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Abstract

System identification is an interface that unites the mathematical world of control the-

ory and practical applications of control; as such its significance is omnipresent. Iden-

tification techniques involve differential equations where the coefficients are closely

related to the physical parameters in the system; continuous time models have greater

appeal than its discrete-time counterpart in understanding these interpretations. In

this study, we have considered sinusoidal input for identification purpose as it has

been discussed in the context of designing optimal input and also because it facili-

tates to excite processes with particular frequencies of interest. The primary objective

of this work focuses on process parameter estimation. At first, integer order model

is studied due to its simplicity, as order estimation is not necessary and thus the

structure of the model. In addition, a comparison between different identification

methods for better parameter estimates is performed on integer order model. Follow-

ing on, fractional order model is taken into consideration with known and unknown

order estimates. When solving for unknown model order, more emphasis is given on

the logarithmic derivative term. According to literature, the unknown model order

is estimated numerically whereas we provide an analytical expression of logarithmic

derivative of sinusoidal inputs considering deterministic approach. For integer order

model, although satisfactory results were achieved in terms of parameter estimates

for different approaches varying different input constraints, it was evident that the
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performances varied with data length, and more importantly with the frequency of

the input signal. The developed methodology for fractional order model identification

with known model order lead fairly accurate estimates of the process parameters and

when extended for unknown model order, exhibited highly satisfactory results as well

but with higher computational time. The main challenge of this study was optimiz-

ing process parameters based on convergence; this issue was studied in simulation and

corresponding numerical results for diverse noise levels met our expectations.
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Chapter 1

Introduction

1.1 Background

Use of system models in different aspects of control engineering is evident with the

rapid development of control technology impacting the entire control discipline. This

phenomenon has led many researchers to pursue new developments concerning system

identification and consequently highlighting the importance of system models in the

modern era of advanced control design.

In perspective of control engineering, system models are constructed in the form of

dynamical systems, which can be categorized into following different types:

• Mental models- intuitive notion that people have of a system behavior.

• Software models- descriptions that are contained in software programs.

• Graphical models- descriptions in the form of characteristics and graphs.

• Mathematical models- descriptions in the form of mathematical relations.
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Mathematical models of dynamical systems mostly concern dynamical relationships

between physical quantities. This implies that utilizing the basic laws of physics

(first principles) a model of the system can be developed. Complementary to this,

measurement data of the input and output variables of the system can contain all

relevant information of the underlying system dynamics as well. Therefore, rather

than building models from first principles, information from experimental data can

be an effective approach to build models of the actual and emerging behavior of

dynamic systems. This leads to an area which is known as system identification.

1.1.1 Modelling approaches

In general there are two ways of deriving models of physical processes:

• First principles modeling (or physical modeling) - Physical knowledge about

the process in the form of first principles relations is employed in order to ar-

rive at a model that will generally consist of a multitude of differential/partial

differential/algebraic relations between physical quantities. The first principles

relations concern e.g. the laws of conservation of energy and mass and Newton’s

law of movement.

• Data-driven modeling (more commonly system identification) - Measurements

of several variables of the process are taken and a model is constructed by

identifying a model structure and estimating a set of parameters which match

the dynamics captured in the data.

In many situations the first approach is followed, e.g. in chemical process, mechanical

systems etc. where sufficient knowledge regarding the basic principles governing the

system behavior is a prerequisite. Afterwards, numerical values of physical coeffi-

cients e.g. masses, stiffnesses, material properties, properties of chemical reactions or
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other (presumed) constants have to be substituted in the model relations. Yet the

developed model for the dynamical system might not practically perform as a perfect

set of deterministic equations because in real-life the system variables will be subject

to all kinds of disturbances influencing the input-output relation within a dynamical

system. These disturbances will limit the validity of deterministic models in any type

of application. Additionally, modeling large systems might often lead to high level of

complexity, ultimately making the model intractable for particular applications. Con-

sidering these facts, experimental data of the process can be used in order to arrive

at an appropriate model. The situation that a model is identified purely on the basis

of data and without taking particular account of the physical structure is referred to

as black box identification, contrary to the first principles approach, that is taken in

the case of pure physical modeling [Garnier et al., 2008].

In general, system identification is the art and science of using measurements obtained

from a system to characterize the system, typically in some mathematical format. The

term ‘System Identification’ was coined by Zadeh [Zadeh, 1956] to categorize model

estimation problem for dynamic systems in the control community. Later a more

formal definition was given by Ljung- The art and science of building mathematical

models of dynamic systems from observed input-output data [Ljung, 2010]; input being

the external signal that can be manipulated and output being the observable signal

that are of interest to an observer. Since dynamical systems are abundant in our

surroundings and system identification refers as an interface between the applications

of the real world and mathematical world of control theory, its undisputed importance

is highly recognized with a wide range of application area including but not limited

to mechanical engineering, biology, physiology, meteorology, economics, model-based

control design etc.
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1.1.2 Approaches for System Identification

System identification has been an active research area for more than four decades

with considerable development. Although this area has numerous facets and there

are many approaches and methods, the overall concept stemmed from two different

approaches:

• Discrete time identification, and

• Continuous time identification.

1.1.2.1 Discrete time identification

A model that directly expresses the relationship between the measurements of the

input and output signals at the time-instants is defined as a discrete-time model.

While in continuous time models, the relations between the variables are realized in

the form of continuous-time differential equations [Iwase et al., 2002]. With the ad-

vancements of computers, a lot of system identification methods benefiting from the

digital processing have been developed, and identification for discrete-time systems

has been studied to facilitate the analysis and data processing.

The popularity of discrete-time identification over continuous time identification de-

spite the fact that most real world physical processes are continuous in character is

because of the following conveniences [Bedoui et al., 2012]:

• Reduction of calculus into algebra,

• Ease in implementing dynamic strategies in real time,
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• Well established theory for deterministic and stochastic situations,

• Not necessary to estimate physical parameters in case of controller designing.

Gaining from these conveniences, the attention received by discrete time methods

was so enormous that the continuous time counterpart was completely overshadowed.

In fact people who were curious in continuous time treatment were tagged either

as ‘old timers of the analog age’ or ‘those having academic interest only’. However,

the situation has gradually changed ever since as the relevance of continuous time

treatment has been reinstated [Rao and Sinha, 1991]. Several indentation methods

for discrete time models have been documented in the literature based on cross-

correlation analysis [Zhang and Li, 2003, Zheng and Feng, 1990], error minimization

between process output and process predictive model output [Gao et al., 2003, Gao

et al., 2005], standard recursive least squares [Ferretti et al., 1991], variable regression

estimator [Elnaggar et al., 1990] etc.

1.1.2.2 Continuous time identification

In early 1950s continuous-time based contributions to system identification started

commencing. However, overshadowed by the ‘digital’ spirit instigated by parallel

developments in digital computers during the following two decades. Nevertheless,

again 1970s witnessed a resurgence of continuous-time concepts. Ever since the field

of continuous-time system identification is maturing [Unbehauen and Rao, 1998].

Much has been elaborated on the significance of continuous time models [Rao and

Unbehauen, 2006, Unbehauen and Rao, 1990, Rao and Sinha, 1991]. Some of the

main arguments in favor of CT models are documented as followed.

• Models of physical systems derived from physical principles are inherently con-

tinuous in time, because physical laws on which such modeling is based are in
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CT.

• CT models describe the physical phenomena of systems and processes more

accurately, as because the model parameters are strongly correlated with the

physical properties of the system.

• Redundant sensitivity issues with respect to model parameters do not arise,

unlike in the event of discretization.

• CT models are capable of preserving partial knowledge whereas in the process

of discretization of a CT model containing some known parameter, information

loss takes place.

• Discretization of CT models may give rise to unnatural non-minimum phase

character.

• Conventional DT methods are not in harmony with the CT spirit; in the limit

of reduced sampling period, they do not converge to the results corresponding

to the original CT model.

• CTmodels are very useful to deal with mildly non uniformly distributed sampled

data, dominant system modes, fast sampled data etc.

The various approaches reported in the literature for identification of continuous-time

systems may be classified into three broad categories:

• A: Approaches using discrete time signals to identify a DT model which is then

converted into native CT form.

• B: Approaches using CT signals to directly identify a native CT model.
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• C: Approaches using DT signals giving rise to a unconventional discrete time

(UDT) model which converges to its native CT with the help of an UDT operator

which is in harmony with its CT counterpart in the sense that the DT model

converges to the original CT version as the sampling interval approaches zero.

From the above mentioned approaches, indirect method which translates the identified

discrete time model to a continuous time one, introduces a numerically ill conditioned

problem or difficulty in transforming the zeros of the discrete time model thus leading

towards direct method which directly identifies a continuous time model from the

sampled input-output data has received much attention [Young, 1981, Unbehauen

and Rao, 1990, Sinha and Rao, 2012].

1.1.3 Continuous time identification using sinusoidal input

The quality of an estimated model is closely related with the choice of the input signal

for identification purpose [Ahmed, 2010b]. Although step and step like signals have

been extensively studied and used for process identification for their simplicity in na-

ture, periodic signals for continuous time model identification has caught attention of

researchers of recent times and thus became an active research area.

Step signals require sudden changes in variables between two operating points which

might not be feasible all the time and even though feasible might hamper the stability

of an process. To avoid the circumstance, periodic signals are considered to be a great

alternative as it provides much more grip towards the user.

The use of periodic signals as an input for identification of continuous time linear

dynamic models has many advantages. Among various types of periodic signal, sinu-

soid is considered to be the most flexible one due to its optimal properties [Schoukens
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et al., 1994] and plant friendliness [Rivera et al., 2009]. In addition, sinusoids help

excite a process at the frequencies of interest and its smooth nature makes it desirable

for making gradual changes in variables [Ahmed, 2014]. Applications of the sinusoid

as input for model identification have been reported in the literature [Braun et al.,

2002, Doraiswami et al., 1986, Godfrey, 1993, Kalafatis et al., 2005, Zaremba and

Pavlov, 2002].

1.1.4 Identification of Fractional Order models

Contrary to the traditional integer order models, fractional order systems possess

transfer functions of an arbitrary real order. Although a significant amount of lit-

erature can be found relating continuous time model identification for integer order

models, in recent trend, focus has been shifted towards fractional order models as

it has been observed that many real-world physical systems with long memory tran-

sients and infinite dimensional structures are better characterized by fractional order

differential equations rather than classical integer order models [Narang et al., 2011].

Some examples of fractal systems include mass diffusion, heat conduction, transmis-

sion lines, electrochemical processes, dielectric polarisation, viscoelastic materials etc.

The mathematical foundation behind fractional order model identification lies with

‘fractional calculus’. Before 20th century, the term ‘fractional calculus’ was only de-

veloped in theory and its application was confined only within theoretical limitations

in the field of mathematics [Oldham and Spanier, 1974, Podlubny, 1998]. Recently,

especially over the last two decades it has gained much popularity and became an in-

teresting topic of research in both scientific and industrial communities with growing

computational power and thus there have been a considerable development in the use

of fractional operators in various fields [Narang et al., 2011]. In general, fractional
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calculus is about differentiation and integration of non-integer orders which have been

well defined through Grünwald–Letnikov (GL) discrete form of the definition and the

Riemann–Liouville (RL) definition respectively [Oldham and Spanier, 1974]. Later

in 1990s, Lay [Le Lay, 1998], Lin [Lin, 2001] and Cois [Cois, 2002] developed system

identification technique in time domain implementing the concept of fractional differ-

entiation models following two basic approaches: equation error and output error.

System identification is treated as a standard tool for unknown systems. However,

identifying a system consisting fractional orders is more complicated compared to

integer order systems, as for integer-order systems, upon identifying the maximum

order of the system the parameters of the model can be optimized directly; conversely

for fractional-order systems, identification requires the choice of the number of frac-

tional operators, the fractional power of the operators, and finally the coefficients of

the operators. In order to better understand and to deal with the above mentioned

situation, Malti et al. has reviewed and detailed some of the progresses achieved

[Malti et al., 2008a]. Fractional-order Systems and Controls: Fundamentals and Ap-

plications [Monje et al., 2010] published by Springer under the series Advances in

Industrial Control has tremendously motivated us to carry our work forward.

1.2 Motivation

Theoretically a system can consist of infinite number of integer orders; in reality, pro-

cesses deal with first and second order systems and some in rare cases systems with

higher order. But what if a system is not of an integer order, which is rare but true

is some cases. These sort of systems are now known as fractional order models. This

interesting topic has motivated to carry this work identifying and developing theory
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behind integer order models and fractional order models with known and unknown

value of the fractional order. Although the case for integer order models are sort

of straight forward, a fractional order model can be very complex as because either

fractional orders can be an integral multiples of a commensurate order or they can be

very different from each other.

Moreover, previous studies have indicated to identify a system usually a step or step

like signal was used. But, recent studies have shown selecting a sinusoid as an input

signal for identification purpose gives a lot more advantages over step or step like

signals due to fact that it gives a lot more control over the input parameters of a

signal towards the user. Later in the study input signals with multiple sinusoids were

used and different factors of the study were discussed.

