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Abstract

Macromolecular crowding and confinement, the effects caused by high concentrations

of macromolecules in solution and/or in small compartments, are believed to influ-

ence diffusion processes, intermolecular interactions, protein folding, and intracellular

transport in living cells. Understanding mechanisms of transport in biological systems

(such as living cells) is complex and challenging. We construct cell mimetic environ-

ments in which the artificial macromolecules (e.g. polyethylene glycol, Ficoll70) are

compartmentalized not in cells but in concentrated environments and agarose gel

networks. In this work we have established a system to generate stable and monodis-

perse droplets of hierarchical confinement. The goal of this study is to measure

translational diffusion in crowded and confined geometries of varying concentrations

of different macromolecules on diffusion. We have combined the use of pulsed-field-

gradient nuclear magnetic resonance (PFG NMR) with small-angle neutron scattering

(SANS) in order to obtain new insights in simple model systems of macromolecular

crowding. The NMR and SANS techniques complement each other. Using PFG NMR

technique, we have monitored the dynamics of synthetic macromolecules with multi-

ple chemical components in complex environments. SANS, on the other hand, yields

structure (size) of macromolecules. Our experimental findings in cell mimetic envi-

ronments provide an important step towards gaining further insights into the effects

of macromolecular crowding on diffusion and conformation.
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Chapter 1

Introduction

Biological systems (such as living cells) are packed with macromolecules such as pro-

teins, nucleic acids, actin filaments, cytoskeletons, and organelles that occupy a sig-

nificant part (between 7% and 40%) of the total volume. Such a condition in living

cells has been termed as “macromolecular crowding” rather than “concentrated” be-

cause multiple kinds of macromolecules are present, each at a low concentration but

collectively at a high concentration.

Entropy is important, because a macromolecule is expected to exclude other

molecules from its neighborhood. When one increases the packing fraction of macro-

molecules in solution, the number of ways that one can place added molecules is

progressively restricted to the part of space from which they are not excluded. The

consequence of this phenomenon is to decrease the self-diffusion coefficient as well as

alter the conformational dynamics of proteins. This macromolecular crowding has

been viewed primarily as a non-specific excluded volume effect.

However, most proteins are charged and have hydrophobic and polar chemical

groups, so “chemical” interactions (charge, hydrophobicity, hydrogen bonding) are

likely also important in macromolecular crowding. Hence the macromolecules of in-
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terest interact with each other via specific and non-specific interactions which are

extremely varied.

Another thing that makes life difficult is that often there are many compet-

ing interactions, all of comparable strength. Moreover, biological environments are

not homogeneous. Biological systems have hierarchical structure and organization.

Understanding mechanisms of transport in such a complex system is challenging.

In this thesis, we consider toy models of crowding and confinement. Although toy

models, by definition, do not capture all the details and complexities of real systems,

they provide insights and understanding for the underlying physical phenomena. Since

toy models are simple, it is possible to describe them analytically, or using computer

simulations. One can then compare theoretical predictions with experiments. We

studied the effects of crowding and confinement on relatively simple systems with in-

creasing levels of complexity in order to capture, in a recursive manner, the details and

complexities of real biological systems. Our model system has two components: (1)

polymer (polyethylene glycol) that mimics protein, and (2) a nanoparticle (Ficoll70)

that mimics the macromolecular crowder.

The focus of this dissertation is to combine the use of pulsed-field-gradient nuclear

magnetic resonance (PFG NMR) with small-angle neutron scattering (SANS) in order

to obtain new insights in simple model systems of macromolecular crowding. The

NMR and SANS techniques complement each other. The magnetic resonance spin

echo yields direct dynamical information on the millisecond-to-second timescale via

pulsed-field-gradient NMR (PFG-NMR) diffusion measurements. This can be done

for many species in the same system simultaneously using their different 1H chemical

shifts.

PFG-NMR can typically be used in dilute suspensions to obtain hydrodynamic

radii from the measured diffusion coefficients using the Stokes-Einstein relation. The
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Stokes-Einstein relation is strictly valid at infinite dilution, and at finite concentra-

tions there are hydrodynamic corrections. However, in the presence of crowding, the

size (and shape) of the macromolecule can also be changed. SANS, on the other hand,

yields the size of macromolecules as well as the presence of structure on larger length-

scales. Tandem SANS/NMR experiments can be carried out on very similar (although

not identical, because deuteration is not required for 1H NMR) sample preparations

because the contrast in both cases comes from the nuclear spin. Hence, we indepen-

dently measure true hydrodynamic size via small-angle scattering measurements to

construct a complete picture of the macromolecular dynamics.

Understanding the physics of macromolecular crowding and confinement in a liv-

ing system involves some background concepts. Chapter 2 reviews cell organization

to identify a few general features that may apply to the model bio-mimetic environ-

ment. It includes an overview of polymer theories as well as building blocks of self-

assembly in polymers. We begin with general definitions for polymers and present

the physical parameters which are used to characterize the average size of each of

these building blocks. In this chapter we briefly outline colloidal interaction forces

and the theory relating to dynamics in colloidal suspensions. We also present rele-

vant studies of polymer dynamics in crowded solutions as well as structural properties

of polymer–nanoparticle mixtures. We conclude this chapter with a brief review of

macromolecular confinement and relevant studies on the diffusion in gel media.

We used PFG-NMR and SANS measurements, coupled with rheology, to inves-

tigate the dynamics and structral evolution of polymer in the presence crowders at

varying concentrations. Chapter 3 describes the experimental techniques. We discuss

the two main relaxation processes and the mechanism behind the relaxation processes

in NMR. We outline the main pulse sequences (pulsed-field-gradient spin echo (PFG-

SE) and pulsed-field-gradient stimulated echo (PFG-STE)) which are used to measure
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the molecular self-diffusion coefficient. We then present the fundamentals of scatter-

ing. Discussed next are analysis methods based on Debye theory and the Guinier

approximation, which are used to obtain the radius of gyration of the polymer chain.

Finally, we discuss basic concepts in rheology including flow curves, as well as the

theory of rheology.

Chapter 4 - 7 are the experimental results. In Chapter 4, we elucidate the na-

ture of a model system of macromolecular crowding composed of nonionic polymer

polyethylene glycol (PEG) and uncharged polysaccharide (Ficoll70) in aqueous so-

lution. We present the diffusion and structure measurements of the PEG-Ficoll70

system in an aqueous solution over a wide range of PEG concentration and Ficoll70

packing fraction. This work is published [1].

In Chapter 5, we explore the dynamics and the structure of a macromolecular sys-

tem composed of a nonionic polymer polyethylene glycol (PEG) and charged polysac-

charide (charged Ficoll70) in aqueous solution. We present complementary measure-

ments of PFG NMR, SANS, and rheology to explore the mobility, microviscosity, and

bulk viscosity of this system. This work is published [2].

In Chapter 6, we present our diffusion and rheology measurements for the un-

charged and charged Ficoll70 system. We investigate evidence for the presence of an

equilibrium phase composed of monomers and clusters in solutions. In all the work

done, we obtain weight-averaged diffusion coeffcients which must then be coupled with

a reasonable model (for example monomer and cluster states). We used experimental

data and a simple model to quantify the variation of the monomer and cluster fraction

over the entire range of Ficoll70 packing fraction. This work is published [3].

Water-in-oil emulsions, due to their high stability and high efficiency of encapsu-

lation of water phases, are good cell–like compartments. In Chapter 7, we examine

the formation of micro-scale confinement in the form of monodisperse and stable
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water-in-oil emulsion using a flow focusing microfluidic geometry and subsequent

characterisation using microscopy as well as NMR. We also present the generation

of agarose microbeads for the spatial localization of synthetic macromolecules in a

more compartmentalized environment. This chapter reports diffusion measurements

of synthetic macromolecules in both micro-scale and nano-scale confinement. This

work is published [4].

Finally, in Chapter 8, we conclude with a summary of the achievements and pos-

sible future avenues of research made possible by the work contained in this thesis.
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Chapter 2

Background and Theory

The cellular interior represents an exquisitely complex and crowded environment. It

imposes unique physiochemical constraints on its components governing their proper-

ties over multiple length-scales and time-scales. In addition, every cell type harbors

a specific biological form in composition [1] which adds another level of complexity.

The sum of these factors gives rise to the unique behaviors of the systems under

investigation. This chapter starts with a brief overview of the biological cell.

2.1 Cell and Cellular Organization

The cell is the basic working unit of an organism; in the case of prokaryotes and

single-celled eukaryotes, it is the entirety of the organism. In general, the cell is orga-

nized around its cytosol– a gel-like substance in which organelles, proteins, and other

cytoplasmic structures are suspended. Figure 2.1 shows a realistic representation of

the cytosol. This figure clearly shows that due to its high content of macromolecules,

there is actually not much free space in the cytosol. The cytosol is therefore crowded.

This crowdedness is not due to the large amounts of a single protein species, but due
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to the high total protein content. The cellular compartments such as the mitochon-

dria and nucleus are also filled with similarly crowded cytosols [2]. The nucleus is

a particularly interesting example because its cytosol can be further subdivided into

nucleolar and chromosome domains [3]. While crowding occurs inside the organelles

as well as the cytosol, the following discussion focuses on the cytosol for the sake of

simplicity.

Figure 2.1: A cross-sectional sketch of the cytoplasm of E. coli. Illustration by David
S. Goodsell, the Scripps Research Institute. The cytoplasmic region is shown in blue
and purple. The nucleotide region, which contains DNA wrapped around histones, is
shown in yellow [4].

The number and type of molecules in the cytosol depend on the cell type and

probably also on the cell cycle stage [5, 6]. The total concentration of protein in a

cell is estimated to be around 50-400 mg/ml, corresponding to 5-40% of its total

volume [1, 7]. Zimmermann and Trach estimated the protein content of E. coli to be

around 10 to 40% in units of weight/volume [8]. Similarly, Lanni et al. obtained a

value of 200-300 mg/ml for 3T3 fibroblasts [9]. Since most of the space in the cytosol

is already occupied by other macromolecules, it is tempting to ask how proteins fold

and function in such surroundings. This is particularly important because most of
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our current information on protein folding was obtained from in vitro experiments in

dilute solutions. In fact, experimentalists often strive to use the most dilute solution

possible in order to avoid non-idealities and to focus on the pure protein properties.

However, given the composition of the cytosol, non-idealities are to be expected. This

raises another question: to what extent do inferences drawn from in vitro experiments

accurately represent the in vivo situation? Various non-idealities could arise in the

cytosol, such as excluded volume effects and non-specific interactions. In addition,

the cytosol may be much more viscous than the very dilute solutions used for in vitro

studies.

Even this more realistic picture of the cytosol neglects an important layer of com-

plexity: the spatial and temporal organization of the cytosol [10]. The cytosol is

not homogenous–its composition varies both spatially and temporally. Differences

in its local composition can cause density fluctuations and changes in the local con-

centrations of specific proteins. These differences can create what are effectively

(micro-) compartments based on local density fluctuations rather than an enclosing

membrane [11].

