, bii and biii, result from 

alternative splicing or alternate PAS usage. The 3’ alpha-end portion of hMIER1 

encodes the 23 aa C-terminal and is named α isoform; while the bi, bii and biii 3’ 

portions all encode the same 102 aa C-terminal, comprising the β isoform.  

 

  

http://genome-www.stanford.edu/cgibin/genecards/carddish?MI-ER1
http://genome-www.stanford.edu/cgibin/genecards/carddish?MI-ER1
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1.5.4 hMIER1 protein domains and their possible function 

Fig. 1.5 shows a schematic of putative functional domains and motifs 

contained in hMIER1 as determined by in silico analysis. These domains have 

predicted functions based on investigation of other well-characterized proteins: 

The acidic activation domain: The acidic activation domain was first described in the 

yeast transcriptional activator GAL4 (Ptashne, 2003). In this paper, GAL4 

transcriptional activation is mediated by acidic amino acid residues and 

transcriptional activation correlates with the net negative charge, indicating that 

acidic amino acids are crucial for GAL4 transactivation. Likewise, acidic amino acid 

rich regions in the N-terminus of xmier1 are important for transcriptional activation 

function (Paterno et al., 1997). The N-terminal region which contains the first 98 

amino acids of xmier1, stimulated transcription 80 fold, while full-length xmier1 did 

not activate transcription in NIH 3T3 cells. Fusion with other parts did not 

demonstrate transcription activity either. These data implied that in isolation, the 

acidic activation domains in the N-terminal region of xmier1 can function as a 

transcription activator (Paterno et al., 1997). 

The ELM2 domain: All MIER1 isoforms contain an ELM2 domain, as shown in Fig. 1.6. 

ELM2 stands for EGL-27 and MTA1 homology domain 2 and is also contained in 

metastasis-associated protein (MTA1) which is part of the nucleosome remodeling 

deacetylase (NuRD) complex (Solari, Bateman, & Ahringer, 1999). The ELM2 domain 

was initially identified in the EGL-27 protein, a Caenorhabditis elegans protein 
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similar to human MTA1 (Solari et al., 1999). Together with EGR-1 (egr-1 is egl-27 

related gene in C. elegans),  EGL-27 is required for the proper organization in all 

parts of the embryo and plays a critical role in Wnt signalling, possibly by regulating 

Homeobox (HOX) gene expression (Hettenbach & Herman, 1999; Solari et al., 1999). 

As part of NuRD, MTA1 regulates the transcription of its targets by modifying the 

acetylation status of the target chromatin and cofactors’ accessibility to the target 

DNA (Millard, Fairall, & Schwabe, 2014).  

MIER1 functions as a transcriptional repressor by recruiting HDAC1 (Ding, 

Gillespie, & Paterno, 2003). Depending on the sequence of the C-terminus, MIER1 

exists as two isoforms: α and β, which is illustrated in detail in section 1.5.3. 

Overexpression of MIER1 isoforms α and β respectively can both function equally 

well as transcriptional repressors through the recruitment of HDAC1 and an intact 

ELM2 domain is required for these activities (Ding et al., 2003). Blackmore et al. 

2008 found that MIER1β interacted with CREB-binding protein (CBP), a known 

histone acetyltransferase (HAT). The interaction involves the ELM2 and acidic 

activation domains which are located in the N-terminal half of the protein. Moreover, 

overexpression of MIER1β with CBP in HEK 293 cells shows MIER1β inhibits CBP 

activity (Blackmore, Mercer, Paterno, & Gillespie, 2008). Taken all the evidence 

together, MIER1 acts as a transcriptional repressor. 

The SANT domain: All MIER1 isoforms contain a SANT domain C-terminal to the 

ELM2 domain (Fig. 1.5). It was identified in nuclear receptor co-repressors and 

named after Switching-defective protein 3 (Swi3), Adaptor 2 (Ada2), Nuclear 
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receptor co-repressor (N-CoR) and Transcription factor (TF)IIIB (Aasland, Stewart, 

& Gibson, 1996). The SANT domain consists of ~50 amino acid residues and shows 

remarkable structural similarity to the DNA binding helix-turn-helix domain (DBD) 

of the MYB oncoprotein (Aasland et al., 1996). However, instead of DNA binding 

function, SANT domains are protein-protein interaction modules and some can bind 

to histone tails (e.g. in Ada2 and Silencing Mediator of Retinoic adic and Thyroid 

hormone receptor (SMRT)). For example, the ADA2 SANT domain is essential for 

HAT activity to assist general control of amino-acid synthesis (GCN5) to bind to 

histones in S. cerevisiae (Sterner, Wang, Bloom, Simon, & Berger, 2002). The 

corepressor CoREST has two SANT domains, and the first domain is important for its 

co-repression function by interaction with HDAC1/2 (You, Tong, Grozinger, & 

Schreiber, 2001). The SANT domain was also found in N-COR and the silencing 

mediator of retinoic acid and SMRT, and was shown to bind and activate HDAC3 

(Guenther et al., 2000). After SMRT/N-CoR recruits HDAC3 to specific chromatin loci, 

one of the two closely spaced SANT motifs in the N terminus of SMRT and N-CoR can 

strongly potentiate HDAC3 enzymatic activity, acting as deacetylase activating 

domain (DAD) (Guenther et al., 2000; Wen et al., 2000; Zhang et al., 2005). The 

cumulative evidence for the SANT domain supports its function as a histone-

interaction module that couples histone-tail binding to enzyme catalysis for the 

remodeling of nucleosomes (Grüne et al., 2003). 

The SANT domain was demonstrated the repressive regulatory potential in 

the context of MIER1 function (Ding, Gillespie, Mercer, & Paterno, 2004). This study 
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showed that MIER1 could form a complex with Sp1 in vitro and in vivo, and an intact 

SANT domain was required. This was necessary and sufficient to prevent Sp1 

binding to its cognate sites on DNA. Specifically, both isoforms of MIER1 (α & β), 

through the SANT domain-mediated interaction with Sp1, displace Sp1 from its 

cognate binding sites and repress Sp1-activated transcription. 

The proline rich motif: A proline rich motif is contained in all MIER1 isoforms at the 

C-terminal of SANT domain. The canonical proline (P) rich motif consensus 

sequence is PXXP tetrapeptide, in which P stands for proline, and X represents any 

amino acid residue which can be recognized by SRC Homology 3 (SH3) domain, 

(Alexandropoulos & Baltimore, 1996). The SH3 domain containing proteins interact 

with adaptor proteins and tyrosine kinases, mediating assembly of specific protein 

complexes (Kurochkina & Guha, 2013). The proline rich sequence on MIER1 is 

PSPPP which also fits the consensus for an SH3 recognition motif (Cesareni, Panni, 

Nardelli, & Castagnoli, 2002). Also, the consensus of S/T-P motif serves as a proline-

directed phosphorylation site (Suzuki et al., 2015). Proline-directed protein kinases 

for such phosphorylation include cyclin-dependent protein kinases (CDKs), Jun N-

terminal protein kinases (JNKs) and glycogen synthase kinase-3 (GSK-3)(Lu, Liou, & 

Zhou, 2002). Therefore, the proline rich motif on MIER1 not only has potential to 

function as an SH3 recognition motif, but also as a proline-directed phosphorylation 

site. Mutation of the proline-rich region of xmier1 (365P366SPPP) showed that only 

365P in the proline-rich region was required for the xmier1 effect on embryonic 

development and mesoderm induction (Teplitsky et al., 2003). 
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The LXXLL motif: The LXXLL motif was originally identified in proteins that bind the 

activation function-2 (AF-2) region of nuclear-receptor ligand-binding domains 

(LBDs) (Garber, Vidanes, & Toczyski, 2005). The LXXLL sequence a is protein-

protein interaction motif used in transcriptional regulation and this motif also 

presents in other proteins; it is reported that the LXXLL motif present in RIP-140, 

SRC-1 and CBP is necessary and sufficient to mediate the binding of these proteins to 

ligand-bound nuclear receptors (Heery, Kalkhoven, Hoare, & Parker, 1997). For 

example, SRC-1 binds the ER and enhances its transcriptional activity dependent on 

the integrity of the LXXLL motif. The amino acid sequences flanking LXXLL motif 

have an effect on the selective affinity for hormone receptors. A hydrophobic residue 

at position -1 relative to the first conserved L and a non-hydrophobic residue at 

position +2 has a high affinity for steroid and retinoid receptors (Heery, Hoare, 

Hussain, Parker, & Sheppard, 2001).  

The α isoform of MIER1 contains an LXXLL motif at the C-terminal while β 

isoforms do not. The core LXXLL motif in α isoforms is embedded in an amphipathic 

helix; both the -1 I and +2 V positions in this domain within α isoforms are 

hydrophobic amino acid. It was further confirmed that MIER1α physically interacted 

with endogenous ERα. ERα and MIER1α can interact both in the presence and 

absence of 17-β estradiol (E2) and the interaction was stronger in the absence of 

ligand, implying the interaction was ligand-independent (McCarthy et al., 2008). The 

increased expression of MIER1α greatly inhibited breast carcinoma cell growth in 
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response to E2 stimulus, indicating that MIER1α as a possible corepressor of ERα 

(McCarthy et al., 2008).  
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Figure 1.5 Protein domains and motifs in hMIER1 isoforms 

Schematics illustrating the protein motifs common and unique to the hMIER1 

isoforms. The acidic activation domain, the ELM2 domain, the SANT domain, and the 

proline rich motif PSPPP are common to the hMIER1 isoforms. The nuclear 

localization signal (NLS) is localized on the C-terminal region of hMIER1β. The 

LXXLL motif is localized in the C-terminal region of hMIER1α. 
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1.5.5 hMIER1 expression and subcellular localization 

Expression pattern: An investigation of the MIER1 expression pattern revealed that 

MIER1β is ubiquitously expressed at very low levels in most human tissues (Paterno 

et al., 1998, 2002). Of the 23 tissues tested, β isoform displays above average 

expression levels in the heart, placenta, liver, testis, ovary, colon, peripheral blood 

leukocyte, stomach, thyroid, spinal cord, lymph node and adrenal gland, while the 

testis exhibited the highest degree of expression in both studies (Paterno et al., 1998, 

2002). MIER1 α isoform-specific transcript expression revealed its expression is 

restricted to endocrine and endocrine-responsive tissues, relative to the ubiquitous 

expression noted for the β isoform.   

MIER1 splice variants vary in specific tissues. For example, the lung and 

skeletal muscle produced MIER1β isoform harboring the N3 N-terminal domain but 

not the α isoform. Moreover, splice variant transcripts harboring exon 3A display 

tissue-specific expression patterns and it is not expressed in the lungs. These studies 

imply that regulation of MIER1 splice variants transcription undergoes different 

promoter usage in particular tissues.  

In virtually all cell lines examined, endogenous MIER1α protein was not 

detectable by western blot. However, its transcript could be detected by qPCR, albeit 

at low levels. One exception was in 3T3-L1 cells, induced to differentiate into 

adipocytes. During differentiation, MIER1α protein expression increased such that it 
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was detectable on a western blot. The low levels of MIER1α in cell lines is consistent 

with its ability to inhibit proliferation (described in section 1.5.6). 

Subcellular localization: Originally, it was presumed only MIER1β isoform localized 

in the nucleus as it contains an NLS (Post, Gillespie, & Paterno, 2001; Ding et al., 

2003; Clements, Mercer, Paterno, & Gillespie, 2012), delineated in Fig. 1.5. This NLS 

resides in the MIER1β-specific stretch of 102 amino acids at the C-terminal end and 

MIER1β isoforms do localize in the nucleus. However, MIER1α also localizes in the 

nucleus in the MCF7 breast carcinoma cell line (Clements et al., 2012). The cassette 

exon 3A encodes a consensus Leu-rich nuclear export signal (NES) and alternative 

splicing to include exon 3A produces an N-terminal variant MIER1-3Aα with altered 

subcellular distribution in MCF7 cells. MIER1α demonstrates 81% nuclear 

localization while only 2% MIER1-3Aα localizes in the nucleus (Clements et al., 

2012). In contrast, the inclusion of exon 3A in MIER1β to produce MIER1-3Aβ had 

little effect on the nuclear targeting of this isoform, which implies that the NES 

contained in exon 3A cannot compete with the NLS contained in C-terminal β 

isoform (Clements et al., 2012).  

1.5.6 hMIER1 in breast cancer 

MIER1α overexpression in T47D human breast carcinoma cells, in 

conjunction with E2 treatment, significantly reduces the anchorage-independent 

growth of these cells (McCarthy et al., 2008). These results suggest MIER1α may 

inhibit breast carcinoma cell’s ability to proliferate without adhering to a 
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substratum, a distinct indicator of cell tumourigenicity. ERα is a receptor whose 

misregulation plays a fundamental role in breast cancer development and 

tumourigenesis (Roy & Vadlamudi, 2012). Therefore, MIER1α corepressor functions 

and its potential to interact with ERα strongly imply that MIER1 plays a role in the 

regulation ERα activity. 

Furthermore, MIER1α protein expression is strongly associated with breast 

cancer staging based on immunohistochemistry (IHC) (Fig. 1.6). It was determined 

that 96% invasive ductal carcinoma (IDC) samples have lost nuclear MIER1α, while 

only half of DCIS samples showed this shift in subcellular localization and 75% of 

normal breast samples show nuclear staining. This may be due to ductal carcinoma 

in situ consists of heterogeneous group of pre-invasion lesions which may or may 

not develop to IDC (McCarthy et al., 2008).  
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Figure 1.6 Loss of nuclear MIER1α during breast cancer progression 

(Modified from (McCarthy et al., 2008) with permission). Values are from the tissues 

microarrays (TMAs) and whole tissue sections. The percentage and 95% confidence 

intervals are shown. The number of samples (n) in each category is listed above the 

bar; **indicates P≤0.001. Nuclear MIER1α was detectable in 75% of normal breast 

samples and in 77% of hyperplasia, but in breast carcinoma, only 51% of DCIS, 25% 

of ILC and 4% of IDC contained nuclear staining.  

(DCIS: ductal carcinoma in situ; IDC: invasive ductal carcinoma; ILC: invasive lobular 

carcinoma.) 
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1.6 Aims of this study 

Precise control of transcriptional regulators is critical to ensure a proper 

cellular response in normal cells.  One key variable is the correct subcellular 

distribution of transcription regulators in cellular compartments in order to execute 

their proper function. Misregulation of this cellular distribution may lead to aberrant 

gene expression/repression, which results in the abnormal physiological responses 

of cells to growth factor or hormonal stimulation. Therefore, it is pivotal to uncover 

the mechanism that regulates nucleocytoplasmic shuttling of transcription 

regulators. 

The regulation of nucleocytoplasmic transport can be modulated by PTMs, 

NLSs masking, cytoplasmic retention and/or modulation of the import machinery. In 

the context of MIER1α, it has been demonstrated that MIER1α acts as a 

transcriptional repressor when localized in the nucleus and breast cancer 

development is coupled with decreased MIER1α nuclear localization. The aim of this 

study is to investigate the regulation of nuclear import and export of the human 

transcription regulator MIER1α in breast carcinoma cell lines, which can assist in 

understanding the mechanism of MIER1α nuclear loss during breast cancer 

progression.  

Objective 1: Investigating the mechanism of MIER1α nuclear localization 

Analysis of MIER1α reveals it does not contain a predicted NLS; however, it 

still localizes in the nucleus in MCF7 cells (Clements et al., 2012). Since the α isoform 
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of MIER1 showed a stepwise loss of nuclear localization during breast cancer 

progression (McCarthy et al., 2008), we proposed that controlling nuclear 

localization of MIER1α might be a critical step for breast cancer development and/or 

progression. Therefore, our first goal was to unravel how MIER1α gets into the 

nucleus in the MCF7 breast carcinoma cell line, in the absence of an intrinsic NLS. 

Objective 2: Molecular mechanism responsible for MIER1α nuclear loss 

The factors responsible for MIER1α shuttling from the nucleus to cytoplasm 

during breast cancer progression are not known. In this part, I investigated the role 

of various hormones and peptide growth factors in regulating MIER1α nuclear 

export. 

Objective 3: Identification of the signalling pathway responsible for shuttling 

MIER1α out of the nucleus 

During the course of tumour progression, cancer cells acquire a number of 

characteristic alterations through changes in the cellular signalling pathways. Cell 

signalling is dominated by response to stimuli through ligand binding to its receptor 

that transmits the signal inside the cell. Hormones and growth factors cause 

pleiotropic effects in cells through the activation of multiple signalling pathways. In 

this section, I continued my investigation of hormone and growth factor-dependent 

activation of pathways that caused MIER1α nuclear export in a human breast 

carcinoma cell line and my goal was to investigate the molecular mechanism.  
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Chapter 2 Nuclear localization of the transcriptional regulator 

MIER1α requires interaction with HDAC1/2 in breast cancer cells 
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2.1 Introduction 

Previous research in the Gillespie laboratory revealed that MIER1α localizes 

in the nucleus even though it does not contain a classic NLS (Clements et al., 2012). 

Deletion analysis had demonstrated that the MIER1β C-terminus contains the only 

functional NLS, leading to the question of how MIER1α is transported to the nucleus 

(Post et al., 2001). The MIER1α sequence contains a classic LXXLL motif for 

interaction with nuclear receptors and indeed, MIER1α interacts with ERα in breast 

carcinoma cells (McCarthy et al., 2008). Furthermore, regulated overexpression of 

MIER1α was shown to inhibit estrogen-stimulated growth in these cells (McCarthy 

et al., 2008). This led us to hypothesize that MIER1α nuclear localization occurs via a 

piggyback mechanism, through its interaction with ERα. In this chapter, we 

demonstrated that nuclear targeting of MIER1α was not through its association with 

ERα as expected; instead, it is transported to the nucleus through a piggyback 

mechanism with HDAC1/2. We also demonstrated that an intact ELM2 domain is 

required for nuclear localization of MIER1α. 

2.2 Methods and materials 

2.2.1 Plasmids and constructs 

MIER1α amino acid residues are numbered from the start of translation (1) 

to the stop codon (433), as shown in Fig. 2.1. Constructs were generated for use in 

cell culture. 
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Figure 2.1 MIER1α amino acid sequence 
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        10         20         30         40         50 

MAEPSVESSS PGGSATSDDH EFDPSADMLV HDFDDERTLE EEEMMEGETN  

        60         70         80         90        100 

FSSEIEDLAR EGDMPIHELL SLYGYGSTVR LPEEDEEEEE EEEEGEDDED  

       110        120        130        140        150 

ADNDDNSGCS GENKEENIKD SSGQEDETQS SNDDPSQSVA SQDAQEIIRP  

       160        170        180        190        200 

RRCKYFDTNS EVEEESEEDE DYIPSEDWKK EIMVGSMFQA EIPVGICRYK  

       210        220        230        240        250 

ENEKVYENDD QLLWDPEYLP EDKVIIFLKD ASRRTGDEKG VEAIPEGSHI  

       260        270        280        290        300 

KDNEQALYEL VKCNFDTEEA LRRLRFNVKA AREELSVWTE EECRNFEQGL  

       310        320        330        340        350 

KAYGKDFHLI QANKVRTRSV GECVAFYYMW KKSERYDFFA QQTRFGKKKY  

       360        370        380        390        400 

NLHPGVTDYM DRLLDESESA ASSRAPSPPP TASNSSNSQS EKEDGTVSTA  

       410        420        430  

NQNGVSSNGP GILQMLLPVH FSAISSRANA FLK* 
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Figure 2.2 Amino Acid sequences of all plasmids used 
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2.2.1.1 Generation of myc-tag fusion constructs 

2.2.1.1.1 Ligation of MIER1α insert into myc-tagged plasmid 

Human MIER1 gene structure, the sequence of its transcripts and the myc-tag 

vector, pCS3+MT, (a kind gift of Dr. David Turner, University of Michigan; 

http://sitemaker.umich.edu/dlturner.vectors/cs2_polylinker_descriptions) 

containing full-length MIER1α have been described (Paterno et al., 2002). Specific 

primers incorporating 5’ and 3’ BamHI sites were used to amplify the entire coding 

sequence of hMIER1α and the amplified sequence was inserted into the BglII site of 

CS3+MT plasmid. For the MIER1α deletion constructs, previously described 

constructs representing amino acids (aa)1-283, aa164-433, aa287-433 or aa164-

283 of MIER1α in the Clontech pM vector (Ding et al., 2003) were digested with 

EcoRI and the MIER1α insert was ligated into the EcoRI site of a pCS3+MT vector 

that had been modified to maintain the MIER1 sequence in-frame with the myc-tag. 

This modified pCS3+MT, renamed pCS4+MT, contains a thymidine (T) inserted 

upstream of the EcoRI site.  

Plasmids containing ERα shRNA (Cat. No. TR320346), HDAC1 shRNA (Cat. No. 

TR312496), HDAC2 shRNA (Cat. No. TR312495) or a control scrambled shRNA (Cat. 

No. TR20003) were purchased from Origene Technologies, Inc. 

2.2.1.1.2 Digestion and purification of inserts from pM and pCR3.1vector 

pCR3.1 vector containing the desired insert aa287-433 was digested with 

restriction enzyme EcoRI and incorporated in the myc-tagged vector CS4+MT, 

http://sitemaker.umich.edu/dlturner.vectors/cs2_polylinker_descriptions
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generating myc-aa 287-433. pM vector containing the desired insert (aa164-239, 

aa240-283, aa164-251, aa164-273) were digested with restriction enzyme EcoRI 

and incorporated in the myc-tagged vector CS4+MT, generating myc-aa164-239, 

myc-aa240-283, myc-aa164-251 and myc-aa164-273. The digested inserts were gel 

purified from a 1% agarose gel in 1xTris/Borate/EDTA (TBE) buffer.  

