
Retrieval of Sea Ice Parameters Using Fusion of

High Resolution Model and Remote Sensing Data

by

c© Siva Prasad

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

Faculty of Engineering and Applied Sciences

Memorial University of Newfoundland

June 2018

St. John’s Newfoundland



Abstract

This thesis discusses the retrieval of sea ice parameters using the combination of

remote sensing data and a sea ice model for the region of the Baffin Bay, Hudson

Bay, Labrador Sea and the Gulf of St. Lawrence. The Los Alamos sea ice model,

CICE, which is used as a module for coupled global ice-ocean models, was used for

this work. The model was implemented with a 7-category thickness distribution, open

boundaries and a variable coefficient for ice-ocean heat flux. A slab ocean mixed-layer

model based on density criteria was used for the standalone regional implementation

of the model. The model estimates of ice concentration were validated using sea-

sonal means, and anomalies. A combined optimal interpolation and nudging scheme

was implemented to assimilate Sea Surface Temperature (SST) and ice concentration

from Advanced very-high-resolution radiometer (AVHRR) and Advanced Microwave

Scanning Radiometer for EOS (AMSR-E) respectively. The inclusion of the variable

drag coefficient required updates of ice volume and dependent tracers corresponding

to the updates in the ice concentration estimates. The sea ice variables of thickness,

freeboard, level ice draft and keel depth were compared with the estimates derived

from Soil Moisture and Ocean Salinity (SMOS), CryoSat2, and a ULS instrument

respectively. The assimilated model provided better estimates of ice concentration,

thickness, freeboard and level ice draft. The model estimated ice thickness com-

pared well with the thin ice thickness estimated from the SMOS data, except during

March, when there is significant ice extent. The reason for this discrepancy could be

attributed to the absence of mixed layer heat flux forcing in the model and also the

effect of snow and the onset of melt that alters the observation.
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Field measurements were also used for the comparison of model estimates. The mea-

surements from the Upward Looking Sonar (ULS) instrument located at Makkovick

Bank were used to estimate the level ice draft and keel depth. The observations from

ULS along with model estimates were used to determine the coefficient that relates

the sail and keel measurements. The level ice draft showed a good match with the val-

ues extracted from the ULS data, while the sail to keel relationship coefficient seems

to vary between a value of 3 during January and February and a value of 7 from

March to May. Further studies have to be conducted to understand these variations.

The ice concentration estimates from the assimilated model were compared with the

ice concentration estimates derived from the images that were obtained during a field

survey along the Labrador coast. The results of the ice concentration derived from

the images showed a good match with the model values. The results were also com-

pared with the estimates from Canadian Ice Service (CIS) ice charts and Advanced

Microwave Scanning Radiometer-Earth observation (AMSR-E).
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Chapter 1

Introduction

1.1 Importance of sea ice information

Monitoring and understanding the dynamics and the formation/melting of sea ice are

critical for regional and global climate studies, navigational, marine and industrial

applications.

During winter, cooling increases the ice cover extent in the polar regions. The

surface of the ice has increased albedo, which results in minimal absorption of solar

energy and leads to more cooling [5, 21]. During summer, the warm temperatures melt

the snow and ice creating melt ponds. The melt ponds have reduced albedo causing

more absorption of solar energy thus initiating more melt and a warmer climate. This

cycle of events where slight cooling causes more cooling and slight warming causes

more warming is known as ice-albedo feedback [5, 21]. The increased greenhouse gas

emissions result in a warmer climate which leads to earlier sea ice melt and delayed

ice formation. Thus ice-albedo feedback plays a vital role in climate change [5].
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As sea ice forms, it rejects salt into the ocean water and also accumulates salt into

droplets called brine that get trapped in small pockets of ice crystals. The rejection

of salt during the sea ice formation produces cold saline water below the ice which is

denser than the surrounding water column [22, 29]. The cold dense water that forms

at the surface of the ocean near the Arctic sinks toward the North Atlantic Deep water

ocean bottom, and surface water moves in to replace the sinking water thus creating

currents. This deep water flows towards the south and moves around the edge of

Antarctica, where the water cools and sinks again, as it does in the North Atlantic.

The current is then split off into two sections. One section moves towards the Indian

Ocean and the other towards the Pacific Ocean. The parts of the current that split

off warm up and becomes less dense as they travel northward towards the equator, so

that they rise to the surface. The currents then loop back, southward and westward

to the South Atlantic, eventually returning to the North Atlantic, where the cycle

repeats. This flow pattern is known as the oceans global conveyor belt circulation or

thermohaline circulation. The formation and ablation of sea ice can thus contribute

towards changes in the conveyer-belt circulation, which controls the heat distribution

over the globe and thus results in global climate change [40]. Therefore the presence

of sea ice may affect the movement of ocean water and the global heat transport.

Studies by Zhang and Vallis [40] showed that the Great Salinity Anomaly (GSA)

event, caused by the melting of sea ice in the late 1960s, led to the warming of the

U.S. East Coast and the cooling of Europe. Moreover, the GSA event affected the

fish population in the Labrador Sea [20]. During GSA events low-salinity water prop-

agates into North Atlantic waters and reduce the deep water formation in the region.

Previous modeling studies have shown that GSA events could also affect thermohaline
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circulation, the deep Western Boundary Current, the Northern Recirculation Gyre

and the Gulf Stream [6, 9, 37]. The weakening of thermohaline circulation would

force the atmosphere to transport heat leading to an increase in storm activities [40].

Reduction of sea ice increases the open-water area, and the escalation of waves

due to the storm increases shoreline erosion and flooding. For instance, the melting

of ice in the Chukchi Sea on the coastal areas of the village of Shishmaref, Alaska,

led to massive waves that eroded the shoreline [2].

Sea ice and the freshwater that forms due to the melting of sea ice float on the

surface of the saline ocean water as a thin layer, preventing the interaction between

air and ocean. Such a thin layer of fresh water affects the growth of phytoplankton

that controls the aquatic food chain and the carbon cycle in the ocean. Phytoplank-

ton consumes carbon dioxide and carries it to the deep ocean maintaining the carbon

cycle. The reduced interaction between air and ocean will lead to the increased pres-

ence of carbon dioxide in the atmosphere thereby triggering global climate disruption.

There has been evidence of massive phytoplankton bloom beneath sea ice where light

transmission has increased because of thinning ice cover and proliferation of melt

ponds [3].

The formation of polynyas, an area of open water surrounded by sea ice, are

beneficial to some marine species. For instance, the North Water polynya in the

Baffin Bay provides a warm environment used as shelter by marine animals [32].

Studies on the formation of such polynyas could be helpful to track the movement of

aquatic life forms.

Winds and currents may push ice floes against each other resulting in a line or wall

of broken ice forced up by pressure known as ridges which pose a threat to marine
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navigation through ice frequented regions. On the other hand, the formation of leads,

open water areas within a vast expanse of sea ice, provide safer transportation through

ice frequented areas [29].

The recent reduction of ice extent in the Arctic region has resulted in the explo-

ration of new navigational routes and exploitation of non-renewable resources in the

area. Costly equipment and safety mechanisms are required to work in the harsh

environments of the Arctic. Reliable and timely information on ice concentration,

thickness and strength, movement and ice types would improve efficiency and safety

of navigation through ice rich waters. Such information would be of great value in

the estimation of ice stresses and forces for the construction of offshore stations [29].

Information on sea ice conditions provides critical inputs for logistics and con-

tributes to the safety of offshore stations. For instance, a 30-mile long ice floe which

suddenly changed its direction due to high winds forced Shell to shut down its drilling

rig and to disconnect it from the Burger-A well in the Chukchi Sea [1].

1.2 Background

1.2.1 Physics of the sea ice processes

The ocean surface mixed layer is where the temperature, salinity and, therefore, den-

sity remain homogeneous. The surface mixed layer plays a vital role in heat and

freshwater transfer between atmosphere and ocean. The homogeneity in the layer is

caused by the turbulence generated by winds, surface heat fluxes, processes such as

evaporation or sea ice formation. The layer usually occupies the uppermost 10−100 m
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but may reach much deeper during winter. In regions of sea ice formation, the result-

ing rise in salinity also increases the density. When the surface water becomes denser

than the underlying water, a convective overturning occurs, and the dense surface

water mixes downwards. During a cooling cycle, the convective overturning releases

the heat stored in the ocean to the atmosphere and seeps to a depth determined by

salinity and temperature-controlled density of cooled water. The overturning is con-

tinuous until the layer reaches the freezing point (determined by the salinity) at which

point sea ice forms. Since brine rejection occurs during sea ice formation, the salinity

beneath the ice increases and the convective overturning continues. The continuing

overturn requires a large volume of water to be cooled to a freezing temperature, de-

pending on the salinity increase before the additional ice forms. Once the ice begins to

grow, it acts as an insulator between ocean and atmosphere and slows down the heat

transfer thus slowing down the ice growth. As the ice thickens, it takes longer for the

water below the ice to reach the freezing point. Also, the poor thermal conductivity

of snow on the top of ice slows down the heat flux from the ice-water interface to the

atmosphere through the ice volume further slowing down the ice growth. The surface

ablation caused by sublimation or surface melt may also slow down the ice growth

[29, 26].

The process of salt rejection during the formation of sea ice can be categorized into

one rapid, and one slow process. The rapid process occurs at the ice-water interface

as soon as the seawater freezes while rejecting the impurities. The rapid process is

active only during the initial phase of the formation of sea ice. As sea ice forms, some

of the liquid salt accumulations gets trapped between ice crystals. Along with brine,

air bubbles and biogeochemical matter also gets trapped in the crystals. The trapped
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brine and air bubbles change the physical and dielectric properties of sea ice. As

freezing advances, the slow process of salt rejection leads to brine drainage from the

bulk of the ice sheet. The brine inclusions surrounded by ice will require much cooler

temperatures to freeze. There are various mechanisms by which the brine escapes

into the ocean: brine pocket migration, brine expulsion, gravity drainage and brine

flushing. Brine pocket migration depends on the principle that the liquid inclusions

of salt migrate towards the warmer end of the ice sheet. Brine pocket migration

through the ice sheet is caused by the temperature gradient. In winter, the ice sheet

is colder at the top and warmer at the bottom, thus draining brine. Consequently, the

solute diffuses from the upper to the lower end resulting in simultaneous freezing at

the upper end of the pockets and melting at the lower ends. The process is reversed

during spring when ice temperature becomes warmer at the top of the ice sheet. Brine

expulsion occurs due to further cooling of the ice sheet and thermal expansion. As the

cooling continues the bulk ice temperature decreases and, thus, the volume of brine

pockets decrease due to further solidification of water inside the brine pockets. The

solidification induces pressure and results in the cracking of brine channels migrating

the brine. The gravity drainage occurs due to the density differences between brine

in the interior of the ice and the surrounding seawater salinity. The greater weight of

the brine relative to that of the seawater tends to drive the brine out of the ice-water

interface. The fourth mechanism of brine drainage, known as flushing, occurs during

the melt season when melt ponds form and drain through the pores and cracks in sea

ice, flushing the remaining brine into the ocean. As sea ice ages or thickens, sea ice

salinity decreases due to brine rejection [10, 29].

Geophysical forces such as winds, ocean currents, Coriolis force, sea surface tilt,
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and tides contribute to sea ice motion [26]. Different types of ice deformation may

occur when ice floes are pushed around and interact with each other. Rafting and

pressure ridging are the most common results of ice deformation and occur when two

ice sheets are pushed against each other. Shear ridges may form when ice floes move

laterally against each other. If the sheets are thin, rafting is more likely to occur,

and if they are thick, a pressure ridge will form [29]. Moreover, rafting and ridging

contribute to the increase of ice thickness. Leads are another type of deformation

caused by ice divergence. They are wide openings or fractures within in an expanse

of sea ice and provide navigational routes to marine vessels. Ridges, on the other hand,

represent a hazardous condition for navigation through ice frequented regions. Leads

enhance the heat exchange between the ocean and atmosphere [29, 33].The study of

ice deformation is important since it influences to the ice thickness, concentration,

and climate variability.

1.2.2 Observation of sea ice

Satellite observation generates images of the surface of the earth. The images are

captured using sensors that can detect electromagnetic radiation scattered from the

object or the earths surface. The images obtained are then analyzed to derive rel-

evant information about the area or the objects. There are tradeoffs when using

various ranges of the electromagnetic spectrum for sea ice surveillance, e.g., the in-

formation from visible spectra can be obtained only during the daytime. Clouds and

other particles in the atmosphere scatter the visible radiation which results in loss

of information, however, cloud-free images are used to identify and map sea ice. In-
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frared radiation, which can detect temperature differences, are also used to capture

sea ice information, e.g., Advanced Very High-Resolution Radiometer (AVHRR) uses

the 1.58− 1.64 µm (Mid-infrared) band for snow and ice detection.

Radiation in the microwave spectra can penetrate clouds and are used to derive

sea ice information. Moreover, the microwave spectrum can be used during day and

night. The instruments in the microwave spectra fall into two categories - passive

and active. Passive microwave instruments use the natural radiation emitted from

the earth’s surface and process the information to derive sea ice related variables, e.g.,

Advanced Microwave Scanning Radiometer for Earth Observation (AMSR-E) is used

to obtain ice concentration. The drawback of passive microwave sensors is that it is

hard to detect small details such as leads due to low energy emitted. Active microwave

instruments emit radiation towards the earth’s surface and use reflected radiation to

derive sea ice information. Various types of active microwave sensors are used for the

detection of sea ice features. Imaging radars like Synthetic Aperture Radar (SAR)

detect information on leads; non-imaging radar or Scatterometers detect the presence

of ice, but provide less information than SAR; altimeters which are used to measure

the altitude of features on the earth’s surface are used to derive freeboard and ice

thickness, e.g., CryoSat-2.

Though we use the instruments mentioned above to derive information on sea

ice, the reflected energy depends on the physical properties of sea ice which is quite

complex. In certain cases, it becomes practically difficult to extract the required

information on sea ice parameters. Sea ice is a heterogeneous mixture; the dielectric

properties can vary with the presence of ice crystals, liquid brine, and air bubbles

present inside the structure, which affect its signature in microwave images [10].
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Furthermore, the presence of snow renders the penetration of ice by microwave signals

further difficult. Snow is fairly transparent to microwave wavelengths except when

the snow is wet, or there are several layers of snow separated by thin ice [27].

The data derived from satellites or aircraft may have data gaps since the infor-

mation retrieved depends on the revisit time of the satellite or flight routes. Also,

as mentioned above, the data derived using remote sensing method also depends on

the penetration level of microwave spectrum, the ice type, snow cover or atmospheric

conditions, e.g., AMSR-E ice concentrations have an error of about 10% for ice con-

centration above 65%, the estimates of error for ice concentration less than 65%

depends on various atmospheric conditions [31]. The ice thickness estimates derived

from SMOS-MIRAS has an uncertainty of about 100% for ice thickness greater than

50 cm [17].

1.2.3 Mathematical modeling of sea ice processes

To retrieve sea ice parameters such as ice concentration, thickness and to understand

the physical process of the formation and ablation of ice, the future ice conditions,

or to predict climate scenarios, scientists use mathematical models that represent the

atmosphere-ocean interactions and properties of sea ice. Such models can be utilized

to aid operational services for navigation and long-term planning, and for the devel-

opment of an operational ice dynamics model for ice service [28]. The models, coupled

with ecosystem models are used for obtaining approximations of the environmental

process; e.g., 3D Coupled Ecosystem Model of the Baltic Sea (3D-CEMBS), Marine

ecosystem model designed for the Baltic Sea [7].
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Four governing equations are used to model the sea ice process. The first of these is

the Ice Thickness Distribution (ITD) equation that describes the probability that the

ice cover in a particular region has CISied thickness. The ITD equation considers the

ice that participates in redistribution or the deformation, and advection in thickness

space [34]. Most importantly, the characteristics of growth, melting and deformation

vary for different ice thicknesses [14]. The second equation covers the conservation

of momentum which takes into account the effects of Coriolis force, air water stress,

the force due to ocean surface tilt and internal ice force. The stress-strain rates also

depend on the consideration of the rheology Viscous Plastic rheology [12] or Elastic

Viscous Plastic (EVP) rehology [13], or Elastic Anisotropic Viscous Plastic rheology

[39, 38]. The third equation involves the conservation of enthalpy which considers

the energy required to melt the sea ice. The last of these is the heat equation for ice

and snow which considers the thermal energy change in layers of ice, conductive flux

and absorption of solar radiation [4]. Chapter 3, section 3.4 discusses in detail the

equations used to represent the atmospheric-ice-ocean process.