1.3 Objectives

This study started with evaluation of several developed identification techniques for

integer order models and later on the focus was to identify fractional order models.

To outline the work, the prime objectives are as follows:

• Review and compare performance of continuous time identification methods

using sinusoidal input.

• Developed fractional order model identification method using sinusoidal re-

sponse.

10



1.4 Structure of the thesis

In the following chapter, a detail literature can be found on the related works done

in this field of study. The literature briefly explains about ‘system identification’-

both discrete time and continuous time along with their advantages and disadvan-

tages. Furthermore, this section also points out the reason for using integral equation

approach rather than differential approach for estimation purpose. In addition, a

wide range of techniques for integer order and fractional order model identification is

documented. And finally a brief literature on optimization technique is discussed.

Chapter 3 presents a comparative study done on a continuous time integer order

model. In this chapter three major approaches for identification using sinusoidal sig-

nal are highlighted and a comparison is done among the three different techniques in

terms of different factors of the input signal and finally comments are made on overall

performance.

Chapter 4 can be sub-categorized in to two different parts. The first part is dedicated

on the theory behind the identification technique of a fractional order model for a

range of fractional orders with user defined interval. And afterwards, based on min-

imum error criterion parameters along with fractional order was selected. Whereas,

the second part is more automated and follows optimization technique based on pa-

rameter convergence for optimal parameter and fractional order estimation.

Chapter 5 presents conclusions and recommendations for future works.
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Chapter 2

Literature Review

2.1 System Identification approaches

Many of the system identification methods available nowadays date back to the basic

principles of least-squares, as introduced by Gauss [Gauss, 1963]. System identi-

fication has received a growing interest over the last decades. The basic methods

were developed in the sixties and seventies of the previous century starting from the

introduction of computers for performing the often heavy calculations [Åström and

Bohlin, 1966, Åström and Eykhoff, 1971]. A number of books written in the seventies

have recorded these developments [Eykhofl, 1974, Goodwin and Payne, 1977]. Being

based on the theories of stochastic processes and statistical analysis, system identi-

fication at that time was specifically seen as a problem of parameter estimation. It

was commonly assumed that one knew the correct model structure or order and the

character of the noise disturbance on the data. The main underlying assumption in

this approach appeared to be the assumption that the data generating system can be

modeled exactly by a linear, time-invariant, finite-order model, where ‘system’ refers

not only to the input-output transfer function but also to the particular description
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of how noise affects the measurement data. This assumption was reflected by the

situation that an exact parameter was supposed to be present in the parameter set.

In the 1980s, this basic assumption had been relaxed, giving more attention to the

more realistic situation that system identification generally comes down to ‘approx-

imate modeling’ rather than ‘exact modeling’. Issues of approximation have become

popular, a development which was pulled mainly by the Swedish school of researchers

in Lund, Linköping and Uppsala [Ljung and Caines, 1980, Ljung and Söderström,

1983, Wahlberg and Ljung, 1986]. A good overview of this development, which turned

‘parameter estimation’ into ‘system identification’ is documented in the works of Ljung

[Ljung, 1999] and Söderström and Stoica [Söderström and Stoica, 1989].

Interest in the issue of approximation made people move away from notions as con-

sistency, and made them pay attention to the type of approximation that becomes

involved. A related issue that comes into the picture is the issue of the intended

application or goal of the model. As identifying a system no longer means finding

an exact representation, but rather finding an approximation, then specific modeling

goals might dictate which type of approximations are desirable; or in other words,

which aspects of the system dynamics will be incorporated in the model, and which

aspects will be neglected.

Especially in the area of approximate modeling, the 1990s have shown an increasing

interest in identifying approximate models that are suitable for serving as a basis

for model-based control design. This means that, although one realizes that models

obtained are only approximate, one would like to obtain models that are accurate

descriptions of the system dynamics in those aspects of the system that are specifi-
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cally important from a control design point of view. Surveys of this development are

documented in literature [Gevers, 1993, Van Den Hof and Schrama, 1995, Albertos

and Piqueras, 2012, Hjalmarsson, 2005, Gevers, 2005].

Another area of interest which is extremely relevant from an applications point of

view, is the question concerning the accuracy of identified models. Experimental data

provides us with information concerning the dynamical system; besides the problem

of extracting an appropriate model from the measured data, it is important to be

able to make statements concerning the accuracy and reliability of this result. This

area, sometimes denoted as model uncertainty estimation has been a part of the clas-

sical analysis in the form of providing confidence intervals for parameter estimates,

however, restricted to the situation in which consistent models were estimated. In

an approximate setting of identification, this issue is still an important subject of

research, being closely related to the question of model validation and to the goal-

oriented design of experiments [Bombois et al., 2006].

Important challenges are faced while identifying models with nonlinear dynamics.

Whereas in many applications it suffices to consider linear models of a linearized

nonlinear plant, the challenge to express the nonlinear dynamical phenomena of the

plant into a nonlinear model often enhances the capabilities of the model, e.g. when

designing a control system that moves the plant through several operating regimes.

A detail contribution in this area can be found in the literature [Suykens and Vande-

walle, 2012, Nelles, 2013, Tóth, 2010].

Additionally the final question that has to be dealt with, is the question whether one

is satisfied with the model obtained. This latter step in the procedure is indicated by
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the term model validation. The question whether one is satisfied with the result will in

many situations be very much dependent on the question what the model is intended

for. A decisive answer to the validation question is then, that one is satisfied with

the model if in the intended model application one is satisfied with the result. If the

model is invalidated, then a redesign of the identification experiment or adjustment

of model set and identification criterion may lead to an improved model.

2.2 Identification using sinusoidal input

The process of selecting a suitable input signal for identification is termed as ‘input

design’. This amounts to determine a signal that excites the appropriate dynamics of

the system, subject to given constraints. Issues that are essential to construct a good

model in practice include the problem of input and experiment design.

For identification purpose, data should be informative meaning for open loop opera-

tion the input should be persistently exciting of a certain order consisting sufficient

distinct frequencies. For identification of linear systems, there are three basic facts

that govern the choices:

1. The asymptotic properties of the estimate depends only on the input spectrum,

not on the actual waveform of the input.

2. The input must have limited amplitude. The crest factor measures how well a

given signal utilizes such a given amplitude span.

3. Periodic inputs may have certain advantages.
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For linear system identification it is desirable to achieve a desired input spectrum for

a signal with a small crest factor as possible. Unfortunately these properties are some-

what in conflict with each other. Following are some commonly used input signals:

1. Filtered Gaussian White Noise: A simple choice is to let the signal be generated

as white Gaussian noise, filtered through a linear filter. With this we can achieve

virtually any signal spectrum by proper choice of filters. Since the signal is generated

off-line, non causal filters can be applied and transient effects can be eliminated, which

gives even better spectral behavior.

2. Random Binary Noise: A random binary signal is a random process which assumes

only two values. It can be generated in a number of different ways.

3. Pseudo Random Binary Noise: A Pseudo Random Binary signal is a periodic de-

terministic signal with white noise like properties.

4. Multi-Sines: A natural choice of input is to form it as a sum of sinusoids.

5. Chirp Signals or Swept Sinusoids: A chirp signal is a sinusoid with a frequency

that changes continuously over a certain band.

Three basic constituents of an identification procedure are as follows:

• Data- Data might be available from normal operating records, but it may as

well be possible to design tailor-made experiments to perform on the process in

order to obtain specific information, e.g. step responses, sinusoidal responses
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etc.

• Model set- It has to be specified beforehand within which set of models one is

going to evaluate the most accurate model for the process. In the model set sev-

eral basic properties of the models have to be fixed, e.g. linearity/non-linearity,

time in-variance, discrete/continuous-time, and other structural properties e.g.

the order of the models.

• Identification criterion- Given measurement data and a model set, one has to

specify in which way the optimal model from the model set is going to be

determined. In applying the criterion, the models in the model set are going to

be confronted with the measurement data.

In all three different aspects, a prior knowledge about the system to be identified can

play a vital role. Given specific choices for the three phenomena described above, it

is generally a matter of numerical optimization to construct an identified model.

Whereas most identification techniques are developed and analyzed in the time do-

main, the frequency domain also offers a multitude of methods and tools, and some-

times particular advantages. In the course of years, the difference between the two

domains has become less, and has been characterized as a difference between the used

excitation signals, being periodic or not. An account of this development can be found

in Schoukens et al. [Schoukens and Pintelon, 2014] and Pintelon et al. work [Pintelon

and Schoukens, 2012].

A description of a system should specify how the output signal(s) depend on the input

signal(s). In the following sections two representations considered in the frequency

and in the time domain are explained briefly. For a long time, frequency domain
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identification and time domain identification were considered as competing methods to

solve the same problem- building a model for a linear time-invariant dynamic system,

but in the end, the frequency domain approach got a negative reputation because the

transformation of the data from the time domain to the frequency domain is prone

to leakage errors, i.e. noiseless data in the time domain resulted in noisy frequency

response function (FRF) measurements [Schoukens et al., 2004].

2.2.1 Frequency domain identification

The majority of the measurements originating from real-world devices intrinsically

belong to the time domain, and consequently, system identification methods and the

theory developed around those deals with how to determine models from such time

domain measurements in general [Ljung, 1999, Söderström and Stoica, 1989]. How-

ever, in some application areas such as vibration analysis, it is common to subject the

raw data to the Fourier transform before fitting them to parametric models- a classical

technique well known as ’frequency analysis’. In frequency analysis the linear dynam-

ical system is excited by a pure sinusoidal signal. When the output has settled to a

stationary sinusoidal signal, the complex value of the transfer function at the specific

excitation frequency is determined by comparing the amplitudes and phases of the in-

put and output signals, respectively. Repeating the experiment for many frequencies

yields a non-parametric estimate of the system’s frequency response. In a second step,

a parameterized transfer function model can then be fitted to the transfer function

data using some complex curve fitting techniques [Levy, 1959]. During the last decade

the frequency domain techniques have received much attention in the system iden-

tification literature [Schoukens and Pintelon, 2014, Pintelon et al., 1994, Ljung, 1999].

The relation between the Fourier transforms of input and output signal(s) gives a
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frequency domain representation of a particular system. Frequency response of the

system and its models provide valuable insight. A distinctive feature of frequency

domain techniques is that the modeling of continuous-time systems from sampled data

can be done in a straightforward fashion if a certain class of band limited excitation

signals is employed. This is a great advantage in contrast to the rather involved

time domain techniques, which even in the noise-free case are only approximate if a

finite set of sampled data is available. A continuous-time system with a time delay

is also rather difficult to model in the time domain because it cannot be described

by a finite dimensional system of ordinary differential equations. However, in the

frequency domain, a nice finite-dimensional parametric description exists that lends

itself to identification using parametric methods. Following are some of the features

of frequency domain approach contrary time domain counterpart [McKelvey, 2002]:

• Partial modeling- Often it is sufficient to find a model that accurately describes

the true system in a limited frequency band. A low order model could thus be

sufficient rather than to fit a more complex model at all frequencies. In the

frequency domain, this can be simply accomplished by fitting a model only at

the desired frequencies, which corresponds to use an ideal bandpass filter on the

raw time domain data.

• Continuous time systems- If the experimental conditions are such that a multiple

sine input can be used, then modeling in the frequency domain is straightfor-

ward. In this case the Fourier transformed data is exactly described by the

continuous-time frequency function. Systems with time delay are also easy to

describe in the frequency domain.

• Merging data- If data is obtained by different experiments, all frequency data

can be merged into one data set. Continuous-time models that are valid for
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large frequency ranges can be estimated from data sets obtained from several

experiments, each using a different sampling frequency.

• Equivalency- Frequency domain identification can deal equivalently with time

continuous as with time discrete models.

2.2.2 Time domain identification

When the data considered during the identification process is taken the form of time

series the method is known to be a time-domain method. Such techniques have the

advantage that the signals are directly provided by current measurement devices; thus

spending less time and effort on data acquisition and processing.

One of the approaches to time-domain identification, the restoring force surface (RFS)

method, began with Masri et al. work [Masri and Caughey, 1979]; a parallel ap-

proach named force-state mapping was developed independently as well [Crawley and

O’Donnell, 1986, Crawley and Aubert, 1986]. The RFS method initiated the analysis

of nonlinear structural systems in terms of their internal RFSs. However, the initial

version depended on the rather arbitrary use of Chebyshev polynomials for the expan-

sion of the nonlinear restoring forces making numerical analysis rather complicated.

The approach also suffered from bias unless the identification was iterated, and this

made the process time-consuming.

A technique which was widely applied in Control Engineering at first, but was taken

up by structural dynamicists, was time-series analysis. The linear variant of the ap-

proach based on ARMA (Auto-Regressive Moving Average) models has long been used

for modeling and prediction purposes [Box et al., 2015]. There have been numerous
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attempts to generalize the model structure to the nonlinear case, arguably the most

versatile and enduring structure has been the NARMAX (Nonlinear ARMA with eX-

ogeneous input) model proposed by Leontaritis and Billings [Leonaritis and Billings,

1985]. Since the inception of the method, there have been many developments, no-

tably the introduction of an orthogonal estimation algorithm [KORENBERG et al.,

1988], which allows model parameters to be estimated sequentially so that the com-

plexity of the model can be controlled. Also noteworthy are the correlation tests

designed to assess model validity [Billings et al., 1989]. The NARMAX structure

is general enough to admit many forms of model including neural networks although

the estimation problem becomes nonlinear and the orthogonal estimator will not work

[Billings et al., 1992]. Several other time-domain techniques have been proposed in

the literature.

