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Abstract 

As drilling performance is a key indicator of success in the oil and gas industry, numerous 

academic and industry organizations have been researching how to improve drilling with regard 

to time and efficiency. A study is done to determine rock isotropy by applying mechanical and 

physical measurements, along with oriented drilling, as anisotropy has a distinct impact in drill 

performance. Based on these findings, the study then performs drilling experiments on 

anisotropic rock in order to gauge the effect of anisotropy on drill efficiency. The tests employ 

a dual-cutter PDC bit, 35 mm, and use several different WOB under constant atmospheric 

pressure and water flow. In looking at relationships of WOB, ROP and DOC, it is clear that 

increasing the WOB leads to a subsequent increase in DOC and ROP. Furthermore, increasing 

the WOB also leads to increases in cutting sizes as well as material anisotropy. At Memorial 

University in Newfoundland, Canada, the Drilling Technology Laboratory (DTL) has developed 

a passive vibration-assisted rotational drilling (p-VARD) tool which enhances drill rates of 

penetration (ROP) in lab tests. Previous lab experiments, including simulations, point to axial 

vibrations having significantly improved ROP. These experiments are carried out by applying 

the Discrete Element Method (DEM) simulation, using the DTL p-VARD configurations tool. 

To gauge the tool’s cutting efficiency, a PFC2D (i.e., particle flow code in two dimensions) 

numerical model is utilized in simulating micro-crack generation/propagation for the drill 

procedure on synthetic rocks. The pVARD tool compares the downhole vibration with the rigid 

drill configuration of conventional rotary drilling, using low, medium and high spring 

compliance. Next, output parameters for ROP, MSE, and DOC are analyzed for pVARD/ non-

pVARD configurations. The overall results point to the pVARD tool having a positive impact 

in downhole drilling, showing improvements in DOC, MSE, and ROP. 
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Chapter 1 

1.1General  

Rocks are considered to have anisotropic features if their thermal, seismic, hydraulic, and 

mechanical properties are directionally variable. Anisotropy is considered such an important 

characteristic in rock engineering that applications which overlook anisotropic features in the 

rock being studied end up with errors (Amadei, 1997). In fact, rock engineering and any type of 

rock mechanics cannot proceed without the engineer having a basic understanding of the 

anisotropy of the rock or rocks at issue. 

The anisotropic features of rocks depend largely on their origins, such as sedimentary rock 

stratification and metamorphic rock mineral foliation, along with rock mass discontinuities. In 

rock engineering, knowing the anisotropy type and extent is crucial in measuring stress, 

particularly when applying the over-coring approach.  Knowing the anisotropy type and extent 

is also critical for preventing damage caused by excavation and for displacement control 

(Amadei, 1996). Furthermore, anisotropy should be taken into consideration in applying the 

equivalent continuum method for rock masses, due to significant deformations which may occur 

in the discontinuities. Overall, then, mechanical rock anisotropy forms an integral part of rock 

engineering, and operations should not be proceeded until the anisotropy (typically defined 

according to the elastic modulus ratio) has been determined (Cho et al., 2012).  

In materials, anisotropic elastic behavior can be deduced by determining the contributions of 21 

elastic constants as well as symmetry (Lekhnitskii, 1963). In general, a material’s symmetric 

inner composition will reflect in the symmetry of the material’s elastic properties. Of the 

numerous types recorded for elastic symmetry, transversely isotropic models are usually applied 
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in rock mechanics. The transversely isotropic planes are related to rock stratification and 

foliation, as well as rock discontinuity (Lekhnitskii, 1963). 

1.2 Scope and objectives of the work. 

The present work aims to find the best approach to achieving optimal drilling performance by 

increasing both the Weight on Bit (WOB) and rate of penetration (ROP) in anisotropic formation 

and with axial compliance at the bit. The conducted experiments include physical 

measurements, mechanical measurements, and drilling tests followed by oriented drilling (i.e. 

0°, 45° and 90°). also conducted drill cuttings analysis with comparison to artificial rocks 

(RLM). The relationships between the drilling data were evaluated including drilling rate of 

penetration (ROP), depth of cut (DOC), and the mechanical specific energy (MSE) and 

corresponding effective WOB. The investigations will be carried out across a broad range of 

conditions, with and without the use of pVARD technology. Factors such as extreme flow rate, 

extreme bottom-hole pressure (BHP), extreme WOB will be simulated on a variety of rocks 

under parameters that would not be possible in real-world conditions 

1.3 Organization of Thesis.  

The thesis is organized in six chapters.   

Chapter 1. Introduce the background to the problem, the need for research, objectives, and scope 

of the study.  

Chapter 2. Provides a literature review, exploring recently published work on enhancement of 

drilling performance through simulations and modeling. Highlighted topics of the review cover 

aspects such as ROP, WOB, MSE, PDC bits penetration mechanisms, and cut depth. 
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Chapter 3. baseline development of rock anisotropy investigation utilizing empirical 

relationships between oriented physical and mechanical measurements and drilling 

performance.  

Chapter 4. laboratory investigation on directional drilling performance in isotropic and 

anisotropic rocks. 

Chapter 5.  Pfc-2d numerical study of the influence of passive vibration assisted rotary drilling 

tool (pVARD) on drilling performance enhancement 

Chapter 6. a summary of the whole study is presented, contains conclusions and 

recommendations for future work. Optimization of drilling productivity is one of the main 

subjects to be discussed in this chapter. 
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Chapter 2 

Literature Review 

 

2.1 Overview 

Drill string vibrations are one of the main problems in drilling, particularly for applications in 

directional wells or horizontal wells, where the weight on the bit can not be properly controlled. 

This can lead to a reduction in the penetration rate due to the twist-offs in the drilling string and 

as a result of fishing time. Premature downhole failure of measurement while wrilling (MWD) 

systems has a negative impact on the stability of the wellbore and reduces the life of the joint 

between tool recuts. However, it is possible to reduce the total cost of the operation by reducing 

the vibration of the drill string (Reich, 1995). 

Drill strings are tubes of varying lengths made up several different tools, bits, etc including 

stabilizers, drill collars and pipes. The primary purpose of this collective system is to transfer 

the rotary motion created by the rotary table to the drill bit located downhole. Additionally, the 

drill strings can generate the axial force needed to pulverize rock and forcefully enter into the 

formation. This type of force is called weight-on-bit (WOB) and is usually created through the 

weight of the drill string, although it can also develop at the hydraulic cylinders, uphole. Drill 

strings can be either short or long, depending on what they are being used for. So, for instance, 

in drilling oil wells, strings can be several thousand meters long and comprise stabilizers, drill 

pipes and collars, whereas in drilling blast holes, the system is generally quite short and is made 

up only of drill pipes attached to a drill bit. Whether the system is long or short, the collars and 

pipes feed the drill string during ground boring (Aminfar, 2008) 
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The complicated dynamic behavior of the drill string system, the difficulty of the drilling 

process, and the lack of homogeneity in formation all contribute to create the drilling string 

vibrations (Schmalhorst, 1999). There are three modes of vibration that exist during the drilling 

process: axial, torsional and lateral. These modes of vibration-related phenomena cause bit 

bounce in axial vibration mode, stick/slip in torsional mode and a whirling effect in lateral mode. 

All of these make it hard, even impossible in fact, to predict precisely the optimum parameters 

of drilling (Schmalhorst, 1999).However, hard materials such as rock can be simulated using a 

variety of approaches and models.  

One of the best of these is the distinct element method (DEM), a modeling approach which is 

especially useful in dynamic situations that include high deformation and strain. Given its 

superiority, DEM will be applied in the present work for examining the performance level of 

drilling operations through the creation of a toolkit. The aim here is to include in the kit all of 

the main factors that comprise a drilling operation as a means to accurately replicate currently 

accessible experimental tests. Itasca Inc (IC. 2008) created a tool that uses software to simulate 

rock-cutting activities. The tool helps to investigate the dynamic process as well as the physical 

mechanics, that occur during cutting. The model is constructed using PFC2D software and 

features three standing walls which have no friction from the sides or bottom. The model also 

shows rock ringed by a cutter in addition to the walls. For the PFC2D in this case, the rock 

material is indicated by particles. Furthermore, the cutter’s speed is fixed horizontally as well 

as vertically, along with a fixed depth. In the course of the cutting procedure, a variety of 

different parameters, including energy, force and velocity, are monitored. 
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This section explores the interconnections of rate of penetration (ROP) and drilling efficiency 

and includes summaries on published work dealing with vibration drilling that applies axial 

forces to enhance drilling efficiency. Work carried out by the Drilling Technology Laboratory 

Group (DTL) at Memorial University in Newfoundland is highlighted. A representative 

selection of down-hole systems currently in development and/or use that apply vibrational 

energy for increasing ROP are also included in this section. 

2.2 Historical background 

 

A number of researchers have looked into the viability of increasing drilling performance by 

adopting different approaches. Recently, Ledgerwood (2007) examined the impact of crushed 

particles, suggesting that these particles, when under hydrostatic pressure, exhibit ultra-high 

strength. In fact, Ledgerwood (2007) posited that the particles’ lowest strength would be equal 

to the strength found in virgin rock. Ledgerwood’s (2007) findings also pointed to the formation 

rock’s potential to be drilled when subjected to hydrostatic pressure, which showed how the 

rock material’s inelastic properties exert a greater influence in ROP than, for instance, more 

elastic properties like the friction angle. A few years later, Li et al (2010) examined the impact 

of bit vibration in relation to the rate of rotary drilling penetration for laboratory rotary core 

drilling. In this case, the laboratory core drill underwent certain modifications to make it suitable 

for drilling in various conditions such as WOB and different axial vibration amplitudes (Li et 

al, 2010). The researchers tested rates of 300 RPM as well as 600 RPM without applying 

vibrations, and then tested vibration rates of 60 Hz with amplitudes ranging from 0.09 to 0.29 

to 0.44mm. The test outcomes indicated that when the WOB measured below the founder point, 

the ROP rose in proportion to the vibration’s amplitude, with a few of the outcomes indicating 

that rises in ROP were higher toward the ROP-WOB curve peak (Li et al., 2010).  
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Around the same time, Yusuf, (2011) published a paper entitled several tests were conducted to 

gauge the impact of using different vibration frequencies as well as different amplitudes. 

Additionally, the researchers applied a lab drill rig on sample materials of predetermined 

unconfined compressive strength (UCS), utilizing water as a drilling fluid and measuring 

indicators like amplitude and frequency of vibration /rotary speed, flow rate, torque, ROP, and 

WOB (Yusuf, 2011). They found that vibration rotary drilling with a diamond drag bit under 

controlled frequency conditions showed markedly higher ROP than traditional rotary drilling.  

At the same time, Akbari et al, (2011) published a paper entitled, “Dynamic Single PDC Cutter 

Rock Drilling Modeling and Simulations Focusing on ROP Using Distinct Element Method.” 

The researchers used a rock-cutting strategy simulating WOB along with rotary speed, carefully 

monitoring the penetration rates. The simulation outcomes indicated that, for specific 

frequencies, there was a notable rise in penetration rate when they superimposed an oscillatory 

WOB (Akbari et al, 2011). The researchers also looked into the phenomena of drill string 

vibration and instabilities which occurred as a result of cutter rock interaction, along with some 

potential causes of hazardous scenarios. Additionally, how bottom hole pressure impacts the 

surface of rock materials was examined. Their findings indicated drops in ROP in proportion 

with bottom hole pressure logarithms as well as a lessening in the positive effect of force 

oscillations on ROP when the bottom hole pressure was boosted (Akbari et al., 2011). 

 A year later, Khorshidian et al, (2012) published their work analysing how natural vibrations 

affect the penetration mechanism in polycrystalline diamond compacts (PDCs). When drilling 

is carried out using a PDC bit, vertical oscillations are generated which impact penetration rates. 

Khorshidian et al, (2012) used a single PDC cutter-rock interaction simulation to examine how 

the cutter’s inertia affects vertical oscillations and discovered that the cutter’s horizontal speed 
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can increase the penetration rate, while the value of Mechanical Specific Energy (MSE) is 

boosted by the interactions of the cutter’s horizontal speed and vertical vibrations. 

 A few years after that, Khorshidian et al. (2014) published a follow-up work entitled “The 

Influence of High Velocity Jet on Drilling Performance of PDC Bit Under Pressurized 

Conditions.” in which they demonstrated how raising the confining pressure can lower ROP. At 

the same time, Mozaffari (2014) created a simulation for analyzing Portland Cement-based 

synthetic rocks. His PFC2D model was tested to determine the impact of gap on a range of 

factors, including but not limited to “Young’s Modulus, Poisson’s ratio, friction angle vs. 

Confined Compressive Strength CCS, failure behaviour, tensile strength, and minimum particle 

size” (Mozaffari, 2014). Meanwhile, Gharibiyamchi (2014) applied the discrete element method 

(DEM) for simulating Axial Oscillation Generator Tool (AGT) and the hydropulse tool, with 

test outcomes pointing to major increases in drill performance, especially for AGT. 

 A year later, Reyes et al, (2015) analyzed performance rates of rotary drilling penetration 

mechanisms based on “rock characteristics, drill rig parameters and operational parameters”. 