As mentioned earlier, the processes that describe the evolution of sea ice are

complex, and hence only mathematical approximations can be made [15]. Such ap-

proximations carry assumptions that produce inherent uncertainties. Model accuracy

will depend on the model physics and the boundary conditions of atmospheric and

oceanic forcing that are used to derive sea ice parameters. In long-term simulations,

the solutions of such models may deviate from observed values. In such cases, data

assimilation methods are used to bring the initial model conditions close to the ob-

servation [18, 28].
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1.3 Motivation

Many ice models are used coupled with the ocean model on the regional and global

scale implementations. These models were validated for estimated ice concentration,

thickness and drift parameters. These models also demonstrate some drawbacks either

due to the physical parameterizations or due to the poor quality of the boundary

forcing used to estimate the parameters. NEMO-LIM3 reports an overestimation of

ice thickness in the Southern Ocean [35]. The LIM 3 ice concentration estimates have

been validated with the estimates from Scanning Multichannel Microwave Radiometer

(SMMR) and the Special Sensor Microwave/Imager (SSM/I). The mean absolute

error of ice concentration between LIM3 model and Sea Ice Satellite Application

Facility (OSI SAF) showed an error of 79% in the Northern Hemisphere [19]. The

mean absolute error of ice draft compared with the draft from Upward Looking Sonar

(ULS) measures showed an error of 67cm in the Northern Hemisphere [19]. For

the MITgcm with 32 km resolution, used to study the interannual variability of sea

ice in the Labrador Sea and the Baffin Bay, the spatially and temporally varying

sea ice concentration uncertainties ranged from 8.5% to 18% [8]. The results of ice

thickness estimates from ’Estimating the Circulation and Climate of the Ocean, Phase

II’ (ECCO2) model, which is based on MITgcm, was compared with thickness derived

from satellites. The study reported that ECCO2 model overestimates satellite-derived

thickness when less than 2.0 m and underestimates the thickest ice by 2 or more

meters [16]. The study also compares several other models: Goddard Space Flight

Center (GSFC), Institute of Numerical Mathematics Ocean Model (INMOM) Russian

Academy of Science, the Naval Postgraduate School Arctic Modeling Effort (NAME),
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the National Oceanography Centre Southampton (ORCA), and the PIOMAS of the

University of Washington UW model). Almost all the models overestimated thickness

of ice thinner by 2 m.

ROMS [11] was used for modeling studies of Storfjorden polynyas using one-way

nesting where a coarse-resolution model was used to provide boundary conditions

for a high-resolution (2 km) model. The model was partially validated using field

and satellite data and performed well in reproducing the ice extent [30]. In another

study, Ocean and OSI SAF data for ice concentration were assimilated into ROMS

for simulating sea ice concentrations and produced better results than the simulation

without assimilated OSI SAF data. Ice concentration and extent were overestimated,

possibly due to the bias in atmospheric forcing and underestimation of heat flux

and over/underestimation of sea ice growth/melt processes [36]. Also, the model

estimates on the ice thickness or other parameters such as freeboard, draft were

rarely discussed. The CICE [15] model was also used to study the parameters but

were mostly implemented on a global scale or in regional scale with closed boundaries.

The grid system that was used for the discretization of the model equations on regional

configurations were also ambiguous [7].

The observation of sea ice conditions requires several parameters, some of which

can be easily and accurately determined using satellite measurements, but still, data

gaps exist within the information. With the availability of high-resolution reanalysis

data, models with advanced physics and algorithms and data assimilation/fusion

techniques can be used in combination with remote sensing and modeling methods

to determine most of the sea ice parameters. Moreover, sea ice processes are mostly

studied using data assimilated or non-assimilated coupled global models and are rarely
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discussed in regional implementation, as most discussions are confined only to the

estimated ice concentration.

Since mixed layer properties drive sea ice processes using a coupled vertical high

resolution, an ocean model would require significant data analysis resources for tuning

ocean parameters and also additional computational requirements. In this thesis, we

explore the ways to implement, develop and parameterize sea ice physics using an

uncoupled/standalone sea ice model that derives its forcing boundary conditions from

already available high-resolution atmospheric and ocean data sets.

1.4 Research objective(s) and Methodology

The primary purpose of this research was to combine the information from remote

sensing data and a regionally implemented high-resolution sea ice model to retrieve

the sea ice parameters in the region of Baffin Bay and Labrador Sea, see Figure

1.1. The primary objective was broken down into a number of functional objectives.

The first of these was to implement an advanced sea ice model for the region of

interest. See Section 2.4 for a review of some sea ice models that were available.

The region of interest was identified on the basis of the importance of application

relevant to the province of Newfoundland and Labrador and Canada. The model

may be implemented in other polar regions but may require a substantial changes in

the configuration. Many industrial firms have plans to set up their stations in the

offshore areas of the province, and this research serves as a method to derive the sea

ice parameters in the region for risk/logistic analysis. The second objective was to

include data assimilation methods to reduce inherent uncertainties within the model.
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The third objective was to derive sea ice parameters and validate it with remote

sensing data. The final objective was to derive information based on the assimilation

of remote sensing data with the model results.

1.5 Thesis writing

The thesis follows the publication-oriented style/manuscript-based thesis format. The

research papers chosen for this dissertation are summarized in Section 1.6. The

complete list of references used in the thesis is listed as an additional Bibliography

at the end of Chapter 6.

1.5.1 Publications

The contributions/findings from this research have been published in the following

articles.

Journal Papers

1. Prasad, S. Zakharov, I., McGuire P., Power, D., Martin, R., 2018. Estimation

of sea ice parameters from sea ice model with assimilated ice concentration and

SST, Cryosphere (submitted)

2. Prasad, S., Zakharov, I., Bobby, P., 2016.Model-Based Estimation of Sea Ice

Characteristics in the Region of Baffin Bay and the Labrador Sea, Journal of

Ocean Technology 11(1), 39–47.

3. Prasad, S., Zakharov, I., Bobby, P., McGuire, P., 2015. The implementation of
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Figure 1.1: Region of interest.

15



sea ice model on a regional high-resolution scale. Ocean Dynamics 65, 1353–

1366.

Conferences

1. Prasad S., Zakharov I., McGuire P., 2016. High-resolution sea ice modeling

for the region of Baffin Bay and the Labrador Sea. AGU Fall Meeting, 12-16

December. San Francisco, USA.

2. Prasad S., Zakharov I., Bobby P., McGuire P., Power D., 2016. Model-based

estimation of sea ice parameters. Arctic Technology Conference (ATC) 24-26

October. St. Johns, NL, Canada.

3. Prasad S., Zakharov I., Bobby P., McGuire P., Data assimilated sea ice model

for the Baffin Bay and Labrador region, 18th May 2016, Association of Polar

Early Career Scientists (APECS) online conference.

4. Prasad S., Zakharov I., Bobby P. and McGuire P., Analysis of sea ice conditions

based on model and Remote Sensing Data, Ocean Innovation, 26th October-

28th October 2015, St. John’s, NL (Best Poster Award).

5. Prasad S., Zakharov I., Bobby P. and McGuire P. Inter-comparison of sea ice

freeboard, thickness, and ice concentration extracted from sea ice model with

satellite data. 36th Canadian Symposium on Remote Sensing, 8th June - 11th

June 2015, St. John’s, NL, Canada.

6. Prasad S., Zakharov I. The implementation of sea ice model on a high-resolution

regional scale, 6th International Workshop on Modeling the Ocean, 23rd June

- 27th June, 2014, Halifax, NS, Canada.
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7. Zakharov I., Power D., Prasad S., 2016. Measurement of sea ice and icebergs

Topography using satellite imagery. AGU Fall Meeting, 12-16 December. San

Francisco, USA.

8. Zakharov I., Prasad S., Bobby P., Power D., Walsh D., Warren S., Puestow

T., 2016. Monitoring of Sea Ice-Covered Areas for Ship Navigation. In Living

Planet Symposium 2016. Prague, Czech Republic: ESA. 9-13 May 2016.

9. Zakharov I., Prasad S., Steven Q. and Bobby P. Extracting sea ice geophysical

parameters from multi-source data (24135), AGU Fall Meeting, 14th December

- 18th December 2014, San Francisco.

Other Presentations

1. Discussion on the implementation of data assimilated regional high-resolution

sea ice Model, New York University, Abu Dhabi Nov 17, 2016

2. Project presentation on retrieval of sea ice parameter using high-resolution sea

ice model, Canadian Ice Service - Jun 21, 2016

3. Retrieval of sea ice parameters that are useful for offshore resources in risk

analysis using numerical modeling techniques, Statoil, June 18, 2015

1.6 Organization of the dissertation

The remaining part of the thesis is organized as follows

Chapter 2: Literature Review. The chapter presents the work that has been

done in the area of remote sensing of sea ice, sea ice modeling and data assimilation.
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The chapter also reviews the work on grid generation methods that were used for

ice-ocean models in the global and regional framework.

Chapter 3: Implementation of a Sea Ice Model on a Regional High-

Resolution Scale. The chapter describes the implementation of the Los Alamos

sea ice model (CICE) on a regional level at a high resolution. The boundary forc-

ing comes from various sources of data. The sea ice simulation was performed over

Baffin Bay and the Labrador Sea to retrieve relevant parameters such as ice con-

centration, thickness, ridging, and drift. Sea ice behavior over eleven years were

simulated. Validation of the model was based on the comparison of model results

with remote sensing data. The previous global and regional modeling framework like

3D-CEMBS used closed boundaries and also a rotated grid coordinate system to im-

plement the global/regional framework. The rotated grid coordinate system is useful

when studying the Central Arctic region where the poles are located. In this work,

the regional model was implemented on a non-rotated orthogonal curvilinear grid,

and the open boundaries were introduced by restoring the values at the boundaries

to the initial/restart conditions as suggested by Hunke et al. (2013). The chapter

discusses the work that was published in the Journal of Ocean Dynamics by Prasad

et al. (2015) [24]. The work was also presented at IWMO conference (2014) and

Canadian Symposium on Remote Sensing.

Chapter 4: Estimation of sea ice characteristics in the region of Baffin

Bay Labrador Sea using a high-resolution model with the assimilation of

ice concentration and SST.

This chapter describes the addition of a data assimilation scheme into the model to

estimate sea ice parameters with better accuracy. The data assimilation techniques
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were applied to correct SST that was estimated by the slab ocean mixed layer model

and also the ice concentration estimated by the model. The model results (SST) were

compared with the remote sensing data derived from OSI SAF, SMOS, and CryoSat2.

The chapter is based on the article by Prasad et al. (2016) [23]. The earlier modeling

framework introduces the assimilation of SST in the ocean model and passes on the

information to the coupled ice model. Here, in this work, the details on directly

assimilating the information to reduce the error within the ice model are discussed.

Along with the discussion of assimilated SST and ice concentration we also explore

the impacts of the same on other parameters such as ice thickness and freeboard

measures.

Chapter 5: Model comparison with in-situ measurements. This chapter

describes the estimation of level ice draft and the coefficient that relates the sail

height and keel depth. The model estimates were compared with the data derived

from ULS measurements located in the Makkovik Bank. Also, the model-estimated

ice concentration was compared with videos/images acquired during a field campaign.

Unlike the previous studies were the draft estimate were directly compared with the

ULS measurements. ULS data were used to extract the draft for level and deformed

ice. The level ice draft measurement derived from ULS were compared with the level

ice draft estimated from the model. The deformed ice draft from ULS was compared

with the keel depth estimated by the model. The chapter is a part of work that was

published and presented at the Arctic Technology Conference (ATC) [25] and at AGU

Fall Meeting 2016.

Chapter 6: Summary. This is a concluding chapter summarizing the work from

this research. Also, suggestions for future work have been provided.
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Chapter 2

Literature Review

2.1 Overview

This chapter highlights significant contributions to sea ice modeling. First, an intro-

duction to remote sensing of sea ice is provided followed by a detailed discussion on sea

ice modeling and assimilation methods. Lastly, the chapter reviews grid generation

methods used in the ice-ocean models.

2.2 Remote sensing of sea ice

Sea ice monitoring is done primarily using satellites. To fill temporal and spatial data

gaps the monitoring community also depends on measurements from airborne data,

ships, submarines, and instruments such as ULS.

The first remote observations of sea ice were made from air balloons in 1897 [42]

but were found to be unsuitable for deriving information on ice conditions. Since the

development of aircraft technology, airborne ice measurements began in 1914. Once
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the satellite era started, sea ice monitoring technology came to depend mainly on

satellite-acquired images. Satellite remote sensing methodologies involve interpret-

ing electromagnetic signatures of various sea ice types and characteristics. Remote

sensing is performed using visible, infrared, and microwave spectral ranges.

Each spectral range has benefits and limitations for sea ice surveillance. Sea ice

monitoring using the visible range is more intuitive to interpret but requires cloud-free

images. The visible spectrum also depends on the sensitivity to conditions of natural

illumination. In the visible spectrum, open water and ice types are differentiated by

the albedo values, texture or reflection coefficient. The advantage of not requiring

sunlight and capability to penetrate cloud cover gave an edge to passive microwave

sensors for collecting measurements during the night. Several factors contribute to-

wards the determination of sea ice information from these sensors, e.g., emissivity, ice

types, snow, type of snow, snow grain radius, incident angle and so on [26] and hence

make it challenging to interpret the data.

The visible spectrum of Advanced Very High-Resolution Radiometer (AVHRR)

instruments onboard NOAA satellites 1.58 - 1.64 (um) are used to detect snow and ice.

AVHRR near-infrared and thermal infrared images under cloud-free conditions were

used to compute ice concentration and ice edge [22]. AVHRR spectral information

was also used to derive sea ice motion vectors [64, 57] and high-resolution sea surface

temperature products [75]. The global sea ice cover had also been estimated from

satellite passive microwave sensors Scanning Multichannel Microwave Radiometer

(SSMR) and later Special Sensor Microwave Imager/Sounder (SSMIS) [88] onboard

Nimbus 7 and Defence Meteorological Satellites [10, 94]. The assimilation of remote

sensing data into atmospheric/ocean models (observations) was performed to quantize
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the error and produce improved estimates of sea ice parameters [67].

The AMSR-E sensor on NASA’s Aqua satellite was used to retrieve sea ice con-

centration between 0% and 100%, using weather filters to reduce the atmospheric

influence [84]. AMSR-E stopped collecting data on October 4, 2011. The successor

AMSR2 onboard GCOM-W was processed to derive ice concentrations since August

2012 [39]. AMSR-E was also used to estimate sea ice drift in the central Arctic region

[23].

SAR provides images with finer spatial resolution than microwave radiometers and

is widely used to derive various ice information such as estimating ice type [83, 63],

ice drift patterns [25, 89], and detecting polynias [19]. European Remote Sensing

satellites, ERS-1 (1991-2000) and ERS-2 (1995-2011) were used for the detection of

sea ice for various ice applications [6]. A combination of information derived from

instruments such as AVHRR, SAR and in situ measurements were also used for ice

detection [20]. The data derived from RADARSAT-1 were single polarisation and

hence had limited capability. The RADARSAT-2 SAR collects data in dual and quad

polarization modes and is used widely for various applications such as ice-edge de-

tection, ice concentration, and stages of development of sea ice which are required

for operational ice monitoring [79]. RADARSAT-2 was also used to estimate ice

thickness, and snow properties [79] and for ice motion tracking [47]. National Ice

Centres around the globe use predominantly SAR for ice mapping. For example,

Operational ice monitoring at the Canadian Ice Service (CIS) generates products de-

rived from RADARSAT-2 [17, 82]. The other SARs that are used for ice monitoring

includes TerraSAR-X, Cosmo SkyMed, Sentinel-1, Advanced Land Observing Satel-

lite (ALOS). TerraSAR-X was used for sea ice classification [74, 45], Cosmo SkyMed
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X-band was used for the detection of polynias [14], Sentinel-1 SAR imageries were

used for tracking sea ice motion [61], Advanced Land Observing Satellite (ALOS)

PALSAR L-band images were used for detection of large ridges and to determine ice

types during summer melt season [4]. Envisat Advanced Synthetic Aperture Radar

(ASAR) Alternate Polarization (AP) C-band have been used to discriminate between

the open water and ice during high wind conditions enabling better separation of ice

types [3]. ASAR was also used to acquire information on deformed new ice [3].