2.3 Continuous Time identification

The field of system identification has grown in size and diversity over several decades

and is now a matured field. Aström and Eykhoff in [Åström and Eykhoff, 1971]

presented a survey mainly focused on system identification in discrete-time. A first

significant development in the field of continuous-time system identification is a sur-

vey report by Young in [Young, 1981], which is a review on the progress of research

on parameter estimation of dynamic systems in continuous-time. Subsequently, rapid

developments were made in this field, which is described in surveys on continuous-time

system identification by Unbehauen and Rao [Unbehauen and Rao, 1990, Unbehauen

and Rao, 1998]. Furthermore, several books [Sinha and Rao, 2012, Ljung, 1999] and

publications [Ding et al., 2009, Garnier et al., 2003, Rao and Unbehauen, 2006, Wang
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and Zhang, 2001, Hwang and Lai, 2004] are found on the subject, which are widely

discussed.

Contrast to the present day, the control world of 1950s and 1960s was dominated

by CT models as most control system design was concerned with CT systems and

most control system implementations employed analogue techniques. Moreover, al-

most all CT identification methods were largely deterministic, in the sense that they

did not explicitly model the additive noise process nor attempt to quantify the sta-

tistical properties of parameter estimates. Nevertheless, it is fascinating to see that

some of the early papers introduced interesting concepts that foreshadowed later. For

instance Young [Young, 1964, Young, 1965] suggested the use of pre-filters to solve

the derivative measurement problem and later ’state-variable filter’ (SVF) approach

[Saha and Rao, 1983] was rediscovered under the title ’Poisson-moment functionals’

(PMF). Early state of the research used complete analogue implementation with both

pre-filters and estimation algorithm which afterwards developed to be a hybrid im-

plementation consisting analogue pre-filtering combined with digital identification al-

gorithm. Besides, non-linear system identification using a purely deterministic ’state-

dependent parameter’ approach was also attempted in the early days of identification

[Hoberock and Kohr, 1967, Lion, 1967].

Later in 1960s, it was realized that measurement noise could cause asymptotic bias

on the parameter estimates when linear least-squares method was used to estimate

the parameters in dynamic systems unless the additive measurement perturbation

was zero-mean white noise, which in reality was impractical as the corrupting noise

was correlated. As a solution to the problem, Young [Young, 1970] proposed an in-

strumental variable (IV) method to generate unbiased estimates of the parameters,
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which was highly appreciated, adopted by the many in the identification research

community followed up with new research opportunities. Although both the LS and

IV methods worked perfectly for non-delay systems or systems with a known input

delay, after a while issues raised regarding complex industrial plants comprising input

delays. Identification of such delays along with the parameters of the continuous mod-

els was definitely a challenging issue and was later resolved through gradient search

approach [Ferretti et al., 1991, Zhao and Sagara, 1991], dedicated three step proce-

dure [Kozłowski and Kowalczuk, 2009], on-line method based on Taylor’s expansion

of the delayed input [Kozłowski and Kowalczuk, 2015].

In 1970s, a dominant interest in DT identification and estimation did not let a stochas-

tic formulation of CT estimation to appear until 1980. Following the optimal pre-

filtering and recursive iterative estimation procedures for DT systems, Young and

Jakeman suggested an optimal ’hybrid’ refined instrumental variable solution to the

CT identification (RIVC) problem [YOUNG and JAKEMAN, 1980, Young, 1976].

However, it was implemented in a simplified form (SRIVC) involving a CT model of

the system and a discrete time ARMA model for the noise yielding statistically effi-

cient parameter estimates when the additive noise was white in nature. Responding

to the research on RIVC estimation, Huang et al. implemented an alternative hybrid

solution that allowed for colored noise and utilized gradient optimization algorithm

rather than iterative solution used in SRIVC algorithm [HUANG et al., 1987]. How-

ever the entire study was done considering a DT form and thus implementation of

the pre-filters and auxiliary model was not performed explicitly in continuous time.

Two other approaches that have attracted a lot of attention in the identification com-

munity in the 1990s are sub-spaced based methods and finite difference methods-
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replacing the differentiation operator with finite differences [Bastogne et al., 2001, Li

et al., 2003, Pham, 2000, Soderstrom et al., 1997]. More recently, stochastic model

identification with optimal CT estimation procedure has attracted researchers of this

field. Initiated by Wang and Gawthrop’s work on optimal CT identification [Wang

and Gawthrop, 2001], Young drew attention to the virtues of the existing SRIVC

estimation algorithm and demonstrated its superiority [Young, 2002], leading towards

implementing hybrid RIVC algorithm [Young et al., 2006] together with the develop-

ment of associated closed-loop identification algorithm [Gilson et al., 2006]; as a result

of which, optimal RIV algorithms for Box-Jenkins type stochastic transfer function

models of CT and DT systems are now available, providing a unified approach to the

identification and estimation of transfer function models [Young, 2008].

Lately, the problem of system identification from irregularly sampled time instants has

received much attention as it is commonly used in time-series analysis, radar imaging,

medical imaging, bio-medicine etc. [Adorf, 1995]. A main concern when dealing with

irregularly observed data is that computational complexity of conventional methods

increases substantially. Another inevitable fact is that missing data scenario will

result in loss of information eventually impacting parameter estimation process. Con-

sequently, CT modeling with direct estimation of parameters from measured data has

been proven to be a way forward in a number of applications although some of the

mathematics associated with CT stochastic dynamic system is more complicated than

the corresponding theory for DT systems.
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2.4 Fractional Order model identification

Studying various phenomenon of diverse physical processes and to achieve control

over them, mathematical framework representing systems is indispensable. And as

there are many processes that can be more accurately modeled using fractional differ-

integrals, fractional order systems has been adopted by the contemporary fields of

science in order to extend our notion of modeling the real world around us for better

understanding and perception [Das and Pan, 2011, chapter 2]. Literature [Torvik and

Bagley, 1984, Podlubny, 1994, Caponetto, 2010, Petras, 2011] says, with the ability

of expressing in a compact manner, real dynamical systems are better characterized

with fractional order differential equations. Therefore, in recent years, fractional cal-

culus has been applied in modeling and control of various kinds of physical systems,

and is well documented in control theory and application literature; whereas for past

300 years, fractional calculus did not had much clear physical and geometric inter-

pretations in general. A typical example of a non-integer (fractional) order system

is the voltage-current relation of a semi-infinite lossy transmission line [Wang, 1987]

or diffusion of the heat through a semi-infinite solid, where heat flow is equal to the

half-derivative of the temperature [Podlubny, 1998].

Based on the experimental data of a solid-core magnetic bearing (MB), a compar-

ison between fractional-order system identification with its equivalent integer-order

system identification reveals that the FO model is more effective describing the dy-

namics of the MB as well as the FO controller can significantly improve the transient

and steady- state performance of the MB system [Zhong and Li, 2014]. Although a

numerous number of references can be found dealing with the identifiability for both

structure and parameters of a model set regarding integer order systems, it was Nazar-

ian et al. work which first documented this phenomenon for fractional order models
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[Nazarian et al., 2010]. Their results revealed that the identifiability is lost for smaller

commensurate order (α) and observations suggested that determining a unique set of

parameters and reaching a unique structure (order combination) for fractional order

models would be difficult and often impossible; leading one to reconsider the identifi-

ability of parameters and use identifiability of the system instead.

2.4.1 Significance of fractional derivative

According to experimental observation and or analytic solution, both the time do-

main and frequency domain behaviors of some linear systems and processes do not fit

the standard laws, i.e., exponential evolution in time domain or integer-order slopes

in their frequency responses [Monje et al., 2010, Chapter 14]. Whereas in the time

domain, these complicated dynamics can be described by generalized hyperbolic func-

tions, but in order to fit the non-integer-order slopes in the frequency responses,

irrational-order transfer functions: transfer functions constructed as products of zeros

and poles of fractional power or ratios of polynomials in sα (α being non-integer), is

being introduced. Such progression has led fractional-order integration and differenti-

ation unlike integer-order derivatives and integrals to represent a rapidly growing field

both in theory and in applications to real world problems [Dalir and Bashour, 2010].

Some fundamental definitions of fractional order operators in both time and Laplace

domain, together with their dynamic properties, as well as analytical and numerical

solutions of the fractional-order ordinary differential equations is briefly documented

in Monje et al. book [Monje et al., 2010, chapter 2]. In addition, several other def-

initions on fractional derivatives and integrals including some elementary functions,

explicit formula of fractional derivative and integral together with some applications

of fractional calculus in science and engineering is elucidated in literature [Miller and
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Ross, 1993, Dalir and Bashour, 2010, Tavassoli et al., 2013].

Gutiérrez et al. review article [Gutiérrez et al., 2010], concisely explains several con-

cepts of fractional order calculus (FOC), with some of its applicability in system

identification, control, mechatronics etc., and furthermore reviews several approaches

on geometrical interpretation of FOC. Detailed literature on FOC can be found in

[Magin et al., 2011, Ortigueira, 2000a, Ortigueira, 2000b, Ortigueira, 2003]. Utilizing

Riemann-Liouville definition [Samko et al., 1993, Chapter 1] for fractional integra-

tion and differentiation, some approximation methods for fractional-order operators

both in continuous and discrete time models are briefly explained and later illustrated

and compared considering fractional integrator of order 0.5 by Vinagre et al. [Vina-

gre et al., 2000]. Integer order dynamic systems consisting of very high number of

parameters can be approximated in a fractional model yet using only few parame-

ters, due to its “long memory” characteristic; and therefore such usage of fractional

derivative is named as reduced-parameters modeling or model compression and has

started becoming attractive for analysis and design of large systems [Mansouri et al.,

2010]. Some application of fractional order models include but are not limited to

modeling of isotope separation columns [Dulf et al., 2012], bio-reactors [Ahmad and

Abdel-Jabbar, 2006], pressurized heavy water reactors [Das et al., 2011], liquid/liq-

uid interfaces [Spasic and Lazarevic, 2005], biological systems [Ionescu et al., 2011],

thermal systems [Narang et al., 2011], hydro-logic processes [Benson et al., 2013].

Especially in bio-engineering, many real systems are modeled or fitted by fractional

order systems [Magin, 2006].
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2.4.2 Fractional order controller

In the last two decades the possibility of using fractional order controller has been

considered [Oustaloup et al., 2000, Podlubny, 1999, Podlubny, 1998]. It is estab-

lished that fractional order controllers are more robust in nature compared to integer

ones [Chen, 2006], as they require less coefficients [Xue et al., 2006] and can capture

complex behaviors [Gutiérrez et al., 2010]. A detailed study on typical fractional

controllers can be found in literature [Xue and Chen, 2002, Chen, 2006, Chen et al.,

2009, Gutiérrez et al., 2010]. The idea of using fractional-order controllers for the

control of dynamic systems belongs to Oustaloup, who developed the “Commande

Robuste d’Ordre Non Entier" (CRONE) controller [Oustaloup et al., 1995]. Indeed,

Ouastaloup with the CRONE controller (Commande Robuste d’Ordre Non Entier

controller) and Podlubny with the PIλDµ controller [Podlubny, 1999], involving the

fractional-order integrator and the fractional-order differentiator, have demonstrated

the advantages of the fractional-controllers over the classical ones. However, before

the actual design of controllers for dynamical systems it is necessary to identify these

systems [Torvik and Bagley, 1984].

The stability analysis of fractional order linear systems using the technique of Root

Locus (RL) through performing a transformation of a FO system into its integer

order counterpart is proven to be simpler [Patil et al., 2014]. A novel auto-tuning

method for fractional order PI or PD controllers that yields a robust controller de-

spite the lack of an actual process model is presented in a work by Keyser et al. that

leads towards similar results when compared with the tuning of a fractional order

PI/PD controller based on classical approach (with knowledge of the process model)

[De Keyser et al., 2016]. Several design methods regarding parameter tuning of frac-

tional order controllers can be fond in literature [Vu and Lee, 2013, Yeroglu and Tan,
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2011, Martín et al., 2015]. A relatively new approach to control the linear fractional

order systems of arbitrary order by designing fractional order predictive functional

control (PFC) can be found in literature [Bigdeli, 2015]. Where, at first, the non-

minimal input–output fractional-order state space (NMSS) model of the system has

been derived. Afterwards, through defining a fractional order cost function over the

fractional non-minimal state vector, the fractional-order predictive functional con-

troller (PFC) has been designed for the NMSS model structure. Finally, a genetic

algorithm has been employed to obtain the optimal PFC control coefficients. Besides,

any change to an existing control loop may lead towards termination of an industrial

process and thereby potentially result in production losses. In order to deal with this

issue, integrating a fractional-order controller into a working loop in a non-intrusive

way through tapping system’s input and output signals has been the main focus of

Tepljakov et al. work [Tepljakov et al., 2016].

