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Abstract

A large power grid consists of generation, transmission, and distribution. Power system
planning is to develop new and upgrade existing power grids to satisfy the future load demand.
Reliability evaluation has a great importance in power system planning and is viewed from two
aspects, adequacy and system security. This thesis focuses on adequacy, which concerns the
existence of enough power generation in the system to satisfy load demand. The output power of
a wind turbine depends on wind speed which is highly uncertain and random. Hence, the first step
in generation adequacy evaluation is modeling wind speed. In this research, the wind speed was
predicted using the ARMA model and artificial neural network (ANN). After this step, hourly
power output of wind energy was determined. This was done by the power curve characteristics
of the wind turbine. Fuzzy C-Means (FCM) was then used to reduce the number of states in the
wind turbine generator model. The main objective of this thesis is to evaluate the influence of wind
energy to the overall reliability of the system. In addition, megawatt (MW) capacity of wind energy
system required for replacing conventional generators while maintaining the same risk criteria was
investigated. In this thesis, the Roy Billinton Test System (RBTS) was adopted for generation
adequacy evaluation. The St. John’s International Airport was Selected as the wind speed
measurement site. The Vestas V90-2MW (IEC I11A) was selected as the wind turbine for the case
study. The main contributions of this thesis include modeling of generation adequacy evaluation
of wind energy systems using an analytical approach; wind speed prediction by ARMA and Neural
Networks; Fuzzy C means algorithm to reduce the number of wind turbine states; standalone
renewable energy system design; and a procedure and guideline development for generation

planning with wind power integration using the analytical approach.
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Chapter 1: Introduction

1.1. Background

Over the last few years, renewable energy systems, especially Photovoltaic (PV) and wind
power systems, in the electricity market have gained increasing attention all over the globe due to
their environmental benefits. In addition, renewable energy systems are cost-effective solutions
for remote area communities that are far from an electrical grid. There have been escalating efforts
for further developments of renewable energy projects in Canada from the Yukon to

Newfoundland [1].

There are approximately 200,000 people who live in 280 remote communities in Canada who
have no access to a main electrical grid and their primary source of power generation are fuel-
based generators [2]. Operating costs are much higher in these communities because of high fuel
costs. Transportation costs of the fuel also increase the total cost of fuel-based generation for
communities. Furthermore, the efficiency of diesel generators is low when they operate at less than
their half rated capacity [3]. Because of these reasons, utilization of conventional generators has
been significantly reduced and in 2016, the capacity of renewable energy systems had its largest
annual increase with about 161 gigawatts of capacity added [4]. Added capacity of PV systems
and wind power generation systems in 2016 were 47% and 34%, respectively [4]. Despite the
benefits of renewable energy systems, they also introduced new challenges for power system

planners.

PV and wind power output depends on the availability of solar and wind resources, which can

vary significantly over a period of time. This means that the power output is not constant, and it is

1



known as variability of renewable energy systems. This variability of PV and wind power output
is not preferred by the grid, and techniques to reduce such variations have been of great interest
[5]. Variability is a challenge for power system operators because of frequency and voltage
fluctuations that occur from the time scale of seconds to minutes. This in return results in potential

damage to the system and equipment [6].

Power system planning for conventional generators is based on the rated capacity of the
generators installed at different locations in the system. However, power system planning based
on the rated capacity of renewable energy systems can lead to over-investment as a result of the
addition of extra transmission lines that may not be required because it is unlikely that renewable

energy systems will operate at their rated power most of the time [7][8].

Renewable energy curtailment is another issue that should be taken into account. Renewable
energy curtailment is defined by National Renewable Energy Laboratory (NREL) as power output
reduction of a generator from what it could otherwise generate by given resource input such as
wind speed or solar [9]. Even though new regulations have been introduced for renewable energy
systems to ensure annual full load hours for PV and wind energy systems, curtailment is still a
major challenge [4]. Renewable energy curtailment can be a result of insufficient transmission
infrastructure, poor grid connections, or excessive power supply during low load demand periods.
The latter was the main reason for one of the largest curtailments that occurred in north China,

with more than approximately 70% of total wind generation curtailed [10].

A conventional power system is complex and difficult to analyze, as there are several uncertain

parameters, such as load and transmission line constraints. Power system planners are faced with



more challenges with renewable energy integration as a result of the number of random variables,
uncertainties, and renewable energy constraints, which have significantly increased the complexity

of the system [11].

Renewable energy systems are non-dispatchable, which means they cannot change the power
output quickly and the energy output might not be available when the system is in need to meet
the load [12]. Renewable energy systems gradually replace conventional generators, thereby
negatively affecting system stability and reliability. The admission requirement of wind generation
systems into an existing power system is that they should provide the same characteristics, for
example, stability, satisfying the frequency requirements as other conventional generators such as

thermal or gas turbines [13].

Uncertainty is defined as the difference between measured, estimated, and real data including
some errors in calculation or measurement [14]. Power systems should be designed to account for
uncertainties by meeting reserve requirements. Power system planners need to confront
uncertainties to achieve a precise decision, improve system control performance characteristics,
minimize costs, and improve reliability [15]. Uncertainties in a power system generally consist of
fuel cost and availability, economic growth of the country, construction time of a power system

plant, load forecasting, regulatory policies, and generator outages [16].

Traditionally, uncertainties were handled by forced outage rate of conventional generators and
load demand forecast error. Since wind energy is highly intermittent and non-dispatchable,
uncertainty analysis has become more challenging and difficult [16]. In generation expansion

planning, uncertainty and variability of wind energy are sometimes incorrectly designated the same



definitions. Variability is the variation of wind energy power output, where uncertainty is the
degree of error between estimated and measured values [17]. Variability and uncertainty of wind

energy power output is clarified in Figure 1.1.

Effective and innovative power system planning techniques must be developed in order to
overcome the aforementioned technical challenges and integrate renewable energy systems
economically and reliably in electric power systems. By using proper planning techniques, the
overall system performance can be improved in terms of reduction of curtailment and cost, and
enhancement of flexibility and reliability. Power system planning techniques are involved with
deciding on upgrading or new system components to satisfy load demand in the future. System

components can be generators, substations, transmission lines, capacitors, and cables [18].

One of the main goals of modern power systems is meeting load demand with high reliability
at an acceptable installation cost. In fact, construction costs for adding new or upgrading system
elements in planning will be increased, however, customers will be provided with improved
reliability. This will ultimately result in decreased customer outage costs. Reliability evaluation in
power system planning is of great importance to power system planners who are determining an
optimum point where reliability can be increased and costs can be minimized. The reliability of

electricity supply is also a major competitive factor in a deregulated market [19].