The work highlighted the passive vibration-assisted rotary drilling (pVARD) tool, which aims 

to improve penetration by using rock bit interaction for building axial vibrations. Along with 

finding correlations between parameters such as ROP and WOB to cutting size distribution, the 

researchers developed a novel particle size distribution bar diagram for comparing cuttings 

samples. Following on the heels of Reyes and colleagues’ (2015) work, Rana et al, (2015) also 

looked at the role of pVARD in improving ROP through utilizing PDC drill bits. The researchers 

investigated the responses of a pVARD prototype through using concrete samples with a UCS 

of around 50 MPa, finding average ROP increases of 50% to 100% over non-pVARD tools.  
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More recently, Zhong et al. (2016) experimented on a range of DEM simulations, aiming to 

improve ROP through the application of vibration. These investigations are part of a wider 

exploration of ways and means to improve ROP. At the Drilling Technology Laboratory (DTL) 

at Memorial University in Newfoundland, for instance, pVARD technology is being used as one 

of the main tools in their cutting-edge research in the field. Accordingly, the present work 

explores DEM simulations of PDC bit penetration as well as comparative drilling with and 

without pVARD, investigating factors such as frequency and amplitude. The outcome of the 

Memorial DTL experiments thus far indicates a significant improvement in drilling performance 

when measured by MSE, material removal rate (MRR) and depth of cuter (DOC), among other 

key gradients.   

2.3 PDC Bit Penetration Mechanisms 

Over the years, extensive changes have been introduced to drag bits (also known as fixed cutter 

bits) with the intention of enhancing drill performance. Steel blades have given way PDC bits, 

with an eye to enabling faster and longer rounds of drilling. Steel blade bits were once ideal for 

shallow and soft drill sites, but harder site material necessitated hardier bits, and so steel was 

replaced with diamond, leading to a significant increase in bit life as well as a major drop in 

drilling costs. Figure 1 illustrates a PDC bit that is commonly used today (Schlumberger 2017). 

Bits can range in size and configuration, as well as in number and cutter size. 
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Figure 1. Smith standard 6-inch Mi 711 1 (Schlumberger 2017). 

According to Glowka (1989), PDC bit design should, to a large extent, be determined by how 

cutter forces come into contact with the material to be cut, and that cutter forces are primarily 

defined by how cross-sectional areas interact with the rock-cutting device. Furthermore, 

Detournay et al (1962) explained that drilling specific energy (E=T/d) and drilling strength 

(S=W/d). share a linear relationship in the drilling process. Shortly after making this discovery, 

Detournay et al (2008) further explained that bit response can also be impacted by characteristic 

contact length, as well as contact strength (σ). Contact length indicates the bit’s wear rate (>1 

mm is optimal), while contact strength indicates “the maximum normal stress transmitted by the 

cutter flat rock interface.” Sellami et al (1989) suggested how existing or forced stresses might 

aid in the creation of tensile cracks during cutting, but neither situation leads to enhanced ROP 

in PDC bits, mainly because of the bits, extreme negative rake angle. Moreover, Sellami et al. 

(1989) discovered in the course of their lab experiments, that in-situ stresses have very little 

impact on ROP, but that increasing mud pressure serves only to slow ROP increases in BHP 

also have the same effect. They also found that there are two forces affecting PDC bits: the first 

one (cutting force) is the force needed to break the rock or other material to be cut, and the 
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second one (frictional force) emerges as a consequence of normal forces working against wear 

flat. 

Gerbaud et al (2006) brought in a new approach to rock-cutter interaction that considers the 

impacts of back cutter force (from rock deformation), cutter face crushed material edge, and 

chamfer size /shape. Earlier approaches worked on the assumption that the cutting force and 

cutting surface were proportional, but this is valid only for sharp bits that feature a low back 

rake angle. A higher back-rake angle or a chamfered cutter results in higher force value. We can 

see this clearly in Figure 2, which shows how back / side rake angles are impacted by the cutting 

face edge of crushed materials. As can be seen, the cutter inclination is determined by the back-

rake angle (ωc) and side rake angle and exerts a strong influence on the cutting force. Gerbaud 

et al. (2006) listed three distinct forces that have an effect on the PDC bit: 1) the force that 

affects the cutting face surface, which they termed “Fc”2) the force that affects the chamfer 

surface, termed “Fch”; and 3) the force that affects the back-cutter surface, termed “Fb”. 

F= Fc + Fch + Fb (2-1) 

 

 

 

 

 
 

 

 

 

 

 

Figure 2. Forces acting on PDC cutter  1 Gerbaud et al. (2006) 
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In general, cutting force is nothing more or less than “pure force” intended to compromise a 

hard substance (in this case, rock). Figure 2.1 shows how the “pure force”, when used against 

the cutting face, has been applied against the rock at the edge of the crushed materials. The force 

results in rock chips having a failure angle (ψ) independent from PDC orientation. Thus, we can 

see the impacts of back side angles through the frictional contact of hard (e.g., rock) surface and 

chipped crushed material. 

2.4 Natural Vibrations of Single PDC Cutter Penetration 

When drilling using PDC bits, vertical oscillation invariably occurs and can have a range of impacts 

on ROP and overall drilling efficiency levels (Dupriest 2005). DEM can be used to simulate a single 

PDC cutter-rock interaction to explore drilling parameters (e.g., load on cutter, cutter mass on 

drilling responses like vertical vibration, DOC and MSE, or cutter force components) (Glowka 

1989). The force working against both the bit cutter face and wear flat create cutter and drill string 

vertical vibration.  In most instances, cutting occurs when an adequate load is applied to the 

cutter and is then pushed toward the cut direction. Chip generation results from oscillations of 

the force components moving against the cutter (Akbari et al 2011).  

Daniyevsky et al (1993) and Dubinsky et al (1992) argued that bit and drill string interactions 

(due to, for instance, pipe and drill string stiffness or mass of Bottom Hole Assemblies (BHA) 

with the material being drilled can cause a range of dynamic effects. Richard et al (2002) agreed 

and suggested that torsional or vertical vibrations are controllable through modifications of 

RPM and WOB. Along the same lines, McCray et al (1959) pointed to the benefit of 

magnetostriction vibratory drilling, which they claimed can double the ROP simply by adding 

a vibration to the roller cone bits (Kolle 2004). This approach, however, is better suited to depths 

only up to 100 meters, as deeper wells would have a negative impact on ROP as a consequence 
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of chip hold down and less than ideal bit cleaning. Another innovative tool (a hydraulic actuator) 

uses the vibratory force on the bit through the creation of pressure pulsation, succeeding in 

boosting the ROP up to 33% in simulations (using a BHP of 20 MPa), but falling far short of 

this rate in real-world tests (Kolle 2004). According to Akbari et al (2011), rock fractures can 

be expanded by using vibratory forces on PDC bit cutters, but such fracturing approaches should 

not be used under high pressure conditions. Pessier et al., (2011) demonstrated how a so-called 

hybrid bit (roller cone bit and PDC bit in one) boosts ROP due to vertical movement, and 

Khorshidian et al (2012) modeled single-cutter penetration with DEM (see Figure 3). According 

to Khorshidian and colleagues lowering the DOC can result by lowering the cutter’s vertical 

load, but no impact on the DOC was observed by simply altering the cutter’s mass, as only the 

cutter’s inertia is altered. However, raising the cutter’s load results in raising the mechanical 

specific energy (MSE), defined as “the amount of energy (J) spent removing a unit volume of 

rock, Vrock, (m3)” resulting in (J/m3) (Tutluoglu, 1984). The MSE is also considered the rock’s 

strength compromised (through penetration) by the bit. Rises in MSE might result from a variety 

of circumstance at the well, including friction or inadequate cleaning (Khorshidian, 2012). The 

cutter’s horizontal movement when undergoing cutting action corresponds to vertical 

oscillations in vibrations in the cutter’s force components, velocity and position (Khorshidian, 

2012).  

 Khorshidian et al., (2012) argued that crushed particles lodged in the cutter and ramp were the 

primary cause of cutter vertical vibration. These particles, retained in place by confining 

pressure in the bottom-hole, are able to shift upwards only until the creation of the next chip or 

the cutter’s vertical load measures greater than upward-trending forces in the particles. 
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Figure 3: Conditions and components o 1 (Khorshidian et al.,2012) 

Figure 4 illustrates Khorshidian et al.’s model of vertical velocity across a variety of cutter mass 

values. The figure demonstrates how the vertical velocity peak amplitude increases in lower 

cutter mass. Increased acceleration occurs due to increased excitation that results from the 

cutter’s vertical load and the cutting actions’ vertical force. Figures 5 and 6 also show how 

amplitudes in lower mass cutters resulting in higher peaks. It is worth noting that while 

Khorshidian et al. used a single small PDC bit with constant light mass in their tests, the 

combined impacts of bit type, geometry and mass were not studied. 

 

 

 

 

 

Figure 4. Spectrum of vertical velocity at horizontal speed of 1.5 m/s and vertical load of 125 KN 

(Khorshidian et al 2012) 
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Figure 5. Spectrum of cutter vertical force at vertical load of 125 kN (Khorshidian et al. (2012) 

 

Figure 6: Spectrum of cutter vertical position at vertical load of 125 kN (Khorshidian et al., (2012) 

Along with the investigations mentioned above with colleagues, Khorshidian et al., (2012) 

worked solo on a number of drilling trials that examined bit performance of rock penetration, 

which Khorshidian found to be notably less when subjected to borehole pressure. Similarly, 

Khorshidian’s tests also found that cutting accumulations negatively impacted flow intensity, 

particularly under high borehole pressure conditions. These findings led him to suggest that 

properly tuned Bottom-Hole Cleaning (BHCs) could boost the performance of drill bits simply 

by clearing away the surplus cutting materials. Unfortunately, at the same time, removing the 
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cuttings could potentially cause an unwanted increase in hydraulic horsepower, leading to an 

adverse effect on bit performance through the creation of nozzle jet impact forces working 

against the WOB (Khorshidian et al.,2014). 

2.5 ROP and Drilling Efficiency 

Taylor et al., (1996) argued that most findings on drilling efficiency highlight its connection 

with ROP. Because of this perceived interconnection, drilling efficiency and ROP are typically 

seen as two sides of the same coin in that ROP is the primary parameter affecting drilling 

efficiency. However, field results indicate that ROP might be just one of several different factors 

affecting drilling efficiency. For instance, Wilmot et al., (2010) argued that drilling efficiency 

is contingent on a number of operational parameters or performance qualifiers (PQ), not just 

ROP. These parameters include but are not limited to vibration control, durability, footage 

drilled per BHA, down-hole tool life, borehole quality as well as ROP. Thus, while ROP is 

certainly a factor in drilling efficiency, any enhancement of ROP should not come at the expense 

of any other PQ.  

In a general sense, ROP can be defined as “drilling advancement per unit time when the drill bit 

is on bottom and drilling ahead”, with the majority of the elements that impact ROP during 

drilling also affecting the other PQs. Some of the factors are listed below, divided into the three 

categories of planning, environment, and execution (Elnahas, 2014). 

1. Planning factors include: hole size, casing depths, well profile, bit drive mechanism, BHA, 

drilling fluid type and properties, flow rate, hydraulic horse power per square inch (HSI), and 

hole cleaning (Elnahas, 2014). 
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2. Environmental factors include: lithology types, formation drillability (hardness, 

abrasiveness), pressure conditions and deviation tendencies (Elnahas, 2014). 

3. Execution factors include: WOB, RPM, and drilling dynamics (Elnahas, 2014). 

The two basic kinds of ROP are instantaneous (ROPi) (measured in finite time / distance during 

drilling) and average (ROPav) (measured as total interval drilled from running-in-hole [RIH] to 

pull-out-of-hole [POOH] stages) (Elnahas, 2014). 

2.6 pVARD Tools 

The DTL at Memorial University, Newfoundland, developed a passive VARD (pVARD) tool 

for enhancing ROP and drilling efficiency, along with decreasing the volume of penetrated rock 

energy usage. Lab and field tests have validated the usefulness of pVARD in boosting drill 

performance. Because ROP declines as BHP grows, pVARD technology dampens the increases 

in pressure, resulting in greater efficiency in drilling and in overall expenditures. Furthermore, 

as the springs in the axial-compliant part deliver requisite compliance, the VARD technology 

can then administer the ideal amount of axial displacement, and, in so doing, give full ROP. The 

Appendix provides in-depth details (e.g., calibrations, etc.) on the VARD technology used in 

the DTL experiments (Zhong 2016). 

2.7 Distinct Element Method 

The distinct (or sometimes referred to as discrete) element method (DEM) is a popular numerical 

strategy used in tabulating both the effects and movements of mass amounts of small particles 

(Wikipedia Shi, G 1989). While similar to molecular dynamics, DEM also includes aspects of 

complex geometries, rotational degrees-of-freedom, and stable contact (Wikipedia Shi, G 1989). 
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DEM is usually applied when dealing with engineering issues in granular flows as well as 

powder and rock mechanics. The approach occasionally now also includes thermodynamics and 

coupling to Computational Fluid Dynamics (CFD) and Finite Element Method (FEM), in which 

case it is called the extended distinct element method. DEMs are generally computationally rich, 

so they often engage in parallel processing, using distributed or shared systems. This enables 

them to increase both the particle number and simulation length (Zhong 2016). 

Another approach to dealing with the large operational canvas is to view each particle as unique 

and thus to take an average of all the particles, thereby viewing the process as a continuum. For 

granular behaviours in soil mechanics, the so-called continuum strategy regards all materials as 

being either elastic-plastic or simply elastic, building a simulation using the mesh-free or finite 

element method. For gas-like granular flow, viewing the material as a continuum enables the 

application of computational fluid dynamics. There are, however, flaws in applying the 

continuum strategy that should be looked into prior to adopting the method for lab or field use 

(Mozaffari 2013) 

In order to explore the fracture process more deeply, Xia et al (2009) used uniaxial compression 

tests to examine failure patterns in rocks, weighing their findings against outputs produced by 

DEM compression. The results indicated how DEM-generated models of rock failures and 

published data were generally in agreement.   In fact, the fracture patterns generated in the 

simulations were similar to fractures observed in lab trials. Potyondy et al (2004) generated 

sandstone DEM models from non-uniform size particles. The simulations did a reasonably good 

job of capturing the samples stiffness evolution. Hentz et al (2004) used DEM models for 

simulating oversized strains by combining straining particle bonds and thereby circumventing 

the more complicated approaches that allow FMD and FDM simulations of oversized strains.  
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Akbari (2011) demonstrated in his thesis research that implicit FEM is mostly inefficient and 

thus not suitable for the present work. At the same time, the literature reviewed above clearly 

shows that the DEM approach is the most suitable strategy for numerical simulation methods 

that simulate failure processes due to bit cutter penetration. So, we chose Itasca Consulting 

Group’s 2-dimensional particle flow code (PFC2D) to be the DEM software in the present study. 