Implementing fractional order modeling to fractional-order controller has improved

the control of the real systems through achieving a better trade-off between dynamic

performance and robust stability, which in return has been beneficial to industrial pro-

cesses, automotive systems, mechatronics, robotic systems, unmanned vehicles etc. In

the recent literature, application of fractional order controller has been highlighted

on the position control electrodes of an industrial electric arc furnace which required

tuning of three parameters only and thus saving time for designing [Feliu-Batlle and

Rivas-Perez, 2016], profitable execution of CRONE methodology to control a high dy-

namic engine test bed coupled with a spark-ignition engine from system identification

based on frequency-domain approach [Lanusse et al., 2016], solving heat generation

for domestic and industrial purposes via solar furnace [Beschi et al., 2016], prevention

of blade icing and deicing [Sabatier et al., 2016], regarding vibration control in smart
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structures [Feliu-Talegon et al., 2016] and many more. In fact, these recent works

in the field of fractional calculus has made the researches realize that fractional cal-

culus is indeed a viable mathematical tool that will accomplish far more surpassing

boundaries of integral order calculus and is meant to be for the future. A survey on

theoretical developments of fractional calculus and applications of fractional modeling

is documented in [Sabatier et al., 2007].

2.4.3 Identification methods

Liu et al. article [Liu et al., 2013b] works both as a survey and review on several

identification methods for industrial processes that have been developed over the last

three decades or so. In this study, authors mainly adopted time delay systems of

first and second order integer models for classification and categorized them into two

separate groups: 1. Step identification and 2. Relay identification, considering both

zero and nonzero initial process conditions and or load disturbance. Additionally,

non-linear systems were also taken into account using multiple or modified step or re-

lay tests. Maiti et al. have considered unit step signal as test input signal to generate

output response of a fractional order process model with three unknown parameters in

their work [Maiti et al., 2008]. Later, using two very basic definitions: the Riemann-

Liouville and the Grunwald-Letnikov [Samko et al., 1993, Chapter 1,4], the input

signal of the system was rewritten in terms of coefficients and output response of the

system. As there were three parameters, to identify them, the expression relating the

input and output were integrated two more times consecutively to formulate three si-

multaneous equations, solving which ultimately led to estimate the parameters. The

first part of this study required the fractional powers of the system to be known to

demonstrate the accuracy of the identification technique and the second part dealt
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with identifying the fractional powers of the system using Particle Swarm optimiza-

tion (PSO) [Song and Gu, 2004] algorithm. However, this article lacks to deal with

systems that have time delayed response. Tavakoli-Kakhki and Tavazoei in their work

[Tavakoli-Kakhki and Tavazoei, 2014], considered an unstable fractional ordered first

order system with dead time (delayed time). Then a proportional controller was de-

veloped to stabilize the system in order to get the closed loop step response data which

were later used to estimate the order and parameters of the process. However, the lim-

itation of this article was that the proposed methodology could only work for systems

that are fractional counterparts of first order system. In Malek et al. work [Malek

et al., 2013], although authors mainly focused on designing a fractional order propor-

tional integral controller, one of the sections dealt with identification of the system for

which the controller was to be designed. Afterwards, for illustration purpose, authors

identified the parameters of a heat flow equipment using unconstrained nonlinear op-

timization. Limitation of such identification technique involved extensive calculation

and prior knowledge of the fractional order of the process. For identification purpose

of fractional order models, Malti et al. extended the existing algorithm of simplified

refined instrumental variable for continuous-time systems (srivc) to fractional models

(srivcf) [Malti et al., 2008b]. Again this work lacks to estimate the fractional order of

the system. Combining The well-known srivc algorithm with two other criterion- 1.

Young information criterion (YIC) and 2. R2
T criterion, Victor and Malti proposed a

new algorithm named order-optimization-srivcf (oosrivcf) to estimate coefficients and

fractional order of a transfer function [Victor and Malti, 2013]. Similar work can be

found in [Victor et al., 2013]. A unique yet efficient way to estimate parameters and

fractional order of a model was proposed in [Narang et al., 2011]. First, with an initial

assumption of system order and coefficients, applying least square and instrumental

variable technique, the parameters were estimated. Afterwards, the value of system
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order was updated based on iterative repetition until the difference between two con-

secutive iterations was less that 10−4. And hence the optimal values for parameters

and order were estimated. Identification of fractional order models considering step

response using integral equation approach was observed in [Ahmed, 2015]. Later sim-

ulations were carried out to demonstrate the efficacy of the proposed methodology.

Nevertheless, order estimation for such system were beyond the scope of this study.

Based on the process step response, a new model identification technique has been

documented for a class of delay fractional-order system [Nie et al., 2016]. Two identifi-

cation schemes, first by utilizing three exact points on the step response of the process

and secondly by employing optimal searching to adjust the fractional order, model

parameters were calculated for higher-order, under-damped/ over-damped, and min-

imum phase/non-minimum phase processes. Another approach on parameter identi-

fication of Fractional Order System (FOS) based on Haar wavelet operational matrix

is detailed in Li et al. work [Li et al., 2015b]. Where, taking use of the Haar wavelet

in order to represent input, output signals as well as operational matrix of fractional

order integration, a system was converted to a sum to algebraic equations. After-

wards, based on subspace technique and non linear programming, parameter matrices

and the commensurate orders were identified respectively solving the non linear op-

timization function for minimum error between the output of the real system and

the identified system. One of the challenges while following this technique lies in ex-

panding the Haar wavelet, where first N (power of 2) terms of Haar coefficients and

Haar/Heaviside function is a prerequisite. Selecting this N requires expert knowledge.

In summary, although this method is simple and easily implementable with expert

process knowledge, it may also require higher computational time for greater value of

N.
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In contrast to the conventional methods of analyzing fractional order systems by

means of determining fairly accurate results based on minimum error optimization

algorithm, a recent approach underpinning formalization of the Grünwald–Letnikov

(GL) definition in a higher-order logic (HOL) theorem proving system can be found

in [Zhao et al., 2016]. Some recent practices dealing with the issue of estimating pa-

rameters although involves State Variable Filter (SVF), Poisson moment function as

filter, nevertheless avoids selection procedure of acquiring optimal filters. To overcome

the scenario, Dai et al. focused on the exact study of using modulating functions for

modulation in identification for fractional order systems [Dai et al., 2016]; a concept,

first introduced in [Liu et al., 2013a], yet lacking real modulation itself. The outlining

factor of Dai et al. work was to estimate parameters without prior initial conditions

with the drawback of known fractional orders of the models.

Utilizing Levenberg-Marquardt method, another identification algorithm for fractional

systems in frequency domain compares two different methods, method I- excluding

steady state gain and method II- introducing steady state gain as a constant [Li et al.,

2015a]. However, a proper selection of the frequency range was necessary with a future

scope of work on better initializing the unknown estimates. To eliminate the estima-

tion bias, a combination between the least-squares estimator and state variable filter,

termed as bias correction method has been proposed by Yakoub et al. [Yakoub et al.,

2015]. Later applying a nonlinear optimization, both coefficients and commensurate-

order of a process were estimated. Nevertheless, being an indirect approach, where

parameter estimation of fractional process requires parameter estimation of fractional

closed-loop system, the main challenge lies with the computation time and complexity

with this procedure.
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Some recent development on fractional-order modeling and parameter identification

can be observed for lithium-ion batteries- derived from a modified Randles model

applying hybrid multi-swarm particle swarm optimization (HMPSO) [Wang et al.,

2015], thermal dynamics of buildings- formulated by fractional order auto-regressive

model with exogenous input using least-squares technique [Chen et al., 2016], Polymer

Electrolyte Membrane Fuel Cell systems [Taleb et al., 2017], ultracapacitor- using cu-

bic spline interpolation technique on linear parameter varying (LPV) model [Gabano

et al., 2015], controlled auto regressive moving average (CARMA) systems- based on

fractional least mean squares identification (FLMSI) algorithm [Raja and Chaudhary,

2015], diffusion process- modeled via lumped RC network [Sierociuk et al., 2015], ther-

mal conductivity and diffusivity with constrained fractional order- implementing Lev-

enberg–Marquardt algorithm, a combination of Gradient method and Gauss–Newton

method to better achieve stability and convergence [Gabano and Poinot, 2009], three-

dimensional random RC network- adopting flexible polyhedron algorithm [Galvão

et al., 2013].
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Chapter 3

Comparative Study on Continuous

Time Integer Order Model

Identification

The main objective of this study is to evaluate the performance of a set of recently

developed approaches for continuous-time identification. Three major approaches for

identification using sinusoidal response are considered (i) direct identification using the

integral equation approach (ii) by estimating the step response from the sinusoidal

response and (iii) by linear approximation of the sinusoidal input. The effect of

frequency of the input signal and that of the data length and the noise to signal ratio

are studied in simulation. A first order plus time delay model is considered in the case

study and the properties of the estimates of the gain, the time constant and the delay

are studied. Monte Carlo simulations are performed to estimate the bias and variance

of the estimated parameters. Using an average error criterion defined based on the

estimated bias and variance of the parameters, the performance of the methods are

compared. The performances of the three algorithms were found to be comparable at
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low to mid level frequencies of the input. However, at high frequencies of the input,

the performance of the piece-wise linear approximation method deteriorated.

3.1 Introduction

The integral equation approach [Diamessis, 1965] is a well-known technique for pa-

rameter estimation of continuous-time transfer function models. However, use of this

technique has so far been limited to step and step-like input signals [Hwang and Lai,

2004, Liu et al., 2007, Ahmed et al., 2007]. Ahmed [Ahmed, 2014] recently proposed

an integral equation approach for direct identification of the parameters and the delay

using the integral equation approach. The sinusoid has a distinct advantage over some

other signals due to its smooth nature which helps it to change variables gradually.

Besides, use of the sinusoid as input gives the opportunity to excite process at the

frequencies of interest and thus helps to obtain precise frequency response of the plant.

In recent times using sinusoidal input for system identification has become popular

[Kalafatis et al., 2005, Zaremba and Pavlov, 2002, Hwang et al., 2004]. At the same

time identification from step response has some distinct advantages [Ahmed et al.,

2007, Wang and Zhang, 2001, Wang et al., 2001]. To combine these two procedures,

Ahmed et al. [Ahmed et al., 2009] proposed a novel idea of transforming the sinusoidal

response to step response by passing it through a linear filter and then estimating the

process model parameters using the integral equation approach.

Any signal can be expressed as an amalgamation of linear approximated signals for

small sampling intervals. With this idea, a sinusoid was represented approximately

with piece wise linear signals and subsequently model parameters were extracted
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[Ahmed, 2010a] using the integral equation approach. This technique turned out to

be computationally less complex than estimating model parameters directly from the

sinusoidal or step response.

In this article, using the above mentioned three methods, the parameters for a FOPTD

model were estimated to evaluate the performance of these algorithms with varying

noise to signal ratio (NSR), input frequency and data length. The estimated model

parameters were compared using an average error criterion [S.Ahmed, 2006]. The

following section briefly describes the above mentioned methodologies.

3.2 Methodology

Let us consider a first order plus time delay (FOPTD) system stated by the Equation

3.1

G(s) = Y (s)
U(s) = b0

s+ a0
e−δs (3.1)

where, G(S) is the transfer function between the input, U(S) and the output Y (S);

[a0 b0 δ] are the model parameters. The concept is, using sinusoidal signal as an input

and introducing measurement noise we will generate noisy response, with which fol-

lowing the later mentioned three methods, the model parameters i.e. time constant,

gain and time delay of the system will be estimated; however the methods are appli-

cable to higher order models as well.
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3.2.1 The direct approach [Ahmed, 2014]

In the time domain, a sinusoidal input with amplitude α, frequency ω, and phase υ

is expressed as follows

u(t) = α sin(ωt+ υ) (3.2)

In the Laplace domain Equation 4.4 can be written as

U(s) = α
sin(υ)s+ ω cos(υ)

s2 + ω2 (3.3)

Considering µ = α sin(υ), λ = αω cos(υ) and β = ω2, the above Equation 4.5 can be

rewritten as following

U(s) = µs+ λ

s2 + β
(3.4)

Considering the initial transient state of the process output, y(0), is zero, Equation

3.1 can be expressed in the following equation error format as

[
s3 + βs

]
Y (s) + a0

[
s2 + β

]
Y (s) = [µs+ λ] b0e

−δs + E(s) (3.5)

Taking inverse Laplace transform of Equation 4.26, we end up with the time domain

equation as

[
y(t) + βy[2](t)

]
+ a0

[
y[1](t) + βy[3](t)

]
= b0µ[t− δ]

+ b0λ
[t− δ]2

2! + ξ(t)
(3.6)

where y[k](t) denotes the k-th order integral of y(t). To estimate parameters, Equation

3.6 is written in the following suitable form to use the least-squares solution technique.
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y(t)+βy[2](t) = −a0[y[1](t) + βy[3](t)] + b0λ
t2

2!

+ (b0µ− b0λδ)t+ (−b0µδ + b0λ
δ2

2! ) + ξ(t)
(3.7)

Or equivalently,

γ(t) = φT (t)θ + ξ(t) (3.8)

where, γ(t) = y(t) + βy[2](t)

φ(t) =



−(y[1](t) + βy[3](t))

λ t
2

2!