Macromolecules, together with flexible polymer chains (such as proteins), are con-

fined at high concentrations within the cellular membrane. This milieu might be

considered as a complex colloidal systems of polymer-nanoparticle mixtures in which

molecules or poly-molecular particles with a dimension between 1 nm and 1 µm are

dispersed in a continuous phase of a different composition. Therefore, we introduce

the macromolecular crowding within the context of a tractable experimental model

system, idealizing crowding agents as hard spheres and polymers as soft, effective

spheres with variable size.

In following sections we reviewed relevant properties of polymer and colloids, focus-

ing on polymer conformations, and second, identify colloidal interactions that apply
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to the crowded environment within living cell.

2.2 Polymers

Polymers are ubiquitous in today’s world. Plastic food wraps, different kinds of adhe-

sives and rubbers are some of many examples of polymeric materials, without which

one can not imagine modern life. Hermann Staudinger, in the 1920s, identified a

polymer as a long chain of repeated units. In the early 1950s, Giulio Natta and Karl

Ziegler discovered a process for synthesizing many plastics such as polyethylene and

polypropylene. Since then many striking findings have been discovered and new poly-

meric materials have been synthesized. For example, polymer nanocomposites, which

are composed of nanosized particles dispersed in a polymer matrix, are currently used

in a wide range of applications, from the automobile industry to high-tech electronics

and solar cells. Modern medicine also relies heavily on polymeric materials such as

contact lenses; artificial joints are also examples of polymeric materials. Hydrogels

and polymer-based carriers play an important role in drug-delivery, since a drug is

usually suspended in a polymer matrix in order to safely reach its target. In addi-

tion to man-made polymers, polymers also occur in nature. Examples of naturally

occurring polymers are silk, wool, DNA, cellulose, and proteins.

The systems we are discussing in this work are macromolecular systems such as

polymers, polysaccharides, and gels. Synthetic polymers that are commonly used by

researchers as a means to simulate crowding are polyethylene glycol (PEG), Ficoll,

and dextran (the latter two being branched polysaccharides). Naturally occuring poly-

mers often used for this purpose are proteins such as bovine serum albumin (BSA),

lysozyme, hemoglobin etc. Synthetic polymers in this context are long, high molecular

weight molecules made up of a chain of smaller, simpler identical molecules. In con-
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trast a biological poly-amino acid chain (a protein) is composed of any of 20 different

monomers.

2.2.1 Polymer Structure and Dynamics

Polymer molecules are characterized using various physical parameters. Some phys-

ical parameters are the degree of polymerisation, the number averaged molecular

weight, the weight average molecular weight, and the polydispersity [12]. The de-

gree of polymerisation is the number of structural repeat units or monomers in a

polymer chain. Unlike atoms, or small molecules, polymer synthesis never yields

molecules with identical degree of polymerization. The number-averaged molec-

ular mass Mn =
∑n
i=1NiMi/

∑n
i=1Ni and the weight-averaged molecular mass

Mw =
∑n
i=1NiM

2
i/

∑n
i=1NiMi are used to characterize a polymer solution or a

polymer melt that consists of the same type of molecules but with different chain

lengths, whereNi is the number of polymer chains (molecules) of molecular weightMi.

A useful measure of the polydispersity is the polydispersity index PDI = Mw/Mn.

The Ideal Chain

Consider a polymer chain composed of n� 1 monomers connected by bonds. Such a

chain is called ideal if any pair of monomers i and j separated by a sufficient number

of bonds along the chain (|i − j| � 1) do not interact with each other at any dis-

tances. An ideal polymer, as any other polymer, has many potential conformations.

The conformations that a polymer can create depend on its flexibility. There are

several models of an ideal polymer chain where the control of its flexibility is based

on assumptions restricting the range of allowed bond and torsion angles. The most

common examples of these models are the freely jointed chain model, the freely ro-

tating chain model, and the worm-like chain model. To demonstrate the difference
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between ideal and real chains, it is sufficient to take the simplest model which is a

freely jointed chain model. According to this model all bond angles are equally likely

and independent of each other [13]. All bonds are of equal length l = |ri|, where ri is

a bond vector between monomers i and i − 1. The simplest quantity to characterize

the size of the ideal chain is the end-to-end vector. It is determined as the sum of all

bond vectors,

R =

n∑
i=1

ri (2.1)

However, the end-to-end vector averaged over all possible states of the polymer is zero,

i.e., 〈R〉 = 0, because the configurations with end-to-end vector R and −R are equally

probable. For this reason the mean-square end-to-end distance is used instead:

〈R2〉 = 〈R.R〉 =
n∑
i=1

n∑
j=1

〈ri .rj〉 (2.2)

Here 〈.〉 denotes the ensemble average. By definition, the scalar product of bond

vectors can be written as ri.rj = l2 cosΘij , where Θij is a bond angle between bond

vectors ri and rj. Since directions of bonds of an ideal polymer are not correlated,

the angle Θij can vary in the range from 0 to 2π with equal probability for i 6= j [12].

Therefore the scalar product of bond vectors averaged over all monomer positions

is 〈ri.rj〉 =l2〈cosΘij〉 = 0 if i 6= j and the only contributions to the mean-square

end-to-end distance give the scalar products of equal bond vectors. Thus, the mean

square end-to-end distance is written as

〈R2〉 =
n∑
i=1

〈ri .ri〉 = n l2. (2.3)

The mean-square end-to-end distance allows us to estimate the size of the polymer

as 〈R2〉1/2
= n1/2 l. Obviously, 〈R2〉1/2 is significantly less than the polymer contour
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length L = nl. This means that polymers very rarely form stick-like configurations,

but they are rather entangled to a coil due to polymer flexibility. The flexibility is an

essential property of polymers. The mechanism of the flexibility, however, can differ

depending on polymer type and its chemical details. In order to construct a universal

model independent of the flexibility mechanism one needs to introduce a quantitative

parameter, which is a measure of the polymer flexibility. The Kuhn length is such a

parameter which is associated with the size of an actual polymer and defines a length

scale beyond which correlations between polymer segments do not play a role [14].

Indeed, in a typical polymer there are correlations between neighboring bonds and

only distant bonds are uncorrelated, implying that 〈cosΘij〉 = 0 holds only when

|i − j| = ∞ and the sum over all bond vectors converges to a finite value denoted

by C ′i =
n∑
j=1
〈cosΘij〉. Then, the mean-square end-to-end distance given by Eq. 2.3

converts to

〈R2〉 = l2
n∑
i=0

C
′

i = nl
2Cn, (2.4)

where Cn =
∑n
i=1C

′

i/n is the Flory characteristic ratio defined as the average of

the values C ′i over all polymer bonds. Due to the absence of correlations between

the distant bonds, Cn converges to a finite value C∞ for a infinitely long polymers

(n → ∞). Thus, the approximation of the mean-square end-to-end distance for a

long polymer can be expressed in the following form

〈R2〉 ' nl2C∞. (2.5)

The mean-square end-to-end vector remains proportional to the number of bonds

along the polymer and the square of the bond length, however, now the correlations of

neighboring bonds are also taken into account. This allows us to introduce the concept

of a polymer Kuhn segment by treating a polymer as a sequence of N freely joined
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segments of Kuhn length a. The Kuhn length a is determined by the dual requirement

L = Na, where L is the contour length of the actual polymer, and 〈R2〉 = Na2 =

C∞nl2 [13]. Each of the Kuhn segments contains a number of polymer bonds, beyond

which the bond correlations are neglected. This model is a universal model describing

all ideal polymers independent of the local chemical polymer structure.

So, forN number of monomers of size a, an ideal polymer chain is expressed as [15]

〈R2〉 = Na2, (2.6)

with a being the length of a Kuhn segment and N the number of Kuhn monomers.

As an example, let us consider a linear chain, non-ionic polymer, polyethylene

glycol (PEG) 20000, which is one of the components in our study of macromolecular

crowding and confinement. The molecular weight of each PEG unit is 44 g/mol. The

chemical structure of PEG is shown in Figure 2.3. The two C-O bonds in the PEG

monomer (each 0.145 nm) and the C-C bond (0.15 nm) add up to a monomer length

0.44 nm. The number of monomers, n, in a PEG 20000 chain is 20000/44 ≈ 450, and

the contour length, L = 450 × 0.44 ≈ 200 nm. The Kuhn length (a) is known to be

0.76 nm [16,17]. It follows that there are N = 200/0.76 ≈ 263 Kuhn segments.

Another quantity that can characterize the size of a polymer is the radius of

gyration. The square of the radius of gyration, R2
g, is the mean squared distance

between monomers and the polymer’s center of mass and given by [12]

R2
g =

1
N

N−1∑
i=0

(Ri − Rcm)
2, (2.7)

where the vector Ri is the position vector of the i-th monomer and Rcm is the position
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vector of the polymer’s center of mass,

Rcm =

N−1∑
i=0

mi Ri

N−1∑
i=0

mi

=

N−1∑
i=0

Ri

N
. (2.8)

This assumes that all monomers have the same mass which is a reasonable assumption

for most polymers. In comparison with the end-to-end distance, which can be easily

calculated for linear polymers, the radius of gyration allows one to estimate the size

of polymers of any architecture, such as branched or ring polymers, where the end-

to-end distance is not well defined. For a Gaussian chain, the mean-square radius of

gyration can be expressed as 〈R2
g〉 = Na2/6. An estimate of the Rg for PEG 20000

is
√
263 × 0.76/

√
6 ≈ 5.03 nm. For PEG 20000 in water at room temperature, the

experimental value of Rg, obtained by SANS, is about 5.00 ± 0.04 nm.

The configurations of an ideal chain composed of N monomers can be described by

a random walk of monomers since all interactions of distant monomers are neglected

and there are no correlations between bond directions. The probability distribution

function in this case is given by [14]

P(R,N) =
1√

2π〈R2〉
exp

(
−

R2

2〈R2〉

)
=

(
1

2πNa2

)1/2

exp
(
−

R2

2Na2

)
.

(2.9)

Here we assume that each step of the random walk is of length a and independent of

previous steps.
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The Self-Avoiding Polymer

Polymer conformations change dramatically if we include the effect of monomer

monomer interactions which were neglected in the previous section. To show this,

we consider a polymer consisting of N monomers of size a, but this time each of

the monomers has an excluded volume Vex. Such polymers are called self-avoiding

polymers. Due to the excluded volume, monomers of a self-avoiding polymer effec-

tively repel each other on small length scales, leading to an increase of polymer size

compared to an ideal polymer, and as a consequence a reduction in the entropy of the

polymer. In order to find the size of a self-avoiding polymer one needs to determine a

balance between the effective repulsion energy of monomers which swells the polymer

and the entropy loss due to such deformation from the ideal state. One of the most

successful theories estimating this balance is the Flory theory which is a mean field

theory. Following Flory’s idea, let us assume that the self-avoiding polymer is swollen

to the size R which is larger than the size of an ideal polymer chain Rid = aN1/2. Then

the volume occupied by the polymer scales like R3, where for brevity we have denoted

〈R2〉1/2 by R. Within this volume we assume that monomers are uniformly distributed

and the correlations between them are ignored. The probability of a monomer to be

found within the excluded volume of another monomer is a product of the excluded

volume Vex and the monomer number density N/V ∼ N/R3. Also, the size of the

self-avoiding polymer RSA in the equilibrium state [13, 15] is

RSA ≈ V1/5
ex a

2/5N3/5 (2.10)

Thus, the size of the self-avoiding polymer still scales with number of monomers,

but with a different power law than the ideal polymer. The ratio of the sizes of

a self-avoiding and an ideal polymer composed of an equal number of monomers,
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RSA/RID ≈ (VexN
1/2/a3)1/5, shows that the size of a self-avoiding polymer is indeed

significantly larger than that of an ideal chain.