Numerous published research studies have shown that PFC2D is well able to simulate force 

distribution across a broad range of rock behaviours such as crack distribution, contacts, strain 

rates, high deformation, etc. (Mendoza et al 2010). At the same time, DEM’s calculation 

formulation strategy is explicit instead of implicit, which indicates a higher level of efficiency 

in problems (such as failure or collapse) that feature non-linear behaviour, along with dynamic 

response and large strain. Adopting such an approach allows for the occurrence of dynamic 

simulations, where data moves in speeds in accord with the particle stiffness and mass. Hence, 

a critical time step is developed in keeping with the system’s features (i.e., the least amount of 

time needed for stress waves movement from particle to particle) and dynamic equations of 

motion can be formulated and resolved easily, after which the new contact forces can be 

reprogrammed according to the tabulated displacements (Strack, et al. 1979).  

2.8 Cutter-rock interaction 

DEM and fracture mechanics can be used to develop a numerical simulation of rock-cutting, 

with the dual aims of 1) determining the cutter’s mechanical characteristics in the rock cutting 

process, and 2) determining the cutter’s peak force reactions before they occur. These factors 

are critical, since rock cutting has an impact on the drill bit’s stability. In his study, Ranman 

(1985) determined that the cutter’s peak force can be twice the average force. Copur et al (2003) 

likewise carried out numerous tests on different samples, while Bilgin et al, (2006) investigated 
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more than 22 types of rock material.  The researchers found a clear relationship connecting the 

cutter’s force and the rock’s compressive and tensile strengths, along with static elastic and 

dynamic moduli (Bilgin et al., 2006).  Expanding on the work of these researchers, Evans (1984) 

and Goktan (1997) developed a cutter model to simulate cutter rock interaction, building on the 

assumption that the cutter’s tensile stress determines the degree, quality, and speed of rock-

breaking. Their model is based on rock and rock-like material’s mechanical properties as well 

as the cutter’s parameters. Today, the approach is the predominant strategy used in rock-

breaking enterprises around the world. 

A closer inspection of the above studies reveals that the cutter’s reaction forces are determined 

by the mechanical characteristics of the rocks under study, which then influenced the cutter 

parameters. Connections to average peak force reactions that were made via theoretical 

speculation, simulations and lab/field experiments were compared using linear regression 

analysis. The findings clearly show that linear correlation coefficients of numerical results 

accord with Goktan’s (1997) theory, which indicates that this particular numerical model can in 

fact effectively be used in rock cutting simulations. 

2.9. Impact of drill string vibrations on drilling efficiency during Penetration. 

The industry is looking into ways to lessen the vibration factor, as vibrations can have a 

significant impact on drilling direction, ROP and WOB. It can also have a devastating effect on 

the life of drilling tools like cutters, bearing, bottomhole assemblies (BHAs), and measurement-

while-drilling (MWD) tools (M, Fayez 2012). Vibrations can even lower the efficacy of the 

entire drilling system process by preventing the total energy from being transmitted downhole 

(Omid 2008). 
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As we say earlier, drill string and bit vertical oscillations that occur in the drilling process can 

adversely affect penetration (Aadnoy 2009). These oscillations are primarily caused by a variety 

of forces working against the polycrystalline diamond compact (PDC) bit cutters (Aadnoy 

2009). Yet, there is also evidence suggesting that bit vibrations might also positively increase 

PDC bit performance within certain conditions (Dupriest 2005).  

In (Pixton 2010), a model created utilizing PFC2D demonstrated almost no connection between 

applied vibration and MRR. Babatunde (Yusuf, 2011) arrived at the contrary conclusion, using 

in his atmospheric drilling UCS at 50MPa and a 1.25-inch diameter PDC bit with vibration (in 

his case, a shaking table) (Yusuf, 2011). Three vibration levels (high, medium, and low) were 

applied at frequencies of 45Hz, 55Hz and 65Hz and several different WOBs (Yusuf, 2011). 

Although Yusuf (2011) concluded beyond a doubt that vibration does in fact increase drilling 

rates, optimal conditions are difficult to determine. Concerning to Yusuf, however, was the 

worrying trend of improvements in ROP up to a certain level of vibrations, after which there 

was a decided decrease in improvements (Yusuf, 2011). 

Dunayevsky et al (1993) found that bit-formation interaction caused the dynamic components 

of the force, while Dubinsky et al (1992). pointed to dynamic forces being the cause of bit and 

string interaction with the drilled material and subsequent vibrations at the bit. Furthermore, bit 

and drill string vibrations share a connection with the pipe’s vertical stiffness as well as the BHA 

mass. Force changes in the cutting direction could potentially lead to bit stick-slip and 

subsequent BHA failure, not to mention reduced ROP (Payne 1995). Richard et al (2002) 

demonstrated the interrelationship of PDC bit vertical and torsional vibrations and that bit 

oscillations might potentially be reigned in simply by altering velocity and WOB. 
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McCray (1995) investigated magnetostriction vibratory drilling technology, in which an 

electromagnetic transducer creates vibrations through the introduction of an alternating electric 

current in the solenoids around a laminated core. The device, which vibrates at a frequency of 

230 Hz, more than doubled the ROP when used at depths less than 100 m and in conjunction 

with star-type roller cone bits. Pessier (2011) created then hybrid next-generation bits through 

combining PCD cutters and roller cones. These bits can fracture the hardest of rocks while 

increasing MSE and ROP. Meanwhile, Kolle (2004) fashioned a hydraulic actuating device that 

created pulses at the bit, resulting in a decrease in pressure drop on the drill string. Despite lab 

tests indicating a 33% spike in ROP (when using BHP at 20 MPa), real-life field trials showed 

next to no ROP improvement.  

In their research work, Pixton (2010) employed a mud-actuated hammer on a PDC bit, along 

with tiny jets on the PDC cutters. Their device was dubbed the PHAST (pulsed jet hammer-

assisted shearing technology) bit and appeared promising in lab simulations, but ultimately, 

under higher BHP conditions that replicated real-life field conditions, showed next to no 

improvement. Akbari et al (2011) used vibratory forces in the cutter to make larger rock 

fractures, but this fracturing approach was not feasible in high-pressure conditions. 

Given this situation, a thruster device is currently being used in some BHAs to mitigate the 

impact of vibrations on the BHA. This device works by controlling the bit tracking and thereby 

stabilizing conditions (Schmalhorst 1999).  Drill string vibration, however, is formed as a result 

of the bit, BHA and other factors working together, which makes it more complicated to deal 

with. Drill string vibration happens at the outset of penetration, when the bit comes into contact 

with the formation. In addition to other issues, drill string vibrations create problems with 

measurements while drilling (MWD), which could then cause faulty readings of sensitive 
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parameters. Moreover, drill string vibrations can cause damage to bits, lost potential energy, and 

wellbore instability (Fayez 2012).  Drill collars and their adjacent drill pipes are impacted the 

most, but every vibration model shows a slightly different impact on drilling operations. The 

following section outlines the three type of vibrations that are most common, along with the 

areas they most affect.  

2.10.1 Axial vibrations 

Drill string axial vibrations create vibrations along the axis of the drill string in the wellbore 

direction (see Figure 7). Axial vibrations are in large part the result of movements within the 

chain of the drill string in either direction and can also cause bit bounce. Bit bounce occurs if 

weight-on-bit fluctuations are larger than usual and result in the bit being lifted off the bottom 

over and over again, vertically along the drill string. The bit is then dropped and affects the 

formation. The typical results of bit bounce are listed below (Omid 2008).:  

1.  Bit and BHA damage or even destruction, which might then cause downhole tools to 

fail. 

2.  Lessening of ROP. 

3.  If severe, BHA vibrations can also result. 

4. String flexing can cause axial and lateral shocks, which can subsequently damage the 

drill string. 

5. Shallow wells may experience damage to their hoisting equipment. 

6.  Hook load weight may experience fluctuations. 
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Figure 7: Axial vibration and “bit bounce” (Ashley et al 2001) 

2.11.2. Torsional vibrations 

Torsional vibrations are defined as twisting motions in the drill string. The primary cause of 

these kinds of vibrations is stick-slip. Torsional vibrations develop when the bit and drill string 

are either accelerated or decelerated (which they occasionally do) as a result of frictional torque 

on the BHA and bit (see Figure 8). Additionally, torsional vibrations can cause unusual downhole 

rotations. Such rotations can develop when the bit is temporarily stationary, as this makes the 

string torque up and spin free. The extent of the stick-slip in large part determines the duration 

of the bit’s stationary period as well as the rotational acceleration speed when the bit is freed. 

The downhole RPM can grow to several times the measurement of surface RPM. Some of the 

unwanted results of stick-slip are listed below (Omid 2008).:  

1. Lessening of ROP. 

2. Wearing out of stabilizer and bit gauges.  

3. Damage to PDC bit.  

4. Unwanted variations in surface torque readings (averaging >15%).  

5. Interferences of mud pulse telemetry. 
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6. Connection over-torque.  

7. Twist-offs of back-off and drill string. 

 

Figure 8: Torsional vibrations and “stick-slip” (Ashley et al 2001) 

2.12.3. Lateral/transverse vibrations 

The third major type of vibrations is lateral vibration. As shown in Figure 9, this type of 

vibration occurs as side-to-side motions in a transverse direction to the string. The vibration 

mode is mainly created by whirl, which is eccentric rotation of either the drill string or a portion 

of it around a point that is not the geometric center of the borehole. This movement happens 

only if there is sufficient lateral movement in the BHA for it to curve outwards and come into 

contact with the borehole wall. In extreme instances, bit whirl can even lead to axial and 

torsional vibrations or mode coupling. Typical impacts of bit whirl are (Omid 2008).: 

1. Extreme shock and vibrations in the BHA.  

2. Downhole electronic failure due to lateral shocks.  

3. Destruction of or damage to bit-cutting structure. 

4. Destruction of or damage to stabilizer and tool joint. 

5. Extreme bending stress that can damage or destroy drill collar connections. 



 
 

26 
 

 

Figure 9: Lateral vibrations of drill strings (Ashley et al 2001). 

One of the main reasons for drill string-related failures is the vibrations produced by drilling. 

Drill string vibrations can have a wide variety of causes, including the cutting action of the drill 

bit, misalignment, bends, kinks, mass imbalance, rotor wobbling, and friction (e.g., between the 

bit and the drilling surface or the column and borehole wall). However, regardless of how they 

are caused, vibrations in the drill string are damaging to the drilling process and equipment, as 

the vibrations could lead to one or more of the following issues (Azar  2007).  

 • Unusual wear and tear of the equipment, causing mechanical overloads and failures due to 

equipment fatigue (Azar  2007).  

 • Reduced penetration by the equipment, raising operational expenditures due to longer 

completion times (Azar  2007). 

• Damage to measurement equipment as well as disruptions to the measurements made 

throughout the drilling project (Azar 2007) 

 • Significant energy loss (Azar 2007) 

 • Decreased BHA stability and directional control (Aza 2007) 
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• Drill pipe rupturing, drill-bit weakening, screw connection fissures, and damage to downhole 

tools, all caused by stress corrosion cracking (SCC) (Azar 2007).  

Research indicates that the worst types of vibrations in drilling operations are those affecting 

the drill collars and adjacent drill pipes. However, every vibration model shows varying degrees 

of impact on operations. 

Table 1 shows issues related to drill string vibration, according to mode. 

 

Table 1. Effects of Drill String Vibration According to Vibration Mode (Fayez 2012). 

Vibration 

Mode 

Type Effect 

Axial Bit 

Bounce 

BHA failures, compromised/worn bits  

Decreased ROP 

Causes problems with additional vibration modes 

Torsional Stick/Slip Fatigue failure or damage to bit-cutting components due to 

changing RPM and cutter loads 

Decreased ROP 

Early failure/fatigue of downhole tools, BHA and drill 

string 

Twist-offs & washouts 

Replacements & fishing trips  

Higher costs 

Lateral Whirl Decreased ROP 

Early bit-wear 

Wear to string stabilizer 

BHA washouts & twist-offs 

Larger boreholes 

Lateral problems causing additional vibrations 
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While recent research has clearly shown the wide range of impacts that downhole vibrations can 

cause to the functionality of polycrystalline diamond compact (PDC) bits, the majority of the 

research on the downhole dynamics of roller-cone bits has been on axial vibration. One such 

research is Chen, et al (2002) study, “Effects of Stick-Slip, Lateral, and Whirl Vibrations on 

Roller-Cone Bit Performance of Field Investigation.” According to Chen et al (2002), although 

a stick-slip vibration is not detrimental to a bit’s ROP, fluctuations in WOB and TOB during 

stick-slip cause the bearing/seal system and cutting structure to endure significant shock loads. 

As a result, the bit lateral vibration substantially decreases ROP, while also shortening 

bearing/seal life because of the massive changes in the size and direction of loads on the cones. 