Along with the determination of sea ice concentration and drift, there are sen-

sors and algorithms that capture the information on other ice parameters, such as

ice thickness and freeboard measures, which are more important for risk/safety in

navigational and offshore resources. The ice thickness information was initially mea-

sured using the radar altimeters on board European Remote Sensing (ERS 1, ERS 2)

satellites. Ice thickness was determined from the ice freeboard measurements deter-

mined using other altimeters [52]. Also, the previously mentioned sensors (AVHRR)

thermal band information was combined with an ice growth model to estimate ice

thickness during the winter season [107]. ICESat laser altimeter freeboard informa-

tion was used to retrieve snow and ice thickness [49]. Sea-ice thickness retrieval and

uncertainty estimations were also done using satellite radar/altimetry along with the

freeboard/buoyancy principle and knowledge of geoid [95]. Ice thickness retrievals

were also carried out using MODIS thermal images [49]. The brightness tempera-

tures of L-band from Soil Moisture and Ocean Salinity satellite have been used to

retrieve sea ice thickness up to 50 cm. [91, 43]. The presence of snow increased the

uncertainty of the ice thickness retrieved from SMOS [91, 43]. CryoSat-2, a European

Space Agency satellite provides information on ice freeboard and thickness in polar
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and sub-polar region [29]. Ice thickness determination and information on leads were

also done using SAR [27, 100].

IceBridge is a program that was initiated by NASA to acquire sea ice information

from research aircraft [48]. The other means of deriving ice information was using

upward Looking sonars, e.g., [87]. In most of the retrieval cases using satellite data,

validation was done using the data derived from in situ sensors, such as ULS [49].

2.3 Sea ice modeling

The role of sea ice in the global climate has been known for half a century or more.

Numerical models provide valuable information on how sea ice evolves and how it

affects climate. Additionally, well-tuned numerical sea ice models may be used for

short-term operational forecasts (one to five days) for navigation in sea ice-frequented

regions, as well as seasonal forecasts (one to three months) to aid in planning. The

models can be used to investigate weather patterns or events. GCMs simulate the

climate of the whole world. They are usually used to study the effects of global

climate disruptions caused by increases in carbon dioxide and other factors. Even a

small increase in temperature can lead to greater warming over time, making the polar

regions the most sensitive areas to climate change on Earth and hence most GCMs

include sea ice models. The evolution of sea ice is highly complex and can only be

approximated by mathematical equations, or statistical approaches that address the

relevant dynamic and thermodynamic processes. Thermodynamic equations consider

air and ocean temperatures, heat fluxes, albedo, and other forces that affect the

formation and ablation of sea ice. Dynamic equations consider factors that influence
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sea ice motion such as winds, currents, ice-ocean drag and other forces.

Thermodynamic modeling efforts of sea ice processes started with the classical

work of Stefan [86] in 1891 where he discussed the theoretical approaches to heat

conduction in ice to compute growth rates. Later, Untersteiner [98, 99] discussed the

internal heat source due to solar radiation in 1961 and 1964. His work examined in-

ternal heat source, variable thermal conductivity, specific heat, and vertical advection

of heat in ice during melting or formation. Modeling efforts were further improved by

Maykut and Untersteiner [58] in 1971 by creating a more complex model for sea ice

thermodynamics, which laid the foundation for today’s modeling studies. The one-

dimensional model developed by Maykut and Untersteiner [58] included the surface

energy balances to determine rates of ablation and accretion and the effects of snow

cover, ice salinity and internal heating due to the penetration of solar radiation. The

study showed that snow depths of less than 70 cm had little effect on equilibrium ice

thickness, but snow depths greater than 70 cm resulted in thicker ice. Maykut and

Untersteiners [58] model had been too complex to be used for coupled climate simula-

tion studies. Semtner [80] (in 1976) simplified the model of Maykut and Untersteiner

[58] so that it could be employed in climate models. He presented a model with

two-layer ice and one layer snow that considered pure-ice values of heat capacity and

thermal conductivity [80]. He also presented a zero-layer model, by assuming a linear

temperature profile in the ice and neglecting the internal energy [80]. Hibler [32] made

further contributions in sea ice modeling by considering the oceanic mixed layer and

lateral melting effects. Parkinson and Washington (1979) [66] included the effect of

leads. Cox and Weeks developed an empirical formula for winter sea-ice desalination

[16] (1988). The approach by Cox and Weeks was later used to determine transitions
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from the first year to the multiyear ice by Vancoppenolle and others in 2005 [102].

Ebert and Curry in 1993 [21] developed parameterization to include brine pockets,

melt ponds, and albedos with different spectral bands. Bitz and Lipscomb [9] devel-

oped an energy-conserving thermodynamic model with brine-pocket parametrization.

The energy absorbed during the melt was used to raise the temperature of the ice and

also to expand the brine pockets. Feltham et al. [24] treated sea ice as a mush layer

that consists of a mixture of ice crystals and concentrated brine. Based on mushy

layer parametrization of Feltham et al. [24] gravity drainage was introduced in the

thermodynamic component of the sea ice model by Hunke et al. [97].

Campbell [11] treated the ice as a Newtonian viscous fluid while Hibler [30] treated

ice as a linear viscous fluid. Thorndike et al. [90] treated sea ice as a viscous-

plastic material and also considered thickness changes using the ITD equation [90].

Lipscomb [55] explained the remapping method for the thickness distribution and

suggested that five to seven categories of ice thickness with high resolution for thin

ice thickness, plus open water, were sufficient to simulate the annual cycles of ice

thickness. The modeling studies were also accompanied by fieldwork programs such

as the Arctic Ice Dynamics Joint Experiment (AIDJEX). AIDJEX [71] experiments

and simulation studies by Coon et al. [15] proposed an elastic-plastic rheology. A

nonlinear viscous-plastic (VP) rheology proposed by Hibler [31] had a significant

effect on the drift, deformation, and thickness of sea ice [40, 60]. Hunke et al. [37]

introduced the EVP model for ice dynamics to provide more accurate results. The

EVP model was computationally more efficient and reduced to the original VP model

on long timescales. Wilchinsky and Feltham [104] proposed an elastic anisotropic

plastic rheology model and treated ice as the anisotropic interlocking, anisotropic
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diamond-shaped ice floes.

In 1980s, large-scale climate models began incorporating sea ice models, e.g., Hi-

bler and Bryan in 1987 coupled ocean model with a sea ice model [33]. The model was

used to investigate the effect of ocean circulation on seasonal sea ice variations. Along

with the modeling of thermodynamics and dynamics to generate more physically real-

istic models, the geometry and process of ridging and rafting which influences the ice

thickness distributions were also required. Timco and Burden [92] and Timco et al.

[93] investigated the structure and formation of first-year ridges and the relationships

between ridge parameters. Bailey et al. [7] investigated the process of rafting of sea

ice using a 1-D thermal consolidation model. Tsamados et al. [96] introduced the

estimation of ice-ocean drag from the properties of ice cover such as ice concentra-

tions, ridges, freeboard and floe draft, the size of floes and melt ponds. Most recently,

NANSEN environment services have been developing a Lagrangian sea ice model that

includes a wave-ice interaction module [73]. Attempts had also been made to develop

model-based forecasting tools for monitoring formation/ablation and movement of sea

ice. Sayed et al. [77] provided an overview of an operational ice model that was cou-

pled with an atmospheric, ocean modules. The work was followed by the development

of an operational ice dynamics model for the Canadian Ice Service [78]. The coupled

model included viscous plastic rheology and a Particle-In-Cell (PIC) method to model

ice advection. The Zhang-Hibler scheme was used to solve the momentum equations.

A scheme to model the evolution of thickness distribution was also introduced to the

work. It was observed that the model’s performance was good, though the estimated

accuracy of the results based on ice thickness and volume were hard to determine

[78]. Caya [13] used a multi-thickness category ice model coupled with Princeton
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Ocean Model (CIOM) for the simulation of ocean parameters. The model had a grid

resolution of (1/5)◦ longitude, (1/6)◦ latitude with 16 vertical layers for the ocean.

The study concluded that the model’s performance was not good enough to capture

a 24-hour future forecast. The imperfections in the forecast model were attributed

due to the non-optimal update of ice velocity and ocean variables by the assimilation

process, the imperfect ocean lateral boundary conditions, and atmospheric forcing

[13].

2.4 Review of sea ice models

In this section, we discuss the available sea ice models, their advantages, disadvan-

tages and some related works. There are several coupled and standalone ice models

that were available for sea ice simulation studies on both regional and global scales.

An inter-comparison of some of the available coupled sea-ice models and their physics

can be found in [35, 8]. Other coupled models such as the Regional Ocean Modeling

System (ROMS), Nucleus for European Modelling of the Ocean (NEMO), MIT Gen-

eral Circulation Model (MITgcm), and Community Climate Systems Model (CCSM)

provide insights into the physical processes between the ocean, atmosphere, and sea

ice. However, the sensitivity of coupled models to atmospheric, oceanic and sea ice

parameters must be studied in detail to tune the model physics and parameters de-

pending upon the feedback among these modules.

ROMS was a tightly coupled sea ice model based on EVP dynamics [37]. The

sea ice component of ROMS is a single-layered ice and snow thermodynamics model.

The modeling framework, physics, and equations are described in the ROMS Manual
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[28]. NEMO was a coupled ice-ocean model with the sea ice component Louvain-la-

NeuveSea Ice Model (LIM2 and LIM3). LIM2, a two-layer thermodynamic-dynamic

model, and LIM3, a five-category model, were both coupled with the NEMO ocean

model. The model result analyses include ice concentration, thickness and drift pa-

rameters [101]. There are other versions of NEMO which used the Los Alamos sea ice

model (CICE) instead of LIM1 and LIM2 [72]. The ice-ocean coupled model MIT-

gcm also came with a sea ice module [1] based on the thermodynamics schemes in

the CICE model [38].

The major disadvantages of coupled ice-ocean models are their complexity, addi-

tional computation time, parameter tuning and management of large data quantities.

Most sea ice modeling studies focus on a global scale simulations using coupled mod-

els. Models that have most of the advanced features that represent sea ice information

are shown in Table 2.1.

The sea ice models that are presented in Table 2.1 are all coupled global cli-

mate models. There are also regional coupled ice-ocean models, e.g., the Regional

Ocean Modeling System (ROMS) has a coupled sea ice model which has one layer of

ice/snow, ITD and has EVP dynamics. Besides solving ITD, momentum equations,

enthalpy and heat equations, an advanced model such as CICE [38] considers snow

grain radius, melt pond schemes, melt pond albedos, floe size, sails and keels, ridging

and redistribution schemes that use realistic physics, and freeboard measures. The

sea ice model, CICE used in this study is a component of CCSM, see Table 2.1, de-

veloped at Los Alamos Laboratory, USA and can also be implemented in uncoupled,

standalone mode [38, 70].

36



Table 2.1: List of sea ice models

Model Name Model Strength

1 ROMS 1 layer ice and 1 layer snow model. Tightly coupled with

the ocean model. The ice deformation and ridging effects

are not considered. Based on EVP dynamics.

2 LIM (NEMO) LIM2 and LIM3 (advanced) with EVP dynamics, ITD equa-

tions, coupled with the NEMO ocean model

3 MITgcm Sea ice model is a part of MITgcm. Coupled with ocean.

EVP dynamics.

4 CIOM Coupled Princeton Ocean model and sea ice model. EVP

dynamics and ITD equation.

5 CICE Los Alamos Sea Ice Model. EVP and EAP dynamics, Melt

pond parameterizations, Ridging, and ice deformation ITD

equations.

6 Finnish Ice Prna, Center EVP rheology, Ridging and ice deformation ITD equations.
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2.5 Data assimilation

Due to computational complexity and sophisticated physical processes, several pa-

rameters in general circulation models are based on certain assumptions. The as-

sumptions on model physics, uncertainties associated with boundary or forcing data

in the geophysical models limit model accuracy. Data assimilation aims to optimally

combine observations with the model and serves as a valuable tool for improving

model estimates for a forecast. Observational data may include ground, satellite,

aircraft, buoy, ULS or any other field, or remote sensing measurement.

Geophysical models provide estimates in their domain of interest either regional or

global. Observation from satellite sensors or in-situ measurements depends on several

factors such as revisiting time, the location of the instruments, band frequency and

ice properties, e.g., the retrieval of quantities like snow thickness and ice thickness

are limited since the electromagnetic radiation can penetrate only a very thin surface

layer. Data assimilation systems can expand information from remote sensing obser-

vations to all model variables that are in some way dependent on the observations

and produce a better forecast.

The optimal combination for data assimilation is based on the consideration of un-

certainties of the observations and model estimates. Whenever highly accurate remote

sensing data are available, the assimilated estimates will be close to the observations

otherwise model estimates are accepted as the true state. Several data assimilation

methodologies such as nudging, probabilistic, multivariate statistical methods, varia-

tional method such as 3D variational (3D-VAR), Kalman filters, and ensembles exist

[51]. In addition to the methods above, advanced data assimilation methods such as
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extended and ensemble Kalman filters, as well as 4D variational (4D-VAR),also exists.

The fundamental principle of all data assimilation methods includes merging mod-

els and observations, but the sophistication, computational burden and the quality

of results of the merging algorithm vary widely. Some are computationally efficient

with satisfactory or even substantial results, while others are computationally intense

and lead to better results. Following is a summary of some of the data assimilation

methods.

The most straightforward type of the data assimilation is the nudging method

[34, 46]. It introduces into the dynamical equations of the model an additional term

that is proportional to the difference of the calculated meteorological variable and the

observed value. The nudging method continuously relaxes the model values (back-

ground) towards the observations. The gain matrix in the nudging method is usually

prescribed rather than derived from the observation and model errors. There exist

variations of the nudging techniques such as back and forth nudging [50]. Back and

forth nudging first solves the forward equations with a nudging term. The final state

obtained is then used as an initial condition to solve the same equation in a backward

direction with a feedback term. The analysis of this backward equation gives an es-

timate of the initial state of the system. The process is iterated until convergence of

the initial state is achieved. The advantage of the nudging method is reduced sophis-

tication, increased flexibility, greater ease of implementation and low computational

cost. A case of nudging is used to introduce open boundaries [38, 28] in ice-ocean

models. Usually, such methods do not use any theoretical or statistical basis as they

just push the model values close to the observation/climatology. The advantage is its

ease of use and low computational expense.
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One of the simple and powerful methods used in various weather prediction models

is the optimal interpolation (OI) method. OI is more computationally expensive than

nudging and uses a least square method for data assimilation where the weights for

the observations are assigned according to some known or estimated error statistics

[18]. Variations of OI have also been applied to sea ice models, e.g., Lindsay et al.

[54] and Wang et al. [103]. Both methodologies showed improvement in the estimated

model results when compared with the free runs.

Another method of assimilation is the variational cost function approach [76]. Here

the variational methods of assimilation replace the update step with an optimization

problem; these are typically nonprobabilistic and provide a single best estimate of

the state. 3D-VAR and 4D-VAR are based on the variational cost function approach.

The variational methods usually require minimization of a cost function [53]. The

selection of cost function is in such a way that the analysis does not drift too far

from observations and forecasts that are known to be usually reliable. It depends

on the deviation of analysis values from the observations weighted by the accuracy

of observations and the deviations of the forecast fields and analyzed fields weighted

by the accuracy of the forecast. Variational methods like 3D-VAR and 4D-VAR use

information about the spatial distribution of covariance functions of the errors of the

previous forecast and the actual observation. 3D-VAR uses all the observations in the

domain simultaneously, whereas OI restricts the effect of any observation on all the

grid cells of the domain. However, in the linear case, 3D-VAR and OI are equivalent.

Also, the model error covariance matrix in OI is usually assumed to be constant,

unlike 3D-VAR, where the model covariances may be estimated from the average

of multiple analysis model differences from short range data assimilation forecasts.

40



3D-VAR propagates adjustments in the control variables according to the linear or

nonlinearity of the system rather than through only statistical relationships as OI.

3D-VAR does not account for variation of observation over time, which is considered

in 4D-VAR. Caya et al. [13] used the 3D-VAR scheme to assimilate the SSMI/SSMIS

observation into the ice-ocean model. The 3D-VAR scheme was also extended to

include more observations like CIS ice chart and RADARSAT SAR analysis [12].

Stark et al. [85] used a different cost function to assimilate the ice concentration and

ice motion vectors into the coupled ice-ocean model.