λt

λ


and θ =



a0

b0

b0(η − δ)

b0(−ηδ + δ2

2! )


Here, η=µ/λ. Equation 4.9 can be written for t = td+1, td+2...tN and then combined

together to give a set of estimation equations

Γ = Φθ + Ξ (3.9)

with

Γ(t) =



γ(td+1)

γ(td+2)

...

γ(tN)


and Φ =



φT (td+1)

φT (td+2)

...

φT (tN)


Here, d is the time delay in terms of number of sampling intervals (∆t), i.e. d =

δ/∆t and N is the total no of samples available. When the time delay is not an

integer multiple of sampling interval, d is chosen as the nearest integer in the positive

direction. Finally, the least-squares (LS) solution of the the estimation equations in
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Equation 4.10 gives us the estimated parameters of the system

θLS = (ΦTΦ)−1ΦTΓ (3.10)

Due to integration operation, the LS solution may be biased even for a white mea-

surement noise. To get an unbiased estimate, the instrumental variable (IV) method

is implemented [Young, 1970]. To generate the instruments, the LS solution of the

parameters are used to get the predicted output. The instrument vector, ψ(t) is then

derived by replacing the terms related to the output, y(t), in the regressor by their

predicted values, ŷ(t). Afterwards, ψ(t) is written for t = td+1, td+1...tN and combined

to get the instrument matrix Ψ. The instrumental variable estimate of the parameters

is given by

θIV = (ΨTΦ)−1ΨTΓ (3.11)

From Equation 3.11, the parameters a0 b0 can be directly obtained and delta can be

obtained as δ = η − [θ(3)/θ(2)]. Thus, we get the entire set of parameters [a0 b0 δ]

for the FOPTD model.

3.2.2 Identification by estimating step response [Ahmed et al.,

2009]

Equation 3.1 can be rewritten as

Y (s) = G(s)U(s) (3.12)
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If the input is a unit step, we have U(s) = 1
s
and the unit step response, Ystep(s) can

be obtained as

Ystep(s) = G(s)1
s

(3.13)

Comparing Equation 3.12 and 3.13, we get the relation to obtain the unit step response

from output data due to other type of input signal, i.e. in this case the sinusoidal

input.

Ystep(s) = Y (s)
sU(s) (3.14)

Here, Y (s) is the response due to the same sinusoidal input that was used in previous

section and for a deterministic input, U(s), which is a sinusoid in this case, can be

obtained mathematically. Now. considering the term 1
sU(s) as a filter, F (s), which

is known, from Equation 3.14, it can be said that the step response of the unknown

process can be obtained from its output due to a sinusoidal input and then by passing

it through the filter.

Using Equation 3.4, for a sinusoidal input with single frequency, the filter becomes

F (s) = 1
sU(s) = s2 + β

s(µs+ λ) (3.15)

Using Equation 3.14 and Equation 3.15, we get the relation to obtain the step response

from sinusoidal response as

Ystep(s) = s2 + β

s(µs+ λ)Ysine(s) (3.16)

As can be seen from Equation 3.16, for F (s) to be stable, the phase (υ) of the sinusoid

needs to be bounded by 06 υ 6 π/2. But the issue arises when the phase (υ) of the
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input sinusoid becomes zero, making the filter F (s) unstable with lesser number of

poles compared to zeros. Besides, with zero phase (υ), the filtering involves direct

differentiation of the output signal which is not desired for the noisy outputs. To solve

this problem, we used the linear filtering technique through defining an extra filter

F ′(s) in Laplace domain as 1
σs+1 with a known value of σ. In this article, for simplicity,

we have used the value of σ as 1 for parameter estimation purpose. Afterwards, the

filtered unit step response of the system, Y step(s), was obtained from Equation 3.16

as

Y step(s) = s2 + β

s3σµ+ s2(µ+ σλ) + sλ
Ysine(s) (3.17)

As in this particular case, we obtain the step response of the augmented system

G′(s) = G(s)F ′(s), the parameters have to be estimated from the augmented system

rather than the original process.

Considering the same FOPTD system used in the previous section, the relation be-

tween input and output of the augmented system in Laplace domain is as followed

Y step(s) = b0

s+ a0
e−δs

1
σs+ 1Ustep(s) + E(s) (3.18)

For unit step, using Ustep(s) = 1/s, Equation 3.18 becomes

[σs2 + s] Y step(s) =− a0[σs+ 1] Y step(s)

+ b0e
−δs 1

s
+ E(s)

(3.19)

Taking inverse Laplace of Equation 3.19, assuming zero initial condition, and after-
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wards following integral equation approach, we get,

σy(t) + y[1](t) =− a0[σy[1](t) + y[2](t)]

+ b0u
[2][t− δ] + ξ(t)

(3.20)

For a unit step input applied at time t = 0, the following integral holds for t > δ

u[k] = [t− δ]k

k! (3.21)

where, k is the order of the integral. Using Equation 3.20 and 3.21, rearrangement

leads to following least-square formulation

σy(t) + y[1](t) =− a0[σy[1](t) + y[2](t)]

+ b0
t2

2! − b0δt+ b0δ
2

2! + ξ(t)
(3.22)

Or equivalently,

γs(t) = φs
T (t)θs + ξ(t) (3.23)

where,

γs(t) = σy(t) + y[1](t)

φs(t) =



−(σy[1](t) + y[2](t))
t2

2!

−t

1


and θs =



a0

b0

b0δ

b0δ2

2!


Equation 3.23 can be written for t = td+1, td+2...tN and then combined together to

give a set of estimation equations to solve for the model parameters.
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Γs = Φsθs + Ξ (3.24)

3.2.3 Identification by piece-wise linear approximation [Ahmed,

2010a]

following integral equation approach, assuming zero initial condition the model equa-

tion can be written as

y(t) + a0y
[1](t) = b0u

[1](t− δ) + ξ(t) (3.25)

If an input is piece wise linear, it can be mathematically expressed as

u(t) =
N∑
i=0

ζi[t− Li]Ω(t− Li) (3.26)

Here, i corresponds to the sampling instant, ζi is the rate of change of slopes of the

input signal at the i-th sample point, which can be obtained from Equation 3.27 and

Li = ti−1.

ζi = εi − εi−1 (3.27)

where, εis are the slopes of the signals at the sampling instants, estimated through

backward approximation i.e.

εi = ui − ui−1

ti − ti−1
(3.28)

and Ω is the unit step signal defined as

Ω(t− Li) =


0 for (t− Li) < 0

1 for (t− Li) ≥ 0
(3.29)
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For any t = tk, where tk is the k-th sampling time, in Equation 3.26, for all the terms

with i > k, Ω(t− Li) = 0. So, for t = tk, we have

u(t) =
k∑
i=0

ζi[t− Li]Ω(t− Li) (3.30)

For such an input the delayed signal can be expressed as

u(t− δ) =
k∑
i=0

ζi[t− Li − δ]Ω(t− Li − δ) (3.31)

For simplicity in the presentation we will use the notation Ωi = Ω(t− Li − δ). Using

the notation, the integral of the delayed input signal can be expressed as

u[1](t− δ) =
k∑
i=0

ζi
[t− Li]2

2 Ωi

−
k∑
i=0

ζi[t− Li]δΩi +
k∑
i=0

ζi
δ2

2 Ωi

(3.32)

Using Equation 3.25 and 3.32, the estimation equation then becomes

y(t) =− a0y
[1](t) + b0

k∑
i=0

ζi
[t− Li]2

2 Ωi

− b0δ
k∑
i=0

ζi[t− Li]Ωi + b0δ
2

2

k∑
i=0

ζiΩi + ξ(t)
(3.33)

Or equivalently,

γp(t) = φp
T (t)θp + ξ(t) (3.34)

with
k∑
i=0

ζiΩi =
k∑
i=0

ζi as the
∑ does not have a t component, we denote γp(t) = y(t)
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φp(t) =



−y[1](t)
k∑
i=0

ζi
[t−Li]2

2 Ωi

−
k∑
i=0

ζi[t− Li]Ωi

k∑
i=0

ζiΩi


and θp =



a0

b0

b0δ

b0δ2

2



Equation 3.34 can be written for t = td+1, td+2...tN and then combined together to

give a set of estimation equations to solve for the model parameters.

Γp = Φpθp + Ξ (3.35)

3.3 Simulation study

For simulation purpose, we have considered the FOPTD model to be 1.25
20s+1e

−7s. Sim-

ulations were carried out with a fixed value of amplitude and phase of the sinusoid

which were in this case 20 and 0 rad respectively. In each case, the parameters were

obtained for 50 Monte-Carlo simulations (MCS), and then based on the obtained pa-

rameters, the methods were compared based on the average error criterion defined

as

Eavg = 1
Nθ

Nθ∑
i=1

(θ̄(i)2)− θ(i)2) + var(θ̂(i))
θ(i)2 (3.36)

where, θ(i) represents the true values of the i-th parameter, θ̄(i) is the mean of

the estimated values and θ̂(i) is the set of estimated values. Nθ is the number of

parameters.

3.3.1 Effect of NSR

To check the robustness of the algorithms in the presence of noise, the noise to signal

ratio was varied from 5% to 60% for a data length and frequency of 1500 and 0.05
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Figure 3.1: Estimated process parameters with different methodology for different
values of NSR

rad/s, respectively. The results are shown in Fig. 3.1. This gives us the idea that

with the increased NSR the parameter estimation deviates from the true value which

is expected and in terms of performance the step response method has a slightly better

estimation compared to the other two methods.

3.3.2 Effect of data length

Data length, which actually corresponds to sampling time plays an important role in

estimation of the parameters. It is obvious that with the increase in data length the

estimation results will improve. For demonstration purpose the data length was varied

from 500 to 1500 points and the obtained parameters are presented in Fig. 3.2. The

simulation results suggests that both the direct and step response techniques have

comparable performance which is slightly better than that of the piece-wise linear
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(a) Estimated process parameters using piece-wise linear approximation methodology

Figure 3.2: Estimated process parameters with different methodology for different
data length

approximation method.

3.3.3 Effect of frequency

The third input variable, frequency, plays a vital role is parameter estimation. The

FOPTD system considered in this simulation has cut-off frequency of 0.05 rad/s. For

simulation purpose, the parameters were obtained for a range of input frequencies

starting from 0.5 times to 1.5 time of system cut-off frequency. Defining the ratio

of the input signal frequency to the cut-off frequency as the frequency factor, Fig.

3.3 represents estimated parameters w.r.t different values of frequency factors. The

simulation results suggest that while the input sinusoid has a frequency upto process

cut-off frequency the parameters obtained with different techniques do not have that

much of a significant difference but as the input frequency tends to increase more,
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Figure 3.3: Estimated process parameters with different methodology for various
frequency factors

the piece-wise linear approximation has a better performance. But for very high

frequencies the piece-wise approximation procedure results in higher error. Fig. 3.4

represents the estimated average error for different conditions. Based on the average

error criterion, it can be said that both direct and step response methods have slightly

better estimation for a frequency factor less than 1.2.

3.4 Concluding remarks

There has been some new developments in the field of identification from sinusoidal

response. However, the users needs to know the applicability and performance of

different methods. A comparative study is carried out in this study to compare the

performances of three recently developed methods for identification using sinusoidal

response. The purpose of this study was to provide a guideline for the user with
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Figure 3.4: Comparison of different algorithms based on average error criterion chang-
ing one input variable at a time

regards to the choice of identification method when a sinusoid is used as input. The

comparable performance of the three methods indicate that the users have a wide

range of choices to use the sinusoids. However, the performance varies with data

length, and more importantly with the frequency of the input signal. Performance of

the algorithms in identification of higher order models and the effects of frequency as

well the phase will be studied in the future.
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Chapter 4

Fractional Order Model

Identification

This chapter presents methods for identification of process models with fractional

orders. The main highlighting factor of this study is the development of identification

techniques for fractional order models for both known and unknown fractional order

using multiple sinusoid as an input. The overall work done in this chapter can be

categorized mainly in three different parts. At the very first part, an identification

technique for known fractional order has been developed and verified in simulations.

Afterwards, the work has been extended considering unknown fractional order of

a system and identification technique based on minimum error criterion is proposed.

The efficacy of the proposed method is tested through Monte Carlo Simulation (MCS)

and effects of different input parameters have also been studied. Lastly, a more

rigorous approach based on Gauss-Newton optimization is developed for simultaneous

fractional order and parameter estimates of fractional order models. In all the cases,

performance of the developed methods were evaluated and effects of input parameters

were studied.
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4.1 Introduction

In the fields of dynamical systems and control theory, a fractional-order system is a

dynamical system that can be modeled by a fractional differential equation contain-

ing derivatives of non-integer order. Identification techniques of such systems have

gathered enough attention from the researchers working in the field of system identi-

fication. Although there is a vast number of work done to identify the integer order

models with high precision, very few literature can be found to identify fractional

order models. In fact, in identification methodology, step responses have always been

prioritized. However sinusoidal input has different advantages and those has moti-

vated us to carry on our work using sinusoidal signal as an input for identification

purpose and effort is made not only in identifying parameters but also to estimate the

fractional orders of the considered process model.