Dubinsky et al (1992) suggested that bit vibrations are caused by dynamic forces resulting from 

bit and string interaction with rock. They also suggested that both bit and drill string vibrations 

are strongly dependent on the pipe’s vertical stiffness as well as the bottom-hole assembly’s 

mass. Furthermore, variations in forces in the cut direction could lead to bit stick-slip. As well 

as increasing the risk of BHA failure, it can also cause a decrease in the ROP. Li et al (2010) 

studied how vibration can affect bit performance and enhance ROP by using a P-VARD 

experimental set-up to record the effects. This study indicated in Figure 10 that the ROP 

increases with increases in WOB, and keeps rising to the founder point, at which time the ROP 

declines along with additional increases in WOB. This increase is the standard pattern for 

conventional rotary drilling – namely, that increases in ROP are proportional to those in rotary 

speed. Moreover, ROP increases with increases in vibration amplitude. This increase is more or 

less linear up to the point of peak ROP, at which time the rise in ROP is significantly higher. 
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Figure 10- Li’s experimental results of vibration assisted rotary drilling ROP & WOB Li et al (2010) 

 

Research suggests that there is optimal value for rotary speed and WOB vibration amplitude, 

such that ROP will decline in tangent with higher vibration amplitudes. Schen, et al., (2005), in 

their study “New Small Vibration Logging Tool to Optimize of Bit Drilling Performance”, 

showed that a novel component could increase roller cone bit stability when fitted with lug pads. 

Schen et al., (2005) also investigated how to reduce WOB in order also to reduce stick-slip in 

PDC Bit drilling. They found that although the reduced WOB dealt with the stick-slip, it made 

the lateral vibration issue worse. Nevertheless, and despite negatively impacting the drilling 

performance, the researchers were encouraged by their findings, as these indicated precisely 

what the problem was and where it was occurring. The findings also pointed to the dynamic 

activities that were happening. In another study on bit vibration, Richard et al, offered a novel 

approach to discerning the causes of stick-slip vibration, indicating that torsional and vertical 

vibrations of a PDC bit are coupled, and that the bit fluctuations can be controlled by variations 

in velocity and WOB. 
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2.13 Impact of Bottom-Hole Cleaning during Rock Penetration. 

The simple definition of bottom-hole cleaning (BHC) is the removal of rock cuttings generated 

as part of the drill process. The removal is mainly accomplished by introducing fluid circulation 

at the hole bottom to flush any unwanted cuttings off the rock face and move the fragments 

above ground (Bourgoyne 1986). The BHC process can also serve to lubricate the drill string 

and drill bit, cool down the bit, and decrease overall wear and tear of the affected equipment 

(Bourgoyne 1986). The introduction of drilling fluid into the wells also creates bottom-hole 

pressure that is required for well control and bore-hole stability. Here, however, we will mainly 

explore how BHC impacts ROP. In his early work, Maurer (1962) examined how BHC impacts 

ROP during rotary drilling. His findings pointed to ROP being a function of WOB, rock strength, 

bit diameter, and other factors. Figure 11 depicts how drilling at high rotary speed and WOB 

necessitates BHC, and that without adequate BHC, the drilling process is inefficient (e.g., the 

bit will attempt to re-drill any left-over cuttings). Thus, effective BHC results in efficient ROP. 

Figure 11. ROP curves vs. WOB and rotary speed for ideal and actual drilling conditions (Maurer model) 

BHC also inhibits bottom-hole balling, according to Garner (1967). Specifically, without 

effective BHC, the crushed particles might become lodged in the bit cutters and significantly 

reduce both ROP and bit efficiency. Again, what is needed is effective BHC that includes the 
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flushing away of fine particles both in the hole itself and on the equipment. Rabia (1989) agreed 

that good BHC prevents bit balling while ultimately increasing ROP. However, Rabia studied 

only Gulf Coast shale and did not investigate any connection between BHC and BHP. Wells et 

al (2008) also looked into ways to avoid bit balling of PDC bits, stating that HSI's impact on 

ROP is mostly confined to soft rocks (e.g., shale), and that the effect of these factors on harder 

rock was nearly nonexistent. Meanwhile, Speer (1959) in seeking the most effective drilling 

technique, stated that the BHC is mostly just useful for clearing away crushed materials and 

cuttings, but does not have any significant impact on ROP. The published literature reviewed in 

the present study points to bit hydraulics being more effective in roller cone bits more than PDC 

bits due mainly to the nozzle position in the penetration area. Furthermore, PDC bit nozzles tend 

to be positioned directly near any outflow of fluid, which then covers the PDC cutters and 

inhibits bit balling. In contrast, in roller cone bits, the jet nozzles are directed towards the cone 

teeth. Tutlouglu (1984) examined rock cutting mechanics using a single cutter subjected to fixed 

DOC and certain atmospheric conditions. He asserted, from his findings, that the crushed 

materials in front of the cutter were the primary reason for reduced performance levels and ROP, 

and that cleaning the materials away resulted in notable enhancement in penetration. Tutlouglu’s 

findings accord well with those of Mozaffari, (2013) who discovered in his simulations that the 

majority of the cutter’s energy is lost to particle friction instead of rock-breaking. Again, like 

Tutlouglu, Mozaffari (2013) recommended that the best way to increase ROP as well as MRR 

(material removal rate) was to ensure effective BHC. Overall, then, the literature is nearly 

unanimous in its conclusion that the best way to enhance ROP is through efficient BHC. 
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2.14. Impact of Axial Compliance on Drill String. 

In examining the impact of axial compliance on penetration mechanisms, including ROP, a 

Gharibiyamchi (2014) carried out a number of simulation tests using a shock tool. Specifically, 

he modeled two hydraulic pulsing drilling tools – AGT and hydropulse – both with and without 

using his chosen tool. AGT and hydropulse are similar in some regards, but AGT forms pressure 

pulses through limiting a fluid’s flow area, whereas hydropulse employs sporadic total stoppage 

of the flow. Additional differences include that the output pressure profile of AGT is depicted 

as sinusoidal instead of impact profile. In viewing the outcome of his tests, Gharibiyamchi 

(2014) asserted that the impact of the shock tool was more pronounced when utilized together 

with AGT instead of hydropulse technology and suggested that positioning the shock tool over 

the hydraulic pulse tools might enhance the penetration mechanism.  

The table2 below lists the values for MRR and MSE in hydraulic pulsing tools both with and 

without shock tool technology. The BHP in all simulations was equivalent to 1000 psi 

(Gharibiyamchi 2014). 

AGT without Shock Tool AGT with Shock Tool 

MSE (KJ/m3) MRR (10-3 m3/s) MSE (KJ/m3) MRR (10-3 m3/s) 

338000 0.08 6880 4.01 

Hydropulse Tool without Shock Tool Hydropulse Tool with Shock Tool 

MSE (KJ/m3) MRR (10-3 m3/s) MSE (KJ/m3) MRR (10-3 m3/s) 

5870 2.99 5680 4.88 

 

Table 2: Simulation results of the AGT and Hydropulse tool without and with the shock tool (Gharibiyamchi 2014) 
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As can be seen in the table, MSE values declined after applying the shock tool, but MRR values 

rose. Gharibiyamchi. attributed this to axial compliance added by the shock tool (Gharibiyamchi 

2014). In this case, the shock tool, which functioned as an oscillatory system, was an axially 

spring-loaded mandrel positioned between the annulus and drill pipe pressure. The tool makes 

an open pump area that enables hydraulic pulse tools to function and the mandrels to move in 

an upward and downward motion (Bellville springs). In short, Gharibiyamchi’s shock tool 

changes the pressure pulses into mechanical force as well as motion. 

Figures 12 and 13 depict the AGT and hydropulse cutting process, carried out, respectively, 

with and without the shock tool. Figure 12 clearly shows that when the AGT functions without 

the benefit of the shock tool, the performance registers as sub-par. The ROP is ultra-low because 

the sinusoidal force cannot damp upwardly, leaving the entire assembly bouncing unrestrainedly 

(Gharibiyamchi 2014). However, the introduction of the shock tool immediately raises the DOC, 

enabling the cutter to process the rock-cutting faster and smoother, with little to no bounce. 

 

Figure 12. Effect of shock tool in drilling performance of the AGT (BHP = 1000 psi, WOB = 60 kN and sinusoidal 

force amplitude of 19.25 kN) (Gharibiyamchi 2014). 
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Figure13: Effect of shock tool in drilling performance of the Hydropulse tool (BHP = 1000 psi, WOB = 60 kN and 

pulse amplitude of 198.5 kN) (Gharibiyamchi 2014). 

2.15 Impact of Stiffness, Damping, and Compliance in Down-hole Vibration and Drilling 

Performance 

As mentioned earlier in the reviews of Dunayevsky et al.’s (1993) and Dubinsky et al.’s (1992) 

research, there are clear connections among BHA, pipe and drill string stiffness, and vibrations 

plaguing bits. At the same time, we also saw how dynamic components in forces impacted the 

cutter are derived from drill string and bit interactions with the material being drilled. A number 

of complex down-hole devices have been developed to reduce BHA vibrations in order to raise 

the level of ROP. The next section presents these devices and explores how they have an impact 

on both ROP and down-hole vibrations. 

2.15. Brief explanation of anisotropic rocks 

The oil and gas drilling industry are known for its extensive testing of rocks for their specific 

anisotropy. This is because whether in horizontal, extended reach or deviated wells, anisotropic 

formation can have significant effects. For instance, it can impact the rate of penetration (ROP), 

initiate instability in the well bore, and add to borehole wander and deviation of the planned 

trajectory of a well. 
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Two primary categories of anisotropy are induced and intrinsic anisotropy. Induced anisotropy 

occurs due to strain from fractures, applied stress, and diagenesis.  This type of anisotropy aligns 

fractures, cracks, grains and pores, such that rock which previously was isotropic turns into 

seismically anisotropic material. On the other hand, intrinsic anisotropy occurs from preferential 

orientation of sediment pore and grain, and involves grain shape and size, compaction, 

deposition, and overall sediment composition. In rocks which are sedimentary in feature, 

intrinsic anisotropy assumes a transverse isotropic form. Shale, for instance, is almost always 

intrinsically transversely isotropic Melaku (2007).  

Furthermore, with regard to variations within rock material, anisotropy presents as one of only 

a handful of indicators which can be investigated using wavelengths that exceed the scale of the 

variations’ lengths. In other words, anisotropy can be observed if the wavelength applied for the 

observation is no smaller than the elements which created the anisotropy. So, for instance, we 

can use seismic scale (at frequencies of around 500 to 900 kHz) for reservoir beds, and ultrasonic 

scale for detecting anisotropy for centimetre scale Melaku (2007).  

There are two different kinds of material alignments in anisotropy: vertical alignment, which 

features a horizontal axis of symmetry and is termed vertically transverse isotropy (VTI), and 

horizontal alignment, which features a vertical axis of symmetry and is termed horizontally 

transverse isotropy (HTI). Two models were developed to show the elastic characteristics of 

these anisotropical alignments (e.g., stiffness, velocity). These and other parameters can be 

useful in better understanding the concepts of vertical and horizontal permeability anisotropy 

and in laying the groundwork for hydraulic fracture jobs. Waves in VTI typically are faster-

moving along the horizontal rather than the vertical alignment. It is important to both identify 

and measure VTI anisotropy, as it is necessary as a correlating factor for finding variations in 
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amplitude, as well as for seismic and bore-hole imaging and for comparisons of sonic logs found 

in vertical or deviated wells. Similarly, it is important to detect and quantify HTI waves, which 

move in the direction of the fracture inside the rock and also move faster than the wave which 

crosses the fracture. The main purpose for detecting and quantifying HTI anisotropy is to obtain 

data on the orientation and density of the fracture, along with data related to the overall rock 

stress Rezapour (2015).  

Anisotropic rock material has been the subject of several lab studies recently Dan et al, (2012). 

In Nasseri et al, (2003). carried out a procedure on schistose rocks, aiming to measure and 

analyze their deformational response and strength. The tests were conducted for material in the 

uniaxial and triaxial states and for the whole orientation angle range. In a similar work, Tien et 

al, (2001) investigated artificial material aiming to find strength criteria and failure mechanisms 

in rock which was transversely isotropic. 

According to most tests carried out over the past half century, the majority of sedimentary rocks 

are characterized by anisotropy in both deformation and strength Unlu et al, (2004). Moreover, 

the extent of the anisotropy is generally dissimilar among the sedimentary rocks, with some 

significantly more anisotropical compared to other formations as a result of bedding planes 

which are well-defined Chappell, (1990). In other recent research, the correlation between 

drilling ROP and anisotropy has also been looked at. In Brown et al, (1977) investigated how 

rock anisotropy can impact ROP and hole deviation tendencies.  

Another feature of anisotropy which has been looked at is its strength across different rock types. 

Sandford et al, (1974) used slate to carry out triaxial tests, while Gatlin et al, (2013) measured 

directional characteristics for two shale varieties by applying auxiliary stress-strain measuring 

devices and triaxial compression cell equipment. Meanwhile, Unlu et al, (2004) evaluated 
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anisotropic intact rock strength by incorporating data obtained in tests measuring indirect tensile 

(i.e., Brazilian) and compressive (i.e., uniaxial/triaxial) characteristics. In a similar 

investigation, Nasseri et al. (2003) looked at failure patterns in several anisotropic schistose 

rocks both for the micro and macro scales, using confined and unconfined triaxial compression 

as testing methods. 

A long list of other experiments has also been carried out in the field. Halidou et al. (1994) found 

that plastic deformation in rocks usually occurs together with damage from micro-cracks caused 

by strain softening. Chen et al. (2010) developed a model representing potential damage 

incurred by anisotropic materials, built on the conclusions of Pietruszczak et al (2002) plastic 

model that looked at induced damage resulting from micro-cracks. Additionally, when 

analyzing various types of geostructures, the material’s directional dependence of strength must 

be considered, which necessarily involves the development of models that measure structural 

anisotropy. Duveau et al. (1998) conducted a comprehensive review of research which explored 

plastic deformation and general failure criteria. 

In other work, Vernik et al. (1997) discovered that, in shale, thermal maturity and velocity 

anisotropy were related, as were kerogen orientation and content and velocity anisotropy, while 

Nur et al. (1992) measured values for anisotropy that exceeded 50% in North Sea black shale. 

