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The pKa of 3-acetamido-5-acetylfuran (3A5AF) was predicted to be in 

the range 18.5 – 21.5 using the B3LYP/6-311+G(2d,p) method and 

several amides as references. The experimental pKa value, 20.7, was 

determined via UV-Vis titrations. Its solubility was measured in 

methanol-modified supercritical CO2 (mole fraction, 3.23 × 10–4, cloud 

points 40 °C to 80 °C) and is less soluble than 5-hydroxymethylfurfural 

(5-HMF). Dimerization energies were calculated for 3A5AF and 5-HMF 

to compare hydrogen-bonding, as such interactions will affect their 

solubility. IR and 1H NMR spectra of 3A5AF samples support the 

existence of intermolecular hydrogen-bonding. The HOMO, LUMO and 

electrostatic potential of 3A5AF were determined through MO 

calculations using B3LYP/6-311+G(2d,p). The − * transition energy 

(TD-DFT study) was compared with UV-Vis data. Calculated atomic 

charges were used in an attempt to predict the reactivity of 3A5AF. A 

reaction between 3A5AF and CH3MgBr was conducted. 

 

1. Introduction 

Nowadays chemicals generated from biomass are being studied 

extensively because of the potential crisis surrounding the 

depletion of fossil fuels. Biomass can be derived from plants or 

animals, including lignocellulosic biomass. To date, the products 

obtained from biomass mainly contain C, H and O atoms.[1] The 

use of biomass-feedstocks containing other elements and 

functional groups would broaden the range of chemicals that can 

be derived from biomass. Therefore, the synthesis of renewable 

compounds containing heteroatoms is of considerable interest but 

remains relatively underexplored.[2] Chitin is an abundant 

biopolymer and can be obtained from the shells of crustaceans (i.e. 

fishery/food industry waste).[3] N-acetyl-D-glucosamine (NAG) is 

the monomer of chitin, and can be converted to a N-containing 

product, 3-acetamido-5-acetylfuran (3A5AF), through dehydration 

(Scheme 1). As far as we are aware, 3A5AF is the first reported 

nitrogen-containing product that can be obtained from the 

dehydration of a hexose in solution,[4] and we hope it can be a 

building block for a range of renewable amines and polymers in the 

future. Previously, 3A5AF was obtained from NAG using pyrolysis 

methods, but the yields were very low (2% and 0.04%).[5] In recent 

research, the yield of 3A5AF from NAG was increased up to 60% 

by the use of dimethylacetamide (DMA) as the solvent, with boric 

acid and sodium chloride as additives under microwave 

irradiation.[4] Very soon after that, another study on the dehydration 

of NAG in ionic liquids achieved a similar yield of 3A5AF.[6] More 

recently, 3A5AF has been prepared directly from chitin albeit in 

lower yields due to the incalcitrant nature of the biopolymer.[7] NAG 

has also been partially dehydrated in superheated water under 

autocatalytic conditions to yield Chromogen I and Chromogen III in 

yields of 23%.[8] As an alternative to dehydrative approaches to 

using this renewable aminosugar, the aerobic oxidation of NAG 

has been performed in water using gold nanoparticle catalysts to 

give N-acetylglucosaminic acid.[9] 

To date, no studies on the chemistry of 3A5AF beyond its 

preparation have been reported, so this compound is awaiting 

further exploration in terms of its physical and chemical properties. 

In this paper, we endeavor to describe some important properties 

of 3A5AF, including its pKa value, intermolecular interactions and 

electronic structure. These properties are of interest because they 

are fundamental to understanding the chemistry of this renewable 

molecule and will allow chemists to design better routes towards 

its isolation. For example, could supercritical carbon dioxide 

(scCO2) be used to extract this product in an environmentally 

friendly way from reaction mixtures, or could 

acidification/basification approaches be used to separate this 

amide from non-N-containing by-products (e.g. levulinic acid, 5-

hydroxymethylfurfural) in a biorefinery using shellfish waste as a 

feedstock? The pKa of 3A5AF will be important in determining its 

reactivity in this regard. Furthermore, these data could help predict 

other possible reactions and optimizations to obtain desirable 

products. 
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Scheme 1. Conversion of chitin to NAG and the dehydration of NAG to 3A5AF. 

