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Abstract

One of the basic tenets of biophysics is that a globular protein, under physiologi-

cal conditions, folds spontaneously into a unique three-dimensional structure called

the native state and that it dictates the biological function of the protein. How-

ever, recent experimental observations show that some proteins can undergo drastic

structural rearrangements that lead to a complete change of their native folds to al-

ternative functional folds. In order to access the underlying biophysical principles

of this conformational switch, we develop and test a generalized-ensemble algorithm

for biomolecular simulations that is able to calculate the thermodynamic behavior of

many sequences in a single run. By applying this method to a coarse-grained model for

protein folding, we explore the folding of thousands of (model) protein sequences and

find that successive point mutations can lead to abrupt fold switching. Our method

helps to unravel some of the biophysical properties of mutational pathways between

elementary (distinct) folds and thus provide a physical explanation of the effects of

mutations in conformational switching. In addition, we employ an atomistic model

to characterize the fold-switching tendency in the naturally occurring protein RfaH.

Our results suggest that the all-α to all-β fold switch of its carboxyl-terminal domain,

in agreement with in vitro experiments, is thermodynamically favored. Providing a

physical basis for protein fold switching, and ultimately the ability to design them,

may have an extensive impact in biology and biotechnology.
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Chapter 1

Introduction

One of the most established facts in biology is that certain biomolecules known as

proteins are largely responsible for the many observed characteristics in life. Living

organisms including plants and animals have genetic information encoded in the form

of deoxyribonucleic acid (DNA) that is passed down almost perfectly from one gen-

eration to another. There are two main biochemical processes which occur in living

cells: one involving the transcription of DNA to messenger ribonucleic acid (mRNA)

and the other translates mRNA to proteins, such that the main information flow in a

cell can be summarized as:

DNA transcription=======⇒ mRNA translation======⇒ PROTEIN

Thus, transcription and translation are essential for the continuous existence of

each cell and ultimately that of the host organism.

Proteins are molecular machines that perform wide spectrum of functions in living

organisms. They are the building blocks and arms of all living cells [1]. They catalyze

biochemical reactions, control gene expression, mediate intracellular signals, transport

and store other molecules [2]. Moreover, proteins also provide and maintain the needed
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structural support in cells and tissues. The vast biological functions performed by

proteins make them essential for life and important entities to physically explore.

A fundamental tenet of biophysics is that a protein assumes (or folds into) a

unique, stable, and functional three-dimensional structure under physiological condi-

tions, involving a structural transition from a disordered state to an ordered state.

Structural rearrangement from a disordered state to an ordered state is ubiquitous in

the study of proteins [3], which is not surprising since the folding process is central to

their functionality. This assumption of a unique and stable, so-called native structure

led (and reasonably so) to the search for “folding pathways” for many years. Folding

pathway refers to a linear sequence of events between the unfolded and folded protein.

A native structure implies that a protein is expected to perform a specific function.

Truly, the overwhelming majority of globular proteins meet this expectation [4].

However, recent experimental observations [5, 6] suggest that some proteins have

the interesting ability to rearrange their native conformation into an alternative func-

tional fold. This can be as a result of mutational changes, or interaction with a

different biological environment, or even for non-obvious reasons. Such large-scale

rearrangement can involve major changes in secondary structures, repacking of the

protein core, and exposure of new surfaces [7].

One of the most dramatic examples of a protein that undergoes structural re-

arrangement is Lymphotactin, which exists in two forms (Ltn10 and Ltn40) in al-

most equal amounts under native conditions [8]. While Ltn10 adopts a monomeric

chemokine fold, Ltn40 has a dimeric β-sandwich fold. Another example of a fold-

switching protein is RfaH, which is the focus of one of the projects in this thesis. RfaH

is a compact two-domain protein from Escherichia coli. Its C-terminal domain has

been shown experimentally to be able to undergo a complete conformational change

from an α-helix bundle to a β-barrel structure [6]. A number of other studies [5,9–12]
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have indicated that alternative native conformations can co-exist in equilibrium. This

cumulative data make stronger the argument that a class of proteins demonstrate the

ability to switch their fold, in contrast to classical belief of maintaining a specific fold,

thereby expanding their functional capability.

While it is true that the observations of protein fold switching are rare, this phe-

nomenon can be a window through which we expand our understanding of how new

folds and functions may arise in evolution. After considering some examples of con-

formational switching in both naturally occurring and designed proteins, Bryan and

Orban [3] highlighted three common features; (i) the structural transitions require

states with marginal stability, (ii) disordered regions can facilitate these structural

transitions, and (iii) a new binding surface is exposed in the alternative folds.

A question one may genuinely ask is why is protein fold switching important

to study? Or to put it into perspective, why is it important to understand the

physics of conformational switching in proteins? While there is no strict answer to

this question, what we can say is that if an observation as radical as fold switching,

which challenges a basic tenet of biophysics and long-time dogma of biochemistry is

made, that potentially changes everything from our understanding of protein folding

itself to protein function, and protein evolution. Its implications [7] may extensively

impact areas such as computational and structural biology, human disease, protein

design, and biotechnological applications.

The purpose of this thesis is to understand the phenomenon of protein fold switch-

ing, to test a new algorithm for biomolecular simulation, to study in particular fold

switching tendency in a naturally occurring protein, and to discuss how fold switching

may lead to the evolution of new folds and functions. The biophysical properties of

proteins are key to understanding their biological and physical implications. Conse-

quently, in this thesis we seek to explore them. Specifically, this thesis focuses on
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the biophysics of protein fold switching, as well as the computational tools needed to

explore it.

We first consider a generalized-ensemble algorithm [13] for coarse-grained sim-

ulations of biomolecules which allows the thermodynamic behavior of two or more

protein sequences to be determined in a single “multisequence” run. To explore the

biophysical mechanism underlying fold switching through point mutation, we test

the method on an intermediate-resolution coarse-grained model for protein folding

with three amino acid types and apply the method to sets of more than a thousand

sequences. The resulting thermodynamic data allow us to carry out a more system-

atic analysis of the biophysical properties of sequences along mutational pathways

connecting two pairs of folds than has been previously possible. We then utilize an

atomistic model to computationally study the fold-switching tendency in the RfaH

protein. The relatively low stability of the α-helical bundle form of its C-terminal

domain suggests that it may be primed to switch into the β-barrel structural form.

In the following sections, a short background on proteins is given. First, we high-

light amino acids as the building blocks of proteins followed by how a linear chain

of these amino acids uniquely specifies a protein. Then, the physical interactions in

proteins and how they result in an important biological process of folding is presented.

What remains in this introductory chapter includes the fundamental physics, molecu-

lar models and the simulation methods deployed to gain insight into the phenomenon

of protein conformational switching.

1.1 Amino acids: The building blocks of proteins

A class of chemical molecules having both the carboxilic acid (-COOH) and amine

(-NH2) groups are referred to as amino acids. Examples include Glycine, Leucine,
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Proline, Cysteine, Tyrosine, Aparagine etc. They have the general structure as shown

in Fig.1.1.

Figure 1.1: General structure of amino acids

The -R (side chain) group differentiates one amino acid from the others. There

are 20 naturally occurring amino acids [2]. All of them, except proline, have the

general structure shown in Fig.1.1. Proline is an exception in the sense that its -R

group bonds the N-atom stripping it of an H-atom. Glycine is also unique because

its Cα (α-carbon) is not chiral like the other nineteen. That is, it is symmetric with

respect to reflection. A chiral carbon is covalently bonded to four different groups

whereas glycine (with R=H) has two identical H-atoms.

The chemical composition of the side chain determines the properties of each amino

acid [2]. Amino acids can be polar, non-polar, charged or uncharged.

1.2 Protein: Linear chain of amino acids

Proteins are heterogeneous chain polymers (Fig.1.2). Each consists of tens or hundreds

and sometimes thousands of amino acid residues†.

All proteins are synthesized from the 20 naturally occurring amino acids. The

residues are linked together by rigid covalent peptide bonds between the C and N

atoms, which makes (free) rotation about them practically very difficult with the

exception of proline having both cis and trans conformations.
†A “residue” is the portion of a free amino acid that remains after polymerization.
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Figure 1.2: Polymer chain of proteins are formed after polymerization of n amino
acids. One amino acid residue is covalently bonded to the other by a peptide bond.
These are single bonds but have a double bond character which makes them rigid [1].

As can be deduced from Fig.1.2, the linear sequence of amino acids specifies a

protein and this is unique in the sense that no two proteins have the same amino

acid sequence. Because proteins typically have long chains and there are 20 differ-

ent naturally occurring amino acids, the possible number of sequences is enormous.

Presently, the amino acid sequences of more than 1.5 million proteins [14] are known

and even more are being determined. Once the linear chain of a protein has been

formed, physical interactions take place in and around the chain, which leads to an

important biophysical process known as protein folding.

1.3 Physical interactions in proteins

The main interactions between atoms of the same amino acid or between adjacent

amino acid residues are strong covalent (peptide) bonds. That is, covalent bonds

are the dominant forces holding the atoms of a protein molecule together. However,

other individual non-covalent interactions that are weaker than covalent bonds act

collectively to provide strong attractive forces also. These non-covalent interactions

include hydrogen bonds, ionic bonds and van der Waals interactions.

There is also a disulfide bond which sometimes exists between pairs of cysteine

amino acids. The most important by far among these interactions is the hydrogen
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bond owning to its effective ability to stabilize structural elements [15,16]. Hydrogen

bonds between water molecules are also responsible for the hydrophobic effect that is

essential for protein folding. Hydrophobic effect results from the non-interaction of

protein molecules with surrounding water molecules. Because of their importance in

protein folding and stability of regular structures, a brief look at hydrogen bonds is

discussed next.

1.3.1 Hydrogen bond

A hydrogen (H) atom that is covalently bonded to highly electronegative atoms of

oxygen (O) or nitrogen (N) acquires a partial positive charge while the O or N atom

acquires a partial negative charge. In the presence of another electronegative atom

there exists an electrostatic attraction to the H atom. This attractive force is the

so-called hydrogen bond (Fig.1.3) .

Figure 1.3: Hydrogen bond.

The protein backbone includes -NH and -CO groups that are potentially capable

of participating in H-bonds, whereby the N atom is the donor and the O atom is

the acceptor (of H atom). Some side chains can also participate in H-bonds. Hence,

there are backbone-backbone, backbone-side chain or side chain-side chain H-bonds.

