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Abstract 

    Microbes have found ways to render certain drugs ineffective and hence are no longer 

susceptible to them. Continued misuse of a wide variety of drugs has given rise to 

organisms being able to resist them, which has led to multidrug resistance. One way to 

solve the issue of multidrug resistance is by looking at the mechanism of phosphorylation 

using adenosine triphosphate (ATP) the phosphate donor. If the phosphorylation of 

antibiotics can be prevented from occurring, then they would retain their antibacterial 

activity and thus help solve the issue of drug modification by bacteria. 

    The two-step mechanism for the phosphorylation of glucose using ATP, in which ATP 

is dephosphorylated in the first step and glucose is phosphorylated in the second step, is 

investigated using Hartree-Fock (HF) and B3LYP calculations with the 6-31G(d) and 6-

31+G(d) basis sets. Glucose is chosen for study since it is a simple model for kanamycin. 

The ability of each conformer of ATP to donate a phosphate group is also discussed.  The 

phosphorylation of both the alpha and beta anomers of glucose as well as the ᴅ and ʟ 

enantiomers of glucose is also discussed.   

    It was determined that, while the chairPT isomer of ATP4- is lower in energy than the 

chair isomer of ATP4-, the ΔUrxn, ΔHrxn and ΔGrxn values are less negative for the 

phosphorylation of the chair isomer of ATP4-. The ΔUrxn, ΔHrxn and ΔGrxn values are least 

positive for the phosphorylation of deprotonated β-ʟ-glucose without water while they are 

least positive for the phosphorylation of deprotonated α-ʟ-glucose upon inclusion of 

water molecules. 
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1. Introduction 

1.1 Drug-resistant Compounds 

    Microbes have found ways to render certain drugs ineffective and hence are no longer 

susceptible to them. Continued misuse of a wide variety of drugs has given rise to 

organisms being able to resist them, which has led to multidrug resistance. (1) An 

important example is the resistance of staphylococci to penicillin. (2) 

    There are several different types of drug resistance: drug resistance through 

chromosomal modification, acquired resistance through enzymatic drug modification, 

altered, substituted and protected drug targets, efflux systems, porins and altered 

membranes, regulatory genes and single determinants. (1) 

    In a paper by Tenover, three case studies were investigated showing different 

organisms having drug resistance abilities: E. coli., S. aureus and P. aeruginosa. (3) E. 

coli is a common cause of urinary tract infections, with plasmid-encoded β-lactams 

aiding its resistance. The mechanism studied by Tenover showed that E. coli acquired 

new resistance during infection and that it developed additional resistance to 

cephamycins. (3) S. aureus showed reduced susceptibility to vancomycin. The mechanism 

studied by Tenover showed that the cell wall thickens from accumulation of fragments 

capable of binding vancomycin extracellularly. (3) Okuma et al. showed that S. aureus 

also has developed resistance to oxacillin due to the acquisition of a mobile genetic 

element containing the mec-A resistance gene. (4) Tenover showed that P. aeruginosa was 

difficult to control due to the presence of multiple intrinsic and acquired resistance 

mechanisms: efflux pumps prevent the accumulation of antibacterial drugs by extruding 
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them before entering the active site while working together with the limited permeability 

of the outer membrane to produce additional resistance. (3) 

    There is a need to determine ways to overcome bacterial resistance to drugs. New 

drugs have since been designed to try and combat these resistance issues to maintain 

antibiotic efficiency in the future. Kuwahara and Tsuchiya looked at kanamycin A as a 

potential drug. (5) Kanamycins (the structure of kanamycin A is shown in Figure 1.1) are 

aminoglycosides having a wide scope of antibacterial activities, but they also have 

problems: renal toxicity, low transportation into bacterial cells, poor absorption from 

digestive organs and the resistance developed of bacteria to kanamycins. (5) 

 

Figure 1.1 Structure of kanamycin A. 

    Kuwahara and Tsuchiya tried to solve these issues by replacing the hydroxyl groups 

with fluorine groups to solve the toxicity issue, decreasing the number of substituents to 

solve the transportation issue and to hinder the acetylation of the NH2 groups by bacteria 
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to solve the resistance issue. (5) Thus, they converted the 6-amino-6-deoxy-o-glucose unit 

to contain solely NH2 groups (as shown in Figure 1.2). However, it was discovered that 

the lack of hydroxyl groups produced only slight activity against resistant bacteria and 

that the replacement of the 6-amino-6-deoxy-o-glucose unit with the 1,4-dioxane 

framework achieved zero activity against resistant bacteria.  

 

Figure 1.2 Structure of the modified kanamycin A antibiotic. Asterisks indicate the 

absence of OH groups compare to kanamycin A.  

    Later, Kobayashi, Ohgami, Ohtsuki and Tsuchiya tried to modify the structure in 

Figure 1.1 by replacing the 3- and 5-hydroxyl groups with hydrogens. (6) They suggested 

that the removal of the 3-OH group would prevent 3-phosphorylation by resistant bacteria 

producing 3-phosphotransferases. The removal of the 5-OH group might ease rotation 

around the C5-C6 axis, which would allow the NH2 group to be in a better position to fit 

bacterial rRNA (ribosomal ribonucleic acid). (7) They also introduced a fluorine atom 

(which might prevent the production of undesirable 5-o-glycosyl isomers as by-products 

and favour the formation of 4-o-glycosyl isomers (8)) as shown in Figure 1.3. However, it 

was determined that this new structure only weakly retained its antibacterial activity. 
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Kobayashi et al. surmised that this was the result of the steric difference between the 

pyranose ring in kanamycin A and furanose (which hinders binding of synthetic products 

to rRNA of bacteria. (6) 

 

Figure 1.3 Modified structure of kanamycin A introducing a fluorine atom and replacing 

the 3- and 5-hydroxyl groups with hydrogens. 

    Azad, Bhunia, Krishna, Shukla and Saxena looked at a novel glycoconjugate of 8-

fluoro norfloxacin derivatives and the resistance of S. aureus to gentamicin. (9) They 

stated that the resistance to gentamicin (structure of gentamicin A is shown in Figure 1.4) 

and its related aminoglycosides results from four mechanisms: reduced uptake due to cell 

permeability, alterations at ribosomal binding sites, production of aminoglycoside-

modifying enzymes and transport defect or membrane impermeabilization. Since the cell 

membrane of bacteria recognizes carbohydrates, they surmised that cell permeability 

could be improved by incorporating small ligands. (9) They chose quinolones due to their 

inherent influence on the area of antimicrobial chemotherapy. They have a wide activity 

spectrum, high potency, good bioavailability, high serum levels and large volume of 

distribution resulting in a higher concentration of antibiotic. (9) 
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Figure 1.4 Structure for gentamicin A. 

    In all, eight compounds were synthesized and their activity against S. aureus was tested 

against that of gentamicin. (9) It was discovered that only compound 10g (Figure 1.5) has 

a lower minimum inhibitory concentration in some cases compared to using gentamicin 

and that most compounds only performed better than gentamicin when used against 

gentamicin resistant S. aureus.   

 
Figure 1.5 Structure for compound 10g. 
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    Amani, Barjini, Moghaddam and Asadi looked at the in vitro synergic effect, which is 

achieved by combining two antimicrobial drugs eliciting an additive effect, using the 

CM11 peptide when used with other antibiotics against six multidrug resistant bacteria. 

(10) They proposed that the dose of an antibiotic in treatment of drug resistant bacteria 

could be significantly reduced if used in combination with the CM11 peptide, which 

would enable the use of a lower concentration of antibiotic and potentially restore the 

effectiveness of an antibiotic. The best results for the CM11 peptide were obtained when 

used in combination with ceftazidime against P. aeurginosa and when used in 

combination with penicillin against S. aureus. However, no effect was observed when the 

CM11 peptide was used in combination with gentamicin against P. aeruginosa or K. 

pneumoniae, or when it was used in combination with ampicillin against A. baumannii, 

K. pneumoniae or S. typhimurium or when it was used in combination with amikacin 

against P. aeruginosa. 
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1.2. ATP Phosphorylation 

    One way to solve the issue of multidrug resistance is by looking at the mechanism of 

phosphorylation using adenosine triphosphate (ATP) (structure is shown in Figure 1.6) as 

the phosphate donor. Phosphorylation of antibiotics could potentially lead to a change in 

conformation or a change in environment before reaching the active site of rRNA of 

bacterial cells. If the phosphorylation of antibiotics can be prevented from occurring, then 

they would retain their antibacterial activity and thus help solve the issue of drug 

modification by bacteria. (1) 

 

Figure 1.6 Structure of ATP. Phosphorus atoms are labelled with Greek letters. 

    There have been several previous studies concerning the mechanism involving 

phosphorylation using ATP as the phosphate donor. In a paper by Huang et al., the 

phosphorylation mechanism of phosphomevalonate kinase was studied using ATP. (11) 

The first topic investigated in their paper was the identification of key residues in the 

catalytic reaction pathway. They determined that phosphomevalonate kinase (PMK) 

transfers the γ-phosphoryl group of ATP to the phosphoryl group of (R)-5-

β α γ 
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phosphomevalonate (PMV) yielding (R)-5-diphosphomevalonate (DMV), which can be 

converted to isopentenyl diphosphate (IPP) (the reactions are shown in Scheme 1.1). The 

crystal structure showed that a Mg2+ ion is coordinated to the γ-phosphoryl group in ATP 

and to the phosphoryl group of the substrate. It was observed that Lys9 forms strong ionic 

interactions with the phosphoryl group of PMV and with the γ-phosphoryl group of ATP, 

which helps to stabilize both the substrate and the nucleotide along the reaction pathway. 

They also determined that PMK helps catalyze the transfer of the γ-phosphate of ATP to 

another negatively charged phosphate in the substrate. They also discovered that human 

galactokinase follows a direct phosphorylation mechanism, in which Arg228 helps 

stabilize the negative charge developed at the β-, γ-bridging oxygen atom of ATP during 

bond cleavage. It was also found that Mg2+ is octahedrally coordinated to Asp297, the 

phosphoryl group of PMV, the γ-phosphoryl group of ATP and three water molecules; 

Lys9 is located between PMV and ATP which helps to stabilize both the γ-phosphoryl 

group of ATP and the phosphoryl group of PMV. 
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Scheme 1.1 Conversion pathway of PMV to IPP. (Adapted with permission from 

reference 11. Copyright 2018 American Chemical Society) 

    The second topic that was studied by Huang et al. was the effect of sequence 

alterations on Mg2+ coordination. (11) They discovered that switching Lys9 to arginine 

resulted in distortion of Mg2+ coordination, the loss of one water molecule and 

destabilization of the active site; all of which suggests that lysine helps orient and 

facilitate phosphate transfer. Switching Lys9 for methionine also resulted in the loss of 

one water molecule and the formation of an unstable pentacoordinate Mg2+ complex, 

which suggests that lysine helps proton transfer during phosphorylation.  

    The last topic studied by Huang et al. was the study of the reaction pathway of PMK 

(shown in Scheme 1.1) by QM/MM calculations. (11) They proposed that the tight 

hydrogen bond network would facilitate proton transfer from the hydroxyl group of the 

substrate to the γ-phosphoryl group of ATP. They proposed that Lys9 helps stabilize the 

transition state and the phosphorylated product, while Lys101 helps neutralize the 

negative charge at the β-, γ-bridging oxygen atom of ATP during phosphorylation. 
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        In a paper by Lu et al., the mechanism of ATP-dependent allosteric protection of 

protein kinase B phosphorylation was studied. (12) They looked at the molecular basis of 

the allosteric communication from ATP to phosphorylated threonine 308 (pT308). They 

discovered that four residues, Thr160, Phe161, Glu161 and His194 were involved in 

propagating the signal from ATP to pT308 (shown in Scheme 1.2). It was hypothesized 

that the alteration of residues could disrupt propagation and it was later discovered that 

the H194A mutant abolished the ATP-dependent resistance to phosphorylation. (12) 

 

Scheme 1.2 Propagation of the signal between ATP and pT308. 

    A paper by Dehury, Behera and Mahapatra looked at the structural dynamics of casein 

kinase I from malarial parasite Plasmodium falciparum (PfCKI) with insights from 

theoretical modelling and molecular simulations. (13) They performed a trajectory analysis 

in which the ATP-binding cleft showed comparatively higher fluctuation along with the 
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important loops. An inconsistent hydrogen bonding pattern of ATP was observed with 

Asp132, Leu85, Asp83 and Ser19 which Dehury et al. proposed could be due to the 

dynamic behaviour of the important regulatory loops, the ATP binding motif and slight 

movement of the ligand within the pocket. (13) Hydrogen bonds were also observed 

between ATP and the atoms of Phe150, Gly151, Ser17 and Ser88 of PfCKI. The various 

hydrogen bonds observed are shown in Figure 1.7. 

 

Figure 1.7 Hydrogen bonding observed between ATP and various residues of PfCKI. 

Hydrogen bonds are shown in red dashed lines. (Adapted from reference 13. Copyright 

2018 Elsevier) 

    Dehury et al. also performed molecular dynamics (MD) simulations. (13) After MD 

simulations, the orientation of ATP changed whereby the γ-phosphate group moved away 

from the core cavity. The hydrogen bond between the nitrogen atom of Ser19 with ATP 

was broken during the MD simulation whereas the electrostatic interaction between 
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Lys38 with ATP was conserved throughout the MD simulation. The binding pocket of 

ATP was discovered to be composed of both polar and hydrophobic residues, providing 

an ideal cavity to hold the ligand and the active site. The conserved residues formed a 

tight network of hydrophobic environment to anchor the ligand, which allowed for the 

compensation of the loss of hydrogen bonding. (13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

1.3 Conformers of ATP 

    The fully deprotonated form of ATP can take on two different conformers (14-18) that 

are stabilized by hydrogen bonding as shown in Figure 1.8: a) a conformation that has 

hydrogen bonding between the hydrogen of ribose and the closest phosphoryl group of 

the chain to the ribose, which will be called “linear” from this point forward and b) a 

conformation that has hydrogen bonding between the hydrogen of ribose and the middle 

phosphoryl group of the chain, which will be termed “chair” from this point forward.  

a)  

b)  

Figure 1.8 Two stable conformers of ATP4-: a) “linear” and b) “chair”. Hydrogen bonding 

is indicated with a dashed line between the O and H atoms. 