Power system reliability studies are viewed from two aspects which are generation adequacy
and system security [20], as shown in Figure 1.2. System security regards the system’s ability to
respond to disturbances such as short circuits. Generation adequacy, which is the focus of this

research, regards the existence of enough generation in a system to satisfy load demand [20].
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Figure 1.1: An example of uncertainty and variability of wind energy power output [17].
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N

System Adequacy System Security

Figure 1.2: Power system reliability evaluation aspects [20].

1.2. Thesis Objectives and Outlines

This thesis is organized as follows:

In Chapter 1, the main objective of the thesis, the problem and its importance will be discussed.
A general overview of power system planning will be described. A background of renewable
energy systems and their importance in existing power systems will be introduced. Technical

challenges of integrating renewable energy systems will also be discussed.



It will be explained why there is a need to develop effective and innovative power system
planning techniques in order to overcome the technical challenges of renewable energy power
generation systems and to integrate renewable energy systems economically and reliably in electric
power systems. By using a proper planning technique, the overall system performance can be

improved in terms of reduction of curtailment, flexibility, higher reliability, and reduction of costs.

In Chapter 2, the main objective is literature review on power system planning. Three
hierarchical levels will be introduced in power system planning which are Hierarchical Level I
(HLI) and it includes only generation facilities; Hierarchical Level 11 (HLII) which is concerned
with both generation and transmission facilities; and, Hierarchical Level 111 (HLII) which is
involved with the complete system which is generation, transmission, and distribution. The main

focus of the thesis is the generation planning.

Deterministic approaches in power system planning consider the worst case scenario of the
system without considering the probability of the occurrence such as no shortage of power
generation system. Probabilistic methods are based on the probability of occurrence, for instance
Loss of Load Expectation (LOLE), which helps power system planners to model the past shortages
of the system and include uncertainties. It will be revealed that reliability evaluation is the main
key in probabilistic power system planning. Reliability has been viewed in two aspects, adequacy
and security. This research is focused on adequacy evaluation. The main objective in HL-I
generation adequacy evaluation is determining the ability of the generation units to satisfy total
load demand, where transmission system is assumed to be 100% reliable. Different types of

methods used in the literature for generation adequacy will be reviewed in Chapter 2.



In Chapter 3, the main objective is to present an analytical approach for generation planning
with wind energy integration. A general modeling of generation adequacy evaluation of
conventional generators and wind energy systems will be introduced. The output power of wind

turbine depends on the wind speed which is highly random and uncertain.

Thus, the first step in generation adequacy evaluation is modeling wind speed. The wind speed
will be predicted by two methods ARMA and Neural Networks. After modeling wind speed time
series, the nonlinear relationship between wind speed and power output of wind turbine is
represented by the power curve of wind turbine. Wind generator Forced Outage Rate (FOR) due
to wind turbine equipment’s outage is then taken into account for modeling the unavailability of
wind turbine. The load model will be obtained from a standard test system and generation model

will be constructed by the COPT using the predicted wind speeds by the ARMA.

The load model will be combined with generators model for generation adequacy. Generation
adequacy will be evaluated by the most commonly used method called the loss of load approach.
The multi-state COPT is the most commonly used model of both conventional and wind energy
generation model in the literature. This model is highly suitable for generation adequacy evaluation
and provides useful information for system scheduling. The number of COPT states is critical in
generation adequacy evaluation because more states generally means a better modeling accuracy

and a higher computation overhead.

An improved method using Fuzzy C mean algorithm will be used to obtain number of states
of wind turbine. Generation adequacy will also be investigated using capacity factor method.

Capacity factor is a useful technique for generation adequacy evaluation when detailed historical



wind speeds are not available. Capacity credit will also be used which is a useful technique to

determine the capacity factor of a wind generation system.

In Chapter 4, the importance of using renewable energy systems in remote areas will be
discussed. Standalone or remove area power supply system is aimed at supplying electricity for
remote or small communities which do not have access to the main power grid due to economic
and technical difficulties. Renewable energy systems have become the most popular configuration

to replace diesel generators in remote areas.

The main objective of Chapter 4 is to investigate standalone system design for wind generation
system design and hybrid renewable energy systems. In this Chapter, a method and a
corresponding two-step procedure will be used for a wind power generation system design by wind
energy potential evaluation, reliability and costs assessment. The wind energy potential will be
investigated through the Weibull two-parameter model using the hourly wind speed data of a site
in St. John’s. An analytical method based on the fault tree analysis (FTA) and minimal cut sets

will be developed for the system reliability evaluation.

A generic annual operation and maintenance (O&M) costs calculation formula will be
proposed based on field data presented by NREL. Case studies will be conducted for a wind power
project in St. John’s, Newfoundland and Labrador, Canada. In the second section of Chapter 4, a
stand-alone hybrid renewable energy system will be proposed, which consists of solar PV, wind

turbine, and energy storage with the combination of battery and hydrogen.

Cost optimization which is based on the net present cost (NPC) method will be used for finding
optimal sizing of individual components. The proposed stand-alone hybrid renewable energy

8



system is suitable to for supplying electricity in remote areas which do not have access to the main

grid.

In Chapter 5, the main objective is to provide a procedure and guideline for generation planning

using analytical approach. The cost analysis will also be provided in this chapter.

Chapter 6 will summarize this thesis, draw the conclusions, and recommend future works.

1.3.  Conclusion

In this chapter, benefits of integrating renewable energy systems in power system planning are
introduced, and the challenges in this field are discussed. Solar and wind resources vary
significantly over time, power system planning based on the rated capacity of renewable energy
systems without considering renewable energy’s intermittent nature can lead to over-investment,
renewable energy curtailment, and uncertainties. Therefore, effective and innovative power system

planning techniques must be developed to overcome these technical challenges.



Chapter 2: Literature Review

2.1. Transmission Planning

A power system consists of generation, transmission, and distribution, as shown in Figure 2.1.

Power system planning is generally investigated in three hierarchical levels: Hierarchical Level |

(HLI) includes only generation facilities; Hierarchical Level Il (HLII) is concerned with both

generation and transmission facilities; and Hierarchical Level Il (HLIII) is involved with the

complete system which is generation, transmission, and distribution. Because of its scale and

complexity, only distribution facilities are considered in HLIII [20].

Generation
Facilities

Hierarchical Level I

Transmission
Facilities

Distribution
Facilities

Hierarchical Level IIT

e —

1
1
1
1
1
1
1
1
1
1
1
1
1
1
: Hierarchical Level IT
1
l
1
1
1
1
[
1
1
1
1
1

Figure 2.1: Hierarchical levels [20].