Dynamics of Polymer Chains

Understanding the dynamics of polymer chains is key to predicting properties of

polymer solutions such as diffusion coefficients, viscosity, sedimentation coefficient,

and various rheological properties. The first successful model of polymer dynamics

was developed by Rouse [18]. In this model, a polymer chain is modeled as a string

of beads connected by springs. The only interaction taken into account within the

Rouse model is that between consecutive beads via the springs, and the hydrodynamic

interaction between beads is ignored.

The Rouse model leads to the prediction that a chain diffusion coefficient scales as

D ∼ N−1, where N is the number of beads in the chain. In dilute solution, however,

the hydrodynamic interaction between the chain monomers is important and cannot

be ignored. The Zimm model, an extension of the Rouse approach, takes into account

hydrodynamic interactions [19]. The Zimm model predicts the dependencies of the

chain diffusion coefficient and the chain relaxation time on the chain size, given by

D ∼ R−1. Using the scaling dependence of R on N in a good solvent, R ∼ Nν, where

ν = 0.588 is the Flory’s exponent, the Zimm model predicts that D ∼ N−ν.

2.2.2 The Dilute, Semi-dilute and Cross-over Regimes

Polymer solutions are traditionally divided into three regimes depending on the poly-

mer concentration: dilute, semi-dilute and concentrated. In the following sections

some scaling laws of the three regimes of polymer solutions are described.

In a dilute polymer solution, each polymeric molecule is isolated from the others

and adopts a globular structure. The dependence of Rg, the radius of gyration of the
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polymer on N, the number of monomers per polymer molecule, arises from the notion

that a polymer molecule is a statistical object composed of N units. According to the

‘freely jointed chain’ model or the ‘Gaussian’ model, the monomer units are assumed

to be randomly distributed throughout the molecule volume [14]. Accordingly, the

size of the polymer is proportional to the square root of N. Rg ∼ N1/2 does not take

into account that there are many forbidden conformations to the polymer due to the

excluded volume effects between distant monomers on the same chain. Taking those

conformations into account results in polymer swell (the self-avoiding walk), and Rg

is expected to be larger than predicted from Rg ∼ N1/2. Indeed, light scattering

experiments with dilute polymer solutions and theory show that Rg scales like Rg ∼

Nν [20]. It was shown that the value of ν = 0.588 is universal and does not depend

on the chemical nature of the monomers.

In the semidilute regime, polymer molecules cannot be considered as distinct glob-

ules, since they are too dense. Rather, the solution can be regarded as a network with

a certain average mesh size. When polymer chains interpenetrate, it is meaningless

to describe them using parameters derived from N, since the physical location of each

monomer is such that it could possibly belong to several polymer molecules.

There is a fundamental difference between the dilute regime and the semi-dilute

one. The overlap concentration (c∗) is the concentration at which polymer coils begin

to overlap, c∗ is expected to be comparable with the local concentration inside a single

coil by:

c∗ ∼=
N

R3
g

(2.11)

When the polymer concentration cp ∼ c∗ the coils are in contact but not yet pene-

trating, thus the mesh size should be comparable with the size of one coil, Rg. For

cp > c∗, the network structure must depend on the concentration and not on the

degree of polymerization N (the chains must be much longer than the mesh size).
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Thus, the mesh size decreases rapidly with concentration.

In highly concentrated solutions, polymer chains increasingly overlap each other,

and the swelling of any chain is counteracted by the presence of other chains, leading

to a screening effect of the excluded volume interactions between monomers belonging

to the same chain. One may regard this situation similarly to the dilute regime with

the exception that Rg is now much smaller and depends on polymer concentration

rather than on the length of the chain (N or molecular weight). It was suggested to

define Rg in a concentrated solution ( Rconcg ) as a modification of Rg in dilute solution

(Rg0) [15].

Rconcg = Rg0 f

(
cp

c∗

)
(2.12)

Imposing Rg ∼ N1/2, the following relation between Rconcg and polymer concentration

is obtained:

Rconcg ∼ c−1/8
p . (2.13)

This suggests that polymer chains shrink slightly as the concentration increases.

The Semiempirical Equation of State

In a two-component system, the variation of osmotic pressure with volume fraction

of solute over the complete range of concentrations is the equation of state of the sys-

tem. The semiempirical equation of state for PEG, connecting its osmotic pressure

with its solution concentration and its transition between the unentangled (dilute)

and entangled (semidilute) regimes, is well known. In the semidilute range of concen-

trations, where scaling laws may apply, des Cloizeaux has proposed a scaling form of

the equation of state [21], where the osmotic pressure is expressed as combination of

power laws of the reduced concentration cp/c∗. Cohen et al. [22] have assessed the

accuracy of the des Cloizeaux scaling expression for the equation of state in the case
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of aqueous solutions of PEG, and found good agreement at concentrations that are in

the semi-dilute range, provided that the prefactor α of the scaling law was adjusted.

Initially, they claimed that a single value of α was adequate to obtain this agree-

ment for all PEG solutions, and therefore that they had obtained a single parameter

equation of state [22]. At lower concentrations where the polymer solution was dilute

rather than semidilute, they found pressures that were higher than the scaling law,

due to the fact that the macromolecules have more degrees of freedom when they do

not overlap. Then they made the statement that at all concentrations the osmotic

pressure of a polymer solution could be approximated by the sum of the van’t Hoff

ideal pressure of the macromolecules and the scaling pressure calculated at the actual

concentration through the des Cloizeaux expression with the adequate prefactor [23].

Figure 2.2: The phenomenological scaling form (solid black line), Equation 2.14, of
Cohen et al. is an excellent description for pure PEG in water (no crowder). Here
a crossover concentration c# = α−4/5c? = α−4/5N−4/5/V̄ . For cscale ≡ cp/c# 6 0.1,
the system is in the dilute limit (dotted blue line), while for cscale ≡ cp/c# > 6, it is
in the semi-dilute limit (dashed red line): the crossover regime (green hashed region)
is in between (0.1 < cscale < 6).

In brief, the derived equation is a linear combination of a low-concentration van’t

Hoff term [24] and a higher-concentration des Cloizeaux term [21]. A single parameter

α locates the crossover from dilute van’t Hoff to semidilute des Cloizeaux behavior.

In terms of the normalized osmotic pressure Π̃ = Π/(RT/MmV̄), the scaling form
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is [23]

Πscale = Π̃N9/5α4/5 =
( cp
c#

)
+
( cp
c#

)9/4
. (2.14)

Here the concentration is scaled with respect to a crossover concentration c# =

α−4/5c? = α−4/5N−4/5/V̄ .

For PEG (Mw = 18000 Da), α = 0.49 ± 0.01, the partial specific volume V̄ =

0.825 ml/g and the scaled concentration c# = α−4/5N−4/5/V̄ ∼ 0.02 g/ml, which is

related by a constant factor of 1.77 to the overlap concentration c? = 0.01 g/ml. Thus

it can be seen that the expected dilute limit (dotted blue line in Figure 2.2) occurs

for cscale < 0.1 (actual polymer concentrations cp < 0.002 g/ml) and the semi-dilute

regime (dashed red line in Figure 2.2) for cscale > 6 (cp > 0.1 g/ml). Hence the

crossover regime occurs for 0.1 < cp/c
# < 6, where the osmotic pressure deviates

from (cp/c
#)1 and (cp/c

#)9/4.

2.3 Colloids

The focus of this thesis is to examine a simplified experimental polymer-colloid model

systems that could provide insight into macromolecular crowding in cellular envi-

ronments. Many biological macromolecules (proteins, for example) are polymers. A

macromolecule that is commonly used to mimic a crowded environment is the compact

polysachharide nanoparticle, Ficoll70. We thus begin by briefly reviewing colloidal

interactions.

2.3.1 The Excluded Volume Interaction

The term “macromolecular crowding” is applied to biological systems because the total

concentration of macromolecules inside cells is so high that a significant proportion
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of the volume (∼ 30%) is physically occupied and unavailable to other molecules [1,

25–28]. Therefore, one of the most important ingredients in crowding is the excluded

volume effect, which is entirely a non-specific physical effect originating from steric

exclusion [29].

When does this excluded volume effect matter? Colloids often have a hard, im-

penetrable core, and the distances between particles are comparable to the size of the

particles, the entropy loss due to excluded volume will be significant. The excluded

volume interaction in a monodisperse system of hard colloidal spheres manifests itself

as an infinite mutual repulsion whenever two sphere centers are at a distance of one

particle diameter, i.e. they cannot get any closer. For non-spherical particles, this

will be a shape dependant repulsion that is a function of the mutual orientation of

the molecules. Macromolecules such as globular proteins are approximately spherical,

so we consider spheres as the starting point for our discussion.

The excluded volume interaction in monodisperse hard spheres leads to entropi-

cally driven colloidal phase transitions from fluid to solid phases [30]. At low packing

fraction, the fluid phase is stable because it has higher entropy. But above φ = 0.545,

the ordered solid phase is actually entropically favored [31]. This phase persists from

φ = 0.545 to 0.74, the maximal packing of monodisperse spheres. But at φ = 0.58,

the crystallization of the colloids can be (under some circumstances e.g. particle

polydispersity) arrested [32] by the appearance of a metastable state known as a glass

which is characterized by a large increase in the viscosity of the system [33].

2.3.2 The Depletion Interaction

Excluded volume in its simplest form is an entropic repulsion. But entropy can

also give rise to attractions via the depletion interaction. The theory of depletion

interaction, developed by Asakura and Oosawa [34], considers a system that contains
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proteins (modeled as large impenetrable spheres of radius R) and non-interacting

polymers (modeled as impenetrable small spheres of radius of gyration Rg) in a solvent.

When two proteins are closer to each other than the diameter of the polymer, 2Rg,

their exclusion zones overlap. Overlap of excluded (or depletion) volumes increases

the volume accessible to the polymer. The physical outcome of this situation is simple:

when two spheres are closer than 2Rg, the polymer coils are squeezed out so that they

no longer balance the osmotic pressure exerted by the polymers on the outside of the

spheres. As a result, the spheres attract each other when their surfaces are closer than

a characteristic size, depending on the polymers in the system. The representation

of a polymer molecule by an equivalent hard sphere is physically unrealistic because,

even if the chain-like polymer is contained in a spherical envelope, this sphere is

penetrable. The Asakura-Oosawa (AO) theory is valid only in the limit of low polymer

concentrations, below the semidilute regime (where the representation of polymers as

spheres is justified), as well as when R > Rg (the so called “colloid limit”).