The assumption of constant error covariance matrix over time could add addi-

tional errors to the assimilated model. To compute the propagation of error over

time, advanced data assimilation methods such as 4D-VAR, extended Kalman filter,

ensemble, and other variants of Kalman filters [65] are used. They are computation-

ally expensive but have the possibility of providing better estimates. Kalman filter

(KF) can be considered similar to OI except OI calculates a constant estimate whereas

KF uses the model to calculate the error covariance matrix. Extended Kalman Filter

[41] uses a linear adjoint model to forecast the evolved error covariance matrix that

is employed in the analysis step. If an adequate number of observations are available

over time, the extended Kalman could provide the best assimilation results compared

to the inexpensive computational methods discussed above. Extended Kalman fil-

ter is one of the most computationally expensive methods [44] and hence in many

cases replaced with assumptions of constant errors to minimize computational time.

Ensemble Kalman filtering [36] reduces the computational time of extended Kalman

filter. It runs a collection of simultaneous data assimilation cycles independently and

finally combines them to produce an analysis of the control variables [5]. The singular
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evolutive extended Kalman (SEEK) [69] is another type of Kalman filter. SEEK fil-

ters make use of square root factorization of the covariance matrices and reformulate

the KF steps using square roots instead of the full matrices. When the linearization

in a SEEK filter is replaced by linear interpolation, it becomes the Singular Evolutive

Interpolated Kalman (SEIK) Filter [68]. SEIK is thus a variant of the SEEK filter

that can be interpreted as an ensemble filter with a reduced ensemble. The benefit

of SEIK is that it avoids the complex computational burden of the gradient required

by the SEEK filter and is more robust concerning model nonlinearities. While using

Kalman filters, to keep the computation time low, the ensembles are chosen to be

small even for large-scale models. Small ensembles may lead to significant sampling

errors of the error covariance matrix. To overcome this issue localization of covariance

matrices are preferred in which long-distance covariances are damped or neglected.

Yang et al. [106] used a Localized Singular Evolutive Interpolated Kalman (LSEIK)

filter to assimilate ESA’s SMOS ice thickness data and SSMIS ice concentration.

Ensemble-based prediction is the other set of methods in data assimilation where,

instead of making a single forecast, several ensembles or future states are generated

[81, 51]. Xie et al. [105] used ensemble Kalman filtering for the assimilating thin ice

from SMOS into the TOPAZ system, which is a coupled ice-ocean forecast system

and the system also assimilated sea surface temperature, altimetry data, temperature

and salinity profiles, ice concentration, and ice drift.
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2.6 Grid generation methods

By default, CICE uses displaced pole grids of 3◦ and 1◦ for global applications. The

regional implementation of the model is rarely discussed in the literature. One of the

regional implementations, 3D-CEMBS, a coupled ice-ocean model that used CICE,

was implemented on a rotated stereographic grid co-ordinates. The work did not

discuss the results of the sea ice parameters such as ice concentration, thickness. This

section presents a literature review of the methods that are used to generate rotated

grids for global and regional implementations. A non-rotated orthogonal curvilinear

grid is used for the regional implementation discussed in Chapter 3.

The ice-ocean or atmospheric models are represented by partial differential equa-

tions to define the physical processes of atmosphere-ice-ocean. They are solved using

advanced computational methods such as domain decomposition and parallel algo-

rithms. In GCMS, prognostic variables such as temperature, salinity, and velocity,

are discretized on Arakawa grids which include five different varieties of grids. The

Arakawa grids include unstaggered and staggered grids. An unstaggered grid or A

grid will define all the variables at the same point either at the center or the corner

point of a grid cell, whereas staggered grids (B, C, D, and E) define the variables at

different points of the grid cell [2]. The staggered grids B and C are usually preferred

in the climate modeling framework.

Along with discretization of model equations, another issue that the numerical

ice-ocean models have to overcome is the singularity at the poles caused by the con-

vergence of latitude and longitude. The convergence at the poles generates numerical

errors in the Arctic configuration of the GCMs. To overcome such singularity the
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mesh/grid generation techniques follow different methodologies. One of the method-

ologies is to shift the pole over the land cells and generate orthogonal curvilinear

grids using a conformal transformation [56], see Figure 2.1. Another methodology

follows the generation of more than one pole, all located over the land cells [62], see

Figure 2.1. The method for regional models which does not include the poles can be

resolved easily by using orthogonal curvilinear, rectilinear (arises as a special case of

the above methodology) or spherical coordinates, with fitted boundaries [59]. Also,

there are methods, which include the use non-orthogonal grids usually used for finite

volume, finite element methods of modelig the ocean [59].

Figure 2.1: (a) Dipole grid (b) Tripole grid
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Chapter 3

Implementation of a Sea Ice Model

on a Regional High-Resolution

Scale

3.1 Overview

This chapter discusses the implementation of the Los Alamos sea ice model, CICE,

on a regional high-resolution scale. The CICE model, which is part of the global

ice-ocean modeling framework, has been implemented in a standalone (uncoupled

from ocean/atmospheric models) mode using ocean and atmospheric forcing derived

from Climate Forecast System Reanalysis (CFSR), World Ocean Atlas (WOA) and

North American Regional Reanalysis (NARR) data. Implementation of a regional

domain requires the adaptation of open boundary conditions, assumptions of no ice

state initial conditions and a mixed layer criterion for the slab ocean mixed layer
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model. The resulting ice concentration is compared with ice concentrations from

AMSR-E and OSI SAF and validated using statistical anomalies, means, and standard

deviations. Ice thickness is compared visually with the thickness estimates derived

from SMOS sensor.

3.2 Introduction

Several coupled and stand-alone ice models were available for numerical simulation

studies at both regional and global scales and have been discussed in Section 2.4.

A coupled ice-ocean model is a more complex system requiring additional computa-

tional time, parameter tuning, and management of large data quantities. With the

availability of high-resolution atmospheric and ocean data from satellite observations,

reanalysis and forecast models, we attempt to implement a high-resolution uncoupled

sea ice model on a regional scale. We use the Los Alamos sea ice model (CICE), which

is also the sea ice component of atmosphere-land-ice-ocean coupled models such as

CCSM and Community Earth System Model (CESM). The sea ice components of

other ocean models such as ROMS closely follow the physics explained by the CICE

model.

CICE [11] is an advanced multi-thickness category sea ice model that has ther-

modynamic and dynamic components, with ridging, melt pond and biogeochemistry

parameterizations. For uncoupled (stand-alone) simulation studies, it includes a slab

ocean mixed layer model. It can also be coupled to atmospheric and ocean models

like Community Atmosphere Model (CAM), Parallel Ocean Program (POP), NEMO,

CCSM, Princeton Ocean Model (POM), and ROMS.
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The literature does not provide details and discussion on regional implementation

and results for stand-alone models. The 3D-CEMBS is an eco-hydrodynamic model

that includes a coupled POP-CICE model for operational forecasting implementation

of CICE on a regional scale. The implementation on the regional scale of the ice

component and the validation work is still ongoing [7]. The general guidelines for

configuring CICE on global and regional scales are already available [11]. The model is

available with a displaced pole global grid of 1◦ and 3◦ resolution for testing purposes.

The model is forced with the default National Centers for Environmental Prediction

(NCEP) atmospheric forcing along with the low-resolution CCSM climate runs for

ocean fields which include the currents, sea surface slope, salinity, temperature, and

ocean heat flux.

3.3 General circulation and ice regimes in the re-

gion of interest

The role of ocean currents and salinity in the region is of utmost importance for

modeling ice conditions. One of the main outflows from the Arctic Ocean, the Eastern

Greenland current, turns northwards at the southern tip of Greenland and flows up

to Baffin Bay. A part of the current turns westward into the Davis Strait; the rest

re-circulates within the region forming the Baffin Current. A portion of the Arctic

surface water enters the region through the Fury and Hecla Strait; part of it forms

a cyclonic circulation in Hudson Bay and then exits with the currents from the Foxe

Basin, as shown in Figure 3.1 [12, 29, p. 836]. The ice cover in the region consists of
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rafted ice floes, level ice with thickness up to 2 m, and multi-year ice in the area of

the Canadian Archipelago [12]. Ice conditions in Baffin Bay and surrounding Arctic

regions during summer from 1968 to 2010 were investigated by Environment and

Climate Change Canada and showed a decline in multi-year ice [8]. Ice thickness in

northern Nares Strait varied from 2 to 6 m [16]. Another main feature is the open-

water area or polynya known as North Water, which contributes to the ecosystem in

the region. The process of warm water upwelling and ice divergence also contributes

significantly to ice conditions in the area. Warm water delays freeze-up and ice

divergence keep the North Water area ice-free during strong winds [12].

Figure 3.1: General circulation pattern in the domain of interest. Figure is reproduced

from [12, 29, p. 836].
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A common trend observed in the region was the low extent of sea ice from the

beginning of August until the end of September. Sea ice formation starts in the Baffin

Bay during October and extends south, with maximum sea ice extent during March

extending up to the Gulf of St. Lawrence, and then sea ice gradually begins to melt

by the beginning of April. Figure 3.2 shows sea ice concentrations from a monthly

climatology (2005-2015) derived from AMSR-E.

3.4 Model configuration

The CICE model has several components:

• Thermodynamic component that computes ice growth and ablation due to ver-

tical heat conductivity, radiative and turbulent fluxes

• Dynamic component that computes the velocity field based on the material

strength of the ice

• Transport model that computes advection of tracers such as ice area, ice volume

and other tracers

• Ridging model that shifts ice among thickness categories

The heat flux into the ocean surface layer from the ice and open-ocean fractions (all

fluxes are positive downwards) is calculated as

fsurf = (1− a)(fsen + flat + flwout + flwin + fswabs) + a(fice + fswthru), (3.1)

where fsen is the sensible heat flux between the atmosphere to the open ocean surface;

flat is the latent heat flux between the atmosphere and the open-ocean surface; flwout is
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Figure 3.2: Monthly climatology of ice concentration from AMSR-E.
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the outgoing longwave radiation from the open-ocean surface to the atmosphere; flwin

is the incoming long-wave radiation; and fswabs is the downward short-wave radiative

heat flux calculated as a sum of four radiative categories (direct and diffuse, visible

and near-infrared) with varying albedo parameterizations, fice is the heat flux from the

ocean surface to the base of the ice (aggregated over all ice categories/thickness), and

fswthu is the short-wave radiative heat flux that passes through the ice and is absorbed

by the ocean [11]. Delta-Eddington method [6] was used for computing albedo and

short-wave fluxes. The method also considers the effect of ice, snow, change in snow

grain radius, and meltponds on albedo [11]. The SST is then computed from

dT

dt
=
fsurf −Qmix

cρhmix

, (3.2)

where, T is the SST, Qmix is the mixed-layer heat flux, cρ is the volumetric heat

capacity, and hmix is the mixed-layer depth. The potential to freeze or melt ice is

then computed from

frzmlt =
(Tf − T )cρhmix

dt
, (3.3)

where, the freezing temperature, Tf = −µS, S is the sea water salinity, and µ = 0.054

is the ratio of freezing temperature of brine to its salinity [5]. New ice is formed when

the ocean temperature falls below freezing. If frzmlt is positive, new frazil ice of

0.05m is added to the thinnest ice category; if it is negative, then it is used to heat

already existing ice. CICE assumes a default value of 20m for the mixed-layer depth

hmix and fixed value of 0 W/m2 for Qmix.

The growth and melt of sea ice are calculated by computing new temperatures

and rate of melting at the top and bottom of ice [5] by assuming a fixed vertical

salinity profile [5]. If there is latent heat transfer from the ice to atmosphere i.e., the
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latent heat flux is negative then snow or snow-free ice sublimates at the top surface.

If latent heat flux is positive then vapor from the atmosphere is deposited at the

surface as snow or ice.

The thickness change is given by

(ρLv − q)δh = flat∆t, (3.4)

where ρ is the density of the snow or ice, and Lv = 2.501106 J/kg is the latent heat

of vaporization of liquid water at 0◦ C, q is the enthalpy of surface ice or snow.

The present configuration considers a constant thermal conductivity of snow (0.25

W/m/deg), while the thermal conductivity of ice, Ki, is parametrised based on the

”bubbly” brine model of [25] by

Ki = ρi/ρ0(2.11− 0.11Ti + 0.09Si/Ti), (3.5)

where ρi is the density of sea ice (917Kg/m3), ρ0 is the density of pure ice (917Kg/m3).

Si and Ti are the internal ice Salinity and Temperature.

Growth and melt at the bottom are given by

qδh = (fcb − fb)∆t, (3.6)

where fcb is conductive heat flux at the bottom surface and fb is the net downward

heat flux from the ice to the ocean, fb is given by

fb = ρwcwDwu
∗(T − Tf ), (3.7)

where ρw = 1026 kg/m3 is the density of seawater, cw = 4218J/kg/K is the specific

heat of seawater, Dw is the ice-ocean drag coefficient given by equation (3.22), and

u∗ is the friction velocity.
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Since the thermodynamic and dynamic properties of sea ice depend on the amount

of ice in each thickness category [9, 23] the basic problem of sea ice modeling is to

describe the evolution of ice thickness distribution (ITD) [30] given by equation

∂g

∂t
+∇ · (gu) +

∂

∂h
(fg) = ψ, (3.8)

where u is the horizontal ice velocity, ∇ = ( ∂
∂x
, ∂
∂y
), ψ is the ridging redistribution

function, f is the rate of thermodynamic ice growth and g is the ice thickness dis-

tribution function, g(x, h, t)dh, defined as the fractional area covered by ice in the

thickness range (h, h+ dh) at a given time and location. The equation (3.8) is solved

in several stages by operator splitting and by partitioning the ice pack in each grid

cell into discrete thickness categories [11]. The model configuration presented in this

chapter uses seven thickness categories and a single category for open water for ap-

proximating the ice thickness distribution. The category lower bounds used are shown

in Table 3.1;

Table 3.1: Lower boundary values for thickness categories

Thickness categories 1 2 3 4 5 6 7

Lower bounds (m) 0.00 0.1 0.15 0.30 0.75 1.20 2.00

The conservation equation or the horizontal transport of ice area after neglecting

the thermodynamics and the ridging distribution is given by

∂an
∂t

+∇ · (anu) = 0, (3.9)

where an is the ice area fraction in each category and u is the ice velocity. Similary,
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the conservation equations [11] for ice volume, vin, and snow volume, vsn are given by

∂vin
∂t

+∇ · (vinu) = 0,

∂vsn
∂t

+∇ · (vsnu) = 0.

(3.10)

Conservation equations for ice energy ein and snow energy esn and the dependent

tracers such as level (non-deformed) ice fraction alvlan , pond ice fraction apndalvlan,

pond volume hpndapndalvlan, pond ice volume hipndapndalvlan are simlar to the equa-

tions (3.9) [11]. See AppendixA.1 for the equations on dependent tracers . The

incremental remapping scheme by [19] is used to solve the continuity or transport

equations in each thickness category.

The equation for transport in thickness space [11] is obtained after neglecting the

second term on the left-hand side and term on the right-hand-side of equation (3.8)

given by

∂g

∂t
+

∂

∂h
(fg) = 0, (3.11)

and is solved using linear remapping scheme for ice thickness simulation [18].

Afterwards, the term on the right-hand side, ψ, of the equation (3.8) that describes

the redistribution of ice in thickness space due to the mechanical process of ridging is

solved. The ridging scheme has four components: ”(1) A rule for computing the rates

of opening, closing, and ridging (2) A function, p(h), that describes the thickness

distribution of ice participating in ridging, given g(h). (3) A function, n(h), that

describes the thickness distribution of the resulting ridged ice, given p(h); and (4) a

procedure for computing the ice strength P , given p(h) and mean thickness h [20].”