2.2.1.2 Site-direct mutagenesis 

Myc-tagged MIER1α containing a point mutation 214W→A in the ELM2 

domain (ELM2 mutant) was produced using the QuikChange site-directed 

mutagenesis kit (Stratagene) according to the manufacturer’s instructions along 

with the following primers: 5’GAT CAG CTC CTG GCG GAC GCT GAG TAC TTA GC-3’ 

(forward); 5’-GGT AAG TAC TCA GGG TCC GCC AGG AGC TGA TC-3’ (reverse).  

2.2.1.3 Sequencing 

The sequences/mutations were confirmed by automated dideoxynucleotide 

sequencing of both strands (DNA Sequencing Facility, The Center for Applied 

Genomics, The Hospital for Sick Children, Toronto, Canada). 

2.2.1.4 Plasmid isolation and purification 

For transfection, transformed XL1-Blue cells were grown o/n in 200 ml LB 

containing 50 µg/ml ampicillin. All plasmids were prepared using the EndoFree®  

Plasmid Maxi Kit (QIAGEN, Cat. No. 12362), according to the manufacturer’s 

instructions, which is listed in detail in Appendices 1. 
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2.2.2 Cell lines and culture conditions 

The human breast adenocarcinoma cell line, MCF7, was obtained from the 

American Tissue Culture Collection (ATCC) and cultured in DMEM (GIBCO, REF 

11965-092) containing 10% serum (7.5% calf serum (CS) (GIBCO Cat. No. 16010-

159) plus 2.5% fetal bovine serum (FBS) (GIBCO, REF 1884253)) and 1 mM sodium 

pyruvate (GIBCO, REF 11360-070). The MC2 and VC5 cell lines were produced by Dr. 

V.C. Jordan (Georgetown University Medical Center, Washington, DC) and derived by 

stably transfecting the ER-negative MDA-MB-231 breast carcinoma cell line with 

wild-type erα or empty vector (pSG5), respectively, as described (Liu, Lee, Reyes, 

Zapf, & Jordan, 2001; Pearce, Liu, & Jordan, 2003). MC2 and VC5 cells were 

maintained in phenol red-free MEM (GIBCO, REF 31053-028) containing 5% 

charcoal-dextran treated FBS (HyClone, Cat. No. SH30068.03), 1% L-glutamine 

(GIBCO, Cat. No. 25030081), 6 ng/ml insulin (Gibco, REF 12585-014) and 200 µg/ml 

Geneticin (Invitrogen, Cat. No. 10131035). All cells were grown in a humidified 37 oC 

incubator with 5% CO2. These three different cell lines were used in this study, as 

depicted in the following Table 2.1. 

All cells were grown in 100 mm plates (Corning) containing 10 ml of 

respective media as described above. The optimal confluency is different for every 

cell line and depends on their respective growth patterns and cellular structure. 

Cells were subcultured at various dilutions depending on the cell line once they 

reached the optimal confluency. Briefly, cells were trypsinized in 0.025% trypsin in 

1×PBS/1 mM EDTA and diluted into a fresh 100 mm tissue culture dish. Stocks of 
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cells were frozen at -70oC in CS containing 10% DMSO and 1×106/ml cells were 

frozen in one freezing vial (Nalge Nunc International). 

Table 2.1 List of cell lines used in this study  

Cell line Description Supplier 

MCF7 Mammary gland, 
adenocarcinoma,                   

ER positive 

ATCC: ATCC® #: HTB-126TM 

MC2 Mammary gland, 
adenocarcinoma,                    

ER positive 

Georgetown University Medical 
Center, Washington, DC 

VC5 Mammary gland, 
adenocarcinoma,                   

ER negative 

Georgetown University Medical 
Center, Washington, DC 

   

2.2.3 Transient transfection 

2.2.3.1 Neon®  electroporation 

Cells were transfected by electroporation using the Neon®  electroporation 

device (Invitrogen Corp.) and the following settings: 1000 V, 30 ms, 2 pulses for 

MCF7 or 1400 V, 10 ms, 4 pulses for MC2 and VC5 cell lines. 3x105 (MCF7) or 

2.6x105 (MC2 and VC5) cells were mixed with 0.5 µg myc-tagged plasmid and loaded 

into a 10 µl tip for electroporation. For the ERα shRNA knockdown experiments, 1.0 

µg shRNA and 0.5 µg myc-tagged plasmid were mixed together with 3×105 MCF7 

cells, and then loaded into a 10 µl tip for electroporation. After transfection, cells 

were plated at a density of 4×104/well in Falcon 8-well culture slides (BD 
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BioSciences, Cat. No. 0877426) for confocal analysis or 3×105/well in 6-well dish for 

Western blot analysis. For HDAC1 and 2 double knockdown experiments, 0.8 µg of 

each HDAC shRNA plasmid was used for electroporation; for single knockdowns, the 

total amount of plasmid transfected was kept constant by adding 0.8 µg of 

scrambled shRNA plasmid. Electroporation and plating was performed as above. 

2.2.3.2 Mirus TransIT-LT1 

Sixteen hours after electroporation, cells were transfected with 0.5µg plasmid 

encoding myc-tagged MIER1α using Mirus TransIT-LT1 ( Mirus® , Cat. No. MIR 2300) 

transfection reagent (Medicorp, Inc.) in a 3:1 ratio of reagent: DNA (v/w), according 

to the manufactures’ protocol. Transfected cells were cultured for a total of 48h, 

then either fixed with 4% paraformaldehyde/PBS for confocal analysis, or 

solubilized in 400 µl of SDS sample buffer (50 mM Tris-Cl pH6.8, 2% SDS, 5% β-

mercaptoethanol, 10% glycerol, 0.1% bromophenol blue) for western analysis. 

2.2.4 Antibodies 

The 9E10 anti-myc tag mouse monoclonal antibody was prepared as 

described in Blackmore et al. (Blackmore et al., 2008). The anti-ERα antibody (HC-

20), anti-HDAC1 antibody (H-51) and anti-HDAC2 antibody (H-54) were purchased 

from Santa Cruz Biotechnology Inc. For confocal analysis, Alexa Fluor-488 labeled 

donkey anti-mouse (Cat. No. 715-545-150) and Alexa Fluor-647 labeled donkey 

anti-rabbit (Cat. No. 715-606-150) were purchased from Jackson ImmunoResearch 

Laboratories Inc. HRP-labeled sheep anti-mouse (Cat. No. SLBM8280V) and donkey 
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anti-rabbit antibodies (Cat. No. SLBL4004V) were purchased from GE Healthcare 

Corp. Anti-β-actin (A5441) was purchased from Sigma-Aldrich Co.  

Table 2.2 Antibodies used for immunofluorescence (IF) and western blot (WB) 

Name Usage Source Dilution Incubation 

 9E10 Anti-myc Developmental Studies 
Hybridoma Bank 

1:200 in IF; 

1:2000 in WB 

o/n in IF;  

o/n in WB 

 HC-20 Anti-ERα Santa Cruz 
Biotechnology Inc. 

1:200 in IF; 

1:2000 in WB 

o/n in IF;  

o/n in WB 

 H-51 Anti-
HDAC1 

Santa Cruz 
Biotechnology Inc. 

1:200 in IF; 

1:2000 in WB 

o/n in IF;  

o/n in WB 

 H-54 Anti-
HDAC2 

Santa Cruz 
Biotechnology Inc. 

1:200 in IF; 

1:2000 in WB 

o/n in IF;  

o/n in WB 

DAM-
AlexaFluor-
488 

Donkey-
anti-mouse 

Jackson 
ImmunoResearch 
Laboratories Inc. 

1:300 in IF 1h in IF 

DAR-
AlexaFluor-
647 

Donkey-
anti-rabbit 

Jackson 
ImmunoResearch 
Laboratories Inc. 

1:300 in IF 1h in IF 

HRP-SAM Sheep-anti-
mouse 

GE Healthcare Corp. 1:3000 in WB 1h in WB 

HRP-DAR Donkey-
anti-rabbit 

GE Healthcare Corp. 1:3000 in WB 1h in WB 

 A5441 Anti-β-
actin 

Sigma-Aldrich Co. 1:5000 in WB 1h in WB 
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2.2.5 Co-immunoprecipitation (co-IP) 

Forty-eight hours post-transfection, cells were washed once with 1×PBS and 

lysed on ice for 30 min in 1×IP buffer (1% Triton X-100, 150 mM NaCl, 10 mM Tris-

Cl pH7.4, 10 mM EDTA, 0.02% Sodium Azide, 1 mM PMSF, 1% protease inhibitor 

cocktail). Cell lysates were passed several times through a 26-gauge needle then 

centrifuged at 12,000×g for 15 min at 4oC. The supernatants were incubated 

overnight at 4oC with anti-HDAC1 or anti-HDAC2 antibody pre-bound to Protein A-

agarose beads (Pierce Biotechnology). After incubation, the beads were washed six 

times with ice-cold 1×IP buffer and bound proteins were solubilised in 30 µl of 1.5× 

SDS sample buffer and analyzed by SDS-PAGE-Western. 

2.2.6 Western blot 

2.2.6.1 Western blot materials 

The 0.2 µm PVDF membranes (Trans-Blot TurboTM transfer Pack) and 

Trans-blot TurboTM system were purchased from Bio-Rad Laboratories. Prestained 

high and low molecular weight markers (GeneDireX® ), Amersham’s ECL Plus 

Western Blotting System purchased from GE Healthcare Corp. were used for the 

detection. 

2.2.6.2 Western blot methods 

Western blot analysis was performed using 7.5% SDS-PAGE gels. After 

transfer of the proteins to the PVDF membranes, the membrane was incubated in 5% 

blocking powder (skim milk powder) in TBS-T (20 mM Tris, 137 mM NaCl, 1% (v/v) 

Tween-20, pH7.6) for 1 h at RT. The membrane was then incubated overnight in 
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TBS-T containing a primary antibody (see Table 2.2 for list of antibodies used, 

dilution and incubation time for each antibody) at 4oC. After incubation with the first 

antibody, the membrane was washed in large volumes of TBS-T for 1 h and then the 

secondary antibody (see Table 2.2) was added in TBS-T and incubated for 1h. After 

incubation with secondary antibody, the membrane was washed in TBS-T for 

another 1 h before detection of the protein with Amersham’s ECL Plus Western 

Blotting System. 

2.2.6.3 Cell lysis for direct western blot 

MCF7 cells were plated at 3×105 cells/well in 6-well dish and left to grow in 

incubator. Cells were collected at 48 h post-transfection in ERα knockdown 

experiment. After washing in cold 1×PBS on ice, cells were then solubilized in 400 µl 

1×SDS sample buffer (50 mM Tris-Cl pH6.8, 2% SDS, 5% β-mercaptoethanol, 10% 

glycerol, 0.1% bromophenol blue) for western blot. 1/20th of the cell lysate was 

separated on a 7.5% SDS-PAGE acrylamide gel and the separated proteins were 

transferred to PVDF membranes by Trans-blot TurboTM system. 

2.2.7 Immunofluorescence, Confocal microscopy and statistical analysis 

2.2.7.1 Immunofluorescence 

Immunofluorescence was performed as listed in Appendix 2. 

2.2.7.2 Confocal microscopy 

Cells were examined under an Olympus FluoView FV1000 confocal 

microscope. Fluorescence images were obtained by sequential z-stage scanning in 
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two or three channels (DAPI, Alexa Fluor-488 and/or Alexa Fluor-647); z-stacks 

were compiled into individual images. 

2.2.7.3 Statistical analysis 

Quantitative analysis of confocal z-stacks was performed using Image J 

software v1.48 (Bankhead, 2014), as described in (Clements et al., 2012). Briefly, cell 

outlines were traced and the sum of the pixel values within the outlines for all slices 

was determined. After subtracting the background, this value was used as the 

corrected whole cell MIER1 fluorescence. The sum of the pixel values for nuclei was 

determined in the same way and used as corrected nuclear MIER1 fluorescence. The 

nuclear value was subtracted from the whole cell value to obtain cytoplasmic MIER1 

fluorescence and the corrected fluorescence value in each compartment was plotted 

as a proportion of the total. 20-30 cells were measured for each sample from 3 

independent experiments. 

Statistical analysis was performed using a two-sided Fisher’s exact test with 

the Instat v3.0 software program (Graphpad Software, San Diego, CA, USA). 

2.3 Results 

2.3.1 Nuclear localization of MIER1α is not dependent on its interaction with 

ERα 

In the original characterization of human MIER1α and MIER1β, it was 

determined that α isoform localized in the cytoplasm of NIH3T3, while the β isoform 

was exclusively nuclear (Paterno et al., 1998). Subsequently, MIER1α was 
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demonstrated that it is localized in the nucleus of MCF7 breast carcinoma cells 

(Clements et al., 2012). Given that MIER1α does not contain NLS and interacts with 

ERα (McCarthy et al., 2008), we investigated whether MIER1α is carried into the 

nucleus of MCF7 cells by binding to ERα, in a “piggyback” fashion. Cells were 

transfected with plasmids encoding a myc-tagged MIER1α along with either an ERα 

shRNA or a scrambled, control shRNA and localization was determined by confocal 

microscopy. Subcellular localization was scored as: 1) NUCLEAR; if the nucleus was 

intensely stained, with little or no cytoplasmic staining; 2) CYTOPLASMIC; if staining 

was primarily in the cytoplasm, with little or no staining in the nucleus; 3) WHOLE 

CELL; if both the nucleus and cytoplasm were stained. The shRNA was effective at 

knocking down endogenous ERα expression levels, as determined by Western blot 

and confocal microscopy, while the scrambled shRNA had no effect (Fig. 2.3A, 

compare panels c & g; Fig. 2.3C, compare lanes 2 & 3). ImageJ analysis of the 

Western blot in Fig. 2.3C, determined that ERα expression was knocked down to 22% 

of control. In cells expressing the scrambled shRNA, 98% displayed nuclear MIER1α 

(Fig. 2.3A panels a-d, & Fig 2.3B) and this pattern did not change when ERα 

expression was knocked down. The cells expressing ERα shRNA displayed 95% 

nuclear MIER1α (Fig. 2.3A panels e-h, & Fig. 2.3B), even cells with no detectable ERα 

(see arrowheads in Fig. 2.3A, panes f&g). 
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Figure 2.3 Knockdown of ERα does not affect nuclear localization of MIER1α in 

MCF7 cells 

MCF7 cells were transfected with myc-tagged MIER1α plus either a control, 

scrambled shRNA or an ERα shRNA and analysed by confocal microscopy (A, B) or 

immunoblotting (C). (A) Illustrative examples of cells showing stained nuclei (DAPI; 

panels a, e), MIER1α localization (9E10 anti-myc tag and an AlexaFluor-488 

secondary antibody; panels b, f) and ERα localization (HC-20 antibody and an 

AlexaFluor-647 secondary antibody, panels c, g). Panels d, h show merged 488 and 

647 channels. Arrowheads indicate nuclei. Note that MIER1α in nuclear even in cells 

that lack detectable ERα (arrowheads in panels f & g). (B) Histogram showing the 

results of 3 independent experiments; random fields were selected and the stained 

pattern of each cell within the field was scored visually according to the categories 

described in the RESULTS. 180-190 cells were scored for each shRNA. Plotted is the 

percentage of cells in each category ± S.D; there is no significant difference between 

the percent nuclear for the two samples (p>0.05). (C) Western blot to confirm 

knockdown of ERα. Extracts from MCF7 cells transfected with myc-tagged MIER1α 

and either empty vector (lane 1), control scrambled shRNA (lane 2) or ERα shRNA 

(lane 3). The blot was stained with anti-β-actin (lower panel) to verify equal loading 

or with anti-ERα (upper panel). 

 



74 
 



75 
 

 

To confirm that ERα is not required for targeting MIER1α to the nucleus, we 

examined localization in two clonal lines of MDA-MB-231 (ER-), MC2 and VC5, 

stably expressing ERα or empty vector, respectively (Liu et al., 2001; Pearce et al., 

2003). MC2 and VC5 cells were transfected with myc-tagged MIER1α and 

localization was determined by confocal microscopy (Fig. 2.4). Similar localization 

patterns were seen in the 2 cell lines: most cells exhibited nuclear MIER1α (Fig. 2.4 

B; 89% for VC5 and 86% for MC2), regardless of whether ERα was present or not 

(Fig. 2.4 A, panels b-c & f-g). Taken together, these data demonstrate that ERα is not 

involved in transporting MIER1α to the nucleus. 
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Figure 2.4 MIER1α is localized in the nucleus in ER- breast carcinoma cells 

(A) MDA231-derived cell lines, VC5 (vector) and MC2 (stably expressing ERα), were 

transfected with myc-tagged MIER1α and analyzed by confocal microscopy using 

DAPI (a,e), 9E10 anti-myc tag (b,f), anti-ERα (c,g) and the secondary antibodies 

described in the legend to Fig. 2.2. Panel d shows merged MIER1α and DAPI staining 

while panel h shows merged MIER1α and ERα staining. Note that MIER1α is 

localized in the nucleus in VC5 cells, even in the absence of ERα (arrowheads in 

panels a-d). (B) Histogram showing the results of 3 independent experiments; 

random fields were selected and the staining pattern of each cell within the field 

was scored visually. 170-380 cells were scored for each cell line. Plotted is the 

percentage of cells in each category ±S.D; there is no significant difference between 

the percent nuclear for the two cell lines (p>0.05).
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2.3.2 The ELM2 domain of MIER1α is required and sufficient for targeting to 

the nucleus 

Identifying the region of MIER1α that is required for nuclear targeting might 

provide insight into the mechanism involved. Therefore, we performed a deletion 

analysis of myc-tagged MIER1α. MCF7 cells were transfected with plasmids 

encoding full-length MIER1α (aa1-433) or with a deletion construct containing the 

following regions: 1) the N-terminal acidic stretches + the ELM2 domain (aa1-283), 

2) the ELM2 + SANT +α C-terminus (aa164-433), 3) the SANT + α C-terminus 

(aa287-433) or 4) the ELM2 domain alone (aa164-283) (Fig. 2.5). Localization was 

determined by confocal microscopy and compared to the myc-tag alone and to full-

length MIER1α. The myc-tag alone displays whole cell staining (Fig. 2.5, panels a-c; 

Fig. 2.5 A-B), as expected of a macromolecule that is sufficiently small (<40 kDa) to 

undergo passive diffusion through the nuclear pore (reviewed in (Marfori et al., 

2011)). Myc-tagged full-length MIER1α, on the other hand, is almost exclusively 

nuclear (97%; Fig. 2.5, panels d-f; Figs. 2.5 A-B). Constructs 1 & 2 localized in the 

nucleus, similar to full-length MIER1α (94% and 98% nuclear; Fig. 2.5, panels g-l; 

Figs. 2.5 A-B), while construct 3 showed a distribution pattern similar to the myc tag 

alone, i.e. whole cell (0% exclusively nuclear; Fig. 2.5, panels m-o; Fig. 2.6 A-B). Thus, 

only constructs containing the ELM2 domain were targeted to the nucleus and 

indeed, the ELM2 domain in isolation was localized in the nucleus (85% nuclear; Fig. 

2.5, panels p-r, & Figs. 2.6 A-B). To obtain a quantitative measure of MIER1α 

localization within the cell, we performed an analysis of confocal z-stacks for each 
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construct, using the ImageJ software program (Bankhead, 2014) and determined the 

fluorescence in the nuclear and cytoplasmic compartments (Fig. 2.6 B). The results 

of this analysis show that 93% of full-length MIER1α and 83-84% of constructs 1, 2 

& 4 are in the nuclear compartment, while only 37% of construct 3 was nuclear. 

Together these results demonstrate that the ELM2 domain is necessary and 

sufficient to target MIER1α to the nucleus. 
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Figure 2.5 The ELM2 domain directs nuclear localization of MIER1α 

MCF7 cells were transfected with myc-tag empty vector (panels a-c), myc-tagged 

full-length MIER1α (d-f) or a myc-tagged MIER1α deletion construct containing 

either the acidic + ELM2 domains (g-i), the ELM2 + SANT + α C-terminus (j-l), the 

SANT domain + α C-terminus (m-o) or the ELM2 domain alone (p-r). Localization 

was analyzed by confocal microscopy using DAPI and 9E10 anti-myc tag antibody. 

Illustrative examples of cells showing stained nuclei and MIER1α localization; 

arrowheads show examples of nuclei. A schematic, drawn to scale and illustrating 

the MIER1α domains and constructs used, is shown on the right; the acidic stretches 

are shown as black bars, the ELM2 domain is in yellow, the SANT domain in purple, 

the α C-terminus in pink and all remaining sequence in blue. The amino acids (aa) 

encoded by each construct are indicated. The myc epitope tag is shown in green. 
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Figure 2.6 The ELM2 domain is sufficient for nuclear localization of MIER1α 

(A) Histogram showing the results of 3 independent experiments; random fields 

were selected and the staining pattern of each cell within the field was scored 

visually. 220-970 cells were scored for each construct. Plotted is the percentage of 

cells in each category ± S.D; the percent nuclear for the SANT domain + α C-terminus 

(aa287-433) construct is significantly less than that for full-length MIER1α (p<0.05). 