A few years later, Johnston et al. (1995) used velocity in combination with measurements from 

Scanning electron microscope (SEM) observations and X-ray diffraction (XRO) to find possible 

correlations between clay mineral orientation and velocity anisotropy. By employing an X-ray 

diffraction approach, the researchers used orientation indices, discovering positive correlations 

between orientations for velocity and grains of chlorite and illite (Johnston et al. 1995). This led 
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the researchers to propose that anisotropy at elevated pressures was caused by preferred mineral 

orientation instead of crack alignment (Johnston et al.1995).  

A few years after that, Hornby (1998) looked at how elasticity is affected by pore fluids by 

measuring shear and compressional wave velocities (< 80MPa) for fluid-saturated shale. Using 

two samples (one from a bore-hole in the North Sea, and another from elsewhere undersea and 

stored organically in its own fluid), the researcher measured the cores perpendicular and parallel 

to the bedding. He found that anisotropy values reached 48% in shear wave velocity and 26% 

in compressional velocity, and that these values reduced as the pressure increased. Hornby 

(1998) concluded that decreases in porosity had greater impacts on anisotropy compared to 

increases in mineral alignments under greater pressure. 

Wang (2002) investigated a novel approach to obtaining anisotropies, velocities, and elastic 

constants from shales in multiple adjacent core plugs that featured a variety of orientations. By 

employing transversely isotropic rock, the researcher formulated calculations for three different 

plugs (perpendicular, parallel, and ± 450 to symmetry axes). From these formulations, he then 

was able to find five independent elastic constants. Wang (2002) indicated that the benefit of 

using the three-plug approach was the calculation redundancy for the five elastic constants, as 

three velocity readings were obtained for every core plug formulation. 

Yet another strategy for exploring the various mechanical behaviors in rock is the numerical 

simulation approach. Lisjak et al. (2014) applied FEM/DEM to modeling anisotropy in Opalinus 

Clay, while Debecker et al. (2013) investigated slate’s fracture behavior by applying the 

universal distinct element code (UDEC). In the researchers performed article-based DEM 

simulations to study fractured rock mass anisotropy, using a series of smooth joint contact to 

indicate the macro fractures’ mechanical properties.  
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Chapter 3 

Baseline development of rock anisotropy investigation utilizing 

empirical relationships between oriented physical and mechanical 

measurements and drilling performance 

This chapter is the paper “Baseline development of rock anisotropy investigation utilizing 

empirical relationships between oriented physical and mechanical measurements and drilling 

performance”. A. Abugharara and A. Alwaar concerted and conducted the experiment, analysed 

the data, and wrote the paper and C. Hurich, S. Butt, suspended the research and edited the 

paper. It was published in the International Conference on Ocean, Offshore and Arctic 

Engineering (OOAE), June 19-24, 2016, Busan, South Korea. The Figure numbers and 

references are altered to coordinate the designing rules set out by Memorial University of 

Newfoundland as compared with the original manuscript published in the conference 

proceeding.  

 Abstract 

This paper describes a baseline investigation to confirm the isotropy of rocks material through 

physical and mechanical measurements followed by oriented drilling. This baseline is intended 

to evaluate drilling experiments in anisotropic rock materials to determine the significance of 

the anisotropy on drilling performance. The conducted tests include oriented measurements of 

compressional and shear wave velocities (Vp and Vs, respectively), density, Elastic Moduli, 

Point Load Strength Index (PLI), Indirect Tensile (IT) strength, and Unconfined Compressive 

Strength (UCS). The oriented laboratory drilling experiments were conducted under various 
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pump flow rates and several weights on bit (WOB). In this work, an isotropic rock like material 

(RLM) was developed using Portland cement and fine-grained aggregate. The tested RLM 

specimens were of medium strength of ~50 MPa. The RLM samples were cored in different 

orientations and then, tested and drilled according to these orientations. (e.g. 0°, 45° and 90°, 

representing horizontal, diagonal and vertical directions, respectively). Two main sets of lab 

tests were performed including pre-drilling and drilling tests. For the predrilling lab 

experiments, two main sets of tests were conducted to determine the physical and mechanical 

properties of samples (as outlined above) including PLI, IT, UCS, Vp, Vs, density, and 

corresponding isotropic Dynamic Elastic Moduli. For the drilling tests, a vertical lab scale 

drilling rig was used with a 35-mm dual-cutter polycrystalline diamond compact “PDC” bit. 

The drilling parameters involved were flow rates, nominal rotary speed of 300 rpm, and various 

WOB under atmospheric pressure. The relationships between the drilling data were analyzed 

including drilling rate of penetration (ROP), depth of cut (DOC), and corresponding effective 

WOB. The results of all mechanical, physical, and drilling measurements and tests show 

consistent values indicating the isotropy of the tested rock material. This consistency verifies 

that the drilling tests are free of bias associated with drilling orientation. 

3.1. Introduction 

Rocks can be characterized as isotropic, where material properties are independent of 

orientation, or anisotropic, where they are not. Special cases of rock anisotropy include vertical 

transverse isotropic (VTI) or horizontal transverse isotropic (HTI), where the properties are 

uniform in either the vertical or horizontal plane, respectively, and different in the perpendicular 

direction. Anisotropy is an important character of rocks in oil and gas drilling operations, and it 

is known that anisotropy of the formation drilled in deviated, extended reach and horizontal 
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wells can impact the rate of penetration (ROP), contribute to borehole deviation and wander 

from the intended well trajectory, cause well bore instability. This is being investigated further 

in a parallel study to the one outlined in this paper and will be reported in future publications. 

However, to determine the influence of material anisotropy on drilling penetration, a baseline 

investigation of drilling penetration in an isotropic material was needed first. The proposed 

isotropic material is RLM composed of Portland cement and millimeter sized aggregate 

(essentially a fine-grained concrete) and which an unconfined compressive strength (UCS) of ~ 

50 MPa. This paper describes the characterization of the RLM to confirm its isotropic material 

properties and oriented drilling experiments. The conducted experiments include physical 

measurements, mechanical measurements, and drilling tests. For the physical measurements, 

Vp and Vs are measured to determine the velocity anisotropy index (VA) as proposed by Tsidzi. 

(1997) for ultrasonic waves and by Brich. (1961) for description of seismic waves. For the 

mechanical tests, the unconfined compressive strength anisotropy index (IσC) given by 

Ramamurthy. (1993) and point load strength anisotropy Ia (50) proposed by (ISRM, 1981) and 

(ISRM, 1985) were determined. In addition to those measurements, a drilling evaluation based 

on drilling performance in isotropic and anisotropic rocks is included. The drilling performance 

was evaluated by calculating the ROP. All tests were conducted in three different orientations 

(e.g. 0°, 45° and 90°, representing horizontal, diagonal and vertical directions, respectively). 

Recorded data evaluated results, and work summary are reported. 

3.2. Test Procedure and Apparatus.  

In this section, the procedure of sample preparation, conducted physical and mechanical 

measurements as well as the drilling tests and apparatus used are described. 
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3.3 Sample Preparation 

In this work, the tested RLM samples were cast using Portland cement and fine-grained rock aggregates 

(grain size < 2mm). All samples were fan air dried for 48-hours, after which all measurements were 

taken. Samples were prepared according to ASTM D4543-08. (2008). Before conducting the mechanical 

tests (e.g. UCS, PLI, and IT), Vp and Vs were measured for all samples. The samples and type of 

conducted tests are summarized in Table 3. 

 

 

 

 

 

 

 

 
Table 3. Summary of number of samples, type of tested conducted, and the orientation of tests. 

3.4. Conducted Tests 

Three sets of different tests were conducted on the RLM samples. The purpose of these tests is 

to determine the anisotropy percentage of the rock by measuring the Vp and Vs, and then 

utilizing the measured velocities and density in determining the dynamic elastic moduli. 

Number of samples Test Type Orientation Direction representation Sub-test Type  num. of samp.

Axial 19

Block 24

Axial 13

Block 15

Axial 17

Block 22

Total =162

24

2

1

4

0-Degree

90-Degree Vertical

PLI 

Vertical

Diagonal

Horizontal

90-Degree

45-Degree

Vertical

45-Degree Diagonal

0-Degree Horizontal

110

7

21

IT24

Drilling 

90-Degree Vertical

45-Degree Diagonal

0-Degree Horizontal

UCS

90-Degree

VP and VS were measured for all samples of PLI and UCS tests.

7

7

7
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3.5. Physical Properties’ measurements 

Ultrasonic Method: This method is used to measure Vp, Vs, and to determine, with measured 

densities the corresponding dynamic elastic moduli (DEM) according to                                                 

ASTM D-2845-08. (2008). Comparing to the available methods of sound velocities (e.g. low 

frequency sonic wave method and the frequency resonant method), the high frequency 

ultrasonic method is the more reliable and practical. The main influence for adopting the 

ultrasonic method in determining the wave velocities is the associated non-destructive test 

procedure, low cost, and more importantly high precision. This method is applied for measuring 

Vp, Vs and the elastic constants are calculated then using the measured velocities and the bulk 

density. Vp and Vs can be affected by the inner structure of the tested material. Such factors 

include minerology, grain’s size and distribution, density, porosity’s percentage and type, 

weathering, water content, stress level, and temperature Soroush et al. (2003). As the ultrasonic 

wave velocities increase with the increase of rock strength Onyia. (1988), the work of this paper, 

exhibit that the measured Vp and Vs were found to be in same range in all orientations 

confirming using same rock of same strength of RLM. The measurements show small 

differences; though, due to the nature of experiments. Figure 14 shows the ultrasonic method 

equipment utilized in measuring Vp and Vs. The equipment includes TDS 1002B Two Channel 

Digital Storage Oscilloscope, Square Wave Pulsar/Receiver Model 5077PR, and two 

Panametrics shear-wave sensors. Shear wave coupling was used to ensure complete contact 

between sensors and rock samples. 
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Figure 14. Apparatus used for Vp and Vs measurement. 

 

One sample of the recorded ultrasonic waves is shown in Figure 15. 

 

 

 

 

 

 

 

Figure 15. Sample of the recorded waves 

The measured Vp and Vs and their relationship with density of all prepared samples for Axial 

and Block-PLI test in different directions are shown in Figure 16. 
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Figure 16. Vp, Vs, and Density of all samples of Axial and Block PLI tests in different orientations 

The mean values of the measured Vp and Vs from the prepared samples for standard UCS test 

in different directions are shown in Figure 17 

 

 

 

 

 

Figure 17. Mean values of measured Vp and Vs of standard UCS test in different orientations 

The mean values of the measured Vp and Vs from the prepared samples for Axial and Block-

PLI test in different directions are shown in Figure 18. 
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Figure 18. Mean values of the measured Vp and Vs of samples of Axial and Block-PLI test in different 

directions. 

 

DEM were calculated based on measured velocities and densities. Figures 19, 20, and 21 show the mean 

values of the calculated Compressional Wave Modulus, Shear wave Modulus, Elastic Modulus, Lame’ 

constant, Bulk Modulus, and Poison’s ratio respectively. Based on velocity anisotropy index, VA 

proposed by Tsidzi. (1997), the VA of the RLM of his investigation is 0.0278 (%) < 2 confirming the 

isotropy of the tested material. 

 

 

 

 

 

 

 

 
Figure 19. Mean values of P-wave, S-wave, and Elastic Moduli in three orientations 
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Figure 20. Mean of Lame' Constant and Bulk Modulus in three orientations 

 

 

 

 

 

Figure 21. Mean value of Poison’s ratio in three orientations 

3.6. Mechanical Tests 

3.6.1. UCS test:  For this test, many standard NQ cores were obtained by using cylindrical 

coring bit with outer diameter of 47.6 mm. Grinder was used to ensure parallel ends. ASTM 

D4543-08. (2008) was followed for ensuring appropriate sample preparation. Before conducting 

the mechanical tests, all measurements of Vp, Vs, and Density were taken for the samples. 

Figure 22 shows the samples cored in three different orientations to be tested for UCS. 
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Figure 22 . Samples of UCS test cored in different orientations 

UCS was conducted for cores according to ASTM D7012- 14. (2014). The UCS anisotropy of 

RLM of this paper was determined to be (1.059). This value falls between 1 and 1.1 using the 

method suggested by Ramamurthy. (1993) determining the isotropy of RLM. The mean values 

of the results of UCS tests are shown in Figure 23. 

 

 

 

 

 

 
Figure 23. Mean values of UCS 

 

Table 4 summarizes the recorded data for the standard cores for UCS test including Vp, Vs, and 

UCS. 
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Table 4. Mean values of Vp, Vs and UCS for the standard samples of UCS test. 

 

3.1.2 PLI test:  In this test, two main types of samples were prepared for Axial and Block tests. ASTM 

D5731-08. (2008) was followed for test procedure. Type of samples including Axial and Block tests’ 

samples, orientation representation, and PLI tester are shown in figure 24. 

 

 

 

 

 

 

Figure 24. Samples of Axial and Block tests with PLI tester 

The obtained result by this test followed the same trend of the previous tests in confirming the 

rock isotropy. However, some variations due to the nature of the test were observed. Such 

concern was highlighted by Bowman et al. (2007) and Bowden et al. (1998). Bowman proposed 

due to unrealistically high UCS estimating specific conversion factor” value in determining 
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UCS, especially for weak rocks in the laboratory. Therefore, “C” was determined for rocks 

tested in this paper to be “10.3” which gave reasonable UCS values comparing to using the 

standard “C” value of 24. Figure 25 shows the relationship between UCS values obtained by IT 

and Is (50). Such relationship provides a correlation that results a “C” factor equals 10.3. 

Applying this factor using the equation (UCS = 10.3 Is), provides UCS values that are in the 

strength range of the tested samples by other methods. Figure 26 shows the UCS of PLI using 

different “C” factors.  

 

 

 

 

 

Figure 25. UCS Vs. Is 

 

 

 

 

 

 

 

Figure 26. UCS values by PLI using different “c” factors. 