Recent studies show that fractional-order models can describe the system better as

compared to traditional integer order models [Monje et al., 2010]. An important

feature of fractional-order systems is that they exhibit hereditary properties and long

memory transients. This aspect is taken into account in modeling, namely with state-

space representation, parameter estimation, identification, controller design etc.

4.2 Methodology- Parameter estimation with known

fractional order of the model

4.2.1 Parameter estimation using sinusoidal response

To estimate parameters of fractional order models with known model order, two types

of generic model: Type-I and Type-II are considered and their corresponding identi-
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fication technique is developed in the following sections.

4.2.1.1 Type-I model

A generic Type-I model with time delay is represented by (4.1)

G(s) = Y (s)
U(s) = b

sα + a
e−δs (4.1)

Where s indicates the Laplace domain, G(s) is the transfer function between the input,

U(s), and the output Y(s); [a b] are the model parameters, δ is the time delay and α

is the model order. Considering the process output was initially at steady state, the

input-output relation can be expressed in the equation error format by (4.2)

sαY (s) + aY (s) = be−δsU(s) + E(s) (4.2)

Where E(s) is the error term arising due to measurement noise. Defining a term β =

ceil (α) + 2 i.e. β is the nearest integer of (α+2) in the positive direction. Integrating

(4.2) β times which is equivalent of multiplying both sides of the equation by s−β and

expressing the resulting equation in the form of an estimating equation in s-domain

gives (4.3)

sα−βY (s) = −as−βY (s) + bs−βe−δsU(s) + s−βE(s) (4.3)

If the input is a sinusoidal signal of amplitude V, frequency ω and phase ϑ, in time

domain it expressed as follows

u(t) = V sin(ωt+ ϑ) (4.4)
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In the Laplace domain equation (4.4) can be written as

U(s) = V
sin(ϑ)s+ ω cos(ϑ)

s2 + ω2 (4.5)

Considering λ = V sin(ϑ), µ = V ω cos(ϑ) and σ = ω2, the above equation (4.5) can

be rewritten as following

U(s) = λs+ µ

s2 + σ
(4.6)

For a sinusoidal input, the estimation equation (4.3) becomes

s2+α−βY (s) + σsα−βY (s) =− as2−βY (s)− aσs−βY (s) + bλs1−βe−δs

+ bµs−βe−δs + (s2−β + σs−β)E(s)
(4.7)

Taking inverse Laplace transform the following time domain equation can be obtained

which allows simultaneous estimation of model parameters along with the delay term.

I [β−2−α]y(t)+σI [β−α]y(t) = −aI [β−2]y(t)−aσI [β]y(t)+bλ[t−δ]+ bµ

2 [t−δ]2+ξ(t) (4.8)

Where for any signal x(t), I [α](t) is the α-th order integral, where α can be real or

integer number and ξ(t)= L−1 {(s2−β + σs−β)E(s)}, L being the Laplace operator.

Equation (4.8) is valid for any bounded input signal u(t). In the above equation, the

time delay term remains as an implicit parameter which cannot be directly estimated.

Also to estimate other parameters, the time delay should be known. In the least-

squares form equation (4.8) is written as

γ(t) = φT (t)θ + ξ(t) (4.9)
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where, γ(t) = I [β−2−α]y(t) + σI [β−α]y(t)

φ(t) =



−I [β−2]y(t)− σI [β]y(t)

µ t
2

2!

µt

µ


and θ =



a

b

b(η − δ)

b(−ηδ + δ2

2! )


Here, η=λ/µ. Equation (4.9) can be written for t = td+1, td+2...tN and then combined

together to give a set of estimation equations

Γ(t) = Φ(t)θ + Ξ(t) (4.10)

with

Γ(t) =



γ(td+1)

γ(td+2)

...

γ(tN)


and Φ(t) =



φT (td+1)

φT (td+2)

...

φT (tN)


Here, d is the time delay in terms of number of sampling intervals (∆t), i.e. d =

δ/∆t and N is the total no of samples available. When the time delay is not an

integer multiple of sampling interval, d is chosen as the nearest integer in the positive

direction. Finally, the least-squares (LS) solution of the the estimation equations

(4.10) gives us the estimated parameters of the system.

θLS = (ΦTΦ)−1ΦTΓ (4.11)
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4.2.1.2 Type-II model

A generic Type-II model with time delay is represented by (4.12)

G(s) = Y (s)
U(s) = b

s2α + a1sα + a
e−δs (4.12)

The above input-output relation can be expressed in the equation error format (4.13)

s2αY (s) + a1s
αY (s) + aY (s) = be−δsU(s) + E(s) (4.13)

Defining a term β = ceil (2α) + 2 i.e. β is the nearest integer of (2α+2) in the

positive direction. Considering input to be sinusoidal, integrating (4.13) β times

which is equivalent of multiplying both sides of the equation by s−β and expressing

the resulting equation in the form of an estimating equation in the s-domain gives

(4.14)

s2+2α−βY (s) + σs2α−βY (s) =− a1s
2+α−βY (s)− as2−βY (s)− a1σs

α−βY (s)− aσs−βY (s)

+ bλs1−βe−δs + bµs−βe−δs + (s2−β + σs−β)E(s)

(4.14)

Taking inverse Laplace transform the following time domain equation can be obtained

which allows simultaneous estimation of model parameters along with the delay term.

I [β−2−2α]y(t) + σI [β−2α]y(t) =− a1I
[β−2−α]y(t)− a1σI

[β−α]y(t)− aI [β−α]y(t)

− aσI [β]y(t) + bλ

2 [t− δ]2 + bµ

3! [t− δ]3 + ξ(t)
(4.15)

Where for any signal x(t), I [α](t) is the α-th order integral, where α can be real or

integer number and ξ(t)= L−1 {(s2−β + σs−β)E(s)}, L being the Laplace operator.

Equation (4.15) is valid for any bounded input signal u(t). In the above equation,
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the time delay term remains as an implicit parameter which can not be directly

estimated. Also to estimate other parameters, the time delay should be known. In

the least-squares form equation (4.15) is written as

γ(t) = φT (t)θ + ξ(t) (4.16)

where, γ(t) = I [β−2−2α]y(t) + σI [β−2α]y(t)

φ(t) =



−I [β−2−α]y(t)− σI [β−α]y(t)

−I [β−2]y(t)− σI [β]y(t)

µ t
3

3!

µ t
2

2!

µt

µ



and θ =



a1

a

b

b(η − δ)

b(−ηδ + δ2

2! )

b(η δ2

2 −
δ3

3! )


Here, η=λ/µ. Equation (4.16) can be written for t = td+1, td+2...tN and then combined

together to give a set of estimation equations

Γ(t) = Φ(t)θ + Ξ(t) (4.17)

with

Γ(t) =



γ(td+1)

γ(td+2)

...

γ(tN)


and Φ(t) =



φT (td+1)

φT (td+2)

...

φT (tN)


Here, d is the time delay in terms of number of sampling intervals (∆t), i.e. d =

δ/∆t and N is the total no of samples available. When the time delay is not an

integer multiple of sampling interval, d is chosen as the nearest integer in the positive
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direction. Finally, the least-squares (LS) solution of the the estimation equations

(4.17) gives us the estimated parameters of the system.

θLS = (ΦTΦ)−1ΦTΓ (4.18)

4.2.1.3 Extended Type-II model

Type-II model with time delay for the previous section is extended and represented

by (4.19)

G(s) = Y (s)
U(s) = b1s

α + b

s2α + a1sα + a
e−δs (4.19)

The above input-output relation can be expressed in the equation error format (4.20)

s2αY (s) + a1s
αY (s) + aY (s) = [b1s

α + b]e−δsU(s) + E(s) (4.20)

Defining a term β = ceil (2α) + 2 i.e. β is the nearest integer of (2α+2) in positive

direction. Considering input to be sinusoidal, integrating (4.20) β times which is

equivalent of multiplying both sides of the equation by s−β and expressing the resulting

equation in the form of an estimating equation in s-domain gives (4.21)

s2+2α−βY (s) + σs2α−βY (s) =− a1s
2+α−βY (s)− as2−βY (s)− a1σs

α−βY (s)

− aσs−βY (s) + b1λs
1+α−βe−δs + b1µs

α−βe−δs

+ bλs1−βe−δs + bµs−βe−δs + (s2−β + σs−β)E(s)

(4.21)
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Taking inverse Laplace transform the following time domain equation can be obtained

which allows simultaneous estimation of model parameters along with the delay term.

I [β−2−2α]y(t) + σI [β−2α]y(t) =− a1I
[β−2−α]y(t)− a1σI

[β−α]y(t)− aI [β−α]y(t)− aσI [β]y(t)

+ b1λ

(β − α− 2)! [t− δ]
[β−α−2] + b1µ

(β − α− 1)! [t− δ]
[β−α−1]

+ bλ

2! [t− δ]2 + bµ

3! [t− δ]3 + ξ(t)

(4.22)

Where for any signal x(t), I [α](t) is the α-th order integral, where α can be real or

integer number and ξ(t)= L−1 {(s2−β + σs−β)E(s)}, L being the Laplace operator.

Equation (4.22) is valid for any bounded input signal u(t). In the above equation, the

time delay term remains as an implicit parameter which can not be directly estimated.

Also to estimate other parameters, the time delay should be known. In least-square

form equation (4.22) is written as

γ(t) = φT (t)θ + ξ(t) (4.23)

where, γ(t) = I [β−2−2α]y(t) + σI [β−2α]y(t)

φ(t) =



−I [β−2−α]y(t)− σI [β−α]y(t)

−I [β−2]y(t)− σI [β]y(t)
λ

(β−α−2)! [t− δ]
[β−α−2] + µ

(β−α−1)! [t− δ]
[β−α−1]

µ t
3

3!

µ t
2

2!

µt

µ



and θ =



a1

a

b1

b

b(η − δ)

b(−ηδ + δ2

2! )

b(η δ2

2 −
δ3

3! )
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Here, η=λ/µ. Equation (4.23) can be written for t = td+1, td+2...tN and then combined

together to give a set of estimation equations

Γ(t) = Φ(t)θ + Ξ(t) (4.24)

with

Γ(t) =



γ(td+1)

γ(td+2)

...

γ(tN)


and Φ(t) =



φT (td+1)

φT (td+2)

...

φT (tN)


Here, d is the time delay in terms of number of sampling intervals (∆t), i.e. d =

δ/∆t and N is the total no of samples available. When the time delay is not an

integer multiple of sampling interval, d is chosen as the nearest integer in the positive

direction. Finally, the least-squares (LS) solution of the the estimation equations

(4.24) gives us the estimated parameters of the system.

θLS = (ΦTΦ)−1ΦTΓ (4.25)

4.2.2 Order estimation

While following the above methodology to estimate parameters of the linear time

invariant systems, it is clearly evident that we must have a prior knowledge of the

fractional order (α) of the system, which is quite impractical. For this reason, we need

to estimate the order along with the parameters of the process model. This seems

rather a paradox as without identifying the parameters of the system, the fractional

order can not be estimated properly. So, basically both the parameters and the order

estimation depends on each other. To solve this problem, we have applied a simple
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yet effective technique which will help us estimate the parameters along with the

order of the system. And to implement the technique, we need to start estimating

the parameters with an initial guess of the system order. Then, with that initially

selected system order and estimated parameters for that initial selection, the error is

calculated using following equation (4.26)

Error = Σ(y − ŷ)2 (4.26)

here, y represents noise-free sinusoidal response of the actual system and ŷ represents

sinusoidal response of a system using estimated parameters for the selected fractional

order.

Afterwards, this loop will continue for a particular range of system order with very

small interval value. This will led to a set of matrix consisting of parameters and error

corresponding to each value of fractional order within the range. From the generated

matrix, based on minimum error criterion, the parameters and the corresponding frac-

tional order is selected.

The following algorithm outlines the procedure for estimating order of fractional pro-

cess models for this study.

Algorithm:

Step I: Specify a range of fractional order with very small interval for which parameters

and errors to be calculated.

Step II: Estimate the parameters using the methodology stated in 4.2.1 and errors

using Equation (4.26), corresponding to each value of fractional orders for the entire

range of orders selected in Step I.

65



Step III: Select a particular set consisting of estimated parameters and corresponding

order based on minimum error criterion.

4.2.3 Simulation and Results

For this study, the fractional order models: Type-I and Type-II were considered to

be as 1.25
10s0.75+1e

−7s and 2
100s1.5+10s0.75+1e

−7s. Simulations were carried out with a fixed

value of amplitude and phase of the sinusoid which were in this case 100 and 0.2

rad respectively. In each case, the parameters were obtained for 50 Monte-Carlo

simulations (MCS), and for each MCS there was an inner loop to identify the system

order based on minimum error criteria. In order to interpret the simulated parameters

and the system order, they were graphically plotted and categorized into two different

vertical axes. Furthermore, for Type-II model, the two different vertical axes were

scaled differently, i.e one was scaled at a logarithmic base of 10 and another one was

on 2. Based on the obtained parameters, the methods were compared and analyzed

for a range of NSR, frequency factor and data length.