The ridging function requires that when ice diverges and leaves a given region,

ice must be replaced with open water. When the pack ice converges, the ridging
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must reduce the open water area and deform thin ice into thick ridges. The shear

ridging function may generate a combination of opening, closing, and ridging. Also,

the strain rate, ψ, must enforce conservation of area and volume [20, 11]. In order to

satisfy these criteria ψ [20] is defined by

ψ = |ǫ̇|[α0(θ)δ(h) + αr(θ)wr], (3.12)

where ǫ̇ is the strain rate magnitude, θ gives the relative contributions of divergence

and shear (θ = 0,π/2, and π for pure divergence, shear, and convergence, respec-

tively), δ denotes the delta fuction at h = 0, α0,αr are coefficients for opening and

ridging/closing, respectively, wr is the ridging mode which must enforce the conser-

vation of area and volume [20, 11] and is given by

wr =
−p(h) + n(h)

N
, (3.13)

where p(h) is the function that describes the ice participating in riding, given by

equation (3.14) and n(h) is the ITD of the resulting ridged ice, and N is a normaliza-

tion factor required to conserve area [20, 11]. p(h) is given by

p(h) = b(h)g(h), (3.14)

where b(h) is a weighing function that favours ridging of thin ice and closing of open

water in preference to ridging of thicker ice. To ensure numerical stability the weight-

ing function given by equation (3.15) [20, 11] is used for the present configuration of

the model.

b(h) =
e[G(h)/a∗]

a∗[1− e(−1/a∗)]
, (3.15)

where G(h) is the fractional area covered by ice thinner than h and a∗ is an emperical

constant (0.05).
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The ITD of newly formed ice ridges, n(h) in equation (3.13) is given by

n(h) =

∫ ∞

0

a(h1)γ(h1, h)dh1, (3.16)

where γ(h1, h)dh is the ice area ridged to the thickness interval (h, h+ dh) per unit

area lost by ice of thickness h1. γ, the ITD of ridges is approximated by [20]

γn(h) =











γ0ne
[−(h−Hmin)/λ] h ≥ Hmin,

0 h < Hmin,

(3.17)

where λ is an empirical e-folding scale and Hmin = 2hn (where hn is the thickness of

ridging ice, γ0n is a normalization factor.

Finally, the ice strength formulation is given by

P = P ∗he[−C(1−an)], (3.18)

where P = 27, 500N/m and C = 20 are empirical constants, and h is the mean ice

thickness. The formulation given in equation (3.18) is used since it ensures stability

for high resolution models [20].

The dynamics part of the sea ice models predicts the movement of the ice pack

based on winds, ocean currents, Coriolis force and a model of the material strength

of the ice. The movement of the pack contributes to the thickness and extent. The

governing equation of momentum that represents the force balance per unit area in

the ice pack is given by

m
∂u

∂t
= ∇σ + τa + τw − k̂ ×mfu−mg∇Ho, (3.19)

where m is the combined mass of ice and snow per unit area, τa and τw are wind and

ocean stresses, respectively. σ is the ice internal stress, f is the Coriolis parameter,
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g is the acceleration due to gravity and Ho is the sea surface slope. The rheology

of ice is presented by an alternative relationship between the ice stress and strain

rate through ice strength. The present configuration uses the EVP rheology model

developed by [10]. The surface currents are used to compute the sea surface slope,

∇Ho, to determine the ice-ocean stress and afterward the ice velocity [11].

The ocean stress is given by

τw = Dwρw|Uw − u|[(Uw − u) cos θ + k̂ × (U
w
− u) sin θ], (3.20)

where Dw is the ocean drag coefficient, ρw is the sea water density, Uw is the surface

currents, u is the ice velocity and θ is the turning angle. Since the ocean currents are

used in the present configuration the turning angle, θ, is zero.

The wind stress τ a is determined from

τ a =
ρau

∗2
Ua

|Ua|
, (3.21)

where ρa is the air density, Ua is the wind component, and u∗ is the friction velocity [1].

A variable drag coefficient suggested by [35] has been used in the configuration since

it produces more realistic ice concentration and thickness in the Arctic with respect

to the constant drag coefficients [35]. The drag, Dw, is estimated from properties of

the ice cover such as ice concentration, vertical extent and area of the ridges, and floe

size [21, 22] as

Dw = Dkeel +Dfloe +Dskin, (3.22)

where Dkeel is the contribution from keels, Dfloe is the contribution from floe edges,

Dskin is the contribution from the ice-ocean boundary.

All the equations were spatially discretized on a non-rotated orthogonal Arakawa

B-grid [2]. Ice thickness, snow area, volume, energy, and thermodynamic variables
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such as temperature were defined at the center of the grid cell while the velocities

were defined at the corners and were aligned along the grid lines [11]. The results of

this study were discussed for a model resolution of almost-identical 10-km grid cells.

The open boundaries were implemented by restoring the non-land halo (ghost) cells

along the grid edge to specified values. For domain decomposition each local domain

had one ghost (halo) cell on each side which communicates with one another. Halo

cells duplicate the subset of neighbour cells that each iteration depends on. For the

mixed-layer slab ocean model, the boundary conditions for SST were achieved by

restoring it towards a monthly climatology. The ice concentration, volume, and snow

volume were restored to the initial timestep [11].

3.5 Forcing data

Atmospheric parameters were derived from a high-resolution climate data set for the

North American Domain, NARR [24] obtained from NCEP reanalysis data provided

by the NOAA/OAR/ESRL PSD were used for forcing the model; see AppendixA.2

for data sources. The data includes air density, zonal wind speed, meridional wind

speed, air temperature, specific humidity, precipitation, cloud fraction, and incoming

short-wave radiation. The NARR data are of high temporal (eight times daily) and

spatial (0.3◦×0.3◦) resolution. Ocean currents were obtained from the CFSR monthly

climatology data, see AppendixA.2 for data source. A fixed ocean salinity profile was

derived from monthly climatology data, World Ocean Atlas 2013 (0.25◦× 0.25◦) [17].

SST is derived from monthly climatology derived from high-resolution data provided

by NOAA/OAR/ESRL PSD [26], see AppendixA.2 for data source. The ocean data
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were processed to be consistent with the masking used for the high-resolution model.

The missing values near coastal areas were replaced by a 5 point average of the

respective data. The mixed layer depth (MLD) is calculated fromWOA-2013 monthly

climatology using fixed threshold density criteria as

hmix = depth where(σθ = σθ|10 ± 0.2Kg/m3), (3.23)

where σθ is the potential density, σθ|10 is the potential density at 10 m depth. If

the mixed-layer depth is greater than the bathymetry, then the mixed-layer depth

is relaxed to the bathymetry value at the grid cell. The mixed-layer heat flux is

assumed to be zero. Also, a minimal mixed layer depth of 10 m is maintained for

all computations. There are several formulations for mixed-layer depth computation,

e.g., the French Research Institute for the exploration of the sea (Ifremer) uses a

density criterion of 0.03. For the following experiments, the equation (3.23) was used

to compute the MLD in equations (3.2) and (3.3).

3.6 Remote sensing data for validation

Remote sensing data were used for the validation of ice parameters estimated by the

model. Ice concentration derived from AMSR-E of resolution 6 × 4 km [29] were

used for validation of model estimated ice concentration. AMSR-E was developed

by JAXA, and was deployed on Aqua satellite. AMSR-E and AMSR2 are passive

sensors that look at the emitted or reflected microwave radiation from the earth’s

surface with multiple frequency bands. The vertical (V) and horizontal (H) polariza-

tion channels near 89 GHz were used to compute the ice concentration from AMSR-E

[29]. The Arctic Radiation and Turbulence Interaction STudy (ARTIST) Sea Ice

74



algorithm used to determine ice concentration from AMSR-E show excellent results

above 65% ice concentration where the error does not exceed 10%. With low ice con-

centrations, substantial deviations can occur depending on atmospheric conditions

[29]. The parameters of the sensor are provided in Table 3.2. AMSR-E ice concen-

tration were available from January 2005 to September 2011, after which it stopped

functioning. From August 2012 AMSR2 had been used for data collection. The same

frequency (89 GHz) as that of the AMSR-E instrument was used to derive informa-

tion from AMSR2. The spatial resolutions also remain the same for both AMSR-E

and AMSR2. The same algorithm was applied to derive ice concentrations from both

AMSR-E and AMSR2. Also, the sea ice concentration product from Ocean and Sea

Ice Satellite Application Facility (OSI SAF) - EUMETSAT of 10-km resolution were

used for comparison [34]. OSI SAF product was derived from Special Sensor Mi-

crowave Imager Sounder (SSMIS) [34, 4]. The data were available on a 10 km polar

stereographic grid and were derived from 19 V, 37 VH channels, see Table 3.2 for

sensor specifications.

Table 3.2: Specifications of microwave radiometers used to estimate ice concentration.

Specifications AMSR-E/AMSR2 SSMIS

Center Frequency, GHz 89 19 37

Mean Spatial resolution, km 5.4 69× 43 37× 28

Polarization HV V HV

Incidence angle, deg 55 50

Swath, km 1445 1700

Data availability, month/year 08/2002− 10/2011/08/2012-present 03/2005−Present
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For ice thickness, data of resolution 35 to 50 km derived from the SMOSMicrowave

Imaging Radiometer with Aperture Synthesis (MIRAS) instrument (1.4-GHz channel)

[14] was used. The ice thickness uncertainties were lower for thin ice and uncertainty

increased as the thickness increased. SMOS data are available from 15 October 2010.

The presence of snow accumulated over months also can increase the uncertainty.

The uncertainty of SMOS ice thickness (observation) includes the error contributions

caused by the brightness temperature, ice temperature and ice salinity, See Table3.4

[31, 27, 33, 32]. The insufficient knowledge on the snow cover also introduces a large

uncertainty in the thickness estimates from SMOS. Moreover, large errors occur dur-

ing the melting period. In general, the uncertainty of thickness observation increased

with increasing ice thickness, increasing snow cover and onset of melt [13]. The SMOS

ice thickness retrieval produces large uncertainty during the melt season and hence

retrieval was not conducted during the melt season. Therefore, data from April to

October were not available for our region of interest. Refer to Table 3.3 [15, 3] for

details on SMOS sensor.

Table 3.3: SMOS sensor specifications.

Polarization HV

Incidence angle 0− 55◦

Swath, km 900

Center Frequency (GHz) 1.4 (L-band)

Mean Spatial resolution (km) 30− 50

Radiometric sensitivity over ocean, K 2.5 and 4.1
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Table 3.4: SMOS uncertainties caused by brightness temperature, ice temperature,

and ice salinity.

Ice thickness Uncertainty caused by a standard deviation of

0.5 K brightness temperature 1 K ice tempearture 1 g/Kg ice salinity

0 -10 cm < 1 cm < 1cm < 1cm

10-30 cm < 1 cm 1-5 cm 1- 13 cm

30-50 cm 1-4 cm 2-10 cm 2-22 cm

> 50 cm > 4cm > 7cm ≤ 40 cm

Data derived from AVHRR were used for sea surface temperature (SST) com-

parison [26, 28]. SST data products were generated using a combination of satellite

and in situ observations from buoy and ship observations and were available on a

(0.25◦ × 0.25◦) resolution.

3.7 Results and validation

3.7.1 Ice concentration

For consistency in the analysis, model and observations were interpolated to a grid

resolution of 10 km. The data points missing in the observation, either temporal or

spatial, were considered as missing points in the model estimates too. Thus, model

and observations had same temporal and spatial data gaps.

Different algorithms have been tested to derive sea ice concentration from AMSR-

E channels. These algorithms have been validated with visual inspections from cruise
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data. The algorithm shows relevant results at mid and high ice concentrations of

above 65%. The error does not exceed 10% in such regions. Significant deviations

may occur in the areas with low ice concentration depending on the atmospheric

conditions [29].

OSI SAF data was defined based on the confidence level of the probability of

sea ice presence. The confidence levels of OSI SAF are defined as Unprocessed (No

data), Erroneous (computation failed), Unreliable (50−74% probability), Acceptable

(75 − 94% probability), Good (95 − 98% probability), and Excellent (99 − 100%

probability) [34]. For analysis, the acceptable, good and excellent data have been

used. The rest of the grid cells were treated as missing points both in observation

and model estimated values.

The simulation studies were initiated with a no-ice state assumption from 1

September 2004. The model was integrated from this initial date to 31 December

2015. Figure 3.3 shows the results for three years of simulation from 01 January 2005

to 31 December 2007. The model was numerically stable and simulates physically re-

alistic values for the ice parameters in the region. The maximum values of ice speed

and strength did not exceed 1 m/s and 1000 kN, which showed consistency with the

conditions for numerical stability [20]. The ice concentration is zero during August

and September; increasing gradually to high ice concentration over the domain during

February and March and then decreasing gradually to a no-ice condition.

Figure 3.4 shows the spatial root mean square error (RMSE) of the model with

the observed ice concentrations from AMSR-E and OSI SAF, and model SST with

the SST derived from AVHRR. The RMSE was calculated from the daily climatology

value of the model estimates and the observation. RMSE was below 15% for ice
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Figure 3.3: The average ice speed, strength, thickness, and concentration in the

domain of interest.
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concentration except during May, June, and July and RMSE are below 1◦ for SST

except during June, July, and August. The error in SST was due to the assumption

of zero mixed layer heat flux. When ice is formed, the mixed layer heat flux melts

the ice from below thus constraining the ice growth. The absence of the mixed

layer heat flux contributes to the error in the ice concentration. The model tends to

accumulate errors after certain period of time due to the averaging of forcing data.

When ice starts to melt the error was increasing even more because melting processes

depend on particular weather and ocean parameters which were not considered during

modeling due to the complexity and unavailability.

Figure 3.4: Root mean square error, ice concentration and SST.
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The monthly anomaly of the ice concentration from the model and AMSR-E ob-

servation is shown in Figure 3.5 and the monthly anomaly of the ice concentration

from the model and OSI SAF observation are shown in Figure 3.6. The ice concen-

tration anomalies from both the model and observation lie between −10% and 6%.

The monthly anomaly of the SST from the model and AVHRR observation are shown

in Figure 3.7. SST anomalies lie between −0.8◦C and 1◦C. The reason for variation

of ice concentration anomaly during 2006, 2009, 2014 may be attributed due to the

anomaly observed in the SST and also the snow thickness estimated from the model.

The ocean sub-mixed layer heat flux, Qmix (see equation (3.2)) was assumed zero in

the model configuration. The mixed layer heat flux is usually negative during winter

and positive during summer months, thus maintaining a summer warmer layer below

the mixed layer during winter which would hinder the growth of ice; and winter cold

layer below the mixed layer during summer which delays the melt. Since this heat

flux is absent, it contributes to the anomaly variation. Moreover, the model also

shows lower snow depth and high thickness during the years 2006, 2009, and 2014 of

anomaly variations, see Figures 3.8, 3.9. The lower snow depth would lead to higher

ice thickness and the mixed layer heat flux, if present, would be acting to reduce the

thickness and area. Also, the contribution of errors from the observations may not

be neglected in these variations.

The seasonal average of the model and the observation were used to compute the

absolute error; see Figure 3.10 for the absolute error of the ice concentration between

the model and AMSR-E. From December to May, the model errors were high along

the Davis Strait where the Greenland currents turn westward and form the Labrador

currents. The exchange of hot and cold waters in the region was not well represented
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Figure 3.5: Anomaly of Model ice concentration and AMSR-E.
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Figure 3.6: Anomaly of Model ice concentration and OSI SAF.
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Figure 3.7: Anomaly of Model SST and AVHRR.

Figure 3.8: Snow thickness (cm) from the model.
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Figure 3.9: Ice thickness (cm) from the model.

in the model. The error in the North Water polynya is also due to the lack of heat

flux contribution and also from the CFSR currents that are of low resolution and are

not well presented in the Nares Strait, Fury and Hecla Strait (Figure 3.12). From

June to August, the error is high in Baffin Bay and Hudson Bay. A similar result is

shown by the absolute error between the model and OSI SAF data except that from

December to May the error distribution is below 15% in Hudson Bay (Figure 3.11).

3.7.2 Ice thickness

Figure 3.13 shows the simulation result for ice thickness in cm. Only the results from

the northern part of the domain that includes the Baffin Bay is shown in Figure 3.13.

The first column in the figure illustrates the ice concentration from AMSR-E. The

second column shows the ice thickness from the model and the third column shows

the thickness estimates from SMOS. The ice thickness retrieval algorithm from SMOS

assumes 100% ice concentration which leads to an underestimation of ice thickness

for the grid cells with ice concentration less than 100%. The thickness estimates in
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Figure 3.10: Absolute error of ice concentration from Model and AMSR-E (%).
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Figure 3.11: Absolute error of ice concentration from Model and OSI SAF (%).
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Figure 3.12: Multi-year mean of currents from CFSR.
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the Baffin region are overlaid with contour levels for a better understanding of the

pattern. During October and December the contours of 30 cm ice thickness from

model and SMOS shows a good match. During February the the contour level of

70 cm ice thickness from model shows a good match with the ice thickness retrieved

from SMOS. The thickness error for observed data is smaller for thin ice and may go

up to 100% for thickness greater than half a meter, see Table3.4 [13]. Considering

the uncertainty levels in SMOS derived measures the modeled ice thickness is a good

estimate of the observation.