(B) Bar graph showing the intracellular distribution of MIER1α. Pixel values for the 

nuclear and the cytoplasmic compartments were measured in confocal z-stacks 

using Image J v1.38; plotted is the proportion of the total signal in each 

compartment, using measurements from 20-30 cells for each construct. The 

proportion of the SANT domain + α C-terminus (aa287-433) construct in the nuclear 

compartment is significantly less than that of full-length MIER1α (p<0.05). 
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Non-canonical NLSs contained in cargo proteins can be recognized and 

directed into the nucleus by importin-β. Since the ELM2 domain of MER1α does not 

contain a classical NLS, we investigated whether it contains non-canonical NLS that 

was yet to be described. 

First, we aimed to define the sequence required for nuclear targeting by 

producing six myc-tagged deletion constructs of the ELM2 domain for analysis. The 

first two were designed to divide the 120aa ELM2 domain into an N-terminal 76aa 

and a C-terminal 44aa portion (Fig. 2.7, panels d-i). In contrast to the intact ELM2 

construct (Fig. 2.5, panels a-c, & Fig. 2.6), neither portion was targeted to the 

nucleus (Fig. 2.7, panels d-I,). To verify that the critical sequence was not bisected in 

these 2 constructs, we produced 2 additional constructs that maintained the 

integrity of this region. C-terminal deletions were designed to remove either the last 

10aa or the last 32aa. As can be seen in Fig. 2.7, panes j-o, and Fig. 2.8, neither 

construct was localized in the nucleus. Thus, removal of as little as 10aa from the C-

terminus of the ELM2 domain abolished nuclear targeting. These data led us to 

conclude that an intact ELM2 domain is required for nuclear targeting of MIER1α. 
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Table 2.3 ELM2 domain does not contain cNLS 

ELM2 domain sequence (aa164-283): 

EESEEDEDYIPSEDWKKEIMVGSMFQAEIPVGICRYKENEKVYENDDQLLWDPEYLP 
EDKVIIFLKDASRRTGDEKGVEAIPEGSHIKDNEQALYELVKCNFDTEEALRRLRFNVKA 
ARE 

Classical NLS: 

Monopartite NLSs: K(K/R)X*(K/R)  

Bipartite NLSs :(K/R)(K/R)X*10-12(K/R)3/5 

*: X stands for any amino acid. 
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Figure 2.7 Nuclear localization requires an intact ELM2 domain 

MCF7 cells were transfected with a myc-tagged intact ELM2 domain (aa164-283) 

(panels a-c) or a myc-tagged ELM2 deletion construct containing aa 164-239 (panels 

d-f), aa240-283 (panels g-i), aa 164-251 (panels j-i), aa164-273 (panels m-o). 

Localization was analyzed by confocal microscopy using DAPI and the 9E10 anti-

myc tag antibody. Illustrative examples of stained cells showing MIER1α localization. 

Note that nuclear localization was only detected with an intact ELM2 domain (a-c); 

arrowheads indicate examples of stained nuclei. The rest of constructs displayed 

whole cell staining (arrows in d-o). A schematic drawn to scale and illustrating the 

constructs used, is shown on the right as are the amino acids (aa) encoded by each 

construct. The myc epitope tag is shown in green. 
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Figure 2.8 Statistical data demonstrate the necessity of intact ELM2 domain for 

MIER1α nuclear localization 

Histogram showing the results of 3 independent experiments; random fields were 

selected and the staining pattern of each cell within the field was scored visually. 

465-565 cells were scored for each construct. Plotted is the percentage of cells in 

each category ± S.D; the percent nuclear of all deletion constructs are significantly 

less than that of the intact ELM2 domain (p<0.05). 
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2.3.3 Interaction with HDAC1/2 is required for nuclear localization of MIER1α 

The results presented in Figs. 2.9 and 2.10 are reminiscent of a previous 

study characterizing the interaction of MIER1α with HDAC1 (Ding et al., 2003). 

Utilizing a similar deletion analysis, this interaction was shown to require an intact 

ELM2 domain. In fact, a single point mutation of a highly conserved tryptophan (W) 

at position 214 in the ELM2 domain abolished interaction between MIER1 and 

HDAC1. MIER1 also interacts with the highly related HDAC2 by 214W, but not with 

any of the other class I, IIa, IIb or IV HDACs (Bantscheff et al., 2011; Joshi et al., 2013) 

and HDAC1/2 are the only proteins known to interact with the ELM2 domain of  

MIER1α. Therefore, we investigated whether interaction with HDAC1/2 plays a role 

in nuclear localization of MIER1α. MCF7 cells were transfected with either a myc-

tagged, full-length wild-type MIER1α (WT-MIER1α) or a myc-tagged full-length 

mutant containing the point mutation 214W→A (ELM2 mutant) and analyzed by co-

IP for interaction with endogenous HDAC1 or HDAC2. Subcellular localization was 

determined by confocal microscopy in parallel samples. Our co-IP results confirm 

WT-MIER1α interaction with both HDAC1 and HDAC2 (Fig. 2.9, lane 2, upper and 

lower panels) and demonstrate that the ELM2 mutant does not interact with either 

HDAC1 or HDAC2 (Fig. 2.9, lane 3, upper and lower panels). Confocal analysis 

revealed that HDAC1 and 2 expression levels were not affected by expression of the 

ELM2 mutant (Fig. 2.10 A&B, compare panels b&f); however, nuclear targeting is 

lost with this ELM2 point mutation (Fig. 2.10 A&B, compare panels c and g; Fig. 

2.11), with only 10% of cells now showing nuclear staining. Quantitative analysis of 
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the fluorescence in the nuclear and cytoplasmic compartments using ImageJ shows 

that 90% of wild-type MIER1α is in the nucleus but that there was significantly less 

(44%) of the ELM2 mutant located in the nuclear compartment (Fig. 2.11B; p<0.05). 

These data suggest that interaction with HDAC1/2 is required to target MIER1α to 

the nucleus. 
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Figure 2.9 Western blot showing that ELM2 mutant (214W→A) does not interact 

with HDAC1 or HDAC2 

MCF7 cells were transfected myc-tag empty vector (lane 1, 6), myc-tagged full-

length wild-type MIER1α (lanes 2, 4) or myc-tagged full-length ELM2 mutant (lanes 

3, 5). Cells extracts were either subjected to immunoprecipitation (lanes 1-3) with 

anti-HDAC1 (upper panel) or anti-HDAC2 (lower panel) or loaded directly on the gel 

(lanes 4-6). Blots were stained with the 9E10 anti-myc tag antibody. 
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Figure 2.10 Interaction with HDAC1/2 is required for nuclear localization of 

MIER1α 

MCF7 cells were transfected with myc-tagged, full-length, wild-type MIER1α (a-d) or 

a full-length, mutant MIER1α (e-h) containing a single point mutation (214W→A) in 

the ELM2 domain (ELM2 mutant) known to abrogate its ability to interact with 

HDAC1/2. Localization was analyzed by confocal microscopy using DAPI, 9E10 anti-

myc tag (AlexaFluor-488) and anti-HDAC1 (panel A) or anti-HDAC2 (panel B) 

(AlexaFluor-647). (A-B) Illustrative examples of cells showing HDAC and MIER1α 

localization. Note that ELM2 mutant loses the exclusively nuclear staining seen with 

wild-type MIER1α (arrowheads in c) and shows predominantly whole cell staining 

(arrows in g). 
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Figure 2.11 214W→A mutation reduces MIER1α nuclear localization 

(A) Histogram showing the results of 3 independent experiments; random fields 

were selected and the staining pattern of each cell within the field was scored 

visually; >275 cells were scored for each construct. Plotted is the percentage of cells 

in each category ± S.D; the percent nuclear for the ELM2 mutant is significantly less 

than that of wild-type MIER1α (p<0.05). (B) Bar graph showing the intracellular 

distribution of MIER1α Pixel values for the nuclear and the cytoplasmic 

compartments were measured in confocal z-stacks using Image J v1.38; plotted in 

the proportion of the total signal in each compartment, using measurements from 

30 cells for each construct. The proportion of the ELM2 mutant in the nucleus is 

significantly less than that of WT-MIER1α (p<0.05). 
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2.3.4 HDAC1 and 2 depletion causes MIER1α nuclear loss 

To confirm the role of HDAC1/2 in nuclear localization of MIER1α, we 

investigated the effect of depleting HDAC1 and 2 using shRNA. MCF7 cells were co-

transfected with a plasmid encoding a myc-tagged MIER1α along with either a 

control shRNA, an HDAC1 shRNA, an HDAC2 shRNA or both HDAC1&2 shRNAs. 

Localization was determined by confocal microscopy and quantified by ImageJ 

analysis of confocal z-stacks (Fig. 2.12); HDAC1 and 2 knockdown was verified in 

parallel samples by Western Blot (Fig. 2.11). Individual knockdowns of HDAC1 and 

HDAC2 help confirm that each shRNAs used in this analysis is specific for its target 

and allow us to determine the requirement of each for nuclear localization of 

MIER1α. HDAC1 shRNA was effective in knocking down endogenous HDAC1 to 27% 

of control while having little effect on HDAC2 expression (Fig. 2.11A, lanes 2 & 6; Fig 

2.12B). Likewise, HDAC2 shRNA reduced endogenous HDAC2 levels to 45% of 

control without affecting HDAC1 (Fig. 2.11A, lanes 7 & 3; Fig. 2.12B).  In cells 

transfected with both shRNAs, HDAC1 and 2 were reduced to 26% and 44% 

respectively (Fig. 2.11A, lanes 4 & 8; Fig 2.12B). These data confirm the specificity 

and effectiveness of the shRNAs used in this set of experiments. 

Confocal analysis of cells depleted for HDAC1, HDAC2 or for both revealed a 

significant reduction in the percentage of cells with nuclear MIER1α when 

compared to controls (p<0.05; Fig. 2.12A & C). Exclusively nuclear MIER1α was 

detected in 86% of control cells, but reduced to 58% of those depleted for HDAC1, 
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51% of those depleted for HDAC2 and 44% of those depleted for both (Fig. 2.12A). 

Quantitative analysis of confocal z-stack revealed a similar pattern: in the control, 

88% of MIER1α was in the nuclear compartment and this was reduced to 59%, 55% 

and 52% in HDAC1, HDAC2 and both HDAC1 and 2 depleted cells, respectively (Fig. 

2.12B). These data confirm that depletion of HDAC1 or HDAC2 or both results in a 

significant reduction of MIER1α in the nucleus (p<0.05). Together, these results 

demonstrate that both HDAC1 and 2 are involved in targeting MIER1α to the 

nucleus. 
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Figure 2.12 Individual and double knockdown of HDAC1 and 2 in MCF7 cells using 

shRNA 

MCF7 cells were transfected with myc-tagged MIER1α and either control shRNA or 

HDAC shRAN(s), then analyzed by immunoblotting. (A) Western blot analysis to 

confirm HDAC knockdown and specificity of each shRNA. Extracts from MCF7 cells 

were transfected with myc-tagged MIER1α and either control scrambled shRNA 

(Con; lane 1, 5), HDAC1 shRNA (Hd1; lane 2, 6), HDAC2 shRNA (Hd2, lane 3, 7) or 

both HDAC1 and 2 shRNAs (Hd1+Hd2; lanes 4, 8). Duplicate samples were stained 

with anti-HDAC1 (lanes 1-4) or anti-HDAC2 (lanes 5-8). The blots were restained 

with anti-β-actin (lower panels) to verify equal loading. (B) The HDAC protein 

bands shown in (A) were quantified using ImageJ, normalized to β-actin and plotted 

as a proportion of the HDAC level in control cells. Note that each shRNA is specific 

for its target. 
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Figure 2.13 HDAC1 and 2 knockdown reduces nuclear localization of MIER1α 

(A) Localization was analyzed in parallel samples by confocal. Histogram showing 

the results of 2 independent experiments; random fields were selected and the 

staining pattern of each cell within the field was scored visually; 400-600 cells were 

scored for each shRNA. Plotted is the percentage of cells in each category ± S.D; the 

percent nuclear of HDAC1, HDAC2 or HDAC1&2 depleted cells were significantly 

less than that of controls (p<0.05). (B) Bar graph showing the intracellular 

distribution of MIER1α. Pixel values for the nuclear and the cytoplasmic 

compartments were measured in confocal z-stacks using Image J v1.38; plotted is 

the proportion of the total signal in each compartment, using measurements from 

20-25 cells for each shRNA. The proportion of MIER1α in the nucleus is significantly 

less in depleted cells than in controls (p<0.05 for each). (C) Illustrative examples of 

cells depleted for both HDAC1 and 2, stained as described in the legend to Fig. 2.11 

for MIER1α (panels b, f) and with combined anti-HDAC1 and 2 antibodies (panels c, 

g), using MCF7 cells co-transfected with myc-tagged MIER1α and either control 

shRNA (panels a-d) or HDAC1+HDAC2 shRNAs (panels e-h). Note that MIER1α 

staining is nuclear in control cells (arrowheads in a-d) but predominantly “whole 

cell” in cells with reduced HDAC1&2 staining (arrowheads in e-h). 
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2.4 Discussion 

Although small proteins can passively diffuse through the nuclear pore, the 

majority of proteins with nuclear functions undergo active transport into the 

nucleus (reviewed in (Wagstaff & Jans, 2009)). The most common transport 

mechanism involves recognition of a classic NLS within the cargo protein by the 

importins, which then mediate interaction with the NPC and translocation into the 

nucleus. However, other mechanisms have been described, including direct binding 

to nucleoporins in the NPC, e.g. β-catenin (Fagotto et al., 1998), piggybacks through 

the interaction with another nuclear protein, lymphocyte enhancer factor 1 (LEF-1) 

(Asally & Yoneda, 2005); breast cancer susceptibility gene 1 (BRCA1) can enter the 

nucleus piggybacked by BRCA1-associated RING domain protein 1 (BARD1) 

(reviewed in (Thompson, 2010)). Therefore, it is not surprising that MIER1α can be 

localized in the nucleus even though it does not contain a recognizable, functional 

NLS. However, it was unexpected to discover that even though MIER1α binds to ERα 

and inhibits its growth stimulating activity, this interaction is not involved in 

transporting MIER1α to the nucleus. This leads us to conclude that MIER1α only 

interacts with ERα once it is in the nucleus. 

HDAC1 and 2 are widely expressed (Wen-ming, Yao, Sun, Davie, & Seto, 1997; 

de Ruijter, van Gennip, Caron, Kemp, & van Kuilenburg, 2003) and frequently 

located together in three major multi-protein corepressor complexes: Sin3, NuRD, 

and CoREST (Haberland, Montgomery, & Olson, 2009; Joshi et al., 2013; Yang & Seto, 

2003). Interestingly, MIER1 is not contained in any of these complexes, but rather 
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forms part of a unique corepressor complex with HDAC 1&2, CDYL and G9a 

(Bantscheff et al., 2011; Joshi et al., 2013). HDAC1 and HDAC2 are nearly identical 

(Gregoretti, Lee, & Goodson, 2004; Haberland et al., 2009), with an overall sequence 

identity of 82% and both belong to the class I HDACs along with HDAC3 and 8 

(reviewed in de Ruijter et al., 2003). They contain a C-terminal NLS and, unlike other 

classes, members of this class are found almost exclusively in the nucleus. HDAC1 

can associate with itself as well as heterodimerize with HDAC2 and this interaction 

is mediated through an N-terminal region that includes part of the conserved HDAC 

domains (Ruijter et al., 2003). While HDAC’s primary role is in chromatin 

remodeling, HDAC2 has been shown to interact with the endosomal protein  

APPL1  (adaptor protein containing PH (pleckstrin homology) domain, PTB 

(phosphotyrosine binding) domain and leucine zipper motif) and carry it to the 

nucleus, enabling APPL1 to associate with the active NuRD complex (Banach-

Orlowska, Pilecka, Torun, Pyrzynska, & Miaczynska, 2009). Our results provide 

additional evidence that HDACs can play a role in nuclear localization. 

Our results provide additional evidence that HDACs can play a role in the 

nuclear localization of proteins. Depletion of either HDAC1 or HDAC2 reduces 

nuclear localization of MIER1α, demonstrating that both are involved in this process. 

It was interesting to note that the reduction in nuclear localization was similar 

whether HDAC1 or 2 or both were knocked down. This finding, combined with the 

fact that 80-90% of HDAC1 and 2 exist as heterodimers in MCF7 cells (Mains, 

Sulston, & Wood, 1990), suggest that it is the heterodimer that is required for 

targeting MIER1α to the nucleus. 
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In a recent report, we showed that alternative splicing of MIER1α to include 

an additional exon encoding a functional NES resulted in shuttling of this α isoform 

to the cytoplasm (Clements et al., 2012). Thus RNA splicing may represent a primary 

mechanism for regulating the nucleo-cytoplasmic distribution of the α isoform. 

However, we cannot rule out the possibility that the MIER1α isoform is also shuttled 

out of the nucleus through interaction with a NES-containing protein. MIER1α has 

been shown to interact with several molecules in addition to ERα (McCarthy et al., 

2008) and HDAC1/2 (Ding et al., 2003); these include the histone methyltransferase 

G9a (Wang, Charroux, Kerridge, & Tsai, 2008), the chromodomain-containing 

protein CDYL (Mulligan et al., 2008) and the histone acetyltransferase CBP 

(Blackmore et al., 2008). However, none of these has been reported to contain a NES. 

Current evidence suggests that MIER1α functions as a tumour suppressor 

(McCarthy et al., 2008), possibly through its interaction with ERα. Our previous 

analysis of the normal breast tissue and breast cancer tumours using an antibody 

that specifically recognizes the α C-terminus, showed that the α isoform(s) is 

localized in the nucleus in normal tissue and in hyperplasia; however, the 

percentage of cells with nuclear staining decreased to 51% in DCIS and to 4% in IDC 

(McCarthy et al., 2008). This suggests that loss of nuclear MIER1α might represent a 

critical event in breast cancer progression since shuttling to the cytoplasm would 

interfere with its nuclear function as a transcriptional repressor. It is also possible 

that MIER1α has additional, as yet undescribed, activity in the cytoplasm. Several 

instances of dual roles have been reported for other transcriptional regulators 

(reviewed in (Boonyaratanakornkit & Edwards, 2007; Ordóñez-Morán & Muñoz, 
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2009)). For example, ERα functions in the nucleus to regulate transcription of target 

genes but also has non-genomic functions (reviewed in (Moriarty, Kim, & Bender, 

2006)). Most of these involve activation of various signalling cascades in a tissue-

specific manner, including activation of ERK, PI3’K and Akt pathways as well as 

signalling through GPCR and growth factor receptors. Whether or not MIER1α also 

has non-genomic functions awaits further investigation. 
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3.1 Introduction 

MIER1α was originally reported to be localized in the cytoplasm in NIH 3T3 

cells (Paterno et al., 2002); however, it is exclusively in the nucleus of the MCF7 

human breast carcinoma cell line. Analysis of patient breast biopsies revealed a 

dramatic reduction in nuclear MIER1α during breast cancer progression, from 75% 

nuclear MIER1α in normal samples to 51% nuclear in ductal carcinoma in situ (DCIS) 

to 4% nuclear in invasive ductal carcinoma (IDC) (McCarthy et al., 2008). We 

noticed that inclusion of 10 µg/ml insulin in the MCF7 growth medium, as is routine 

when culturing MCF7 cells by the American Tissue Culture Collection (ATCC) 

protocol (ATCC, n.d.), resulted in a significant loss of nuclear MIER1α. 

MIER1 represses transcription through several distinct mechanisms 

(Blackmore et al., 2008; Ding et al., 2004, 2003) and all of these functions are 

dependent on the localization of MIER1α in the nucleus, yet it does not contain a 

functional NLS (Post et al., 2001). Therefore, nuclear loss of MIER1α induced by 

insulin addition to the growth medium suggests that insulin could attenuate 

MIER1α’s transcriptional repressor/chromatin modifying functions in MCF7 cells. 

Insulin is a peptide hormone; under general culture conditions, hormones and 

growth factors are more rapidly depleted than other media components (Goustin, 

Leof, Shipley, & Moses, 1986).  Insulin-like growth factor-1 (IGF-1) is very closely 

related to insulin; IGF-1 can bind to insulin receptor, also vice versa for insulin. 

EGFR is expressed in MCF7 cells; also, MIER1 was originally discovered in response 

to fibroblast growth factor (FGF) stimulation (Xing, Hung, Bonfiglio, Hicks, & Tang, 

2010; Paterno et al., 1997). Therefore, to further investigate the effect of growth 
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factors on MIER1α subcellular distribution, we included another three growth 

factors: IGF-1, epidermal growth factor (EGF) & FGF, together with insulin to study 

the MIER1α subcellular pattern with growth factors stimulation.  

3.2 Methods and Materials 

3.2.1 Plasmid 

Human mier1 gene structure, the sequence of its transcripts and the myc-tag 

vector, pCS3+MT, (a kind gift of Dr. David Turner, University of Michigan; 

http://sitemaker.umich.edu/dlturner.vectors/cs2_polylinker_descriptions) 

containing full-length MIER1α have been described in (Paterno et al., 2002). Full-

length human MIER1α (GenBank: AY124188) was amplified by specific primers 

incorporating 5’ and 3’ BamHI sites and inserted into the BglII site of the CS3+MT 

plasmid (Paterno et al., 2002). 