Transmission planning aims to find optimal transmission routes between generation facilities

and loads. It determines when, how many, and where new transmission lines must be added in the

system to meet the load demand so that the investment and operational costs are minimized and

constraints are met during normal and contingency conditions [18].
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Investments costs are the cost of installing new transmission lines and operational costs, and
the costs due to power losses in the line. Constraints consist of limiting transfer capability and
thermal limit. An N-1 contingency is widely used in transmission planning, which is the outage of
a single element such as transmission line, transformer, or generator. The system should be planned

so that the load can be satisfied under N-1 contingency without violating any constraints [18].

Transmission planning can be investigated using deterministic approaches or probabilistic
methods [21]. Deterministic approaches consist of AC power flow, DC power flow, short-circuit
analysis, and stability study. Deterministic approaches consider the worst-case scenario of the
system without considering the probability of the occurrence, such as no shortage of power
generation system [21]. Probabilistic methods are based on the probability of occurrence, for
instance Loss of Load Expectation (LOLE), which helps power system planners to model the past

shortages of the system and include uncertainties [22].

There is no conflict between deterministic and probabilistic planning approaches; since a
complete transmission planning is based on considering both deterministic and probabilistic
criteria. For instance, a power system planner has determined seven possible scenarios for a
transmission system, as shown in Figure 2.2. Two of these scenarios can be removed because of
societal, political, or environmental reasons. Deterministic approaches are applied on the
remaining scenarios, and two more scenarios are removed that did not satisfy the criteria.
Eventually, both probabilistic reliability evaluation and economic analysis are investigated to

determine the optimal alternative [23].
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Initial Seven Alternatives

Environmental, Societal and
Political Assessment

Five Alternatives

Deterministic Technical
Analysis Including N-1
Principle

Three Alternatives

Economic Analysis Reliability Evaluation

The Best Alternative

Figure 2.2: Transmission system planning process [23].

Probabilistic reliability evaluation and costs analysis are the two important keys in
transmission planning, where costs must be minimized subject to reliability evaluation criteria
such as LOLE. If an N-1 contingency is a mandatory factor, then deterministic approaches can
also be used to determine an optimal plan in which both probabilistic and deterministic criteria are
met [23]. A new method, based on probabilistic reliability criteria, was proposed in [19] to achieve
an optimal transmission planning which minimized both investment and outage costs. The most
frequently reliability criteria, LOLE, was used. Investment costs increase as reliability increases,
as shown in Figure 2.3; Customer outage costs also increase as reliability increase. The optimum

or target level is the minimum point where costs are minimized [19].
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Figure 2.3: Investment and customer outage costs as function of reliability [19].

Figure 2.4 shows a comprehensive overview of transmission expansion planning. As one can
see, if the contingency is mandatory, then the planning is done based on deterministic criteria
which are power flow, optimal power flow, contingency analysis based on power flow, voltage
stability, and transient stability. Following this, probabilistic planning based on reliability
evaluation will be done. Costs analysis will also be investigated after this stage. A final alternative

for planning which satisfies both reliability and costs will then be selected.

If the contingency is not the main interest, then the planning will be performed from reliability
and cost evaluation in order to find the best alternative. As mentioned earlier, deterministic
planning has to be done if the contingency is mandatory. One of the main tools for deterministic
transmission planning is network modeling, either by deterministic power flow or probabilistic

power flow. Deterministic power flow methods are DC power flow and AC power flow [18].
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Figure 2.4: Comprehensive overview of transmission expansion planning.
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2.2. Generation Planning

The main objective in HL-I generation adequacy evaluation is to determine the ability of the
generation units to satisfy the total load demand, where the transmission system is assumed to be
100% reliable. Hence, generation units and loads are the two main components that have to be
modeled for generation adequacy evaluation. Figure 2.6 shows the system modeling in HL-I
generation adequacy assessment. All generation units are required to meet a single lumped load

[28].

In this model, the generation adequacy can be evaluated for the ability of proposed or existing
generation units to meet load demand. Analytical and simulations techniques are the two methods
used for generation adequacy evaluation [29]-[31]. Analytical methods are based on mathematical
models which are suitable for small-scale systems. A Monte Carlo simulation is the most widely

used simulation technique which is more effective for large-scale systems.

It can be categorized into two groups such as non-sequential and sequential. A Non-sequential
Monte Carlo simulation is complicated for considering chronological behavior of generation and
load model because it is based on considering each time interval independently, and cannot model
sequential events. A sequential Monte Carlo simulation is effective for considering chronological
behavior of generation and load model, and it is a preferred method for multi-state systems such
as wind generation system [32]. Table 2.1 compares analytical and simulation methods in a

generation adequacy evaluation.
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Figure 2.5: HL-I generation adequacy evaluation model [28].

Table 2.1: A Comparison between Analytical and Simulation Techniques [32].

Analytical Methods

Non-Sequential Monte Carlo

Sequential Monte Carlo

Difficult for obtaining
frequency-based indices

Effective for large-scale
systems with a large number
of components

Effective for considering
chronological behavior of
generation and load model

Effective for small-scale
systems such as two-state
units (conventional
generators)

Complicated for considering
chronological behavior of
generation and load model

Effective for multi-state
systems such as wind
generation system

Complicated for considering
chronological behavior of
generation and load model

Difficult for obtaining
frequency-based indices

Effective for obtaining
frequency-based indices

Less computational time

Less computational time

High computational time

For a generation adequacy evaluation, three models must be determined: 1) generation model,

2) load model, and 3) risk model. Generation model and load model are combined to derive the

risk model [29],[33], as shown in Figure 2.7.

The load model shows the energy demand for a given period of time. Two load models are

available to be used in a generation adequacy evaluation; namely, the Load Duration Curve (LDC)
16



and the chronological load model. The LDC, which is frequently used, represents hourly peak load
variation curve by arranging the individual hourly peak loads in descending order, while the
chronological load model is formed based on available hourly energy demand over a period of
time. The chronological load model is used frequently due to its simplicity, but LDC is the most

suitable model to approximate the load characteristics [29],[33].

Generation model Load model

Risk model

Figure 2.6: Conceptual risk model for generation facilities [29].

The most common generation model is capacity outage probability table (COPT) which
represents capacity states in increasing order with their associated probability of each state [29].

The COPT is widely used in wind generation models [30],[34],[35].