However, backbone-backbone H-bonds are the most common [1]. They are signifi-

cantly important in the sense that they are responsible for the stability of structural

motifs like α -helices and β -sheets frequently found in protein structures. H-bonds

are highly directional because of their polar nature. Hence, they are strongest when

the N, H and O atoms are aligned. A major consequence of H-bonds in an aqueous
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environment is the hydrophobic effect [17].

1.3.2 Hydrophobic effect

The natural surrounding of globular proteins is mainly water whose molecules are

networked together by H-bonds with O atoms acting as both donors and acceptors re-

spectively. This loose network of H-bonds of water is disrupted by non-polar molecules

that can not participate in it. As a result, group of non-polar molecules assemble to-

gether in an aqueous environment in order to minimize the surface area exposed to

water. This is the hydrophobic effect [17]. It is entropically driven since it allows

maximum entropy (freedom) possible for the solvent. That is, there is a minimum

number of “trapped” water molecules close to a non-polar surface.

Protein molecules typically have both polar and hydrophobic (non-polar) amino

acids. In an aqueous environment, the non-polar amino acids are usually buried inside

the protein structure to form a hydrophobic core. Consequently, polar amino acids

are mostly found on the surface.

1.4 Protein folding: From linear chain to 3D struc-

ture

Many proteins in vivo do not remain in their primary linear chain conformation

but undergo an important biophysical process of folding into essentially unique three

dimensional structures on a biological time scale. That is, a protein which is usually

a long chain of many amino acids, falls over itself to form a compact so-called native

structure within milliseconds [15]. This observation alone is incredible but there

is more. In the early 1960’s, Christian Anfinsen et al. in a series of experiments

[18,19] showed that proteins can fold reversibly suggesting that the native structures
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are thermodynamically favorable states. Out of the indefinite number of possible

conformations available, how does the protein chain identify its native conformation?

And how does this happen within a very short time merely by random searching?

This reasoning, termed “Levinthal paradox”, led to the search for specific folding

pathways [20, 21]. Because the number of possible states grows exponentially with

chain length [22], it therefore seems that achieving the global free energy minimum

and to do so in biological time scales are mutually exclusive. By contrast, the “funnel

view” of protein folding via energy landscape folding funnels (rather than specific

folding pathways) was discussed extensively by Dill and Chan [22]. Contrary to the

folding pathway hypothesis, which requires a linear sequence of events, the folding

process is parallel in the funnel view. This implies a many-pathway process where

ensemble of conformations determines the folding behavior.

Figure 1.4: Protein folding: A linear sequence of amino acids folds reversibly into a
3D structure under native conditions, suggesting sequence encodes structure. Figure
adapted from www.commons.wikimedia.org

How a protein chain is guided† towards the native structure lies in the physical

interactions within and around the chain. H-bonds, electrostatic interactions, van der

Waals interactions and the hydrophobic effect, all play part in this folding process.
†The estimated time [20] required for a random search of the native structure in the indefinite

conformational space suggests that the folding process is guided.
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However, it is widely believed that the hydrophobic effect is the overwhelming force

responsible for the collapse of protein chains [17].

1.5 Structural motifs in proteins

As mentioned in the previous section, many proteins fold into 3D native structures

which corresponds to the global minimum of their accessible free energy. Although

these structures vary widely from one protein chain to another, there are commonly

repeating structural elements that constitute what are called secondary structures.

Figure 1.5: Secondary structures commonly found in proteins, (A) α-helix and (B)
β-sheets. They are stabilized mainly by a regular H-bond interaction between the
back-bone donors and acceptor atoms.

A regular H-bond between -NH and -CO groups of different amino acid residues

respectively in a protein back-bone gives rise to regular structures such as α-helices

and β-sheets shown in Fig.1.5. The α-helix is mainly (partly) stabilized† by H-bonds

between the -NH group of one amino acid residue i and the -CO group of the amino

acid residue i − 4. On the other hand β-structures which could be parallel or anti-

parallel are stabilized by H-bonds between adjacent strands and usually have turns.
†There are also helices without any hydrogen bonds. Their tight energetically favourable ar-

rangement is stabilized by van der Waals interactions only [1].
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A β-structure with a single turn as shown in Fig.1.5B is so-called β-hairpin. Other

regular structures like π-helices, 310-helices and 27-helices are sometimes observed but

are much less frequent due to conformational strain or steric constraints [1].

1.6 Some fundamental physics

This section presents the underlying physics of the simulation methods used in this

thesis.

1.6.1 Free energy

All physical processes including biophysical reactions are constrained by the laws of

thermodynamics. While many of these processes require the conservation of energy

within the system of interest, others do not but rather interact with the surrounding

and proceed under constant temperature. It is notable that a system at constant

temperature is capable of extracting heat for free from its surrounding and if annihi-

lated, the entropy† of the system is disposed into the surroundings as heat. Therefore,

the energy required to create such a system from nothing (or the energy that can be

extracted from such a system as useful work) is given by the Helmholtz free energy

F = E − TS (1.1)

where E, T and S represent the total internal energy, temperature and entropy of the

system, respectively. If in addition the system is under constant pressure, the free
†Entropy S is a measure of the possible number of conformations in a system. S = kB lnΩ .

Where kB is the Boltzmann constant and Ω is the number of conformations.
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energy in this case becomes

G = E − TS + PV (1.2)

where P is the pressure and V is the volume. The thermodynamic quantity G is

known as the Gibbs free energy. Physical processes occurring at constant temperature

are favorable when either F or G decreases. Hence, free energy is a force towards

equilibrium [23].

1.6.2 Boltzmann distribution

For a system in thermal equilibrium with a surrounding heat bath at constant tem-

perature, a useful question is what is the probability of finding it in one of its possible

conformations? The answer is given by the Boltzmann distribution

PB(r) = exp [−E(r)/kBT ]
Z

(1.3)

where exp [−E(r)/kBT ] is the Boltzmann factor and Z = q
r

exp [−E(r)/kBT ] is the

partition function. E(r) is the energy of the system in conformation r, and the sum is

taken over all conformations r. The thermodynamic average of an observable O can

be computed using

éOê =
Ø

r

O(r)PB(r) = 1
Z

Ø
r

O(r) exp [−E(r)/kBT ] (1.4)

It can be shown that the Helmholtz free energy F is related to the partition function

Z. Indeed, this formula turns out to be

F = −kBT lnZ (1.5)
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or equivalently,

Z = exp [−F/kBT ]. (1.6)

1.7 Molecular simulation methods

Computer simulations have, for many years now, become an important tool for solv-

ing problems that are otherwise difficult and sometimes practically impossible to solve

analytically or providing information that is difficult to obtain experimentally. Molec-

ular dynamics (MD) and Monte Carlo (MC) techniques are two of the most common

conformational sampling methods. The general idea of any molecular simulation is to

numerically calculate, based on relevant model and theory, the properties of a physical

system.

1.7.1 Molecular dynamics

A very common method to simulate the time evolution of a macromolecular system

is molecular dynamics (MD)†. MD generates states by numerically solving Newton’s

equations of motion for many-body system interacting via a particular force field.

Thus the time evolution of the system is determined by solving

Fi = mi
∂2ri

∂t2
(1.7)

for each particle i in the system.

The force Fi, on particle i, is calculated from Fi = −∇i U(rN), where U(rN) is the

interaction potential which may include bonding potentials and long-range potentials

such as electrostatics and van der Waals interactions.
†The first molecular dynamics simulations [24–26] were performed shortly after Metropolis and

co-workers introduced Markov chain Monte Carlo method (discussed in the next section).
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The time average of a physical observable O is calculated by averaging over time

along a trajectory, i.e.,

Ō = lim
t→∞

1
t

tÚ
0

dτ O(r(τ), ṙ(τ)). (1.8)

Ergodicity principle states that the average over periods of time along a given trajec-

tory of an observable is, at the limit, identical to the ensemble average of the same

observable. That is, Ō = éOê. Ergodicity is important when performing MD simu-

lations [27]. MD simulation must be sufficiently long such that it is longer than the

relevant relaxation time in the system.

1.7.2 Markov chain Monte Carlo method

The basic idea of a Markov chain Monte Carlo (MC) method is to generate a sequence

of conformations r1, r2, . . . , ri, . . . that are biased according to a desired probability

distribution. Each new conformation ri is generated based only on the previous con-

formation ri−1, i.e., without using r1, r2, . . . , ri−2. In 1953, Metropolis et al. [28]

put forward a Markov chain method that generates states weighted according to the

Boltzmann distribution in the limit of large N, i.e.,

lim
N→∞

P (r = rN) → PB(r). (1.9)

In that case, the thermodynamic average of an observable O then becomes

éOê = 1
N

NØ
i=1

O(ri) for large N. (1.10)

This approximation requires a proper sampling of the conformational space such that

the conformations are practically uncorrelated.
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The “Metropolis method” chooses a configuration rÍ given that a system currently

has a conformation r with an acceptance probability A(r −→ r
Í). The sufficient

but not necessary requirement [27,29] for this method to generate the representative

configurations {r1, r2 . . . rN} is to satisfy the condition of detailed balance†

PB(r)T (r −→ r
Í)A(r −→ r

Í) = PB(rÍ)T (rÍ −→ r)A(rÍ −→ r) (1.11)

where T (r −→ r
Í) is the probability of proposing the configuration r

Í given that

the current configuration is r. If the proposal probability is symmetrical, that is,

T (r −→ r
Í) = T (rÍ −→ r) then equation 1.11 becomes

A(r −→ r
Í)

A(rÍ −→ r) = P (rÍ)
P (r) = exp [−(E(rÍ) − E(r))/kBT ] (1.12)

or

A(r −→ r
Í) = A(rÍ −→ r) exp [−∆E/kBT ] (1.13)

where ∆E = E(rÍ) − E(r). The Metropolis condition for this to happen is given

by A(r −→ r
Í) = min [1, exp (−∆E/kBT )] [28]. It implies that a higher energy

conformation is accepted with probability exp [−∆E/kBT ] while a lower energy con-

formation is always accepted. Practically, this can be achieved by drawing a ran-

dom number ρ ∈ [0, 1] from a uniform distribution and accepting the new state if

ρ < exp [−∆E/kBT ].

A general problem with this Metropolis method, especially at low temperatures,

is that successive conformations rÍ
is are typically correlated. This is particularly the

case for proteins, due to the rough energy landscapes and several local energy minima.