Computational chemistry has become very effective in 

predicting properties of compounds and explaining their 

behaviour.[10] In this way, computational work can be thought of as 

a complement to experimental research. In this study, we used 

computational calculations to predict the pKa value and possible 

reaction sites within 3A5AF, and to explain the solubility 

performance of 3A5AF in the non-polar “green” solvent scCO2. 

2. Results and Discussion 

2.1 pKa Calculation and Measurement 

In our study, dimethyl sulfoxide (DMSO) was chosen as the solvent 

because it permits a wide range of pKa values from 0 to 30 to be 

determined and also allows easy comparison with other values in 

the scientific literature.[11] Computational investigations were 

performed ahead of UV-Vis titrations so that an indicator with an 

appropriate pKa range could be selected. 

2.1.1 Computational Studies 

The pKa of a molecule is related to the Gibbs energy of 

deprotonation in solution (ΔGsoln) by the relation pKa = 

ΔGsoln/(RTln10). The thermodynamic cycle in Figure 1 was used, 

following the computational procedure of Sadlej-Sosnowska.[12] 

The free energy change in solution (ΔGsoln) is the sum of the Gibbs 

energy change in the gas-phase (ΔGg) and the change in the 

solvation energy (ΔGs).  

From Figure 1, equations (1) to (3) are obtained as follows:  

ΔGsoln = ΔGg + ΔGs     (1) 

ΔGg = G(A–
g) + G(H+

g) – G(HAg)   (2) 

ΔGs = ΔGs(A–) + ΔGs(H+) – ΔGs(HA)  (3) 

 

Figure 1. A thermodynamic cycle of an amide HA. 

While some studies have attempted to calculate the absolute 

pKa from computational data,[13] there are limitations to the 

accuracy of these methods due to the sensitivity of the pKa to small 

errors in the calculation of ΔGsoln and uncertainty in the solvation 

energy of a proton.[12c, 14] Instead, we have calculated the pKa of 

3A5AF relative to amides with known pKa values. Since pKa = 

ΔGsoln/(RTln10), for two compounds the relationship pKa1 – pKa2 = 

(ΔGsoln1 – ΔGsoln2)/(RTln10) will exist. The advantage of this method 

is that uncertainty associated with the solvation energy of a proton 

is eliminated. For this method, another acid with a known pKa value 

is needed. Ideally, acids with similar structures and acidities are 

used. During our model establishment for species in solution, the 

solvent effect was considered. The solvation energy is calculated 

from the difference between the free energy in solution and the free 

energy in the gas-phase. The pKa values of a series of aromatic 

amides were used as references, thus several pKa values of 

3A5AF were calculated and found to be in the range of 18.5 – 21.5 

(Table 1). These pKa values are similar to those of most amides,[11] 

indicating that 3A5AF has a weak Brønsted acidity. The importance 

of solvation to the relative acidities of amides is apparent when the 

pKa values calculated for solution are compared to those calculated 

for the gas phase. For example, with solvation taken into account, 

a pKa of 18.5 was obtained using phenylacetamide as a reference, 

but a significantly less acidic value of 14.8 was predicted based on 

gas-phase calculations. 

2.1.2 Experimental Measurement via UV-Vis Titration 

In order to measure the pKa of 3A5AF experimentally, an 

overlapping indicator method was used.[17] An acid (HIn) with a 

known pKa value is used as the indicator and its conjugate anion 

(In–) must give rise to a strong absorption in the UV-Vis region. The 

solution of the unknown acid is then added to the indicator solution, 

and an equilibrium will form as shown in Scheme 2. 

 

Scheme 2. The equilibrium between the indicator and the compound of interest 

in solution. (HA: the compound of interest; HIn: the indicator). 

Table 1. pKa(DMSO) of 3A5AF estimated computationally using the 

pKa(DMSO) of amides as references and measured experimentally using UV-

Vis titration.[a] 

 Reference 

Compounds[b] 

ΔGg
[c] 

(kJ/mol) 

ΔGs
[c]

 

(kJ/mol

) 

pKa of 

3A5AF[d

] 

Computationa

l estimates 

Phenylacetamide 

(21.4) 

1463.4

8 
-188.55 18.5 

Benzamide (23.4) 
1499.8

9 
-226.76 20.7 

Isonicotinamide (21.5) 
1450.7

9 
-192.23 21.4 

2-

Thiophenecarboxamid

e (22.3) 

1484.2

4 
-222.19 21.5 

Phenoxyacetamide 

(23.0) 