A recursive algorithm is used to obtain the COPT. In this algorithm, a system consists of N
generators with M failed units, and available generating capacity, AGC; with their corresponding

probability, P{AGCi} for state i is obtained as [36]

N
AGC, = > G (2.1)
j=M+1
N M
P{AGC, }= A <] [FOR, (2.2)
j=M+1 j=1

where Aj, FOR;, are the availability, and FOR of unit j, respectively.
17



Once generation and load models are determined, a loss of load approach can then be used to
produce a risk model. In the loss of load method, the generation system is represented by the COPT
and load characteristics are represented chronological load or LDC. In this method, the daily peak
loads (or hourly values) are combined with the COPT. This “loss of load” index gives the
information about the expected number of days (or hours) in the given time period, in which the
daily peak load (or hourly load) exceeds the available capacity. The loss of load expectation
(LOLE) can be expressed as follows [29]:

LOLE =37 (p; %) (Lpae > C) (hrsiyear) (2:3)

i=1

where n is the number of days or hours of period under scope, pi is the probability of i outage
which is obtained directly from the COPT, and t; is the number of time units for which this outage
cause loss of load. It is clear that if the capacity outages are less than the reserve then loss of load
will not occur. Based on this approach, the maximum peak load that can be met by generation
units, known as peak load carrying capability (PLCC), can be determined for a specific value of

maximum risk value, as shown in Figure 2.8 [29].

There are several publications on modeling wind energy conversion system in generation
adequacy evaluation studies. The two main contributions are wind speed modeling and wind

generator modeling.

A) Wind speed model:

Various wind modeling methods are investigated in [34]: observed hourly wind speed data,

mean observed hourly wind speed data, autoregressive moving average (ARMA) time series,
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moving average (MA) time series, Normal distribution, and Markov chain models etc. Different
wind speed models will lead to different wind speed probability distributions and affect the

system’s reliability indices.

LOLE, days/year

10
1 -
E A Ry
0.1 e ‘.__._,;'-,,...-.-_-_'T_' _______________________________
/ ; Risk level
/o
0.01 +
' PLCC
/ s
0.001 —d ; -
110 130 150 170 190

System peak load, MW

Figure 2. 7: Typical risk characteristic [29].

If a complete range of historical wind speed data is available for a site, observed hourly wind

speed and mean observed hourly wind speed methods can be used, which are defined as [30],[34]:

1) Observed hourly wind speed: In this method, an observed hourly wind speed data set is

used repetitively in the reliability evaluation sequential simulation process.

2) Mean observed hourly wind speed: In this method, the mean observed hourly wind speed
is calculated based on different annual wind speed data sets, the mean hourly wind speed

is then used repetitively in the sequential simulation process.
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Wind speed data for large periods of time are not always available because of extreme weather
situations or failure of wind speed measuring devices [34]. Hence, missing data must be estimated
for wind speed modeling.

Two common approaches for wind speed modeling are available, probabilistic approaches
[37],[38], and time series approaches [30],[34],[39], which are shown in Figure 2. 9. Probabilistic
approaches are based on continuous probability distributions which rely on historical data of
hourly wind speed for a site over a period of time, usually one year. In 1951, the gamma
distribution was used for wind speed distribution. Since then, several distribution methods such as
Gaussian, Pearson, Normal, Johnson, Rayleigh, and Weibull have been proposed. Numerous
studies have shown that the Weibull distribution is the most utilized statistical function among all
other statistical functions used to represent wind speed variations [40]-[42].

Time series approaches are suitable for generation adequacy evaluations, and the most
frequently used models are ARMA [30], [34] and Markov Chain Monte Carlo (MCMC) [39].
MCMC approaches are based on a finite number of states for wind speed. For example, wind speed
modeling considering n states with transition rate p between any two states is shown in Figure
2.10. Probability and the frequency of wind speeds can be obtained using this model.

Using the Markov method, it is common to consider transition rates between two states that
follow Exponential distribution [43],[13]. It means that p is constant with respect to time. This
assumption is accurate when long-term average values of wind speeds are of interest [43]. Another
assumption in this approach is that wind speed states are transiting smoothly and immediately to

neighboring states. This results, however, in losing some of the transitions between states, and

20



often in ignoring some wind speed probabilities. This drawback has been addressed in [44] by

clustering the wind turbine generator output.

Wind speed modeling

approaches
A 4
Time series approaches
Probabilistic appreaches
1
Y L 4 A 4 \ 4 \ 4
( Gamnia Gaussian Autoregressive Markoy Chain Other methods
distribution distribution Moving Average Maonte Carlo (¢.g., ARMA and
(ARMA) (MCMC) FCM)
Pearson A o Lognormal
distribucion | |”| distribution
Johnson Rayleigh

distribution

A

Y

distribution

Weibull
distribution

Figure 2.8: Common approaches for wind speed modeling.

3) ARMA model: ARMA is the most common approach for modeling wind speeds, which is

briefly introduced as follows [30],[34]: The ARMA method is used to predict wind speeds.

It is calculated based on the observed wind speed data and incorporates yearly wind speed

variations.

This model denoted as ARMA(p,q) has p autoregressive terms and g moving average terms.

As an example, an ARMA model was created for the Swift Current site in Saskatchewan, Canada,
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based on data from 1996 to 2003. The simulated wind speed at hour t, SW;, in this example can be

calculated as follows [30]:

SW, = i, + .Y,

y, =1.1772y,, +0.1001y, , - 0.3572y, ,

+0.0379y, , + o, —0.503¢, , —0.2924¢, , (2.4)
+0.1317¢, ,

a, € NID(0, 05247607 )

where L is the mean observed hourly wind speed at hour t, and o is the standard deviation of the

observed hourly wind speed at hour t.

Wind1 521 . Wing P2 o '(_7”‘1'"‘2 Wind1 _fm-:l Wind
state Py state Py Prana state n- Pnin state n

Figure 2.9: Wind speed modeling using Markov method with n states [13].

The probability distribution of an ARMA model might be a Normal distribution, which has
negative wind speeds. Although, Ref. [35] suggested that these negative wind speeds be converted
to zero values, this can still cause errors, and a good prediction of wind speed time series cannot
be guaranteed. It is also difficult to model non-linear problems by ARMA.

Other methods are also available in the literature to overcome the drawbacks of time series
models. For instance, a meteorological mining-based wind speed time series for generation
adequacy applications were proposed in [45]. Path analysis method was first used to calculate the
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influence weights of meteorological factors on wind power output. Meteorological data were then
categorized into states using Fuzzy C-means (FCM) algorithm. Figure 2.11 shows the Probability
Distribution Function (PDF) of wind speeds using four different methods.

It can be seen that simulated wind speeds using the meteorological mining-based wind speed
time series are more accurate. The effectiveness of the meteorological mining-based wind speed
time series was also verified by LOLE evaluation of IEEE-RTS96 comparing with the existing
methods, as shown in Figure 2.12. A common wind speed model based on normal distribution of
wind speeds for three different Canadian wind farm sites was developed in [35]. This model
provides reasonable accuracy in wind speed modeling which is useful for wind farms that lack
sufficient historical wind speed data. The only data required from which to derive the model are
the annual mean wind speed p and the standard deviation ¢ data at the site under study. The
procedure for creating a wind turbine generator model is shown in Figure 2.13 [35].