Thus, the system can easily get trapped in small region of conformational space for

a long time. To solve this inherent problem, many generalized ensemble methods like
†The term “detailed balance” was coined by Hansmann and Okamato [30]
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multi-canonical ensemble [31,32], umbrella sampling [33], expanded ensembles [34,35]

and replica exchange [36] have been developed†.

1.7.3 The method of generalized ensembles

The fundamental idea of the generalized ensemble method is to include additional

variables, or what are sometimes called dynamic parameters, beyond the physical

variables (e.g. position and momentum), thereby increasing the size of the configu-

ration space. This approach helps to accelerate simulations of systems with rough

energy landscape [35] by allowing deep local minima to be more easily escaped. Two

generalized ensembles are used in this thesis: simulated tempering [35] and the mul-

tisequence algorithm [13].

Simulated tempering

In simulated tempering, the temperature is made a dynamic parameter. Thus, the

probability distribution becomes

P (r,m) = 1
Ž

exp[−E(r)/kBTm + gm] (1.14)

where the normalization factor Ž = q
r

q
m

exp[−E(r)/kBTm + gm]. Tm is a set of tem-

peratures that the system is allowed to visit and gm is a set of simulation parameters

that determine the marginal probability distribution

P (m) = 1
Ž

Ø
r

exp[−E(r)/kBTm + gm] (1.15)

†See ref. [37] for a recent but brief history of the introduction of generalized ensemble to Markov
chain Monte Carlo simulations.
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which can also be written as P (m) = 1
Ž exp[−Fm/kBTm + gm]. Here, Fm is the

free energy at temperature Tm. In order to ensure all temperatures are frequently

visited, the gm parameters must be chosen very carefully. This is done by one or more

“tuning” runs. The gm parameters are updated with values from a previous run until

an approximately uniform distribution is achieved or equivalently, when the input and

the output values of these gm are roughly the same. At this point, gm ≈ Fm/kBTm

and P (m) ≈ 1
Ž for all temperatures. The joint probability P (r,m) is simulated by

using separate ordinary Monte Carlo updates of conformation r and temperature m.

Multisequence algorithm

In this thesis, we test a generalized ensemble method where the biological sequence

of a macromolecule (instead of the temperature as in simulated tempering) is made a

dynamic parameter. Thus, the method simulates the joint probability distribution

P (r, s) = 1
Z

exp[−E(r, s)/kBT + h(s)] (1.16)

where the normalization factor Z = q
r

q
sÔS

exp[−E(r, s)/kBT + h(s)] and S is a set of

pre-selected sequences. The simulation parameters h(s), similar to gm in simulated

tempering, determine the marginal distribution

P (s) = 1
Z

Ø
r

exp[−E(r, s)/kBT + h(s)] (1.17)

which is equivalent to P (s) = 1
Z

exp[−Fs/kBT + h(s)], where Fs is the free energy for

sequence s at temperature T . Again, for a roughly flat distribution of P (s), h(s) is

conveniently chosen to be approximately equal to Fs/kBT . In practice, this is achieved

by updating h(s) until the input and the output values of these h(s) are roughly the

same. In this thesis, we show that though simulated tempering and multisequence
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algorithms give similar results, the latter is computationally more efficient.

1.8 Coarse-grained molecular models

Ever since the advent of computers and subsequent increase in computing power,

the development of computational models has made possible a new avenue of scien-

tific enquiry, namely computational simulations of physical processes. Computational

models have allowed the study of complex systems with high accuracy, thereby ex-

tending their applicability as well as increasing their predictive power. As explained

by van Gunsteren et al. [38] “Any model involves a choice of the essential degrees

of freedom, of the interactions governing the motion along these degrees of freedom,

of a method to generate configuration of the degrees of freedom, and of the way in

which the interaction with the outside world is represented . Models with a range

of resolutions can be used to describe the same physical system, with each model’s

resolution providing the context to interpret its representation” [39]. The different

levels of resolution and representation may include nucleons and electrons, nuclei and

electrons, atoms, molecules and supra-molecules.

Coarse-grained models are a common type of model that enable the simulation of

huge system sizes. They provide access to long time scales in simulations of biomolec-

ular processes. The basic idea of coarse-grained models is to extend the properties

of a system that can be studied by simplifying the physical system but retaining the

essential physics. Such models are coarse-grained with respect to atomistic (or fine-

grained) models. They use fewer particles than their corresponding atomistic models

to represent the same physical system. A proper coarse-grained representation pre-

serves the features that are necessary to describe the phenomena of interest while

simultaneously eliminating atomic details that are considered unimportant [40].
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Usually, coarse-grained models for biomolecular simulations are those in which

the particles which constitute the degrees of freedom represent more than one non-

hydrogen atom [41]. By focusing on essential features, while averaging over less im-

portant details, coarse-grained models provide significant computational advantage.

That is, they provide greater efficiency than atomically detailed models [42], as a

result of fewer degrees of freedom combined with larger time steps and faster con-

formational sampling due to smoother energy landscape. The main motivation for

the use of coarse-grained models is the relatively fast sampling they provide [43].

This perhaps is the chief reason why in spite of the tremendous recent advances in

atomically detailed models and computational resources [44], coarse-grained models

continue to gain popularity.

Despite the fact that coarse-grained models provide computational efficiency, they

introduce new challenges [40]. Notably, the most significant challenge is how to ensure

the model reflects the correct underlying physical principles. A coarse-grained model

should not only give the right results, but also provide them for the correct reasons

[45, 46]. There are also limitations associated with most coarse-grained models [43];

they may be too biased and as a result are not transferable to different situations,

only parameterized for specific class of molecules, and too coarse to capture certain

properties.

Computational modeling of biological systems is particularly challenging because

of the many spacial and temporal scales involved. Using coarse-grained models has

aided large-scale biomolecular simulations on time scales that are otherwise inacces-

sible. Additionally, coarse-graining for biomolecules is a challenge because of their

heterogeneity [41], i.e., the scale invariance observed in largely homogeneous poly-

mers is absent in biomolecules, which consist of different complex structural units

that interact in different ways. In particular, coarse-graining of proteins is specially
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challenging because they also exhibit transitions into specific structures.

Many coarse-grained protein models have been developed since the pioneering

models [21, 47, 48] for protein folding were introduced a few decades ago. It is not

uncommon amongst these models that each amino acid is represented with one or a

few sites which have properties that are completely specified by the amino acid type.

Often times, a whole site is associated with the α-carbon of the amino acid because

this helps with detailed representation of the protein backbone [49, 50]. Some of the

models do not distinguish between all types of amino acids, but instead classify them

based upon, for instance, hydrophobicity [51]. A typical example of this is the coarse-

grained model [52] we employed in this thesis, which has only three amino-acid types;

hydrophobic, non-hydrophobic (or polar) and a turn type which essentially represent

glycine. Inspite of their simplicity, these models have helped in understanding some

general principles that govern, e.g., protein folding and interactions [53,54].
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Chapter 2
Multisequence algorithm for coarse-grained
biomolecular simulations†

Abstract

We consider a generalized-ensemble algorithm for coarse-grained simulations of biomolecules

which allows the thermodynamic behavior of two or more sequences to be determined

in a single multisequence run. By carrying out a random walk in sequence space, the

method also enhances conformational sampling. Escape from local energy minima is

accelerated by visiting sequences for which the minima are more shallow or absent.

We test the method on an intermediate-resolution coarse-grained model for protein

folding with 3 amino acid types and explore the potential for large-scale coverage of

sequence space by applying the method to sets of more than 1,000 sequences. The re-

sulting thermodynamic data is used to analyze the structures and stability properties

of sequences covering the space between folds with different secondary structures.
†This chapter is a modified version of the publication; A. Aina and S. Wallin, “Multisequence

algorithm for coarse-grained biomolecular simulations: exploring the sequence-structure relationship
of proteins”, J. Chem. Phys. 147 (9), 095102 (2017).
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2.1 Introduction

Recent years have seen important advances in biomolecular simulation methods, in-

cluding improvements to standard molecular dynamics force fields [1], the advent

of several alternative atomistic simulation approaches [2–5], and new techniques for

conformational sampling [6]. Together with the ever-increasing availability of compu-

tational resources, these advances have triggered a few major efforts [7–11] to char-

acterize the dynamics of biomolecular systems of various sizes, e.g., a small native

protein on the millisecond scale [10] and a comprehensive model cytoplasm on the

nanosecond scale [11]. While encouraging and insightful, these large-scale simulations

have also highlighted that severe tradeoffs in size and time scales will likely persist

for the foreseeable future.

One way to expand the range of biomolecular simulations is to turn to coarse-

grained (CG) models, where the basic aim is to simplify the description of physical

interactions while retaining the essential physics of the system under study [12]. In-

golfsson et al. list four main factors that make CG models computationally fast:

reduction in the number of degrees of freedom, faster simulation dynamics, emphasis

on short-range interactions and the ability of using larger integration time steps [13].

To this list can be added that a CG representation of either the interaction potential

or the molecular geometry often opens up for alternative sampling schemes beyond

traditional molecular dynamics approaches, which can further speed up conforma-

tional sampling. Examples of such sampling schemes include activation-relaxation

kinetics [14], discrete molecular dynamics [15] and various Monte Carlo (MC)-based

techniques such as cluster moves [16].

The challenges of achieving representative conformational sampling of individual

biomolecular systems notwithstanding, many biologically motivated problems nat-

urally call for the investigation and comparison of molecular variants, e.g., deter-
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Figure 2.1: The two types of Monte Carlo updates in the multisequence Monte Carlo
algorithm.

mining the molecular mechanisms of specificity in protein-protein [17, 18] or protein-

nucleotide [19] interactions, or the role of mutations in molecular disease processes [20].

Another example is protein folding, where unique insight has been achieved by com-

paring sequences within and between protein families [21, 22]. In a situation with

extremely rapid growth of sequence information [23], it is of interest to explore ways

to efficiently sample multiple sequences in biomolecular simulations.