3.2.2 Cell line and culture condition 

MCF7 human breast adenocarcinoma cell line was obtained from the ATCC 

and cultured in DMEM (GIBCO, REF 11965-092) containing 10% serum (7.5% calf 

serum (CS) (GIBCO, Cat. No. 16010-159) plus 2.5% fetal bovine serum (FBS) (GIBCO, 

REF 1884253)) and 1 mM sodium pyruvate (GIBCO, REF 11360-070). Charcoal-

dextran treated FBS (Hyclone, Cat. No SH30068.03) contains reduced levels of many 

hormones and growth factors. Before electroporation transfection was performed, 

the cell growth medium was changed to DMEM (GIBCO) supplemented with 10% 

charcoal-dextran treated FBS plus 1 mM sodium pyruvate to remove the effect 

generated by growth factors contained in the serum; the transfected cells were 

http://sitemaker.umich.edu/dlturner.vectors/cs2_polylinker_descriptions
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cultured in this medium until cell collection. In the experiments using 17β-estradiol 

(E2), cells were cultured in phenol red-free DMEM (GIBCO, REF 31053-028) 

supplemented with 10% charcoal-dextran treated FBS.   

3.2.3 Transient transfection 

Neon®  transient transfection was performed with the following settings: 

1000 V, 30 ms, 2 pulses for MCF7 cells. 3x105 MCF7 cells were mixed with 0.5 µg 

myc-tagged plasmid and loaded into a 10µl tip for electroporation. Transfected cells 

were plated at a density of 4x104/well in Falcon 8-well culture slides (BD 

BioSciences, Cat. No. 0877426) for confocal analysis and 3x105/well in 6-well dish 

for western blot analysis. 

3.2.4 Growth factors 

Human recombinant insulin (REF 12585-014) was purchased from GIBCO®  

and used at a concentration of 10 µg/ml. Recombinant human IGF-1 (Cat. No. 100-

11), recombinant human EGF (Cat. No. AF-100-15) and recombinant human FGF 

acidic (Cat. No. 100-17A) were purchased from PEPROTECH and used at a 

concentration of 10 ng/ml. E2 (Cat. No. E125) was purchased from Sigma-Aldrich 

and used at a concentration of 10nM. At 24 h after transfection, cells were incubated 

with insulin, IGF-1, EGF, FGF or E2 for another 4 h prior to fixation. 

3.2.5 Antibodies 

The 9E10 anti-myc tag mouse monoclonal antibody was prepared as 

described in Blackmore et al. (Blackmore et al., 2008) and used at a dilution of 1:200 

for immunofluorescence. Anti-HDAC1 H-51 (Cat. No. SC-81598) and anti-HDAC2 H-
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54 (Cat. No. SC-7899) obtained from Santa Cruz Biotechnology Inc. were used at the 

dilution 1:200 in immunofluorescence. Alexa Fluor-488 labeled donkey anti- mouse 

(Cat. No. 715-606-150) and Alexa Fluor-647 (Cat. No. 715-606-150) labeled donkey 

anti-rabbit were purchased from Jackson ImmunoResearch Laboratories Inc. and 

used at the dilution 1:200 in immunofluorescence. 

3.2.6 Leptomycin B treatment 

Leptomycin B (LMB, Cat. No. 431050) purchased from Sigma Aldrich was 

added to MCF7 cells at the final concentration of 5 ng/ml in the medium at 23 h after 

MIER1α transfection to inhibit nuclear export caused by growth factors.  The LMB 

vehicle, 0.1% ethanol, was added in equal volume in transfected MCF7 cells as a 

negative control.  

3.2.7 Immunofluorescence, confocal microscopy and statistical analysis 

3.2.7.1 Immunofluorescence 

Immunofluorescence was performed as listed in Appendix 2. 

3.2.7.2 Confocal microscopy 

Cells were examined under an Olympus FluoView FV1000 confocal 

microscope. Fluorescence images were obtained by sequential z-stage scanning in 

two or three channels (DAPI, Alexa Fluor-488 and/or Alexa Fluor-647); z-stacks 

were compiled into individual images. 

The cells were classified into three categories according to the MIER1α 

distribution. Subcellular localization was scored as “nuclear” if the nucleus was 
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intensely stained, with little or no cytoplasmic staining; “cytoplasmic” if staining was 

primarily in the cytoplasm, with little or no staining in the nucleus; and “whole cell” 

if both the nucleus and cytoplasm were stained.  

3.2.7.3 Statistical analysis 

Each experiment was repeated at least three times if not specified, and the 

results are expressed as means ± standard deviations (M ± SD). All the graphs and 

statistical analysis were performed using GraphPad Prism 7.0 for Windows 

(GraphPad Software, San Diego, California, USA); p<0.05 was considered to indicate 

a statistically significant result. One-way ANOVA (analysis of variance) was used for 

the comparison of quantitative data between different groups when only nuclear 

localization percentage was shown in the graph. Two-way ANOVA was utilized to 

evaluate the data when more than one factor has to be assessed in one group. 

3.3 Results 

3.3.1 Insulin and peptide growth factors cause nucleocytoplasmic shuttling of 

MIER1α 

3.3.1.1 Insulin alters nuclear localization of MIER1α in MCF7 cells 

It was previously shown that MIER1α is targeted to the nucleus in MCF7 cells 

despite the lack of an intrinsic NLS (Li et al., 2013; Clements et al., 2012). In those 

studies, cells were cultured in DMEM containing 10% CS/FBS. ATCC suggests adding 

10µg/ml insulin to the MCF7 culture media; however, when we added insulin, we 

noticed a change in the subcellular localization pattern of MIER1α. To investigate 

this effect more thoroughly, we analyzed MIER1α-transfected MCF7 cells by confocal 
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microscopy. In the presence of insulin, only 41% of cells had exclusively nuclear 

MIER1α (Fig. 3.1Ad-f, B), compared to 81% of cells in the absence of insulin (Fig. 

3.1Aa-c, B). The percentage of cells with MIER1α in both the nucleus and cytoplasm 

(whole cell staining) increased in the presence of insulin, from 18 to 42% (Fig. 3.1B). 

Likewise, the proportion of cells with exclusively cytoplasmic MIER1α increased 

over tenfold, from 1 to 17% (Fig. 3.1B). These results demonstrate that in the 

presence of insulin, the localization of MIER1α in MCF7 cells is shifted from the 

nucleus to the cytoplasm. 
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Figure 3.1 Insulin treatment reduces nuclear localization of MIER1α 

MCF7 cells were transfected with myc-tagged MIER1α and treated 24 h later with 

either vehicle (panels a-c) or 10 µg/ml insulin (panel d-f). Cells were fixed 4 h after 

the addition of insulin and localization was analyzed by confocal microscopy. 

Random fields were selected and the staining pattern of each cell within the field 

was scored as ‘nuclear,’ ‘whole cell’ or ‘cytoplasmic’ using sequential z-stage 

scanning. (A) Shown are z-stacks compiled into individual images, illustrating 

stained nuclei (DAPI; panels a, d), MIER1α localization (9E10 anti-myc tag antibody 

and an AlexaFluor-488 secondary antibody; panels b, e) and merged channels 

(panels c, f); arrowheads show examples of nuclear staining and arrows show whole 

cell staining. (B) Histogram showing the results of 3 independent experiments; the 

MIER1α localization pattern of >1000 cells was scored. Two-way analysis of 

variance (ANOVA) was utilized for statistical analysis. Plotted is the percentage of 

cells in each category ±SD; an asterisk indicates the difference was statistically 

significant, *p<0.05, ****p<0.0001 (Sidak's multiple comparisons test). 
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3.3.1.2 IGF-1 alters nuclear localization of MIER1α in MCF7 cells 

IGF-1 is closely related to insulin and both can interact with insulin and IGF 

receptors, albeit with differing affinities (Werner, Weinstein, & Bentov, 2008). Also, 

there is a wealth of evidence implicating IGF-1 in breast cancer development and 

progression (reviewed in (Christopoulos et al., 2015)) and it has been shown to 

increase the invasiveness of MCF7 cells (Walsh & Damjanovski, 2011). Since MCF7 

cells express receptors for both insulin and IGFs (Mukohara et al., 2009), we 

explored the possibility that IGF-1 also affects the localization of MIER1α. As 

expected, confocal analysis demonstrated that IGF-1 had a similar effect on the 

nuclear accumulation of MIER1α (Fig. 3.2Ad-f, B). IGF-1 reduced the percentage of 

cells with nuclear MIER1α from 89 to 56% and increased the percentage with 

“whole cell” staining from 10 to 40%. The percent with “cytoplasmic” MIER1α was 

also increased from 0.3 to 4%. Thus, both insulin and IGF-1 have similar effects on 

the subcellular localization of MIER1α in MCF7. 
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Figure 3.2 IGF-1 treatment reduces nuclear localization of MIER1α 

MCF7 cells were transfected with myc-tagged MIER1α and treated 24 h later with 

either vehicle (panels a-c) or 10 ng/ml IGF-1 (panel d-f). Cells were fixed 4h after the 

addition of IGF-1 and localization was analyzed by confocal microscopy. Random 

fields were selected and the staining pattern of each cell within the field was scored 

as ‘nuclear,’ ‘whole cell’ or ‘cytoplasmic,’ using sequential z-stage scanning. (A) 

Shown are z-stacks compiled into individual images, illustrating stained nuclei 

(DAPI; panels a, d), MIER1α localization (9E10 anti-myc tag antibody and an 

AlexaFluor-488 secondary antibody; panels b, e) and merged channels (panels c, f); 

arrowheads show examples of nuclear staining and arrows show whole cell staining. 

(B) Histogram showing the results of 3 independent experiments; the MIER1α 

localization pattern of >1000 cells was scored. Plotted is the percentage of cells in 

each category ±SD; an asterisk indicates the difference was statistically significant, 

ns: not significant, ****p<0.0001 (Sidak's multiple comparisons test). 
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3.3.1.3 EGF alters nuclear localization of MIER1α in MCF7 cells 

EGF is another growth factor that regulates cell growth, proliferation and 

differentiation through binding to its receptor EGFR on the cell surface. The EGF 

receptor family are frequently expressed at high levels in human carcinomas and 

over-expressed EGFR is associated with more aggressive clinical behaviour 

(Mendelsohn, Mendelsohn, Baselga, & Baselga, 2000). EGF and EGFR were found to 

contribute to the unregulated proliferation of cancer cells through an autocrine 

growth-promoting mechanism (Nahta, Hortobagyi, & Esteva, 2003).  

MCF7 cells not only express receptors for insulin and IGF-1, but they also 

express the EGF receptor (Xing et al., 2010); hence, we investigated the effect of EGF 

on MIER1α nuclear localization. MCF7 cells were transfected with MIER1α and 24 h 

post-transfection, cells were treated with 10ng/ml EGF for 4h before fixation. 

Statistical analysis demonstrated that EGF had a significant effect on MIER1α 

subcellular distribution (Fig 3.3 Ad-f, B). In the EGF-treated group, the percentage of 

cells with nuclear MIER1α drops from 89 to 37% and “whole cell” staining increased 

to 52%, compared with 14% in the control group. Also, “cytoplasmic” MIER1α 

increased from 1.3 to 11%. These data demonstrate that EGF also regulates MIER1α 

nuclear accumulation, similar to what we observed with insulin and IGF-1. 
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Figure 3.3 EGF treatment reduces nuclear localization of MIER1α 

MCF7 cells were transfected with myc-tagged MIER1α and treated 24 h later with 

either vehicle (panels a-c) or 10 ng/ml EGF (panel d-f). Cells were fixed 4h after the 

addition of EGF and localization was analyzed by confocal microscopy. Random 

fields were selected and the staining pattern of each cell within the field was scored 

as ‘nuclear,’ ‘whole cell’ or ‘cytoplasmic,’ using sequential z-stage scanning. (A) 

Shown are z-stacks compiled into individual images, illustrating stained nuclei 

(DAPI; panels a, d), MIER1α localization (9E10 anti-myc tag antibody and an 

AlexaFluor-488 secondary antibody; panels b, e) and merged channels (panels c, f); 

arrowheads show examples of nuclear staining and arrows show whole cell staining. 

(B) Histogram showing the results of 3 independent experiments; the MIER1α 

localization pattern of >1000 cells was scored. Plotted is the percentage of cells in 

each category ±SD; an asterisk indicates that the difference was statistically 

significant, ***p<0.001, **** p < 0.0001(Sidak's multiple comparisons test). 

  



122 
 

 

 

  



123 
 

3.3.1.4 FGF alters nuclear localization of MIER1α in MCF7 cells 

The FGFs family regulates a plethora of developmental processes (Beenken & 

Mohammadi, 2009). The mier1 gene was originally isolated as a novel FGF-regulated 

immediate-early gene from Xenopus embryonic cells induced to differentiate into 

the mesoderm (Paterno et al., 1997). FGF imposes its effect by mediating FGF 

receptor dimerization and this dimerization can activate FGFR (Mukohara et al., 

2009). FGFR signalling is a vital component not only in embryonic development but 

also in postnatal mammary gland development. Furthermore, deregulated FGFR 

signalling occurs in breast cancer (Brady, Chuntova, Bade, & Schwertfeger, 2013).  

Both FGFR1 and 2 are expressed in MCF7 cells (Luqmani, Graham, & 

Coombes, 1992); therefore, we investigated whether MIER1α subcellular 

localization in MCF7 cells would also be affected by FGF. As expected, FGF also had a 

dramatic effect on MIER1α subcellular distribution. The percentage of cells with 

nuclear MIER1α drops from 86% in the control group to 33% in the FGF-treated 

group (Fig. 3.4 Ad-f, B), which means MIER1α whole cell and cytoplasmic staining 

increases up to 67% compared with 14% in the control group.  
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Figure 3.4 FGF treatment reduces nuclear localization of MIER1α 

MCF7 cells were transfected with myc-tagged MIER1α and treated 24 h later with 

either vehicle (panels a-c) or 10 ng/ml FGF (panels d-f). Cells were fixed 4h after the 

addition of FGF and localization was analyzed by confocal microscopy. Random 

fields were selected and the staining pattern of each cell within the field was scored 

as ‘nuclear,’ ‘whole cell’ or ‘cytoplasmic,’ using sequential z-stage scanning. (A) 

Shown are z-stacks compiled into individual images, illustrating stained nuclei 

(DAPI; panels a, d), MIER1α localization (9E10 anti-myc tag antibody and an 

AlexaFluor-488 secondary antibody; panels b, e) and merged channels (panels c, f); 

arrowheads show examples of nuclear staining and arrows show whole cell staining. 

(B) Histogram showing the results of 3 independent experiments; the MIER1α 

localization pattern of >1000 cells was scored. Plotted is the percentage of cells in 

each category ±SD; an asterisk indicates that the difference was statistically 

significant, **** p< 0.0001(Sidak's multiple comparisons test). 
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3.3.1.5 17-β-estradiol does not affect MIER1α subcellular localization 

Insulin, IGF-1, EGF and FGF are all potent mitogens for MCF7 cells (Bentel et 

al., 1995), leading to the question of whether changes in the nuclear localization of 

MIER1α are related to the fact that the cells are proliferating. We therefore 

examined MIER1α localization in cells treated with 10 nM E2, a classic mitogen for 

ER+ breast carcinoma cells. Unlike insulin and the growth factors IGF-1, EGF and 

FGF, E2 had no significant effect on the subcellular distribution of MIER1α (Fig. 

3.5Ad-f, B). In the presence of 10 nM E2, 77% of cells displayed nuclear MIER1α (Fig. 

3.5Af B) compared to 80% of untreated cells (Fig. 3.5Ab, B). Likewise, there was no 

significant difference (p>0.05) in the percentage of cells with “whole cell” or 

“cytoplasmic” staining (Fig. 3.5B).  

Our data indicates insulin and the peptide growth factors, IGF-1, EGF and FGF 

can each cause nuclear loss of MIER1α when MCF7 cells are incubated in their 

presence (Figs 3.1-3.4). Even though the percentage of nuclear loss varies slightly, 

the trend caused by these 4 molecules is the same, suggesting that the molecular 

mechanism that causes MIER1α nuclear loss is shared by these factors, but not by 

E2.  
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Figure 3.5 E2 has no effect on subcellular localization of MIER1α 

MCF7 cells were transfected with myc-tagged MIER1α and 24 h later, either vehicle 

(panels a-c) or 10 nM E2 (panels d-f) was added. Cells were fixed 4h later and 

localization was analyzed by confocal microscopy. (A) Compiled z-stacks showing 

nuclei (DAPI; panels a, d), MIER1α (AlexaFluor-488, panels b, e), merged DAPI and 

488 channels (panels c, f). (B) Histogram showing the results of two independent 

experiments; the MIER1α localization pattern of >500 cells was scored. Plotted is 

the percentage of cells in each category ±S.D; there was no statistically significant 

difference between the percentage of control and E2 treated cells in each of the 

three categories, p>0.05 (Sidak's multiple comparisons test). 
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3.3.2 HDAC1/2 nuclear localization does not change during incubation with 

insulin, peptide growth factors or E2 

Our previous research outlined in Chapter 2 demonstrated that MIER1α 

localizes to the nucleus through interaction and co-transport with HDAC1/2. 

Therefore, we investigated whether insulin would also affect the localization of 

HDAC1/2. Confocal analysis demonstrated that while insulin reduces the nuclear 

accumulation of MIER1α (Fig. 3.6Ab, f, j), it does not affect the localization of HDAC1 

or 2 (Fig. 3.6A, c, g, k) and both were 100% nuclear (Fig. 3.6B). The same was 

observed with IGF-1, EGF & FGF; they do not have an effect on HDAC1 or 2 nuclear 

localization (Figs. 3.7, 3.8 and 3.9).  

The addition of E2 has no statistical effect on MIER1α subcellular 

distribution as depicted above (Fig 3.5). Also, confocal microscopy analysis 

demonstrates that HDAC1/2 nuclear localization is not affected either, the same as 

observed above (Fig 3.10). 
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Figure 3.6 HDAC1 and 2 localization are not affected by insulin 

Cells were transfected, treated with insulin and prepared for confocal microscopy as 

described in Chapter 1, section 2.2.7. (A) Compiled z-stacks showing nuclei (DAPI; 

panels a, e, i), MIER1α (AlexaFluor-488, panels b, f, j), HDAC1 (AlexaFluor-647, 

panels c, g), HDAC2 (AlexaFluor-647, panel k) and merged 488 and 647 channels 

(panels d, h l); arrowheads show examples of nuclei and arrows show whole cell 

staining. (B) Histogram showing the localization of HDAC1 and HDAC2 in untreated 

(Con) and in insulin-treated MCF7 cells; plotted is the percentage of cells in each 

category ± SD from three independent experiments. p>0.05 (Sidak's multiple 

comparisons test). 
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Figure 3.7 HDAC1 and 2 localization are not affected by IGF-1 

Cells were transfected, treated with IGF-1 and prepared for confocal microscopy as 

described in Chapter 1, section 2.2.7. (A) Compiled z-stacks showing nuclei (DAPI; 

panels a, e, i), MIER1α (AlexaFluor-488, panels b, f, j), HDAC1 (AlexaFluor-647, 

panels c, g), HDAC2 (AlexaFluor-647, panel k) and merged 488 and 647 channels 

(panels d, h l); arrowheads show examples of nuclei and arrows show whole cell 

staining. (B) Histogram showing the localization of HDAC1 and HDAC2 in untreated 

(Con) and in IGF-1-treated MCF7 cells; plotted is the percentage of cells in each 

category ± SD from three independent experiments. p>0.05 (Sidak's multiple 

comparisons test). 
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Figure 3.8 HDAC1 and 2 localization are not affected by EGF 

Cells were transfected, treated with EGF and prepared for confocal microscopy as 

described in Chapter 1, section 2.2.7. (A) Compiled z-stacks showing nuclei (DAPI; 

panels a, e, i), MIER1α (AlexaFluor-488, panels b, f, j), HDAC1 (AlexaFluor-647, 

panels c, g), HDAC2 (AlexaFluor-647, panel k) and merged 488 and 647 channels 

(panels d, h l); arrowheads show examples of nuclei and arrows show whole cell 

staining. (B) Histogram showing the localization of HDAC1 and HDAC2 in untreated 

(Con) and in EGF treated MCF7 cells; plotted is the percentage of cells in each 

category ± SD from three independent experiments. p>0.05 (Sidak's multiple 

comparisons test). 
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Figure 3.9 HDAC1 and 2 localization are not affected by FGF 

Cells were transfected, treated with FGF and prepared for confocal microscopy as 

described in Chapter 1, section 2.2.7. (A) Compiled z-stacks showing nuclei (DAPI; 

panels a, e, i), MIER1α (AlexaFluor-488, panels b, f, j), HDAC1 (AlexaFluor-647, 

panels c, g), HDAC2 (AlexaFluor-647, panel k) and merged 488 and 647 channels 

(panels d, h l); arrowheads show examples of nuclei and arrows show whole cell 

staining. (B) Histogram showing the localization of HDAC1 and HDAC2 in untreated 

(Con) and in FGF treated MCF7 cells; plotted is the percentage of cells in each 

category ± SD from three independent experiments. p>0.05 (Sidak's multiple 

comparisons test). 
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Figure 3.10 HDAC1 and 2 localization are not affected by E2 

MCF7 cells were transfected with myc-tagged MIER1α and 24 h later, either vehicle 

(panels a-d) or 10 nM E2 (panels e-l) was added. Cells were fixed 4 h later and 

localization was analyzed by confocal microscopy, as described in Chapter 1, section 

2.2.7. (A) Compiled z-stacks showing nuclei (DAPI; panels a, e, i), MIER1α 

(AlexaFluor-488, panels b, f, j), HDAC1 (AlexaFluor-647, panels c, g) HDAC2 

(AlexaFluor-647, panel k) and merged 488 and 647 channels (panels d, h, l). (B) 

Histogram showing the results of two independent experiments; the MIER1α 

localization pattern of >500 cells was scored. Plotted is the percentage of cells in 

each category ±SD; there was no statistical difference between the percentage of 

control and E2-treated cells in each of the three categories, p>0.05 (Sidak's multiple 

comparisons test). 
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3.3.3 MIER1α nucleocytoplasmic translocation is CRM1-dependent 

Although HDAC1 and 2 transport MIER1α into the nucleus (Chapter 1), they 

are not involved in nuclear loss of MIER1α as they still localize in the nucleus in the 

presence of these 4 molecules- insulin, IGF-1, EGF and FGF. Cytoplasmic localization 

can be caused either by nuclear export or cytoplasmic retention. CRM1 is the major 

karyopherin protein and LMB is its inhibitor (Sun et al., 2013). Hence, if MIER1α is 

exported out of the nucleus by CRM1, one would expect to see the accumulation of 

MIER1α in the nucleus in LMB-treated cells. However, if MIER1α nuclear loss is 

caused by cytoplasmic retention, LMB would not have any effect on MIER1α 

subcellular distribution. Therefore, to distinguish what determines MIER1α nuclear 

loss, we examined the effect of LMB on the localization pattern of MIER1α in the 

presence of insulin or the other three growth factors. 