 
 

51 
 

Comparison between the mean values of the obtained UCS by different methods is shown in 

Figure 27. This representation of the data shows close correlation between the UCS values 

determined by different testing methods (UCS and IT) and the PLI using C factor of 10.3. 

 

Figure 27. Mean Values of UCS values by different tests. 

3.6.3 IT test: In this section, another practical, fast, and cheap, but reliable test was conducted. 

This test is the indirect tensile test (IT). It was performed in accordance to ASTM D6931-12. 

(2012). This test provided results of strength of the tested rock that is in the same range and 

compatible with strength results obtained from other testes reported in other sections of this 

paper. IT strength of the tested samples and their densities are shown in Figure 28. Figure 29 

shows the relationship between the estimated strength by IT and PLI tests. The tested samples 

by IT are shown in Figure 30. 
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Figure28. IT strength of the tested samples and their densities 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Estimated strength by IT and PLI tests 

 

 

 

 

 

 

Figure 30. Tested Samples by IT test. 
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3.6.4. DRILLING TESTS 

In this section, drilling performance is evaluated based on oriented drilling in isotropic (RLM) 

and anisotropic rocks (Red Shale). For drilling experiments, a vertical laboratory drilling rig 

was used. The applied drilling parameters included inputs of five different WOB, three flow 

rates, and three orientations. The laboratory drilling rig used for these tests was described by 

Rana et al (2015). The hydraulic configuration of the drill bit used in these tests was previously 

fully examined by Khorshidian et al. (2014). In order to evaluate the drilling efficiency of the 

conducted drilling tests for the work of this paper, the depth of cut (DOC), (mm/rev.) of the 

cutters was calculated. A laser triangulation sensor (LTS) was used to calculate the actual DOC. 

In all runs, DOC, which is equal to (ROP/rpm), was found to be greater than the chamfer of the 

drill bit cutter that is 0.15 mm. Figure 31 shows LTS and the grooves made on a rotating plate 

and a sample of the LTS recorded data, top and bottom respectively. ROP is calculated using 

the numerical recorded data shown in Figure 32. Then relationships between the calculated ROP 

and WOB as function of flow rates and drilling orientations were constructed. Figure 32 shows 

the relationships between ROP and WOB using three different flow rates and in three different 

orientations. The results showed consistent trend in the three drilled directions. The results 

confirm that drilling was conducted through isotropy rocks. Drilled RLM samples grouped with 

respect to their drilling orientation are shown in Figure 33. 
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Figure 31. Top: LTS and grooved rotating plate for rpm calculation and bottom: recorded spikes by LTS 

to calculate rpm. For this run, RPM= 280. 

 

 

 

 

 

 

 

Figure 32. Sample of the recorded data used to calculate ROP. For this run, the slop = ROP of 8.00 (m/hr). 
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Figure 33. WOB Vs. ROP for three different flow rates and three different orientations 

 

All data of lab drilling tests under different conditions of flow rates, orientations, and WOB are 

shown in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Test matrix of lab-oriented drilling experiments including WOB, ROP, and DOC. 
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Figure 34. Some samples of drilling tests with PDC drill bit. 

For comparison study between oriented drilling performance in RLM as isotropic rocks and 

Red Shale as anisotropic rocks, Figure 34 shows results from drilling in both materials. Such 

results are a part of study done by Abugharara et al. (2016) conducted on RLM and Red Shale 

and Table 6 includes the numerical data corresponding to the plots in Figure 35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Drilling performance through RLM (top) and Red Shale (bottom) 
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Table 6. Calculated ROP for RLM and Red Shale 

3.7. SUMMARY 

The work of this paper covers a set of selective physical, mechanical, and drilling measurements 

and tests, which can be summarized as follows: 

• The physical measurements included calculating Vp, Vs, and DEM. 

•  The mechanical measurements included estimating the unconfined compressive 

strength of the rock by different methods. 

• The drilling tests involved evaluating the penetration rate as a drilling performance 

indicator by applying various conditions of WOB, flowrates and orientations. 

• The work was conducted on a medium strength concrete in three different orientations 

representing horizontal “0°”, diagonal “45°”, and vertical “90°” directions. 

•  The analysed result showed consistency confirming the isotropy structure of the tested 

rock in almost all the applied tests. 

•  A small degree of variation in the recorded measurements, in particular in PLI test was 

observed. The reason of the variation can be related to the change of the diameters of the 

tested samples with respect to the aggregates’ size (e.g. <2 mm). 
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•  The effect of the diameter in PLI test (ASTM D5731-08) is a dimension effect. 

However, the effect of the ratio between sample diameter and aggregates size has been 

observed. A related research focusing on such effect has been started and will be further 

investigated for future publications 

•  Drilling performance evaluation can be emphasized as a new testing method for material 

anisotropic investigation along with the other testing methods included in this paper to 

determine the tested material anisotropy type and (%). 

• The methodology of the selective tests performed in this paper can be taken for 

examining rocks’ anisotropy parallel to other available methods. 
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Chapter 4 

Laboratory Investigation on Directional Drilling Performance in 

Isotropic and Anisotropic Rocks 

This chapter is the paper “Laboratory Investigation on Directional Drilling Performance in 

Isotropic and Anisotropic Rocks A. Abugharara and A. Alwaar concerted and conducted the 

experiment, analysed the data, and wrote the paper and C. Hurich, S. Butt, suspended the 

research and edited the paper. It was published in American Rock Mechanics Association in 

Houston, TX, CA, USA, 26-29 June 2016. The Figure numbers and references are altered to 

coordinate the designing rules set out by Memorial University of Newfoundland as compared 

with the original manuscript published in the conference proceeding.  

ABSTRACT:  

Successful drilling through shale with the optimal performance requires intensive research on 

controlled laboratory oriented drilling. The work of this paper is to evaluate oriented drilling, 

representing directional drilling in shale using a lab-scale drilling rig. Comparison study 

between drilling in shale and synthetic rock-like materials (RLM) of similar strength is included. 

The samples of shale and RLM were prepared to be characterized and drilled in different 

orientations (i.e. 0°, 45° and 90°) with respect to bedding for shale-samples and to the 

corresponding selected axis for RLM-samples. Physical measurements and mechanical tests 

were conducted to characterize the rocks and determine their anisotropy. Laboratory drilling 

experiments were performed using a 35mm dual-cutter PDC bit. Various weights on bit (WOB) 

were applied with constant water flow rate under atmospheric pressure. Drilling cuttings were 

collected and analyzed. Relationships between WOB, drilling rate of penetration (ROP), depth 
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of cut (DOC), and drilling cutting size were determined. Results show increase of ROP and 

DOC with increasing WOB. Results also show that cutting sizes increase with the increase of 

WOB and they can exhibit the material anisotropy. Such result can assist in a better planning of 

drilling in shale to enhance drilling performance, especially in deviated wells. 

4.1. Introduction 

 

 With the increasing interest by oil and gas companies in comprehensively understanding shale, 

in particular oil shale and shale gas as it plays an important role in unconventional reservoir 

exploration and production, intensive laboratory studies on shale come to play major role. 

Numerous laboratory studies have been focused on shale characterization and determining 

anisotropy % and type. However not much emphasis was put on relationships between drilling 

performance and rock anisotropy as function of bedding orientation. The work of this paper 

focuses on investigating shale anisotropy through oriented drilling and drill cuttings analysis 

with comparison to artificial rocks (RLM). Also, to evaluate drilling performance in both rock 

types. An intensive work on RLM isotropy determination through multi-testing-methodologies 

was carried by Abugharara et al., (2016) reported that the tested RLM is isotropic rocks and was 

selected for further studies including the work of this paper. Many field, laboratory, and 

numerical studies were conducted to study the physical and mechanical properties of the 

anisotropic rocks and the fracture modes and propagation. Alharthi. (1998) reported that most 

of sedimentary and metamorphic rocks show some degree of anisotropy. In general, shale is 

characterized to be anisotropic Sodergeld et al. (2011). Lashkaripour. (2000) and Crawford et 

al. (2012) indicated that shale strength is also anisotropic. In particular the strength as, 

mechanical property of shale and wave velocities of shale were investigated by Fjaer et al. 

(2013), Ambrose et al. (2014), Simpson et al, (2014), and Mighani et el. (2016). Those studies 
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observed that shale strength estimated by UCS, CCS, and BTS is the highest perpendicular and 

parallel to bedding, but it decreases towards 45° and 30°. Wave velocities, on the other hand are 

highest when propagating parallel to bedding, lowest when propagating perpendicular to 

bedding and medium when propagating in 45°. Anisotropy and drilling ROP relationship was 

also investigated. Brown et al. (1981), Boualleg et al. (2007). Karfakis et al. (2007), Park et al. 

(2013), and Thuro et al. (2008) reported the influence of rock anisotropy on hole deviation 

tendency and drilling ROP. Thuro et al. (2008) concluded using PFC2D that drilling progress 

and ROP are highest when drilling perpendicular to bedding and decreases with the decrease of 

the angle between bedding plane and drilling direction until reaching the lowest when drilling 

parallel to bedding. Altindag. (2003) reported that drilling ROP can be estimated by means of 

coarseness index and mean particle size, where Pfleider. (1953) indicated that a relationship 

between cutting size and shape with ROP was observed. However, as a main part of this paper, 

a new approach of a relationship between the ROP and cutting sizes as a function of rock 

anisotropy and rock orientation was investigated. 

One of the latest studies that included intensive field and laboratory studies conducted by 

Drilling Technology Laboratory (DTL) at Memorial University of Newfoundland, Canada, 

started in 2014, also involved shale study. 

In September 2014, DTL conducted drilling field trials during which three wells of about 120 

m of each were drilled penetrating different shale formations. The formation dipping angle was 

about 12 deg. It was estimated before drilling though a comprehensive surface survey reported 

by Reyes et al. (2015). The drilling operations was rotary drilling and the drilling mode varied 

between conventional and vibrational drilling. Several types of drill bits including PDC, TSP 

and roller cone bits were used. The drilling performance was investigated as a function of drill 
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bit type, depth, penetrated formation type, drilling mode, etc. Collected drilling cuttings were 

analyzed as well. A geological cross-section of the drilling site was constructed. 

For the laboratory studies, samples were cut from numerous shale rocks that were collected from 

an adjacent exposed formation in the drilling site that was estimated to be drilled in all wells 

after determining the dipping and the strikes of the formations and was confirmed by cutting 

analysis. Due to the challenge faced in obtaining shale core samples, a suggested method by 

Mele’ndez-Marti’nez, (2014) was followed to determine wave velocities for oriented samples 

and for physical characterization. 

In general, samples of RLM and R-Shale were prepared, physically and mechanically 

characterized, and drilled in three main orientations (0°, 45° and 90°). The data obtained by this 

analysis provides a direct link between standard approaches for assessing material anisotropy 

and the effects of anisotropy on drilling performance. 

4.2. EXPERIMENTAL EQUIPMENT AND PROCUDRE  

4.2.1 Physical measurements  

The main technique for measuring the physical properties practiced in this paper is the ultrasonic 

method. The objective of this is to evaluate the anisotropy structure of the tested material. Such 

physical anisotropy determination by the ultrasonic method can be analyzed with other 

anisotropy data obtained by mechanical tests (Sec. 2.3) and drilling experiments (Sec. 2.4). 

Compressional wave (Vp), and shear wave (Vs) velocities and densities were recorded for 

samples of different rock types before conducting the mechanical or drilling experiments. The 

recorded waves were measured with respect to different orientations. Moreover, the dynamic 

elastic moduli of RLM were calculated according to ASTM D2845-08. (2008). Figure 36 shows 

the average recorded Vp, Vs, and measured density of RLM samples in three different 
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directions. Figure 37 shows the dynamic elastic moduli of all tested samples of RLM. For RLM 

samples, the obtained Vp and Vs were about the same in all directions. This similarity in wave 

measurements can be taken as an indication of the isotropy of the tested RLM samples. Other 

mechanical measurements and drilling tests and cutting analysis support this observation.  

 

 

 

 

 

 

 

 

Figure 36. Oriented density and wave velocity measurements of RLM 

 

 

 

 

 

 

 

Figure 37. The oriented dynamic elastic moduli of RLM 

 

Table 7 provides a summary of averaged measured values of Vp, Vs and Density of RLM. It 

also provides the mean values of RLM dynamic elastic moduli including M: Compressional 
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wave Modulus: modulus of rigidity, ϑ: Poisson’s ratio, K: bulk modulus, E: Young’s modulus 

of elasticity, and λ: Lame’s constant 

 

 

 

 

 

 

 

Table 7. Mean values of oriented Vp, Vs, density, and dynamic elastic moduli of RLM 

Wave velocities were also determined for R-Shale samples in the three orientations. However, 

due to limited samples of shale, the dynamic elastic constants will be conducted on more 

samples for future work for accuracy and confirmation. In the meantime, the wave velocities 

exhibit the anisotropy of R Shale samples. Figures 38 and 39 show the recorded Vp and Vs and 

the measured density of two sets of R-Shale samples  

 

 

 

 

 

 

 

 

 

Figure 38. Oriented density and wave velocity measurements of R-Shale-1 



 
 

65 
 

 

 

 

 

 

 

Figure 39. Oriented density and wave velocity measurements of R-Shale-2 

Table 8 summarizes the mean values of Vp, Vs, and density of R-Shale samples. 

 

 

 

 

 

Table 8. Mean values of oriented Vp, Vs, and density of two R-Shale samples1, and 2, respectively. 