To this end, we consider in this work an MC-based algorithm that can calculate the

thermodynamics of multiple sequences in a single run and apply it to a coarse-grained

model for protein folding [24]. This multisequence (MS) method was originally de-

veloped in the context of homo- and heteropolymer simulations [25] and was later

adapted for the characterization of peptide-protein binding specificity [26, 27]. To

our knowledge, it has not been previously tested in realistic protein folding simu-

lations. The MS algorithm carries out a simulation in a generalized ensemble that

performs a random walk in sequence space. Hence, there are two main types of up-

dates: conformational updates r → rÍ and sequence updates s → sÍ. This strategy

is straightforward when r and s are “perpendicular” coordinates, as illustrated in

Fig.2.1, such that the potential energy of the model can be written in terms of two

independent variables, E(s, r).
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As a test application of the MS algorithm, we selected the phenomenon of protein

fold switching which recently was demonstrated in a handful of natural and engineered

proteins. These special proteins exhibit a unique ability to reversibly switch between

entirely different folds, with accompanying changes in secondary structure, hydropho-

bic core packing and overall shape [28]. The fold switching transitions found in natural

proteins typically play a functional role. For example, rare transitions to an alterna-

tive fold in the protein KaiB provide a crucial time delay mechanism in the circadian

clock cycle of cyanobacteria [29]. Fold switching can occur either spontaneously [30]

or be triggered by various signals including changes to solution conditions [31], subdo-

main detachment [32], ligand binding [33] and point mutations [34]. Computational

studies, using CG [35–38] or atomistic [39–41] models, have attempted to explain how

proteins can exhibit multiple folding funnels and how they are altered in response to

binding events or changes in sequence.

The discovery that proteins can be driven to switch folds through an accumula-

tion of point mutations, in particular, holds implications for protein evolution as it

suggests a simple mechanism of fold evolution [42]. Alexander et al. demonstrated

that the similarly sized but structurally distinct A (3α) and B (4β + α) domains of

protein G could, after extensive mutations leaving their respective folds undisturbed,

be triggered to switch folds by applying one additional mutation, Y45L, located at

the edge of the hydrophobic core in the B domain [34]. This remarkable discovery

suggests the possibility that the two domains might be evolutionary related despite

a lack of detectable similarity in either sequence or structure in wild-type protein

G [43], although this has yet to be proven. Moreover, it is unclear how common such

fold-to-fold transitions are and how they might occur in evolutionary processes [44].

In previous work [35, 36] Holzgräfe and Wallin showed that mutational paths with

abrupt fold switching exist between two other pairs of smaller protein folds within
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the framework of our CG model [24].

In demonstrating mutation-induced fold switching in our model we characterized

the folding of a set of 144 different model sequences with 16 amino acids. This set

(denoted here S16144) was constructed to sparsely span the sequence space between

two ideally designed sequences, A1 and N1, folding into an α-helix and a β-hairpin,

respectively. Here we use the set S16144 to validate the MS method and compare

its computational efficiency to a standard generalized-ensemble method [45, 46]. We

thereafter greatly enlarge S16144 to a set with 1,024 sequences as well as another set

of the same size spanning two 35-amino acid sequences, A2 and TN, that fold into

two-helical bundle and mixed α-β structures, respectively. Besides demonstrating

that the MS method can be applied to large numbers of sequences, the results allow

us to carry out a more systematic analysis of the biophysical properties of sequences

along mutational pathways connecting these two pairs of basic folds than has been

previously possible.

2.2 Theory

2.2.1 Generalized-ensemble algorithms and simulated tem-

pering

Conventional Metropolis Monte Carlo simulations of the canonical distribution is

problematic at low temperatures for many physical systems because simulations tend

to become trapped in local energy minima and hamper representative sampling of con-

figurational space. The basic idea of generalized-ensemble algorithms is to alleviate

this trapping problem by sampling states using a non-Boltzmann weight factor and/or

expand the state space with additional dynamical parameters [47] (for a recent his-
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torical account see Ref. 48). Generalized-ensemble methods that have been frequently

used for biomolecular simulations include simulated tempering (ST) [45, 46], replica

exchange [49], or parallel tempering [50], and metadynamics [51].

ST is a direct extension to the Metropolis algorithm in which the temperature T

becomes a dynamic parameter. In this way, frequent visits to high T allow simulations

to readily escape from local energy minima. The algorithm thus simulates the joint

probability distribution

P (m, r) = 1
Ẑ
e−βmE(r)+gm , (2.1)

where βm = 1/kBTm, {Tm}M
m=1 a set of temperatures and kB is Boltzmann’s constant.

The normalization constant in equation 2.1 is

Ẑ =
Ø

r

MØ
m=1

e−βmE(r)+gm , (2.2)

where the first sum is over all conformations r. The simulation parameters gm control

the marginal probability distribution

P (m) = 1
Ẑ

Ø
r

e−βmE(r)+gm , (2.3)

and must therefore be carefully chosen. A common and convenient choice is gm ≈

βmFm, where Fm is the free energy at temperature Tm. With this choice, P (m)

becomes approximately flat ensuring all temperatures are frequently visited.

2.2.2 Multisequence algorithm

The basic idea of the MS algorithm for biomolecular simulation is to let the sequence

s become a dynamic parameter rather than the temperature as in ST. A dynamic s

is technically feasible when the potential energy can be written as E(s, r), where s
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and r are independent variables. This is the case in our coarse-grained protein model

which has only backbone degrees of freedom. It can also be achieved in some more

detailed models [26,27].

Similarly to ST, the MS algorithm simulates the joint probability distribution

P (s, r) = 1
Z
e−βE(s,r)+h(s) , (2.4)

where

Z =
Ø
s∈S

Ø
r

e−βE(s,r)+h(s) (2.5)

and S is a set of pre-selected sequences, i.e., the sequences to which visits are allowed

during a simulation. The simulation parameters h(s), similar to the parameters gm in

ST, control the marginal distribution P (s) = Z−1 q
r e

−βE(s,r)+h(s) = Z−1e−βF (s)+h(s)

and a roughly flat P (s) can be achieved by choosing h(s) ≈ βF (s), where F (s) is the

free energy of sequence s at temperature T .

Two types of MC updates are required to sample from the distrubution in equa-

tion 2.4, ordinary conformational updates r → rÍ and sequence updates s → sÍ. The

acceptance probability for the latter becomes

Pacc(s → sÍ) = min[1, exp{−β∆E + ∆h}] , (2.6)

where ∆E = E(sÍ, r) − E(s, r) and ∆h = h(sÍ) − h(s).

Picking a new sequence sÍ in a sequence update s → sÍ can be done in several ways.

One possibility is to draw sÍ randomly from the set S, such than sÍ Ó= s. Alternatively,

a type of “mutational” move can be used where an amino acid position is first picked

and then assigned a new amino acid type. The selection of position and type would

have to be chosen such that sÍ does not end up outside S. In this work, we use the
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former update which is general and guarantees that ergodicity is fulfilled for any

S. Importantly, both updates fulfill detailed balance and therefore lead to the same

estimates of equilibrium quantities, such as native state stabilities, for the different

sequences in S.

2.3 Model and Methods

2.3.1 Coarse-grained 3-letter model for protein folding

All calculations were carried out using the coarse-grained model for protein folding

developed in Ref. 24. In this model, there are 3 different amino acid types: hydropho-

bic (h), polar (p) and turn-type (t). The backbone chain is represented atomistically

by the N, H, Cα, Hα1, CÍ and O atoms. By contrast, the sidechain represention is

simplified to a single enlarged Cβ atom, which is geometrically identical for h and p

types. The sidechain is absent for the t type which instead has an Hα2 atom. The t

type is therefore closely related to glycine. All bond lengths, bond angles, and peptide

plane angles (180◦) are held fixed. Hence, an N -amino acid chain conformation r can,

for any sequence s, therefore be described by the set of 2N backbone torsional angles

{φi, ψi}N
i=1.

This geometrical description is paired with a simplified but finely tuned energy

function with 4 terms: E = Eev + Eloc + Ehb + Ehp. The first two, Eev and Eloc,

represent excluded-volume effects and local electrostatic effects, respectively. The

hydrogen-bond energy, Ehb, represents directionally dependent interactions between

NH and CO groups and is necessary for secondary structure formation. Finally, the

“hydrophobicity” term, Ehp, implements pairwise Lennard-Jones-like interactions be-

tween the Cβ atoms of h amino acids which are necessary for driving chain collapse

during folding. Various model parameters, e.g., the strengths of hydrophobic attrac-
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tions and hydrogen bonding, were determined based on the ability of the model to

spontaneously fold a set of model sequences with 18-54 amino acids into structurally

diverse and thermodynamically stable native states with both β and α-structure. As

it turned out, this strategy made the model robust enough to fold sequences designed

to have mixed α and β structures.

2.3.2 Model sequences

Six of the model sequences studied in this work, A1, N1, R1, R2, A2, and TN, are

given in Table 2.1. In addition, we study two sequence sets S161024 and S351024 with

1,024 sequences each derived from the A1-N1 and A2-TN pairs, respectively, through

mutational combinations, as well as the set S16144 taken from Ref. 35.

Table 2.1: List of 6 model sequences of different lengths N studied in this work.

Name N Sequence
A1 16 pphpphhpphpphhpp
N1 16 phphphpttphphphp
R1 16 pphhphptthpphhpp
R2 16 ppphphhtthhphppp
A2 35 (A1)ttt(A1)
TN 35 (A1)ttt(N1)

2.3.3 Monte Carlo simulation parameters and updates

Both ST and MS simulations are carried out with two types of conformational updates

r → rÍ: (1) a global pivot move (20%) which randomly picks a φi angle or ψi angle

and assign a new value between −π and π; and (2) a semi-local move (80%) which

turns the φi and ψi-angles of 4 consecutive amino acids in a coordinated manner [52].
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In our MS simulations, sequence updates s → sÍ are carried out in the following

way. First, a new sequence sÍ is picked randomly from the set of pre-selected (allowed)

sequences S, such that sÍ Ó= s. This new sequence sÍ therefore differs from s in one or

more amino acid positions. Thereafter, the sidechains of the protein, which remains in

an unchanged (backbone) conformation r, is re-built according to the new sequence

sÍ. Practically this means that, at the position(s) where the amino acid type has

changed, the sidechain is altered according to the type change. For example, if p → t,

the Cβ atom is removed and replaced with an Hα2 atom or, if p → h, the Cβ remains

in place but its character is changed to hydrophobic. Finally, the change in total

energy ∆E is calculated and the accept-reject criterion in equation 2.6 is applied. If

rejected, the old state (s, r) is restored.

Table 2.2: List of simulations carried out in this work.