It was shown that wind generation adequacy can be significantly simplified by using 6-step

common wind speed model [35]:
SW. =+ (i-3)x (50/3) for (i=1,...,6) (2.5)

where SWi; is the simulated wind speed considering 6 steps. The common model for wind speed
modeling considering three sites is shown in Figure 2.14.

Wind speed models play an important role in generation adequacy evaluations since an error
in the wind speed modeling leads to cubic errors in wind power output. An accurate wind speed
forecasting has technical and economic advantages. It can help power system planners develop

efficient functioning hour ahead or day ahead planning in competitive market design. Wind speed
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models are usually site-specific and they require a huge amount of historical data. Historical wind

speed data might also not available for all potential wind sites.
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Figure 2.10: Probability distribution function of the wind speeds comparing with existing

methods [45].
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Figure 2.11: Generation adequacy evaluation considering methods [45].
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Figure 2.12: Development of a wind turbine generator model using the common wind speed

Time series models such as, ARMA, are the most frequent type of wind speed modeling

methods to predict future wind speeds. Obtaining a proper ARMA time series which can accurately

The common wind
speed model

i and o for a selected
geographic site

Wind speed model for a
selected geographic site

Power curve of a wind

turbine generator

Wind turbine generator
model

model [35].

model wind speeds is a difficult task.
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Figure 2.13: A common wind speed model development by combining wind speed models for

different sites [35].
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Research is continuously improving upon current wind speed models. Combining different
approaches, for example time series models with FCM, are proposed to solve this problem. Using
a common wind speed model that can be used for multiple wind farm sites is also another solution

investigated in [35].

B) Wind turbine generator model: There are three main wind turbine generator models including
the multi-state model, universal generating functions, and the Markov model, as depicted in Figure

2.15.

[Wind turbine generator models]

The multi-state COPT Universal generating Markov method
model function

Figure 2.14: Common approaches for wind turbine generator model.

The COPT is the most common model used for wind generation systems and has been widely
used in the literature [46]. The simplest WECS model using an analytical approach is an annual
multi-state COPT that can be used to create the system COPT in order to calculate the LOLE index.
COPT can be modified to include wind farm maintenance scheduling [30]. Both wind speed and
wind turbine outage probabilities can be considered in this model. The COPT model can be

obtained using the following steps [33]:
1) Import hourly simulated wind speeds.

2) Determine hourly wind turbine power output as a function of hourly simulated wind speeds
using wind turbine power curve.
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3)

4)

5)

6)

7)

8)

9)

Divide hourly wind power output into a number of states.

Determine the total number of occurrences for each state.

Obtain the probability of each state by the dividing the total number of occurrences for each
output state (Step 4) by the total number of data points.

Build the wind farm COPT by multiplying power output of each single wind turbine states
(Step 3) and keeping the same probability on that state.

Build another wind farm COPT that only considers FOR of wind turbines. Binominal
distribution can be used for identical wind turbines. Otherwise, recursive algorithm is used
for non-identical wind turbines.

Combine wind farm COPT models (Steps 6 and 7) to build the final wind farm COPT model
which considers both wind speeds and FOR.

Combine wind farm COPT and load model in order to derive risk model using analytical

methods.

Universal generating function models are similar to multi-state models, but they formulate

wind farm generation states into clear mathematical functions that reduce complexity and

computational burden compared to multi-state models [47]. Transitive relationships between

generation states are not considered in the UGF and multi-state models. Hence, frequency-related

indices, such as loss of load frequency (LOLF) cannot be obtained by these two methods.

This issue can be rectified by using the Markov method. Probability, frequency, duration, and

transition rate of wind turbine states can be extracted [43]. The wake effects of the wind farm itself

can also be included in this model. Wake effect is important in generation adequacy because it
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usually creates 5%-15% losses in wind farm generation systems [48]. The main drawback of these

methods is computation over- head during generation adequacy evaluation. More states generally

means a better modeling accuracy and a higher computation time. For example, in a wind farm

with N wind turbine generators the total number of states is 2. The number of states in wind

turbine generator models must be reduced while maintaining the accuracy of the wind farm model

[43]. The following solutions are proposed in the literature.

1)

2)

Data clustering is the basis of several system modeling algorithms and classifications. The
main goal of clustering is to obtain data groupings from a dataset to represents a system’s
behavior. An analytical method based on clustering was proposed in [44]. Wind power
outputs are clustered into a finite number of states based on their similarities, as shown in
Figure 2.16. Every cluster belongs to only one state based on minimum Euclidean distances
with the observed data points. For instance, wind speeds that result in zero power output
are clustered into one state (band 1 in Figure 2.16), and wind speed which result in rated

power are clustered into one state (band n in Figure 2.16).

FCM-based clustering technique was applied to obtain optimum number of states in wind
farm generation for Markov chain in [49]. FCM is a popular clustering method in which a
large set of data is categorized into a finite number of clusters. Each data point in the dataset
belongs to a cluster with a certain degree; in fact, each data point in FCM can belong to
multiple clusters with a membership grade. In FCM, cluster center is initially guessed
which shows the mean location of each cluster. Following this, every datum is assigned
with a membership grade for each data point. This process continues by updating cluster

centers and membership grades for each cluster until the correct cluster center is obtained.
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3)

4)

Thus, this process is based on a minimization of an objective function, which calculates
distance from each cluster to each data point with a membership grade. Wind speed
variation and the outage of wind turbine components such as tower, blades, and gearbox

were considered.

K-means algorithm was used to determine the number of clusters in a wind speed model in
[43]. It was found that only 80 states represent the wind farm model appropriately,

compared to the model obtained by measurements.

An 11-state WECS model for a 20 MW wind farm with wind speed data of a particular site
is created in [34]. It was found that the reliability indices, LOLE and LOEE, remain
basically the same when the number of states of the model increases from 11 to 21 [34].
Dr. Rajesh Karki et. al found that a 6-state COPT model is able to achieve a trade-off
between accuracy and computation overhead [46]. It was discovered that a 6-state COPT
model can also serve as a default option for generation adequacy evaluation of wind energy

[46].
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Figure 2.15: Clustering technique for wind farm [44].

5) In another study [35], a 6-common wind speed distribution model based on the Normal
distribution was studied that can be used for generation adequacy evaluation with
reasonable accuracy.

Other analyses that have been investigated in wind generation adequacy are stability and
uncertainty analysis. Stability analysis in wind generation adequacy evaluation has been done in
[13], which demonstrates that the reliability indices deteriorate when system security is taken into

account. This has not been investigated in-depth in previous studies.