    There have been many ATP2- conformer studies done in which only the terminal 

phosphate has negative charges. Burke, Pearce, Boxford, Bruckmann and Dessent looked 

at the intramolecular stabilization of ATP2- in the gas phase using mass spectrometry. (14) 
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Wang, Izatt, Oscarson and Gillespie did a 1H-NMR study of the interaction of ATP2- with 

protons and Mg2+. (15) Miyazaki et al. looked at the conformation of aqueous disodium 

ATP2- solution using X-ray diffraction. (16) There have also been studies of ATP2- as part 

of coordination with Mg2+, in motor proteins in which it was determined that ATP takes 

on a more compact structure, (17) and in anthrax edema factor (which is a mode of 

virulence of anthrax upon infecting host cells), in which it was discovered that the 

phosphate tail is in a more stretched configuration with hydrogen bonding between the 

sugar and phosphorus atom α in Figure 1.6 (18). However, under normal conditions in the 

body, ATP is in the fully deprotonated form (ATP4-) (19), in which there is no 

computational data available concerning its conformers. Results for phosphorylation 

using ATP4- would be significantly different if the most stable conformer of ATP4- was 

not being used. To ensure that the lowest energy conformer of ATP4- was being used for 

this project, it was decided to do a conformational analysis on ATP4-.  
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1.4 Kanamycin Studies 

1.4.1 Glucose, Neutral Kanamycin and a Simplified Model of Kanamycin 

    The first three compounds studied for their reactions with ATP were glucose, neutral 

kanamycin and a simplified model of kanamycin in which one ᴅ-(+)-glucosamine group 

is used instead of three. (20) All these compounds were deprotonated and then reacted with 

ATP both in the gas phase and with water included. Initially, the oxygen linker atom of 

ATP was 1.7 Å from the terminal phosphorus atom (this bond is shown in Figure 1.9). 

Upon arrival at the first transition state, the distance of the oxygen linker atom of ATP 

from the terminal phosphorus atom increased to 2.9 Å. This suggests that the bond 

between PO3
- and ADP3- is breaking. The intermediate occurs after this bond has been 

broken to give ADP3- and PO3
-.  

 
Figure 1.9 The transition state structure for the dephosphorylation of ATP4-. The P-O 

bond between ADP3- and PO3
- is shown as a dashed line. 

    A second transition state was reached where the distance between the oxygen atom of 

the sugar and the phosphorus atom of PO3
- was decreased to 3.5 Å (this bond is shown in 

Figure 1.10). This suggests possible bond formation between the oxygen atom of the 
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sugar and the phosphorus atom of PO3
-. The final products were achieved with a final 

distance between the oxygen atom of the sugar and the phosphorus atom of PO3
- being 

1.7 Å, the same as the initial distance between the phosphorus and oxygen atoms on ATP, 

thus suggesting the bond was indeed formed.  

 
Figure 1.10 The transition state structure for the phosphorylation of deprotonated glucose. 

The P-O bond between glucose and PO3
- is shown as a dashed line. 

The reaction coordinate diagrams for the reaction between ATP4- and either glucose or 

the kanamycin model are shown in Figure 1.11. 
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Figure 1.11 Reaction coordinate diagram for deprotonated glucose and the deprotonated 

kanamycin model. Glucose without water included is in red; kanamycin model is in black 

and glucose with water is in blue. The upper line for each compound is the 

dephosphorylation of ATP4- while the lower line for each compound is the 

phosphorylation of each compound. (Data in figure used with permission from reference 

20) 

    Different basis sets were also used in determining the thermochemistry of reactions of 

ATP with glucose, neutral kanamycin and the kanamycin model: STO-3G, 3-21G and 6-

31G. (20) The reaction coordinate diagrams were plotted using the above basis sets shown 

in Figure 1.12. It was determined that the energy of ATP4- was highest using the 3-21G 

basis set and lowest using the 6-31G basis set. The activation energy was largest using 6-

31G and smallest using STO-3G. The energies of the products (ADP3- and PO3
-) were 

roughly the same using all three basis sets, therefore the ΔE was largest using the 3-21G 

basis set and smallest using the 6-31G basis set.  
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Figure 1.12 Reaction coordinate diagram for the dephosphorylation of ATP4- using 

different basis sets. Red = STO-3G, blue = 3-21G and black = 6-31G. (Data in figure 

used with permission from reference 20) 

1.4.2 Variations of Neutral Kanamycin 

    The next three compounds studied were variations of neutral kanamycin in which some 

of the functional groups on the rings were changed: kanamycin A, kanamycin 3’RGK and 

kanamycin 3’RGH. (21) The general structure of these derivatives is shown in Figure 1.13. 

Kanamycin A has hydroxyl groups at the R1 and R2 positions and hydrogens at the R3 

and R4 positions. Kanamycin 3’RGK has hydrogen at the R1, R3 and R4 positions with 

the amino acid chain Arg-Gly-Lys-Gly attached to the R2 position. Kanamycin 3’RGH is 

like kanamycin 3’RGK except that the terminal CH3(CH2)2NH2 group of lysine is 

replaced with imidazole.  
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Figure 1.13 The general structure of the derivatives of neutral kanamycin. 

    For each of the four derivatives, their reactions with either a) APH, ADP, Mg2+ and 

water and/or b) bacterial rRNA were studied. (21) The docking score for each reaction, 

which is the number of favorable interactions such as hydrogen bonds or hydrophobic 

contacts (calculated using equation 1.1 where vdW is the van der Waals energy, Coul is 

the Coulombic energy, Lipo is the lipophilic term derived from hydrophobic grid 

potential, H Bond is the hydrogen bonding term, Metal is the metal binding term, 

Rewards are the rewards and penalties that cover other terms than those mentioned like 

buried polar groups, hydrophobic enclosure, amide twists etc., Rot B is the penalty for 

freezing rotatable bonds and Site is the polar but non-hydrogen bonding interactions in 

the active site (22)), and their binding energies are listed in Table 1.1.  

Docking Score = 0.05 vdW + 0.15 Coul + Lipo + H Bond + Metal + Rewards + Rot B + 

Site (1.1) 

    For both the docking score and the binding energy, a more negative value indicates that 

the interaction is favoured and binding is more likely to occur. The most negative 

docking scores were observed for kanamycin 3’RGK. For the reaction with APH, ADP, 
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Mg2+ and water, the most negative binding energy was observed for kanamycin 3’RGK. 

For the reaction with bacterial rRNA, the most negative docking score was observed for 

kanamycin 3’RGH. (21) 

Table 1.1 Docking Scores and Binding Energies for the Reactions of Kanamycin 

Derivatives with a) APH, ADP, Mg2+ and water and b) bacterial rRNA (Data used with 

permission from reference 21) 

Kanamycin Derivative Docking Score Binding Energy (kJ mol-1) 

Kanamycin A a) -6.03 

b) -5.95 

a) -241.5 

b) -280.0 

Kanamycin 3’RGK a) -8.88 

b) -9.16 

a) -505.7 

b) -176.1 

Kanamycin 3’RGH a) -5.48 

b) -8.39 

a) -436.7 

b) -389.6 

    There are also newer APH linkers that have been developed, with some of them, 

conjugate 3b, showing better promise than the previously modified versions of neutral 

kanamycin. (21) The binding energies and docking scores for the best three docking poses 

(defined as having the least negative docking scores) of the linkers, as given in Table 1.2, 

are lower than the previous kanamycin derivatives, so they would be less susceptible to 

being phosphorylated. In addition, the zone of inhibition (the diameter that is saturated by 

an antimicrobial agent) is higher for the new linkers when compared to kanamycin, as 

shown in Table 1.3. (21) We are awaiting the patents for these compounds, so no structures 

for these linkers can be shown at this time. 

 

 



21 
 

Table 1.2 Docking Scores and Binding Energies for the Best Three Docking Poses of 

Kanamycin and Conjugate 3b with a) APH, ADP, Mg2+ and water and b) bacterial rRNA 

(Data used with permission from reference 21) 

Compound Docking Score Binding Energy (kJ mol-1) 

Kanamycin a) -6.64, -6.53, -6.21 

b) -6.91, -6.43, -6.04 

a) -376.3, -306.5, -294.3 

b) -296.3, -246.9, -232.0 

Conjugate 3b a) -6.10, -6.03, -6.02 

b) -6.61, -6.57, -6.45 

a) -256.6, -219.9, -220.1 

b) -55.7, -66.0, -39.2 

 

Table 1.3 Zone of Inhibition of Kanamycin and Conjugate 3b Against Various 

Pathogenic Bacteria (Data used with permission from reference 21) 

Compound Zone of Inhibition (mm) Against Various Pathogenic Bacteria 

 E. 

Coli. 

MC 

4100 

E. 

Coli. 

DH 

5α 

Staphylococcus 

aureus 

Streptococcus 

pyogenes 

 

Listeria 

monocytogenes 

 

Bacillus 

Subtilis 

Kanamycin 29 28 33 31 27 32 

Conjugate 3b 41 32 36 39 38 37 

 

 

 

 

 

 

 

 

 

 



22 
 

1.5 Conformations of Glucose 

    Unlike those of ATP4-, the various conformations of glucose have been previously 

studied using ab initio calculations in the gas phase and in solution. It has been shown 

experimentally that the β anomer of glucose, shown in Figure 1.14a, is more stable than 

the α anomer, shown in Figure 1.14b. (23) 

 
Figure 1.14. The structures of a) ꞵ-ᴅ-glucose and b) α-ᴅ-glucose.  

    The C6-O6 bond can be oriented in three possible positions (see Figure 1.15 for the 

various conformations of the β anomer): 1) gauche to both C5-O5 and C5-C4 bonds (GG, 

Figure 1.15a), 2) gauche to the C5-O5 bond and trans to the C5-C4 bond (GT, Figure 

1.15b) and 3) trans to the C5-O5 bond and gauche to the C5-C4 bond (TG, Figure 1.15c). 

(23) In aqueous solutions, it has been shown by Ha et al. using MD simulations that both 

the GG and GT conformers are prevalent, and that the TG conformer is more favored in 
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the gas phase. (24) Studies on glucose crystals have shown that glucose is in the GT 

conformer for the α anomer and is in the GG conformer for the β anomer. (25) 

 
Figure 1.15 Structure of the various conformers of the β anomer of glucose a) GG, b) GT 

and c) TG. 

    Polavarapu and Ewig showed that by using the 4-31G basis set, the GG, G1 conformer 

of the α anomer was most stable using ab initio calculations. (23) However, upon 

switching to the 6-31G(d) basis set, the energy difference between the α and β anomers 

decreased. They suggested that the β anomer might be more stable using larger basis sets. 

(23) 

    Csonka, Éliás and Csizmadia explored the relative stability of the 1C4 (which has all 

substituents in an axial position) and 4C1 (which has all substituent in an equatorial 

position and is the favoured conformation) chair forms of β-ᴅ-glucose (as shown in 

Figure 1.16) using different density functional theory (DFT) methods. (26) Experimentally, 

Csonka et al. showed that the G+ rotamer is more stable than the T rotamer, however they 

only observed this to be the case using the B3P/aug-cc-pVDZ//MP2/cc-pVDZ level of 

theory. (26) NMR experiments show that the G- rotamer of the 4C1 conformer is slightly 

more populated than the G+ rotamer while the T rotamer is barely populated. (27) Studies 

done on glucose crystals showed that the G- rotamer is found for the 4C1 conformer of α-

ᴅ-glucose. (28) 
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Figure 1.16 a) 4C1 and b) 1C4 rotamers of β-ᴅ-glucose. The idealized C(n + 1)-C(n)-O-H 

torsions are denoted by G+ (gauche clockwise (60°)), T (anti (180°)) and G- (gauche 

counterclockwise (-60°)) where n = 1, 2, 3, or 4; g++ or g-- notate torsions far from the 

idealized values. (Adapted from reference 26. Copyright 2018 Elsevier) 

    Csonka et al. reasoned that the Hartree-Fock (HF) method in conjunction with good 

basis sets tend to underestimate the H---OH interactions due to over-concentration of 

electron density around atoms in covalent bonding regions whereas it is under-

concentrated in other regions. This is important for 1C4 conformers due to the ease in 

decrease of 1-3 O-H interactions. Therefore, a double zeta basis set would be needed for 
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an optimal choice using the HF method. (26) They also state that the inclusion of electron 

correlation using either MP2 or CCSD methods leads to large differences in energy 

between the two conformers, which is due to increased stabilization of the H---OH 

interaction in the ring of the 1C4 conformations. Therefore, larger basis sets using MP2 or 

CCSD methods would be needed to come reasonably close to the experimental results. 

(26) 

    Finally, they mention that, while DFT methods using double zeta basis sets experience 

the same problem as using the MP2 method, the addition of diffuse functions decreased 

the error relative to experimental results. It was argued that this was due to the long-range 

portion of the correlation and exchange functionals helping to describe OH---O 

interactions more accurately with the increase in space for the electrons from the nuclei. 

(26) 

    Based upon all the previous glucose conformational studies, it was decided to use the 

conformation having the hydroxymethyl group gauche to both the C-O and the C-C 

bonds of the ring nearest to the hydroxymethyl group using the 4C1 chair conformer of β-

ᴅ-glucose. 
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2. Methods 

2.1 ATP and Glucose Conformers 

    The initial structures for both the linear and chair conformations of ATP4- as well as 

the deprotonated form of the lowest energy conformer of glucose previously reported 

(23,26) were built using WebMO (29) and run on Gaussian 09 (30) both without water (ATP4-) 

and with water molecules included (ATP4-·nH2O, where n is the number of water 

molecules) using the HF (31)/6-31G(d) level of theory with geometry optimization and 

frequency calculations. Four water molecules for ATP4- and one water molecule for the 

glucose anion were initially included to stabilize the negative charges. 