Runs Algorithm kBT MC steps/runa Sequences
32 ST 0.43–0.65 1 × 107 A1
32 ST 0.43–0.65 1 × 107 N1
32 ST 0.43–0.65 1 × 107 R1
32 ST 0.43–0.65 1 × 107 R2
32×8b MS 0.43–0.65 18 × 107 S16144

16 MS 0.43 5 × 109 S161024

16 MS 0.46 4 × 109 S351024

a Excludes a thermalization step with 107 MC steps/run.
b 32 runs per temperature at 8 different temperatures.

A sequence update is attempted every 1, 000 MC steps while temperature updates

m → mÍ are attempted every 100 steps. The computational cost for sequence updates

is somewhat higher than for temperature updates. The latter update does not require

any energy calculation and is thus extremely rapid. For the purpose of comparing

computational efficiencies of ST and MS, we therefore chose sequence updates to be
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Figure 2.2: (A) Example of an MS simulation of the sequence set S16144 carried out
at kBT = 0.43. The plot shows the MC evolution of the total potential energy E, the
sequence s (numbered 1–144), and the root-mean-square deviation (RMSD) calculated
against the representative fold IA (light blue) and fold IB (dark red) structures in
(B). Representative structures of folds (B) IA, IB, (C) IIA and IIB, chosen to be
the minimum-energy conformations found for the sequences A1, N1, A2 and TN,
respectively.

slightly less frequent than temperature updates while both are fairly frequent. All

simulations carried out in this work are summarized in Table 2.2.

2.3.4 Observables

Fold stabilities are calculated as in Ref. 36 and described briefly below. First we

define two structural similarity measures QIA and QIB for folds IA and IB (Fig.2.2B),

respectively, indicating the fraction of the fold-specific backbone-backbone hydrogen

bonds that have been formed. The fold IA-hydrogen bonds are (2,6), (3,7), (4,8),

(5,9), (6,10), (7,11), (8,12), (9,13), (10,14), (11,15) and the fold IB-bonds are (3,14),

(5,12), (7,10), (10,7), (12,5), (14,3), where (i,j) indicates a hydrogen bond between
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the CO group of amino acid i and the NH group of amino acid j. The stabilities

of folds IA and IB are defined as the probabilities PIA = P (QIA ≥ 0.8) and PIB =

P (QIB ≥ 0.8), respectively, i.e., the probability that at least 80% of the fold’s hydrogen

bonds are formed. PIA and PIB thus depend on both sequence s and temperature

T . For example, PIA = 0.875 ± 0.003 for A1 and PIB = 0.785 ± 0.008 for N1 at

kBT = 0.43. Structural similarity measures for 35-amino acid folds IIA and IIB

are defined as QIIA = (Q1−16
IA + Q20−35

IA + Qtert)/3 and QIIB = (Q1−16
IA + Q20−35

IB +

Qtert)/3, respectively, where superscripts on QIA and QIB indicate over which amino

acid positions those measures are applied to within the longer 35 amino acid sequences

and Qtert is a measure that counts the number of Cβ-Cβ contacts between the two

secondary structure elements of these folds. In analogy with PIA and PIB, we define

the stabilities of folds IIA and IIB as PIIA = P (QIIA ≥ 0.8) and PIIB = P (QIIB ≥ 0.8),

respectively. The root-mean-square-deviation, RMSD, is calculated over all Cα atoms.

2.4 Results

2.4.1 Computational efficiency

We start by applying the MS algorithm to the set S16144 across a range of temperatures

T (Table 2.2). Two of the sequences in S16144 are A1 and N1 (Table 2.1) which fold into

stable α-helix and β-hairpin structures, respectively, as shown in Fig.2.2B. Because

A1 and N1 differ at 10 positions, 10 consecutive point mutations can transform A1

into N1, and vice versa. The binary sequence space between A1 and N1 in which any

combination of these mutations have been carried out, therefore contains 210 = 1, 024

sequences. The 144 sequences in S16144 were selected from this binary space with the

constraints that the total number of hydrophobic amino acids are not too high and

that they are not too unevenly distributed along the sequence.
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Figure 2.2 illustrates a typical MS simulation trajectory carried out at the lowest

studied temperature which is below the folding temperature of both A1 and N1 [35,36].

From the MC evolution of the total energy E, sequence index s, and RMSD values

from the representative structures in Fig.2.2B, it is evident that visits to various

sequences drive transitions into a range of structural states. In particular, there

are frequent visits to α-helix and β-hairpin structures and transitions between them

are accompanied by a shift in which sequences are preferably visited. For example,

visits to high s-indices, including N1 with index 144, tend to coincide with formation

of β-hairpin structures as required to generate correct equilibrium conformational

ensembles.

One might have suspected that the MS algorithm would be hampered by poor

acceptance rates for sequence updates. However, this is not the case in our model.

We carry out updates s → sÍ by picking a new random sequence sÍ Ó= s from the set

of allowed sequences. The (average) acceptance rate depends on both T and the step

in sequence space ∆h, i.e., the number of amino acid positions changed, as shown

in Fig.2.3. At the lowest T and highest ∆h, acceptance rates are only around 0.1-

0.2. However, for most other T and ∆h the overall acceptance rates are substantially

higher and often above the oft-quoted rule-of-thumb value 0.25 [53] (Fig.2.3B). An

increased acceptance rate can easily be achieved by restricting proposed updates such

that ∆h ≤ ∆hmax, where ∆hmax is a maximum step size, which might be necessary

for longer chains. For example, ∆hmax = 1 would be equivalent to applying only

a “mutational” update, i.e., picking a random (allowed) position and changing the

amino acid type at that position.

We now compare the results from our MS calculations with simulated tempering

(ST) simulations carried out on 4 of the 144 sequences, namely A1 and N1 and two

random sequences, R1 and R2, chosen at distances h = 4 and h = 6 from A1,
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Figure 2.3: Acceptance rates for s → sÍ updates in MS simulations of the S16144
sequence set as a function of (A) the number of changed amino acid positions ∆h and
(B) temperature T . Acceptance rates for 3 different T ’s are shown in (A).

respectively (Table 2.1). While ST provides the thermodynamics of a given sequence

across a range of T in a single run, an MS simulation provides the thermodynamics

of all 144 sequences at one T . We adjust the simulation lengths for ST and MS runs

such that roughly the same number of sampled conformations are obtained for each

s and T combination, thus ensuring that similar computational resources are used

for the two algorithms (Table 2.2). We first validate the MS algorithm by comparing

the average total energy, éEê, calculated for these 4 sequences with the two different

methods (Fig.2.4). The two sets of results are entirely consistent showing that, for

a given s and T , the MS and ST algorithms indeed sample the same (Boltzmann)

distribution.

As a way to assess conformational sampling efficiency, we compare in Fig.2.5 the

statistical error, σéEê, of the average energy éEê for the 4 sequences obtained using ST

and MS, respectively. Because approximately the same number of sampled conforma-

tions were obtained for each combination of s and T , we compare the statistical errors

directly. At the highest studied T , which is well above the folding temperature of both
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Figure 2.4: Comparison of the average energy, éEê, as calculated at 8 different tem-
peratures by the ST and MS algorithms for the 4 model sequences (A) A1, (B) N1,
(C) R1, and (D) R2. Statistical 1σ errors, estimated from 32 independent runs for
each method (Table 2.2), are shown but are smaller than the plot symbols for all
points.

A1 and N1, the two algorithms give almost identical statistical errors. This can be

understood by noting that at high-T the free-energy landscape is relatively smooth

and conformational space requires little difficulty to sample. The benefit of adding a

dynamic parameter, whether s or T , is apparently minimal under these conditions.

However, at lower T , the σéEê values from MS is often smaller than those from ST and
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Figure 2.5: Comparing sampling efficiencies of the MS and ST algorithms. Statistical
errors σéEê of the average total energy éEê obtained for the sequences (A) A1, (B)
N1, (C) R1 and (D) R2 (Table 2.1) at different temperatures T . Simulation lengths
in the two methods are adjusted such that the number of conformations sampled per
sequence and temperature is roughly the same.

never significantly higher. For example, at the lowest T , the precision in the estimate

of éEê is roughly twice as high in MS than ST for A1 and R1, and roughly the same

for N1 and R2.
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Figure 2.6: Networks of sequences connecting folds IA and IB (top) and folds IIA and IIB (bottom). Each node represents
a stable sequence (Ptot ≥ Pcut where Pcut = 0.50) that folds into either IA or IIA (light blue), IB or IIB (dark red), or is
classified as bistable (B > 0.5, black). A line between two nodes indicates that the sequences differ at only one position.
Graph created using the tool Graphviz [54] obtained from www.graphviz.org.
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2.4.2 Exploring sequence space: IA/IB and IIA/IIB fold con-

nectivities

We now turn to the full binary sequence sets S161024 and S351024 with 1,024 sequences

each. By applying the MS method to these two sets (Table 2.2), we determine the low-

T thermodynamic behavior of each included sequence. In particular, we calculate the

stabilities of folds IA and IB, PIA and PIB, for all sequences in S161024 and the stabilities

of folds IIA and IIB, PIIA and PIIB, for all sequences in S351024 (see Methods). The

relative statistical errors on these quantities vary but are only a few percent at the

most, despite the large number of sequences included.

Having calculated these fold stabilities, we are in a position to determine if there

are pathways in sequence space that lead to abrupt IA-IB or IIA-IIB fold changes,

i.e., paths that do not pass through any unstable intermediate sequence. To this end,

we construct graphs in which each stable sequence is represented by a node and any

two nodes are connected if their sequences differ at a single amino acid position. To

determine if a sequence is stable we use the criterion Ptot > Pcut, where Ptot = PIA+PIB

and PIIA + PIIB for the IA-IB and IIA-IIB fold pairs, respectively; Ptot thus indicates

the total stability of a sequence across the two competing folds. The precise network

depends, of course, on the cut-off value Pcut and a higher Pcut generally means a

selection of more stable pathways.

Fig.2.6 illustrates the networks obtained with Pcut = 0.50 showing that both the

IA-IB and IIA-IIB fold pairs are connected in sequence space at this stability thresh-

old. A precise analysis shows that there are 516,972 viable IA-IB paths and 57,912

viable IIA-IIB paths. These paths represent 14.2 % and 1.6 % of all possible paths,

respectively, because there are a total of 10! = 3, 628, 800 possible paths between start

and end points in both cases. Hence, folds IA and IB are rather highly connected in

45



our model for Pcut = 0.50. For Pcut = 0.60, the numbers are 104,640 paths (2.9%)

for IA-IB and 22,512 (0.6%) paths for IIA-IIB. We find that there are no possible

IA-to-IB or IIA-to-IIB paths when Pcut ≥ 0.74 and ≥ 0.66, respectively.