4.2.4 Simulation environment

For the general fractional order differentials and integrals of a function g(t), the

Grunwald-Letnikov (GL) definition (4.27) is commonly used see e.g. [Oldham and

Spanier, 1974].

t0D
ρ
t g(t) =

lim

η → 0

1
ηρ

| t−t0η |∑
j=0

(−1)j

 ρ

j

 g(t− jη) (4.27)

Here, t0 and t are the limits of the operator, η is the step size and ρ is the order

with ρ > 0 means a derivative operation and ρ < 0 means integral operation. Also |.|

means the integer part and
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 ρ

j

 = Γ(ρ+ 1)
Γ(j + 1)Γ(ρ− j + 1) (4.28)

with Γ(.) being the Euler’s Gamma function.

For numerical computation, a revised version of (4.27), presented in [Chen et al., 2009]

is used where

t0D
ρ
t g(t) =

lim

η → 0

1
ηρ

| t−t0η |∑
j=0

w
(ρ)
j g(t− jη) (4.29)

where w(ρ)
j can be evaluated recursively from

w
(ρ)
0 = 1 (4.30)

w
(ρ)
j =

(
1− ρ+ 1

j

)
w

(ρ)
j−1 j = 1, 2, · · · (4.31)

4.2.4.1 Effect of NSR

The noise to signal ratio was varied from 5% to 25% for a data length and frequency

of 10,000 and 0.628 rad/s respectively. The results are shown in Fig. 4.1. The results

clearly indicate that with the increased NSR the parameter estimation deviates from

the true value which is expected.

4.2.4.2 Effect of frequency

To analyze the effect of frequency we have plotted the estimated parameters over a

range of frequency factors. Frequency factor is defined as the ratio of the input signal

frequency to the cut-off frequency of the system. The cut-off frequency of the Type-I

and Type-II models that are being considered for this study are 0.028 rad/s and 0.0314

rad/s respectively. While performing the simulation to estimate the parameters for
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Figure 4.1: Estimated process parameters for different values of NSR
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both of the models, we initially considered to vary the frequency factor between 0.5

times to 2.5 times of the cut-off frequency for the individual systems. The simulations

revealed that although for the Type-I model our developed methodology worked as

expected but for Type-II model, the least squares solution was unable to generate

parameters of the system for frequency factors less than 2. This happened as because

the phi (φ) matrix were being singular and that lead to very poor set of estimations.

This simulation has led us to believe that the Type-II pole model has a distinctive

characteristic compared to the Type-I model over a range of frequency factors. Fig.

4.2 represents the estimated parameters for both of the systems. This simulation also

interprets that whereas for the Type-I model, the estimated parameters are better

near the system cut-off frequency which is in this case for the frequency factor of 1.25

or 1.5; but for Type-II model, higher frequency factor led to better estimation of the

parameters. For this study, we carried out the simulation for the Type-II model till

frequency factor of 10 and other input variables such as the data length and NSR

were set to 10,000 and 10% respectively for both of the systems.

4.2.4.3 Effect of number of samples

For this study, we have varied the number of samples from 5,000 to 15,000 for both

of the systems and performed the simulation to estimate the parameters. Fig. 4.3

represents the estimated parameters from this simulation where for Type-I model, the

frequency and the NSR of the input variable were 0.028 rad/s and 15% respectively

and for the Type-II model the simulation was run for the frequency of 0.314 rad/s and

NSR of 20%. Also, Fig. 4.3 clearly explains that with more samples the estimation

is more accurate.
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70



 

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

4

5

6

7

8

9

10

11

12

13

4000 6000 8000 10000 12000 14000 16000

Sys
tem

 Or
der

, G
ain

Tim
e C

on
sta

nt,
 Tim

e D
ela

y

Data Length

Time Constant
Time Delay
System Order
Gain

(a) Estimated process parameters for Type-I model for a range of data length

 

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

1

2

4

8

16

32

64

128

3000 5000 7000 9000 11000 13000 15000

Ga
in,

 Sy
ste

m 
Or

de
r

Tim
e C

on
sta

nt_
2, T

im
e C

on
sta

nt_
1, T

im
e D

ela
y

Data Length

Time Constant_2
Time Constant_1
Time Delay
System Order
Gain

(b) Estimated process parameters for Type-II model for a range of data length

Figure 4.3: Estimated process parameters over a range of data length
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4.2.4.4 Comparison based on average error criterion

Finally, based on the obtained parameters, both of the models- Type-I and Type-II

were compared based on the average error criterion defined as

Eavg = 1
Nθ

Nθ∑
i=1

(θ̄(i)− θ(i)2) + var(θ̂(i))
θ(i)2 (4.32)

where, θ(i) represents the true values of the i-th parameter, θ̄(i) is the mean of the es-

timated values and θ̂(i) is the set of estimated values. Nθ is the number of parameters.

Fig. 4.4 represents the comparison between fractional order models w.r.t average error

over a range of values for different conditions, i.e NSR, data length and frequency

factor.

4.3 Methodology- Simultaneous parameter and frac-

tional order estimation

This section of our study deals with simultaneous estimation of the fractional order

of the model together with its parameters. Although, in the previous section of this

chapter we have discussed how to estimate the fractional order of a model alongside

with its parameters, the study was more dependent on prior process knowledge due

to the fact that the accuracy of the simulation results were dependent on the range

of factional order that was selected for the simulation to run. Another key factor

that played an important role for better estimation was the interval between two con-

secutive fractional orders for a particularly selected range. All these factors played

a crucial role for the better accuracy on estimating the parameters as well as the

time required for running the entire simulation because the entire process was tedious
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and time consuming. Therefore, we have approached towards a more developed and

automated method which have allowed us to reduce the dependency on prior process

knowledge ans has also saved us ample amount of time in terms of running MCS

to generate the results. This advanced technique is based on optimization and con-

vergence theory. In other words, it is fair to say that the following approach closely

relates to optimization solving for fractional ordered models which in return converges

the fractional order and the parameters of a fractional model towards its true values.

A vast number of literature can be found related to optimization and convergence.

However, only a few have dealt with continuous time identification especially with

fractional order models. Among the very few, the work done in Narang et al. and

Victor et al. article [Narang et al., 2011, Victor et al., 2013] has a close resemblance

with our method and has basically served as a backbone to our proposed frame of

work. In addition, the other core part of our optimization procedure is immensely

inspired and adopted from Hines’s article, where a definition is made for logarithm of

an operator along with the study of the logarithm of the derivative [Hines, 1955].

In order to begin with an optimization, this approach also requires some initial guess

of parameters like most of the other optimization techniques which will later lead

to optimal values of the parameters as well as the fractional order of the model.

To reduce the complexity and dependency on prior process knowledge for making

initial guess for a particular model, we have first considered a simple first order model

without any time delay for Type-I model and a simple second order model without

any time delay for Type-II model. Afterwards, using the least-squares technique, the

parameters i.e the gain and the time constant/s have been extracted which were later

used as the initial guess values for the purpose of future optimization and convergence
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of parameters.

4.4 Mathematical formulations

The optimization based identification method is outlined in this section. The method

follows the output error approach. A technique to evaluate the logarithmic derivative

required to evaluate the error gradient is also outlined.

4.4.1 Identification method

For a single input single output system, the relation between the input and the output

can be expressed using the following Laplace domain equation.

Y (s) = G(s,ν)e−δsU(s) +W (s) (4.33)

where, Y (s) and U(s) are the input and output, respectively, G(s,ν) is the model

transfer function, s being the Laplace variable with ν as the set of coefficients and

degrees of derivatives of different terms in the numerator and the denominator polyno-

mials and δ is the time delay. W (s) represents the noise in the output measurements.

The unknown parameter vector is denoted as θ = [ν δ].

A time domain expression for the input output relation is written as

y(t) = G(p,ν)u(t− δ) + w(t) (4.34)

The lower case letters correspond to variables in the time domain; p represents the

derivative operator. The objective of an identification algorithm is to estimate the pa-

rameter vector θ from a set of time domain measurements [u(tk) y(tk)], k = 1, 2, · · ·N
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and N is the number of data points available. The goal of the output error (OE)

approach is to estimate θ, by minimizing a norm of the errors between measured and

model output.

e(t,θ) = y(t)−G(p,ν)u(t− δ) (4.35)

Using the notation ek = e(tk,θ), the following objective function can be defined for

the OE algorithm.

f(θ) =
N∑
k=1

1
2e

2
k = 1

2 ‖ e ‖
2 (4.36)

A number of different approaches can be taken for solution of the optimization prob-

lem. We follow the Gauss-Newton approach to simultaneously estimate all the pa-

rameters. In this algorithm, estimate of the parameters at an iteration step i is given

by

θi = θi−1 −
[
H(θi−1)

]−1
∇f(θi−1) (4.37)

where ∇f(θ) is the error gradient given by

∇f(θ) = JTe (4.38)

with J being the Jacobian.

J =


∂e1
∂θ1

· · · ∂e1
∂θn

... . . . ...
∂eN
∂θ1

· · · ∂eN
∂θn

 (4.39)

In the Gauss-Newton approach for optimization, the Hessian, H is approximated by

H ≈ JTJ (4.40)
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The advantages and disadvantages of Newton’s method and the Gauss-Newton method

have been widely addressed in the literature[Chong and Zak, 2013, Fletcher, 2013].

The advantage of the Gauss-Newton method is that the second derivative matrix of

the error function is not required. The optimization step follows a standard procedure.

Using an initial guess of the parameters, the Jacobian and Hessian are evaluated and

the parameters are iteratively updated until convergence.

To evaluate the Jacobian, we need ∂ei
∂θ

. A model of the following form is considered

for illustration.

G(s) = be−δs

sα + a
(4.41)

Where, the parameter vector is θT = [a b δ α]. Each row of the Jacobian matrix

represents a sampling instant; the k-th row Jk can be expressed in the Laplace domain

as

Jk =
[

be−δs

(sα+a)2U(s) −1e−δs

sα+a U(s) se−δs

sα+aU(s) bsαe−δs

(sα+a)2 ln(s) U(s)
]

(4.42)

An equivalent time domain expression is given by

Jk =
[

b
(pα+a)2u(tk − δ) −1

pα+au(tk − δ) p
pα+au(tk − δ) bpα

(pα+a)2 ln(p) u(tk − δ)
]

(4.43)

For a model without time delay ∂ei
∂θ

is expressed as

Jk =
[

b
(pα+a)2u(tk) −1

pα+au(tk) bpα

(pα+a)2 ln(p) u(tk)
]

(4.44)

For a model, G(s) = b
sα2 +a1sα1 +a0

with the parameter vector θT = [a1 a0 b α2 α1], the

corresponding expression becomes
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Jk =
[

bpα1
(pα2 +a1pα1 +a0)2u(tk) b

(pα2 +a1pα1 +a0)2u(tk) −1
pα2 +a1pα1 +a0

u(tk)

bpα2
(pα2 +a1pα1 +a0)2 ln(p) u(tk) ba1pα1

(pα2 +a1pα1 +a0)2 ln(p) u(tk)
]

(4.45)

Here ln(s) and ln(p) are the logarithm of the derivative operator, expressed in the

Laplace and time domain, respectively. Evaluation of the Jacobian needs estimation

of ln(p) u(tk). [Victor et al., 2013] suggested numerical estimation of the Jacobian as

logarithm of the derivative operator is not trivial to simulate. We propose a method

to evaluate the logarithmic derivative of the input signal.

4.4.2 Evaluation of the logarithmic derivative

The input is assumed to be deterministic. For many cases, for example, for sinusoids,

the analytical expression of the input is known. A sinusoidal input can be expressed

as

u(t) = sin(ωt) (4.46)

[Hines, 1955] derived the logarithmic derivative L∂ = ln ∂t of sinusoid as

L∂ sin t = nπ

2 cos t n = 1, 2, 3, · · · (4.47)

Following [Hines, 1955] we derive the logarithmic derivative of a single frequency

sinusoid as

L∂ sin(ωt) = nπ

2 cos(ωt) + ln(ω) sin(ωt) (4.48)
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For a sinusoid with a phase angle µ, the corresponding expression becomes

L∂ sin(ωt+ µ) = cosµ
[
nπ

2 cos(ωt) + ln(ω) sin(ωt)
]

+ sinµ
[
−nπ2 sin(ωt) + ln(ω) cos(ωt)

]
(4.49)

A multi-frequency sinusoid can be expressed as

u(t) =
m∑
i=1

sin(ωit) (4.50)

where, m is the number of frequencies in the signal. Considering that the operator

and the summation commute, we find the L∂ of a multi-frequency sinusoid.