1465.8

5 
-193.47 20.5 

Experimental 

measurement 
_ _ _ 

20.7 ± 

0.1 

[a] The Gibbs energy changes in gas-phase were calculated using G3MP2[15]; 

the solvation energy changes were calculated using the PCM-B3LYP/6-

311+G(2d,p) method[16]. [b] The reference pKa values were obtained from 

experimental data[11]. [c] Gas-phase energy changes and solvation energy 



 3 

changes of the compounds with known pKa values. [d] ΔGg(3A5AF) = 1424.17 

kJ/mol; ΔGs(3A5AF) = -166.31 kJ/mol. 

The pKa value of HA can be calculated using equation (4), 

which relates this to the pKa value of the indicator: 

 

pKa(HA) = pKa(HIn) – logKeq = pKa(HIn) – log{([HIn][A–])/([HA][In–])}                

(4) 

In the UV-Vis spectra, a wavelength is chosen at which only 

the absorption of one species in the equilibrium is observed and 

the intensity of absorption at this wavelength is monitored as 

concentrations change. By recording these changes during the 

titration the concentration of the species can be determined using 

Beer’s law, and using the reaction equation the concentrations of 

the other three species present can be calculated. 

Fluorene (pKa = 22.6) was selected as the indicator on the 

basis of its similar pKa to those determined computationally for 

3A5AF (Table 1). The average pKa value of 3A5AF was 20.7 ± 0.1, 

after obtaining titration data in triplicate, which is within the range 

of the computational calculations, and is closest to the 

computational result obtained using benzamide as the reference, 

20.7 (Table 1). This indicates that pKa estimates provided by 

computation are reasonable. This value is slightly lower than the 

values of most amides reported in the literature,[11] but overall 

3A5AF is still a very weak acid. The fact that benzamide (a primary 

amide) rather than phenylacetamide (a secondary amide) gave the 

closest computational result compared with the experimental data 

is a little surprising. We assumed that phenylacetamide, which has 

the most similar structure to 3A5AF compared with other amides 

employed, would give the best agreement between experiment 

and theory. A systematic determination of amide pKa values using 

a consistent experimental method could resolve some of these 

discrepancies. 

2.2 Solubility Measurement 

2.2.1 Determination of Solubility of 3A5AF in Supercritical 

Carbon Dioxide Using a Phase Monitor 

The phase behavior of 3A5AF in scCO2 was studied using a phase 

monitor. A small amount of solid 3A5AF (17.5 mg) was placed in 

the cell and then liquid CO2 (30 mL) was added. In neat scCO2, at 

60 °C and pressures up to 462 bar, the mixture in the cell was 

cloudy indicating incomplete dissolution. Therefore, methanol was 

used as a co-solvent. 3A5AF was dissolved in methanol first and 

the solution was injected into the cell. The mixture could be readily 

dissolved at all temperatures tested by increasing the pressure to 

certain values. The mole fraction solubility was determined to be 

3.23 × 10–4. Cloud points were observed at the following pressures 

(in bar) at all five temperatures: 40 °C, 263.5 ± 0.9; 50 °C, 280.1 ± 

3.7; 60 °C, 304.2 ± 5.1; 70 °C, 331.8 ± 0.5; 80 °C, 351.7 ± 0.3 

(Figure 2). Compared with the solubilities of several other bio-

sourced molecules in scCO2/methanol also determined in our 

group,[18] from 45 °C to 80 °C, 3A5AF is more soluble than tartaric 

acid, less soluble than 2,5-furandicarboxylic acid, fumaric acid, 

oxalacetic acid and malic acid, and has a similar solubility to 

succinic acid. However, it is significantly less soluble than 5-

hydroxymethylfurfural (5-HMF) (Figure 3), which is the product of 

fructose and glucose dehydration reactions and is prepared in a 

similar way to 3A5AF. 5-HMF is soluble in neat scCO2 and does 

not need a hydrogen-bonding co-solvent to dissolve in this medium. 

This likely indicates that the intermolecular forces between 

molecules of 3A5AF (solute-solute interactions) are significantly 

stronger in comparison to 5-HMF. For sugars and their amide 

derivatives, Potluri et al.[19] showed that acetylation increased the 

solubilities of these compounds in scCO2 because hydrogen-

bonding between solute molecules was reduced. As scCO2 is a 

non-polar solvent and has a relatively low density,[20] only 

substances with weak solute-solute interactions will dissolve 

readily in it without an additional co-solvent. Computational studies 

were undertaken in order to get a more detailed understanding of 

the differences in strength of solute-solute interactions between 5-

HMF and 3A5AF. 