2.4.3 Biophysical properties of fold-to-fold mutational path-

ways

An apparently general characteristic of designed and natural proteins that exhibit

mutation-induced fold switching is a reduced stability near the switch point [34, 37,

38, 40, 43]. Our model proteins exhibit a similar trend. Fig.2.7A and B show the

average total stability Ptot for sequences found at different Hamming distances h

from the starting point. Intermediate sequences are less stable than sequences at

distances h = 0 (i.e. A1 or A2) and h = 10 (i.e. N1 or TN), although there are large

variations between sequences as indicated by the upper and lower bounds. There

is nonetheless a clear statistical trend that sequences become gradually less stable as

successive mutations are applied to any of the 4 start and end points until a minimum

is reached.

However, the smooth stability trends in Fig.2.7A and B belie the real character of

the individual mutational pathways which tend to exhibit an abrupt switch between

the two folds. To see this and to further examine the character of the fold transitions

in our model, we make a distinction between two types of stable sequences: those

that fold into a single unique fold, thus behaving as classical proteins, and those that

display substantial stabilities of both folds. Such “bistable” sequences are interesting

from a biophysical perspective in that they are able to fold into two alternative folds.

Indeed, bistable sequences have been proposed to play a role in the evolution of new

protein folds [55]. We consider a sequence to be bistable if B > 0.5, where B is a
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Figure 2.7: Stability properties of mutational pathways. The total stability Ptot as
a function of the distance h from A1 averaged over all (A) IA-IB and (B) IIA-IIB
mutational paths obtained with Pcut = 0.50. Error bars indicate maximum and
minimum Ptot values. The distribution of switch lengths Ls for the (C) IA-IB and (D)
IIA-IIB mutational paths (Pcut = 0.50). C and D insets: Average switch length éLsê
across all paths as a function of Pcut. Scatter plots of Ptot versus bistability B for all
sequences in (E) S161024 and (F) S351024, where B = 1−∆P/Ptot and ∆P = |PIA−PIB|
or |PIIA − PIIB|.

bistability measure (Fig.2.7 legend). In principle, a fold transition can then occur

directly between two classical proteins with unique native folds, or it can proceed via
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one or more intermediate bistable sequences which populate both folds. We define

the switch length of a mutational pathway Ls = 2 + nB, where nB is the number

of bistable sequences in between the two classical sequences that define the switch

point. Hence, a path with Ls = 2 accomplishes a fold switch in a single mutational

step without going through a bistable point. From the distributions of Ls in Fig.2.7C

and D, taken over all pathways with Pcut = 0.50, it can be seen that fold switching

along individual pathways are typically completed in only 1-2 mutations and a single

step is often sufficient to switch between the IA and IB folds. Hence, fold switching

is typically abrupt and, for Pcut = 0.5, it is fairly common that viable pathways pass

through one or two bistable sequences.

Interestingly, switching between folds IA and IB through one or more bistable se-

quences become less and less frequent as selections for more stable pathways are made.

This can be seen from the decrease in éLsê as a function of Pcut (Fig.2.7C(inset)). For

Pcut ≥ 0.70, there is no longer any remaining path between the α-helix and β-hairpin

that passes through a bistable sequence because éLsê = 2. An underlying reason for

the occurrence of sharper fold switches for more stable mutational pathways is appar-

ent from a comparison between Ptot and B across all sequences in S161024. As shown in

Fig.2.7E, sequences with the highest Ptot tend to exhibit very little bistability. Hence,

highly stable paths are therefore forced to go through abrupt switch points where they

transition directly between folds in a single step. The situation for the IIA-IIB fold

pair is more complicated. We find that, just as for S161024, sequences in S351024 follow

the trend that the highest Ptot values occur for only classical, low-B proteins. One

might therefore expect that selection of more stable IIA-IIB paths would decrease

éLsê, however, this is not the case as such abrupt switch points between the IIA and

IIB are not available for Pcut ≥ 0.50 (cf. Fig.2.6 bottom). As a result, bistable se-

quences do play a crucial role in bridging the IIA and IIB folds, although passing
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though these sequences lead to additional reduction in stability at the switch point.

2.5 Discussion

We have evaluated a biomolecular simulation algorithm that works by making the

biological sequence a dynamic parameter. As a test, we applied it on a CG model

for protein folding. The results indicate that there are two main benefits of this

approach. Firstly, it provides a convenient way to sample the canonical distributions

of large numbers of sequences in a single run and, secondly, it enhances the sampling

of conformational space meaning it can be applied directly to low temperatures. The

conformational sampling efficiency can be assessed from the comparison with ST.

Although there is no single “fair” way to compare the two methods, we chose as

a measure of efficiency the statistical error of the total energy, σéEê, obtained with

roughly the same computational cost per temperature and sequence. At the highest

studied temperatures, we find that the statistical errors σéEê are basically the same.

This finding is not unexpected because conformational sampling of short polymers at

high T does not involve crossing any major energy barriers. As a result, successively

sampled conformations for a given combination of sequence s and temperature T , are

likely uncorrelated in both methods which leads to similar σéEê values.

At lower temperatures, we find that the MS simulations often yields significantly

smaller σéEê than ST simulations. It is notable that this acceleration in conformational

sampling vis-á-vis ST is achieved despite the simulations being carried out at constant

T . Therefore, rather than promoting escape from local minima by visits to higher T ,

as in ST [45, 46] or temperature replica-exchange [49], MS simulations must escape

the minima occurring for one sequence through visits to other sequences. How this

process works can be envisioned by considering an MS simulation that is visiting a
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sequence s and is trapped in a local minimum, requiring that a high free-energy barrier

is overcome for escape. The trapped state could be, e.g., a compact β-sheet rich state

with a particular register. Eventually, sequence updates will carry the simulation

to other sequences ŝ while it conformationally still remains in the trapped state.

However, the free energy barrier of escape might be substantially lower for ŝ than for

s, or the barrier may even be altogether absent if the trapped state is unstable for ŝ,

leading to rapid escape from the minimum. The above reasoning also implies that the

performance of the MS algorithm likely depends on the size of the sequence set S as

well as the conformational properties of the sequences. Specifically, the performance

of MS simulations of proteins at low T may benefit from the inclusion of at least a

few sequences with poor stability properties, such that partial unfolding of the chain

is regularly triggered and thus promoting transitions to new conformational states.

Individual protein sequences that exhibit spontaneous transitions between widely

different competing conformational states, such as fold switching proteins, are espe-

cially challenging to molecular simulation methods. Representative sampling in such

cases requires multiple transitions between highly different states, which can be a slow

process. This problem has been addressed by using Hamiltonian replica-exchange

techniques to couple Gō-like terms, i.e., energy terms with an artificial bias towards a

given structure, with a physical force field [56–58]. This way exchange moves “feed”

diverse conformations into the replica corresponding to the physical force field and

enhance sampling [58]. We did not specifically study sampling efficiency for sequences

exhibiting competing states, such as bistable sequences. It appears likely, however,

that a very similar type of “feeding” of conformations would take place in MS sim-

ulations although the coupling occurs instead with other sequences rather than with

Gō-type terms.

We emphasize that the MS method should not be seen as a general technique
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to speed up conformational sampling. However, our results indicate that for CG

models that permit sequence updates to be carried out as a simple Metropolis step

and when visits to higher T is unwanted (or unnecessary), our method can be a highly

efficient way to sample the equilibrium behavior of many sequences. This opens up

the posibility of using MS for various applications, such as exploring sequence effects

on the conformational properties of disordered [59] or denatured [60] proteins, or as a

tool in efforts to combine population genetics and molecular simulations [61]. While

applied to proteins in this work, we note that the theoretical framework of the MS

algorithm is equally valid for other bio-macromolecules, including DNA and RNA.

The ability to promote conformational sampling without resorting to an increase in

T may make the method useful in simulations of biomolecules in ordered phases,

such as lipid bilayers or double-stranded DNA, where escape from local minima can

be especially challenging [62, 63] and elevated T is typically avoided in simulations

because it may lead to unwanted perturbations or unraveling of the basic underlying

structure.

2.6 Conclusion

We have evaluated an algorithm for biomolecular simulations that allows the ther-

modynamics of multiple sequences to be calculated in a single run. We applied the

algorithm to protein folding and showed that the thermodynamic behavior of more

than 1,000 amino acid sequences with up to 35 amino acids could be determined in an

intermediate-resolution CG model. The method performs a random walk in sequence

space which is especially useful at low temperature as it promotes escape from local

minima present in the free energy landscapes of individual sequences. The method

might be suitable for CG simulations of various other biomolecular systems, such as
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peptides in phospholipid bilayers, where sampling at elevated temperatures is not

desirable.
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Chapter 3
Escherichia coli’s RfaH studied by all-atom
Monte Carlo simulation

Abstract

RfaH is a compact two-domain protein of the bacteria Escherichia coli . Its C-terminal

domain (CTD) has been shown experimentally to be able to undergo a complete

conformational change from an α-helix bundle to a β-barrel structure. The α-helix

bundle to β-barrel fold switch may account for the observed dual role of RfaH, whereby

it regulates transcription as well as enhances translation. We employ all-atom Monte

Carlo simulations to investigate the stabilities of the two structural forms of RfaH

and the character of transition between them. Our simulations reveal that the stand-

alone α-helix CTD is relatively unstable. However, it is stabilized by interactions with

the N-terminal domain (NTD). Moreover, we observe the stability of the stand-alone

β-barrel conformation to be always higher than the α-helix bundle structure. Thus,

we conclude that the α-helix bundle to β-barrel fold switch of the CTD in RfaH is

thermodynamically favored in our model.
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3.1 Introduction

Under physiological conditions, most proteins fold into a unique and stable three-

dimensional conformation, the so-called native structure [1]. The native conformation

is widely believed to determine a single specific biological function. However, some

moonlighting proteins [2–5] like NusE/S10 [6,7] are able to perform multiple functions,

while remaining in the same fold, by utilizing different interfaces, through domain

separation or oligomerization [4,8]. Presumably, however, remaining in the same fold

puts limits on the range of functions that can be carried out.