3.8 Conclusions

The high-resolution, regional-scale CICE model was implemented for the Baffin Bay,

Hudson Bay, Labrador Sea and Gulf of St. Lawrence in a stand-alone mode with

NARR high-resolution atmospheric forcing (reanalysis) data and ocean parameters

derived from CFSR and WOA 2013. The model CICE is typically implemented on

a tripolar or dipole grid configurations and with cyclic/closed boundaries for global

ice-ocean framework. For the configuration on a regional domain, the model was

implemented on a curvilinear B-grid with open boundaries achieved via restoring

the boundary values to the initial values. Also, the model is generally forced using

the ocean parameters derived from CCSM simulations or coupled with other ocean

models such as NEMO. Here in this work a density based criteria is used for the slab-

ocean mixed layer model for stand-alone simulation. The model was initiated from a

no ice state condition and evolved over time, simulating sea ice parameters such as

ice concentration. The model stability was tested to ensure that the configuration
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Figure 3.13: Column 1 shows the ice concentration from AMSR-E with the color bar

in column 1 showing values of ice concentration in percentage, Column 2 shows the

ice thickness from the model and Column 3 shows the ice thickness from SMOS. The

color bar on the right represents the ice thickness values in cm.
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produces physically realistic values of the sea ice parameters. The advantage of the

implemented stand alone model includes the estimation of other sea ice parameters

such as thickness, freeboard (discussed in Chapter 4), sail height and keel depth

(discussed in Chapter 5) without any additional complexities associated with tuning

parameters in a coupled ocean model.

The comparison of the model with the observation data show that the ice concen-

tration spatial RMSE is below 15% except during May, June and July and SST spatial

RMSE are below 1◦C except during June, and July and August. The monthly anoma-

lies of ice concentration from both the model and observation lie between −10% and

6% and SST anomalies from both the observation and model lie between −0.8◦C

and 1◦C for the entire domain. The absolute error analysis shows that the ice-

concentration errors tend to be higher around the North Water Polynya, and the

Davis Strait from December to May. During June to August, the large errors were

found in the Baffin Bay and Hudson Bay region, with the errors mostly below 30%.

The large errors were due to the absence of a mixed layer heat flux in the model,

assumptions of constant salinity profile and low-resolution ocean currents. An inves-

tigation into options for assimilating SST data to reduce the model error and inclusion

of variable salinity, MLD is suggested. The visual comparison of the ice thickness es-

timates with the SMOS derived values shows good match considering the uncertainty

levels of the observed ice thickness.
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thickness retrieval from SMOS brightness temperatures during the Arctic freeze-

up period. Geophysical Research Letters, 39(5), 2012.

93



[15] Y. H. Kerr, P. Waldteufel, J.-P. Wigneron, J. Martinuzzi, J. Font, and M. Berger.

Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS)

mission. IEEE transactions on Geoscience and remote sensing, 39(8):1729–1735,

2001.

[16] R. Kwok. Exchange of sea ice between the Arctic Ocean and the Canadian Arctic

Archipelago. Geophysical Research Letters, 33(16), 2006.

[17] S. Levitus et al. The world ocean database. Data Science Journal, 12:WDS229–

WDS234, 2013.

[18] W. H. Lipscomb. Remapping the thickness distribution in sea ice models. Journal

of Geophysical Research: Oceans, 106(C7):13989–14000, 2001.

[19] W. H. Lipscomb and E. C. Hunke. Modeling sea ice transport using incremental

remapping. Monthly Weather Review, 132(6):1341–1354, 2004.

[20] W. H. Lipscomb, E. C. Hunke, W. Maslowski, and J. Jakacki. Ridging, strength,

and stability in high-resolution sea ice models. Journal of Geophysical Research:

Oceans, 112(C3), 2007.
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Chapter 4

Estimation of Sea Ice

Characteristics in the Region of

Baffin Bay and Labrador Sea Using

High-Resolution Model with the

Assimilation of Ice Concentration

and SST

4.1 Overview

In the previous chapter (Chapter 3) the model implementation and validation on a

regional scale were discussed. Long-term simulations could deviate from true values
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due to inherent uncertainties in the model. These uncertainties may arise due to the

lack of accurate parameterizations and assumptions in the model. Data assimilation

techniques bring model values closer to observation by minimizing the error between

model and observation. In order to make forecasts of the future state of a system,

initial conditions need to be closer to the observed state. In numerical models, this is

achieved via data assimilation. In this chapter, we explore data assimilation method-

ologies to retrieve sea ice parameters and also improve the accuracy of the model.

4.2 Introduction

Sea ice estimation and forecasting are important for ship navigation and regional

climate and ocean ecosystem studies. Sea ice is a heterogeneous media, which makes

it practically difficult for microwave satellite imagery [3] to estimate ice thickness,

freeboard, and ridge parameters. Climate forecast researchers depend on numerical

modeling techniques that implement the physical processes of the atmosphere and

the ocean on large-scale computational platforms along with assimilation methods

to retrieve information on sea ice parameters. Data assimilation methods also give

us better initial conditions for forecasting. Due to the high inter-annual variability

of sea ice in the region of Baffin Bay and the Labrador Sea [8], estimating sea ice

parameters is a significant challenge in this region.

Previous sea ice modeling and assimilation studies at the Canadian Ice Service

(CIS) [16] provided an overview of an operational ice model coupled with atmospheric

and ocean modules. The research [18] compared the evolution of ice thickness dis-

tributions and later by the development of an operational ice dynamics model for
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CIS [17]. These modeling works were also improved by data assimilation methods

[5, 4]. The CIOM included the Princeton Ocean Model for the simulation of ocean

parameters and a multi-category ice model. The total ice fraction retrieved from the

Special Sensor Microwave/Imager (SSM/I) was assimilated into the CIOM model us-

ing a 3D-VAR technique [5] to estimate the ice concentration. The assimilation was

further improved by using both daily ice charts and RADARSAT image analysis using

a 3D-VAR technique for sea ice concentration forecasts. The 3D-VAR assimilation

technique can also be used to combine multiple sources of observational data with a

sophisticated forecast model to analyze and forecast sea ice conditions.

An Assimilation study by Lindsay et al. [12] showed significant improvements

in assimilated ice concentration but with a large bias in the ice thickness pattern.

Cheng et al. [6] presented a method for ice concentration and thickness analysis that

combined sea ice thermodynamics modeling and ice motion detection by space-borne

SAR data. The method showed promising results for sea ice concentration and ice

thickness estimates compared to CIS ice charts. In another study, OSI SAF data were

assimilated into the Regional Ocean Modeling System for simulating sea ice concen-

tration, and this produced better results than the simulation without assimilated OSI

SAF data. Ice concentration and extent were overestimated, possibly due to the bias

in atmospheric forcing and underestimation of heat flux and over/under estimation

of sea ice growth/melt processes [24].

Most sea ice models are coupled with ocean models. The advantage of the CICE

model is its standalone capability. Here, we use a combination of modeling using

the standalone sea ice model, CICE [9] and the assimilation method suggested by

Lindsay et al. [12] and Wang et al. [24] for SST and ice concentration. The simulated

99



sea ice parameters were then validated with the observations in the region of Baffin

Bay and the Labrador Sea. This work uses a high-resolution model configuration,

which was previously described in Chapter 3. Further, the effect and reliability of

the assimilation of ice concentration on the estimation of ice thickness and freeboard

measures were compared.

4.3 Model domain and forcing data

The sea ice model was implemented on a regional scale of about 10 km with a slab

ocean mixed layer parameterization. Density-based criteria were used [14] to compute

the mixed-layer depth and thereby compute the SST and the potential to grow or

melt sea ice. The analysis of the non-assimilated model for the sea ice concentration

and its seasonal means showed that the error associated with the model mostly spread

across the area of the North Water polynya and the Davis Strait where the interaction

of cold and warm water is frequent. In the present study, a data assimilation module

is also introduced.

The surface atmospheric forcing is from high-resolution NARR data. The ocean

forcing is from various sources: currents from CFSR, salinity from WOA-2013 and

MLD computed from WOA-2013 [14]. Atmospheric and ocean forcing were used as

inputs to the model. For SST, the climatology data derived from high-resolution

NOAA reanalysis products were used as an input for the initial conditions and open

boundaries. For the ice concentration and thickness, the initial condition is assumed

as a no-ice state at the beginning of September. The assimilation starts from January

2005 and whenever remote sensing data are missing the model is not assimilated, see
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Table 4.1 for temporal gaps.

4.4 Remote sensing data for assimilation and val-

idation

The daily data used for the ice concentration assimilation in the model were derived

from AMSR-E and AMSR2. See Table 4.1 for the time period of the availability of

data. The assimilated model results were then compared with the OSI SAF data.

Only reliable (standard deviation (SD) of 20%− 30%), good (SD of 10%− 20%) and

excellent (SD of 0%−10%) data from OSI SAF were used for comparison. The details

of the sensors were given in Section 3.6 and Table 3.2. For SST assimilation of the

measurements derived from AVHRR were used, see Section 3.6.

The model ice thickness has been compared with the estimates derived from

SMOS-MIRAS. The estimated uncertainties of SMOS ice thickness retrieval were

about 20% for ice thicknesses less than 30 cm and up to 100% for ice thicknesses

more than 50 cm, showing a large underestimation/overestimation of thick ice; see

Section 3.6 and Table 3.3 for details on the SMOS-MIRAS instrument. The uncer-

tainty of SMOS ice thickness (observation) includes the error contributions caused

by the brightness temperature, ice salinity, and ice temperature. Insufficient knowl-

edge of snow cover also introduces a large uncertainty in the thickness estimates from

SMOS. In addition, large errors occur during the melting period. In general, the un-

certainty of thickness observation increases with increasing ice thickness, snow cover,
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Table 4.1: Time period when AMSR-E/AMSR2 data were available

From To

24-MAR-2005 31-MAR-2005

17-NOV-2005 30-NOV-2005

13-MAY-2006 31-MAY-2006

17-NOV-2006 30-NOV-2006

02-MAR-2007 31-MAR-2007

27-NOV-2007 02-DEC-2007

13-AUG-2008 31-AUG-2008

02-FEB-2010 28-FEB-2010

04-OCT-2011 31-JUL-2012

11-MAY-2013 31-MAY-2013
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and onset of melt [10].

The model freeboard had been compared with the measures derived from CryoSat-

2. The CryoSat-2 altimeter operating in the SAR mode has an accuracy of about

1 cm with a spatial sampling of about 45 cm [2]. The pulse limit footprint width

in the across-track direction is about 1.65 km and beam limited footprint width in

the along-track direction is about 305 m [19], which corresponds to an along-track

resolution of about 401 m (assuming a flat-Earth approximation). Therefore, the

pulse-Doppler-limited footprint for the SAR mode is about 0.6 km2. CryoSat-2 free-

board and ice concentration products were generated at the Alfred Wegener Institute

(AWI) [15]. The products were available in a spherical Lambert azimuthal equal-area

projection with 25 km resolution. The uncertainty in freeboard measurements can

arise from speckle noise, a lack of leads which cause the estimation of sea surface

height to be unreliable, and snow cover. The uncertainty of up to 40 cm can be

observed in the region of Baffin Bay and the Labrador Sea [15]. Freeboard data were

not available from May to September due to the high error in the retrieved parameter.

4.5 Data Assimilation

The assimilation module uses the combined optimal interpolation and nudging tech-

nique for ice concentration [12, 24]. The method can be represented generally [7, 12]

as

Xa = Xb + dt
K

τ
(Xo −Xb), (4.1)
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where Xa is the final analysis of the variable, Xo is the observed quantity (for ice con-

centration this is AMSR-E/AMSR2, for SST this is AVHRR), Xb is the background

estimate of the variable (for ice concentration and SST this is model estimate), dt is

the model time step, τ is the basic nudging time scale as in [24], and K is the nudging

weight with the optimal interpolation value. K is computed as

K =
σα
b

σα
b + σ2

o

, (4.2)

where σb and σo are the error standard deviation of the model estimate [7] and the

observations [7], respectively. The parameters in the weighing factor given in equation

(4.2) is defined according to [12] as σb = |Xo −Xb|, σo = 0.08 (parameter may vary

spatially), and α = 6.

When assimilation of ice concentration, σo = 0.08 was calculated from a long-term

standard deviation to 0.08 since the AMSR-E/AMSR2 ice concentration error was

unknown for values less than 65% [20]. The parameter α = 6, was used for the present

study to ensure that the coefficients for assimilation were heavily weighted only when

there was large variation between the model and the observation [12], see Appendix

B.1 for the significance of the parameter α.

SST is also assimilated using the nudging and optimal interpolation scheme. For

SST assimilation, σo was fixed as 0.05◦C to compensate for the assumption of zero

mixed layer heat flux. A value α equals to 6 [12] was also used for the assimilation

of SST to ensure that only large differences between the model and observation were

weighted heavily, see Appendix B.1 for the significance of the parameter α.

The assimilation of ice concentration was then followed by a re-computation of the

estimated sea ice volume. The ice volume was subtracted or added by including the
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increment with specified ice thickness or decreased at current thickness. The model

flow chart with the assimilation module is shown in Figure 4.1. For updates on the

tracers such as level ice and melt ponds see Appendix B.2

Figure 4.1: The model flow chart.

4.6 Results and validation

Three model results are discussed here: model ‘M0’, the non-assimilated model;

‘M1’, the model assimilated with ice concentration from AMSR-E/AMSR2; and ‘M2’,

the model assimilated with ice concentration from AMSR-E/AMSR2 and SST from

AVHRR. ‘M2’assimilates only SST whenever there is a data gap in ice concentration

from AMSR-E e.g. from 24 March 2005 to 31 March 2005 AMSR-E data were not

available and, in that case, M2 assimilates only SST.
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4.6.1 Ice concentration

Figure 4.2 column 1 shows the absolute error between the non-assimilated model and

the OSI SAF (M0), column 2 shows the absolute error of the model assimilated only

with ice concentration and OSI SAF (M1), and column 3 shows the absolute error

of the model assimilated with both ice concentration and SST and OSI SAF (M2).

Model M2 shows improvement in the ice concentration for January and March, but

the results do not improve much during May.

Figure 4.3 shows the absolute error of the model and OSI SAF: row 1 showing the

absolute error from January 2010 to September 2011 and row 2 showing the absolute

error from August 2012 to December 2015. The assimilation of SST and ice concen-

tration decreases the error between the model and the OSI SAF ice concentration. In

2010, the non-assimilated model error of 4.624% was reduced to 1.939% by assimilat-

ing ice concentration. The assimilation of SST and ice concentration decreased the

error to about 1.118% in 2010.

From October 2011 to July 2012, AMSR-E data were not available for a more

extended period, and model M2 was assimilated only with SST, see Figure 4.4. During

this period, the SST assimilation decreased the error between the model and the

observation by almost 3%. The assimilation of ice concentration along with the

assimilation of SST decreased the error in the ice concentration and reduced the

summer errors the most.
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Figure 4.2: The absolute error between the model and OSI SAF column1: M0 and

OSI SAF, column 2: M1 and OSI SAF and column3: M2 and OSI SAF.
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Figure 4.3: The absolute errors between model and OSI SAF from January 2010 to

September 2011 is shown in row 1 and absolute error between model and OSI SAF

from August 2012 to December 2015 is shown in row 2.

Figure 4.4: The absolute errors between model and OSI SAF from October 2011 to

July 2012, SST only is assimilated during the time period.
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4.6.2 Ice thickness

Due to the high uncertainity levels of SMOS thickness data during the melt season the

data from April until October were not available for the region of interest [11, 1]. The

large unacceptable uncertainties in SMOS derived ice thickness creates difficulties for

the analysis. For comparison and validation, ice thickness data from both the model

and SMOS, where the SMOS ice thickness was greater than zero and the uncertainty

values of SMOS were below 30 cm were used. The thickness errors were lower for

thin ice (below 20 cm) and increased as the thickness increased [22].

Figure 4.5 shows the absolute error between the model M0, M1, M2 and SMOS

ice thickness. The model error was within the chosen uncertainty limits of the SMOS

until late February, after which the model error exceeds the chosen uncertainty limits.