L∂
m∑
i=1

sin(ωit) = nπ

2

m∑
i=1

cos(ωit) +
m∑
i=1

ln(ωi) sin(ωit) (4.51)

4.5 Implementation issues

4.5.1 Initialization

A major issue with an optimization algorithm is initialization of parameters. In the

proposed methodology, initialization regarding model orders, coefficients as well as

that of the time delay is required. We propose to initiate the optimization algorithm

by estimating an integer order model. For models of the form (4.41), a first (integer)

order process is assumed to estimate the coefficients. The estimated coefficients along

with the integer order is used as the parameter set to initialize the estimation proce-

dure. If a fractional order model with a time delay is to be estimated, a small time

delay is assumed to initiate the algorithm.
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For estimation of the initial model coefficients assuming an integer order, the integral

equation approach is used. In this procedure a differential equation representing the

input-output relation of the form (4.52) is considered.

y(t) = β

p+ µ
u(t) + ε1(t) (4.52)

The relation can be presented in the equation error form as

dy(t)
dt

+ µy(t) = βu(t) + ε2(t) (4.53)

The equation is then integrated to get

y(t) + µy[1](t) = βu[1](t) + ε(t) (4.54)

where, for any variable, y(t),

y[1](t) =
∫ t

0
y(t)dt (4.55)

The estimation equation (4.55) can be reformulated to get in a least-squares for

y(t) =
[
−y[1](t) u[1](t)

]  µ

β

+ ε(t) (4.56)

Or equivalently

ψ(t) = φT (t)ϑ+ ε(t) (4.57)

where,

ψ(t) = y(t), φT (t) =
[
−y[1](t) u[1](t)

]
, ϑ =

 µ

β


Equation (4.57) can be written for t = t1, t2 · · · tN and combined to give the estimation
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equation

Ψ = Φϑ+ ε (4.58)

with

Ψ(t) =



ψ(t1)

ψ(t2)

. . .

ψ(tN)


, Φ(t) =



φT (t1)

φT (t2)

. . .

φT (tN)


(4.59)

The parameter vector ϑ is then obtained as the solution of the least-square equation

as

ϑ = (ΦTΦ)−1ΦTΨ (4.60)

The main focus of this section is to update all the parameters and the fractional

order with each iteration, whereas in previous literature it was more of a two step

procedure: first step was to update the value of the fractional order based on min-

imization of a particular objective function or gradient based algorithm leading to

complex computation of sensitivity function; and secondly update the parameters

of a fractional order model with respect to the updated value of the fractional order.

This study merges both the steps into one and with the help of operator mathematics,

computing sensitivity function was made easier as well.

4.5.2 Simulation and results

4.5.2.1 Identification of processes and parameter convergence for noise

free scenario

Different process models with unknown fractional order has been considered to verify

simulation results for noise free scenario. Table 4.1 represents estimated models com-

pared to true models and total number of iterations needed to reach the parameter
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convergence. The simulation was carried out using multiple sinusoidal input with ω=

[0.1 0.2] rad/s and 1000 data points with an interval of 0.15 seconds for all the models.

Figure 4.5 represents convergence of all the unknown parameters for process model
3

10s1.4+1e
−3s.

Table 4.1: Identification results of processes considering zero NSR

True models Estimated models Iteration
3

10s1.4+1e
−3s 3.0007

9.9775s1.3987+1e
−2.9634s 12

1.25
20s1.4+1e

−4s 1.2490
19.9864s1.3993+1e

−3.9376s 9
1

20s+1e
−7s 0.9995

20.0073s1.0002+1e
−6.9622s 13

1.25
10s0.75+1e

−7s 1.2468
10.01s0.7516+1e

−6.9261s 18
5

16s0.9+1e
−5s 4.994

16.0119s0.9007+1e
−4.9916 13

4.5.2.2 Identification of time delay models considering NSR

A list of Type-I models with time delay is considered in this section. Table 4.2 shows

the results. The parameters presented are the means of 100 MCS with the corre-

sponding standard deviation in the parentheses. NSR for each cases is 10% and 1600

data points with an interval of 0.05 second is used. The convergence rate is 100%

for each of the cases. Two frequency sinusoids of 0.1 and 0.2 rad/s are used in all cases.

Table 4.2: Identification results of processes considering NSR=10%

True models Estimated models Iteration
1.25

20s0.7+1e
−4s 1.2636(±0.1912)

20.3536(±1.2189)s0.7055(±0.0464)+1.0031(±0.0539)e
−3.919(±0.3412)s 22.82(±3.2547)

1.25
10s1.3+1e

−1s 1.2523(±0.0201)
9.9327(±0.7078)s1.2967(±0.0239)+1.005(±0.0715)e

−0.9904(±0.2056)s 13.47(±1.7721)
1

20s+1e
−7s 1.0022(±0.0337)

20.0597(±1.3608)s0.9992(±0.0328)+1.0047(±0.0703)e
−6.9716(±0.2874)s 15.63(±2.5767)
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4.5.2.3 Effect of NSR

Figure 4.6 clearly helps us understand the effect of NSR on parameter estimates of

fractional order models. It is seen that the effect of NSR is consistent with theories

i.e parameter estimates are better with lesser value of NSR. For simulation purpose

a two frequency sinusoid of 0.1 and 0.2 rad/s were used in all the cases for noise to

signal ratio of 2, 5, 10 , 15, 20 and 50. For each of the cases and for every NSR value,

100 MCS were run to generate the results. Besides for process models 1.25
20s1.4+1e

−4s,
1.25

10s0.75+1e
−7s and 3

10s1.4+1e
−3s total number of data points were considered as 1000 with

sampling interval of 0.15 second, 1500 with sampling interval of 0.1 second and 400

with sampling interval of 0.2 second consecutively. Table 4.3 is the tabular represen-

tation of Figure 4.6b.

Table 4.3: Effect of NSR on parameter estimates

Estimated values
Parameter NSR=2 NSR=5 NSR=10 NSR=15 NSR=20 NSR=50

α ≡ 0.75 0.7491
(0.0209)

0.7471
(0.0334)

0.7447
(0.0472)

0.7428
(0.0575)

0.7409
(0.0662)

0.7327
(0.1033)

K ≡ 1.25 1.2502
(0.0378)

1.2545
(0.0619)

1.2618
(0.0928)

1.2686
(0.1199)

1.2758
(0.1457)

1.3690
(0.7350)

τ ≡ 10 9.9728
(0.2309)

9.9592
(0.3589)

9.9593
(0.4992)

9.963
(0.6047)

9.9738
(0.6986)

10.2999
(2.8355)

δ ≡ 7 6.9511
(0.1278)

6.9637
(0.1993)

6.9803
(0.2840)

6.991
(0.3442)

7.0031
(0.3963)

7.0517
(0.6144)

4.5.2.4 Effect of data length and sampling interval

To study the effect of data length and sampling interval, data are generated with the

sinusoidal input with ω= [0.1 0.2] for process model 1.25
20s1.4+1e

−4s. Table 4.4 shows the

identification results. It is seen that the data length and sampling interval affect the
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Figure 4.6: Effect of NSR on parameter estimates for different models

results which is consistent with theories. All the parameter estimates are better with

higher number of data points and lower sampling interval. Figure 4.7 is the graphical

representation of Table 4.4.

Table 4.4: Effect of data length and sampling interval on parameter estimates

Estimated values

Parameter N=400
∆t = 0.375

N=800
∆t = 0.1875

N=1200
∆t = 0.125

N=2000
∆t = 0.08

N=3200
∆t = 0.05

α ≡ 1.4 1.3992
(0.0504)

1.4012
(0.0305)

1.4006
(0.024)

1.3977
(0.0189)

1.4012
(0.0122)

K ≡ 1.25 1.2613
(0.0726)

1.2513
(0.0424)

1.2486
(0.033)

1.2492
(0.0264)

1.2488
(0.0188)

τ ≡ 20 20.3349
(2.3969)

20.1885
(1.6344)

20.0143
(1.334)

19.91
(0.9846)

20.073
(0.6417)

δ ≡ 4 3.8303
(0.4331)

3.971
(0.3098)

3.9468
(0.2419)

4.0237
(0.1888)

3.9806
(0.1352)
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4.6 Concluding remarks

In the genre of system identification, significance of fractional modeling is undeniable

and consequently, in recent era, fractional order modeling has been the center of atten-

tion as it serves as the core whether it comes to implement fractional order controller

or to design a physical system itself. This study primarily focuses on identifying the

parameter estimates of a fractional order model based on integral equation approach

followed by instrumental variable method. The purpose of this study was to develop

an improved identification algorithm for fractional order model with a guideline on

the variables of the input sinusoid for better parameter estimation. During this study,

it was obvious that while the fractional order of a system was known, implementing

the identification technique was trouble-free but got complicated for unknown model

order. To deal with the issue, parameter estimates were generated for a pre-selected

range of fractional orders and based on minimum error criteria w.r.t actual output

87



of the model, a set of parameters and corresponding model order was selected. This

seemed to be a tedious solution in terms of computational time. As a better approach

to the problem, we incorporated Gauss-Newton optimization which lead to solve log-

arithmic derivative of input signal analytically as contrary to the numerical solutions

found in the recent literature. This iterative approach significantly improved compu-

tational time and when tested, convergence of parameters including fractional order

of the model were found 100% for noise free scenario and highly accurate when noise

was introduced in the system. Although in this study, we have used two types of

generic models: Type-I and Type-II, the methodology can be extended for higher or-

der models as well. Performance of the identification algorithm for non-commensurate

fractional order models and the role of input sinusoid’s phase will be the future scope

of this study.
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Chapter 5

Conclusion

In this study we highlighted one of the important segments of control engineering-

‘system identification’ along with its applicability in the field of control systems. The

main outcomes of this study are as follows:

1. Comparative study- A comparison on three different identification techniques,

(i)direct approach, (ii)converting sinusoid to step response and (iii)linear approxi-

mation is carried out on integer order continuous time models. All three methods

proved to be robust for different variations of the input parameters such as signal to

noise ratio, data length and input frequency. Later on changing only one variable

at a time the efficacy of the mentioned algorithms are checked based on an average

error criterion. This study provides user with general guidelines while selecting an

identification method considering sinusoidal input together with the choice of input

parameters outlining the more accurate set of model parameter estimates.

2. Fractional order model identification- the direct identification from sinusoidal re-

sponse method was adopted and expanded for fractional order continuous time models
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with different structures. Simulation results were generated to validate the identifica-

tion algorithm which proved to be robust for a wide range of input variables such as

signal to noise ration, number of samples and frequency factor. Besides, the simula-

tion results also followed the general trend that the estimated set of model parameters

is suppose to follow with the variation in input changes leading towards validation of

the applied technique.

3. Simultaneous parameter and order estimation- While developing the identification

algorithm for fractional order models, a parallel problem to solve fractional calcu-

lus especially fractional integral in our case was dealt. At first without making the

problem complex, a simple fractional order model with known fractional order was

considered for validation purpose of the algorithm. Afterwards, the fractional order

of the model was considered to be unknown and identification algorithm was run

several times for a predefined range of fractional orders of the model which required

some prior knowledge. These multiple simulations lead towards the best possible set

of parameter estimates based on the minimum error criterion. But as can be seen

this was a semi automated process requiring a vast amount of computation and time,

finally an optimization technique was introduced to make the overall identification

techniques automatic. It is also worth mentioning that the developed identification

method can only deal with fractional order models of commensurate model orders.

4. Optimization- The optimization technique that has been utilized in this study is

based on Gauss-Newton method. The reason behind selecting this method is because

this method has proven to perform better compared to other conventional methods

regarding convergence of the parameter estimates for a wider range of initialized guess

values of time delay. Using this optimization technique to update the fractional order
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and the parameters of the fractional model with every iteration lead to an unusual

dilemma i.e. calculation of logarithmic of a differential operator. At present, methods

regarding optimization involving logarithm of a derivative operator is handled numer-

ically such as by introducing central difference method for example. In our study

this difficulty is resolved applying operator mathematics which uses an analytical ex-

pression rather than numerical estimation ultimately leading towards convergence of

parameter estimates together with fractional order of the model.

5.1 Future recommendations

This study deals with some of the recently developed identification methods taking

sinusoid as an input and making a comparison based on input variables. However,

following are some of the issues that can be considered in future work:

1. Consideration of higher order integer models- For the simplicity this study was

based on first order plus time delay models without any phase difference. The work

can be generalized for higher order time delay models considering phase difference as

well as for multiple sinusoidal inputs.

2. Simulation time limitation for fractional order model identification- Simulation

time has been an issue for our study, as because it was simulated for a range of

fractional orders first and then again replicated over several Monte-Carlo simulations

which resulted in a very long processing time. In future, there might be some scope

to improve on the processing time and thus saving time before estimation.

3. Consideration of different types of periodic input- In future, the work can be ex-
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tended considering other periodic signals of similar characteristics of sinusoid.

4. Optimization efficiency- The operator mathematics that we have applied in this

study to deal with logarithm of a derivative operator is based on sinusoidal inputs

only which can be extended for different types of periodic and or aperiodic signals.

Besides, the optimization algorithm also requires initial values to stat the procedure.

In future, work can be done to improve the initial guess or to remove any dependency

on initial guess so that irrespective of the initial guess value of the parameters global

optimization can be achieved.

5. Input optimization- So far our work indicates robustness of the used and developed

identification procedures together with providing some insight knowledge of the input

parameters and their effects on identification. In future, a significant amount of work

can be done on selecting the best set of input parameters for a particular type of

system and identifications technique for more accurate parameter estimation.
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