As a control, I first determined if LMB has any effect on MIER1α in the 

absence of hormone or growth factor. When MCF7 cells were fixed at 24h post-

transfection, approximately 15-20% of cells still display whole cell staining for 

MIER1α (Fig. 3.11 A (MIER1α group)). This 15-20% might represent proteins in the 

cytosol that have been: 1) just de novo synthesized and are waiting to be imported 

into the nucleus, 2) retained in the cytoplasm through binding to a cytoplasmic 

protein, or 3) exported out of the nucleus. To investigate these possibilities, we 

treated MCF7 cells only with LMB for 5 h before collection, staining and imaging. 

Compared with the control, MIER1α subcellular localization demonstrates a similar 

pattern in the LMB-treated group, and nuclear localization percentage is ~85%, 
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which is not a statistically significantly different compared with the non-treated 

MIER1α group (P>0.05) (Fig 3.11 A). The result of this control experiment excludes 

the possibility that LMB has an effect on cytoplasmic MIER1α localization in the 

absence of growth factors. Therefore, I proceeded with the experiment to determine 

MIER1α subcellular distribution pattern with LMB+growth factor combinations 

compared with the pattern in the presence of growth factor alone, to determine 

whether MIER1α nuclear loss is mediated through CRM1. If MIER1α localization is 

not affected by the combined treatment of “LMB+growth factor,” that would imply 

MIER1α cytoplasmic localization occurs by a growth factor-mediated cytoplasmic 

retention mechanism. Conversely, if the anticipated increase in cytoplasmic 

localization of MIER1α is not observed under the conditions of “LMB+growth factor” 

treatment, we would conclude CRM1 is involved to actively export MIER1α out of 

the nucleus in the presence of growth factors.  

MCF7 cells were transfected with MIER1α and pre-treated with LMB 1h 

before adding insulin or vehicle. In the experimental group “+LMB + insulin,” 

MIER1α nuclear localization is 82%. The nuclear percentage is 40% in “+insulin” 

group and 85% in non-treated control group, which implies LMB reversed MIER1α 

nuclear loss caused by insulin (Fig. 3.11 Bg-i). The same trend occurred with IGF-1, 

EGF and FGF treatment groups (Fig 3.12 A-D). LMB can bind directly to CRM1 and 

abolish CRM-dependent nuclear export. Our results indicate that MIER1α nuclear 

localization is restored when MCF7 cells are pre-treated with LMB, to demonstrate 

that MIER1α growth factor induced nuclear loss is CRM1-dependent, indicating the 
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overall influence of growth factors involves nuclear export rather than cytoplasmic 

retention.  
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Figure 3.11 LMB abolishes MIER1α nuclear export caused by insulin 

(A) The effect of LMB on MIER1α localization. Cells were transfected with myc-

tagged MIER1α and 23 h later, cells were treated with either vehicle or 5 ng/ml LMB 

for 5 h and analyzed by confocal microscopy. Random fields were selected and the 

staining pattern of each cell within the field was scored as ‘nuclear,’ ‘whole cell’ or 

‘cytoplasmic,’ using sequential z-stage scanning. Histogram showing the results of 2 

independent experiments; plotted is the percentage of cells in each category ± S.D. 

Two-way analysis of variance (ANOVA) was utilized for statistical analysis. The 

asterisk indicates that the difference was not statistically significant, P>0.05 (Sidak's 

multiple comparisons test). (B) Illustrative examples of cells when expressing 

MIER1α and treated with insulin or + LMB + insulin. Z-stage scanning was utilized. 

Note that the nuclear accumulation of MIER1α in the group “+ LMB + insulin.” 
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Figure 3.12 LMB rescues MIER1α nuclear loss caused by insulin and growth factors 

MCF7 cells were transfected with myc-tagged MIER1α and 23 h later pre-treated 

with either vehicle or 5 ng/ml LMB for 1 h. Cells were then treated with either 

vehicle or growth factors again. Cells were fixed 4 h after the addition of growth 

factors and localization was analyzed by confocal microscopy. Random fields were 

selected and the staining pattern of each cell within the field was scored as ‘nuclear,’ 

‘whole cell’ or ‘cytoplasmic,’ using sequential z-stage scanning. Bar graphs (A-D) are 

the results of 3 independent experiments and show the intracellular distribution of 

MIER1α. More than 151 cells were counted for each group. 
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3.4 Discussion 

My investigation showed that HDAC1/2 localization is 100% nuclear during 

MIER1α nuclear export triggered by growth factors, implying that the cytoplasmic 

MIER1α is physically dissociated from HDAC1/2. Therefore, MIER1α loses its 

interaction with HDAC1/2 during the event of being exported when cells are 

stimulated by growth factors.  This leads us to conclude that the presence of any of 

these 4 molecules might cause MIER1α to lose its transcriptional repression 

function by losing its interaction with HDAC1/2. 

It was also demonstrated that all 4 growth factors -insulin, IGF-1, EGF and 

FGF- caused MIER1α nuclear export is through CRM1. However, in silico analysis of 

the MIER1α sequence shows that it does not contain any NES (see Appendix 3) (T. la 

Cour et al., 2003). Since CRM1 has to bind to the NES on its cargo in order to 

transport the cargo molecule out of the nucleus, the evidence suggests that there 

could be an NES-containing bridging molecule connecting MIER1α and CRM1. Once 

dissociated from HDAC1/2, I hypothesize MIER1α associates with an NES-

containing adaptor molecule to be exported, but this theory remains to be tested. At 

present, the triggers for MIER1α disassociation with HDAC1/2 and association with 

CRM1 are not clear.  

Proteins that are exported by CRM1 in cancer cells are often tumour 

suppressor and oncoproteins, such as p53, BRCA1, NPM and APC (Hill, Cautain, de 

Pedro, & Link, 2014). An imbalance in the cytosolic level of these proteins can result 

in either inactivation (tumour suppressor) or anti-apoptotic over-activity 



148 
 

(oncoprotein). As a tumour suppressor, MIER1α nuclear export caused by insulin or 

peptide growth factors leads to its cytoplasmic localization instead of nuclear 

accumulation. This shuttling out of the nucleus would result in loss of nuclear 

activity and possibly a gain of function in the cytosol.   

MIER1α is a transcriptional repressor when localized in the nucleus, 

therefore, compartmentalization is a mechanism that can regulate its function. The 

change of MIER1α subcellular localization caused by insulin or peptide growth 

factors has also been observed for other molecules. For example, FOXO is relocalized 

from the nucleus to the cytoplasm  in the presence of insulin as well as other growth 

factors (Greer & Brunet, 2005) and by Src signalling (Bülow, Bülow, Hoch, Pankratz, 

& Jünger, 2014). In C. elegans, the activation of DAF-2, the nematode ortholog of the 

IGF-1 receptor, prevents nuclear accumulation of the DAF-16 (FOXO) transcription 

factor (Lin, Hsin, Libina, & Kenyon, 2001). FOXO factors are associated with a 

variety of biological processes, including cell cycle, cell death and DNA repair; its 

shuttling mechanism contributes to the understanding of the FOXO function in 

terms of signalling and gene regulation (Van Der Heide, Hoekman, & Smidt, 2004). 

Therefore, elucidation of MIER1α nucleocytoplasmic shuttling mechanism will shed 

light on its biological function in breast cancer progression as well. 

Most of the transcription factors and tumour suppressor proteins require 

nuclear retention to induce transcriptional regulation of targeted genes. Nuclear 

export is a critical aspect in the view of biology because mislocalization of any 

protein causes functional inactivation. Ample evidence shows that cancer cells 
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harbor an unusually higher expression of CRM1, which makes it an attractive 

therapeutic target to restore the proper localization of tumour suppressor proteins. 

Maintaining tumour suppressors in the nucleus is becoming a strategy to treat 

patients. Our data suggest that breast cancer progression is coupled with MIER1α 

nuclear loss and therefore, MIER1α is a putative target for breast cancer treatment. 
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Chapter 4 The growth factor-dependent MAPK pathway regulates 

MIER1α nucleocytoplasmic shuttling 
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A version of this chapter is currently being prepared as a manuscript. 
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4.1 Introduction 

Signalling pathways in mammalian cells consist of a series of biochemical 

events that are precisely controlled. The initial extracellular signals are sensed at 

the cell surface by a receptor, which then transduces the signal into the cytosol of 

the cell (Cyert, 2001). The transduced signal can cause pleiotropic effects, including 

modification of transcriptional regulators and alteration of gene expression, 

eventually leading to specific cellular responses (Witsch, Sela, & Yarden, 2011).  

In response to peptide growth factor binding to its membrane receptor, two 

main pathways are activated: mitogen-activated protein kinase (MAPK) and 

phosphoinositide 3-kinase B/Akt (PI3’K/AKT) pathways. There are four major 

mammalian MAPKKK-MAPKK-MAPK protein kinase cascades (Fig. 4.1) and the 

MAPK pathway can be activated by many stimuli, such as growth factors, UltraViolet 

(UV) and stress. At least three MAPK families have been characterized:  extracellular 

signal-regulated kinase (ERK), Jun kinase (JNK/SAPK) and p38 MAPK, while growth 

factors mainly activate ERK1/2 (as shown in Fig. 4.1) and are of particular relevance 

to cancer (Dhillon, Hagan, Rath, & Kolch, 2007).  

ERK signalling is associated with cell proliferation in development and it is 

now clear that the tumour phenotype is linked with deregulation of this pathway 

(Dhillon et al., 2007). In the MAPK cascade, MEK activation depends on 

phosphorylation by Raf (Raf-1, B-Raf and A-Raf) and ERK is activated upon 

phosphorylation by MEK. Phosphorylated ERK1/2 will then translocate into the 

nucleus within minutes, where pERK1/2 can then phosphorylate hundreds of 
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substrates including regulatory molecules and transcription factors (Fowler, Sen, & 

Roy, 2011; Roskoski, 2012)on “P-X-S/T-P” or “S/T-P” motifs, leading to functional or 

localization changes, which further regulate gene expression.  

The activation of a cell surface receptor initiated by growth factors can also 

cause phosphorylation of PI3’K (Fig. 4.2). Activated PI3’K then phosphorylates lipids 

which form the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3). 

PIP3 serves as a plasma membrane docking site for proteins that harbor pleckstrin-

homology (PH) domains, including AKT and its upstream activator 

phosphoinositide-dependent kinase 1 (PDK1). Upon recruitment to the cell 

membrane, AKT is phosphorylated by PDK1, a reaction triggered by PIP3 binding to 

the PH domains of both molecules. Activated AKT regulates diverse cellular 

processes, including cell survival (anti-apoptotic), proliferation, cell migration and 

angiogenesis, all by phosphorylating a range of intracellular proteins (Crowell, 

Steele, & Fay, 2007). For example, activated AKT can phosphorylate and inactivate 

the proapoptotic factors BAD and procaspase-9. FOXO can also be phosphorylated 

and inactivated by AKT, which leads to the expression of genes critical for apoptosis 

(Altomare & Testa, 2005). 

In Chapter 3, I demonstrated that insulin and peptide growth factors (IGF-1, 

EGF and FGF) can cause changes in the subcellular distribution of MIER1α in MCF7 

cells. However, the mechanism that leads to the change is unknown. I propose that 

the activation of a signalling pathway common to these four molecules: insulin, IGF-

1, EGF and FGF is most likely responsible for the altered MIER1α distribution in 
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MCF7. In this chapter, I show that growth factor-dependent activation of MAPK 

causes MIER1α nuclear export, while activation of PI3K/AKT pathway has no effect. 

Mutation of 2 activated ERK1/2 consensus phosphorylation motifs within the 

MIER1α protein sequence had no effect on MIER1α subcellular distribution, 

indicating that the mechanism responsible for MIER1α nuclear export either does 

not involve direct phosphorylation by pERK1/2 or involves phosphorylation on 

sites other than ERK1/2 consensus phosphorylation motifs. Further investigation 

with deletion constructs revealed the N-terminal region containing acidic stretches 

is required for MIER1α nuclear export by the MAPK pathway. In addition, MIER1α 

nuclear loss caused by growth factors is transient and reversible; when the effect of 

growth factors on the activation of MAPK diminishes, MIER1α returns to the nucleus. 
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Figure 4.1 The mammalian MAPK cascade 

(Modified from “MAPK-pathway-mammalian, Wikimedia commons” with 

permission) There are four major mammalian MAPKKK-MAPKK-MAPK protein 

kinase cascades. Whereas the ERK pathway is commonly activated by growth 

factors, the JNK, p38 and ERK5 pathways are activated by environmental stress, 

including osmotic shock, and ionizing radiation. Many of the substrates for MAPKs 

are nuclear transcription factors. Interactions and substrates were compiled from 

information from STKE (http://stke.sciencemag.org/index.dtl). 

 

  

http://stke.sciencemag.org/index.dtl
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Figure 4.2  Schematic diagram depicting the most representative signaling of the 

PI3K/AKT pathway 

(Modified from (Carnero & Paramio, 2014)) PI3’K is activated by receptor tyrosine 

kinases and RAS and, in turn, activates downstream effectors by generating PIP3 at 

the membrane. PIP3 binds to the pleckstrin homology domain of AKT, localizing it to 

the membrane. AKT is then phosphorylated on T308 and S473. AKT regulates 

metabolism cell-cycle survival, cell survival, proliferation and intermediary 

metabolism by phosphorylating an array of substrates. The tumour suppressor 

PTEN is a negative regulator of AKT. PTEN catalyzes dephosphorylation of PIP3; this 

prevents recruitment of AKT to the plasma membrane and inhibits activation.  
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4.2 Methods and Materials 

4.2.1 Plasmids 

Human MIER1 gene structure, the sequence of its transcripts and the myc-tag 

vector, pCS3+MT, (a kind gift of Dr. David Turner, University of Michigan; 

http://sitemaker.umich.edu/dlturner.vectors/cs2_polylinker_descriptions) 

containing full-length MIER1α have been described in (Paterno et al., 2002). Full-

length human MIER1α (GenBank: AY124188) was amplified by specific primers 

incorporating 5’ and 3’ BamHI sites and inserted into the BglII site of the CS3+MT 

plasmid(Paterno et al., 2002). For the MIER1α deletion constructs, previously 

described constructs containing amino acids (aa)1-283, aa164-433, or aa164-283 of 

MIER1α in the Clontech pM vector (Ding et al., 2003) were digested with EcoRI and 

inserted into the EcoRI site of a pCS3+MT vector that had been modified to maintain 

the MIER1 sequence in-frame with the myc-tag. This modified pCS3+MT, renamed 

pCS4+MT, contains a thymidine (T) inserted upstream of the EcoRI site.  

  

http://sitemaker.umich.edu/dlturner.vectors/cs2_polylinker_descriptions
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Figure 4.3 MIER1α amino acid sequence and plasmids used in the study 

(A) MIER1α amino acid sequence; (B) The diagram illustrates the deletion domains 

of MIER1α fused to myc-tag in CS3+MT vector. The individual domains are 

identified in the legend below the diagram, and MIER1α amino acid residues 

encoded by each construct are listed on the left.  
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4.2.2 Primer synthesis and site-directed mutagenesis 

Primers used for site-directed mutagenesis were designed online: 

www.agilent.com/home and synthesized by Integrated DNA Technologies. The 

sequences of the primers are listed in Table 4.1. 

S10→Aα and S377→Aα were generated, separately; S377→Aα primers were 

used to mutate the S10→Aα mutant construct in order to produce the double 

mutation S10→A/S377→Aα. Mutations were produced by the QuikChange site-

directed mutagenesis kit (Stratagene), performed according to the manufacturer’s 

instructions. The mutations were confirmed by automated dideoxynucleotide 

sequencing of both strands (DNA Sequencing Facility, The Center for Applied 

Genomics, The Hospital for Sick Children, Toronto, Canada). 

Table 4.1 Primer sequences for site-directed mutagenesis of SP motifs on MIER1α 

S10→Aα sense primer: 5'-cggagccatctgttgaatcttcagctccaggaggttc-3' 

S10→Aα anti-sense primer: 5'-gaacctcctggagctgaagattcaacagatggctccg-3' 

S377→Aα sense primer: 5'-catctagtcgagcaccagcccctcccc-3' 

S377→Aα anti-sense primer: 5'-ggggaggggctggtgctcgactagatg-3' 

  

4.2.3 Cell line and culture condition 

The MCF7 human breast adenocarcinoma cell line was obtained from the 

American Tissue Culture Collection (ATCC) and cultured in DMEM (GIBCO, REF 

11965-092) containing 10% serum (7.5% calf serum (CS) (GIBCO, Cat. No. 16010-

159) plus 2.5% fetal bovine serum (FBS) (GIBCO, REF 1884253)) and 1 mM sodium 

http://www.agilent.com/home
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pyruvate (GIBCO, REF 31053-028). Before electroporation transfection was 

performed, the cell growth medium was changed to DMEM (GIBCO) supplemented 

with 10% charcoal-dextran treated fetal bovine serum (Hyclone, Cat. No. 

SH30068.03) plus 1 mM sodium pyruvate (GIBCO, REF 11360-070) to eliminate any 

effect generated by growth factors contained in the serum; the transfected cells 

were cultured in this medium until cell collection. In the experiments using 17β-

estradiol (E2), cells were cultured in phenol red-free DMEM (GIBCO, REF 31053-028) 

supplemented with 10% charcoal-dextran treated fetal bovine serum after 

transfection. 

4.2.4 Transient transfection 

Neon®  transient transfection was performed with the following settings: 

1000 V, 30 ms, 2 pulses for MCF7 cells. 3x105 MCF7 cells were mixed with 0.5 µg 

myc-tagged plasmid and loaded into a 10 µl tip for electroporation. Transfected cells 

were plated at a density of 4x104/well in Falcon 8-well culture slides (BD 

BioSciences, Cat. No. 0877426) for confocal analysis and 3x105/well in 6-well dish 

for western blot analysis. 

4.2.5 Growth factors 

Human recombinant insulin (REF 12585-014) was purchased from GIBCO®  

and used at a concentration of 10 µg/ml. Recombinant human IGF-1 (Cat. No. 100-

11), recombinant human EGF (Cat. No. AF-100-15) and recombinant human FGF 

acidic (Cat. No. 100-17A) were purchased from PEPROTECH and used at a 

concentration of 10 ng/ml. E2 (Cat. No. E125) was purchased from Sigma-Aldrich 
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and used at a concentration of 10nM. At 24 h after transfection, cells were incubated 

with insulin, IGF-1, EGF, FGF or E2 for another 4 h prior to fixation or cell collection. 

4.2.6 Antibodies 

The 9E10 anti-myc tag mouse monoclonal antibody was prepared as 

described in Blackmore et al. (Blackmore et al., 2008) and used at a dilution of 1:200 

for immunofluorescence. Alexa Fluor-488 labeled donkey anti- mouse (Cat. No. 715-

606-150) was purchased from Jackson ImmunoResearch Laboratories Inc. and used 

at the dilution 1:200 in immunofluorescence.  

For western blot, anti-pERK1/2 (Cat#9101), anti-AKT (C67E7) and anti-

pAKT (D9E) were purchased from Cell Signaling Technology®  and used at the 

dilution 1:2000. Anti-ERK 1/2 (K-23) and anti-Lamin A (H-102) were purchased 

from Santa Cruz Biotechnology Inc and used at a dilution of 1:2000. Anti-GAPDH 

(G8795) was purchased from Sigma-Aldrich and used at a dilution of 1:2000. HRP-

labeled sheep anti-mouse (NA934V) and donkey anti-rabbit (NA931V) antibodies 

were purchased from GE Healthcare Corp and used at a dilution of 1:5000. All 

antibodies used in western blot were diluted in 5% skim milk in 1xTBST. 