2.3.3 The Electrostatic Interaction

It is not always realistic to treat macromolecules as hard spheres. In fact the biological

cell is a thick “Coulomb soup” where electrostatic interactions affect the structures

and dynamics of the constituent macromolecules [35]. The electrostatic interaction

between a charged surface and free charges in solution plays an important role in

colloidal systems. Because of the ions on the surface, a cluster of opposite charged

ions in solution (called “counterions”) gather around it and form a diffuse layer [36].

The surface ions and the cloud of counterions form the electrical double layer. The

thickness of the double layer is κ−1, known as the Debye-Hückel screening length.

The Debye-Hückel screening length can be controlled experimentally by controlling
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solvent parameters [37]:
1
κ
=

1
e

√
εKBT

2cNa
(2.15)

where e is the electronic charge, ε = Kε0 is the permittivity constant composed of

the vacuum dielectric permittivity ε0 and the dielectric constant of the medium K, c

is the molar concentration of a monovalent salt, Na is the Avogadro number, T is the

temperature and KB is the Boltzmann constant. The Debye-Hückel screening length,

κ−1, is a key parameter that measures the contribution of valency, concentration and

dielectric constant to the screening of interactions between charges in solutions. In

this work, the solutions of charged Ficoll70 were all prepared with added salt in order

to keep the conductivity at 1 mS/cm, resulting in a Debye-Hückel screening length

κ−1 = 3.2± 0.5 nm.

If two charged macromolecules of radius R approach each other, there is a repulsive

force that pushes them apart. In this case, the effect of the diffuse layer plays a

dominant role. According to Derjaguin-Landau-Verwey-Overbeek (DLVO) theory,

the repulsive interaction potential (known as DLVO potential) in SI units is [38]

UR(r) = 2πεRψ2
0 ln[1+ exp{−κ(r− 2R)}], (2.16)

where ψ0 =
σ

εκ
, the particle surface potential and σ is the surface charge per unit

area. From Equation 2.16, for r > 2R, when the Debye-Hückel screening length κ−1

is short, i.e. when κ(r− 2R) is large, the repulsive potential goes to zero.
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2.4 Diffusion

In 1828, Robert Brown investigated the random motion of pollen grains in water [39].

Particles in fluids undergo near continual random displacements due to collisions and

subsequent momentum transfer with the surrounding solvent molecules– a situation

termed “Brownian motion”. For a large number of particles initially located near to

the same region in space, such Brownian motion has the consequence that the particles

will tend to disperse over time, this situation being known as diffusion.

In 1855, Adolf Fick wrote [40] the first phenomenological law for diffusion, his

model was adapted from the heat conduction equation by Fourier. In Fick’s first law,

the diffusive properties of salts dispersing in water is in terms of the dependence of

flux (J) on concentration (Φ) and a diffusion coefficient (D0) such that [41].

J = −D0
δΦ

δr
(2.17)

The time-dependence of solute concentration, the rate of change of concentra-

tion per unit time, also known as Fick’s second law, depends on both the diffusion

coefficient and the second derivative of concentration such that:

δΦ

δt
= −D0

δ2Φ

δr2 (2.18)

Fick’s laws are unable to relate macroscopic diffusion to the movement of single

particles.

Throughout the period from 1905 to 1908, three scientists, Einstein, Smoluchowski

and Langevin, all using different approaches, were able to provide a theoretical link

between the phenomenological diffusion coefficient utilized by Fick and the system

properties governing the individual particle displacements, ∆r, occurring over time
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period, ∆t.

Einstein (and Sutherland, independently [42]) [43] realized that instead of trying

to relate the movements of diffusing particles to their velocity it was imperative to

relate their movement to distance traveled. Considering the stochastic nature of the

diffusion process, Einstein reasoned that the average distance traveled by a particle

undergoing Brownian motion was zero. However, the mean squared displacement

(MSD) provides an alternative physical quantity for determining the total distance

traveled in n dimensions during a time period (∆t) such that:

〈
|∆r(t)|

2
〉
= 2nD0∆t (2.19)

Einstein concluded that the rate of diffusion was determined by the interplay

between thermal energy that caused the movement of a particle and the corresponding

friction between the particle and its surroundings environment. The Einstein relation,

published in 1905, links D0, the translational diffusion coefficient (in dimensions of

m2 s−1), and µ, the mobility of particles:

D0 = µKB T , (2.20)

where KB is the Boltzmann constant and T is the absolute temperature. The mobility

µ is the ratio of the particle velocity to the applied force, µ = v/F . In the limit of low

Reynolds number (meaning laminar, smooth, and continuous flow of small particles

in a fluid), the mobility µ is simply the inverse of the drag coefficient (i.e., friction

experienced by the particle). For spherical particles of hydrodynamic radius RH,

Stokes law, which deals with the frictional force exerted on spherical objects in a
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viscous fluid, gives a drag coefficient, (which is an inverse mobility)

µ−1 = 6πηRH, (2.21)

where η is the bulk viscosity of the medium. Combining above equations yields the

Stokes-Einstein relation,

D0 =
KB T

6πηRH
(2.22)

This useful relation is routinely used to estimate diffusion coefficients of globular

proteins in aqueous solution. Small molecules (such as sugars and nucleotides) of

approximately 0.5 nm diameter, diffuse quickly with a diffusion coefficient of order

10−10 m2 s−1; molecules of the size of the protein (3-5 nm) diffuse more slowly (3 −

10×10−12 m2 s−1); whereas larger vesicles (500-1000 nm) diffuse as slowly as 1×10−13

m2 s−1, taking hours to travel across a cell of 15 µm in diameter [44].

Typically, pulsed-field-gradient (PFG) NMR can be used in dilute suspensions to

obtain hydrodynamic radii from the measured diffusion coefficients using the Stokes-

Einstein relation. However, in the presence of crowding, the size (and shape) of the

macromolecule can also be changed. In addition, crowding makes the mobility a

function of the packing fraction. Since we only have access to the effective mobility

in dynamics measurements, we need independent measures of true hydrodynamic

size via small angle scattering measurements to construct a complete picture of the

macromolecular dynamics.

In this work we use PFG-NMR with small-angle neutron scattering (SANS) in

order to obtain new insights in simple model systems of macromolecular crowding.
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2.4.1 Microviscosity and Bulk viscosity

The Stokes-Einstein equation (Equation 2.22) has accurately described the motion

of diffusing molecules under many conditions, but its accuracy has been questioned

in complex solutions. In 1951 Mooney suggested that the Stokes-Einstein equation

was only valid at infinite dilution (i.e. where the diffusing species only interacts with

solvent) [45]. He suggested that the bulk viscosity of a solution was not always the

same as the viscosity sensed by diffusing molecule. This means that crowded solutions

would exhibit different viscosities depending on the nature of the crowding agent and

diffusing species. He defined viscosity as a function of the size of a crowding agent,

its concentration, and a substance specific constant. Since then, multiple studies have

come out supporting this idea of microviscosities that differ from bulk viscosity [46–

48].

The viscosity sensed by the probe is called the microviscosity and the viscos-

ity that is sensed by a device such as a rheometer (or a viscometer) is referred to

as the bulk viscosity. A comparison between microviscosity and bulk viscosity has

shown deviations from the Stokes-Einstein equation in dextran solutions [49]. When

a probe demonstrates only one mode of translational diffusion, as in the case of simple

diffusion, its diffusion coefficient can be directly related to the bulk viscosity by the

Stokes-Einstein equation. The authors of that study suggest that the deviations could

be due to a major component of microviscosity existing in the dextran solutions, which

is smaller than the bulk viscosity in magnitude. Other studies have reported diffu-

sion coefficients of proteins that suggest a difference between microviscosity and bulk

viscosity [48,50,51]. On the basis of these previous studies, we can identify microvis-

cosity with the frictional force experienced by a macromolecule diffusing in a crowded

solution due to interactions with its environment at the micrometer length scale. The
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friction experienced by the macromolecule does not necessarily correspond to the bulk

viscosity because the former is a measure of the probe’s local friction, whereas the

latter would measure the friction experienced by an infinitely large probe. The micro-

viscosity is a function of both the crowding density and relative size of each co-solute

in a mixture. These two factors would contribute to the measured microviscosity,

which would be reflected in the altered translational mobility [49].

The differences between these two viscosities could result in another phenomenon

known as sub-diffusion or anomalous diffusion [52], which could significantly slow

down reactions in the cell. Solute diffusion that cannot be described by Stokes-

Einstein relation for Brownian motion (Equation 2.22) is defined as anomalous diffu-

sion, which is discussed in the next section.

2.4.2 Anomalous Diffusion

The mean-square displacement (MSD) of a particle diffusing in three dimensions is

given by 〈
|∆r(t)|

2
〉
= 6D0∆t (2.23)

Fick’s law is an established phenomenological law for describing diffusion in isotropic

fluids. However, there is no reason to assume that it can be applied to a more complex

system such as a crowded environment [53]. Diffusion in complex media such as dense

polymer solutions and the cytoplasm may be hindered by interactions with obstacles,

transient binding or crowding [54]. Hence, in complex media, the MSD would be

expected to obey a power law:

〈
|∆r(t)|

2
〉
= 6 Γ tα. (2.24)

Γ is a constant that does not depend on time and is known as the transport factor
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and has dimensions of length-squared per fractional time [55]. If the exponent (α) is

less than 1, then diffusion is said to be subdiffusive. From the above relation we can

define an apparent diffusion coefficient D(t) that would depend on the timescale or,

equivalently, the lengthscale of the measurements:

D(t) = Γ tα−1 (2.25)

The non-linear time dependence of the MSD can arise from hard interactions

between diffusing particles (volume exclusion) [46] or soft interactions (non-specific

binding) [56]. Volume exclusion has been attributed to causing anomalous diffusion

and to affecting how viscosity is perceived by different molecules. The anomalous dif-

fusion argument is that the crowding agents in crowded solutions physically obstruct

the movement of diffusing molecules causing their MSD to have a non-linear relation

with time. Volume exclusion is also thought to possibly change rates of diffusion as

a function of crowding agent characteristics (such as size and shape) and concentra-

tion while still exhibiting Brownian motion [46]. Regardless of the mechanism, one

often expects the dynamics to be diffusive at long-enough times: anomalous dynam-

ics is thus often examined by comparing the differences between short and long time

dynamics [57].

2.5 A Model of Macromolecular Crowding

The effects of crowding can be mimicked in vitro by the addition of a high volume

fraction crowding agent. However, using such artificial crowding agents can be com-

plicated, as these crowding molecules can sometimes interact in other ways with the

process being examined, such as by binding weakly to one of the components. Hence

an ideal crowder should: 1) be highly soluble, 2) have a defined shape, 3) form no

29



attractive interactions with the polymer/protein of interest, and 4) not interfere with

the spectroscopic techniques used in the study. It should be noted, however, that

non-idealities might need to be considered as one develops increasingly more realistic

model systems of crowding.