 

Figure 2. Temperature-pressure phase diagram for 3A5AF in scCO2/methanol. 

Error bars: pressure ± 0.3 to 5.1 bar. 

 

Figure 3. The structure of 5-hydroxymethylfurfural. 

2.2.2 Calculation of Dimerization Energy 

To provide some insight into why 3A5AF is immiscible in scCO2 but 

5-HMF, a structurally similar furan, is, we modeled the 

intermolecular interactions for these compounds. These 

calculations are based on the free energy of mixing. 

 

Gmix = Hmix – TSmix    (5) 

 

From the experimental studies, for a binary mixture of scCO2 

and these furans, Gmix(5-HMF) < Gmix(3A5AF). As 

experimentally, the temperature range and mole ratios of solute to 

solvent were similar, one can assume that TSmix(5-HMF) ≈ 

TSmix(3A5AF). The differences in Gmix (equation 5) for these 2 

systems must arise from enthalpic contributions i.e. their 

intermolecular interactions. These intermolecular interactions favor 

the separation of the solute into a separate phase. Beyond the 

common central furan-ring motif, these molecules contain different 

functional groups and therefore, stronger interactions such as 

hydrogen-bonding will play a significant role in the different values 

of Gmix between the two systems. 

In order to examine this hypothesis, the Gibbs energies of 

dimerization (Gdimer) of 5-HMF and 3A5AF molecules were 
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calculated. 5-HMF, which dimerizes through an O–H …  O=C 

hydrogen bond has a Gdimer of –10.7 kJ/mol. For 3A5AF, 

intermolecular hydrogen bonds can be formed between the amide 

N–H bond and the carbonyl of either the amide or acetyl groups 

(Figure 4, models 1 and 2, respectively). Dimerization energies 

were calculated to be –30.7 kJ/mol and –24.1 kJ/mol, respectively. 

 

 

Figure 4. Schematics of the two putative hydrogen bonded 3A5AF dimers. 

(Dimerization energies: model 1: –24.1 kJ/mol; model 2: –30.7 kJ/mol). 

The greater hydrogen bonding abilities of amides like 3A5AF in 

comparison to alcohols like 5-HMF is apparent in the dimerization 

energies. Comparing Gdimer values, 3A5AF forms dimers more 

readily than 5-HMF, indicating that stronger solute-solute 

interactions will exist within a bulk sample of 3A5AF, and thus is 

less readily dissolved in scCO2. It should be noted that the 

enthalpic contribution from such hydrogen-bonding processes is 

not the exclusive reason for the differences in solubility observed, 

but these data clearly show the presence of stronger hydrogen-

bonding within 3A5AF than 5-HMF. These results indicate that 

useful solvent systems for future reactions of 3A5AF will require 

alcohols (and other “green” hydrogen-bonding solvents) or 

combinations of such solvents with scCO2 to overcome the 

hydrogen bonding-tendency of the amide moiety. 

2.2.3 Infrared and NMR Detection of Hydrogen-bonding in 

3A5AF Molecules 

In order to better prove the existence of hydrogen-bonding 

between 3A5AF molecules, IR spectra were obtained for both a 

solid sample of 3A5AF and a dilute solution (diethyl ether, Et2O, as 

the solvent). The carbonyl stretching frequency (C=O) for 3A5AF 

was 1652.68 cm−1 in the solid sample and 1668.68 cm−1 in solution. 

This is a difference of 16 cm−1.  As the bands for C=O of secondary 

amide and ketone functional groups appear in the same region, it 

is not possible to use IR to distinguish between the modes of 

intermolecular hydrogen-bonding. However, one might assume 

that as 3A5AF molecules are closer together in the solid-state more 

hydrogen-bonding will occur and this might cause a shift of C=O 

towards lower frequency. In the diluted sample, interactions 

between 3A5AF molecules will be reduced and hydrogen-bonding 

between the amide proton and the ethereal oxygen atom will also 

decrease. For 5-HMF the C=O is 1656.65 cm−1 in the solid state 

and 1685.47 cm−1 in the solution (Et2O as the solvent). The 

difference is 28.8 cm−1, which is larger than for 3A5AF samples. To 

some extent, this supports the hypothesis that stronger hydrogen-

bonding exists in samples of 3A5AF than in 5-HMF as the C=O for 

3A5AF is less upon going from neat samples to diluted solutions. 