4.2.7 Inhibitors 

AKT inhibitor AKT VIII (Cat. No. 124018) was purchased from EMD Millipore 

and used at a concentration of 10 µM diluted in DMSO. MEK1/2 inhibitor U0126 

(Cat. No. 1144/5) was purchased from Tocris Bioscience and used at a 

concentration of 10 µM diluted in DMSO. Growth factors were added directly to the 

medium pretreated with DMSO or inhibitor for 1 h and cells were left in “DMSO+ 
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growth factor-treatment” or “inhibitor+ growth factor-treatment” medium for 

another 4 h before fixation. 

4.2.8 Western blot 

4.2.8.1 Western blot materials 

The 0.2 µm PVDF membranes (Trans-Blot TurboTM transfer Pack) and 

Trans-blot TurboTM system were purchased from Bio-Rad Laboratories. Prestained 

high and low molecular weight markers (GeneDireX® ), Amersham’s ECL Plus 

Western Blotting System, purchased from GE Healthcare Corp. were used for the 

detection. 

4.2.8.2 Western blot methods 

Western blot analysis was performed using 7.5% SDS-PAGE gels. After 

transfer of the proteins to the PVDF membranes, the membrane was incubated in 5% 

blocking powder (skim milk powder) in TBS-T (20 mM Tris, 137 mM NaCl, 1% (v/v) 

Tween-20, pH7.6) for 1 h at RT. The membrane was then incubated overnight in 5% 

blocking powder/1xTBS-T containing a primary antibody at 4oC. After the first 

antibody incubation, the membrane was washed in large volumes of TBS-T for 1 h 

and then the secondary antibody was added in 5% blocking powder/1xTBS-T and 

incubated for 1 h. After incubation with secondary antibody, the membrane was 

washed in TBS-T for another 1 h before detection of the protein with Amersham’s 

ECL Plus Western Blotting System. 
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4.2.8.3 Cell lysis for direct western blot 

MCF7 cells were plated at 3×105 cells/well in 6-well dish and left to grow for 

28 h. After washing in cold 1×PBS on ice, cells were then solubilized in 400 µl 1×SDS 

sample buffer (50mM Tris-Cl pH6.8, 2% SDS, 5% β-mercaptoethanol, 10% glycerol, 

0.1% bromophenol blue) for western blot. 1/20th of the cell lysate was separated on 

a 7.5% SDS-PAGE acrylamide gel and the separated proteins were transferred to 

PVDF membranes by Trans-blot TurboTM system. 

4.2.9 Stripping buffer 

The protocol used is from Abcam-Striping for reprobing. Stripping buffer, 1 

liter composition: 15 g glycine, 1 g SDS, 10 ml Tween20, Adjust pH to 2.2 and 

volume to 1 L with ultrapure water. 

Membrane incubation: The membrane was washed with the stripping buffer 

for 5-10 minutes, twice. The buffer was discarded and the membrane was washed 

2X with PBS for 10 minutes. It was then washed 2X with TBST for 5 minutes. The 

membrane was then ready for the blocking stage. All the steps were performed at 

room temperature.  

4.2.10 Immunofluorescence, confocal microscopy and statistical analysis 

4.2.10.1 Immunofluorescence 

Immunofluorescence was performed as listed in Appendix 2. 
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4.2.10.2 Confocal microscopy 

Cells were examined under an Olympus FluoView FV1000 confocal 

microscope. Fluorescence images were obtained by sequential z-stage scanning in 

two channels (DAPI and/or Alexa Fluor-488); z-stacks were compiled into 

individual images. 

The cells were classified into three categories according to the MIER1α 

distribution. Subcellular localization was scored as “nuclear” if the nucleus was 

intensely stained, with little or no cytoplasmic staining; “cytoplasmic” if staining was 

primarily in the cytoplasm, with little or no staining in the nucleus; and “whole cell” 

if both the nucleus and cytoplasm were stained.  

4.2.10.3 Statistical analysis 

Each experiment was repeated at least three times if not specified, and the 

results are expressed as mean ± standard deviation (M ± SD). All the graphs and 

statistical analysis were performed using GraphPad Prism 7.0 for Windows 

(GraphPad Software, San Diego, California, USA); p<0.05 was considered to indicate 

a statistically significant result. One-way ANOVA (analysis of variance) was used for 

the comparison of quantitative data between different groups when only the nuclear 

localization percentage was shown in the graph. Two-way ANOVA was utilized to 

evaluate the data when more than one factor had to be assessed.  

4.3 Results 

MIER1α nuclear loss is growth factor-dependent and the result of CRM1-

dependent export (discussed in Chapter 3, p<0.05); therefore, I postulated that a 
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signalling pathway(s) commonly activated by these four molecules (insulin, IGF-1, 

EGF and FGF) is involved in MIER1α subcellular distribution alteration. Growth 

factors cause pleiotropic cellular effects and regulate diverse pathways in both 

normal and cancer cells (Esther Witsch, Michael Sela, 2010) by binding to their 

receptors (McInnes & Sykes, 1997). Insulin, IGF-1, EGF and FGF were originally 

considered to manifest their mitogenic actions through separate pathways. 

However, there is a growing body of evidence suggesting that these growth factor 

signalling pathways are intertwined, and amongst these pathways, mitogen-

activated protein kinase (MAPK) and phosphoinositide 3-kinase B/Akt (PI3K/AKT) 

pathways can both be activated by insulin, IGF-1, EGF and FGF (Hemmings & 

Restuccia, 2012; Roberts & Der, 2007).  

4.3.1 AKT activation by growth factor stimulation 

Receptor tyrosine kinase and PI3K/AKT pathway analysis began in the early 

1980s through characterization of insulin receptor signalling (Brazil & Hemmings, 

2001) and led to the identification of the components and mechanisms (Hemmings 

& Restuccia, 2012). AKT is a serine/threonine-specific protein and contains a 

pleckstrin homology (PH) domain through which AKT is recruited to PIP3 first and 

then phosphorylated by PDK1 at the 308T residue (Fig. 4.2). AKT inhibitor VIII is PH 

domain-dependent and inhibits AKT phosphorylation in vivo. First, I confirmed that 

under the conditions used here, AKT is activated by growth factors and that AKT 

VIII can inhibit this activation 4 h after growth factor treatment. 
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MIER1α expressing cells were pre-treated with either vehicle (DMSO) or 

10µM AKT VIII for 1 h, and then incubated for 4 h with growth factors before cell 

extraction. Compared with the DMSO treated control (Fig. 4.4 lane1), insulin, IGF-1, 

EGF and FGF can all trigger AKT phosphorylation (lanes 2, 4, 6, 8); when the AKT 

inhibitor VIII is present, phosphorylation of AKT is completely inhibited (lanes 3, 5, 

7, 9). This result confirms that PI3K/AKT pathway can be activated by growth 

factors and that AKTVIII inhibits this activation.  
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Figure 4.4 AKT VIII inhibits growth factor-dependent AKT activation 

MCF7 cells were transfected with MIER1α and seeded at 3x105/well in a six-well 

dish. At 24 h post-transfection, cells were treated either with DMSO (in the control 

group), DMSO+growth factor, or 10 µM AKT VIII+growth factor, and incubated for 

4h. Cells were collected and 1/20th of the cell lysate was loaded per lane and 

resolved by western blotting. The blot was probed for either phospho-AKT (pAKT, 

top blot), or GAPDH as a loading control (bottom blot). The top blot was stripped 

once and reprobed for AKT to show the AKT protein level. The western blot in this 

figure demonstrates AKT is activated when cells were treated with growth factors 

(lanes 2, 4, 6, 8). In contrast, AKT activation is completely inhibited by AKT VIII 

(lanes 3, 5, 7 & 9). 
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4.3.2 MAPK activation by growth factor stimulation 

U0126 is a selective inhibitor of the MAP kinase kinases, MEK1 and MEK2 

(Favata et al., 1998); it inhibits their kinase activity thus preventing activation of the 

MAP kinases, ERK1 and ERK2. To confirm that under the conditions used here, 

ERK1/2 can be activated by growth factors and U0126 inhibits growth factor 

stimulated phosphorylation of ERK1/2, MIER1α transfected cells were pre-treated 

with either vehicle (DMSO) or 10 µM U0126 for 1 h, and then incubated for 4 h with 

growth factors before cell extraction. Compared with the DMSO treated control (Fig. 

4.5, lane1), insulin, IGF-1, EGF and FGF can all trigger ERK1/2 phosphorylation 

(lanes 2, 4, 6, 8); when the MEK1/2 inhibitor U0126 is present, ERK1/2 

phosphorylation is completely inhibited (lanes 3, 5, 7, 9). This result confirms MAPK 

pathway can be activated by growth factors and U0126 can prevent this activation.  
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Figure 4.5 U0126 inhibits growth factor-dependent MAPK activation 

MCF7 cells were transfected with myc-tagged MIER1α and seeded at 3x105/well in a 

six-well dish. At 24 h post-transfection, cells were treated either with DMSO (in the 

control group), DMSO+growth factor, or 10 µM U0126+growth factor, and incubated 

for 4h. Cells were collected and 1/20th of the cell lysate was loaded per lane and 

resolved by western blotting. The blot was probed for either phospho-ERK1/2 

(pERK; top blot), or Lamin A (bottom blot) as a loading control. The top blot was 

stripped once and reprobed for ERK1/2 (middle blot) to demonstrate equivalent 

amounts of ERK1/2 protein in each lane. The western blot in this figure 

demonstrates ERK1/2 is activated when cells were treated with growth factors 

(lanes 2, 4, 6, 8). In contrast, pERK1/2 activation by growth factors is completely 

inhibited by U0126 (lanes 3, 5, 7 & 9). 
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4.3.3 Growth factor-dependent activation of MAPK causes MIER1α nuclear loss 

Growth factor-induced tyrosine kinase receptor activation catalyzes inactive 

GDP-bound Ras into active GTP-bound Ras; active RasGTP hereafter stimulates 

multiple downstream effectors, including PI3Ks and MAPK. This creates one point of 

cross-talk between the PI3K and Ras/MAPK pathway. As discussed in Section 3.3.1, 

Chapter 3, MCF7 expresses receptors for all four growth factors. As shown in section 

4.3.1 & 4.3.2, both PI3K/AKT and MAPK pathways can be activated by growth 

factors. In order to distinguish whether one or both are responsible for MIER1α 

nuclear loss, MIER1α subcellular distribution was analyzed in the presence of the 

respective pathway inhibitors AKTVIII and U0126. 

4.3.3.1 PI3K/AKT pathway activation is not involved in MIER1α nuclear export 

PI3K/AKT pathway was shown to be activated in section 4.3.1 and AKT VIII 

can inhibit this activation. Here, we transfected MCF7 cells with the myc-tagged 

MIER1α and 23 h after transfection, cells were pre-incubated with DMSO or 10 µM 

AKT VIII for 1 h. Cells were then incubated with growth factors for another 4 h and 

fixed. The results demonstrate that there is no statistical difference between the 

groups “-AKT VIII+growth factor” and “+AKT VIII+growth factor” (Fig. 4.6), the 

nuclear percentage in the (-AKT VIII+ growth factor-treated) group: (+AKTVIII+ 

growth factor-treated) group is 38%:39% with insulin, 53%:49% with IGF-1, 

36%:38% with EGF and 34%:35% with FGF. Overall, MIER1α nuclear loss was not 

rescued when the AKT inhibitor AKTVIII was added into the cells. The data in Fig 4.6 

demonstrate that the inhibition of AKT activity has no effect on MIER1α nuclear loss. 
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Figure 4.6 AKT inhibition has no effect on MIER1α subcellular distribution 

MCF7 cells were transfected with myc-tagged MIER1α, and 23 h after transfection 

cells were pretreated with DMSO or 10 µM AKTVIII for 1 h. Growth factors were 

added to the cells and incubated for another 4 h before fixation. >160 cells were 

scored for each type. (A-D) MIER1α subcellular distribution with AKT VIII treated 

with insulin (panel A), IGF-1 (panel B), EGF (panel C) & FGF (panel D); the 

histograms shown the combined results of 3 independent experiments and data are 

expressed as mean ± standard deviation (SD). p>0.05, (Sidak's multiple comparisons 

test). 
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4.3.3.2 U0126 inhibits growth factor dependent nuclear loss of MIER1α in 

MCF7 cells 

To investigate whether the MAPK pathway was involved in MIER1α nuclear 

loss, MCF7 cells were transfected with myc-tagged MIER1α and 23 h later, cells were 

pretreated with DMSO or 10 uM U0126 first for 1 h and then growth factors were 

added for another 4 h to the medium that contains DMSO or U0126 before fixation.  

The results demonstrate a statistical difference between the groups “-

U0126+growth factor” and “+U0126+growth factor” (Fig. 4.7), the nuclear 

percentage in the (-U0126+ growth factor-treated) group: (+U0126+ growth factor-

treated) group is 37%:83% with insulin, 46%:83% with IGF-1, 36%:78% with EGF 

and 34%:72% with FGF (Fig. 4.7A-D). Correspondingly, the percentage of whole cell 

and cytoplasmic staining dropped in each group (Fig. 4.7A-D). These data confirm 

that the growth factor-dependent activation of MAPK is required for MIER1α 

nuclear export. When U0126 inhibits MEK1/2 to phosphorylate ERK1/2, MIER1α 

remains in the nucleus in MCF7 cells. 
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Figure 4.7 U0126 inhibits growth factor dependent nuclear loss of MIER1α in MCF7 

cells 

MCF7 cells were transfected with myc-tagged MIER1α and 23 h after transfection, 

cells were treated with DMSO or 10 µM U0126 for 1 h. Then, growth factors were 

added to the cells and incubated for another 4h before the cells were fixed and 

processed for confocal analysis. More than 160 cells were scored for each type.     

(A-D) MIER1α subcellular distribution with U0126 treated with insulin (panel A), 

IGF-1 (panel B), EGF (panel C) & FGF (panel D). Shown are the average and standard 

deviations (S.D.) of 3 independent experiments. ns: not significant; *, p<0.05; **, 

p<0.01 , ****, p<0.0001, (Sidak's multiple comparisons test).  
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Taken together, the results shown in sections 4.3.1-4.3.3 demonstrate that 

both PI3K/AKT and MAPK pathways can be activated by insulin, IGF-1, EGF and FGF 

(Figs. 4.4&4.5), however, MIER1α nuclear loss is only rescued by MEK1/2 inhibitor 

U0126 & not by the AKT inhibitor VIII (Figs. 4.6&4.7), implying that activation of  

the MAPK pathway regulates MIER1α nuclear export.  

4.3.3.3 Estrogen does not activate MAPK pathway 

The above experiments demonstrated that the MAPK pathway is involved in 

MIER1α nuclear export (Figs. 4.5 & 4.7), while in the previous study (see section 

3.3.1.5), E2 treatment did not affect the MIER1α subcellular distribution pattern in 

MCF7 (Fig. 3.5); therefore, one would predict that this pathway is not activated by 

E2 stimulation. However, one report showed that the pERK1/2 level in MCF7 cells 

was slightly increased in the first 30 min after treatment with 10 nM E2(Wang et al., 

2013). Hence, I examined MCF7 cells treated with either vehicle or 10 nM of E2 at 

15 min, 30 min, 2 h or 4 h. The collected samples were analyzed by western blot. As 

shown in Fig. 4.8, ERK1/2 is not activated during the first four hours of E2 

treatment, suggesting that E2 does not cause MIER1α nuclear export because its 

intracellular signalling pathways in MCF7 do not include activation of ERK1/2.  

It was reported that ERK1/2 activation is initiated by a membrane-initiated 

(non-genomic) estrogen signalling pathway through the isoform estrogen receptor 

alpha 36 (ERα36) when cells were treated with 10nM E2 (Wang et al., 2006). ERα36, 

which predominantly localizes on the plasma membrane, lacks the transcriptional 

activation domains of the classical ERα and its expression level is low in MCF7 cells 
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(Wang et al., 2006). Therefore, the inactivation status of ERK1/2 in our study is 

probably due to a low level of ERα36 and consequently, E2 mainly binds to ERα and 

exerts its effect through genomic action.  
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Figure 4.8 ERK1/2 is not activated by E2 

MCF7 cells were transfected with myc-tagged MIER1α and 3x105 cells were seeded 

in each well in a six-well dish. At 24 h post-transfection, cells were treated either 

with vehicle or 10 nM E2. Cells were collected at 15 min, 30 min, 2 h and 4 h after 

treatment. 1/20th of the cell lysate was loaded per lane and the proteins resolved by 

western blotting. The blot was probed for either phospho-ERK1/2 (pERK1/2; top 

blot) or Lamin A (bottom blot) as a loading control. The blot was stripped once and 

reprobed for ERK1/2 (middle blot) to determine the amount of ERK1/2 protein in 

each lane. The western blot in this figure demonstrates ERK1/2 is not activated 

when MCF7 cells were treated with E2. 
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4.3.4 The mechanism responsible for growth factor directed nuclear export 

does not involve direct phosphorylation of MIER1α on consensus motifs by 

pERK1/2 

Phosphorylation is a common modification in biology, leading to pleiotropic 

effects and playing a vital role in regulating a multitude of biological pathways. 

Transport across the nuclear envelope is an essential cellular function and therefore 

phosphorylation of cargos trafficking between the cytoplasm and nucleus is 

emerging as an important step. Shuttling of cargoes regulates nuclear availability, 

which directly affects gene expression (Nardozzi et al., 2010). Phosphorylation can 

regulate nucleocytoplasmic shuttling in either direction (Nardozzi et al., 2010). For 

example, Signal Transducers and Activators of Transcription (STATs) are an 

important family of transcription factors that regulate cellular viability, immune 

response and development. Upon stimulation of extracellular receptors, STAT1, 

which mediates the innate immune response (Jr, 1997), is activated through 

tyrosine phosphorylation at position Y701 (Nardozzi et al., 2010). The 

phosphorylation of STAT1 induces homodimerization and leads to a structural 

rearrangement of STATs and a dimer-specific NLS becomes exposed (Nardozzi et al., 

2010). This unconventional dsNLS can only function as a nuclear import signal 

within the context of phosphorylated STAT1. On the other hand, the nuclear factor 

of activated T-cells (NFAT) is a well-characterized example of cargo localized to the 

cytoplasm due to phosphorylation of its serine-rich region (Ortega-pe, Cano, Were, 

Villar, & Redondo, 2005). 
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Activated ERK1/2 are “Proline-directed” protein kinases, which means they 

phosphorylate S or T residues adjacent to P residues (Wortzel & Seger, 2011). P-X-

S/T-P serves as the most common sequence for ERK1/2 substrate recognition but 

the S/T-P motif can also serve as a substrate (Gonzalez, Raden, & Davis, 1991). The 

MIER1α amino acid sequence contains two S-P motifs (Table 4.2): S10-P11 & S377-P378 

and studies by other groups revealed that S10 and S377 can be phosphorylated (Table 

4.3). In sections 4.3.1-4.3.3, it was confirmed that the activated MAPK pathway 

regulates MIER1α nuclear export; therefore, my proposal here is if MIER1α nuclear 

loss is due to direct phosphorylation S-P motifs by pERK1/2, then mutation of S10 

and S377 to A should abolish phosphorylation and block nuclear export stimulated by 

growth factors. Hence, I investigated the subcellular distribution of S-P motif mutant 

MIER1α. I began by constructing single point mutations of these two S-P motifs to A 

residues and named the mutants S10→A-α, S377→A-α, respectively. WT-MIER1α or 

S10→A-α or S377→A-α were transfected into MCF7 cells. The transfected MCF7 cells 

were incubated with or without growth factors 24 h post-transfection and cells 

were collected 4 h later. 76% of S10→A-α and 83% of S377→A-α localize in the 

nucleus compared to 81% of WT-MIER1α, demonstrating that mutagenesis of the 

individual S-P motifs had no effect on nuclear targetting (Figs. 4.9A & 4.10A). When 

incubated with growth factors, each mutant shows an altered subcellular 

distribution, similar to WT-MIER1α. A comparison of the percent nuclear for S10→A-

-α: WT-MIER1α shows 39%: 41% with insulin, 46%: 43.5% with IGF-1, 39.5%:37.5% 

with EGF and 32.5%: 33% with FGF (Fig. 4.9B-C). Likewise, the percent nuclear for 

S377→A-α: WT-MIER1α is 56%: 41% with insulin, 51.5 %: 43.5% with IGF-1, 
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41%:37.5% with EGF and 40%: 33% with FGF (Fig. 4.10B-C). Although the percent 

nuclear for the latter mutation was consistently higher, this difference was not 

statistically significant as determined by Sidak’s multiple comparisons test. 
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Table 4.2 SP motifs within the MIER1α sequence 

MAEPSVESSSPGGSATSDDHEFDPSADMLVHDFDDERTLEEEEMMEGETNFSSEIEDLAR

EGDMPIHELLSLYGYGSTVRLPEEDEEEEEEEEEGEDDEDADNDDNSGCSGENKEENIKD

SSGQEDETQSSNDDPSQSVASQDAQEIIRPRRCKYFDTNSEVEEESEEDEDYIPSEDWKKEI

MVGSMFQAEIPVGICRYKENEKVYENDDQLLWDPEYLPEDKVIIFLKDASRRTGDEKGVE

AIPEGSHIKDNEQALYELVKCNFDTEEALRRLRFNVKAAREELSVWTEEECRNFEQGLKA

YGKDFHLIQANKVRTRSVGECVAFYYMWKKSERYDFFAQQTRFGKKKYNLHPGVTDYM

DRLLDESESAASSRAPSPPPTASNSSNSQSEKEDGTVSTANQNGVSSNGPGILQMLLPVHF

SAISSRANAFLK* 

 

Table 4.3 MIER1 post-transcriptional modification reported in research papers 

Sites: Cell lines/tissue: Reference: Types of 
modification 

S10 C57 mice liver (Bian et al., 2014) Phosphorylation 

S141,367, 369, 377, 
448, 491 

Hela (Zhou et al., 2012) Phosphorylation 

S160, 166, 483 Hela (Dephoure et al., 2008) Phosphorylation 

S488 Hela (Olsen et al., 2006) Phosphorylation 

H420 HeLa and U2-OS cells (Hendriks et al, 2015) SUMOylation 

    

  

10 

377 
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Figure 4.9 Substitution of S10 to A has no effect on the subcellular distribution of 

MIER1α in MCF7 cells 

MCF7 cells were transfected with myc-tagged MIER1α or S10→A-α. At 24 h after 

transfection, cells were either treated with vehicle or insulin, IGF-1, EGF or FGF and 

incubated for 4 h. Cells were then fixed and processed for confocal analysis. (A) 

Mutation of S10→A does not affect nuclear localization of MIER1α. Histogram 

showing the results of two independent experiments; the localization pattern 

of >250 cells were scored. S10→A-α shows a similar pattern as wild type MIER1α. (B) 

Percentage of cells showing nuclear localization for S10→A-α compared to wild type 

MIER1α after growth factor treatment. The dot chart typically demonstrates there is 

no statistical significance of the percent nuclear localization between the wild type 

MIER1α and the S10→A-α mutant (Sidak’s multiple comparisons test). (C) 

Subcellular distribution of S10→A-α compared with WT-MIER1α. p>0.05.
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Figure 4.10 Substitution of S377 to A has no effect on the subcellular distribution of 

MIER1α in MCF7 cells 

MCF7 cells were transfected with myc-tagged MIER1α or S377→A-α. At 24 h after 

transfection, cells were either treated with vehicle or insulin, IGF-1, EGF or FGF and 

incubated for 4 h. Cells were then fixed and processed for confocal analysis. (A) 

Mutation of S377→A does not affect nuclear localization of MIER1α. Histogram 

showing the results of two independent experiments; the localization pattern 

of >250 cells were scored. S377→A-α shows a similar pattern as wild type MIER1α. 