Crowding with another protein may seem to be the most straightforward option

since that would most closely represent the situation encountered in the cell. However,

protein crowders are usually not soluble in sufficiently high concentrations and form

numerous charge-charge interactions as most proteins have many charged residues

distributed over their surface. It is therefore necessary to either screen these charges

with either high salt concentrations or to just use low protein concentrations. Another

important concern is that spectroscopic techniques used to probe target protein will

be subject to interference from the protein crowder. Since the protein crowder is

present at a much higher concentration, it may dominate the signal and complicate

the analysis. That being said, crowder macromolecules composed of protein and RNA,

would be important eventually in a realistic model system for crowding. For practical

reasons, we take a simpler starting point.

Figure 2.3: Chemical structure of polymers typically used as crowders.

30



An alternative option is to use synthetic polymers, to induce the effects of macro-

molecular crowding. Polymers that have been used for this purpose include polyethy-

lene glycol (PEG), dextrans, Ficoll, and polyvinylpyrrolidone (PVP). These crowding

agents offer an advantage that they can be prepared in different sizes. PEG is a poly-

mer of ethylene glycol, PVP of N-vinylpyrrolidone, dextran of glucose, and Ficoll of

sucrose (Figure 2.3). They are highly soluble (up to 400 mg/mL or more in water) and

bear no charge at neutral pH. When studying excluded volume effects, it is desirable

to avoid attractive interactions between the crowding agent and the polymer/protein

of interest. There is evidence that both PEG and PVP forms attractive interactions

with proteins in addition to inducing volume exclusion [58–61]. Another important

property of the crowding agents is their molecular shape. PEG and PVP are likely to

be very flexible polymers [62]. In contrast, Ficoll has a more compact spherical shape.

This is because Ficoll is highly branched copolymer of sucrose and epichlorohydrin,

which gives it a relatively compact and often sphere-like structure [63–66]. However,

dynamic light scattering (DLS) studies have shown that Ficoll 70kDa adopts a struc-

ture that is intermediate between a sphere and a random coil [67]. In another study,

Ficoll was modelled as a spherocylinder with a radius of 1.4 nm [68]. Dextran is a

polymer of D-glucose with a lower degree of branching than Ficoll that adopts a more

elongated, flexible shape [66,69].

2.6 Overview of Previous Crowding Studies

Different experimental techniques as well as computer simulations have been used to

study the conformations and dynamics of macromolecules in crowded media have led

to a plethora of results in the cell interior and in related model systems. In this section

we provide a mini compilation of the reports addressing the structure and transport
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in macromolecular crowding.

2.6.1 Structure

An important parameter in studies of conformational structure of biopolymers in a

crowded environment is λ = Rg/Rc, where Rg is the polymer radius of gyration and

Rc is the hydrodynamic radius of the crowder, with the regime λ > 1 (λ < 1) being

referred to as the protein (colloid) limit [70].

Single-molecule Förster resonance energy transfer (FRET) spectroscopy was used

to quantify structure of proteins, using PEG as a crowder. For four proteins (and

a range of crowder sizes) the radius of gyration was obtained as a function of the

volume fraction of the crowder; counterintuitively, chain compression was observed to

be stronger with larger crowders [71].

The conformation of polymers is often studied experimentally by small-angle neu-

tron scattering (SANS). SANS has recently been performed to monitor the effect of

macromolecular crowding on the size of a protein complex (Rg = 23Å) with a high vol-

ume fraction (Φc = 0.4) of a low-molecular-mass polyethylene glycol (PEG, Rg = 6Å)

as the crowding agent (the ratio λ = Rg/Rc = 3.8) . The radius of gyration, Rg, of a

protein complex was observed to be reduced by only 3% due to the osmotic pressure

exerted by PEG molecules [72].

Intrinsically disordered proteins (IDP) are biopolymers which, due to their con-

formational flexibility, should be influenced by crowded cellular environments. Using

SANS, it was found that the hydrodynamic size of IDP (Rg = 33Å) as a function of

the concentration of a small globular protein (Rg = 15Å) exhibited a 13% decrease for

modest crowder packing fractions increases from Φc = 0 to ∼ 0.07 [73]; for this system

λ ∼ 2. On the other hand, another SANS-based study of similar λ revealed that the

radius of gyration of the IDP (Rg = 30Å) was insensitive to the presence of globular

32



protein (Rg = 20Å) crowders, and showed only a 6% reduction for Φc ∼ 0.2 [74].

For proteins, the impacts of macromolecules on structure and folding have been

well-studied, but parallel studies involving RNA are much more limited. The influence

of macromolecular crowders on RNA function and folding has been evaluated for a va-

riety of macromolecular crowding agents. These studies of macromolecular crowding

revealed that crowding agents, such as high molecular weight PEGs, dextrans, and

Ficolls, in 10 mM salt solution induce 7-fold compaction of RNA structure [75] and

comparable results were found using biological macromolecular crowders [76]. In ad-

dition, theoretical predictions concerning RNA compaction in the presence of macro-

molecular crowders have a good agreement with the experimental findings [77, 78].

Le Coeur et al. used SANS to measure the influence of a crowding agent (Ficoll

70) on the radius of gyration of deuterated PEG polymer in water [79, 80]. Focusing

initially on aqueous solutions of polymers and crowding agents of comparable radii of

gyration (λ = 1), Le Coeur et al. measured the PEG radius of gyration for varying

concentrations of Ficoll 70. By extrapolating to zero polymer concentration, they were

able to extract the radius of gyration of a single PEG coil [79]. With increasing mass

fraction of the crowding agent, Le Coeur et al. observed a significant compression

of the PEG coils. Moreover, the fractional compression increased with the molecular

weight of the PEG [80].

Computer simulations have become important tools in crowding studies. Denton

and coworkers have performed Monte Carlo simulation studies to explore the response

of coil size to crowding in a binary mixtures of ideal polymer coils and hard-sphere

nanoparticles [81]. The polymers in their study have a radius of gyration equal to the

nanoparticle radius (λ = 1). These authors observed that polymer coils, modelled as

effective penetrable ellipsoids, both contracted and (in the protein limit) became more

spherical when crowded by impenetrable, spherical nanoparticles. For crowder volume
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fractions (Φc) ranging up to 20% the simulation indicate a significant compression of

polymer, the distribution shifting to smaller polymer size with increasing nanoparticle

crowding. For Φc = 0.1 and 0.2, the fractional reductions in polymer radius of

gyration are, respectively, 0.915 and 0.826 [82].

Linear polymers and big inert molecules have been used to mimic the intrinsically-

disordered proteins (IDPs) and crowders, respectively. A detailed investigation on the

size of a linear polymer chain in a concentrated solution of colloidal spherical crowders

was presented by Kang et. al., based on computer simulations of a crowding induced

structural change of polymers [83]. By using the crowder concentration and the

size ratio λ between the polymer and the crowder as control parameters, they have

proposed a general picture for the collapse of biopolymers under steric crowding. The

result indicated that the size of the polymer coil reduces monotonically with ΦF [83].

It was shown that smaller crowders, which exert a higher osmotic pressure onto the

polymer, compact it to a larger extent as compared to the bigger ones. Thus, for

long biopolymers as DNA (large λ), even weak crowding can lead to a coil-to-globule

transition. This behavior is, however, not possible for much shorter molecules as IDPs

(∼ O (100) residues) even in the limit of close packing.

While there are thus still questions with regard to macromolecular structure in

the presence of crowders, a key opportunity in studying polymer conformations in

the presence of macromolecular crowding is to extract structure and dynamics for the

same system [84]. In this work we build a model crowded systems with increasing

levels of complexity in order to capture both structural and dynamical aspects of

macromolecular crowding. We have added increasing level of interaction by changing

macromolecule/crowder size ratio and investigate the effects of crowding agents, both

charged and uncharged at different packing fractions. By tuning interacting forces,

can we predict and control how crowding agent perturb polymer conformations and
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induce coils to swell or shrink? Our findings provide new insights into the underlying

factors of macromolecular crowding and show how these effects can be connected to

simulations and theoretical models.

2.6.2 Dynamics

The reduction of the mobility of a macromolecule in crowded media can be measured

by measuring the self-diffusion coefficient as a function of the concentration. There

are two general approaches for experimental determination of the diffusion coefficient:

methods that measure the time dependent behaviour of a large number of particles

over relatively large regions of space and methods that involve observing the properties

of individual particles over a small region of space. Experimental techniques belonging

to the former category include pulsed-field-gradient nuclear magnetic resonance (PFG

NMR) [85], optical microscopy-based observation of light absorbing or light-emitting

solutes [86, 87], neutron scattering [88,89] and single- and multi-wavelength dynamic

light scattering experiments [90, 91]. Experimental methods belonging to the later

category, i.e. methods capable of observing intracellular single molecule diffusive

motion at the microsecond and 100-nm level of precision (approximately) are largely

due to technological advances in optical microscopy.

Riveros-Moreno and Wittenberg have measured the concentration dependence of

the self-diffusion coefficient in myoglobin and hemoglobin solutions [92], by measur-

ing macroscopic diffusion across a gradient, up to volume fractions of 20% and 26%,

respectively. They found a plateau at low protein concentration followed by an ex-

ponential decrease of diffusivity down to more than one order of magnitude at higher

protein concentration.

Neutron scattering is a non-invasive technique to access macroscopic dynamics at

high protein concentrations. The dynamics of hemoglobin was studied inside red blood
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cells (RBCs) by neutron spin-echo spectroscopy [93]. For contrast reasons, the first

study was performed using red blood cells, which have been dialysed against D2O, at

the physiological temperature of 37oC from 0.02Å−1 6 Q 6 0.13Å−1. The diffusion

of hemoglobin at high concentration can be understood on the basis of theoretical

concepts developed for colloidal suspensions. The main difference is that the effective

hydrodynamic volume fraction of the protein must include the hydration shell because

of the higher surface over volume ratio of the proteins. The protein-protein friction

in the RBCs is mainly controlled by hydrodynamic interactions.

Using high-resolution neutron backscattering spectroscopy and neutron spin echo

(NSE), Roosen-Runge et al. [57,94] probed the self-diffusion of bovine serum albumin

(BSA) proteins in crowded aqueous solutions, where the same protein served as crowd-

ing agent. The protein motion was inferred from the incoherent dynamic structure

factor of the hydrogen atoms. Increasing the protein content up to a volume fraction

of 30%, a 10-fold reduction of the translational short-time diffusion coefficient over its

value in dilute solutions was observed. Moreover, it has been found that the short time

self-diffusion of the investigated model proteins as a function of the protein volume

fraction can be understood in terms of models from colloid physics. It is noted that

for an accurate comparison with theory, the calibration of the effective hydrodynamic

volume fraction occupied by the proteins in the solution including their hydration

shell is crucial, and a considerable effort has been made toward the accuracy of the

determination of this volume fraction [57]. This determination of the volume fraction

is accurate for globular proteins such as BSA.