    To ensure that the structures obtained were indeed the lowest in energy, the resulting 

structures obtained for both linear and chair ATP4- were analyzed by doing a PES scan 

around each of the seven most significant degrees of freedom as shown in red in Figure 

2.1. Each of the torsional angles were rotated by 10 degrees while allowing the rest of the 

molecule to relax into its lowest energy geometry at each point.   

 
Figure 2.1 Chemical structure of the chair conformer of ATP4- with the seven most 

significant degrees of freedom highlighted in red. 
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    The resulting structures for ATP4- (an example is shown in Figure 2.2) and the glucose 

anion were then used as starting points to run geometry optimizations and vibrational 

frequency calculations on Gaussian 09 using the HF/6-31+G(d), B3LYP (32)/6-31G(d) and 

B3LYP/6-31+G(d) levels of theory. All optimized structures for this project shown were 

visualized using Jmol (33). 

 
Figure 2.2 Structure obtained for the chair conformer of ATP4- run using the HF/6-

31G(d) level of theory. 
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2.2 Phosphorylation Reaction Products 

    Geometry optimizations of ADP3- with water and PO3
- for both the chair and linear 

conformers using HF/6-31G(d) were obtained by increasing the terminal P-O bond 

distance of ADP3- with water by 0.5 Å up to a terminal distance of around 4.7 Å, which 

pulls the PO3
- to an optimal distance as previously reported (20) (an example of the linear 

conformer structure is shown in Figure 2.3). 

 
Figure 2.3 The resulting structure using the HF/6-31G(d) level of theory from stretching 

the terminal P-O bond of the linear conformer of ATP4-·4H2O to 4.7 Å. 

    PO3
- and either one water molecule (for the linear conformer) or two water molecules 

(for the chair conformer) were then removed from the resulting structures (according to 

the number of water molecules pulled away with PO3
- during the separation of PO3

- from 

ADP3-). The remaining structures were re-optimized (the fully optimized structure for the 

chair conformer is shown in Figure 2.4) using HF/6-31G(d) to give ADP3- with water 

molecules included (ADP3-·nH2O where n is the number of water molecules). The 

resulting structures were then used as a starting point to calculate the geometries and 
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vibrational frequencies using the HF/6-31+G(d), B3LYP/6-31G(d) and B3LYP/6-

31+G(d) levels of theory. 

 
Figure 2.4 The fully optimized structure using the HF/6-31G(d) level of theory for the 

chair conformer of ADP3-·2H2O. 

    The geometries and vibrational frequencies of PO3
- with either one water molecule (for 

the linear conformer of ADP3-) or two water molecules (for the chair conformer of ADP3-, 

the fully optimized structure is shown in Figure 2.5) were also calculated using HF/6-

31G(d). The resulting structures were then used to determine the geometries and 

vibrational frequencies using HF/6-31+G(d), B3LYP/6-31G(d) and B3LYP/6-31+G(d) 

levels of theory.  
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Figure 2.5 The optimized structure of PO3

- with two water molecules included using the 

HF/6-31G(d) level of theory. 

    The ADP3- product without water for both the chair and linear conformers (an example 

of the linear conformer structure is shown in Figure 2.6) were then obtained using HF/6-

31G(d) by removing either two water molecules (in the case of the chair conformer) or 

three water molecules (in the case of the linear conformer). The geometry and vibrational 

frequencies of PO3
- without water were also computed using HF/6-31G(d). The resulting 

structures were then used as a starting point to compute the geometries and vibrational 

frequencies using HF/6-31G(d), B3LYP/6-31G(d) and B3LYP/6-31+G(d) levels of 

theory. 



31 
 

 
Figure 2.6 The optimized structure for the linear conformer of ADP3- determined using 

the HF/6-31G(d) level of theory. 

    The phosphorylated glucose anion product geometry and vibrational frequencies were 

determined using HF/6-31G(d) with and without two water molecules included (to 

stabilize the two negative charges) by adding PO3
- to the O- site of the previously 

optimized glucose- conformer. The resulting structures (phosphorylated glucose anion in 

the gas phase is shown in Figure 2.7) were then used to calculate the geometries and 

vibrational frequencies using the HF/6-31+G(d), B3LYP/6-31G(d) and B3LYP/6-

31+G(d) levels of theory. 
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Figure 2.7 The optimized structure of the phosphorylated glucose anion in the gas phase 

using the HF/6-31G(d) level of theory. 

    The changes in enthalpy and entropy were determined using the thermochemistry 

output from the vibrational frequency calculations for each isomer of ATP4- with and 

without the inclusion of water molecules. The change in Gibbs energy was calculated 

using Eq. 2.1. 

ΔG = ΔH – TΔS (2.1) 
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2.3 Transition States 

    Transition states for the first step involving the dissociation of ATP4- into ADP3- and 

PO3
- were achieved by stretching the terminal P-O bond distance of ATP4- out to about 

2.9 Å, which is the optimal distance as previously reported. (20) Initially, this distance had 

to be frozen for the proper transition stated to be achieved. The bond distance was then 

allowed to be activated to get the fully optimized transition state. As the transition state 

for the chair conformer is also prone to a proton transfer, the O-H bond distance of the 

ribose sugar had to first be frozen to achieve the proper transition state. After the 

transition state was located, the O-H bond distance was then allowed to be relaxed giving 

the fully optimized transition state (an example is shown in Figure 2.8) for the chair 

conformer. 

 
Figure 2.8 The optimized first step transition state structure for the chair conformer using 

the HF/6-31G(d) level of theory. 

    Transition states for the second step involving the formation of the phosphorylated 

glucose anion from the glucose anion and PO3
- were achieved by increasing the P-O bond 
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distance of the phosphorylated glucose anion out to about 3.5 Å, which is the optimal 

distance as previously reported. (20) As with the transition states for the first step, this 

bond distance had to be initially frozen (an example is shown in Figure 2.9) and then the 

structure re-optimized with the bond distance relaxed to achieve the fully optimized 

transition states.  

 
Figure 2.9 The resulting structure for the second step transition state using the HF/6-

31G(d) level of theory keeping the O17-P18 bond length frozen. The O17-P18 bond is 

shown as a black dashed line. 
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3. Conformational Analysis and Dephosphorylation Mechanism of ATP4- 

3.1 Chair vs. Linear 

    The results for the potential energy surface (PES) scan of both the chair (sample 

structures are shown in Figure 3.1) and linear conformers of ATP4- show that a local 

lowest energy structure for each conformer was indeed obtained by the ab initio 

calculations performed using Gaussian 09 (see Appendices I and II).  

 
Figure 3.1 PES scan around the C-C-O-P torsional angle of the chair conformer of ATP4- 

in increments of 40° from left to right, top to bottom. 

    As seen in previous conformational studies on ATP, (14-18) the chair conformer was 

found to be more stable than the linear conformer both with and without the inclusion of 

four water molecules (see Table 3.1 and Appendices III-VI). The addition of diffuse 

functions decreased the energy difference between the two conformers using both HF and 

B3LYP. With almost all levels of theory, the inclusion of four water molecules lowered 

the energy difference between the two conformers except when using the B3LYP/6-

31+G(d) level of theory. All the energy differences between the two conformers are 

relatively similar using the various levels of theory, except for ATP4- without water 
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molecules using the B3LYP/6-31G(d) level of theory, which can be attributed to the 

discovery of a new isomer of ATP4- that occurred for the chair conformer, which is 

discussed in Section 3.2. 

Table 3.1 Relative Energies (in kJ mol-1) of the Linear Conformer of ATP4- with Respect 

to the Chair Conformer of ATP4- 

 Level of Theory 

Conformer HF/ 

6-31G(d) 

HF/ 

6-31+G(d) 

B3LYP/ 

6-31G(d) 

B3LYP/ 

6-31+G(d) 

Chair ATP4- 0.0 0.0 0.0 0.0 

Linear ATP4- +39.9 +32.0 +116.8 a +8.4 

Chair  

ATP4-·4H2O 

0.0 0.0 0.0 0.0 

Linear  

ATP4-·4H2O 

+32.6 +28.4 +32.5 +25.9 

a Chair ATP4- changed into a new isomer during this calculation. 
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3.2 A New Isomer of ATP4- 

    While doing the PES scan for the chair conformer of ATP4-, it was discovered that the 

proton of one of the O-H groups on the ribose sugar was capable of transferring to the 

negatively charged oxygen atom on the middle phosphoryl group of the chain (shown in 

Figure 3.2). This proton transfer was also observed when performing the geometry 

optimizations for the chair conformer without diffuse functions and without water added 

using the B3LYP functional. However, this proton transfer was not observed while 

running the geometry optimizations for the chair conformer upon the inclusion of water 

molecules. It was then decided to run the energy calculations for this new “chairPT” 

isomer and compare it to the results obtained for the chair conformer of ATP4-. 

 
Figure 3.2 Structure obtained for the proton transfer isomer of ATP4- run using HF/6-

31G(d) with four water molecules included. 

    It was determined that proton transfer isomer of ATP4- was consistently lower in 

energy than the chair conformer of ATP4- both with and without the inclusion of four 

water molecules (see Table 3.2 and Appendices III-VI). The structure for the chairPT 
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ATP4- isomer could not be optimized without water molecules included using the B3LYP 

functional, since the bond between the terminal phosphate group and the middle 

phosphate group breaks and the unattached phosphate group moves out to an infinite 

distance. The differences in energies between the two forms of ATP4- is consistent upon 

the inclusion of four water molecules, although they are slightly lower using the B3LYP 

functional. Also, including diffuse functions for the proton transfer isomer of ATP4- did 

not significantly change the energy differences between the two isomers and in most 

cases led to a slightly greater energy difference between the two isomers. 

Table 3.2 Relative Energies (in kJ mol-1) of the Proton Transfer Isomer of ATP4- with 

Respect to the Chair Conformer of ATP4- 

 Level of Theory 

Isomer HF/ 

6-31G(d) 

HF/ 

6-31+G(d) 

B3LYP/ 

6-31G(d) 

B3LYP/ 

6-31+G(d) 

Chair ATP4- 0.0 0.0 0.0 0.0 

ChairPT ATP4- -200.0 -190.8 - a - a 

Chair  

ATP4-·4H2O 

0.0 0.0 0.0 0.0 

ChairPT  

ATP4-·4H2O 

-102.5 -107.3 -91.6 -102.3 

a Unable to determine structures due to infinite separation of the terminal phosphate from 

ATP4- during these calculations. 
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3.3 Dephosphorylation of ATP4-  

    The mechanism for the dephosphorylation of both the chair and chairPT isomers of 

ATP4- was examined. The reaction (eq. 3.1) was looked at both with and without the 

presence of water molecules in the gas phase.  

ATP4-
(g) → ADP3-

(g) + PO3
-
(g) (3.1) 

3.3.1 Activation Energies 

    Without water molecules added, the transition states were unable to be obtained for the 

chair isomer of ATP4- since the proton transfer occurred during the calculations for both 

structures for all levels of theory. For the chairPT isomer, the transition states were able 

to be obtained without water molecules added using HF, but not for B3LYP due to the 

separation of the terminal phosphate described in Section 3.2. The activation energy to go 

from the chairPT isomer of ATP4- to the transition state for the dephosphorylation of the 

chairPT isomer of ATP4- without the inclusion of water molecules is quite small (see 

Table 3.3).  
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Table 3.3 ATP4- Dephosphorylation Activation Energies (in kJ mol-1)  

 Level of Theory 

Isomer HF/ 

6-31G(d) 

HF/ 

6-31+G(d) 

B3LYP/ 

6-31G(d) 

B3LYP/ 

6-31+G(d) 

Chair ATP4- - a - a - a - a 

ChairPT ATP4- 2.7 6.7 - b - b 

Chair  

ATP4-·4H2O 

118.7 120.3 - a - a 

ChairPT  

ATP4-·4H2O 

183.3 191.5 160.7  

a Chair ADP3- dephosphorylation transition state unable to be obtained due to the proton 

transfer that occurs. 
b ChairPT ATP4- reactant unable to be obtained due to infinite separation of the terminal 

phosphate. 

    Upon inclusion of four water molecules, the transition states for the chair isomer of 

ATP4- could only be determined using HF (see Figure 3.3 for the IRC for chair         

ATP4-·4H2O using the HF/6-31G(d) level of theory; the forward IRC calculation stops 

after one point since it deems this point to be the PES minimum, but really this occurs at 

an infinite separation of ADP3- from PO3
-), since upon using the B3LYP functional the 

proton transfer occurs. As can be seen in Table 3.3, the activation energy is lower to go 

from the chair isomer of ATP4- to the transition state for the dephosphorylation of the 

chair isomer of ATP4- than it is to go from the chairPT isomer to the transition state for 

the dephosphorylation of the chairPT isomer of ATP4- (see Figure 3.4 for the IRC for 

chairPT ATP4-·4H2O using the HF/6-31G(d) level of theory; the forward IRC calculation 

stops after one point since it deems this point to be the PES minimum, but really this 

occurs at an infinite separation of ADP3- from PO3
-). This can be attributed to the fact that 

the chairPT isomer of ATP4- is much lower in energy compared to the chair isomer of 



41 
 

ATP4-, whereas the transition states for the dephosphorylation of the two isomers are 

closer in energy to one another. This could be because the separation of PO3
- from ADP3- 

for the chairPT isomer leads to a similar structure for the transition state as that for 

chairPT ATP4-; whereas the separation of PO3
- from ADP3- for the chair isomer gave 

transition state structure having a slightly different orientation of the phosphate chain that 

is higher in energy. The transition state for the chair isomer would need to be re-run with 

the phosphate chain closer in orientation to the chair isomer of ATP4- to see if the 

activation energy is lowered. The inclusion of four water molecules significantly 

increased the activation energy for the chairPT isomer of ATP4-. This can be attributed to 

the fact that the addition of four water molecules greatly increased the stability of the 

chairPT isomer of ATP4-, whereas the inclusion of four water molecules did not 

significantly increase the stability of the dephosphorylation transition state. It is possible 

that, without the presence of water molecules, the negative charge on the terminal 

oxygens of ADP3- in the transition state are still partially stabilized by the phosphorus 

atom of the departing phosphate group. Therefore, the inclusion of four water molecules 

only further stabilizes the dephosphorylation transition state by a small amount. 
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Figure 3.3 IRC for chair ATP4-·4H2O using the HF/6-31G(d) level of theory. 