The existing uncertainty modeling methods are probabilistic, possibilistic, possibilistic-
probabilistic, information gap decision theory, robust optimization, and interval analysis, as shown
in Figure 2.18. The main goal of these methods is measuring the effects of uncertain inputs on a
system’s output. The only difference is using different types of approaches for modeling input
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uncertainties. For example, probabilistic methods are based on the PDF, and the membership

function (MF) is used in the fuzzy method to model uncertainties of the input parameters. These

approaches are briefly explained as follows [14],[50]:

1)

2)

Probabilistic approaches: It aims to determine the PDF of the output parameters based on
the PDF of input parameters. Hence, the PDF of input parameters must be known. A Monte
Carlo simulation is the most commonly used method in this approach because it is system-
size independent and it is highly applicable for nonlinear and complicated systems which
have many uncertain parameters. Sequential, pseudo-sequential, and non-sequential Monte
Carlo simulation have been used for uncertainty analysis. A Pseudo-sequential Monte
Carlo is the fastest method that has the accuracy and flexibility of sequential Monte Carlo
simulation with reduced computational effort. Analytical methods can also be used to
model uncertainties using mathematical expressions which are categorized into groups.
The first group is based on PDF linearization on input variables. Convolution method,
Cumulant method, Taylor series expansion and first order second moment method are the
existing methods for this approach. The second group is the most frequently used methods
which are based on the PDF approximation such as point estimation and unscented
transformation methods. Generating appropriate numbers of samples of input parameters
to approximate the PDF of input parameters is a challenging task.

Possibilistic approaches: The concept of this approach was initially investigated by Zadeh,

where the uncertainties of input variables are modeled using membership functions.
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3)

4)

5)

6)

Possibilistic—probabilistic approaches: This is useful when some of input uncertainties are
probabilistic and some of them are possibilistic. In fact, PDF of input parameters must be
known and a membership function must be used to model uncertainties of input variables.
Information gap decision theory (IGDT): This is based on non-probabilistic model of
uncertainties and it is useful when historical information is not available and PDF or
membership functions cannot be obtained. It also requires small information of inputs
variables. This approach measures the difference between parameters from the estimate.
Robust optimization: This approach models random variables as uncertain parameters
which belong to an uncertainty set and the system against the worst case scenario within
the set must be maintained.

Interval analysis: In this approach, uncertain variables are selecting from a known interval.
It is similar to probabilistic modeling but the PDF of input parameters have constant

probability.

Uncertainties can be random or non-random parameters. Random uncertainties have high

frequencies, for example, load demand variability. Non-random uncertainties have low
frequencies, for example, available investment budget. Uncertainty models should take both
random and non-random parameters into account. However, considering all uncertainties will
increase computational time and complexity of the problem. Determining the most significant

uncertainties is the first step in generation planning [17].

Wind power generation and load demand are the most uncertain parameters that have the

highest influence in the planning [51],[52]. Probabilistic approaches are the most efficient

modeling techniques for uncertainties because of their ability in modeling random uncertainties,
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which is highly effective for wind energy uncertainties. The main drawback of this approach is
their high computational burden, and even intractable. A very large number of parameters are

required to achieve an accurate uncertainty modeling.

There are two main solutions for solving this problem which are using clustering techniques
and scenario reduction. Clustering techniques represent the system with lower number of data
compared with original set of data [17]. FCM and fuzzy k-means are the most effective methods
for clustering data. If the PDF of input parameters are not available, scenarios reduction can be
used which is an effective solution that reduce the computation time of uncertainty modeling. This
method is based on controlling a probabilistic fitness function and it is described in the following

steps [53]:

Step 1: Generating several scenarios by Monte Carlo simulation. Each scenario is the outcome

of input parameter from a random variable generated by the Monte Carlo.

Step 2: Estimate LOLE; for each scenario S.

Step 3: Calculate average value of LOLE, LOLE .

Step 4: Calculate standard deviation of LOLE, cLoLE!

1 \/i (LoLE® - LOLE) 25)

o =—
LoLE ~ g - S_1

Step 5: Repeat Steps 1-4 until oLoLe is in the range of 0.01-0.05.
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Figure 2.16: Uncertainty modeling methods.

2.3.  Conclusion

In this chapter, the literature review is conducted on power system planning with wind power.
It is reviewed from three different aspects, Hierarchical Levels I, 11, and I1l. There are two general
approaches reported in the literature, deterministic and probabilistic approaches. Deterministic
approaches consider the worst case scenario of the system and neglect the probability of the
occurrence, and probabilistic approaches consider the probability of occurrence. Reliability
evaluation is an important aspect in probabilistic power system planning. There are two aspects in
reliability evaluation: adequacy and security. Generation adequacy evaluation to determine the

ability of the generation units to satisfy the total load demand is the main focus of this research.
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Chapter 3: Analytical Approach

3.1. Introduction of Analytical Approach

A general modeling of generation adequacy evaluation of conventional generators and wind
energy systems is shown in Figure 3.1. The output power of wind turbine depends on the wind
speed which is highly random and uncertain. Thus, the first step in generation adequacy evaluation
is modeling wind speed. After modeling wind speed time series, the nonlinear relationship between
wind speed and power output of wind turbine is represented by the power curve of wind turbine.

Wind generator FOR due to wind turbine equipment’s outage is then taken into account for

modeling the unavailability of wind turbine [28].
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Figure 3.1: Generation adequacy evaluation of systems containing wind energy system [28].
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3.2. Load Model
Before obtaining the generation model, the load model must be determined to derive the risk
indices. The per-unit load model of the RBTS is used in this research which can be used to create

hourly chronological loads for one year. Tables 3.1-3.3 give the per-unit load model data of the

RBTS [69].
Table 3.1: The weekly peak load (%) [69].

Week Peak Week Peak Week Peak Week Peak
load load load load

1 86.2 14 75.0 27 75.5 40 72.4

2 90.0 15 72.1 28 81.6 41 74.3

3 87.8 16 80.0 29 80.1 42 74.4

4 83.4 17 75.4 30 88.0 43 80.0

5 88.0 18 83.7 31 72.2 44 88.1

6 84.1 19 87.0 32 77.6 45 88.5

7 83.2 20 88.0 33 80.0 46 90.9

8 80.6 21 85.6 34 72.9 47 94.0

9 74.0 22 81.1 35 72.6 48 89.0
10 73.7 23 90.0 36 70.5 49 94.2
11 71.5 24 88.7 37 78.0 50 97.0
12 72.7 25 89.6 38 69.5 51 100.0
13 70.4 26 86.1 39 72.4 52 95.2

Table 3.2: Daily peak load (%) [69].

Day Peak Load (%)
Monday 93
Tuesday 100

Wednesday 98
Thursday 96
Friday 94
Saturday 77
Sunday 75
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The load L(t) for hour t can be determined by multiplication of weekly load, daily load, and

hourly peak load. The procedure for obtaining load model is explained by the following steps:

1. Step 1: Calculating hourly peak load for the first week of one year in %.

Table 3.3: Hourly peak load (%) [69].