For evaluating the Transversely Isotropy (TI) of R-Shale, multi measurements were taken on 

several R-Shale samples that were cut from same larger rock. Most of the measurements were 

taken parallel to bedding to confirm the shale Vertically Transversely Isotropy (VTI). The 

measured Vp and Vs in directions parallel to a bedding of R-Shale in various locations are 

summarized in table 9. Figure 40 shows all values of Vp and Vs measured parallel to R-Shale 

bedding in various positions on parallel faces and the mean values of Vp and Vs, top and bottom; 

respectively. Figure 41 shows the tested R-Shale samples and the positions of the measurements. 
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Table 9. All and mean values of the measured Vp and Vs of several R-Shale samples in directions parallel 

to bedding in various locations. 
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Figure 40. All and mean values of Vp and Vs measured in parallel direction to R-Shale bedding. 

 

 

 

 

 

 

 

 

 

 

 
Figure 41. Multi measurements of Vp and Vs in two sets of parallel faces in parallel direction to R-Shale 

bedding. 
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4.2.3 Mechanical measurements 

For RLM samples, the indirect (disk splitting) tensile test according to ASTM D3967-08. (2008) 

was performed to estimate the tensile strength (σt). The test was conducted on disks cut from ~ 

2-inch cylindrical specimens cored in different orientations. Figure 42 shows the average values 

of the tensile strength (σt) of RLM in the three denoted orientations.  

 

 

 

 

 

 

 

 

Figure 42. Mean values of oriented (σt) of RLM by splitting test. 

 

Figure 43 shows the RLM disks in different orientations before and after splitting cut from ~ 2-

inch samples cored from 4-inch RLM cylinders as source of the disks, and the splitting apparatus 

(Modified point load apparatus).  The average σt values of ~ 4.8 MPa was obtained in all 

orientations. 
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Figure 43.  RLM samples before and after test and splitting test apparatus 

For R-Shale, the point load index (PLI) test was performed on irregular lump samples following 

ASTM D5731-08. (2008). The samples were tested only vertically as a result of difficulties 

associated with obtaining samples in other orientations to perform this test. Figure 44 shows R-

Shale samples for the physical characterization and for point load index test in tow states; before 

and after failure, respectively  
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Figure 44. R-Shale samples for oriented physical characterization and point load test. 

Table 10 contains the estimated UCS values of R-Shale samples obtained by point load 

perpendicularly to bedding. The mean value of the PLI = 2.7MPa. 

 

 

 

 

 

 

Table 10. Summary of PLI test values of R-Shale samples 

Ref. Orientation Test type Is UCS Is avg UCS avg

1 4.03 88.72

2 3.13 68.84

3 2.47 54.36

4 3.38 74.29

5 1.53 33.72

6 1.60 35.16

7 2.18 48.02

8 3.16 69.46

9 2.60 57.22

Result of PLI test conducted on R-Shale samples

58.872.68

perpendicular to beddings 

LumpVertical "0º "
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4.2.4 Lab. Drilling experiments 

4.2.4.1 Lab drilling apparatus  

Lab drilling experiments were performed using a lab scale drill rig shown in figure 45.  The drill 

bit used was a 35-mm dual cutter PDC bit. The drilling tests were conducted under atmospheric 

pressure. The water flow rate of 18 L/min was utilized to clean-off the drilled hole and to remove 

the cuttings towards the cutting collection system.  

 
Figure 35.Lab scale conventional drill rig 

4.2.4.2 RLM and R-Shale samples preparation for drilling experiments                      

RLM samples were cast in one direction (vertical direction). They were cut in three directions 

and drilled accordingly afterwards. On the other hand, as the R-Shale samples are laminated 

structure they are weak and easy to split when being drilled, in particular when cut into small 

samples. To avoid splitting R-Shale, the cut samples were stabilized by casting them in cement. 
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Hence, the samples were drilled afterwards according to the desired orientation. Figure 46, 47 

shows the RLM and R-Shale samples after drilling in different orientations. 

 

Figure 46. RLM and R-Shale samples after drilling in different orientations 

 

 

 

 

 

 

 

 

 

 

 

Figure 47. RLM samples before and after drilling 
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4.2.4.3 Drilling cuttings’ collection 

While drilling, a 75µ-m (0.0030 inch) sieve was used. Cutting samples of all drilled RLM and 

R-shale samples in the designated orientations were collected. A standard pre-sieving procedure 

for drying was followed.  Sieves varying between 850 µ-m and 75µ-m were used for cuttings 

size analysis. There are two points to emphasize in this study. First, the cutting size increases 

with the increase of the ROP. Second, the relationship between ROP and cutting size should be 

the same in all directions when drilling a homogeneous (isotropic) material and varies when 

drilling a heterogeneous (anisotropic) material.  The obtained drill cuttings analysis results (Sec. 

3.1.2) supported the assertion that drilling an isotropic material is orientation independent. 

However, drilling in R-Shale is orientation dependent. Therefore, achieving high ROP in drilling 

in shale may require selection of the best orientation as well trajectory. Figure 48 shows the 

cutting samples and cutting sieving apparatus.  

 

 

 

 

 

 

 

 

 

Figure 48. Cutting samples and cutting sieving apparatus 
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4.3. Lab experiments results 

4.3.1 Drilling performance 

During drilling, different sensors were used to measure various drilling parameters; including a 

laser sensor to measure axial vibration to evaluate the bit-rock interaction, and LVDT to measure 

drill bit displacement.  A DAQ system utilizing LabVIEW was using to record the data. ROP 

and DOC were calculated and plotted versus WOB.  

4.3.1.1 WOB vs. ROP and DOC 

To provide WOB, several steel plates are used to feed the suspended weight. Summary of WOB, 

calculated ROP, and DOC is displayed in table 11.  

 

 

 

 

 

 

 

 

 

Table 11. Drilling parameters of WOB, ROP and DOC for RLM and R-Shale 

The revolutions per minute (RPM) were determined by using the laser sensor. Figures 49 and 

50 show the relationships between WOB and ROP in three orientations of RLM and R-Shale, 

respectively 



 
 

75 
 

 

 

 

 

 

 

 

 

 

Figure 49. Oriented relationship between WOB and ROP of RLM 

 

 

 

 

 

 

 

 

Figure 50. Oriented relationship between WOB and ROP of R-Shale 

4.3.1.2 Cutting size analysis 

The collected cuttings were in small volumes; however, most of the sieving analysis procedure 

was according to ASTM C136/C136M-14, 2014. The set of sieves used in cutting analysis 

included the following mesh sizes in mm:  0.85, 0.63, 0.59, 0.42, 0.25, 0.212, 0.177, 0.166, 0.15, 

0.09, and 0.075 
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The results of the cutting analysis can be summarized as follows: 

• For RLM, the cutting size distribution in % follows same trend when drilling in different 

orientations. Such matching in size distribution confirms the anisotropy of the drilled 

rocks. 

• Similar matching trends were noticed in low WOB: (W1=75kg) as well as in high WOB: 

W9=209 kg. 

• Drilling in RLM as an isotropic rock is orientation independent. Figure 51 (top and 

bottom) shows the distribution of cuttings collected from drilling RLM. 

• For R-Shale, the cutting size distribution in % follows same trend when drilling in 

different orientations. Such matching in size distribution confirms the anisotropy of the 

drilled rocks. 

•  Such mismatching trends were noticed in low WOB: (W1=75kg) and in high WOB: 

W9=209 kg. 

•  Drilling in R-Shale as an anisotropic rock is orientation dependent. Figure 52 (top and 

bottom) shows the distribution of cuttings collected from drilling R-Shale. 
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Figure 51. Cutting size analysis with the increase of WOB in drilling RLM in the three orientations 0º, 45º, 

and 90º. Figures show matching distribution confirming isotropy of RLM. 
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Figure 52. Cutting size analysis with the increase of WOB in drilling RLM in the three orientations 0º, 45º, 

and 90º. Figures show mismatching distribution confirming isotropy of RLM 

 

4.6. Conclusions 

Several physical and mechanical measurements and drilling tests were conducted as work of 

this paper. Conclusions of those measurements and tests are summarized as follows:  

• Physical measurements using ultrasonic method conducted on RLM showed material 

isotropy, where same applied measurements conducted on R-shale showed material 

anisotropy.  

• In particular, beside R-shale anisotropy exhibition, oriented Vp and Vs through R-shale 

in three different angles in couple samples exhibited special anisotropy of Vertically 
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Transversely Isotropy (VTI). Investigation of such VTI has started using more angles 

representing more orientations of cores and cupped shaped samples will be reported in 

future publications.  

•  However, multi Vp and Vs measurements have been taken in parallel direction to R-

Shale’s bedding and showed same values of VTI.  

• Mechanical measurements through indirect tensile tests conducted on disks cut from 

cylindrical samples cored in different orientations of RLM showed the RLM isotropy. 

Where PLI test was only conducted in perpendicular direction to R-shale bedding 

represents R-shale strength in this direction. R-shale strength determination in other 

directions to be conducted for R-shale anisotropy or VTI confirmation are under 

investigation and will be reported in future publications. 

• Laboratory drilling experiments were conducted under constant water flow rate and 

rotary speed under atmospheric pressure. Recorded data of drill bit travel; bit-rock 

interaction through axial motion and vibration, as well as the actual rpm while drilling 

was all recorded by utilizing precise sensors. Such obtained data assists in calculating 

ROP and DOC. ROP and DOC are plotted against WOB. 

•  ROP, DOC, as well as the cutting size % obtained from RLM exhibit same trend with 

respect to orientations confirming the isotropy of RLM. 

• ROP, DOC, and the cutting size % obtained from R-Shale exhibit various trends with 

respect to different orientations proposing R-Shale anisotropy. 
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Chapter 5 

PFC-2D Numerical study of the influence of passive vibration assisted 

rotary drilling tool (pVARD) on drilling performance enhancement 

 

This chapter is the paper “PFC-2D Numerical study of the influence of passive vibration assisted 

rotary drilling tool (pVARD) on drilling performance enhancement”. A. Alwaar and A. 

Abugharara concerted and conducted the simulation, analysed the data, and wrote the paper with 

C. Hurich, S. Butt, suspended the research, edited the paper.  thus, submitted it to American 

Rock Mechanics Association in June 17-22, 2018, Madrid, Spain. The Figure numbers and 

references are altered to coordinate the designing rules set out by Memorial University of 

Newfoundland as compared with the original manuscript published in the conference 

proceeding.  

 ABSTRACT: 

The objective of this work is to evaluate the influence of the implementing the downhole Passive 

Vibration Assisting Rotary Drilling (pVARD) Tool on enhancing drilling performance using a 

numerical study utilizing a Particle Flow Code (PFC-2D). The work is comprised of a numerical 

study of a simulation using the PFC-2D on an experimental work described in ARMA 15-492 

(Rana et al, 2015). The numerical study was performed to validate the experimental work 

following the steps, procedure, and conditions performed in the laboratory work.  

The numerical study of the laboratory work involves not only the evaluation of drilling rate of 

penetration (ROP), but it also includes the Depth of Cut (DOC) of the bit cutters and the 

Mechanical Specific Energy (MSE). This numerical work also includes comparison study of 
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drilling performance under various configurations of the pVARD tool, which represents a 

controlled downhole vibration against the rigid drilling configuration that represents the 

conventional rotary drilling. The pVARD configurations involves pVARD low spring 

compliance, medium spring compliance, and high spring compliance. The drilling output 

parameters of DOC, MSE, and ROP are then studied and analyzed in all pVARD and non- 

pVARD configurations.  

Likewise of the experimental work, the result of the numerical simulation approves the 

experimental work and it indicates the positive effect of utilizing the downhole pVARD on 

improving ROP. The drilling performance enhancement is also supported by the DOC and the 

MSE result. 

 5.1. INTRODUCTION AND BACKGROUND  

Field and laboratory drilling experiments approved the positive effect of the employment of 

pVARD on enhancing ROP Rana et al (2015), Zhong et al (2016). Akbar. (2011). 

Research describes the efficient drilling of oil and gas wells in various ways. One way includes 

reduction of the non-productive time (NPD) by extending the downhole tools’ lives, preventing 

damaging drill bit as a result of encountered downhole lateral and stick/slip vibrations, 

improving the downhole drillstring mechanical behavior, reducing downhole frictions in non-

vertical wells, and ultimately enhancing ROP by inducing downhole axial vibrations Rana et al 

(2015), Zhong et al (2016). Abtahi. (2011) and Gee et al (2015) 

PFC-2D has been used as an applicable method to simulate drilling performance Zhong et al 

(2016), Akbar. (2011), Wilson. (2017) and Carrapatoso. (2013). Various conditions of pressure, 

rock properties, flow rates vibration and non-vibration modes were applied during implementing 
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PFC-2D studies for numerical drilling investigations Zhong et al (2016). Babatunde. (2011), 

and Akbar. (2011].  

The enhancement of the drilling ROP can be achieved through numerous ways. The 

conventional way of improving the ROP can be reached by manipulating with the inputs of the 

drilling parameters including drill mud flow rates, rotary speeds, rotary torque, and weights on 

bit (WOB). However, the increase of the above drilling parameters can negatively impact the 

drilling performance if not applied optimally. For example, an intensive increase of the WOB 

could cause buckling of the drill string. Also, the intensive increase of the rotary rpm and torque 

could damage the teeth of the drill bit associated with a high DOC when using a polycrystalline 

diamond compact (PDC) bit that follows rock shear fracture mode. Considering the fact that the 

increase of each of the above parameters can only be entered at the top of the drill string and 

would be transmitted through the entire drill string to reach the drill bit.  

The unconventional method to improve the drilling ROP can be achieved by utilizing the 

available, moderate, and practical inputs of the drilling parameters at the drill bit by tools 

installed as part of the Bottom hole assembly (BHA). One approach of increasing the ROP by 

this method is by implementing the downhole pVARD tool Zhong et al (2016). 

pVARD tool was designed at the Drilling Technology Laboratory (DTL) in Memorial 

University of Newfoundland, St. John’s, Canada. The pVARD tool was also tested to study its 

influence on drilling performance applying numerous drilling conditions. The drilling 

conditions included pressure, flow rates, rotary speeds, formation strengths, formation 

orientations in laboratory and field scales. Under the above drilling conditions, the pVARD tool 

was approved to play an important role in improving the drilling performance. This paper 

validates the results of improving ROP of the field and laboratory work published in ARMA 
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15-492 (Rana et al, 2015) by employing a comparison study between the experimental study 

with the simulation study using PFC-2D. 