 
Figure 3.4 IRC for chairPT ATP4-·4H2O using the HF/6-31G(d) level of theory. 
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    The Gibbs energy of activation was also calculated for both the chair and chairPT 

conformers of ATP4- with and without the inclusion of water using equation 2.1. Since 

the activation energy was quite small for the chairPT ATP4- isomer without water 

included, it was expected that the Gibbs energy of activation would be small as well. As 

seen in Table 3.4, this was the result that was obtained.  

Table 3.4 ATP4- Dephosphorylation Gibbs Energies of Activation (in kJ mol-1)  

 Level of Theory 

Isomer HF/ 

6-31G(d) 

HF/ 

6-31+G(d) 

B3LYP/ 

6-31G(d) 

B3LYP/ 

6-31+G(d) 

Chair ATP4- - a - a - a - a 

ChairPT ATP4- 1.5 4.2 - b - b 

Chair  

ATP4-·4H2O 

87.3 88.0 - a - a 

ChairPT  

ATP4-·4H2O 

167.6 171.0 147.0  

a Chair ADP3- dephosphorylation transition state unable to be obtained due to the proton 

transfer that occurs. 
b ChairPT ATP4- reactant unable to be obtained due to infinite separation of the terminal 

phosphate. 

    Upon the inclusion of water molecules, the Gibbs energies of activation were larger for 

the chairPT isomer of ATP4- than for the chair isomer of ATP4- (as seen in Table 3.4). 

This result was expected, since the activation energies were smaller for the chair isomer 

of ATP4- than for the chairPT isomer of ATP4- (as seen in Table 3.3).  

    A fifth water molecule was added to the chair conformer of ATP4- to see if it would 

significantly lower the activation energy. The resulting transition state using HF/6-31G(d) 

(see Figure 3.5a) only decreased the activation energy by about 3.2 kJ mol-1. With the 

placement of the four water molecules in chair ATP4-·4H2O (as shown in Figure 3.5b), all 
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the negative charge on the phosphate chain is stabilized by either a water molecule or 

from hydrogen bonding with the O-H of the sugar. This means that the addition of a fifth 

water molecule was not likely to significantly decrease the activation energy, which it did 

not.  

 

 

Figure 3.5 The transition states using the HF/6-31G(d) level of theory for a) chair ATP4-

·4H2O and b) chair ATP4-·5H2O.  

a) 

b) 
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3.3.2 Energy Changes 

    The change in energy (ΔUrxn) values for the reaction of both isomers of ATP4- 

dissociating into PO3
- plus ADP3- were determined both with and without the inclusion of 

four water molecules. 

    Without the inclusion of water molecules, the ADP3- products for the chair isomer 

were unable to be obtained (see Table 3.5), since the proton transfer between the ribose 

sugar and the terminal phosphate group occurred using all levels of theory. For the 

chairPT isomer in the gas phase, all products were able to be obtained, although the 

energy change could not be determined using the B3LYP functional due to the terminal 

phosphate group separation described in Section 3.2. The inclusion of diffuse functions 

only slightly decreases the energy change for the reaction. 

Table 3.5 ATP4- Dephosphorylation Energy Changes (in kJ mol-1) 

 Level of Theory 

Isomer HF/ 

6-31G(d) 

HF/ 

6-31+G(d) 

B3LYP/ 

6-31G(d) 

B3LYP/ 

6-31+G(d) 

Chair ATP4- - a - a - a - a 

ChairPT ATP4- -557.2 -551.9 - b - b 

Chair  

ATP4-·4H2O 

-396.1 -400.3 - a - a 

ChairPT  

ATP4-·4H2O 

-460.3 -456.3 -468.2 -467.6 

a Chair ADP3- product unable to be obtained due to the proton transfer that occurs. 
b ChairPT ATP4- dephosphorylation energy unable to be calculated due to the infinite 

separation of the terminal phosphate for the chairPT ATP4- reactant. 

    Upon the inclusion of four water molecules, the ΔUrxn values for the dissociation of the 

chairPT isomer of ATP4- is significantly less negative than without the presence of water 
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molecules using HF (as shown in Table 3.5). This could be due to the relative stability of 

the chairPT ATP4-·4H2O reactant compared to the chairPT ADP3-·3H2O and PO3
-∙H2O 

products. Upon inclusion of four water molecules to chairPT ATP4-, the energy of the 

reactant is significantly lowered (see Figures 3.6 and 3.7 for the reaction coordinate 

diagrams using the HF/6-31G(d) level of theory), which could be due to the ideal 

placement of the water molecules for hydrogen bonding. However, the inclusion of three 

water molecules for the chairPT isomer of ADP3- does not lead to the same stabilization 

as the reactant, which could be due to a less favorable placement of the water molecules 

for hydrogen bonding. The ΔUrxn for the dissociation of the chair ATP4- isomer could not 

be determined using the B3LYP functional upon the inclusion of water molecules due to 

the proton transfer that occurs for the ADP3- products. This could simply be due to the 

location of the water molecules. A change in positioning of the two water molecules 

might prevent this transfer from occurring and needs to be looked at.  
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Figure 3.6 Reaction coordinate diagram for the dephosphorylation of chairPT ATP4- 

using the HF/6-31G(d) level of theory. 

 
Figure 3.7 Reaction coordinate diagram for the dephosphorylation of chairPT ATP4-

·4H2O using the HF/6-31G(d) level of theory. 
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    Comparing the energy changes for the dephosphorylation of chair ATP4-·4H2O and 

chairPT ATP4-·4H2O, the energy changes for the chairPT isomer of ATP4-·4H2O are 

greater than for the chair isomer of ATP4-·4H2O using all levels of theory. The reaction 

coordinate diagram for both dephosphorylation reactions using the HF/6-31G(d) level of 

theory is shown in Figure 3.8. This could be because the chairPT isomer of ATP4-·4H2O 

releases only one water molecule to hydrogen bond to the departing phosphate group, 

keeping three water molecules hydrogen bonded to the ADP3- product, whereas the chair 

isomer of ATP4-·4H2O releases two water molecules to hydrogen bond to the departing 

phosphate group, keeping only two water molecules hydrogen bonded to the ADP3- 

product. This would seem to suggest that having more water molecules hydrogen bonded 

to the negative charges of the ADP3- product is more stable than having more water 

molecules hydrogen bonded to the phosphate group. The inclusion of diffuse functions 

did not significantly affect the dephosphorylation energy changes. 
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Figure 3.8 Reaction coordinate diagram for the dephosphorylation of both the chair and 

chairPT isomers of ATP4-·4H2O using the HF/6-31G(d) level of theory. Chair ATP4-

·4H2O is shown in blue and chairPT ATP4-·4H2O is shown in red. 

    A fifth water molecule was added to the chair isomer of ATP4- using the HF/6-31G(d) 

level of theory to see if there would be a significant difference in the ΔUrxn. The addition 

of a fifth water molecule to the dephosphorylation reaction resulted in a slightly less 

negative ΔUrxn than that with four water molecules (-396.1 kJ mol-1 for ATP4-·4H2O, -

392.6 kJ mol-1 for ATP4-·5H2O). As with the transition state, the addition of a fifth water 

molecule did not result in any extra stabilization of the chair ADP3- product. 

    The dephosphorylation reaction of ATP4- is highly exothermic. This result makes 

sense, given that ATP is the energy currency of life. It can store lots of energy, which can 
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be released upon losing PO3
-. This loss of energy can drive other reactions to occur or can 

change the shape of a protein and its ability to bind to another molecule. (34) 

3.3.3 Changes in Enthalpy, Entropy and Gibbs Energy 

    The ΔHrxn, ΔSrxn and ΔGrxn values could not be determined for the chair isomer of 

ATP4- without the inclusion of water molecules since the ADP3- products could not be 

determined due the proton transfer that occurs as seen previously in Section 3.3.2 for all 

levels of theory. Without water molecules included, the ΔHrxn, ΔSrxn and ΔGrxn values 

could also not be determined for the chairPT isomer of ATP4- using the B3LYP 

functional due to the separation of the terminal phosphate that occurs for chairPT ATP4- 

as described in Section 3.2. The ΔHrxn, ΔSrxn and ΔGrxn values could also not be 

determined with the inclusion of water molecules for the chair isomer of ATP4- due to the 

proton transfer that occurs for the ADP3- product as seen in Section 3.3.2. Tables 3.6, 3.7 

and 3.8 show the ΔHrxn’s, ΔSrxn’s and ΔGrxn’s respectively for the isomers of ATP4- with 

and without the inclusion of water molecules.  
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Table 3.6 Changes in Enthalpy for the Dephosphorylation of ATP4- (in kJ mol-1) 

 Level of Theory 

Isomer HF/ 

6-31G(d) 

HF/ 

6-31+G(d) 

B3LYP/ 

6-31G(d) 

B3LYP/ 

6-31+G(d) 

Chair ATP4- - a - a - a - a 

ChairPT ATP4- -556.3 -555.4 - b - b 

Chair  

ATP4-·4H2O 

-406.0 -409.9 - a - a 

ChairPT  

ATP4-·4H2O 

-465.9 -462.2 -473.0 -472.5 

a Chair ADP3- product unable to be obtained due to the proton transfer that occurs. 
b ChairPT ATP4- dephosphorylation energy unable to be calculated due to the infinite 

separation of the terminal phosphate for the chairPT ATP4- reactant. 

Table 3.7 Entropy Changes for the Dephosphorylation of ATP4- (in J mol-1 K-1) 

 Level of Theory 

Isomer HF/ 

6-31G(d) 

HF/ 

6-31+G(d) 

B3LYP/ 

6-31G(d) 

B3LYP/ 

6-31+G(d) 

Chair ATP4- - a - a - a - a 

ChairPT ATP4- 9.12 9.40 - b - b 

Chair  

ATP4-·4H2O 

13.0 13.0 - a - a 

ChairPT  

ATP4-·4H2O 

10.9 11.1 10.4 10.6 

a Chair ADP3- product unable to be obtained due to the proton transfer that occurs. 
b ChairPT ATP4- dephosphorylation energy unable to be calculated due to the infinite 

separation of the terminal phosphate for the chairPT ATP4- reactant. 
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Table 3.8 ATP4- Dephosphorylation Gibbs Energy Changes (in kJ mol-1) 

 Level of Theory 

Isomer HF/ 

6-31G(d) 

HF/ 

6-31+G(d) 

B3LYP/ 

6-31G(d) 

B3LYP/ 

6-31+G(d) 

Chair ATP4- - a - a - a - a 

ChairPT ATP4- -559.1 -558.3 - b - b 

Chair  

ATP4-·4H2O 

-409.9 -413.7 - a - a 

ChairPT  

ATP4-·4H2O 

-469.2 -465.5 -476.1 -475.6 

a Chair ADP3- product unable to be obtained due to the proton transfer that occurs. 
b ChairPT ATP4- dephosphorylation energy unable to be calculated due to the infinite 

separation of the terminal phosphate for the chairPT ATP4- reactant. 

    As observed with the changes in energy in Section 3.3.2, the ΔHrxn for the 

dephosphorylation of the chairPT isomer of ATP4- was larger without the inclusion of 

water molecules than upon introducing water molecules. Upon the inclusion of water 

molecules, the ΔHrxn for the dephosphorylation reaction is less negative for the chair 

isomer of ATP4- than for the chairPT isomer of ATP4-, like the result obtained for the 

ΔErxn in Section 3.2.2. For the chairPT isomer of ATP4-, the ΔHrxn is less negative upon 

the addition of water molecules than without water, like the result obtained for the ΔUrxn 

in Section 3.2.2. The inclusion of diffuse functions makes the ΔHrxn for the 

dephosphorylation of the chairPT isomer slightly less negative, while the inclusion of 

diffuse functions makes the ΔHrxn for the dephosphorylation of the chair isomer slightly 

more negative. 

    The opposite trend is observed for the ΔS values. The ΔSrxn is more positive for the 

dephosphorylation of the chairPT isomer of ATP4- upon the introduction of water 
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molecules. The change in entropy can be computed using Eq. 3.2 and is based upon the 

change in quantity of heat (Δq) added to a system and the temperature (T) of a system. (33) 

The addition of water molecules to the system increases the number of energy levels 

available to particles in the system, meaning more heat is added to a system, which is turn 

causes a higher entropy at constant temperature. The ΔSrxn for the dephosphorylation of 

the chair isomer of ATP4- is more positive than for the dephosphorylation of the chairPT 

isomer of ATP4-. The ΔSrxn becomes more negative upon including diffuse functions for 

the dephosphorylation of the chairPT isomer of ATP4-, while the introduction of diffuse 

functions produces the same ΔSrxn for the dephosphorylation of the chair isomer of ATP4- 

as without diffuse functions.  