NMR spectroscopy was also used to detect the hydrogen-

bonding. Three NMR samples with different 3A5AF concentrations 

were prepared. At 298 K, as the concentration in chloroform-d 

(CDCl3) was increased from 1.23 mg/mL to 7.35 mg/mL, (NH) 

shifted downfield from 7.18 ppm to 7.67 ppm, which is indicative of 

increased hydrogen-bonding within the sample.[21] Spectra were 

also obtained at higher temperature (323 K), and (NH) shifted to 

lower frequency, as hydrogen-bonding was disrupted by the 

increase in temperature. Compared with the spectra obtained at 

298 K, the concentrated, 7.35 mg/mL, sample exhibited a smaller 

temperature dependent shift,  0.06 ppm, than the dilute, 1.23 

mg/mL, sample,  0.13 ppm. The more concentrated sample 

contains more extensive hydrogen-bonding between the 3A5AF 

molecules, so the chemical shift varies less with changes in 

temperature. Finally, deuterium oxide (D2O) was added to the 

samples so that deuterium exchange would occur. Qualitatively, 

the rate of deuterium incorporation into 3A5AF for the more 

concentrated samples occurred more slowly than for the dilute 

samples. This might also illustrate that the hydrogen-bonding is 

stronger in the more concentrated sample, which would inhibit the 

rate of deuterium exchange. 

2.3 Chemical Properties of 3A5AF 

2.3.1 Computational Deduction 

Firstly, the energies of frontier orbitals for the geometry-optimized 

structure of 3A5AF were calculated by TD-DFT study. The 

excitation energy (E) obtained was 4.278 eV, which corresponds 

to a wavelength of 289.83 nm. The primary component of this 

excitation is a - 
* HOMO (Highest Occupied Molecular Orbital) 

to LUMO (Lowest Unoccupied Molecular Orbital) transition. This is 

in acceptable agreement with experimental data for 3A5AF, as the 

UV-Vis spectrum exhibits a - 
* 

transition at 266.8 nm (4.650 eV). 

Figure 5 shows the isosurfaces of the frontier orbitals. 

 

  

Figure 5. Isosurfaces of the HOMO (top) and LUMO (bottom) of 3A5AF. (Colour 

image in Supporting Information 

These data were used to visualize the electrostatic potential of 

3A5AF. This is affected by the electronegativity of atoms, the dipole 

moment and partial charges.[22] At points around the molecule, the 

electrostatic potential, V(r), is defined as the energy required to 

remove a unit point charge from a point, r, at the molecular 

surface.[23] Sections of the surface with a more positive 

electrostatic potential surface, corresponding to a net positive 

charge, are rendered in blue. Sections with more negative values 

of the electrostatic potential, corresponding to a net negative 

charge, are rendered in red. The colors of neutral regions range 

from green to yellow. The electrostatic potential map of 3A5AF is 

shown in the top part of Figure 6. The surface near the carbonyl 
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oxygens is strongly negatively charged, while the amide proton 

shows a blue positive charge. This is consistent with the amide-

amide hydrogen bonding interactions examined in Section 2.2.2. 

The surface near the hydrogen on the 4 position of the furan ring 

also has a significantly positive electrostatic potential, indicating 

that this hydrogen is protic. In contrast, the electrostatic potential 

surface of 5-HMF (Figure 6, bottom) shows the molecule to be 

largely non-polar, consistent with the weaker dimerization energy 

of 5-HMF. 

  

 

Figure 6. The electrostatic potential maps of 3A5AF and 5-HMF. (Top: 3A5AF; 

Bottom: 5-HMF). 

In addition, the electrostatic potential (ESP) atomic partial 

charges of 3A5AF were calculated (Table 2). Surprisingly, the ESP 

charge of O15 (amide group) is more negative than that of O18 

(acetyl group). This means that the amide of one 3A5AF molecule 

should form a strong hydrogen-bond with a neighbouring molecule. 

This contradicts conclusions based on the dimerization energies 

described in Section 2.2.2. Therefore, we believe that the steric 

interactions are more favorable between two 3A5AF molecules via 

amide-acetyl hydrogen-bonding compared with amide-amide 

hydrogen-bonding. 