5.2. DESCRIPTION OF PVARD  

pVARD tool has numerous advantages. One of its main functions is to allow the drilling string 

to have some axial movement with different magnitudes based on the equation of bit-rock-

interaction. The axial movements that the pVARD tool has is controlled by the strength of the 

contained springs of the tool components that produce the pVARD compliance magnitude. The 

range of the spring compliance has a relationship with the strength of the rock being drilled and 

therefore it governs the operation range of the tool.  

The three main configurations of the pVARD tool that are analyzed in this paper includes sets 

of low compliance, medium compliance, and high compliance, which represent a high 

magnitude of low spring strength, a medium magnitude of medium spring strength, and a low 

magnitude of high spring strength; respectively.  

With the additions of the various drilling conditions that the pVARD tool was tested for that 

were mentioned in the introduction section, the field and laboratory pVARD tool was also 

experimentally tested under different applications and configurations included the above three 

sets mentioned above.  

Table 13 summarizes the parameters and their magnitudes that were implemented in the PFC-

2D simulation study of the pVARD. 

5.3. STUDIED PARAMETERS 

The parameters included in the analysis are the same in the experimental work as well as in 

the numerical work. They involve the followings:  

1. Input Drilling Parameters (IDP):  
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• Different Bottomhole Pressure (BHP).  

• Different Weights on Bit (WOB). 

• Three configurations of PVARD versus Rigid. 

2. Output Drilling Parameters (ODP): 

• Drilling Rate of Penetration (ROP) 

• Depth of Cut (DOC). 

• Mechanical Specific Energy (MSE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12. Summary of PFC-2D parameters and their magnitudes. 

Property Magnitude 

Ratio of Maximum to Minimum Ball Size 1.8 

Parallel Bond Shear Strength 44e6 Pa 

Parallel Bond Normal Strength 44e6 Pa 

Minimum Ball Radius 0.35e-3 m 

Ball and Bond Elastic Modulus 44e9 Pa 

Ratio of Normal to Shear Stiffness 2.5 

Ball-Ball and Ball-Wall Friction 0.5 

Density 2650 kg/m3 

Porosity 18 %    

Normal Damping Ratio 0.2 

Shear Damping Ration 0.2 

Local Damping Ratio 0.5 

Unconfined Compressive Strength (UCS) 55 MPa 

Young Modulus 40 GPa 
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Figure 53 shows the drilling procedure of PFC-2D. It also shows the cutter, weight 

configurations applied, and region of study in the PFD-2D study. The three balls displayed in 

Fig. 53 represent the static weight on bit, the spring stiffness for each pVARD configuration, 

and the damping. 

 

 

 

 

 

Figure 43. Description of the numerical study of the drilling process using PFC-2D, including weight on bit in case of 

PVARD 

BHP was another factor implemented in the PFC-2D simulation. The purpose of this is to 

evaluate the influence of the BOP on drilling performance using pVARD Versus. rigid drilling. 

The result of the effect of BOP on the drilling performance is shown in Fig.54 

 

Region of Study 

Single PDC Cutter 

3 Balls for: Static weight, 

Spring, and Damping 



 
 

86 
 

 

Figure 54. One set of PFC-2D output using rigid drilling for different BHP and same WOB=2354.4N. 

5.4. RESULTS 

The following method of data analysis adopts the graphical display of the results, in which there 

is comparison analysis between pVARD PFC-2D numerical study and the experimental result 

obtained from ARMA 15-492 (Rana et al, 2015). The comparison study is based on a double-

parameter-analysis with respect to their drilling ROP, which means that the analysis is 

referenced to the drilling performance as well as a multiple parameter analysis. However, the 

drilling performance is represented by a pre-analyzed ROP. The pre-analysis is based on the 

associated DOC; if the DOC is greater than the depth of the chamfer of the bit cutter, then the 

drilling results are in the accepted range and they are considered to be used for the study. The 

depth of the chamfer in the PDC cutter used for the experimental work is 0.15 mm. Since we 

use the same PDC bit used by Hossein Khorshidian, (2012). He reported the related 

specifications for this PDC bit. Drilling data of the PFC-2D is considered all valid and all 

included in the analysis with reference to DOC due to that no chamfer is considered in the design 
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of PDC-2D cutter. Table 14 contains the DOC data, based on which the drilling performance is 

analyzed and classified. 

After determining the valid drilling data to be included in the analysis based on the DOC, the 

study proceeded for more data evaluation including the ROP and MSE. Figure 55 shows one 

example of the comparison study of the simulation and the experimental results of ROP using 

the 3rd pVARD configuration. The result of this study shows good agreement between the two 

ROP results obtained experimentally and numerically. 

Drilling 

Mode 

 

 

Depth of Cut 

 

EXPERIMENT SIMULATION 

pVARD 1 

0.281 0.333 

0.815 0.557 

0.856 0.698 

1.080 1.320 

1.200 2.320 

pVARD 2 

0.350 0.357 

0.465 0.601 

0.754 1.064 

1.110 1.490 

1.002 2.348 

pVARD 3 

0.440 0.403 

0.674 0.674 

0.842 1.090 

1.049 1.380 

1.200 2.400 

RIGID 

0.262 0.303 

0.414 0.357 

0.445 0.439 

0.786 0.524 

0.766 0.911 
 

Table 14. Summary of DOC result in PFC-2D and laboratory work. 
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Figure 55. One example of data comparison between simulation and experimental work using the 3rd 

pVARD configuration. 

 

5.4. Double parameter analysis  

In this analysis, in each individual drilling configurations, two drilling parameters were analyzed 

with the drilling ROP, including DOC and MSE. Figures 56, 57, and 58 show the analysis of 

the drilling performance based on the study of ROP and DOC The figures show that DOC was 

directly proportional to ROP. Figures 59, 60, 61, and 62 show the analysis of the drilling 

performance based on the study of ROP and MSE in 5 different WOBs using the three pVARD 

configurations vs. Rigid drilling in the numerical study, in which MSE was reversely 

proportional to ROP. 
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Figure 56. ROP, DOC vs WOB for simulated pVARD 1 

 

 

 

 

 

 

 

Figure 57. ROP, DOC vs WOB for simulated pVARD 2 
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Figure 58. ROP, DOC vs WOB for simulated pVARD 3 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 59. ROP, DOC vs WOB for simulated RIGID 

Results of figures 56 through 63 show good agreement between ROP, DOC, and MSE in all 

drilling tests of pVARD vs. rigid and experimental work vs. simulation. 
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      Figures 56 to 59 show the relationship between ROP and DOC in the simulation work by 

PDC-2D. These figures show that ROP is directly proportional to DOC showing the positive 

influence of the increase of DOC on ROP.  

     Figures 60 to 63 show the relationship between ROP and MSE in the simulation work by 

PDC-2D. These figures show that ROP is reversely proportional to MSE, showing the positive 

influence of the reduction of MSA on the efficient drilling performance through ROP.  

 

Figure 60. ROP, MSE vs WOB for simulated pVARD1. 

  

Figure 61. ROP, MSE vs WOB for simulated pVARD 2 
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Figure 62. ROP, MSE vs WOB for simulated pVARD 3 

 
 

Figure 63. ROP, MSE vs WOB for simulated RIGID 

5.5. Multiple parameter analysis 

In this analysis, all drilling results of ROP, DOC, and MSE were analyzed together using 

different drilling modes of pVARD and rigid based on experimental and simulation. Figures 64 

and 65 show the comparison results of ROP in different drilling modes experimentally and 

numerically, respectively.  
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Figure 64. Compared experimental ROP in all drilling modes of pVARD and rigid. 

 

Figure 65. Compared simulated ROP in all drilling modes of pVARD and rigid. 

 

Figures 66 and 67 show the comparison results of DOC in different drilling modes experimentally and 

numerically, respectively.  
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Figure 66. Compared experimental DOC in all drilling modes of pVARD and rigid. 

Figure 67. Compared simulated DOC in all drilling modes of PVARD and rigid. 

 

Figures 68 and 69 show the comparison results of MSE in different drilling modes 

experimentally and numerically, respectively. 
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Figure 68. Compared experimental MSE in all drilling modes of pVARD and rigid. 

 

 

Figure 69. Compared simulated ROP in all drilling modes of pVARD and rigid. 

     Figure 70 shows the combined result of ROP experimentally vs. numerically. The result 

shows that ROP is always higher in all pVARD configurations versus rigid drilling in both 

experimental and numerical work. Figure 71 shows the combined result of MSE vs WOB 

experimentally for PDF 2D. numerically. The result shows that MSE is always lower in all 
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result of figures 70 and 71 confirms the positive influence of pVARD on enhancing drilling 

performance as proved by field and laboratory, and numerical work. 

 
Figure 70. Compared result of ROP vs WOB for all drilling modes of experimental work vs. PFC-2D 

numerical work. 

Figure 71. Compared result of MSE vs WOB for all drilling modes of experimental work vs. PFC-2D 

numerical work. 
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DISCUSSION 

 PFC-2D was used for simulating and validate the experimental work described above.  

 As shown in all figures of the double parameter section, the drilling ROP increases with the 

increase of DOC. This was found in all drilling tests of the experimental and the simulation. 

Also, the drilling ROP was found to be increasing with the decrease of the MSE. This is found 

in all drilling tests of the experimental and the simulation as well.  

     As shown in all figures of the multiple parameter section (Fig. 56 to Fig.63), the combined 

relationships between ROP, DOC, and MSE were found to have good agreements in all drilling 

modes in experimental and simulation when applying all drilling modes, including the three sets 

of pVARD and rigid. 

     As the drilling ROP increases with the increase of WOB, all ROP results from the numerical 

and experimental work were found to have good agreement and were increasing with the 

increase of WOB.  In figure 64, the result of the simulated ROP was found to be the lowest in 

the rigid drilling compared to all pVARD configurations, which was good validation to the 

experimental work of the ROP shown in Figure 65. This confirms the positive influence of 

implementing pVARD on enhancing drilling performance.  

     Based on that the increase of DOC causes an increase of the drilling ROP, all DOC 

relationships were found to have good agreement and their increase found to result increase of 

ROP numerically and experimentally. In figure 66, the simulated DOC was found to be the 

lowest in the rigid drilling compared to all pVARD sets that had good agreement and validated 

the experimental results of the DOC displayed in figure 67. 

     As MSE has a reveres relationship with the drilling ROP and that its decrease while 

increasing the drilling ROP is a sign of an efficient drilling performance, all MSE results were 

found to be decreasing with the increase of ROP. In Figure 68, the simulated MSE result was 
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found to be the highest in the rigid drilling compared to all pVARD configurations confirming 

the positive influence of implementing pVARD on enhancing the drilling performance.  

     The drilling parameters mentioned above and evaluated experimentally and numerically in 

various drilling settings supported enhancing the drilling performance when using pVARD tool.  

SUMMARY  

    The numerical study using the PFC-2D software conducted on the experimental work 

published in ARMA 15-492 (Rana et al, 2015) can be summarized in the following points: 

• The numerical study supports the experimental work in approving the positive influence of 

PVARD on drilling performance enhancement. 

• Involving more drilling parameters including DOC and MSE supported the comparison 

study and strengthen the validation work of both the simulation and the experimental results. 

As the PFC-2D was the software used for data validation, it showed good agreements between 

all studied drilling parameters. 
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Chapter 6 Conclusion and Future Work 

6.1. Conclusion 

This research work has shown that single Polycrystalline Diamond Compact (PDC) cutter-rock 

interaction models have strong potential for resolving issues related to full bit-rock interaction. 

The research has also offered insight on factors leading to rock failure due to PDC bit action. 

Both experimental and numerical simulations provided reasonably similar outcomes, further 

supporting the validity of these strategies.  The ROP, DOC, along with the corresponding 

effective WOB were analyzed, with the findings for the physical, mechanical, and drilling 

measurements indicating consistency in values. This outcome points to the isotropy of the rocks 

used in the test and also confirms that the tests were bias-free in relation to drilling orientation. 

After the collection and analysis of drilling cuttings, any relationships found between DOC, 

ROP and WOB were investigated, revealing that increased WOB leads to increases in DOC and 

ROP. The findings indicate as well that increased WOB results from increases in cutting sizes, 

again underscoring the material’s anisotropy. These outcomes can help engineers and site 

managers form better plans for shale drilling that will result in better drilling performance, 

particularly in situations where the wells are deviated. 

With increased WOP leading to increased drilling ROP, the ROP findings in both the 

experimental and numerical studies showed good agreement.  In comparison with pVARD 

configurations, simulated ROP results were the lowest in rigid drilling scenarios, which 

provided reasonable validation for the ROP experimental work. It also verifies the positive 

effect of employing the pVARD tool for improving drill performance. Including other drilling 

parameters (e.g., MSE and DOC) further assisted in validating the work. In fact, the software  
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employed in the data validation (PFC2D) showed good agreement between all drill parameters 

used in the study. 

6.2. Future Work. 

The work of this theses will be taken as baseline for physical and mechanical measurements and 

drilling tests under various levels of pressures of well bottom-hole pressure while drilling and 

confining pressures while conducting the confined compressive strength (CCS) tests. The future 

work will, also be extended to cover some anisotropic rocks such as shale and new baseline for 

anisotropic materials will be proposed. 

Medium-strength rock, which is similar to red shale in the CBS NL field trail and DTL concrete 

samples, was used in the PFC simulation. Future simulations could include lower- or higher-

strength rock as well as other types of software (e.g., PFC3D or FDEM simulation software) for 

simulating bit-rock interactions. 
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