A significant deviation was observed at the end of January 2014. The SMOS data

were influenced by the presence of snow and the onset of the melt season, which

made the data unreliable from March/April. The results for the period 2011-2012

when there was only the assimilation of SST are shown in Figure 4.6.

The Model M2 thickness, SMOS derived ice thickness, and the uncertainty of the

SMOS-derived measurement for 15 December, 15 January, and 15 March for the years

2010-2011 are shown in Figure 4.7. See Appendix B.3 for more figures that show ice

thickness for 15 December, 15 January, and 15 March for years 2011-2015.

Data derived using remote sensing measurements may sometimes result in unac-

ceptable values. Data that exceed a certain uncertainty threshold are not used for

practical applications. It was strictly recommended not to use data retrieved from

SMOS with an uncertainty greater than 1 m [21]. For comparison and validation,
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Figure 4.5: The absolute errors between the model and SMOS ice thickness. The blue

straight line denotes the chosen uncertainty level for ice thickness from observation.
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Figure 4.6: The absolute errors between the models M0, M1, M2 and SMOS ice

thickness. The blue straight line denotes the chosen uncertainty level for ice thickness

from SMOS.

ice thickness data from both the model and SMOS were selected when the observed

ice thickness is greater than zero and uncertainty was less than or equal to 100 cm.

The SMOS thickness has less uncertainty for thinner ice and higher uncertainty for

thicker ice, see Table 3.4 for the uncertainty of SMOS ice thickness. Figures 4.8, 4.9,

and 4.10 shows the mean values of the thickness estimated from models M0, M1,

M2 and SMOS with the uncertainty limits of the SMOS ice thickness (shaded gray).

The values of Model M2 are within the uncertainty limits of SMOS ice thickness

until the end of February (except for 2014) end. In the case of SMOS derived thick-

ness, the uncertainties would increase with the snow accumulation and melt onset.

From the comparison, during March, the model results exceed the uncertainty limits.

Compared with the uncertainty values, these results are in the acceptable range from

October to the end of February. Figure 4.10 shows the results for the period October

2011 to April 2012 when AMSR-E data were absent during which M1 was not as-

similated with ice concentration but used the initial conditions from the assimilated

result. Model M2 used the initial conditions assimilated with both ice concentration

111



Figure 4.7: The model M2 estimated ice thickness, ice thickness estimated from

SMOS, and the SMOS uncertainty for 2010-2011.
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and SST, but assimilates only SST during the period. Both models, M1 and M2, with

the improved initial conditions show better forecasts in the long-term analysis. One

of the reasons why the model values exceed the uncertainty limits during March is the

choice of α = 6, which considers only large differences while weighing the coefficient

K. Also, the assumptions of zero mixed layer heat flux, constant salinity and mixed

layer profile contributes to the error. Since the assimilation shows improvement in ice

thickness, using a value of α = 2, it is expected to impose the model values within

the uncertainty limits.

Figure 4.11, shows the observed SST from AVHRR with the shaded regions rep-

resenting the observation uncertainty, SST from models M0, M1 and M2. The SST

assimilation improves the ice concentration and ice thickness results for the model

M2. The assimilated model M2 still has outliers observed during the winter period.

The model results can be improved by decreasing α (α = 6 selected for simulations

presented here) and by reducing the nudging time scale (SST nudging scale was set

to 30 days for simulations discussed here). Decreasing the nudging time scale can

result in the late formation and early melt of ice (not shown here). The results can

be improved by choosing the nudging time scale to be less frequent during ice growth

and more frequent during the winter till beginning or mid of March. Frequent nudg-

ing of SST causes instability in the thermodynamic model. The parameters in the

assimilation should be selected so that a balance is maintained for the timing of ice

formation and melt onset and to maintain the stability of the model thermodynam-

ics and dynamics. For M0, the non-assimilated model results may be improved by

including the mixed layer heat flux with a parametrization similar to [13]. Also, note

that the model still assumes a fixed ocean salinity and MLD.
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Figure 4.8: The ice thickness from the models M0, M1, M2, and SMOS from October

2010 to April 2011 and October 2012 to April 2013. The uncertainty of SMOS ice

thickness is shaded in gray.
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Figure 4.9: The ice thickness from the models M0, M1, M2, and SMOS from October

2013 to April 2014 and October 2014 to April 2015. The uncertainty of SMOS ice

thickness is shaded in gray.
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Figure 4.10: The ice thickness from models M0, M1(non-assimilated but used the

initial conditions from the model assimilated with ice concentration), M2 (assimilated

only with SST and used model initial conditions derived from assimilating both ice

concentration and SST) and SMOS from October 2011 to April 2012. The uncertainty

of SMOS ice thickness is shaded in gray.

Figure 4.11: The SST from AVHRR with the shaded region represents the uncertainty

of AVHRR SST, and SST from models M0, M1, M2.
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4.6.3 Freeboard

The observation uncertainty of freeboard measurements can arise due to lack of leads.

The presence of leads had been ensured by selecting regions where the lead fraction

derived from CryoSat-2 was greater than zero. In the model, freeboard was computed

using equation (4.3) [23]. For the region, the uncertainty of the measurements is below

40 cm [15].

Df = (vice + vsno)/A−D, (4.3)

where vice is the volume of ice, vsno is the volume of snow, A is the ice concentration,

D is the Draft, computed as in

D = (ρivice + ρsvsno)/(Aρw), (4.4)

where ρi = 917kg/m3 is the density of ice, ρs = 330.0kg/m3 is the density of snow

and ρw = 1026kg/m3.

The absolute difference between the model and the CryoSat-2 for January, Febru-

ary and March 2011 is shown in the Figure 4.12. M2 freeboard measures are close to

the observed freeboard. See Appendix B.4 for more figures that show the difference

between the model and CryoSat-2 for years 2012-2015.

Figure 4.13 shows the RMSE of freeboard from model M2 and CryoSat-2 in the

areas where the lead fraction was greater than zero. The RMSE is below the maximum

uncertainty of 40 cm for the region of interest.

Figure 4.14 shows the freeboard estimates from Model M2, CryoSat-2 and the

uncertainty of the freeboard estimates from CryoSat. Appendix B.5 for more figures
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Figure 4.12: Absolute error between the model freeboard and CryoSat-2 for 2011.
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Figure 4.13: The RMSE of freeboard measure for the regions where the lead fraction

is above 0%.

that show the M2 freeboard estimate, CryoSat-2 estimate and uncertainty of CryoSat-

2 estimate for years 2012-2015.

Figure 4.15 shows spatial average of the freeboard estimates from the model M2,

CryoSat-2 and the spatial averaged uncertainty of CryoSat-2 measurements. Only

the model results from M2 were shown since there are only slight deviations for M0

and M1 from the CryoSat-2 estimates. Moreover, we were interested in the results of

the assimilated model and how well it performs in the estimation of freeboard. The

model values are within the uncertainty limits of the CryoSat-2 estimates. Also, note

that the model results were monthly averaged, while CryoSat-2 was a mosaic.

4.7 Conclusions

The assimilated models that exists in the literature, and those that were implemented

in forecasting centres uses a constant drag formulation and lacks the details on de-

riving the parameters other than ice concentration, and ice thickness [24, 12, 4]. In

this work a variable drag formulation was used for the friction associated with an
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Figure 4.14: Freeboard from model M2, CryoSat-2 and the uncertainty of CryoSat-2

freeboard estimates for 2011.
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Figure 4.15: Freeboard from model M2, CryoSat-2 and the uncertainty of the

CryoSat-2 freeboard estimates for 2011.

effective sea ice surface roughness at the ice-atmosphere and ice-ocean interfaces and

to compute the ice to ocean heat transfer. The inclusion of the variable drag formu-

lation required assimilation updates on variables such as ice thickness, level ice tracer

and melt-ponds, which were discussed. The results of the updated model estimates

were then compared with satellite derived measurements to validate the assimilation

strategy. Moreover, the assimilated model results includes ice thickness, freeboard,

and sail height, keel depth (discussed in Chapter 5) in addition to ice concentration.

The non-assimilated model presented in Chapter 3 was extended by assimilating

with ice concentration observations from AMSR-E data, which showed improvements

in ice concentration, thickness, and freeboard estimates. The model-estimated pa-

rameters improved further by assimilating SST from AVHRR.

The modeled ice thickness demonstrated a good correspondence with the esti-

mates from SMOS-MIRAS, except during the period of maximum ice extent. The

model estimates of freeboard were compared with estimates from CryoSat-2, and the
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RMSE was found to range between 4.5 cm and 11 cm. The estimates of freeboard

from the model were within the uncertainty values of the CryoSat-2 (below 40 cm).

The deviation in the results of ice thickness during March have to be further explored

by tuning the parameters that contribute to the ice thickness in the non assimilated

model as well as the assimilation parameters. Also, the SMOS estimates were influ-

enced by the presence of snow and also during the melt seasons the uncertainties of

SMOS estimated ice thickness might increase in which case comparison with more

reliable data would be required.

The assimilation methodology can be further improved by tuning the parameters,

refining the error estimates derived from the observation data and combining data

from several sources.
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Chapter 5

Model Comparison with In-situ

Measurements

5.1 Overview

The model in Chapter 4 can be used to determine relations between ice parameters.

Here, the draft retrieved from ULS and the model results were used to determine

the coefficients that relate the keel depth and sail height. The CIS ice chart and

image/videos collected during a field campaign were used to determine the ice con-

centration, which was further used to compare with the model results.

5.2 Introduction

Along with the measurements derived from satellite data, the information on sea

ice concentration, thickness and draft can also be derived from from sources such

as submarines, ships or instruments like ULS located at various stations. The only
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drawback is that the measurements of ice concentration, thickness and draft from

the above-mentioned sources provide only localized values. Information such as field

estimates may be useful to tune the model parameters. The draft derived from

ULS was used to extract the level ice draft and keel depth, the estimates are then

compared with the model to determine the relationship between sail and keel. The

ice concentration retrieved from airborne reconnaissance data and CIS ice charts were

compared with the model estimated values.

5.3 Airborne and in situ data

The ice draft measurements from the ULS instrument which was located on the

Makkovik Bank (Figure 5.1) at 58 W and 54 N) [7] were used to analyze the keel

depth and the level ice draft in the region. The ULS data collected data at an interval

of approximately 5.5 seconds and were available from the beginning of January to end

of May during 2005, 2007 and 2009 [7].

The images and the videos obtained during Labrador Iceberg survey fieldwork by

Provincial Aerospace Ltd. were used to estimate the ice concentration. The objective

of the survey was to evaluate the capabilities of multi-frequency and multi-polarization

SAR for the detection of icebergs in sea ice [1]. The surveys were conducted on 2

March 2009, 5 March 2009, and 17 March 2009, and the area of the survey included

the Labrador shelf, north of Groswater Bay. Along with the SAR acquisitions from

RADARSAT-2 and TerraSAR-X an areal survey was also conducted. The videos and

images that were obtained from this areal survey had been used for the present study

to determine the ice concentration and further compare it with the model estimates.
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The photographs/videos were recorded using a Nikon D100 camera with a 28 to 200-

mm lens, and were valuable in showing the sea ice conditions in the vicinity. The

planned altitude for the survey was 600 m, which gives a maximum field of view of

300 m for the video. But to void turbulence and to fly below the clouds the altitude

were often adjusted and hence some of the recorded data suffered from flicker and

dropouts.

Figure 5.1: The location of ULS instrument.

The ice charts incorporate information from several sources such as NOAA AVHRR,

Geostationary Operational Environmental Satellite system (GOES), SSMI, QuikSCAT,

ENVISAT and particularly RADARSAT-2 [8]. Also, the field observation charts from

ships, helicopter and aircraft provide ground truths. The ice charts are very detailed

and have a higher spatial resolution than many other sources of ice information [8].

The ice concentration from the Canadian Ice Service ice chart was used for compari-
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son with the model estimated values of ice concentration. The representation of basic

data such as ice concentrations, stages of development (age) and form (floe size) of ice

are known as egg codes [8, 2]. The egg codes are easy to understand and maximum of

three ice types are described in the code. Figure 5.2 shows a sample CIS chart with

egg codes. The colour code for ice concentration range is also shown at the bottom

of the figure. Please refer to Canadian Ice Service publications on Interpreting ice

charts for more details on interpretation of egg codes [8, 2].

Figure 5.2: CIS ice chart.
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5.3.1 ULS data analysis

The erroneous data during the calibration of the instrument were not used for the

analysis. Data from ULS was then used to separate out the level ice draft and the

keel measurements. For this filtering, the histograms for each day were used, e.g.,

see Figure 5.3 for the histogram from the ULS data for 01 March 2009. The first

mode in the histogram corresponded to the level ice draft and the second mode of the

histogram corresponded to the keel measurement. The first mode of the histogram was

selected by finding a minimum between two peaks of the histogram. The separated

values from the histogram (first mode and second mode) were then averaged daily

for the comparison with the model. Figure 5.4 shows the hourly values of level ice

draft derived from ULS for 01 Mar 2009 along with the average for the day. Figure

5.5 shows the hourly keel values derived from the ULS for 01 Mar 2009 [6] along with

the average value for the day.

5.3.2 Video/Image analysis

The videos were converted to images and then used for computing ice concentration.

There were thousands of images derived from the videos and only clear images and

images with fewer shadows that were cast by icebergs, and pressure ridges were used

for the analysis. The video footage shows the location and date when the data were

derived. A sample image from the video is shown in Figure, 5.6.

Global Otsu’s method was used to segment the image [4]. The Otsu’s method

maximizes the between-class variance. The well-thresholded classes would be distinct

with respect to the intensity values of their pixels, and conversely, a threshold giving
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Figure 5.3: Histogram from ULS data for 01 March 2009.

Figure 5.4: Level ice draft extracted from the histogram for 01 March 2009. The red

line is the average value of the draft.
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Figure 5.5: Keel extracted from the histogram for 01 March 2009. The red line is the

average value of the keel.

the best separation between classes in terms of their intensity values would be the

optimum threshold. Suppose the image is to be divided into two classes, C1 and C2,

where C1 consists of all the pixels in the image with intensity values in the range

[0, k] and C2 consists of all the pixels in the image with intensity values in the range

[k + 1, L− 1] where there are L distinct intensity levels in the image. The optimum

threshold is the value k∗ is given by

σ2
B(k

∗) = max
0≤k≤L−1

σ2
B(k) (5.1)

where σ2
B(k) is given by

σ2
B(k) =

(mGP1(k)−m(k))2

P1(k)(1− P1(k))
(5.2)

where P1 is the probability of class C1, m is the average intensity up to level k, mG

is the average intensity of the entire image. Once k∗ is obtained, the input image
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f(x, y) the input image is segmented as

g(x, y) =











1 f(x, y) > k∗,

0 f(x, y) ≤ k∗,

(5.3)

and then the ice concentration is determined for the whole image as the ratio of the

number of white pixels with the total number of image pixels. See Figure 5.7 for the

thresholded image with an ice concentration of 0.7043. Several images are analyzed

and then averaged to derive the ice concentration. Since some images had icebergs or

shadows that resulted in reduced ice concentration, only images that had few shadows

were used.

Figure 5.6: The sample image from the video.

5.4 Results and validation

The ULS measurements were separated into level ice draft and keel measurements

as described in Section 5.3. The model values of level ice draft was computed using
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Figure 5.7: Thresholded image of the sample using Otsu’s method.

equation (4.4) [12]. The results are shown in Figure 5.8.

Though substantial deviations were observed at some temporal points, the tem-

poral averaged absolute error between model and ULS values were within 10 cm.

The discrepancy may be caused due to the fact that ULS provides measurements at

a particular location with a high resolution (within the footprint of several meters),

while the model is of a 10-km resolution and gives an averaged result close to the

location of the ULS.

The keel was computed using idealized sea ice floe comprising a system of two

ridges and a single melt pond [12]. The geometry of sails and keels were considered

to have triangular cross sections, which represent younger ridges [12]. The older sails

and keels have a Gaussian shape [12] which was neglected here, i.e., all the sails

and keels were considered to be younger ridged ice. The sail height is given by the

equation (5.4) and the relation between the sail height and keel depth is given by
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Figure 5.8: Level ice draft computed from the ULS measurement and the model

estimated values in cm for 2005, 2007 and 2009.
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equation (5.5).