 

Table 2. ESP charges of several atoms in 3A5AF[a].  

3A5AF structure Code Atom ESP charge (e) 

 

2 C 0.532 

5 C –0.153 

7 C –0.415 

10 C 0.791 

15 O –0.601 

18 O –0.511 

[a] The ESP charges were calculated using B3LYP/6-311+G(2d,p) method. 

2.3.2 Reaction of 3A5AF with a Methyl Grignard Reagent 

The data in Table 2 suggest that C10 will react more readily 

with a nucleophile (e.g. Grignard reagent) than C2 due to its more 

positive atomic charge. However, these calculations were 

performed on a neutral molecule and as many nucleophiles are 

basic, the first equivalent of such reagents will act to deprotonate 

the amide group. In this study, 3A5AF was mixed with two equiv. 

methylmagnesium bromide (CH3MgBr) under N2 at room 

temperature for 1 h. The conditions for the reaction were chosen 

based on reactivity studies performed on commercially available 

aromatic compounds e.g. acetophenone. Upon addition of 

CH3MgBr to 3A5AF, bubbles could be seen indicating the 

formation of methane gas as a result of deprotonation of the amide 

by the Grignard reagent (Scheme 3). After quenching using excess 

water and extraction, the reaction mixture was analyzed by GC-MS, 

IR spectroscopy, 1H and 13C NMR spectroscopy. As there was 

approximately 26% (from 1H NMR data) unreacted 3A5AF in the 

mixture, the reactivity of 3A5AF towards nucleophiles is relatively 

low compared with an analogous reaction of acetophenone where 

100% conversion was achieved under identical conditions. 1 and 

1’ are possible products of a Grignard reaction with 3A5AF. 

Unfortunately, due to the residual 3A5AF present in the mixture, 

the unequivocal identification of the products was challenging. GC-

MS analysis showed that two products, in addition to 3A5AF, were 

present with retention times of 4.876 min (m/z 165.1 g/mol), the 

major product and 5.086 min (m/z 183.1 g/mol). The latter could be 

assigned to product 1 or 1’ based on their mass and the former to 

2 as proposed in Scheme 3 (or an imine that would form via 

dehydration of 1’). Dehydration would be favoured in these 

reactions as it results in the formation of a multiple bond conjugated 

with the furan ring. As 1 and 1’ are isomers, the reaction work-up 

was varied in order to determine which products had formed. In the 

presence of acid, the peak assigned to 1 at retention time 5.086 

min disappeared and the peak for 2 at 4.876 min grew in intensity 

– indicating that an acid catalysed dehydration had occurred. 

However, upon further aqueous work up in the presence of 

aqueous sodium bicarbonate solution to quench excess acid, the 

peak for 2 disappeared and a single product peak for 1 was 

observed in the GC trace.  It should be noted that in a Grignard 

reaction of another acetyl-substituted aromatic secondary amide, 

N-(4-acetyl-3-methoxyphenyl)-acetamide, either the tertiary 

alcohol or hemiaminol product could be isolated depending on the 

exact nature of the reaction conditions employed.[24] 

 

Scheme 3. Reaction of 3A5AF and CH3MgBr to yield amido-alcohol (1) and 

alkene (2) products. Alternative product (1’), an isomer of 1, inset bottom right. 
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The IR spectrum of the reaction mixture was compared with 

that of pure 3A5AF. As there was still some unreacted 3A5AF in 

the mixture, conclusions regarding changes of C=O could not be 

made. Furthermore, the generation of the alkenyl C=C bond in 2 

could not be confirmed because the range of C=C would overlap 

with the aromatic C=C of the furan ring. However, the IR C-H bands 

of the methyl groups have increased in intensity for the reaction 

mixture (2920 – 2978 cm-1), confirming addition of the methyl group.  

In addition to IR and mass spectrometric analysis, NMR 

spectra of possible products were predicted computationally, and 

were compared with the experimental results. In the experimental 
13C NMR spectra, a peak at 167.4 ppm was assigned to (CO) in 

the product 1 (Scheme 3). The predicted (CO) occurs at a higher 

frequency (176.0 ppm) but was acceptably in accordance with the 

experimental data. The alcoholic quaternary C atom in 1 has a 

predicted chemical shift of 74.9 ppm (cf. 67.8 ppm experimentally) 

and is located in a unique position within the 13C NMR spectrum 

compared with the predicted spectra of 1’. This strongly suggests 

that the product of the Grignard reaction is a tertiary alcohol. 