Hour Peak Load
(%)
12-1am 67
1-2 63
2-3 60
3-4 59
4-5 59
5-6 60
6-7 74
7-8 86
8-9 95
9-10 96
10-11 96
11-noon 95
Noon-1pm 95
1-2 95
2-3 93
3-4 94
4-5 99
5-6 100
6-7 100
7-8 96
8-9 91
9-10 83
10-11 73
11-12 63

Week 1 peak load (86.2%) * Monday Peak Load * Hourly Peak Load

Week 1 peak load (86.2%) * Tuesday Peak Load * Hourly Peak Load
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Week 1 peak load (86.2%) * Wednesday Peak Load * Hourly Peak Load

Week 1 peak load (86.2%) * Thursday Peak Load * Hourly Peak Load

Week 1 peak load (86.2%) * Friday Peak Load * Hourly Peak Load

Week 1 peak load (86.2%) * Saturday Peak Load * Hourly Peak Load

Week 1 peak load (86.2%) * Sunday Peak Load * Hourly Peak Load

Total= 168 hours

2. Step 2: Repeat Step 1 for Week 2 to Week 52 to obtain 8736 hours peak load in percentage.
3. Step 3: Obtain hourly peak load demand in MW by multiplying hourly peak load in % with
peak load demand of the system.

4. Step 4: Sort the data from highest value to lowest value.

Figure 3.19 shows the hourly load model of the RBTS for one year which will be used to
derive risk indices. The LDC over one year is also shown in Figure 3.19. The LDC is obtained by
arranging the hourly load values in a descending order, where the greatest load is plotted on the
left side and the smallest load is plotted on the right side. The x-axis of the LDC shows the time
duration. The LDC has the exact same data as the chronological hourly load. The LDC model is

adopted from [113]. This load data is for the RBTS obtained from [113].
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Figure 3.2: Load Model of RBTS [113].

3.3.  Methods for Wind Speed Prediction
3.3.1. Wind Speed Prediction by ARMA Method

3.3.1.1. Principle of ARMA Method

ARMA model consists of two terms autoregressive (AR) and MA. AR is a linear regression
curve fitting to a set of data. MA is similar to AR except the fact that the linear regression curve
fitting is between the predicted data and actual data. In fact, AR predicts future data based on the

past data, where MA models the errors of the previous predicted data [54].

The ARMA model is based on past data, prediction error, and a random parameter. ARMA

consists of AR model which is autoregressive term with the order of n, and MA model which is
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moving average term with the order of nc. Hence, the ARMA model is referred as ARMA (na,nc).

The ARMA model for time series can be calculated by [54]

A(Q)y(t) = C(a)e(t) (3.1)

where e(t) is white-noise disturbance function and y(t) is output at time t. A(q) and C(q) matrices

can be obtained as [54]
A(Q)=1+agqg+...+a,q"™ (3.2)

C(q)=1+cqg*+...+c,q ™ (3.3)

where n, and nc are the order of ARMA model. q is the lag operator which moves the index back

one time unit. q is used to present a concise way of ARMA, which is defined as [54]

ay: = Y (3.4)

Determining naand ncis challenging because higher values increase accuracy but also increase
the possibility of overfitting. It is common to approximate ARMA model for wind speed
applications with ARMA (na, na - 1) [55]. Hence, determining na is sufficient for finding order of
ne, where nc=na — 1. It is also found that the degree of na varies from 1 to 4 [56]. In this study,
Akaike Information Criterion Corrected (AICc) is used to determine the order of ARMA which is

calculated by the following steps [57]:
1) Insert na=1,;
2) Obtain nc=n, — 1;

3) Generate wind speed time series for ARMA (na, na — 1);
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4) Calculate AlCc by

AIC_ = N xlog SS +2x(n, +n, +1)x N (3.5
N N—-n,—n,—2

where N is the total simulated points which is 8760. SS is given as

ss=> (v, -v,) (36)

where yi, and y; are the simulated wind speeds, and historical data, respectively;

5) Repeat Steps 1-4 until na=4;

6) Take ARMA(na,nc) with the lowest AlCc.

3.3.1.2. Case Study for Wind Speed Prediction by ARMA

ARMA is the most common approach for wind speed prediction. The main contribution of
this section is to use the ARMA model to predict wind speeds in St. John’s. St. John's is the capital
and largest city of the Canadian province of Newfoundland and Labrador. It has a total area of 446
km? and urban population of 178,427 recorded in 2016. Among other major Canadian cities, St.
John’s has the cloudiest (1,497 hours of sunshine), foggiest (124 days), and windiest (24.3 km/h
(15.1 mph) average speed) weather [58].

The hourly wind speeds of St. John’s for one year period between January 2015 and December
2015 are obtained from Historical Climate Data - Climate - Environment Canada, as shown in
Figure 3.2. The St. John’s International Airport at the latitude of 47°37°07.000” N, and the
longitude of 52°45°09.000” W is selected as the wind speed measurement site with the station

number 8403505. The elevation for wind speed measurement 140.50 m [59]. The Vestas V90-
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2MW (IEC I1HHA) wind turbine is selected for the case study in this research. Technical

specifications of the wind turbine are shown in Table 3.4 [60]. The hub height of the IEC HlIA

model of the wind turbine is 125 m.
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Figure 3.3: Hourly wind speed data measured at St. John’s between January and December 2015.

Table 3.4: Technical specifications of the DFIG wind turbine [60].

Rated power IEC A - 50 Hz: 2,000 kW

Cut-in wind speed 4 m/s
Rated wind speed 12 m/s
Cut-out wind speed 25 m/s
Rotor diameter 90 m
Swept area 6,362 m?
Hub height 125 m
Lifetime 20 years

The power curve of the wind turbine is shown in Figure 3.3 [60]. The range of wind turbine

operation is between the cut-in and cut-out wind speeds. The cut-in, rated, and cut-out wind speed
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for the chosen wind turbine are 4 m/s, 12 m/s, and 25 m/s, respectively. The power-law wind speed
model [61],[62] is used to convert measurement wind speed data at 140.5 m to wind speeds

experienced by the wind turbine hub height at 125 m. The power-law wind speed model is given

v, _(h)
v, h, (3.7)

where v1 denotes the measured speed at a reference height hy and v, denotes the wind speed at

as [61, 62]:

height h,. The power law exponent o varies according to many factors, and o can be taken as 1/7

[61, 62].
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Figure 3.4: The power curve of the chosen wind turbine, Vestas V90-2MW [60].
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Determining the order of the ARMA is a difficult task. In wind speed models, na degrees from
1 to 4 and nc degrees from 1 to 4. Using AICs method and the steps described in previous section,
AlCs is calculated for predicted wind speeds using ARMA model, where na and n¢ vary from 1 to
4. In this research, order of ARMA is obtained by AICc method. A step by step guideline of
determining ARMA order by AICc method was given in Section 3.3.1.1, where na and nc are
varying from 1 to 4, as shown in Table 3.5. The ARMA order is determined by taking the lowest

AICs as na =4, nc =3. Matrices A(g) and C(q) are obtained using MATLAB System Identification

Toolbox as
A(q) =1-2.725q ™ +2.579 % —0.9361q° + 0.09098¢ * (3.8)
C(q) =1-1.998q " +1.291q % -0.2911q° (3.9)

The noise variance is also estimated as 2.3278. Thus, y(t) can be obtain using Eqg. (3.1) which

is predicted wind speeds for one year, as shown in Figure 3.4.