Häußler studied diffusive dynamics of interacting protein spheres (apoferritin) by

neutron spin echo [95,96]. Apoferritin consists of a spherical shell built of 24 protein

units and carries net negative charge at pH 5. The electrostatic interaction was

modified by adding various amounts of NaCl to the solutions with different protein
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volume fractions from 5% to 20%. The study demonstrates that the proteins show

classical diffusion only at relatively low concentration and high ionic strength. Hence

the diffusion coefficient approaches the free-particle value of apoferritin and coincides

with the diameter of the apoferritin shell (12.2 nm). The dynamic picture at higher

concentration solutions reflects the influence of both direct electrostatic and indirect

interactions. At low salt concentration and higher volume fraction a strongly peaked

structure factor is observed, which is explained in terms of heterogeneity by formation

of crystallites in solution.

NSE has been used extensively by Porcar, Liu, and coworkers [88, 89] to study

the reversible cluster formation in solutions of globular proteins such as lysozyme

where the interaction contains both a short-range attraction and long-range repulsion.

The short-range attractions drive association into clusters, but the association to a

cluster surface is eventually limited by the overall charge of a cluster, leading to

greater long-range repulsion between clusters (or between a cluster and a protein in

solution). These study indicate that dynamic clusters with a finite lifetime and in

equilibrium with the monomers can be formed at very high concentration. At low

volume fraction, the lysozyme solution is mainly constituted by monomers. However,

more and more clusters are formed upon increasing concentration. These clusters

are termed “dynamic clusters” to indicate that the monomers are rapidly exchanging

between monomeric and cluster state. The properties of the protein solution are

determined by the properties of the dynamic clusters in the short-time limit probed

by NSE. However, the authors conclude that the macroscopic properties in the long

time limit are determined by monomeric proteins.

NMR spectroscopy is a powerful technique to study structure and dynamics of

macromolecules in solution. The non-invasive character of NMR and the transparency

of biological materials to the radio frequency fields used have led to a spectacular devel-
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opment of NMR methods for the spectroscopic study of living organisms. Pielak and

co-workers used NMR spectroscopy to quantify both the rotational and translational

diffusion of the protein chymotrypsin inhibitor 2 (CI2) in a variety of crowded solutions

as function of crowder concentration [56]. The crowding agents comprised glycerol,

synthetic polymers (PVP, Ficoll), globular proteins (BSA, ovalbumin, lysozyme), and

E. coli cell lysates. The bulk viscosity of the solution increases with crowder con-

centration. The Stokes-Einstein relation suggests a reduced diffusivity (D ∝ 1/η)

which describes the measured CI2 diffusion coefficients in glycerol solution and also

translational diffusion in ovalbumin, BSA, and cell lysate. In solutions of synthetic

polymers, transport is affected less than expected from the increase of viscosity, and

the translational motion of CI2 is impeded more than its rotational motion. Surpris-

ingly, the opposite effect was found in protein-crowded solutions and in the cell lysate:

rotational diffusion coefficients were suppressed stronger than translational diffusion

and stronger than the Stokes–Einstein relation would imply. The findings were at-

tributed to weak non-specific, non-covalent chemical interactions between proteins,

while synthetic polymers tend to form a loose mesh work.

Barhoum and Yethiraj used PFG NMR to detect the onset of macromolecular

crowding [97]. In their work, diffusion measurements were carried out on a model

system composed of anionic surfactant sodium dodecyl sulfate (SDS) and nonionic

polymer polyethylene oxide (PEO) in aqueous solution. The variation of the observed

SDS diffusion coefficient with concentration shows a plateau at low SDS concentration

that is followed by a rapid decrease at concentrations above the critical micellar con-

centration (CMC). Hence, in the SDS concentration regime below the CMC, the SDS

is in the monomeric state while in the SDS concentration regime above the CMC, the

SDS is partitioned between monomeric and micellar states. The PFG NMR signal

attenuation associated with the SDS peak exhibits monoexponential behaviour over
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the whole range of SDS concentration suggests that the exchange between SDS mi-

celles and free solution must be very rapid on the NMR time scale: micelles are thus

the original dynamic clusters. They introduced a self-consistent model to obtain the

variation of the free monomer concentration and the free micellar concentration over

the entire range of SDS concentration.

Virk et al. examined the dynamics of four amino acids up to their solubility limit in

water using PFG-NMR experiments and coupled this with molecular dynamics (MD)

simulations via models that incorporate obstruction (excluded volume effects) and

complex formation [98]. The experimental amino acid diffusion coefficients showed

the presence of aggregation and obstruction at all amino acid concentrations. The

MD simulations are quite sensitive to the force field used; nevertheless Virk et al. find

strong evidence for the importance of obstruction effects, but also find that complex

formation is likely to be relevant because all experimental diffusion coefficients are

lower than those predicted by obstruction-only models. Also, crowding effects on

water has been observed by comparing the change in the water diffusion coefficient

with amino acid concentration. There was strong evidence that the diffusive path of

water molecules in these systems was obstructed by the presence of amino acids.

Owing to technological advances in the 1990s, the fluorescence correlation spec-

troscopy (FCS) technique has quickly become an established tool for dynamic studies.

In a pioneering work, Schwille et al. [99] established the application of FCS to the

cytoplasm by studying the diffusion of tetramethyl-rhodamine dye in various mam-

malian and plant cells. They found anomalous diffusion in the different cell types

with α ≈ 0.6 but the same data may equally well be rationalised by fitting a mix-

ture of two normally diffusing components, the faster one being 5-fold slower than in

aqueous solution. The slow component showed diffusion coefficients up to 40 times

smaller than the fast one and comprised 35-60% of the molecules and was attributed
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to membrane-bound dye.

Weiss et al. [100] introduced differently sized FITC labelled dextrans in HeLa cells

and characterised their motion with FCS. The obtained values for α varied between

0.71 and 0.84 non-monotonically depending on the size of the dextran, which covered

hydrodynamic radii in buffer solution between 1.8 and 14.4 nm. The dwell times,

on the other hand, increased systematically from 0.4 to 16 ms. Complementing their

study by in vitro experiments with unlabelled dextran as crowding agent, the authors

found a systematic decrease of diffusion coefficient with the concentration of dextran,

which suggests to quantify the degree of crowdedness in terms of the anomalous

diffusion exponent (α).

The dependence of the diffusion coefficient on the concentration of crowding agent

was monitored by FCS by Banks and Fradin [101], who used globular proteins strep-

tavidin and EGFP as tracers in dextran solution. The resulting diffusion exponent

α (which is 1 for normal diffusion) decrease rapidly for increasing concentrations of

dextran obstacles and approach 0.74 ± 0.02 for high concentrations, the dynamics is

strongly sub-diffusive. Further, the motion of the small fluorescein molecules as well

as of the dextran crowders itself shows simple diffusion even at high dextran concen-

tration. If a globular protein is used as crowding agent, streptavidin motion is only

slightly anomalous with α ≈ 0.91 at high concentrations.

Verkman et al. [52, 102] characterised the transport of differently sized tracers in

Ficoll-crowded solution using FCS with an illumination region of 0.5 µm in diameter.

The tracers covered about two decades in size: from rhodamine green to albumin,

dextrans, and DNA fragments to fluorescent polystyrene beads with up to 100 nm

in diameter. Although the FCS correlations displayed simple diffusion in all cases,

tracer transport slows down drastically upon systematically crowding the solution.

The obtained diffusion coefficients are suppressed by two to three orders of magnitude
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as Ficoll concentration increases up to 60 wt% and follow an exponential decrease with

respect to Ficoll concentration. All tracers showed qualitatively the same behaviour,

independently of their size. Using the smaller glycerol as crowding agent, the reduction

of diffusion is smaller, but still exponential. For the large tracers, the slow diffusion

to a large extent can be explained by the change of the bulk viscosity of the crowded

fluid. This correlation is less pronounced for the small rhodamine green molecule,

which appears to sense the microviscosity of its local environment.

Dauty and Verkman [103] investigated the size-dependent transport of DNA in

the cytoplasm of living HeLa cells with DNA molecules sized between 20 to 4500

base pairs and labelled with a single fluorophore. The motion of DNA was followed

by FCS. The fitting of correlation functions for sizes above 250 bp required a two-

component model with a short diffusion time of 5-20 ms independent of DNA size.

DNA diffusion was found to be significantly reduced in comparison to the free diffusion

in saline by factors of up to 40, with a pronounced dependence on molecular weight

above 500 bp. The authors have corroborated their findings by in vitro experiments

using crowded solutions, cytosol extracts, and reconstituted actin networks. Only for

the actin networks, the suppression of the DNA diffusion coefficient over its free value

was sensitive to the molecular weight, recreating the behaviour in intact HeLa cells.

In all other environments, simple diffusion was observed with the diffusion coefficient

reduced by factors not exceeding 5. The authors concluded that mobile obstacles

cannot explain the strongly reduced mobility of DNA in living cells and that the

actin cytoskeleton presents a major restriction to cytoplasmic transport. Further, the

sensitivity of diffusion to the molecular weight may be explained by entanglement

effects with the actin mesh and reptation dynamics of the elongated DNA molecules.

All these studies highlight several key issues and unresolved questions: How do

crowding agents, such as globular proteins and nanoparticles, act to modify dynamics
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of macromolecules in the cell nucleus? How do intramolecular interactions, for exam-

ple, repulsion between segments within a polymer in a good solvent, affect dynamics

of macromolecules in crowded environments? How do non-steric interactions (e.g.,

long-ranged electrostatic interactions) between crowding agents and between crow-

ders and macromolecules, modify crowding mechanisms? More generally, what is the

interplay between excluded-volume and other nonspecific interactions? For example,

by varying ionic strength or other solution conditions, can mobility of macromolecules

be steered? How do crowding agents influence protein-protein clustering?

While it is easy to show that (idealized) crowding effects can in principle have

significant effects on macromolecular behavior, there are at least three major issues

that, need to be kept in mind. First, there is the question of whether truly inert

crowding agents exist that can be used in experiments to provide excluded-volume

effects only, or whether it is inevitable that all crowding agents will also cause addi-

tional effects that must be considered. Second, there is the perhaps related question

of whether theoreticians can develop predictive models that can quantitatively de-

scribe the effects of the crowding agents used experimentally. Third, and arguably

the most important issue, there is the question of whether an environment dominated

by idealized macromolecular crowding agents such as Ficoll or Dextran is even a good

mimic of a true intracellular environment such as the cytoplasm of E. coli.

Two types of volume exclusion–hard particle exclusion and confinement–are ob-

served inside biological cells. Globular proteins can be represented by hard particles,

whereas cytoskeleton networks can provide confining spaces. In this thesis, cytoskele-

ton networks in a cell is mimicked via a gel network inside droplets that are produced

using microfluidic devices. The next section presents investigations of Brownian mo-

tion of macromolecules through a multi-scale confining geometry.
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2.7 Macromolecular Confinement

In the cell, there exists a crowded environment of organelles, macromolecules, chro-

matin, membranes, and cytoskeletal filaments. The cell is not, however, simply a

soup of its constituent parts, rather there exists an ordered structure referred to as

compartmentalisation. Biological membranes hold biomolecules inside micron sized

compartments. This is also termed as macromolecular confinement. Maintenance of

compartmentalisation within the cell has fundamental implications for cellular func-

tion. In the cytoplasm, compartmentalisation is commonly achieved by confining

macromolecules in lipid membranes thereby creating organelles such as mitochondria,

lysosomes, Golgi apparatus, etc [1].