Although, 13C NMR spectroscopy, both experimental and 

computational, has aided in identifying 1 - it cannot be relied on 

alone to unequivocally identify the reaction products.  

3. Conclusions 

3-acetamido-5-acetylfuran is a recently developed renewable 

compound that can be obtained from N-acetyl-D-glucosamine, the 

monomer of chitin. Several physical and chemical properties of 

3A5AF were studied by both computational and experimental work. 

The experimental pKa value of 3A5AF was obtained as 20.7 ± 0.1 

through UV-Vis titration, which was consistent with the theoretical 

prediction of a pKa in the range 18.5 - 21.5. 3A5AF is soluble in 

scCO2 with methanol as a co-solvent, but could not dissolve 

directly in neat scCO2 within the temperature and pressure ranges 

tested. Compared with some other chemicals from biomass such 

as 5-HMF, the solubility of 3A5AF in scCO2 is low. A possible 

reason is that stronger solute-solute interactions exist between 

3A5AF molecules such as intermolecular hydrogen-bonding 

between the acetyl and amide groups. The computed dimerization 

energies provided further evidence that 3A5AF can form dimers 

more easily than 5-HMF. The frequency of the C=O stretching 

band for 3A5AF neat was lower than that in solution, indicating 

stronger intermolecular forces (hydrogen-bonding) exist in the solid 

state. In 1H NMR spectra, samples with higher concentrations 

exhibited less temperature dependent variation in (NH). These 

results show that hydrogen-bonding exists between 3A5AF 

molecules in solution, and is stronger in higher concentration 

samples. Furthermore, the rate of deuterium exchange in more 

concentrated samples was slower than in dilute samples. The 

frontier orbitals and ESP charges of 3A5AF were determined. A 

Grignard reaction of 3A5AF with CH3MgBr was performed. 3A5AF 

was found to be less reactive than acetophenone under similar 

conditions and a tertiary alcohol product (1) formed that was 

susceptible to acid-catalysed dehydration. As 3A5AF is still a 

relatively new compound, which has not been studied extensively, 

these studies will be helpful in designing future reactions and 

processes involving this molecule. 

 

 

Experimental Section 

Computational Details 

All calculations were carried out using Gaussian 09.[25] Each structure 

was first optimized using the B3LYP functional and the 6-311+G(2d,p) 

basis set.[16] For the calculation of the pKa, the gas phase Gibbs 

energies were calculated using the G3MP2[15] method to obtain greater 

accuracy. The solvation energies were calculated using the Polarizable 

Continuum Model (PCM)[26] for DMSO and B3LYP/6-311+G(2d,p) 

method. In the dimerization energy calculations, molecular energies 

were calculated for 3A5AF and 5-HMF molecules using the B3LYP/6-

311+G(2d,p) method. A counterpoise correction was performed in the 

interaction energy calculation.[27] The TD-DFT excitation energies, ESP 

charges, electrostatic potential surfaces, and molecular orbitals were 

calculated using B3LYP/6-311+G(2d,p). The predicted NMR spectra 

were calculated using the PCM for chloroform as the solvent and 

B3LYP/6-311+G(2d,p) method. 

pKa Measurement 

DMSO was dried with calcium hydride and distilled prior to use. All 

glassware was oven-dried. The potassium dimsyl solution was 

prepared in a glovebox by adding around 40 mg potassium hydride to 

10.00 mL DMSO slowly with stirring. The solution obtained was pale 

yellow, and turned pink after the addition of one drop of 

triphenylmethane solution (1.3 mg dissolved in several drops of DMSO) 

to stabilize the solution. The accurate concentration of the potassium 

dimsyl solution was measured internally in the first stage of the titration. 

103.7 mg fluorene was added to 12.00 mL DMSO to form a 51.99 

mmol/L indicator solution. 3A5AF was synthesized using a literature 

procedure,[4] extracted from the reaction mixture using ethyl acetate 

(EtOAc, ACS grade), purified using flash chromatography, and dried 

overnight under vacuum using a Schlenk line. 48.9 mg 3A5AF was 

dissolved in 6.00 mL DMSO to form a 48.8 mmol/L solution.  