(B) Percentage of cells showing nuclear localization for S377→A-α compared to wild 

type MIER1α after growth factor treatment. The dot chart typically demonstrates 

there is no statistical significance of the percent nuclear localization between the 

wild type MIER1α and the S10→A-α mutant (Sidak’s multiple comparisons). (C) 

Subcellular distribution of S10→A-α compared with WT-MIER1α. p>0.05. 
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The single mutation of S-P motifs did not show a statistical difference 

between WT-MIER1α and mutant-α. This leads us to propose that MIER1α nuclear 

loss may require both S-P motifs. Therefore, a double mutant, containing both S10→A 

and S377→A was generated and named S10→A/S377→A-α. Compared to 81% nuclear 

with WT-MIER1α, 77.5% of S10→A/S377→A-α were nuclear, demonstrating that the 

double mutation still mainly localizes in the nucleus (Fig. 4.11A). When treated with 

growth factors, S10→A/S377→A-α showed an altered subcellular distribution, similar 

to WT-MIER1α. Comparison of the percent nuclear for S10→A/S377→A-α: WT-

MIER1α is 47.5%: 41% with insulin, 50%: 43.5% with IGF-1, 41%:37.5% with EGF 

and 38.5%: 33% with FGF (Fig. 4.11B-C).  Once again, the percent nuclear was 

consistently high with the mutant but this difference was not statistically significant 

(Sidak’s multiple comparisons test). 

Taken together, the subcellular distribution of the single mutants of S10→A-α 

or S377→A-α did not block nuclear loss of MIER1α, nor did the double mutant 

S10→A/S377→A-α, indicating that phosphorylation of these residues is not the 

mechanism responsible for nuclear export of MIER1α by growth factor signalling. 
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Figure 4.11 Double mutations of 10S and 377S to A has no effect on the subcellular 

distribution of MIER1α in MCF7 cells 

MCF7 cells were transfected with myc-tagged MIER1α or double mutant 

S10→A/S377→A-α. At 24 h after transfection, cells were either treated with vehicle or 

with insulin, IGF-1, EGF or FGF and incubated for 4 h. Cells were then fixed and 

processed for confocal analysis. (A) Double mutations of 10S→A and 377S→A do not 

affect nuclear localization of MIER1α. Histogram showing the results of two 

independent experiments; the localization pattern of >250 cells were scored. 

S10→A/S377→A-α shows a similar pattern as wild type MIER1α. (B) Percentage of 

cells showing nuclear localization for of S10→A/S377→A-α compared to wild type 

MIER1α after growth factor treatment. The dot chart typically demonstrates there is 

no statistical significance of the percent nuclear localization between the wild type 

MIER1α and the S10→A/S377→A-α mutant (Sidak’s multiple comparisons test). (C) 

Subcellular distribution of S10→A/S377→A-α compared with WT-MIER1α. p>0.05.  
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4.3.5 The N-terminal region of MIER1α is required for nuclear export 

My data have excluded the possibility that direct phosphorylation on S-P 

motifs by pERK1/2 is responsible for MIER1α nuclear loss (as discussed in section 

4.3.4). To further investigate the mechanism by which ERK1/2 causes nuclear 

export, I decided to begin by identifying which region of MIER1α is required for 

nuclear export during growth factor treatment.  

MIER1α contains 4 N-terminal acidic stretches, an ELM2 domain, a SANT 

domain and α C-terminus (Fig. 4.3B). I transfected MCF7 cells with myc-tagged 

constructs containing either the full-length MIER1α(aa1-433) or a deletion series. 

Each of the deletion constructs needed to include the ELM2 domain, since this 

sequence is required for nuclear targeting. Plasmids containing the following 

regions were constructed: 1) aa1-283(the N-terminal acidic stretches+ELM2 

domain), 2) aa164-433 (ELM2 +SANT +α C-terminus), 3) aa164-283 (the ELM2 

domain alone). Transfected MCF7 cells were treated with insulin or IGF-1, EGF, FGF, 

respectively. Localization was determined by confocal microscopy and compared to 

full-length MIER1α in each group.  

In the control group, myc-tagged full-length MIER1α is mainly nuclear (80%; 

Fig. 4.12 panels a-c, Fig. 4.13 A). All constructs localized in the nucleus, similar to 

full-length MIER1α: construct 1 is 79% and construct 3 is 80% nuclear (Fig. 4.12, 

panels g-i, s-u; Fig. 4.13 B&D), surprisingly, construct 2 is almost exclusively nuclear 

(98% nuclear, Fig. 4.12, panels m-o; Fig. 4.13 C), demonstrating a statistic difference 

when compared with full-length MIER1α (p<0.05). All these data further confirmed 
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ELM2 domain is required for MIER1α nuclear localization, which is consistent with 

the data presented in section 2.3.2. After all of these groups were treated 

without/with insulin, IGF-1, EGF or FGF, construct 2 and 3 remained nuclear. The 

percent nuclear for each was: construct 2: 97% with insulin, 96% with IGF-1; 96% 

with EGF and 94% with FGF (Fig. 4.13C); construct 3: 76% with insulin, 79% with 

IGF-1, 77% with EGF and 76% with FGF (Fig. 4.13D). None of these distribution 

patterns gave a statistically significant difference after treating with growth factors 

(p>0.05). The subcellular distribution of construct 1, on the other hand, changes 

dramatically after growth factor treatment: the nuclear localization of construct 1 is 

30% with insulin, 29% with IGF-1, 26% with EGF and 25% with FGF (Fig. 4.13B). 

Together, these results demonstrate that the N-terminal sequence containing acidic 

stretches is required for MIER1α nuclear export triggered by growth factors insulin, 

IGF-1, EGF and FGF. 
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Figure 4.12 The N-terminus containing 4 acidic stretches is required for MIER1α 

nuclear export 

MCF7 cells were transfected with myc-tagged full-length MIER1α (a-f) or a myc-

tagged MIER1α deletion construct containing either the acidic + ELM2 domains 

(construct 1; panels g-l), the ELM2 + SANT + α C-terminus (construct 2; panels m-r) 

or the ELM2 domain alone (construct 3; panels s-x). And 24 h later, transfected cells 

were either treated with vehicle or 10 µg/ml insulin for 4 h before fixation. 

Localization was analyzed by confocal microscopy using DAPI and 9E10 anti-myc 

tag antibody. Illustrative examples of cells showing stained nuclei and MIER1α 

localization; arrowheads indicate nuclear staining and arrows indicate whole cell 

staining. The amino acids (aa) encoded by each construct are indicated on the right. 
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Figure 4.13 The N-terminus containing 4 acidic stretches is required for MIER1α 

nuclear export 

MIER1α or deletion constructs transfected MCF7 cells were treated with vehicle 

(Control) or growth factors 24 h after transfection and incubated for 4 h before 

fixation. The amino acids (aa) encoded by each construct are indicated above each 

histogram. (A-D) Histogram showing the results of 3 independent experiments; 

random fields were selected and the staining pattern of each cell within the field 

was scored visually. Plotted is the percentage of cells in each category ± S.D; the 

percent nuclear for the N-terminal acidic stretches + ELM2 domain(aa1-283) 

construct with growth factor is significantly less than control(B, ****p<0.0001).  
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4.3.6 MIER1α nuclear loss is transient and reversible 

Growth factors are depleted faster compared to other components in the 

culture media (Yu et al., 2015). Once growth factors are depleted in the medium, the 

signal for ERK1/2 activation is gone, and events will return to the basal level 

naturally. Hence, to investigate whether MIER1α nuclear loss was sustained beyond 

4 h incubation period, we analyzed the cells at several time points after growth 

factor treatment. MCF7 cells were transfected with myc-tagged MIER1α and 24 h 

later treated either with vehicle or growth factors. Then, the cells were fixed at 

different time points after growth factor addition. In the vehicle-treated groups, 

MIER1α nuclear percentage is 80% before treating with growth factors. Then 

MIER1α nuclear localization decreases gradually in all groups at 0.25 h, 0.5 h, 2 h 

and 4 h after growth factor incubation. MIER1α nuclear percentage is 71.5% at 0.25 

h, 68.5% at 0.5 h, 60% at 2 h and 46% at 4 h after insulin treatment (Fig. 4.14 A a). 

The IGF-1, EGF & FGF groups demonstrate the same trend. However, in all of the 

groups fixed at 24h after growth factor addition, MIER1α nuclear localization 

percentage returns to control level: 89% with insulin, 89.5% with IGF-1, 85.5% with 

EGF and 81% with FGF compared with 89% with MIER1α (Fig. 4.14A a-d). At the 

same time, ERK1/2 phosphorylation level diminishes after 24h of growth factor 

treatment in all groups (Fig. 4.14B). Compared with the basal level, pERK1/2 is still 

slightly higher in EGF and FGF groups and this corresponds to a lower percentage of 

MIER1α nuclear localization in EGF & FGF groups, which means EGF and FGF have a 

lasting effect on activation of pERK1/2 and the residue of this activation keeps 

pumping a small amount of MIER1α out of the nucleus. This data implies that when 
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growth factor-dependent activation of pERK1/2 diminishes and the effect of growth 

factors on cells disappears, MIER1α returns to the nucleus. In short, growth factor 

triggered MIER1α nuclear loss is transient and reversible. Moreover, the duration 

and intensity of pERK1/2 activation can profoundly influence the subcellular 

distribution of MIER1α. 
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Figure 4.14 MIER1α nuclear loss caused by ERK1/2 activation is transient and 

reversible 

MCF7 cells were transfected with myc-tagged MIER1α and seeded at 3x104/well in 

8-well chamber slide and 3x105/well in a six-well dish. At 24 h after transfection, 

cells were either treated with vehicle (control) or growth factor. Cells seeded in 

chamber slides were fixed at 0.25 h, 0.5 h, 2 h, 4 h & 24 h after growth factor 

treatment; cells seeded in 6-well dish were collected at 24 h after growth factor 

treatment. (A) MIER1α nuclear localization during-24 h of growth factor treatment; 

(B) Activation of pERK1/2 4 h & 24 h after growth factor treatment with insulin, 

IGF-1, EGF or FGF. 1/20th of cell lysate was loaded per lane and resolved by western 

blotting. The blot was probed for either phospho-ERK1/2 (pERK; top blot), or Lamin 

A (bottom blot) as a loading control. The top blot was stripped once and reprobed 

for ERK1/2 (middle blot) to demonstrate equivalent amounts of ERK1/2 protein in 

each lane.  
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4.4 Discussion 

Phosphorylation is one mechanism utilized by molecules to regulate 

nucleocytoplasmic shuttling by triggering a conformational change which further 

causes nuclear import or export (Nardozzi et al., 2010). Quite a few articles report 

that 10S or 377S on MIER1 protein can be phosphorylated (Bian et al., 2014, Zhou et 

al., 2012) (Table 4.3). S-P motifs serve as the minimal phosphorylation motifs for 

pERK1/2; however, the single or double mutagenesis of S-P motifs on MIER1α does 

not prevent its nuclear export, implying that direct phosphorylation of S-P motifs on 

MIER1α is not involved in its nucleocytoplasmic shuttling. Although pERK1/2 is 

defined as Proline-directed protein kinase, some motifs lacking a Proline in the +1 

position, herein referred to as non-S/T-P motifs, have been also reported to be 

phosphorylated by pERK1/2 (Carlson et al., 2011). Hence, phosphorylation on other 

sites due to MAPK pathway activation may be responsible for MIER1α nuclear loss. 

It is worth investigating whether MIER1α contains non-canonical S/T-P motifs that 

can be phosphorylated by pERK1/2 and lead to nuclear export. Since N-terminal 

acidic stretches (aa1-164) are required for MIER1α nuclear export, further study 

should focus on residues of S141 and S160, all of which have been shown to be 

phosphorylated (Table 4.3). 

Nuclear export mediated through binding to another adaptor molecule is a 

well-recognized export mechanism for some proteins. For example, the 60S 

ribosomal subunit does not bind directly to CRM1, but instead binds to an adaptor 

protein, Nmd3, which possesses a classical hydrophobic NES to be exported (Ho, 
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Kallstrom, & Johnson, 2000). MIER1α nuclear loss may also be mediated by such a 

mechanism as discussed in section 3.4.  

Although multiple polypeptide growth factors were included in MIER1α 

localization study here, there are still some other growth factors or cytokines that 

were not investigated. For example, nerve growth factor (NGF) is widely expressed 

in all different kinds of breast cancer cell lines but not in normal breast epithelial 

cells; it activates downstream pathways by binding to its two cognate receptors, 

TrkA, a receptor tyrosine kinase and p75NTR.(Dolle, Yazidi-Belkoura, EAdriaenssens, 

Nurcombe, & Hondermarck, 2003; Molloy, Read, & Gorman, 2011). How MIER1α 

localization responds to other growth factors like NGF is unknown.  

Cells receive fate-determining signals from the surrounding micro-

environment under physiological conditions, mainly in the form of polypeptide 

growth factors (Witsch et al., 2011). Although tumour initiation is instigated by 

oncogenic mutations rather than by growth factors, the subsequent steps are mainly 

regulated by the latter, including clonal expansion, invasion and angiogenesis 

(Witsch et al., 2011). During breast cancer progression, MIER1α is translocated from 

the nucleus in hyperplasia and DCIS stages to the cytoplasm in the IDC stage 

(McCarthy et al., 2008); through my investigations, I have confirmed that growth 

factor-induced activation of MAPK leads to MIER1α nuclear loss in a breast 

carcinoma cell line, but this cytoplasmic shuttling is reversible once the growth 

signal has diminished. The transient activation of MAPK usually initiates immediate 

early genes (IEGs) activation/expression (Fowler et al., 2011) and usually, the 
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regulation of IEGs by transient activation of MAPK is always transient and reversible 

(Fowler et al., 2011). MIER1 is defined as an IEG activated during FGF stimulation of 

embryonic cells. Therefore, it is not surprising that MIER1α nuclear loss behaves in 

a transient and reversible pattern in response to growth factor induced activation of 

MAPK, followed by inactivation of the signalling cascade.  

Our findings that MAPK activation influences MIER1α nucleocytoplasmic 

shuttling in a breast cancer cell line may shed new light on the underlying 

mechanism responsible for altered MIER1α cellular distribution during breast 

cancer progression. Thus, constitutive MAPK activation could explain the significant 

loss of MIER1α in the nucleus of advanced stage breast cancer and this is further 

discussed in section 5.3. 
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Chapter 5 Summary 

Over the past decade, MIER1 was shown to encode a potent nuclear 

transcriptional regulator and play a role in the regulation of gene expression (Ding 

et al., 2004, 2003). In human breast cancer, the MIER1α isoform physically interacts 

with ERα acting as a corepressor and breast cancer development is coupled with 

aberrant subcellular localization of MIER1α (McCarthy et al., 2008). Tumour 

suppressors are frequently reported to have their function inactivated by nuclear 

export (Azmi & Mohammad, 2016). All this evidence supports the hypothesis that 

subcellular mislocalization of MIER1α in breast cancer leads to functional loss. 

Therefore, investigation of MIER1α’s dynamic subcellular translocation may help to 

uncover the specific role MIER1α plays in breast cancer development. 

In this thesis, I investigated the MIER1α nucleocytoplasmic shuttling 

mechanism in a breast carcinoma cell line. Although MIER1α interacts with ERα and 

suppresses cell growth, MIER1α nuclear localization is not dependent upon ERα. 

Instead, MIER1α nuclear targeting is dependent on HDAC1/2 through a piggyback 

mechanism involving binding to HDAC1/2 via the ELM2 domain (Chapter 2). 

Further study revealed that ERK1/2 activation by insulin, IGF-1, EGF or FGF can 

cause MIER1α nuclear loss and this export process does not involve the ELM2 or 

SANT domain of MIER1α, but instead requires sequence within the N-terminal 

163aa that contains 4 acidic stretches. HDAC1/2 nuclear localization is not affected 

during the nuclear export process, demonstrating that while HDAC1/2 are 

responsible for MIER1α nuclear localization, they are not involved in nuclear loss. 

MIER1α nuclear localization is not affected by E2 (Chapter 3) and consistent with 
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this is the fact that ERK1/2 is not activated by E2 (Chapter 4). ERK directed nuclear 

loss of MIER1α is CRM-1-dependent and requires the sequence within the N-

terminal 163aa. In addition, the nuclear loss of MIER1α is transient and reversible. 

Together, my data lead me to propose the following model for nucleocytoplasmic 

shuttling of MIER1α in the breast carcinoma cell line (Fig 5.1).  
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Figure 5.1 Model of MIER1α nucleocytoplasmic shuttling mechanism 

 (A) MIER1α nuclear import. In the environment in which extracellular stimuli are 

absent and the MAPK pathway is not activated, MIER1α is targeted to the nucleus 

through binding to HDAC1/2 by a “piggyback” mechanism. (B) MIER1α nuclear 

export. When the MAPK pathway is activated by growth factors binding to their 

respective receptor tyrosine kinase (RTK), active pERK1/2 causes MIER1α nuclear 

export through CRM1. 
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5.1 “Piggyback” mechanism of MIER1α nuclear localization 

NLSs are stretches of residues in proteins that mediate their import into the 

nucleus. The nuclear translocation of proteins mainly depends on the presence of 

NLSs and most nuclear proteins contain one or more NLSs. Some nuclear proteins 

lacking an NLS can enter the nucleus by piggybacking as a preassembled complex 

with another protein containing an NLS. For example, the hetero-trimeric CCAAT-

binding complex is evolutionarily conserved in eukaryotic organisms including fungi, 

plants and mammals. The three homolog subunits of this complex in Fungi are HapC 

and HapE, which associate with the NLS-containing protein HapB for nuclear import 

(Steidl et al., 2004). Based on computer analysis of MIER1α, no classical NLS has 

been identified but it does localize in the nucleus of MCF7 cells. MIER1α deletion 

analysis indicates that the nuclear translocation of MIER1α is dependent on the 

presence of an intact ELM2 domain and that it piggybacks on HDAC1/2 to achieve 

nuclear localization. Previous research also reported that an intact ELM2 domain is 

necessary for recruiting HDAC1 activity and transcriptional repression activities of 

MIER1 (Ding et al., 2003). 

Molecules that are smaller than 40-45 kDa can diffuse freely through NPC in 

the cells. The molecular mass of the myc-tagged ELM2 domain predicted by ExPASy 

is 21.5 kDa, and with this size, one would expect that it can easily diffuse in and out 

of the nucleus and the cellular distribution would be balanced between the 

cytoplasmic and nuclear compartments. However, instead of displaying whole cell 
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staining, the myc-fused ELM2 domain shows 85% nuclear localization (section 

2.3.2), meaning that the ELM2 domain cannot diffuse freely through NPCs. This also 

suggests that ELM2 domain itself can form the correct structure to be translocated 

to the nucleus without the aid of the other domains in MIER1α. Secondary-structure 

analysis of the ELM2 region by PREDICTPROTEIN 

(https://www.predictprotein.org/) revealed that the ELM2 domain has a 

propensity to form α-helix (aa221-235, aa254-262, aa267-276). The substitution of 

214W with A in MIER1α does not result in any alteration of the predicted three α-

helical structures in the ELM2 domain. Therefore, it is possible that 214W is part of 

the binding site for HDAC1 or HDAC2; the substitution of this residue may not result 

in a structural conformation change in MIER1α, but a loss of the binding site.  