Table 3.5: Results for Finding the Order of the ARMA.

Na, Nc AlCs
1,1 3304.111642
1,2 3305.728908
1,3 3307.044785
14 3308.421132
2,1 3305.756687
2,2 3307.588795
2,3 3308.883251
2,4 3310.401179
3,1 3307.341598
3,2 3210.725993
3,3 3309.733142
3,4 3313.400201
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4,1 3209.357658
4,2 3211.851392
4,3 3198.168838
4,4 3218.802228
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Figure 3.5: Predicted wind speed in St. John’s with ARMA model.

3.3.2. Wind Speed Prediction by ANN Method

3.3.2.1. Principle of ANN Method

An accurate estimating of wind speed is important for operational, capacity adequacy,
financial, and design. There are several types of wind speed models that can be used for wind farm
planning [117]. Different models result in different output power of wind turbine, thus affecting
generation adequacy evaluation. In addition, an error in wind speed model results in cubic error of

wind power output. In this section, the performance of ARMA model and neural network was

investigated for wind speed time series prediction.
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Neural networks have been commonly used for wind generation applications such as short-
term and long-term wind speed predictions, wind turbine control system, reactive power control,
pitch control system, maximum power point tracking, fault diagnosis, and transient stability.
Neural network time series are the most applicable wind speed modeling approaches. Simplicity,
less computation time, handling multivariable problems, and solving nonlinear problems are the
main advantages of neural networks [63]. In this section, wind speed time series are predicted by

neural network.

Three different types of training algorithms for neural network and ARMA model were used
and compared with observed wind speed data. Neuron or node is the basic unit of computation in
neural networks which gets input from other nodes and determine an output. Each input has its
own weight factor which shows the relevance between other inputs. Calibrating all of the weight
factors is called training the neural network [63].

There are generally three layers in neural networks which are input, hidden, and output.
Hidden layers perform computations and link input to output. Hidden layers are not required for
linear separable functions or decisions. The feedforward neural network is the simplest type of
neural networks, where information is being transferred from input layer to output layers in only
forward direction. Figure 3.5 shows an example of feedforward neural network. This network by
considering a delay input is called focused time-delay neural network, which is highly suitable for
time series predictions. Using delay inputs, information arrives at hidden layers with some time
difference, thus past information can be stored in network [63].

In this study, nonlinear autoregressive time series of wind speeds are generated by focused

time-delay neural network. This predicts time series x(t) given d past values of x(t) as follows [64]:
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y(® = f(x(t—2),x(t —2),....x{t—n,)) (3.10)
where np is the number of past wind speed data.

Focused time-delay neural network is illustrated in Figure 3.6, where delays are involved in
input layers which serve as a memory ensuring storing previous data without any feedback from
output layer. In this process, np inputs x(t—1), x(t—2),...,x(t—n,) are reaching to hidden layers and
response y(t) is predicted. The network must be trained to adjust weight factors so that the error

between estimated output and input is minimized [65].

Hidden layers

Figure 3.6: Feedforward neural network [63].

Figure 3.7: Focused time-delay neural network [65].
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This error can be minimized by different types of algorithms such as Bayesian Regularization,
Levenberg Marquardt, and Scaled Conjugate Gradient training, which are the most commonly

used algorithms for training a neural network. They are briefly introduced as follows.

1) Levenberg-Marquardt Backpropagation Algorithm: This is highly recommended method
because of its stability and fast convergence [65]. It is used to train the neural network which

updates weight factors by Levenberg-Marquardt optimization.

2) Bayesian Regularization Training Algorithm: This algorithm is based on reducing the sum
squared error between observed wind speeds and predicted wind speeds. Training is based on
modifying weights in a repetitive steps so that the sum squared error is minimized. Hence, this
process is based on a minimization of an objective function which calculates sum of squared errors

[66].

3) Scaled Conjugate Gradient Training Algorithm: This algorithm was developed by [67] which
is based on a line search for updating weight factors to avoid time-consuming process of training

neural network [68].

The above three training algorithms for neural network were used to predict wind speed data
by MATLAB Neural Network toolbox for the city of St. John’s, Newfoundland and Labrador,
Canada. The capability of wind speed prediction of each model in comparison with the observed

wind speed data were evaluated by R? and the residual analysis.
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3.3.2.2. Case Study for Wind Speed Prediction by ANN Method

Predicted hourly annual wind speeds using neural networks for St. John’s are shown in
Figures 3.7-3.9. Predicted hourly wind speeds for one day and two days are shown in Figures 3.10
and 3.11. It can be seen that wind speed significantly varies from hour to hour and it is a difficult

task to predict wind speeds for each hour.

RZis used to determine the error between predicted and observed data. It can be seen from
Table 3.6 that an accurate wind speed modeling is obtained using neural network time series. A
high value of R? cannot guarantee a good fit of data. Hence, the residual analysis, which shows the
difference between simulated wind speeds and the fit to the simulated wind speeds, has been
performed to ensure the capability of neural network in wind speeds prediction, as shown in
Figures 3.12-3.15. The distance of the data from O line shows the forecast error. Positive and
negative points show the forecast was low and high, respectively. Values located at 0 line indicate

the forecast was correct [117].

It is found that a more accurate wind speed prediction was obtained when neural network was
employed than ARMA. Bayesian regularization demonstrated better accuracy of wind speed
modeling than other two training algorithms, Levenberg Marquardt and Scaled Conjugate

Gradient.
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Figure 3.8: Predicted wind speed in St. John’s with neural network using Levenberg Marquardt
training [117].
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Figure 3.9: Predicted wind speed in St. John’s with neural network using Bayesian
Regularization [117].
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Figure 3.10: Predicted wind speed in St. John’s with neural network using Scaled Conjugate
Gradient [117].
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Figure 3.11: Comparison of predicted wind speeds for one day (January 1st) [117].
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Figure 3.12: Comparison of predicted wind speeds for two days (January 1st-January 2n