ΔS = Δq / T (3.2) 

    The above results show that the ΔGrxn is more negative for the dephosphorylation of 

the chairPT isomer of ATP4- without the presence of water molecules rather than with 

water. Upon the inclusion of water molecules, the ΔGrxn is more negative for the 

dephosphorylation of the chairPT isomer of ATP4- than for the dephosphorylation of the 

chair isomer of ATP4-. The inclusion of diffuse functions results in a more negative ΔGrxn 

for the dephosphorylation of the chair isomer of ATP4-, while the change in ΔGrxn for the 

dephosphorylation of the chairPT isomer of ATP4- becomes less negative upon including 

diffuse functions. Using Eq. 2.1, a more negative ΔH and a more positive ΔS leads to a 

more negative ΔG, which is what is observed in Table 3.8. 

    As with the ΔUrxn discussed in Section 3.3.2, the addition of a fifth water molecule led 

to a slightly less negative ΔHrxn, a slightly less positive ΔSrxn and a slightly less negative 
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ΔGrxn (as seen in Table 3.9) for the dephosphorylation of the chair isomer of ATP4- using 

the HF/6-31G(d) level of theory. 

Table 3.9 Enthalpy, Entropy and Gibbs Energy Changes for the Dephosphorylation of 

Chair ATP4- With Water Included Using the HF/6-31G(d) level of theory. 

Compound ΔH (kJ mol-1) ΔS (J mol-1 K-1) ΔG (kJ mol-1) 

Chair ATP4-·4H2O -406.0 13.0 -409.9 

Chair ATP4-·5H2O -400.5 12.6 -404.3 
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3.4 Feasibility of the ChairPT Isomer of ATP4- 

    To determine the difficulty to get from one isomer to the other, the activation energy to 

get from the chair isomer of ATP4- to the proton transfer isomer of ATP4- was 

determined. This calculation was solely performed without the inclusion of water 

molecules (an example of the structure obtained is shown in Figure 3.9), since the proton 

transfer is not observed upon inclusion of water molecules. It was determined using HF 

(since the initial geometries for chair ATP4- cannot be determined using B3LYP) that the 

activation energy for this process is quite small. Using the HF/6-31G(d) level of theory, 

the activation energy was calculated to be 1.4 kJ mol-1.  

 
Figure 3.9 The transition state structure for the conversion of the chair isomer of ATP4- to 

the proton transfer isomer of ATP4- without the inclusion of water molecules calculated 

using the HF/6-31G(d) level of theory. 

    Since this energy barrier is so small and the energy gained by undergoing the proton 

transfer is so large, it is theoretically possible for this process to exist in nature. However, 

these calculations were done solely in the gas phase, these results bear little semblance to 
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the real world. Also, since this proton transfer does not occur during the calculations for 

ATP4- with the inclusion of water molecules, which is a starting point to modelling the 

system in nature, and the activation energy is lower for the dephosphorylation of the chair 

isomer of ATP4-, it is not likely that this process is seen in nature. 
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4. Conformational, Anomeric and Isomeric Analysis and Phosphorylation 

Mechanism of the Glucose Anion 

4.1 Conformational Analysis of the Glucose Anion 

    Based upon previous studies, (23, 26) the deprotonated form of the GG conformer of the 

4C1 chair conformer of β-ᴅ-glucose was initially used as the starting reactant for the 

phosphorylation mechanism. Geometry optimizations and vibrational frequencies were 

calculated using HF and B3LYP. Calculations were done both with and without the 

inclusion of water molecules (glucose·nH2O, where n is the number of water molecules). 

    However, previous studies done on the conformers of β-ᴅ-glucose were done for 

neutral glucose. The deprotonated form of glucose was chosen for this study since 

glucose is in the deprotonated form in the active site in the kanamycin studies done by 

Dr. Arpita Yadav’s group due to a neighbouring aspartic acid residue. (20, 21) It was 

assumed that the GG conformer would still be the lowest energy conformer for the 

deprotonated form of β-ᴅ-glucose, but when the geometry optimization was completed, it 

was determined that the TG conformer of the β-ᴅ-glucose anion (see Figure 4.1 for the 

structure obtained using the HF/6-31G(d) level of theory) is lowest in energy. This can be 

explained by the presence of hydrogen bonding that occurs for the deprotonated form of 

the TG conformer of glucose. For the TG conformer of the β-ᴅ-glucose anion, hydrogen 

bonding can occur between the negatively charged oxygen of the deprotonated 

hydroxymethyl group and the nearest hydroxyl hydrogen on the ring. This lowers the 

energy for the TG conformer. Since this hydrogen bonding cannot occur for the other 

conformers of deprotonated β-ᴅ-glucose, the TG conformer of deprotonated β-ᴅ-glucose 

is the lowest energy conformer. 
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Figure 4.1 The structure obtained using the HF/6-31G(d) level of theory for the TG 

conformer of the β-ᴅ-glucose anion. 

    Therefore, the remainder of the calculations were performed using the TG conformer 

of glucose. 
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4.2 Anomeric and Isomeric Analysis of the Glucose Anion 

    Since a change in conformer was observed for the β-ᴅ-glucose anion, it was decided to 

ensure that β-ᴅ-glucose is the lowest energy anomer upon changing to the deprotonated 

form. Therefore, an anomeric analysis of both the α and β anomers and an isomeric 

analysis of both the ᴅ and ʟ isomers of deprotonated glucose were performed to see the 

differences in the energies. Anomers are two sugars differing in configuration only at the 

carbonyl carbon in the open chain form, (36) whereas isomers are compounds that have the 

same molecular formula but different structures. (37) 

    The geometry optimizations and vibrational frequencies were calculated using both HF 

and B3LYP with and without diffuse functions. As can be seen in Table 4.1 and 

Appendices VII-X, the deprotonated form of β-ᴅ-glucose is lowest in energy both with 

and without water molecules using the HF/6-31+G(d) level of theory. Using the HF/6-

31G(d) level of theory results in the deprotonated form of β-ʟ-glucose being lowest in 

energy without including water molecules, while the deprotonated form of α-ᴅ-glucose is 

lowest in energy upon the inclusion of water molecules. Using the B3LYP functional 

results in the deprotonated form of β-ʟ-glucose being lowest in energy in all cases.  
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Table 4.1 Energies of the Different Forms of the Glucose Anion Relative to the β-ᴅ-

glucose Anion (in kJ mol-1) 

Anion Anomer Level of Theory 

 HF/ 

6-31G(d) 

HF/ 

6-31+G(d) 

B3LYP/ 

6-31G(d) 

B3LYP/ 

6-31+G(d) 

α-ᴅ-glucose -0.27 3.32 -0.81 3.09 

α-ʟ-glucose 2.23 5.12 2.45 5.05 

β-ᴅ-glucose 0.00 0.00 0.00 0.00 

β-ʟ-glucose -0.41 0.16 -3.89 -2.71 

α-ᴅ-glucose·H2O -0.96 2.75 -3.90 0.31 

α-ʟ-glucose·H2O 1.04 4.11 -6.91 3.30 

β-ᴅ-glucose·H2O 0.00 0.00 0.00 0.00 

β-ʟ-glucose·H2O 0.02 0.19 -34.62 a -0.67 

a Changed into a new isomer during calculation. 

    The energies of the various anomers and isomers of the glucose anion are within 

roughly 7 kJ mol-1 (as shown in Table 4.1 and Appendices VII-X) of each other. 

However, using the B3LYP/6-31G(d) level of theory with the inclusion of a water 

molecule, β-ʟ-glucose-·H2O is far lower in energy than the other structures. This can be 

attributed to the discovery of a different isomer for the deprotonated form of glucose, 

which is discussed in Section 4.3. 
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4.3 A Different Isomer of the Glucose Anion 

    While running the calculations for the deprotonated form of the β-ʟ-glucose·H2O anion 

using the B3LYP/6-31G(d) level of theory (see Figure 4.2 for the resulting structure), it 

was determined that the proton on the hydroxyl group nearest to the CH2O
- group was 

capable of transferring from the hydroxyl group to the negatively charged oxygen of the 

deprotonated hydroxymethyl group. This isomer is lower in energy, since having the 

negative charge on the ring allows for two sources of hydrogen bonding instead of one: 

one between the negatively charged oxygen and the hydrogen of the methoxy group and 

one between the negatively charged oxygen and the nearest hydroxyl group on the ring.  

 
Figure 4.2 The different isomer obtained from the geometry optimization of the β-ʟ-

glucose·H2O anion using the B3LYP/6-31G(d) level of theory. Hydrogen bonding is 

shown with the black dashed lines. 
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4.4 Phosphorylation of the Glucose Anion 

    Considering the generally small differences in energies between the various forms of 

deprotonated glucose with and without the inclusion of water, as well as the variation 

between the form of deprotonated glucose that is lowest in energy upon changing levels 

of theory and by including water molecules, it was decided that both the alpha and beta 

anomers and both the ᴅ and ʟ isomers of deprotonated glucose would be chosen to study 

the phosphorylation reaction (Eq. 4.1) with and without the inclusion of water molecules. 

C6H11O6
-
(g) + PO3

-
(g)

 → C6H11PO9
2-

(g) (4.1) 

4.4.1 Energy Changes 

    As can be seen in Table 4.2, without the presence of water molecules, the β-ᴅ-glucose 

anion has the least positive change in energy (ΔUrxn) for the phosphorylation mechanism 

using all levels of theory. However, upon the inclusion of water molecules, the ΔUrxn is 

lowest for the α-ʟ-glucose·H2O anion. This result is favourable for the prevention of 

phosphorylation from occurring inside the body. If the ΔUrxn had to be the least positive 

for the β-ᴅ-glucose anion upon the inclusion of water molecules, which is the form of 

glucose most abundant in nature, (21) then phosphorylation would be more likely to occur 

inside the body. But, since nature is trying to prevent the phosphorylation of glucose from 

occurring, this result makes sense. The addition of diffuse functions to heavy atoms 

resulted in a slightly more positive ΔUrxn for the phosphorylation reaction. Using HF 

resulted in slightly less positive ΔUrxn values compared to the results obtained using the 

B3LYP functional. Using the B3LYP functional resulted in all the phosphorylated 

products undergoing the proton transfer described in Section 4.3, which is indicated by 
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the PT shown in Table 4.2. For the calculations of the phosphorylated products obtained 

using the B3LYP/6-31G(d) level of theory with water included, only the β-ʟ-glucose·H2O 

anion phosphorylated product underwent a proton transfer. The structure may simply 

require a change in the position of the water molecule and will be explored as part of 

future work. Therefore, the energy change for this form of phosphorylated glucose cannot 

be compared to the other forms of phosphorylated glucose and is omitted from Table 4.2. 

Table 4.2 Changes in Energy for the Phosphorylation Mechanism of the Various Forms 

of the Deprotonated Glucose Anion (in kJ mol-1) 

Anion Form Level of Theory 

 HF/ 

6-31G(d) 

HF/ 

6-31+G(d) 

B3LYP/ 

6-31G(d) 

B3LYP/ 

6-31+G(d) 

α-ᴅ-glucose 119.1 127.7 131.1 (PT) 152.7 (PT) 

α-ʟ-glucose 118.0 128.8 134.8 (PT) 154.9 (PT) 

β-ᴅ-glucose 113.6 123.0 129.4 (PT) 145.0 (PT) 

β-ʟ-glucose 118.0 127.6 140.8 (PT) 158.0 (PT) 

α-ᴅ-glucose·H2O 54.4 66.5 70.9 94.0 

α-ʟ-glucose·H2O 36.4 58.5 38.1 73.0 

β-ᴅ-glucose·H2O 48.5 61.8 62.3 87.7 

β-ʟ-glucose·H2O 52.1 67.9 - a 95.0 

a Structure underwent a proton transfer during the calculation. 

    The relative ease of phosphorylation of the α-ʟ-glucose·H2O anion can be explained by 

the presence of hydrogen bonding that can solely exist for the ʟ isomer of the 

phosphorylated glucose anion between the oxygen of one of the water molecules and the 

nearest hydroxyl hydrogen on the ring (as shown in Figure 4.3). The distance between the 

oxygen on the water molecule and the nearest hydroxyl hydrogen on the ring for the ᴅ 
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isomer of the phosphorylated glucose anion is too long for hydrogen bonding to occur. 

This hydrogen bonding results in a lower energy structure for the ʟ isomer, but only upon 

the inclusion of water molecules. Since the energy for the β-ʟ-glucose·H2O anion is lower 

than the energy for the α-ʟ-glucose·H2O anion, the ΔUrxn for the phosphorylation reaction 

is lowest for the α-ʟ-glucose·H2O anion. 

 

Figure 4.3 The structure obtained for phosphorylated α-ʟ-glucose·2H2O anion using the 

HF/6-31G(d) level of theory. The additional hydrogen bond gained for the ʟ isomer of 

phosphorylated glucose anion. 

4.4.2 Changes in Enthalpy, Entropy and Gibbs Energy 

    As can be seen in Table 4.3, the β-ᴅ-glucose anion has the lowest ΔHrxn without the 

inclusion of water molecules using all levels of theory. However, upon the inclusion of 

water molecules, the ΔHrxn for the phosphorylation mechanism is generally less positive 

for the α-ʟ-glucose·H2O anion, except for the HF/6-31+G(d) level of theory where the 

change in enthalpy is roughly the same for both the α-ʟ-glucose·H2O anion and the β-ᴅ-

glucose·H2O anion. As with the ΔUrxn discussed in Section 4.4.1, this result is favourable 
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for the prevention of phosphorylation from occurring inside the body. The changes in 

enthalpy were significantly lower upon the inclusion of water molecules. As with the 

ΔUrxn values discussed in Section 4.4.1, the addition of diffuse functions made the ΔHrxn 

values slightly more positive for the phosphorylation of deprotonated glucose. Using HF 

resulted in slightly less negative ΔHrxn values than using the B3LYP functional. 