To date, 18 different HDACs have been identified in humans and divided into 

four classes based on sequence similarity to the Saccharomyces cerevisiae 

counterparts (Ruijter et al., 2003). Evidence confirms that different HDACs have 

unique temporal and spatial expression patterns contributing to tissue-specific 

regulation of chromatin and transcription-regulatory complexes (Delcuve, Khan, & 

Davie, 2012). The MIER1 isoform only interacts with HDAC1 and 2, which belong to 

class I HDACs and it has no interaction with other class I HDACs (Bantscheff et al., 

2011; Joshi et al., 2014), suggesting the specific function of MIER1 is with class I 

HDAC activity. Previous findings showed that a point mutation of the highly 

conserved 214W on the ELM2 domain eliminated MIER1’s ability to recruit HDAC1 

enzymatic activity (Ding et al., 2003). In our research, mutagenesis of 214W abolishes 

the interaction between MIER1α and HDAC1 & 2. Therefore, we conclude that the 
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214W residue is not only critical for MIER1’s ability to recruit HDAC activity, but also 

for its localization in the nucleus.  

The dissociation between MIER1α and HDAC1/2 may have a biological effect 

on cells. MIER1α is well-known for acting as a transcriptional repressor through 

binding to HDAC1/2; the 214W→α mutant may lose its repressive function by 

dissociating with HDAC1/2. This also suggests a way to study the non-genomic 

function of MIER1α since the 214W→A mutation does not cause a conformation 

change and nothing is known about possible cytoplasmic functions of MIER1α under 

normal or pathological conditions. The α isoform was shown to be lost from the 

nucleus during breast cancer progression, but it may interact with some other 

cytoplasmic molecules based on its atypical presence and/or facilitate breast cancer 

progression by stimulating the growth of tumour cells. Overall, a functional study of 

the 214W→A mutant may help to elucidate the role MIER1α plays in breast cancer. 

5.2 Possible mechanisms responsible for MIER1α nuclear export 

The NPC mediates translocation of molecules across the nuclear envelope. 

The NPC is a large protein complex consisting of ~30 types of Nups (Wente & Rout, 

2017). FG repeat regions on Nups are natively unfolded in the central tube of the 

NPC and act as a permeability barrier. Karyopherins are the carriers and pass 

through the barrier of the NPC by binding FG Nups. MIER1α nuclear export was 

shown to be CRM1-mediated (section 3.3.3) and this excludes the possibility that it 

goes through the NPC without the assistance of Karyopherins. In addition, without 

an NES, MIER1α cannot bind to CRM1 directly. Therefore, one possibility is that an 
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adaptor protein acts as a bridge between MIER1α and CRM1. MIER1α might go a 

post-translation modification in the presence of growth factors and the modified 

residue(s) of MIER1α might offer a binding site for the adaptor protein. The complex 

of modified MIER1α:adaptor protein:CRM1 might then be exported out of the 

nucleus. 

One possible adaptor that could mediate CRM1-mediated MIER1α export is 

the 14-3-3 protein. 14-3-3 is a well-known adaptor protein that acts by binding to a 

partner protein, and this binding often leads to the altered subcellular localization of 

the partner; specifically, 14-3-3 facilitates nuclear export of its target protein via a 

NES present on its carboxy-terminus and this NES is recognized by CRM1 for CRM1-

dependent nuclear export (Lopez-Girona, Furnari, Mondesert, & Russell, 1999). 

Although the majority of 14-3-3 molecules are present in the cytoplasm, 14-3-3 

translocates back to the nucleus when the bound ligands are absent (Brunet et al., 

2002). For example, growth factor-stimulation first leads to the phosphorylation of 

the transcription factor FKHRL1 at its 14-3-3 binding site within the nucleus and 

then FKHRL1 is exported to the cytoplasm. Therefore, it is possible that a residue(s) 

in the MIER1α N-terminal 163aa, other than S10-P (see section 4.3.4), are 

phosphorylated by pERK1/2 or another downstream kinase. This phosphorylation 

may facilitate MIER1α binding to 14-3-3 and CRM1, causing the complex to be 

exported out of the nucleus. 14-3-3 siRNA or inhibitors are commercially available 

products and this would facilitate future research on whether this molecule plays a 

role as an adaptor protein between MIER1α and CRM1. MIER1α nuclear localization 
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can be studied in the presence of growth factors while 14-3-3 is knocked down or 

inhibited to elucidate its role in MIER1α nuclear export. 

Another possibility is that one of the IEGs regulated by the MAPK pathway is 

directing MIER1α nuclear export. The first cellular response following exposure to 

growth factors is the induction of IEGs, representing the first major transcriptional 

program which leads to changes in a variety of cellular responses. The MAPK 

pathway is known to positively regulate IEGs, resulting in various cellular outcomes. 

Specifically, the MAPK signalling pathway directly activates IEG promoter-bound 

transcription factors (Whitmarsh, Shore, Sharrocks, & Davis, 1995), resulting in 

transient transcription of the IEGs (Greenberg, Greene, & Ziff, 1985) acting as the 

sensor of duration and strength of the input signals. For instance, Fos is one of the 

well known IEGs functioning as a sensor of ERK1 and ERK2 signals and its peak 

expression is 30 to 60 minutes after stimulation(Healy et al., 2012; O’Donnell et al., 

2012). The phosphorylation of S374 and S362 of c-Fos by pERK1/2 prevents it from 

being degraded (Murphy, MacKeigan, & Blenis, 2004). This example suggests that 

there might be a NES-containing IEG product acting as a bridge molecule connecting 

MIER1α to CRM1. Once growth factors are depleted in the medium and stimulation 

of ERK1/2 diminishes, the transiently expressed IEG would then be degraded, 

causing MIER1α re-entry into the nucleus through interaction with HDAC1/2.  

In summary, it is important to narrow down the molecules that can bind to 

N-terminal 163aa of MIER1α and CRM1 at the same time, then test each through 

knock down or inhibitors to determine which one is responsible for bridging 
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MIER1α and CRM1. One approach would be to analyze the CRM1-MIER1α complex 

in the presence and absence of growth factors by mass spectrometry to narrow 

down the possible bridging molecules.  

5.3 Possible mechanisms responsible for MIER1α nuclear loss during 

breast cancer progression 

Seven classes of MAPK intracellular signalling cascades exist and signalling 

through the ERK1/2 pathway has been implicated as being important in some forms 

of human breast cancer and breast cancer models. In our research, we included four 

different growth factors and they all can cause ERK1/2 activation. But ERK1/2 can 

be activated by a variety of stimuli, including cytokines and non-nuclear steroid 

hormone receptors. Up to 40% of inflammatory breast cancer over-express human 

Her2 which can cause the persistent activation of ERK1/2 in breast cancers (Zell, 

Tsang, Taylor, Mehta, & Anton-Culver, 2009).  

In the IHC study in which the MIER1α isoform showed an altered subcellular 

localization, the antibody used in that study could not distinguish between the 

MIER1α and MIER1-3Aα isoforms (McCarthy et al., 2008, Clements et al., 2012). The 

two alternate N-termini of MIER1 are distinct, in that one includes an additional 

exon (exon 3A) encoding a bona fide NES (Clements et al., 2012) and the other does 

not. The expression of MIER1α or MIER1-3Aα can result from alternative promoter 

usage and splicing. If MIER1α is expressed and excluded from the nucleus during 

breast cancer progression, this implies that progression is coupled with the loss of 

MIER1α’s nuclear function. But it could also be that MIER1α is expressed during the 
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early stages of breast cancer (demonstrating nuclear localization) and that there is a 

switch to MIER1-3Aα expression by P1 promoter usage (demonstrating non-nuclear 

staining) at later stages of breast cancer progression.

Alternative splicing is a mechanism which can increase protein diversity by 

excluding or including exons; alternatively spliced proteins may contribute to the 

etiology of cancer and are particularly relevant in oncology (Gardina et al., 2006). 

Thus, this demonstrates the importance of distinguishing the specific isoform of 

MIER1α expressed during breast cancer, which might also provide a marker for 

different stages of breast cancer development. At the moment, there are no 

antibodies available that can distinguish between MIER1α and MIER1-3Aα. 

DCIS is non-invasive cancer and defined as neoplastic proliferation of 

epithelial cells confined in the milk ducts in the breast. It is considered a non-

obligate precursor of invasive breast cancer. MCF7, ER+ cell line, is epithelial-like 

adenocarcinoma breast cancer cell line and is a popular choice for research for ER 

positive breast cancer cell experiments (Comsa, Cimpean, & Raica, 2015). In my 

research, MIER1α contains a LXXLL motif, which has the potential to interact with 

ERα to regulate cellular function. Combine with the previous finding that 51% of 

MIER1 α isoform localized in the nucleus in DCIS biopsies (McCarthy et al., 2008), 

MCF7 cell line supports as a good model to study the nucleocytoplasmic shuttling of 

MIER1α. 
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5.4 Functional implication of MIER1α nuclear loss  

Tumour suppressors involved in cancer pathogenesis have been extensively 

investigated in past decades. Tumour suppressors can promote tumour formation 

through point mutation or deletion which abolishes their proper function in normal 

cells. Initially, Knudson proposed that the tumour suppressor retinoblastoma 

(RB) gene played a role in tumourigenesis when both alleles were impaired 

(Knudson, 1971). Later, data collected on non-hereditary tumours clearly 

demonstrated that the role of tumour suppressors in cancer is much more 

complicated (Berger, Knudson, & Pandolfi, 2011). The function of tumour 

suppressors can be modulated by subtle dosage variations at the protein expression 

level, proper cellular compartmentalization and PTMs (Correia, Gírio, Antunes, 

Martins, & Barata, 2014; Leslie & Foti, 2011). MIER1α acts as a tumour suppressor 

in the nucleus, but when it is exported to the cytoplasm, it is not known whether the 

only effect is loss of its transcriptional repressor function because of the change of 

location or whether it gains a non-genomic function in the cytoplasm.  

Many important tumour suppressors and transcription regulators regulate 

cell growth and apoptosis by localizing in the nucleus leading to uncontrolled 

growth and the onset of disease, while cytoplasmic localization can serve as an 

inactivation mechanism (Vousden & Woude, 2000). For instance, BCR-ABL 

promotes the sequestration and inactivation of p53 in the cytoplasm through IκBα 

(Crivellaro et al., 2015). The mislocalization of p53 is associated with impaired 

function, which reflects on the markedly reduced expression of the p21 mRNA level 

(Crivellaro et al., 2015). Mislocalization of tumour suppressors not only makes them 
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lose their nuclear function, but they might gain function as an oncogene in the 

cytoplasm. For instance, p27 acts as a tumour suppressor promoting cell cycle 

regulation when localized in the nucleus, while cytoplasmic p27 increases 

oncogenicity in melanoma and breast cancer xenograft models acting as an 

oncogene (Agarwal, Mackenzie, & Deininger, 2014). Therefore, the aberrant 

localization of MIER1α might also result in a non-genomic and oncogenic function in 

the cytosol. 

One limit to investigating the non-genomic function of MIER1α is that the 

transient activation of MAPK cannot be sustained and MIER1α returns to the 

nucleus. Hormones and growth factors themselves have multiple effects in the cell; 

therefore, it would be difficult to determine which, if any, are due to mislocalization 

of MIER1α. Hence, the inclusion of MIER1-3Aα isoform in a future investigation may 

help to solve this problem. The biological effect caused by expressing MIER1-3Aα 

might mimic the effect caused by MIER1α when localized in the cytoplasm, as they 

only differ in the N-terminal 20aa. For example, it was shown that MIER1α can 

suppress anchorage independent growth of T47D cells (McCarthy et al., 2008); 

hence, if MIER1-3Aα expression can promote this growth, this effect would provide 

evidence for an oncogenic function of cytoplasmic MIER1α. However, it has to be 

kept in mind that even a single amino acid mutation may cause dramatic functional 

change of a protein. Cytoplasmic MIER1-3Aα may have a different function 

compared with cytoplasmic MIER1α as the 3A exon encodes a 20 amino acid 

sequence. Except for the 7FTDCLWTLFL16 aa NES contained in this 20 amino acid 

sequence, the presence of other potentially functional domains in this 3A exon is not 
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known. An alternative way is to use a mutant MEK1 in which S218 and S222 are 

replaced by D (Aspartate), causing it to be constitutively active, as measured by 

phosphorylation and activation of pERK1/2 (Lemieux et al., 2009; Pages, Brunet, 

Allemain, & Pouyssegur, 1994). Theoretically, sustained expression of 

MEK1(S218D/S222D) would maintain MAPK pathway activation and in theory, 

MIER1α would be continuously exported out of the nucleus. This provides an 

alternative means of studying non-genomic function of MIER1α. 

5.5 The potential role of MIER1 in breast cancer subtype development 

In general, the MIER1α isoform is expressed mainly in endocrine or 

endocrine-response human tissues, including ovary, breast tissue, testes and the 

pancreas but not the thyroid gland(McCarthy, Paterno, & Gillespie, 2013). The 

ovarian oocytes are stained in both the nucleus and cytoplasm, while only cytoplasm 

is stained in the follicular cells. Germinal epithelia ovarian cells show both 

cytoplasmic and nuclear staining. In breast tissue, the epithelial cells show 

exclusively nuclear staining of MIER1α. The tissue-specific expression of α isoform 

implies that function of MIER1α is mainly involved in endocrine-related organs.  

ER+ breast cancers account for 70% of all types of breast cancers and are 

sensitive to estrogen as estrogen can fuel breast cancer growth. Estrogen mainly 

produced by the ovaries, affects the growth, differentiation, and function of the 

mammary gland. Bierne et al. (2016) showed that the combined knockdown of 

MIER1 and MIER3 increased ERα expression, which means MIER family members 
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may compensate for the functional loss of each other and suppress the expression of 

ERα.  

In addition to estrogen, progesterone is another hormone that is released by 

the ovaries and is also involved in breast cancer development, by binding to its 

receptor. The role of estrogen as a potent breast mitogen is undisputed. The 

progesterone receptor (PR) is another driver of early breast cancer progression. The 

gene encoding the PR, contains a RNA PolII binding site at the promoter and two 

ERα binding site upstream of the gene and estrogen is usually required to induce the 

expression of PR in ER+ cells (Carroll et al., 2006). As a consequence, PR expression 

is significantly increased in MIER1/3-knockdown cells; however, the expression of 

another hormone receptor, androgen receptor, was not affected (Lakisic et al., 

2016).  

ERα+ and PR+ breast cancer belong to the Luminal A or B types. One of the 

therapies for ER+ breast cancers involves treatment with Tamoxifen. Therefore, it 

would be interesting to determine MIER1α localization in the presence of Tamoxifen. 

The up-regulated expression of ERα and PR caused by knockdown MIER1/3 implies 

that the MIER family plays an important role in breast cancer subtype development. 

It is reported PR expression cannot be induced in response to estrogen unless EGF is 

present in mice mammary glands (Ankrapp, Bennett, & Haslam, 1998). In our 

research, the presence of EGF causes MIER1α nuclear export through MAPK 

activation. To summarize, MIER1/3 knockdown causes ERα elevated expression; 

ERα elevated expression further up-regulates PR expression level when EGF is 
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present; and the presence of EGF activates MAPK directed MIER1α nuclear export. 

Therefore, it is possible that MIER1&3 together may regulate the subtype 

development of breast cancer by regulating the expression of ERα and PR. 

Furthermore, growth factors may also have a role in this process as they regulate 

the subcellular distribution of MIER1α. Further investigation could involve 

examination of MIER3 localization in the presence of growth factors. If both MIER1 

and MIER3 can be exported out of the nucleus, the expression of ERα is proposed to 

be upregulated, as is PR expression.  This provides information on how MIER1 and 3 

might cooperate together to regulate breast cancer subtype development. 

5.6 Conclusion 

The study of MIER1α nucleocytoplasmic shuttling mechanism has provided 

some new insights into how it may be involved in breast cancer development. 

Investigation into the regulation of the nuclear import of MIER1α in breast 

carcinoma MCF7 cells shows that the ELM2 domain targets it to the nucleus through 

a piggyback mechanism by interacting with HDAC1/2. The highly conserved residue 

214W may provide as an import interaction site between MIER1α and HDAC1/2. The 

growth factor-dependent activation of MAPK regulates MIER1α nuclear export 

through the N-terminal sequence containing acidic stretches, which possibly 

inactivates MIER1α function as a transcriptional repressor by altering subcellular 

localization. Thus, it is likely that MIER1α links signal transduction and 

transcription. Although ERα does not regulate MIER1α subcellular distribution, the 

role of MIER1α regulation on breast cancer subtype development cannot be 
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neglected. MIER1α nuclear loss may contribute to ERα and PR elevated expression, 

a consistent feature of some subtypes of breast cancer. 

Eukaryotic cells are divided into various morphologically and functionally 

distinct compartments by the lipid bilayer membrane. This division not only 

ensures the morphology of organelles but also the proper functioning of proteins. To 

prevent aberrant expression of genes and assure their normal function in the cells, 

proteins must be targeted to the appropriate compartment to ensure functional 

cellular homeostasis. Proper localization secures the regulated pathways governing 

fundamental physiological processes that, when altered or dysregulated, promote 

survival, proliferation, and cellular growth. Therefore, understanding the 

mechanism of protein subcellular localization not only helps reveal the function of 

individual proteins but also the organization of the cell as a whole.  
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APPENDICES 

Appendix 1: EndoFree®  Plasmid Maxi Kit Protocol 

1. Harvest overnight LB culture by centrifuging at 6000 x g for 15 min at 4 oC; 

2. Completely resuspend the bacterial pellet in 10 ml Buffer P1*; 

3. Add 10 ml Buffer P2*, mix thoroughly by inverting 4-6 times, and incubate at 

room temperature (15-25oC) for 5 min. if using LyseBlue reagent, the solution 

will turn blue; 

4. During the incubation, screw the QIAfilter Cartridge cap onto the outlet nozzle 

of the QIAfilter Cartridge. Place the QIAfilter Cartridge in a convenient tube or 

in a QIArack (cat no. 19015); 

5. Add 10 ml chilled Buffer P3*, mix thoroughly by inverting 4-6 times. If using 

LyseBlue reagent, mix the solution until it is completely colorless; 

6. Pour the lysate into the barrel of the QIAfilter Cartridge. Incubate at room 

temperature for 10 min. Do not insert the plunger! Remove the cap from the 

QIAfilter Cartridge outlet nozzle. Gently insert the plunger into the QIAfilter 

Cartridge and filter the cell lysate into a 50 ml tube; 

7. Add 2.5 ml Buffer ER* to the filtered lysate, mix by inverting the tube 

approximately 10 times, and incubate on ice for 30 min; 

8. Equilibrate a QIAGEN-tip 500 by applying 10 ml Buffer QBT*, and allow the 

column to empty by gravity flow; 

9. Apply the filtered lysate from step 7 to the QIAGEN-tip and allow it to enter the 
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tip; 

10. Wash the QIAGEN-tip with 2 x 30 ml Buffer QC; 

11. Elute DNA with 15 ml Buffer QN* into a 30 ml endotoxin-free or pyrogen-free 

tube; 

12.  Precipitate DNA by adding 10.5 ml (0.7 volumes) room-temperature 

isopropanol to the eluted DNA and mix. Centrifuge at ≥ 15,000 x g for 30 min at 

4 oC. Carefully decant the supernatant; 

13. Wash the DNA pellet with 5 ml of endotoxin-free room-temperature 70% 

ethanol and centrifuge at ≥ 15,000 x g for 10 min. Carefully decant the 

supernatant without disturbing the pellet; 

14. Air-dry the pellet for 5-10 min and redissolve the DNA in a suitable volume of 

endotoxin-free Buffer TE*. 

  

*: The buffer P1, P2, P3, QBT, QC, QN & TE is offered in the kit by the company. 
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Appendix 2: Immunofluorescence 

1. Transfected cells were seeded in 8-well chamber slides coated with poly-L-

Lysine (Sigma-aldrich, Lot#: SLBG3445V) for 15min. Cells were left to grow in 

incubator before collection; 

2. Cells were then fixed for 10 min with 4% paraformaldehyde and permeabilized 

with 0.1% Triton X-100/PBS for 10 min; 

3. Non-specific sites were blocked with 5% blocking buffer ( 5% donkey 

serum/1xPBS) for 1h before overnight incubation with primary antibodies at 4 

oC; 

4. Add primary antibody 1:200 in 3% BSA/1xPBS and incubate overnight in 4 oC. 

After the primary antibody aspirated, the slide was then washed with 0.1% 

triton/PBS and incubated in PBS for 5 minutes. 

5. The cells were then incubated with Alexa Fluor-488 labeled donkey anti-mouse 

secondary antibody and/or with Alexa Fluor-647 labeled donkey-anti-rabbit 

for 1h at RT. Nuclei were counterstained with 2.5µg/ml 4’, 6-diamidino-2- 

phenylindole (DAPI; Sigma-Aldrich Co.) in the dilution 1:5000 diluted together 

with secondary antibody; 

6. Cells were then washed and incubated in 1xPBS for 5 min. Slides were 

mounted in 10% glycerol/PBS before sealed with 22x50mm Microscope 

Coverglasses (VWR, Cat#: 16004-336). 
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Appendix 3: In silico analysis of MIER1α amino acid sequence by NetNES 1.1  
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