In the late 1990s scientists successfully compartmentalized genes in small aqueous

droplets of water in oil emulsion for directed evolution of proteins and RNAs [104]

giving rise to the technique known as in vitro compartmentalization (IVC) [105].

This appeared as a simple example of artificial cell production, where gene expression

function was occurring within a close compartment resembling the cell. This work

not only broadened the applicative field of artificial cell systems but also showed the

compatibility of expression systems with polydisperse and later on with monodisperse

emulsions achieved using droplet-based microfluidics. Due to the micron dimensions

of microdroplets produced through droplet-based systems, it has become clear that

this technology will be useful in experimental biology [106], cell mimic, and directed

evolution. A major investigation of this thesis focused on the development of mi-

crodroplets that are further structured internally using agarose gel networks where

dynamics of macromolecules can be carried out.

The primary backbone of agarose gel consists of 1,3-linked β-D-galactopyranose

and 1,4-linked 3,6-anhydro-α-L-galactopyranose [107]. Research results have revealed
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that agarose gels have typical characteristics that resemble the living tissues in com-

position, rheological nature, and water content and therefore have been widely used

as artificial tissues to study small molecules or macromolecules transportation pro-

cess, which could be expected to closely simulate in vivo molecular transport in living

tissues [108,109].

2.7.1 Nanoscale Confinement: Macromolecular Diffusion in

Gels

Consider the sugar agarose. It is used as a model macroporous network which consists

of repeating units of β-D galactose and 3,6-anhydro-a-L galactose linked together by

ether bonds. A macroporous structure comprised of α-helices held together by phys-

ical crosslinks is believed to form upon cooling a hot aqueous agarose solution [110].

The gel first forms intermediate α-helices, then larger aggregate fibers of polysaccha-

ride to yield a fairly rigid structure [111]. In chemically cross-linked gels, the fibers

are typically formed by a single chain that has both flexibility and mobility. When

charged, the repulsion between the single chains can cause the gel to swell substan-

tially. This is not observed in agarose gels. Because the charged agarose gels do not

swell, the spaces inside the gel remain constant over a wide range of ionic strength.

So one particular advantage of using a rigid gel such as agarose is the elimination of

variations in the volume fraction occupied by the fibers.

2.7.2 Theory for Diffusion through Gels

To date, predictions for the diffusivity of macromolecules through gels have been rela-

tively unsuccessful [112,113]. The reasons for the difficulty in developing a theory lie in

the complexity of the hydrodynamic interactions between a mobile macromolecule and
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its surrounding environment. There has been substantial effort placed in predicting

the diffusivity of spheres in straight cylindrical pores [114], but because the hydro-

dynamic interactions are very sensitive to alterations in the microstructure it seems

unlikely that extensions of this particular model to fibrous structures will give accu-

rate predictions. However, these theories yield insight into the nature and complexity

of hydrodynamic interactions. Due to the difficulty in predicting the hydrodynamic

interactions, arguments have been made which attempt to erroneously minimize their

importance. The most well known and widely used model which does not include hy-

drodynamic interactions was developed by Ogston and is based upon the stochastic

jump probability of a sphere [115].

Ogston Diffusion Model

Ogston et al. used the random fiber matrix model that was developed for the partition

coefficient theory to predict the reduction in diffusivity of a sphere through a gel net-

work [115]. Their expression for the hindered diffusivity was based upon a stochastic

jump through the spaces of a randomly oriented fiber network without considering

hydrodynamic interactions. Assuming that any jump that would result in a collision

with a fiber would not occur, Ogston formulated the probability of completing a jump.

By assuming that the frequency of jumps inside the gel phase was the same as in the

bulk solution, Ogston et al., used the jump probability to formulate an expression for

the hindered diffusivity.

Dg

D0
= exp

(
−

(RH + Rf)

Rf
Φ0.5), (2.26)

where Dg is the intramembrane diffusivity, D0 is the free solution diffusion coefficient,

Φ is the volume fraction of fibers, RH is the radius of the spherical solute, and Rf is the

radius of the gel fiber. This model does not include hydrodynamic interactions, which
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have been found to be instrumental in describing the resistance to the solute mobility

in cylindrical pores. As a matter of fact, Ogston’s stochastic jump model for the

hindered diffusivity has had only limited success in describing existing experimental

data and tends to overestimate the diffusion coefficient.

2.7.3 Overview of Diffusion Through Gels

Diffusion in a gel is complex. A solute diffusing in an inhomogeneous medium can

experience steric, chemical, and electrostatic interactions. Steric interactions describe

the physical interaction of solute particles with the structure of the medium they are

diffusing in. For example, an agarose gel is an irregular 3D matrix of fibers filled with

water. A solute can diffuse freely in the water, but in agarose it will be impeded by

the fibers. This has the effect of decreasing the diffusion coefficient of solutes in such

a fibrous medium.

Several physical parameters affect the diffusion of solute particles in a gel medium.

In solution, the diffusion coefficient is inversely proportional to the hydrodynamic

radius of the particle and the viscosity of the solvent. In a fibrous medium, a greater

dependence is placed on the hydrodynamic radius of the solute. The relationship

between the hydrodynamic radius of a solute and the pore size (the amount of space

between the fibers) of a fibrous medium plays a large role in how the solute is able to

diffuse in such a medium.

The Ogston model has been used to obtain quantitative information about the

nature of the gel such as pore radius and gel fiber radius. For a 6% concentration of

agarose gel, the average distance between fibers is around 11 nm which is large enough

to accommodate many proteins [116]. Another study of 2% agarose gel estimated the

pore radius (which is distinct from Rf, the radius of the gel fiber) in the range of

85-103 nm [117]. As the hydrodynamic radius of the probe molecule in increased,
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and approaches the pore radius, the diffusion coefficient decreases further until no

penetration is observed [117].

Rates of diffusion are also strongly affected by the gel matrix. That is, the dif-

fusivity of the macromolecules through gel matrices is restricted when compared to

the diffusion in bulk solution. There are two components in this reduction: frictional

resistance and tortuosity. In the diffusion of macromolecules in well defined pores,

the frictional resistance (hydrodynamic effects) have been found to be instrumental

in predicting the reduction in mobility [114]. In gels, the surfaces are less well defined

than in a pore and it is difficult to know precisely where the gel fibers are for any

given diffusing macromolecule. In addition, hydrodynamic effects are long range and

predictions or calculations for the diffusivity require the use of a many proximate

fibers [118, 119]. The second reason for the reduction in the diffusivity is tortuos-

ity. Because the trajectory of a macromolecule through the gel matrix is not straight

there is an increase in path length that will contribute to the reduction in the apparent

diffusivity.

As the agarose content increases, the inter-fiber spacing decreases and the polymer

chain mobility decreases effectively. As a result there is a decrease in the observed

diffusion coefficient [120]. The diffusion coefficient of a variety of proteins has been

measured in crosslinked agarose matrices with concentration ranging from 2% to 6%

agarose [112]. Again, the diffusion coefficient decreased as the agarose content in-

creased for all proteins studied.

Diffusion coefficients of macromolecules in neutral agarose gels and agarose-dextran

composite gels decrease with the increasing radius of the solute [121]. The concen-

tration of agarose and dextran was also varied in these experiments. As expected,

as the agarose content increased, the diffusivity decreased as a result of increasing

diffusional hindrance. The effective medium model gave an adequate prediction of
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decreased diffusion with respect to the addition of dextran.

From a fundamental point of view, precise measurements for model systems are

needed to reveal the underlying transport principles. It is known that the presence

of obstacles slows down the transport and that this is more pronounced for larger

molecules. However, the basic underlying mechanisms and their effects are not yet

completely understood. In particular, the motion of particles through a gel matrix

represents an intricate problem as the gel matrix can respond to the particle motion.

A nontrivial dependence of the diffusion behavior on both the host and the guest, i.e.

the gel and the diffusing particles, is expected. The behavior of the host is mainly

characterized by a typical pore size. However, topological constraints resulting from

the nontrivial and dynamically changing connectivity of the pores also have an impact

on the diffusion of the guest molecules. The diffusion coefficient is also influenced by

the structural properties of the guest molecules such as hydrodynamic radius, shape,

molecular weight or charge distribution. The significance of sieving, entanglements,

chemical interactions, partitioning, oscillation of pores etc. is still controversially

discussed. In addition, the average size of the pores is also under debate.
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Chapter 3

Experimental Techniques

In this work, we have combined the use of pulsed-field-gradient nuclear magnetic res-

onance (PFG NMR) with small-angle neutron scattering (SANS) in order to obtain

new insights in simple model systems of macromolecular crowding. The NMR and

SANS techniques complement each other. The magnetic resonance spin echo yields

direct dynamical information on the millisecond-to-second timescale via pulsed-field-

gradient NMR (PFG NMR) diffusion measurements. Typically, PFG NMR can be

used in dilute suspensions to obtain hydrodynamic radii from the measured diffu-

sion coefficients using the Stokes-Einstein relation. The Stokes-Einstein relation is

strictly valid at infinite dilution, and at finite concentrations there are hydrodynamic

corrections. However, in the presence of crowding, the size (and shape) of the macro-

molecule can also be changed. In addition, crowding makes the mobility a function

of the packing fraction.

SANS, on the other hand, yields structure (size) of macromolecules. Since we

only have access to the effective mobility in dynamics measurements, we performed

independent measures of radius of gyration via small-angle scattering measurements

to construct a complete picture of the macromolecular dynamics. We also have used
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rheology in order to construct a quantitative picture between the microscopic and

macroscopic environment.

3.1 NMR Spectroscopy

Nuclear magnetic resonance is a quantum mechanical phenomenon which is based on

the magnetic properties of the nucleus. It occurs when the nuclei of certain atoms

are immersed in a static magnetic field and exposed to a second oscillating magnetic

field [1]. Nuclei with a non-zero spin quantum number have a magnetic moment. In

other words the nucleus behaves like a tiny bar magnet. This magnetic moment can

be thought semi-classically of as arising from the spinning of a charged particle.