Recently, a new class of proteins has been discovered with remarkable ability to

switch reversibly between two or more folds, giving the capability to further extend

functional abilities. For example lymphotactin (Ltn) [9] exists in two forms almost

equally populated under physiological conditions. One form is a monomeric chemokine

fold (Ltn10) and the other a dimeric β-sandwich fold (Ltn40) [9,10]. While the Ltn10

fold acts as an in vivo agonist of the G-protein coupled XCR1 receptor, the Ltn40

fold binds glycosaminoglycans [11]. Other examples of proteins that undergo dramatic

structural rearrangements include chloride intracellular channel1 (CLIC1) [12], Mad2

spindle checkpoint protein [13,14], Aquifex aeolicus ribosomal protein (L20) [15] and

RfaH [16].

RfaH (PDB-ID: 2OUG, Fig.3.1A) belongs to the NusG protein family [17]. This

two-domain transcription antiterminator forms a compact structure with closely in-

terfacing N-terminal (NTD) and C-terminal (CTD) domains, which are connected by

a flexible linker. This is contrary to the general transcription factor NusG, where the

CTD does not interface with the NTD at all. Expectedly, being of the same family,

both Escherichia coli (E. coli) paralogs RfaH and NusG have a similar NTD con-

formation, which interact identically with ribonucleic acid polymerase (RNAP) [16];

the enzyme responsible for transcription of deoxyribonucleic acid (DNA) to RNA.
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Figure 3.1: Crystal structures. Crystal structures of (A) full-length RfaH (NTD
in gray, CTD in green, linker in dark orange), and the CTD of RfaH in (B) α-
helix bundle (helix 1 [short], helix 2 [long]) and (C) β-barrel conformations. Missing
residues including those of the linker were built with Modeller [18] and the structures
were rendered using UCSF Chimera [19].

RfaH-CTD has an α-helix bundle crystal structure when interacting with the NTD

resulting in the blockage of the RNAP interaction surface.

Despite having approximately 17% identical amino acid sequences [20], the CTDs

of RfaH and NusG have radically different structures. While RfaH-CTD is a two-helix

bundle, NusG-CTD is a β-barrel. However, it has been shown experimentally [16]

that upon being released from the NTD, thereby allowing the interaction of RNAP,

RfaH-CTD is able to transmogrify from an α-helix bundle (Fig.3.1B) to a β-barrel

structure (PDB-ID: 2LCL, Fig.3.1C). Also, it is suggested that the binding of RfaH to

its DNA target operon polarity suppressor (ops) DNA, triggers the RfaH-CTD release

in vivo [21,22]. In their experiments using solution nuclear magnetic resonance (NMR)

spectroscopy, Burmann et al. [16] observed that this β-barrel structure is, essentially,

identical to NusG-CTD.
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The transition of RfaH-CTD from all-α to all-β structure is essential to the func-

tions of RfaH [23]. When RfaH-CTD adopts the β-barrel conformation, which requires

it to be unbundled from the NTD, it enhances translation by recruiting a ribosomal

protein S10 (RPS10) to a messenger RNA (mRNA) that lacks a ribosome binding

site [24]. Therefore, the fold switch from an α-helix bundle to a β-barrel structure

transforms the transcription factor RfaH into a translation factor [16]. That is to say,

not only is RfaH able to regulate transcription but it is also capable of enhancing

translation at the same time. This complete conformational change of the CTD in

RfaH, equipping it to perform different functions, makes it a transformer protein [20].

Several computational studies [23–29] have been done previously on RfaH using

a variety of molecular dynamics (MD) simulations including targeted MD, steered

MD, replica exchange MD, et cetera. A common observation with all these methods

suggests that the β-barrel conformation of RfaH-CTD is more stable than its α-helical

bundle structure.

Here, we take a different simulation approach by employing Monte Carlo (MC)

method armed with an atomistic protein model [30]. To our knowledge, this is the

first MC simulation of the RfaH protein. We do this curiously, first, to see if the

result from our MC simulations corroborate previous MD simulation results, in which

case we provide additional supporting data from a different approach. Secondly, we

potentially seek new insights into (I) the thermal stability of (a) the whole RfaH

protein with particular attention to its CTD; (b) the isolated α-helix bundle (αCTD)

and (c) the stand-alone β-barrel (βCTD) conformations, (II) the folding and unfolding

dynamics of αCTD and βCTD, and (III) the αCTD → βCTD fold switching tendency

in RfaH.
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3.2 Methods

3.2.1 Experimental structures

The Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank

(PDB) (www.rcsb.org) [31] was used to obtain the crystal structures of RfaH (PDB-

ID: 2OUG [32], Fig.3.1A) and its isolated β-barrel C-terminal domain (βCTD) (PDB-

ID: 2LCL [16], Fig.3.1C). The missing residues Pro101 - Pro112 and Thr157 - Leu162,

due to the intrinsic disorder of these segments in 2OUG, were modeled using protein

structure modeling program Modeller [18] integrated into the molecular graphics pro-

gram UCSF Chimera [19].

3.2.2 Computational method

All simulations were done using the software package PROFASI (Protein Folding and

Agrregation Simulator [30]) implementing the all-atom protein model described in

Ref.33. A single model was first selected from each PDB file and then regularized

to satisfy the constraints (such as the bond length and bond angle values) imposed

by PROFASI. Moreover, regularization helps to identify the best approximation of

the crystal structures which correspond to the minimum of PROFASI’s force fields.

We used two different types conformational updates: rotamer (ROT) and Biased

Gaussian Step (BGS). ROT acts on side chain degrees of freedom (DOFs) alone while

BGS change backbone DOFs by taking up to 8 consecutive torsion angles and making

a coordinated rotation to execute a semi-local deformation of the protein chain.

3.2.3 Stability properties

To study stability properties, we performed 80 Basic Monte Carlo (MC) simula-

tions each for the full-length RfaH, stand-alone α-helix bundle (αCTD) and β-barrel
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Figure 3.2: The amino acid sequence of full-length RfaH (PDB-ID: 2OUG; color code:
α-helix (green), β-sheet (red), unstructured regions (dark orange), numbers (black)
to guide in locating the positions of residues on the chain).

(βCTD) C-terminal domain conformations started from the respective (regularized)

native structures. Each 80 MC simulations consists of 10 simulations each for eight

different temperatures. Every simulation was 106 MC cycles with 100 MC steps per

cycle. We included an observable to measure the Cα root mean square deviation

(RMSD) of the current conformation from the starting structure. In order to avoid

unrealistic global conformational changes, we turned off the pivot updates and al-

lowed only ROT and BGS MC moves for all simulations. We set the probability of

the conformational updates to 70% and 30% for ROT and BGS, respectively.

3.3 Results

3.3.1 Full-length RfaH

RfaH exists in its native state as a two-domain protein with NTD (residue Met1 -

Lys100) and CTD (residue Gly113 - Leu162) linked together by an unstructured loop

(residue Pro100 - Pro112). The amino acid sequence of full-length RfaH is shown in

Fig.3.2. In order to study stability, we performed a set of unfolding simulations started

from the X-ray structure of RfaH (Fig.3.1A) at a range of temperatures between 273-

340K.

We observe substantial variations between the different trajectories even at the
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Figure 3.3: Stability of full-length RfaH. Temporal dependence of the average RMSD
of conformations assumed during 10 different simulations started from X-ray structure
of RfaH at (A) 273K and (B) 300K. The ensemble average of (C) α-helix content
profile, and (D) β-sheet content profile of amino acids in full-length RfaH over the
range of temperatures; 273K (red), 300K (blue), 310K (green), 320K (yellow), 340K
(magenta).

same temperature. For this reason, to assess stability of the native structure of RfaH,

we consider the average RMSD taken over the 10 runs at each temperature. Figure

3.3A and B show éRMSDê versus Monte Carlo step for full-length RfaH at 273 and

300K respectively. At 273K, both the NTD and CTD of RfaH remain close to the

native structure with éRMSDê below 4Å and 6Å, respectively and RfaH is thus relative

stable for the entire duration of simulation. However, Fig.3.3B shows that there is a

slow but gradual unfolding of RfaH at 300K. Most of this loss of structure occur in

the CTD of RfaH, while its NTD remains close to the native structure, as shown by

average RMSD calculated over the NTD and CTD, respectively.
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Figure 3.4: Stability of the α-helical bundle and β-barrel structural forms of isolated
RfaH-CTD. Time evolution of average RMSD for simulations started with α-helical
bundle (green), and β-barrel (red) populations at (A) 273K and (B) 300K. The
ensemble average is over 10 different all-atom Monte Carlo simulations, showing that
αCTD is less stable than βCTD.

Figure 3.3C and D show the result of the secondary structure content measure-

ment. The average α-helix content (αcont) and β-sheet content (βcont) for each amino

acid residue were determined using the secondary structure assignment program DSSP

[34, 35]. α-helices have high αcont and low βcont profiles while β-sheets have low αcont

and high βcont profiles. Over the range of temperatures, the secondary structure of

NTD is well conserved even at higher temperatures, while the α-helices of the CTD

“melt” at lower temperatures. Both helices [helix 1 (Ile118 - Thr131) and helix 2

(Gly135 - Lys155)], however, appear to have similar stability.

3.3.2 Isolated C-terminal domain

We now turn our attention to the isolated C-terminal domain of RfaH. As for the full-

length protein, we assess stability by performing a set of unfolding simulations started

from both the α-helical bundle (Fig.3.1B) and β-barrel (Fig.3.1C) X-ray structures

at different temperatures. The average RMSD (Fig.3.4) shows, clearly, that βCTD

is more stable than αCTD with the former having a lower éRMSDê values than the
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Figure 3.5: Secondary structure content of the isolated CTD. Shown are the α-helix
(αcont) and β-sheet (βcont) contents as a function of chain position from simulations
started in the α-helix bundle (A,B) and β-barrel (C,D) forms. Results are over the
range of temperatures; 273K (red), 300K (blue), 310K (green), 320K (yellow), 340K
(magenta). Residue numbers correspond to those on the full-length RfaH.

latter. For instance, at 273K, the βCTD structural form is relatively stable with

éRMSDê < 4Å for the entire duration of simulation (Fig.3.4A). In contrast, the αCTD

structural form is highly unstable with éRMSDê > 5Å, after only a few Monte Carlo

cycles. Result at 300K give a similar picture (Fig.3.4B).