Table 4.3 Changes in Enthalpy for the Phosphorylation of the Various Forms of the 

Deprotonated Glucose Anion (in kJ mol-1) 

Anion Form Level of Theory 

 HF/ 

6-31G(d) 

HF/ 

6-31+G(d) 

B3LYP/ 

6-31G(d) 

B3LYP/ 

6-31+G(d) 

α-ᴅ-glucose 126.3 135.3 135.6 (PT) 155.9 (PT) 

α-ʟ-glucose 127.0 137.4 138.6 (PT) 158.8 (PT) 

β-ᴅ-glucose 120.8 130.7 133.1 (PT) 149.4 (PT) 

β-ʟ-glucose 127.2 136.7 144.4 (PT) 161.6 (PT) 

α-ᴅ-glucose·H2O 64.9 76.3 80.0 101.5 

α-ʟ-glucose·H2O 49.7 71.9 51.4 85.8 

β-ᴅ-glucose·H2O 59.4 71.7 72.8 95.7 

β-ʟ-glucose·H2O 63.3 88.8 - a 105.1 

a Structure underwent a proton transfer during the calculation. 

   Without the inclusion of water molecules, the ΔSrxn values (as seen in Table 4.4) are 

consistent for all forms of deprotonated glucose using all levels of theory with no 

significant differences. Some slight differences are that the ΔSrxn values for the 

phosphorylation of the β-ʟ-glucose anion are slightly more negative than the other forms 

using HF and the ΔSrxn for the phosphorylation of the α-ᴅ-glucose anion is slightly less 

negative than the other forms using the B3LYP/6-31+G(d). In the presence of water 
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molecules, the ΔSrxn values using all levels of theory are more negative for the α-ʟ-

glucose·H2O anion. Unlike the ΔHrxn values for the phosphorylation of deprotonated 

glucose, this is not encouraging since a more negative ΔSrxn means that the α-ʟ-glucose 

anion would not be more susceptible to phosphorylation in the body than the β-ᴅ-glucose 

anion as it would lead to a more positive value for the ΔGrxn according to Eq. 2.1. The 

inclusion of water molecules resulted in slightly more negative ΔSrxn values. The addition 

of diffuse functions did not greatly affect the ΔSrxn values using HF. However, upon their 

inclusion using the B3LYP functional, it led to slightly less negative ΔSrxn values for the 

phosphorylation of the α-ᴅ-glucose anion and in the presence of water molecules for the 

β-ᴅ-glucose anion, whereas it led to a slightly more negative ΔSrxn for the 

phosphorylation of the α-ʟ-glucose anion in the presence of water. The ΔSrxn values were 

consistent regardless of whether HF or B3LYP was used. 
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Table 4.4 Changes in Entropy for the Phosphorylation of the Various Forms of the 

Deprotonated Glucose Anion (in J mol-1 K-1) 

Anion Form Level of Theory 

 HF/ 

6-31G(d) 

HF/ 

6-31+G(d) 

B3LYP/ 

6-31G(d) 

B3LYP/ 

6-31+G(d) 

α-ᴅ-glucose -10.8 -10.7 -10.7 (PT) -9.82 (PT) 

α-ʟ-glucose -10.8 -10.8 -10.4 (PT) -10.3 (PT) 

β-ᴅ-glucose -10.9 -10.7 -10.1 (PT) -10.4 (PT) 

β-ʟ-glucose -11.1 -11.1 -10.4 (PT) -10.4 (PT) 

α-ᴅ-glucose·H2O -12.4 -12.5 -12.6 -11.8 

α-ʟ-glucose·H2O -13.6 -14.1 -13.3 -14.4 

β-ᴅ-glucose·H2O -12.5 -12.5 -12.7 -11.9 

β-ʟ-glucose·H2O -12.1 -12.6 - a -12.8 

a Structure underwent a proton transfer during the calculation. 

    Using the results for the ΔHrxn and ΔSrxn values and Eq. 2.1, the ΔGrxn values are least 

positive for the phosphorylation of the β-ᴅ-glucose anion without the presence of water 

and that the ΔGrxn values are generally less positive for the phosphorylation of the α-ʟ-

glucose anion upon the inclusion of water molecules, as is shown in Table 4.5. These 

results suggest that the ΔHrxn has a larger effect on the ΔGrxn than the ΔSrxn for the 

phosphorylation of deprotonated glucose. Therefore, the ΔGrxn values are favourable for 

the prevention of the phosphorylation of glucose inside the body, since upon the inclusion 

of water molecules, the ΔGrxn values are less positive for the α-ʟ-glucose anion and not 

the β-ᴅ-glucose anion. The inclusion of diffuse functions led to less positive ΔGrxn values 

using both HF and B3LYP. The inclusion of water molecules made the ΔGrxn values for 

the phosphorylation of deprotonated glucose significantly less positive due to the less 
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positive ΔHrxn values upon including water. The ΔGrxn values were more positive using 

the B3LYP functional than for HF, which is due to the more positive ΔHrxn values using 

B3LYP. Since the ΔGrxn values are all positive indicating a non-spontaneous 

phosphorylation reaction, the driving factor comes from the dephosphorylation of ATP4-. 

(32) 

Table 4.5 Changes in Gibbs Energy for the Phosphorylation of the Various Forms of the 

Deprotonated Glucose Anion (in kJ mol-1) 

Anion Form Level of Theory 

 HF/ 

6-31G(d) 

HF/ 

6-31+G(d) 

B3LYP/ 

6-31G(d) 

B3LYP/ 

6-31+G(d) 

α-ᴅ-glucose 129.5 138.5 138.8 (PT) 158.8 (PT) 

α-ʟ-glucose 130.2 140.6 141.7 (PT) 161.9 (PT) 

β-ᴅ-glucose 124.0 133.9 136.2 (PT) 152.5 (PT) 

β-ʟ-glucose 130.5 140.0 147.5 (PT) 164.7 (PT) 

α-ᴅ-glucose·H2O 68.6 80.0 83.8 105.0 

α-ʟ-glucose·H2O 53.8 76.1 55.4 90.0 

β-ᴅ-glucose·H2O 63.1 75.5 76.6 99.3 

β-ʟ-glucose·H2O 66.9 92.6 - a 109.0 

a Structure underwent a proton transfer during the calculation. 
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4.5 Feasibility of Anomer and Isomer Conversions  

4.5.1 Feasibility of the α-ʟ-glucose Anion in the Phosphorylation Mechanism 

    As has been previously reported, (23) β-ᴅ-glucose is the form of glucose found in the 

body. If this is indeed true for the deprotonated form of glucose, then for the α-ʟ-glucose 

anion to be the form of glucose involved in the phosphorylation mechanism, two 

conversions would need to be performed: the conversion of deprotonated beta glucose to 

deprotonated alpha glucose and the conversion of deprotonated ᴅ glucose to deprotonated 

ʟ glucose.  

    The conversion from deprotonated β-glucose to deprotonated α-glucose can be 

explained relatively easily. Glucose can exist in equilibrium between three structures: the 

alpha anomer, the open chain form and the beta anomer. Starting from the open chain 

form, if the OH group at the anomeric carbon is pointing down, then α-ᴅ-glucose will be 

formed. Starting from the open chain form, if the OH at the anomeric carbon is pointing 

up, then β-ᴅ-glucose will be formed. The same principles apply for the deprotonated form 

of these species. In the presence of water, which can act as a weak base, the β-ᴅ-glucose 

anion can be converted to the open chain form upon removing a proton from the OH 

group of the anomeric carbon. Then the conversion to the α-ᴅ-glucose anion can happen 

by reforming the ring and then protonation of the C=O bond from above by the newly 

formed H3O
+ acid. However, this conversion cannot occur without the initial presence of 

a base, such as water, so this anomer switch would only occur upon inclusion of water 

molecules or other bases. (36) 

    There have been several studies done involving the conversion of ᴅ-glucose to ʟ-

glucose. Sowa synthesized ʟ-glucurone from ᴅ-glycero-ᴅ-gulo-heptonolactone (as shown 
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in Scheme 4.1). Since ʟ-glucose can be prepared from ʟ-glucurone and ᴅ-glycero-ᴅ-gulo-

heptonolactone can be made starting with ᴅ-glucose, ᴅ-glucose can be transformed into ʟ-

glucose. (38)  

 

Scheme 4.1 Conversion of ᴅ-glucose to ʟ-glucose through ʟ-glucurone. 
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    Shiozaki used 2,3,4,6-tetra-O-benzyl-ᴅ-glucono-1,5-lactone as a starting material to 

synthesize 2,3,4-tri-O-benzyl-1-O-(3-chlorobenozyl)-6-O-(trimethylacetyl)-β-ʟ-

glucopyranose using oxidative decarboxylation (as shown in Scheme 4.2). Since ᴅ-

glucose was used to prepare 2,3,4,6-tetra-O-benzyl-ᴅ-glucono-1,5-lactone and ʟ-glucose 

can be derived from 2,3,4-tri-O-benzyl-1-O-(3-chlorobenozyl)-6-O-(trimethylacetyl)-β-ʟ-

glucopyranose, ᴅ-glucose can be converted into ʟ-glucose. (39) 
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Scheme 4.2 Synthesis of 2,3,4-tri-O-benzyl-1-O-(3-chlorobenozyl)-6-O-

(trimethylacetyl)-β-ʟ-glucopyranose from 2,3,4,6-tetra-O-benzyl-ᴅ-glucono-1,5-lactone. 

(Adapted with permission from reference 39. Copyright 2018 American Chemical 

Society) 

    Even though ᴅ-glucose can be converted into ʟ-glucose in a laboratory, it remains to be 

seen how this transformation could occur in the body. It is possible that there could be the 

presence of an enzyme that would facilitate this process. It is possible that there is a 
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different reaction pathway that is more feasible that occurs in nature. It is also equally or 

more possible that this conversion does not occur at all and that deprotonated β-ᴅ-glucose 

is always present within the body. If this is the situation, then the phosphorylation of 

glucose is not as likely to occur due to the less positive ΔUrxn, ΔHrxn and ΔGrxn values for 

the phosphorylation of the β-ᴅ-glucose anion than for the phosphorylation of the α-ʟ-

glucose anion, thus supporting the initial purpose of this project in determining how to 

prevent drug modification (in this case phosphorylation) of antibiotics. The structure for 

the transition state of the conversion from ᴅ-glucose to ʟ-glucose as well as its activation 

energy would need to be determined to clearly answer the question about the feasibility 

of the conversion from the β-ᴅ-glucose anion to α-ʟ-glucose anion. 

4.5.2 Feasibility of the Proton Transfer Isomer of the Glucose Anion 

    To determine the difficulty in going from the normal isomer to the proton transfer 

isomer of deprotonated glucose, the transition states (see Figure 4.4 for the structure of 

the proton transfer isomer of the β-ᴅ-glucose anion using the HF/6-31G(d) level of 

theory) and activation energies were determined for each form of the proton transfer 

isomer of deprotonated glucose. As shown in Table 4.3, the activation energy to go from 

the normal isomer to the proton transfer isomer of the glucose anion is quite small for all 

forms of glucose using the HF/6-31G(d) level of theory, as was observed for the 

conversion of the chair isomer of ATP4- to the chairPT isomer of ATP4- seen in Section 

3.4. 
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Table 4.6 Activation Energies (in kJ mol-1) using the HF/6-31G(d) Level of Theory for 

the Conversion of the Glucose Anion to the Proton Transfer Isomer of the Glucose Anion   

Anion Form Activation Energy 

α-ᴅ-glucose 6.9 

α-ʟ-glucose 6.8 

β-ᴅ-glucose 6.3 

β-ʟ-glucose 5.5 

 

 
Figure 4.4 The transition state structure for the conversion of the β-ᴅ-glucose anion to the 

proton transfer isomer of β-ᴅ-glucose anion using the HF/6-31G(d) level of theory. 

    However, the proton transfer is only observed during geometry optimization 

calculations using the B3LYP functional. Also, this proton transfer was generally only 

observed during the calculations without the inclusion of water molecules. Therefore, as 

is the case with the proton transfer isomer of ATP4- discussed in Section 3.4, it is not 

likely that isomerization occurs in the body. 
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5. Conclusions 

    The chair conformer of ATP4- was found to be lower in energy than the linear 

conformer of ATP4-. A new chairPT isomer of ATP4- was found to be lower in energy 

than the chair isomer of ATP4-. The activation energy for the dephosphorylation of 

chairPT isomer of ATP4- was determined to be lower for chairPT ATP4- than for chairPT 

ATP4-∙4H2O. The activation energy for the dephosphorylation of ATP4- was found to be 

lower for chair ATP4-∙4H2O than for chairPT ATP4-∙4H2O. For the dephosphorylation of 

the chairPT isomer ATP4-, it was determined that the ΔUrxn, ΔHrxn and ΔGrxn were more 

negative for chairPT ATP4- than for chairPT ATP4-∙4H2O. The ΔUrxn, ΔHrxn and ΔGrxn for 

the dephosphorylation of ATP4- were found to be more negative for the chairPT ATP4-

∙4H2O than for the chair ATP4-∙4H2O. The addition of a fifth water molecule to the chair 

isomer of ATP4- did not significantly affect the activation energy, ΔUrxn, ΔHrxn, ΔSrxn or 

ΔGrxn for the dephosphorylation mechanism. It was shown that the chair isomer of ATP4- 

can be readily converted into the chairPT isomer of ATP4-, but that this process is not 

likely to occur in the body. 

    The TG conformer of the β-ᴅ-glucose anion was found to be lower in energy than 

either the GG or GT conformers of the β-ᴅ-glucose anion. Without the presence of water 

molecules, it was determined that the β-ᴅ-glucose anion was lowest in energy using the 

HF/6-31G(d) while the β-ʟ-glucose anion was lowest in energy using other levels of 

theory. Upon the inclusion of water molecules, it was determined that the β-ʟ-glucose 

anion was lowest in energy using the B3LYP functional, the α-ᴅ-glucose anion was 

lowest in energy using the HF/6-31G(d) level of theory and the β-ᴅ-glucose anion was 

lowest in energy using the HF/6-31+G(d) level of theory. The ΔUrxn, ΔHrxn and ΔGrxn for 
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the phosphorylation of deprotonated glucose was least positive for the β-ᴅ-glucose anion, 

both in its normal isomer using HF and in its proton transfer isomer using B3LYP, 

without the inclusion of water molecules. However, upon the inclusion of water 

molecules, it was found that the α-ʟ-glucose anion had the least positive ΔUrxn, ΔHrxn and 

ΔGrxn for the phosphorylation mechanism. It was determined that the process of going 

from the normal isomer to the proton transfer isomer of the glucose anion is quite 

favorable, but that this process is unlikely to occur in the body. 