The titration process followed the work of Bordwell and co-workers,[17b] 

using an Ocean Optics USB4000-UV-Vis spectrometer. As part of the 

absorption band of the fluorenide anion (400 – 600 nm) overlaps with 

sections of the absorption bands of the 3A5AF molecule and its anion 

(300 – 700 nm), a wavelength for the calculation outside of this region 

was used. In a DMSO solution of 3A5AF, the extinction coefficient of 

3A5AF molecule, ε1, was calculated using Beer’s law at wavelength λ1. 

In the ionized 3A5AF solution in potassium dimsyl, the concentration of 

3A5AF molecules could be calculated from the absorbance at λ1, thus 

allowing the concentration of 3A5AF anions to be calculated. λ2 in the 

region of the 3A5AF anion absorption was chosen so it did not overlap 

with the region of the 3A5AF molecular absorption, allowing the 

extinction coefficient for the 3A5AF anion, ε2, to be obtained. Therefore, 

in the titration process, the changes in absorption intensity at λ2 could 

be recorded and used for calculating the 3A5AF anion concentration. 

UV-Vis spectra are provided in the Supporting Information. 

Solubility in scCO2 

A SFT-Phase Monitor II instrument (Supercritical Fluid Technologies 

Inc.) was used to adjust temperatures and pressures, and record cloud 

points for mixtures. The view cell was 30 mL in volume. In the first test, 

solubility in neat scCO2, 17.5 mg solid 3A5AF was placed directly into 

the cell. In the second test, 13.0 mg 3A5AF was dissolved in 3.00 mL 

methanol (HPLC grade), then the solution was injected into the cell. 

Cloud point data were obtained using a previously reported 

experimental procedure (including pressurization and equilibration 

steps).[18] A video of a phase change for 3A5AF in scCO2/methanol at 

50 °C is available in the Supporting Information. 

 

Infrared Measurement 

A Bruker Alpha FT-IR spectrometer was used. 3A5AF and 5-HMF solid, 

a 4.88 mmol/L 3A5AF in Et2O solution and a 5.15 mmol/L 5-HMF in 



 7 

Et2O solution were measured. IR spectra are available in the 

Supporting Information. 

NMR Measurement for the Hydrogen-bonding Experiments 

29.4 mg 3A5AF was dissolved in 4.00 mL CDCl3 to give a 7.35 mg/mL 

solution. 1.00 mL was withdrawn and diluted with 2.00 mL CDCl3, from 

which 1.00 mL was taken and mixed with 2.00 mL CDCl3. Thus the 2.45 

mg/mL and 1.23 mg/mL solutions were prepared. On a Bruker 

AVANCE III NMR 300, 1H NMR spectra were obtained for the three 

samples at 298 K and 323 K. Then approximately one equivalent of 

D2O was added to the three solutions. After being shaken and left for 

10 minutes, the samples were run again to observe the exchange of 

the proton in the amide group with the deuterium in D2O. 

Reaction of 3A5AF with CH3MgBr 

3A5AF (51.4 mg, 0.307 mmol) was dissolved in dry tetrahydrofuran 

(THF) and transferred to a Schlenk flask. The solvent was evaporated 

under vacuum. Under N2 flow, dry THF (ca. 8 mL) was added to the 

Schlenk flask to dissolve the solid. The flask was cooled in an ice bath 

and 0.26 mL (0.78 mmol) CH3MgBr solution (3.0 M, in Et2O) was added 

with stirring. The ice bath was removed and the mixture was stirred 

under N2 at room temperature for 1 h. Deionized water (ca. 10 mL) was 

added to the brown cloudy mixture. The mixture was stirred for 30 min. 

THF was removed under vacuum, and EtOAc (5 × ca. 3 mL) was added 

to extract the products. An aliquot of the combined EtOAc extracts was 

injected into GC-MS for analysis. EtOAc was removed under vacuum 

from the combined extracts and the resulting solid was dissolved in 

CDCl3 for 1H and 13C NMR analysis. GC-MS and NMR spectra are 

provided in the Supporting Information. This reaction was repeated with 

both (i) acidic work-up (a few drops of HCl(aq) were added during the 

reaction quenching step) and (ii) acidic/basic work-up (same as (i) but 

aqueous sodium bicarbonate was added prior to extraction with EtOAc).  
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