Hs = 2
Vr
Ar

(αDkmk + βCms)

(φsmkDk + φkmsC2)
(5.4)

where Hs is the sail height, ms = 0.4 (21.8◦) and mk = 0.5 (26.5◦) are the slopes of

the sail and the keel, respectively, φs is the porosity of the sails, and φk = 0.7240

is the porosity of the keels. Dk = 5 is the ratio distance between the keels to the

distance between the sails. Vr is the volume of the ridged ice, Ar is the ridged ice

area fraction, α and β are the weight functions for the area of ridged ice, C is the

coefficient that relates sail to keel and

Hk = CHs (5.5)

gives the keel depth. The Makkovik Bank where the keel measurements were es-

timated from ULS has high variability of ice thickness, and the frequency of the

formation of keels is high due to the combined effect of the Labrador currents and

winds, and because rafted ice is common in this region. Here, the model and the

observation were used to estimate C.

A typical value for C estimated from field observation is 4.5 by [5] and 4.0 by [12]).

A study conducted in the Laptev-Sea by [3] showed that C varies between 3.4 and 9.

Another parametric study illustrated in [9] shows a different set of parametrizations

for the relationship between sail and keel of first year and multi-year ice. The studies

[9, 11] were presented from profiles of 184 ridges reported in 22 different studies.

An exponential relationship, Hk = aHs
b, was used to fit the data points, the values

of a and b depends on the ice type. Please refer to [9, 11] for more information
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about the parameters a and b. The model equation (5.5) and the observation were

used to estimate C. Data collected in 2005, 2007 and 2009 show that a value of C

between 3.00 and 4.50 gives a good estimate of keel measurement for January and

February, while a value between 7.00 and 8.00 gives a good estimate for keel during

March, April, and May. In Figure 5.9 the values C that relate the sail to keel for

January and February are 3 and C = 7.00 for March, April and May. These values

are derived under the assumptions in equation (5.4). The sensitivity of parameters

in equation (5.4) has to be further explored to determine the effect on the sail-keel

relationship, which may result in a different conclusion. Moreover, since a variable

drag coefficient has been used in the model, the parameters that control the drag

contribution from the ridges, floes and skin affect the bottom heat flux, which in turn

affects the thickness distribution.

The CIS ice charts show the presence of new(< 10cm), grey(10 − 15cm), grey-

white(15 − 30 cm), thin first year (30 − 70 cm), medium first year (70 − 120 cm)

ice in the region during January-February while the region is mostly composed of

thin, medium and thick first-year ice (> 120 cm) during March, April, and May. See

Figure 5.10 for the ice types from CIS ice chart for 09 January 2009 and 09 April 2009,

respectively. The change in the ice type may be the reason for the large values of the

keel depth estimated from the ULS. Increasing ice thickness is expected to strongly

affect the ridging process by impeding the progress of thin ice. A parameter estimation

along with the activation of ice age tracers would be required to tune the model and to

understand further about the formation of ridges and the sensitivity/optimization of

parameters that control ridge and keel formation. Only results from M2 are presented

to show the relationship from the assimilated model.
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Figure 5.9: The keel depth estimated from the ULS measurement and the model

estimated values in m for 2005, 2007 and 2009.
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Figure 5.10: CIS ice chart: ice types for 09 January 2009 and 09 April 2009.
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The video images on 02 March 2009 were analyzed and the results of ice concen-

tration estimates from images, model, ice chart and AMSR-E are presented in the

Table 5.1. Ice concentration estimates from images, model, and AMSR-E are also

represented in the histogram of Figure 5.11. The model values remain in the range

of 0 − 10% error in ice concentration when compared with the ice chart. The values

derived from the videos also remain in the range of 0 − 10% error in ice concentra-

tion when compared with the ice chart. AMSR-E has an error of 10% in the areas

where ice concentration is greater than 65% (see Section 3.6)[10]. At some stations,

the model values are within the range of error of the AMSR-E. The deviations of

model with AMSR-E at some stations may be due to the fact that AMSR-E is only

assimilated at the ice edge.

Table 5.1: Ice concentration from images, model, ice chart and AMSR-E.

Lat Lon No. images Image Model Ice chart AMSR-E

54.8N 57.6W 9 94.81 85.57 90+ 97

54.8N 57.5W 48 90.13 83.08 90+ 96.33

54.8N 57.4W 45 85.08 83.64 90+ 97.19

54.9N 57.4W 27 86.91 87.32 90+ 99.28

54.9N 57.5W 26 89.27 83.84 90+ 99.28

54.9N 57.6W 41 90.91 91.59 90+ 99.64

55.9N 58.5W 46 79.69 86.86 90+ 95.70

55.9N 58.4W 35 89.16 85.74 90+ 92.73

56.0N 58.4W 43 90.21 83.11 90+ 89.21
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Figure 5.11: Ice concentration from images, model, and AMSR-E.

5.5 Conclusions

As mentioned in Chapter 4, the existing literature on assimilation uses a constant

drag formulation and rarely discuss the effect of assimilating ice concentration on

other parameters other than ice thickness. In this work the assimilated model results

were compared with in situ measurements to derive and validate the parameters such

as level ice draft and keel depth.

The level ice draft and keel values derived from ULS were compared with the

modeled values. The coefficient that related the sail height and keel depth for the

Makkovick region lies in a range 3− 8 depending on the period of the year. The ULS

data and model results were in agreement, except for some differences which can be

explained by the difference in spatial resolution of the model and ULS data. The ice

concentration derived from video/image files obtained from fieldwork were compared
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with the model data. Except in the case when shadows cast by icebergs/pressure

ridges resulted in reduced ice concentration estimates, the results correlated well

with ice concentration from the CIS ice chart. The model values lie in an error range

of 0− 10% when compared with the values derived from the ice chart.

The assimilated model can be fine tuned to be used for deriving several of sea ice

parameters such as ice concentration, thickness, freeboard, sail height and keel depth.
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Chapter 6

Summary

6.1 Conclusions

The primary objective of this thesis was to retrieve sea ice parameters through the

fusion of high resolution model data and remote sensing data, see Section 1.4. The

objective has been successfully fulfilled, leading to the development of a data assimi-

lated sea ice model for the Baffin Bay and Labrador region. The model can also be

successfully configured to fit other regions of interest.

Chapter 1 discussed the relevance of sea ice information for various applications

such as climate studies, transportation, marine biology, and offshore constructions.

The Chapter also provided fundamental information on the physics of sea ice pro-

cesses, observation of sea ice and a brief description of general equations that were

used for modeling the process of sea ice ablation and growth.

Chapter 2 conducted a review of the remote sensing of sea ice, modeling of sea ice

processes, data assimilation methods, and grid generation methods that were used in
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the ice-ocean framework. Some of the methodologies and data resources discussed in

the review section were applied to achieve the aforementioned research objective.

Chapter 3 described the implementation of a standalone sea ice model. The sea

ice model, CICE that was used for the present study typically came with global grids

and cyclic/periodic boundary conditions. The work illustrated the implementation

of open boundaries for a regional configuration that includes Baffin Bay, Labrador

Sea, Hudson Bay and Gulf of St. Lawrence. Usually, the ocean forcing for the model

were derived from CCSM simulation results or coupled ocean models. For regional

implementations, the study suggested a density-based mixed layer criteria for mixed

layer slab ocean model. The standalone model results were validated using ice con-

centration data derived from AMSR-E/AMSR2 and OSI SAF. The RMSE of model

estimated ice concentration and SST with the observation were high during the melt

season mainly due to two factors, the assumption of zero mixed-layer heat flux and

no-ice initial conditions. The spatial distribution of modeled ice concentration error

were also discussed in the Chapter. The significance of work were the implementation

of open boundaries for the regional configuration and use of density-based mixed layer

criteria.

Chapter 4 described the implementation of combined optimal interpolation and

nudging method to assimilate ice concentration and SST into the model. The assimi-

lation of ice concentration required changes in ice volume and dependent tracers. The

retrieved parameters such as ice concentration, thickness, and freeboard were com-

pared with OSI SAF ice concentration products, ice thickness retrievals from SMOS,

and freeboard retrievals CryoSat-2. The retrieved ice concentration results were found

to improve with the assimilation. Other dependent parameters such as thickness, and
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freeboard were compared with the SMOS and CryoSat-2 data respectively. The thin

ice estimates from the model and SMOS data showed a good match between Octo-

ber and February. The deviations during March has to be further explored. The

freeboard estimates from the model compared well with the freeboard estimates from

CryoSat-2. The significance of the work included the direct assimilation of SST to

correct the values of SST estimated by the mixed layer slab ocean models. Usually,

SST is assimilated into the ocean model, and the information is passed on to the sea

ice model. The assimilation of ice concentration includes the update of ice volume as

well as dependent tracers.

Chapter 5 discussed a method to extract the level draft and keel measures from

ULS data. The chapter also discussed the analysis of video image files to estimate

ice concentration. The results derived from the ULS instrument combined with the

model estimates were used to derive the coefficient that relates the sail and keel. With

the present configuration of the model, the estimates was found to vary seasonally.

The ice concentration estimated from the video image files compared well with the

model except when there was the least shadow cast by the ridges or icebergs. The

significance of the work was the comparison of the updates of level draft and keel of

model estimates with the ULS measurements. The study has to be extended further

by a sensitivity analysis of the parameters that affect the variable drag coefficient.

The objectives of the research were achieved in Chapters 3, 4 and 5. The model has

been implemented on a regional scale with open boundaries and suggested density-

based mixed layer criteria to implement the model in standalone mode. The previous

literature on the model implementation uses the parameters that were derived from

ocean models passed on to the sea ice model. Moreover, the use of variable drag
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coefficients required adjustments to the tracers such as ice volume, melt ponds, level

ice that depend on sea ice concentration. The present study is a variation from the use

of constant drag coefficients in the previous literature on assimilation studies. Also,

direct assimilation of SST in the sea ice model seems to improve the model results.

The previous studies assimilate the SST in the ocean model and then passes the

information to the sea ice model. The model estimated ice concentration, thickness,

and freeboard shows improvement by assimilating ice concentration and SST. The

current estimates can be tuned to achieve better results by doing a sensitivity analysis

on the parameters related to computation of variable drag such as melt ponds and

ridges and also, by fine-tuning of the assimilation parameters.

6.2 Future work

There are many areas that can be the focus of future work.

Sea ice modeling

The modeling part still lacks the consideration of salinity variation and mixed-layer

heat flux. A methodology similar to that used by Petty et al. [5] or the methodology

suggested by Kraus and Turner [2] or Niiler and Kraus [4] can be used to improve the

mixed-layer model used to estimate the formation/ablation of sea ice. Another area

of interest would be a parametrization to include thermal conductivity of snow that

depends on the thermal conductivity of ice instead of considering a constant value

[3].

Data assimilation

The data assimilation methodology can be improved through combined information
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from multiple sensors and extending the optimal interpolation method used in the

present work [1], or by direct assimilation of brightness values in the model [6], or by

including a fusion of data from various sources and using the same methodology as

described in Chapter 4. Possibilities also lie in exploring methodologies to assimilate

thickness data [7] and dependent tracers.
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Appendix A

Appendix A

A.1 Dependent Tracers

Conservation equations for the dependent tracers such as level (non-deformed) ice

fraction alvlan , pond ice fraction apndalvlan, pond volume hpndapndalvlan, pond ice

volume hipndapndalvlan are simlar to equation 3.9 [1] and is given by

∂alvlan
∂t

+∇ · (alvlanu) = 0, (A.1)

All new ice growth is considered as level ice and hence the level ice area increases

with the new ice formation and decreases with the ridging process. The ridged ice

area fraction ardg = a − alvla and volume of ridged ice is vrdg = v − vlvlv. The level

ice area fraction and volume increase with new ice formation and decrease with the
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ridging process.

∂apndalvlai
∂t

+∇ · (apndalvlaiu) = 0,

∂hpndapndalvlan
∂t

+∇ · (hpndapndalvlanu) = 0,

∂hipndapndalvlan
∂t

+∇ · (hipndapndalvlanu) = 0,

(A.2)

the melt water produced on a given category is added to the existing melt pond

liquid volume by

∆V = ∆Vmelt +∆Vperm+∆Viso +∆Vipnd (A.3)

where the terms in ∆V is represented by

∆Vmelt = r(ρi∆hi + ρs∆hs + frain∆t))ai,

∆Vipnd = −∆hiapndalvlaiρi/ρ0,

∆Viso = (hi − d)apndalvlai,

∆Vperm = aidpmin(hpnd)pP∆t/µhi),

(A.4)

∆Vmelt includes changes associated with the accumulation of rain, snow, associated

with melt ∆Vperm includes pond drainage associated with permeability, ∆Viso includes

isostatic adjustment, ∆Vipnd inlcudes phase changes associated with pond ice, r is the

fraction of the total melt water available that is added to the ponds, ρi and ρs are

ice and snow densities, frain is the rainfall rate, alvlan is the level ice fraction, apnd is

a tracer on ice area, hi is the ice thickness, d is the draft, dp is a scaling factor, and

µ = 1.79× 103Kgm−1s−1dynamic viscosity.

When new ice is added to a grid cell, the grid cell total area of melt ponds is

preserved within each category gaining ice. Similarly, the total pond areas summed

over the categories is also conserved.

a′pnd(alvl +∆ai)(ai +∆ai) = apndalvlai, (A.5)
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Also, if ai area of pond is zero in a grid cells thickness category, then all tracers that

depend on it also becomes zero (similar is the case for the pond height tracer, hpnd)

[1]. The pond area is determined from

apnd =
1

δpai

√

∆V

∆t
(A.6)

A.2 Data Sources

North American Regional Reanalysis - http://www.esrl.noaa.gov/psd/

Climate Forecast System Reanalysis (CFSR) - https://climatedataguide.ucar.edu/climate-

data/climate-forecast-system-reanalysis-cfsr

Sea Surface Temperature (SST) - http://www.esrl.noaa.gov/psd/

World Ocean Atlas (WOA) - https://www.nodc.noaa.gov/OC5/WOD13/
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Appendix B

Appendix B

B.1 Significance of α

For significance of parameter α in the assimilation scheme in Section 4.5 see Figure
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Figure B.1: The weighting factorK in the assimilation of ice concentration for α = 2, 4

and 6
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B.2 Updates of dependent tracers

To include assimilation of ice concentration to depended tracers level ice and melt

ponds assumptions have been made as follows.

a′lvl = aa − ardg

v′lvl = va − vrdg

where aa is the anlysis of ice concentration, va is the analysis of ice volume. The

ridged ice from the model is preserved while assimilating ensuring that only the level

ice areas and volumes are updated. In case there is no level ice then ridged ice area

is assumed to be same as the ice area in the cell.

The meltpond areas are updated as

a′pnd = apndalvlai/(a
′
lvlaa) All new ice areas that is added during assimilation is con-

sidered to have no melt ponds.
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B.3 Ice thickness

This Appendix has figures of ice thickness form model M2, Observation and observa-

tion uncertainty.
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Figure B.2: The model ’M2’ estimated ice thickness, ice thickness estimated from

SMOS and SMOS uncertainty for 15 December, 15 January and 15 March 2011-2012.
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Figure B.3: The model ’M2’ estimated ice thickness, ice thickness estimated from

SMOS and SMOS uncertainty for 15 December, 15 January and 15 March 2012-2013.
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Figure B.4: The model ’M2’ estimated ice thickness, ice thickness estimated from

SMOS and SMOS uncertainty for 15 December, 15 January and 15 March 2013-2014.
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Figure B.5: The model ’M2’ estimated ice thickness, ice thickness estimated from

SMOS and SMOS uncertainty for 15 December, 15 January and 15 March 2014-2015.
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B.4 Ice freeboard error

This Appendix has figures of freeboard absolute error in the regions where ice con-

centration is less than 90%.
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Figure B.6: The absolute error between the model freeboard and CryoSat-2 for 2012.
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Figure B.7: The absolute error between the model freeboard and CryoSat-2 for 2013.
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Figure B.8: The absolute error between the model freeboard and CryoSat-2 for 2014.
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Figure B.9: The absolute error between the model freeboard and CryoSat-2 for 2015.
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B.5 Ice freeboard

Figures of ice freeboard form model M2, Observation and observation uncertainty.

193



Figure B.10: The Freeboard from model M2, CryoSat-2 and the uncertainty of the

observations for 2012.
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Figure B.11: The Freeboard from model M2, CryoSat-2 and the uncertainty of the

observations for 2013.
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Figure B.12: The Freeboard from model M2, CryoSat-2 and the uncertainty of the

observations for 2014.
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Figure B.13: The Freeboard from model M2, CryoSat-2 and the uncertainty of the

observations for 2015.
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