    There is still a great deal of work that needs to be done. The transition states, the 

activation energies and the IRCs for the phosphorylation mechanism of deprotonated 

glucose need to be determined. These will help in verifying the validity of the α-ʟ-

glucose anion being involved in the phosphorylation mechanism in the body. The process 

of converting the β-ᴅ-glucose anion into the α-ʟ-glucose anion needs to be explored 

further, as this would help in determining the feasibility of this conversion in the body 

and whether the α-ʟ-glucose anion is involved in the phosphorylation mechanism. The 

deprotonated form of glucose was chosen for study; (20, 21) however, it would be 

interesting to run the calculations with neutral glucose. This would allow a comparison of 

results between the two forms of glucose and it would also permit a comparison with 

previously reported results (23, 26). The structure of glucose will need to be changed to 

resemble the simplified model of kanamycin studied by Dr. Arpita Yadav’s research 

group (20), which is simply done by changing the CH2OH group of glucose into a CH2NH2 

group and changing the 2’-OH group into a hydroxymethyl group. Also, the calculations 

need to be performed by solvating the systems and comparing the results to those with 

individual water molecules added. A key difference is that in solution, the products from 
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the dephosphorylation of ATP4- become ADP3-, HPO4
2- and H+ instead of ADP3- and 

PO3
- in the gas phase. (19)  

    Both the Dr. Arpita Yadav and the Dr. Ray Poirier research groups believe that there is 

a single-step mechanism for this process in the presence of enzymes in which ATP is 

dephosphorylated as glucose is phosphorylated. (20, 21) This mechanism needs to be 

explored further by determining the transition states and activation energies. 

Understanding the phosphorylation mechanism between ATP and glucose can serve as a 

model for the phosphorylation mechanism between ATP and kanamycin. This 

understanding can help lead to the development of better antibiotics that would not be 

susceptible to phosphorylation. 
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Appendices 

Appendix I Chair ATP4- PES Scan Energies Using the HF/6-31G(d) Level of Theory (in 

hartrees) 

 Dihedral Degree of Freedom 

Dihedral 

Angle (°) 
2-1-30-31 2-3-13-14 3-4-10-11 3-13-14-15 

-170 -2652.13708 -2653.00882 -2653.07806 -2653.08719 

-160 -2651.07732 -2652.90187 -2653.08746 -2653.08236 

-150 -2648.54883 -2652.78014 -2653.09646 -2653.07893 

-140 -2643.31469 -2652.66788 -2653.10543 -2653.07663 

-130 -2628.09783 -2652.58916 -2653.11465 -2653.07519 

-120 -2607.08400 -2652.49865 -2653.12439 -2653.07444 

-110 -2631.22298 -2652.23374 -2653.13479 -2653.07429 

-100 -2643.28531 -2651.52741 -2653.14564 -2653.07469 

-90 -2649.01384 -2649.97855 -2653.15586 -2653.07570 

-80 -2651.28754 -2647.08665 -2653.16346 -2653.07737 

-70 -2652.22506 -2646.57954 -2653.16630 -2653.07960 

-60 -2652.58597 -2645.21764 -2653.16338 -2653.08184 

-50 -2652.71512 -2620.14902 -2653.15523 -2653.08284 

-40 -2652.75821 -2643.51712 -2653.14360 -2653.08036 

-30 -2652.77773 -2643.33387 -2653.13067 -2653.07175 

-20 -2652.80056 -2640.96904 -2653.11829 -2653.05808 

-10 -2652.83288 -2648.03049 -2653.10753 -2653.04856 

0 -2652.87882 -2652.26611 -2653.09874 -2653.05328 

10 -2652.94397 -2652.45996 -2653.09174 -2653.06660 

20 -2653.01649 -2652.05878 -2653.08613 -2653.07190 

30 -2653.08087 -2650.79323 -2653.08146 -2653.07074 

40 -2653.12874 -2649.10200 -2653.07737 -2653.07104 

50 -2653.15709 -2650.04210 -2653.07361 -2653.07286 

60 -2653.16630 -2651.77147 -2653.07004 -2653.08569 

70 -2653.15716 -2652.52859 -2653.06647 -2653.11139 

80 -2653.12909 -2652.76846 -2653.06255 -2653.13753 

90 -2653.08164 -2652.85330 -2653.05773 -2653.15770 

100 -2653.01742 -2652.91598 -2653.05143 -2653.16630 

110 -2652.94437 -2652.97959 -2653.04344 -2653.15976 

120 -2652.87807 -2653.03770 -2653.03452 -2653.14896 

130 -2652.83167 -2653.08636 -2653.02727 -2653.13694 

140 -2652.79908 -2653.12541 -2653.02575 -2653.12580 

150 -2652.77543 -2653.15414 -2653.03210 -2653.11656 

160 -2652.75241 -2653.16630 -2653.04364 -2653.10818 

170 -2652.70041 -2653.14907 -2653.05622 -2653.10042 
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180 -2652.54970 -2653.09361 -2653.06778 -2653.09335 

 

 Dihedral Degree of Freedom 

Dihedral 

Angle (°) 
4-5-7-8 16-17-18-19 17-18-19-20 

-170 -2653.13359 -2653.16630 -2652.97394 

-160 -2653.13396 -2653.16593 -2653.06828 

-150 -2653.13411 -2653.16486 -2653.12539 

-140 -2653.13418 -2653.16325 -2653.15642 

-130 -2653.13436 -2653.16130 -2653.16630 

-120 -2653.13484 -2653.15923 -2653.15648 

-110 -2653.13573 -2653.15725 -2653.12597 

-100 -2653.13709 -2653.15550 -2653.07053 

-90 -2653.13886 -2653.15402 -2652.98018 

-80 -2653.14098 -2653.15272 -2652.83907 

-70 -2653.14333 -2653.15140 -2652.76852 

-60 -2653.14584 -2653.14983 -2652.73925 

-50 -2653.14847 -2653.14781 -2652.47843 

-40 -2653.15122 -2653.14523 -2651.30857 

-30 -2653.15414 -2653.14206 -2646.26355 

-20 -2653.15725 -2653.13848 -2617.44453 

-10 -2653.16043 -2653.13507 -2308.10103 

0 -2653.16336 -2653.13261 -2613.47970 

10 -2653.16550 -2653.13180 -2645.60613 

20 -2653.16630 -2653.13286 -2651.17812 

30 -2653.16543 -2653.13545 -2652.39405 

40 -2653.16288 -2653.13886 -2652.61147 

50 -2653.15892 -2653.14234 -2652.55659 

60 -2653.15404 -2653.14545 -2652.60889 

70 -2653.14875 -2653.14803 -2652.46293 

80 -2653.14353 -2653.15010 -2651.47378 

90 -2653.13875 -2653.15171 -2646.98003 

100 -2653.13472 -2653.15299 -2621.07800 

110 -2653.13166 -2653.15419 -1933.17550 

120 -2653.12971 -2653.15554 -2603.72064 

130 -2653.12886 -2653.15719 -2644.47874 

140 -2653.12896 -2653.15914 -2650.95829 

150 -2653.12973 -2653.16122 -2652.39836 

160 -2653.13083 -2653.16320 -2652.72321 

170 -2653.13196 -2653.16484 -2652.76696 

180 -2653.13292 -2653.16592 -2652.82992 
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Appendix II Linear ATP4- PES Scan Energies using the HF/6-31G(d) level of theory (in 

hartrees) 

 Dihedral Degree of Freedom 

Dihedral 

Angle (°) 
1-5-6-7 1-28-29-30 2-1-28-29 4-3-12-13 

-170 -2653.10043 -2653.08367 -2652.86519 -2652.33182 

-160 -2653.10476 -2653.08297 -2652.71203 -2652.62668 

-150 -2653.11405 -2653.08357 -2652.61090 -2652.73506 

-140 -2653.12045 -2653.08515 -2652.62057 -2652.77658 

-130 -2653.12681 -2653.08728 -2652.59094 -2652.80137 

-120 -2653.13319 -2653.08943 -2652.32500 -2652.82722 

-110 -2653.13954 -2653.08896 -2651.44018 -2652.86266 

-100 -2653.14561 -2653.07802 -2649.77878 -2652.92510 

-90 -2653.15088 -2653.04706 -2649.58983 -2653.00223 

-80 -2653.15457 -2652.99189 -2651.27042 -2653.06949 

-70 -2653.15593 -2652.89070 -2652.27818 -2653.11800 

-60 -2653.15450 -2652.53639 -2652.59670 -2653.14648 

-50 -2653.15028 -2651.82315 -2652.63991 -2653.15593 

-40 -2653.14374 -2647.21405 -2652.61118 -2653.14604 

-30 -2653.13583 -2649.12529 -2652.60096 -2653.11552 

-20 -2653.12765 -2649.70544 -2652.60096 -2653.06525 

-10 -2653.12016 -2638.29900 -2652.61635 -2653.00008 

0 -2653.11385 -2627.55577 -2652.57473 -2652.92924 

10 -2653.10878 -2646.09686 -2652.27148 -2652.86590 

20 -2653.10472 -2651.82689 -2651.29133 -2652.81735 

30 -2653.10132 -2652.63817 -2649.68472 -2652.77968 

40 -2653.09823 -2652.96576 -2649.98504 -2652.75035 

50 -2653.09515 -2653.09981 -2651.62793 -2652.73898 

60 -2653.09179 -2653.14669 -2652.47912 -2652.72831 

70 -2653.08782 -2653.15593 -2652.76445 -2652.67843 

80 -2653.08289 -2653.15096 -2652.92812 -2652.51212 

90 -2653.07670 -2653.14029 -2652.99170 -2652.05462 

100 -2653.06914 -2653.12868 -2653.04770 -2650.91111 

110 -2653.06079 -2653.11836 -2653.09221 -2648.33212 

120 -2653.05349 -2653.10974 -2653.12549 -2643.09362 

130 -2653.05038 -2653.10294 -2653.14763 -2630.14606 

140 -2653.05389 -2653.09778 -2653.15593 -2621.03426 

150 -2653.06278 -2653.09385 -2653.14675 -2636.99746 

160 -2653.07350 -2653.09070 -2653.11871 -2645.76975 

170 -2653.08368 -2653.08795 -2653.06869 -2649.68779 

180 -2653.09262 -2653.08551 -2652.98669 -2651.56569 

 



87 
 

 Dihedral Degree of Freedom 

Dihedral 

Angle (°) 
5-4-10-11 31-32-35-36 32-35-36-37 

-170 -2653.13039 -2653.15593 -2652.38740 

-160 -2653.13101 -2653.15558 -2650.94891 

-150 -2653.13142 -2653.15458 -2644.48555 

-140 -2653.13175 -2653.15306 -2604.19920 

-130 -2653.13218 -2653.15119 -2097.12187 

-120 -2653.13286 -2653.14918 -2621.46148 

-110 -2653.13390 -2653.14725 -2647.01134 

-100 -2653.13531 -2653.14552 -2651.46705 

-90 -2653.13705 -2653.14405 -2652.44428 

-80 -2653.13900 -2653.14273 -2652.58498 

-70 -2653.14107 -2653.14136 -2652.54131 

-60 -2653.14317 -2653.13972 -2652.58874 

-50 -2653.14528 -2653.13766 -2652.33128 

-40 -2653.14743 -2653.13511 -2650.96516 

-30 -2653.14964 -2653.13215 -2644.54691 

-20 -2653.15186 -2653.12910 -2605.29368 

-10 -2653.15389 -2653.12656 -2015.80831 

0 -2653.15537 -2653.12517 -2619.86848 

10 -2653.15593 -2653.12530 -2646.73866 

20 -2653.15532 -2653.12687 -2651.40607 

30 -2653.15348 -2653.12939 -2652.49377 

40 -2653.15055 -2653.13225 -2652.73548 

50 -2653.14681 -2653.13499 -2652.76171 

60 -2653.14258 -2653.13740 -2652.83763 

70 -2653.13824 -2653.13943 -2652.97328 

80 -2653.13408 -2653.14110 -2653.06175 

90 -2653.13037 -2653.14245 -2653.11620 

100 -2653.12736 -2653.14361 -2653.14624 

110 -2653.12523 -2653.14476 -2653.15593 

120 -2653.12408 -2653.14608 -2653.14615 

130 -2653.12390 -2653.14765 -2653.11539 

140 -2653.12449 -2653.14945 -2653.05864 

150 -2653.12561 -2653.15133 -2652.96470 

160 -2653.12696 -2653.15312 -2652.82266 

170 -2653.12831 -2653.15460 -2652.75979 

180 -2653.12949 -2653.15559 -2652.71418 
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Appendix III ATP4- Dephosphorylation Data Using the HF/6-31G(d) Level of Theory 

Isomer Energy  

(hartrees) 

Enthalpy 

(hartrees) 

Entropy  

(J mol-1 K-1) 

Gibbs Energy 

(kJ mol-1) 