To determine the relative stabilities between different structural elements in αCTD

and βCTD, we plot the average α-helix and β-sheet contents at different positions

along the chain, as shown in Fig.3.5.

The α-helix profile for αCTD (Fig.3.5A)shows that, without the inter-domain

interaction with the NTD, the α-helices lose much of their stabilities. In particular,
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helix 1 becomes unstable in the isolated fragment. For example, at 320K, the α-helical

content of helix 1 is only around ≈ 0.1 while it is > 0.5 in the full-length RfaH at the

same temperature.

Both helices have a stronger tendency to lose stability as temperature increases

in the isolated CTD than in the full-length protein. However, this tendency is much

stronger for helix 1, which not only become less stable but loses most of its helicity

even at 273K (Fig.3.5A). This observation of higher stability for helix 2 compared to

helix 1 is in agreement with experimental studies by Burmann et al. [16] where they

used solution nuclear magnetic resonance (NMR). In contrast, helix 1 and indeed the

entire CTD is still very much in its folded state at low temperatures in the presence

of NTD interactions (Fig.3.3C). Our results thus suggest that the NTD-CTD inter-

domain tertiary interactions are necessary to stabilize the CTD in RfaH especially its

helix 1. The β-sheet content remains overall quite low, however, some tendencies for

β-sheet formation can be seen, especially at 320K (Fig.3.5B).

If instead we begin our simulations with βCTD population, Fig.3.5D when com-

pared with Fig.3.5A shows that the CTD, by surviving higher temperature in this

all-β conformation, is thermally more stable than when it assumes αCTD configura-

tion. A closer look at Fig.3.5D reveals an especially high stability of the β-hairpin

formed by residue Arg138 - Lys155) and lesser stability of strand 5 (Phe159 - Lys161)

in βCTD.

3.4 Discussion

We have used all-atom Monte Carlo (MC) simulations to investigate stability prop-

erties of Escherichia coli’s RfaH, including the full-length protein and its C-terminal

domain (CTD) both in the α-helix bundle (αCTD) as well as in the β-barrel (βCTD)
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configurations. The use of MC sampling and an effective energy function [33], has

allowed us to carry out multiple simulations under identical conditions, such that av-

erage behavior can be assessed. To monitor stability, we computed two measures; (I)

the secondary structural content profiles, αcont and βcont, and (II) the root mean square

deviation (RMSD) from the starting X-ray structures in our simulations. The results

for full-length RfaH revealed that its double α-helical CTD is less stable than the N-

terminal domain (NTD) in agreement with experimental observation [16]. Nonethe-

less, we found that the NTD-CTD inter-domain tertiary interactions give some stabil-

ity to the αCTD especially at low temperature. In particular, we observed that helix

1 gains stability from the interactions between CTD and NTD. In the absence of the

NTD, helix 1 of αCTD is especially unstable. This is contrary to the observation made

by Xiong et al. [23] using coarse-grained model, in which the melting temperatures

for both helices in the isolated αCTD segment is similar, implying similar stabilities.

However, Jeevan et al. [24] and Li et al. [25], independently, reached similar conclu-

sion to ours using biased all-atom molecular dynamics simulations. Interestingly, the

relatively higher stabilization of helix 1 by NTD occurs despite both helices having

comparable interactions with the NTD [28].

In our αCTD simulations, it is not surprising that little β-sheet structure is formed

at low T , as the protein remains locked into α-helical conformations (Fig.3.5B), and at

high T , when the protein is expected to globally unfold. Interestingly, however, there

is a striking similarity of the β-sheet profiles at intermediate temperature T = 320K

between the αCTD and βCTD. This similarity indicates that some level of convergence

has been achieved in our simulations, even though βcont remains higher for the βCTD

simulations (cf. Fig.3.5B and D).

Although Jeevan et al. [24], Li et al. [25] and Xiong et al. [23] have all previ-

ously concluded that βCTD is more stable than αCTD using different measures and
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analyses including free energy surface, hydrogen bonding, melting temperature and

cooperativity respectively. We show this by simple observation of the time evolution

of the RMSD as well as the secondary structural content profiles from separate unfold-

ing simulations of each conformation. As shown by Balasco et al. [28], the leucine-rich

segments (residues Leu141 - Leu145) in helix 2 may account for its higher stability.

Indeed, we find this segment to be especially stable in our simulations (Fig.3.5A).

The stability of full-length RfaH at low temperature in the face of highly unstable

stand-alone αCTD suggests that the NTD-CTD inter-domain interactions stabilize

the alpha-helix conformation of RfaH-CTD. At say, 300K, it is observed that the

RMSD is still < 5Å upto 6 × 105 MC cycles for βCTD (Fig.3.4B) unlike αCTD

which is immediately destabilized. Interestingly, the full-length RfaH protein is al-

most immediately destabilized as well at 300K (Fig.3.3B). Because we know from our

previous analysis of the αcont and βcont that the RfaH-NTD remains close to its native

conformation, the sudden increase in RMSD for RfaH from ≈ 2Å to ≈ 5Å almost im-

mediately starting the simulation indicates that RfaH-CTD is only marginally stable

even while in close proximity to the NTD and interacting with it.

3.5 Conclusion

We have employed all-atom Monte Carlo simulations to investigate the stability of the

naturally occurring protein RfaH. Our results revealed that not only is RfaH-CTD less

stable than the N-terminal domain (NTD) but it is (marginally) stabilized by it via the

NTD-CTD tertiary inter-domain interactions. We also found both helices in the CTD

to have similar stability which is disrupted in the absence of the NTD interactions

with helix 1 becoming considerably less stable than helix 2. The unfolding times

observed from the average RMSD time evolution indicated that βCTD conformation
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is always more stable than αCTD structure even with the stabilizing force of the

NTD. The relatively low stability of αCTD indicates that it may be primed to switch

into the βCTD structural form upon disruption of the stabilizing interface with the

NTD.
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Chapter 4

Summary and outlook

4.1 Putting it all together

While the amino acid sequence of a globular protein encodes its native structure, the

native structure and associated structural fluctuations of such globular protein are

directly responsible for its biological function. Therefore, understanding the effects of

mutations in protein sequence is of fundamental importance to the study of protein

structure evolution. By extension, the evolution of novel structures is an important

means by which new functions may emerge. Although many mutations leave a protein

fold unchanged, studies [1, 2] show that a single amino acid substitution can lead to

large conformational changes in the native state. The underlying physics of this

switching behavior is, however, not yet understood.

The foregoing necessitated us to consider a coarse-grained model for protein fold-

ing which provides a framework within which the relationship between sequence and

native structure can be explored. Moreover, we developed a generalized-ensemble

algorithm for coarse-grained biomolecular simulations, which allowed a systematic

study, in large-sequence space, of how novel protein fold may arise from preexisting
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folds via series of point mutations. To this end, we characterized the folding of a set of

1024 model sequences (S161024) with 3 amino acid types and another set of the same

size (S351024) with each sequence having 16 amino acids in the former and 35 amino

acids in the latter. While S161024 was constructed to sparsely span the sequence space

between two ideally designed sequences, A1 and N1, folding into an α-helix (IA) and

a β-hairpin (IB), respectively, S351024 span the sequence space between A2 and TN,

that fold into two-helical bundle (IIA) and mixed α-β (IIB) structures, respectively.

Our results [3] show that intermediate sequences along mutational pathways be-

tween two distinct folds are less stable. Particularly, there is, on the average, a

minimum stability near the switch points in agreement with experimental and theo-

retical observations of fold switching in natural and designed proteins. By considering

bistable sequences that are able to populate two different folds simultaneously with

varying probabilities, we found that, fold switching along individual mutational path-

ways can either be abrupt, whereby switching occurs directly from one fold to another,

or requires one or more bistable sequences. Notably, it was observed that the selec-

tion of more stable mutational pathways is accompanied by less frequent bistable

sequences in the IA-IB fold pair, which generally is not the case for the IIA-IIB fold

pair. In fact, highly stable pathways indicated that fold switching between dissimilar

folds are abrupt. In contrary, bistable sequences may always play an important role

in connecting similar folds. Our method helps to provide a physical explanation of

the effects of mutations and conformational switching in proteins.

Although mutations can lead to conformational switching as we have shown in the

study of two fold pairs, there are other causes of this phenomenon. Fold switching can

occur either spontaneously [4] or be triggered by changes in biological environment [5],

subdomain separation [6], and ligand binding [7]. Thus, we extended our study to a

naturally occurring protein in E. coli called RfaH whose C-terminal domain (CTD)
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has been shown experimentally to be able to undergo an all-α to all-β fold switch

by binding to its DNA target operon polarity suppressor (ops) DNA. By employing

atomistic Monte Carlo simulations, we observed that RfaH-CTD is less stable than its

N-terminal domain. Moreover, the all-α structural form of RfaH-CTD was found to

be much less stable than the all-β structural form, suggesting that the all-α to all-β

fold switch is thermodynamically favored in our model.

The ability of some proteins to switch their fold and the capacity to understand

the underlying physical principles may have important implications in areas including

structural biology, human disease, protein design, protein evolution and biotechno-

logical applications [8]. For instance, a direct application of binding-induced fold

switching may be the development of a new and more specific drug that is able to

hide a function until the target is reached. Furthermore, the ability to predict poten-

tial fold switches may lead to novel ways for interpreting genetic polymorphisms and

other disease related events [8]. In summary, understanding the physics of protein

fold switching may have extensive impact in biology and indeed biophysics.

4.2 Future study

Biased potential for the all-α to all-β fold switch in RfaH

Due to the limitations in our knowledge of protein energetics, folding simulations with

our all-atom model PROFASI [9] or other molecular dynamics simulations [10–13] have

not yet reproduced the all-α to all-β fold switching behavior in RfaH. Such simulations

could provide insight into the mechanism of RfaH switching.

In order to address this challenge, we turn to Gō-like approach to model proteins

[14], which has been heavily used in protein folding studies [15]. In a Gō-like model,

contacts between amino acids present in the native structure are made artificially
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favorable, while all other possible contacts are either neutral or even repulsive. The

approach that we are working on is to create a hybrid of the transferable physics-

based potential in PROFASI and Gō-like potential that favor the two structural forms

of RfaH-CTD. If successful, this may help to more deeply unravel the character of

transition between these two structural forms.
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