Chair ATP4- -2653.1711357 -2652.838327 783.864 -6.965261E06 

Linear 

ATP4- 

-2653.1559328 -2652.821253 824.206 -6.965228E06 

ChairPT 

ATP4- 

-2653.2473191 -2652.914687 796.349 -6.965465E06 

Chair  

ATP4-∙4H2O 

-2957.4234733 -2956.968256 984.190 -7.763590E06 

Linear 

ATP4-∙4H2O 

-2957.4111895 -2956.955114 980.106 -7.763555E06 

ChairPT  

ATP4-∙4H2O 

-2957.4625166 -2957.009449 1040.272 -7.763702E06 

Chair  

ATP4-∙5H2O 

-3033.4757052 -3032.990481 1047.268 -7.963429E06 

ChairPT 

ATP4- TS 

-2653.2462926 -2652.914691 791.286 -6.965463E06 

Chair  

ATP4-∙4H2O 

TS 

-2957.3782474 -2956.926840 1042.121 -7.763486E06 

ChairPT  

ATP4-∙4H2O 

TS 

-2957.3925356 -2956.941060 1057.314 -7.764709E06 

Chair  

ATP4-∙5H2O 

TS 

-3033.4317264 -3032.949731 1102.969 -7.963338E06 

ChairPT 

ATP4- 

Products 

-2653.4595524 -2653.126588 956.027 -6.966069E06 

Chair  

ATP4-∙4H2O 

Products 

-2957.5743438 -2957.122880 1212.636 -7.764013E06 

ChairPT  

ATP4-∙4H2O 

Products 

-2957.6378336 -2957.186912 1231.544 -7.764182E06 

Chair  

ATP4-∙5H2O 

Products 

-3033.6252218 -3033.143038 1268.208 -7.963895E06 
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Appendix IV ATP4- Dephosphorylation Data Using the HF/6-31+G(d) Level of Theory 

Isomer Energy  

(hartrees) 

Enthalpy 

(hartrees) 

Entropy  

(J mol-1 K-1) 

Gibbs Energy 

(kJ mol-1) 

Chair ATP4- -2653.2842819 -2652.952111 787.215 -6.965560E06 

Linear 

ATP4- 

-2653.2721032 -2652.938786 791.136 -6.965527E06 

ChairPT 

ATP4- 

-2653.3569541 -2653.025269 798.094 -6.965756E06 

Chair  

ATP4-∙4H2O 

-2957.5491165 -2957.095100 989.311 -7.764148E06 

Linear 

ATP4-∙4H2O 

-2957.5382920 -2957.083380 982.052 -7.764115E06 

ChairPT  

ATP4-∙4H2O 

-2957.5899970 -2957.138109 1045.941 -7.764278E06 

ChairPT 

ATP4- TS 

-2653.3544022 -2653.023770 796.726 -6.965751E06 

Chair  

ATP4-∙4H2O 

TS 

-2957.5032797 -2957.052889 1051.732 -7.764056E06 

ChairPT  

ATP4-∙4H2O 

TS 

-2957.5170636 -2957.067142 1073.589 -7.764100E06 

ChairPT 

ATP4- 

Products 

-2653.5671586 -2653.236828 962.692 -6.966360E06 

Chair  

ATP4-∙4H2O 

Products 

-2957.7015973 -2957.251209 1216.946 -7.764626E06 

ChairPT  

ATP4-∙4H2O 

Products 

-2957.7637806 -2957.314138 1240.836 -7.764798E06 
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Appendix V ATP4- Dephosphorylation Data Using the B3LYP/6-31G(d) Level of Theory 

Isomer Energy  

(hartrees) 

Enthalpy 

(hartrees) 

Entropy  

(J mol-1 K-1) 

Gibbs Energy 

(kJ mol-1) 

Chair  

ATP4-∙4H2O 

-2969.7873973 -2969.367801 1016.402 -7.796378E06 

Linear 

ATP4-∙4H2O 

-2969.7750231 -2969.354355 1015.511 -7.796343E06 

ChairPT  

ATP4-∙4H2O 

-2969.8222754 -2969.402591 1069.857 -7.796485E06 

ChairPT  

ATP4-∙4H2O 

TS 

-2969.7610553 -2969.343176 1080.162 -7.796333E06 

ChairPT  

ATP4-∙4H2O 

Products 

-2970.0005897 -2969.582752 1251.731 -7.797013E06 
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Appendix VI ATP4- Dephosphorylation Data Using the B3LYP/6-31+G(d) Level of 

Theory 

Isomer Energy  

(hartrees) 

Enthalpy 

(hartrees) 

Entropy  

(J mol-1 K-1) 

Gibbs Energy 

(kJ mol-1) 

Chair  

ATP4-∙4H2O 

-2969.9938035 -2969.574984 1021.181 -7.796924E06 

Linear 

ATP4-∙4H2O 

-2969.9839530 -2969.563804 1009.704 -7.796891E06 

ChairPT  

ATP4-∙4H2O 

-2970.0327600 -2969.614605 1077.857 -7.797045E06 

ChairPT  

ATP4-∙4H2O 

TS 

    

ChairPT  

ATP4-∙4H2O 

Products 

-2970.2108439 -2969.794554 1263.468 -7.797572E06 
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Appendix VII Glucose Anion Phosphorylation Data Using the HF/6-31G(d) Level of 

Theory 

Anion Form Energy 

(hartrees) 

Enthalpy 

(hartrees) 

Entropy  

(J mol-1 K-1) 

Gibbs 

Energy 

(kJ mol-1) 

α-ᴅ-glucose 

Reactants 

-1248.1412816 -1247.912946 689.916 -3.276601E06 

α-ʟ-glucose 

Reactants 

-1248.1403316 -1247.912011 689.732 -3.276599E06 

β-ᴅ-glucose 

Reactants 

-1248.1411807 -1247.913273 694.477 -3.276603E06 

β-ʟ-glucose 

Reactants 

-1248.1413370 -1247.913487 694.632 -3.276604E06 

α-ᴅ-glucose∙H2O 

Reactants 

-1400.2189125 -1399.930297 838.260 -3.675767E06 

α-ʟ-glucose∙H2O 

Reactants 

-1400.2181511 -1399.929295 826.834 -3.675761E06 

β-ᴅ-glucose∙H2O 

Reactants 

-1400.2185452 -1399.930352 843.486 -3.675769E06 

β-ʟ-glucose∙H2O 

Reactants 

-1400.2185371 -1399.930078 828.888 -3.675764E06 

Phosphorylated  

α-ᴅ-glucose  

-1248.0959288 -1247.864839 500.210 -3.276418E06 

Phosphorylated 

α-ʟ-glucose  

-1248.0953875 -1247.863642 500.097 -3.276415E06 

Phosphorylated 

β-ᴅ-glucose  

-1248.0979132 -1247.867280 503.850 -3.276426E06 

Phosphorylated 

β-ʟ-glucose  

-1248.0963763 -1247.865057 499.996 -3.276419E06 

Phosphorylated 

α-ᴅ-glucose∙2H2O  

-1400.1982005 -1399.905570 620.596 -3.675637E06 

Phosphorylated 

α-ʟ-glucose∙2H2O  

-1400.2042684 -1399.910360 589.191 -3.675640E06 

Phosphorylated 

β-ᴅ-glucose∙2H2O  

-1400.2000656 -1399.907729 624.558 -3.675644E06 

Phosphorylated 

β-ʟ-glucose∙2H2O  

-1400.1987076 -1399.905956 616.722 -3.675637E06 
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Appendix VIII Glucose Anion Phosphorylation Data Using the HF/6-31+G(d) Level of 

Theory 

Anion Form Energy 

(hartrees) 

Enthalpy 

(hartrees) 

Entropy  

(J mol-1 K-1) 

Gibbs Energy 

(kJ mol-1) 

α-ᴅ-glucose 

Reactants 

-1248.2024169 -1247.974345 691.762 -3.276763E06 

α-ʟ-glucose 

Reactants 

-1248.2017292 -1247.973707 691.632 -3.276761E06 

β-ᴅ-glucose 

Reactants 

-1248.2036796 -1247.976054 696.565 -3.276769E06 

β-ʟ-glucose 

Reactants 

-1248.2036188 -1247.976031 697.423 -3.276769E06 

α-ᴅ-glucose∙H2O 

Reactants 

-1400.2896266 -1400.001623 845.858 -3.675956E06 

α-ʟ-glucose∙H2O 

Reactants 

-1400.2891064 -1400.001117 841.825 -3.675954E06 

β-ᴅ-glucose∙H2O 

Reactants 

-1400.2906720 -1400.003109 849.925 -3.675962E06 

β-ʟ-glucose∙H2O 

Reactants 

-1400.2906001 -1400.003035 847.369 -3.675961E06 

Phosphorylated  

α-ᴅ-glucose  

-1248.1537731 -1247.922823 503.670 -3.276572E06 

Phosphorylated 

α-ʟ-glucose  

-1248.1526830 -1247.921391 501.842 -3.276567E06 

Phosphorylated 

β-ᴅ-glucose  

-1248.1568169 -1247.926291 508.465 -3.276582E06 

Phosphorylated 

β-ʟ-glucose  

-1248.1550264 -1247.923975 502.281 -3.276574E06 

Phosphorylated 

α-ᴅ-glucose∙2H2O  

-1400.2643048 -1399.972579 627.215 -3.675815E06 

Phosphorylated 

α-ʟ-glucose∙2H2O  

-1400.2668167 -1399.973723 594.894 -3.675808E06 

Phosphorylated 

β-ᴅ-glucose∙2H2O  

-1400.2671509 -1399.975788 631.307 -3.675825E06 

Phosphorylated 

β-ʟ-glucose∙2H2O  

-1400.2647474 -1399.969202 627.424 -3.675806E06 
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Appendix IX Glucose Anion Phosphorylation Data Using the B3LYP/6-31G(d) Level of 

Theory 

Anion Form Energy 

(hartrees) 

Enthalpy 

(hartrees) 

Entropy  

(J mol-1 K-1) 

Gibbs 

Energy 

(kJ mol-1) 

α-ᴅ-glucose PT 

Reactants 

-1253.7098924 -1253.497900 703.184 -3.291268E06 

α-ʟ-glucose PT 

Reactants 

-1253.7086537 -1253.496591 701.803 -3.291265E06 

β-ᴅ-glucose PT 

Reactants 

-1253.7095851 -1253.497794 705.468 -3.291269E06 

β-ʟ-glucose PT 

Reactants 

-1253.7110657 -1253.499200 705.280 -3.291272E06 

α-ᴅ-glucose∙H2O 

Reactants 

-1406.5813058 -1406.314681 846.151 -3.692531E06 

α-ʟ-glucose∙H2O 

Reactants 

-1406.5824485 -1406.315718 824.662 -3.692528E06 

β-ᴅ-glucose∙H2O 

Reactants 

-1406.5798183 -1406.313539 847.791 -3.692529E06 

β-ʟ-glucose∙H2O 

PT Reactants 

-1406.5930054 -1406.324249 823.235 -3.692550E06 

Phosphorylated  

α-ᴅ-glucose PT 

-1253.6599692 -1253.446248 516.573 -3.291077E06 

Phosphorylated 

α-ʟ-glucose PT 

-1253.6573160 -1253.443809 519.967 -3.291072E06 

Phosphorylated 

β-ᴅ-glucose PT 

-1253.6602894 -1253.447084 527.812 -3.291083E06 

Phosphorylated 

β-ʟ-glucose PT 

-1253.6574375 -1253.444187 523.799 -3.291074E06 

Phosphorylated 

α-ᴅ-glucose∙2H2O  

-1406.5543054 -1406.284215 624.859 -3.692386E06 

Phosphorylated 

α-ʟ-glucose∙2H2O  

-1406.5679395 -1406.296141 591.003 -3.692407E06 

Phosphorylated 

β-ᴅ-glucose∙2H2O  

-1406.5560714 -1406.285826 625.152 -3.692390E06 

Phosphorylated 

β-ʟ-glucose∙2H2O  

-1406.5549632 -1406.284250 620.094 -3.692384E06 
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Appendix X Glucose Anion Phosphorylation Data Using the B3LYP/6-31+G(d) Level of 

Theory 

Anion Form Energy 

(hartree) 

Enthalpy 

(hartree) 

Entropy  

(J mol-1 K-1) 

Gibbs 

Energy 

(kJ mol-1) 

α-ᴅ-glucose PT 

Reactants 

-1253.8106645 -1253.599213 706.008 -3.291535E06 

α-ʟ-glucose PT 

Reactants 

-1253.8099200 -1253.598516 706.268 -3.291533E06 

β-ᴅ-glucose PT 

Reactants 

-1253.8118415 -1253.600676 709.125 -3.291540E06 

β-ʟ-glucose PT 

Reactants 

-1253.8128724 -1253.601627 709.163 -3.291543E06 

α-ᴅ-glucose∙H2O 

Reactants 

-1406.7024281 -1406.436550 851.959 -3.692853E06 

α-ʟ-glucose∙H2O 

Reactants 

-1406.7012882 -1406.435585 853.666 -3.692851E06 

β-ᴅ-glucose∙H2O 

Reactants 

-1406.7025455 -1406.437122 854.143 -3.692855E06 

β-ʟ-glucose∙H2O 

Reactants 

-1406.7027995 -1406.437401 858.410 -3.692857E06 

Phosphorylated  

α-ᴅ-glucose PT 

-1253.7525073 -1253.539826 534.117 -3.291328E06 

Phosphorylated 

α-ʟ-glucose PT 

-1253.7509193 -1253.538024 525.402 -3.291321E06 

Phosphorylated 

β-ᴅ-glucose PT 

-1253.7565977 -1253.543780 526.736 -3.291336E06 

Phosphorylated 

β-ʟ-glucose PT 

-1253.7527097 -1253.540069 527.611 -3.291327E06 

Phosphorylated 

α-ᴅ-glucose∙2H2O  

-1406.6666432 -1406.397899 645.240 -3.692690E06 

Phosphorylated 

α-ʟ-glucose∙2H2O  

-1406.6734882 -1406.402923 602.145 -3.692690E06 

Phosphorylated 

β-ᴅ-glucose∙2H2O  

-1406.6691398 -1406.400664 645.524 -3.692697E06 

Phosphorylated 

β-ʟ-glucose∙2H2O  

-1406.6666158 -1406.397355 633.704 -3.692685E06 

 