3.1.1 Basic Theory of NMR

In classical physics, when a magnetic dipole is placed inside a magnetic field (~Bo), its

potential energy is given by

U = −~µ .~Bo, (3.1)

where ~µ denotes a classical magnetic dipole moment. Likewise, when a nuclear spin is

placed inside a magnetic field, its nuclear spin Hamiltonian depends on both its own

nuclear magnetic dipole moment and the external magnetic field it experiences. The

nuclear dipole moment of a given nucleus is given by

~µ = γ~I, (3.2)

where γ is the gyromagnetic ratio which is an intrinsic property of any nucleus (

γ1H = 26.752× 107 s−1 T−1 and γ2H = 4.107× 107 s−1 T−1), and Î is a dimensionless

spin angular momentum operator. Nuclei that have non-zero angular momentum also
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have a non-zero nuclear magnetic moment. The z component of the magnetic moment

is given by

~µz = γ~Iz. (3.3)

For a nuclear spin in a magnetic field of strength Bo applied along the z-axis, the

Hamiltonian is [2]

Ĥ = −γBo Îz. (3.4)

Here Îz is an operator which represents the z component of the nuclear spin angular

momentum is specified by

Îz = m  h, (3.5)

where m is the magnetic quantum number and is restricted to values of m = ( - I,

- I+1,..., I ), with a total of 2I +1 possible degenerate sublevels. Nuclei that have

non-zero angular momentum also have a non-zero nuclear magnetic moment. In the

field of NMR spectroscopy, the atomic nuclei are classified into non-detectable nuclei

with an even number of protons and even number of neutrons (i.e. I=0 such as 12C

and 16O) and detectable nuclei with either odd number of protons and odd number

of neutrons or odd mass number (i.e. I is an integer and half integer, respectively)

such as 2H and 1H, 15N, and 13C, respectively [1, 2].

In biological applications of NMR spectroscopy, nuclei with spin 1/2 are most

important (i.e. 1H, 15N, 13C). 1H NMR is also most widely used for diffusion mea-

surements via pulsed-field-gradient NMR [3], which is the primary experimental tool

to be used in this work. The following discussion will therefore be restricted to spin

1/2 nuclei. In a spin 1/2 system Îz has just two eigenfunctions, characterized by m

= + 1
2 and m = - 1

2 . The two corresponding eigenstates |α > (i.e. 1/2 state) and
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|β > (i.e. -1/2 state) obey the eigenvalue equations:

Îz |α >= +
1
2

 h |α >

Îz |β >= −
1
2

 h |β >

(3.6)

|α > thus has eigenvalue +1
2
 h, and |β > has eigenvalue −1

2
 h. These are also the

eigenfunctions of the Hamiltonian in Equation 3.4. Therefore the effect of the Hamil-

tonian operator on |α > yields

Ĥ |α > = −γBo Îz|α >

= −γBo
1
2

 h |α >

= −
1
2

 hγBo |α > .

(3.7)

ωo = —γBo is called the Larmor frequency and corresponds to an energy E =

−1
2
 hω0. Although ωo takes on negative values when γ > 0, the absolute value of

this frequency is typically referred as the Larmor frequency. Our NMR experiments

have been carried out using a NMR spectrometer that operates with a magnetic field

B0= 14 T. With γ1H = 26.752×107 s−1 T−1, the Larmor frequency (ω0) of 1H nucleus

is 2π (6 × 108) rad s−1 (commonly referred to as 600 MHz). The frequency of the

radio waves is in the range ≈ 0.3 MHz to ≈ 300 GHz; thus NMR is possible with

electromagnetic fields oscillating at radio frequency. Using the same approach, it is

easy to show that |β > is also an eigenfunction, with eigenvalue +1
2
 hω0.

An equilibrium exists between the |α > and |β > states, with the relative popula-

tions given by the Boltzmann distribution [1]

nα,eq

nβ,eq
= exp

(
∆E

KBT

)
, (3.8)
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where nα,eq and nβ,eq are the equilibrium populations in the spin up state (α) and

spin down state (β) respectively, T is the temperature, and ∆E is the energy difference

between the two nuclear spin states. For 600 MHz, the difference in population is

0.0001, which indicates a very small magnetization. Applying an external magnetic

field results in non-degenerate energy levels, with two energies of ±1
2
 hγBo, where the

state |α > has the lowest energy. The difference in the energy levels between the |α >

and |β > states, and therefore the energy required for a transition to occur between

these two states, is ± hγBo. In general, at equilibrium the net magnetization of the

sample is along the direction of Bo. When the magnetization is flipped away from

the z-axis then the sample magnetization will experience a torque from the magnetic

field Bo which drives the magnetization vector to possess a precessional motion about

the direction of the magnetic field with a Larmor frequency: ω0 = −γBo. For

magnetic field strengths commonly applied in NMR experiments, ω0 is in the radio

frequency range [2]. Within a given molecule, nuclei of the same isotope experience

minute differences in magnetic field strength, due to variations in electron density

and the magnetic fields of adjacent nuclei. This fact gives a molecule a spectrum of

precessional frequencies for a given applied magnetic field.

3.1.2 The Pulse and Acquire Experiment

In this section the simplest of all NMR experiments will be described; this experiment

is known as pulse and acquire. This experiment consists of a single excitation pulse

followed immediately by detection of the resulting free-induction decay (FID). The

frequency spectrum is then usually obtained by a Fourier transformation of the FID.

It has been previously shown that the |β > state has a small excess population

over the |α > state. As a result, in the equilibrium state, there is a small net mag-

netization orientated along the z-axis. In this state there is no net precession of the
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Figure 3.1: 1D 1H-NMR spectrum for PEG/H2O sample at a sample temperature 298
K. Peak A is the water peak, while the peak region marked “B” is the principal PEG
peak.

magnetization and therefore no observable signal. It is necessary to perturb this equi-

librium state of the magnetization. This can be accomplished by the application of a

radio-frequency electromagnetic pulse, ~B1(t). Assuming that the oscillating magnetic

field (i.e. implicitly the oscillating RF pulse) ~B1(t) is along the x-axis:

~B1(t) = îB1 cos ωt, (3.9)

where B1 has a maximum radio frequency amplitude and ω is the frequency of the

radio frequency pulse. Equation 3.9 implies that the magnetic field vector is oscillating

between îB1 and−îB1 and passing through zero. Simply, we can assume that ~B1(t) is a

linear combination of two counter-rotating magnetic fields components (i.e. clockwise

and counterclockwise rotating magnetic fields). One of the components is rotating in

the same way as the nuclear spin does while the another component is rotating in the

opposite direction of the spin precession:
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~B1(t) = ~B1
res(t)+~B1

non-res(t) =
~B1

2

[
î cos(ωt) + ĵ sin(ωt)

]
+

~B1

2

[
î cos(ωt) − ĵ sin(ωt)

]
(3.10)

We only consider the resonant field component ~B1
res(t) because it rotates in the

same sense as nuclear spin precession. In a reference frame rotating with the Larmor

frequency, the resonant component is nearly static, while the non-resonant is oscillat-

ing rapidly about zero; this oscillation frequency increases with Bo. In the presence

of a strong external static magnetic field Bo, the resonant component ~B1
res(t) thus has

the dominant direct effect on the orientation of the nuclear spin. It causes the net

magnetization no longer to be orientated along the z-axis and therefore no longer at

equilibrium. The angle, Θ, of rotation on resonance is given by

Θ = −γB1 τ, (3.11)

where τ is the duration of the RF pulse. The net magnetization, when not oriented

along the z-axis, will precess at the Larmor frequency about the external magnetic

field (i.e. the z-axis). The precession of a magnetic moment about a static magnetic

field will induce a current in a coil placed close to it. Detection of the NMR signal is

achieved by measuring the current induced in this coil. Measuring this current as a

function of time yields a free induction decay (FID). For a single isolated nucleus, the

FID will resemble a damped sinusoidal decay with a frequency equal to the Larmor

frequency of the nucleus. The decay is damped because the equilibrium state is re-

established by relaxation, to be discussed in detail in the next section. The FID is

recorded in the time domain, but for spectroscopy, frequency domain spectra are most

convenient. In order to inter-convert time domain and frequency domain, the method

of Fourier transformation is used [3].
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Since the value of a nuclear Larmor frequency ωo depends on the value of the

operating magnetic field strength B0 of the NMR spectrometer, then for different

NMR spectrometers which operate at different field strengths, the same nuclei at

the same chemical environment have different values of Larmor frequency and so

different peak positions on the frequency scale. In order to compare the peak positions

in the 1D spectra between NMR spectrometers which operate at different fields, a

chemical shift scale is defined as a magnetic field independent scale. On this scale, the

peak position is reported by measuring the peak’s frequency νi relative to a reference

peak frequency νref of a known compound. Tetramethylsilane (TMS), with chemical

formula (CH3)4Si, is the most common standard reference compound for 1H NMR.

TMS is typically chosen as a reference in organic solvents because it is chemically

inert and has a single peak NMR spectrum. Thus, the peak position in the chemical

shift scale is defined by the following equation [1]

δ(ppm) = νi − νref

νspectrometer
× 106, (3.12)

where νspectrometer is the NMR spectrometer frequency and the position of the standard

reference compound is defined to be at 0 ppm on the chemical shift scale. In Figure 3.1,

a Fourier transformed 1D spectrum of a PEG/water suspension is shown.

A 90o RF pulse rotates the net magnetization into the xy plane. In a reference

frame rotating at the precession frequency, the magnetization is static, i.e., is “in

phase”, assuming a perfectly uniform field, and no relaxation. Over time, the magne-

tization loses phase coherence due to local magnetic field inhomogeneity and spin-spin

relaxation.
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3.1.3 Chemical Shift

There is a magnetic interaction between an external magnetic field and the nuclear

spins. The external magnetic field causes an induced magnetic field in the electron

cloud. So the nuclear spins feel a local magnetic field which is the combination of

the external as well as the induced magnetic field. But the electrons have different

chemical environments at different sites. There is thus a local variation of the magnetic

field [2]. As shown in Figure 3.1, due to the difference in chemical environment,

protons located in the PEG polymer chain experience slightly different magnetic fields

than the protons of water. This is known as chemical shift. In section 3.3, we will

discuss pulsed-field-gradient NMR (PFG-NMR), where diffusivity of many species in

the same system can be measured simultaneously using their different 1H chemical

shifts.

3.2 Relaxation in NMR

Generally, the term “relaxation” is used for the re-establishment of thermal equilib-

rium of a perturbed system (a system that obeys the Boltzmann distribution func-

tion). In the presence of a magnetic field, if a sample is undisturbed for a long time, it

reaches a state of thermal equilibrium. But a radio frequency pulse perturbs the sys-

tem to a non-equilibrium state. Relaxation is the process of regaining the equilibrium

of a spin system through interactions with the environment. Relaxation processes in

NMR are roughly divided into two types: longitudinal and transverse.
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3.2.1 Longitudinal (spin-lattice) Relaxation

Longitudinal relaxation is the process during which the longitudinal component of

the sample magnetization re-establishes its maximum value along the direction of

the applied magnetic field [1]. A nuclear spin inside the sample experiences both

an external uniform magnetic field B0 and internal oscillating local fields Bloc. One

of the origins of these local fields is the magnetic fields associated with magnetic

dipole moments of nearby nuclear spins inside the sample. Because of resonance,

local fields that happen to be oscillating at close to the Larmor frequency have a

disproportionately large effect in rotating a magnetic moment to new directions just

like an applied resonance pulse. In addition, the direction and the magnitude of

these local fields at nuclear sites change continuously due to the thermal motion

of molecules. According to the Boltzmann distribution, the population of nuclear

spins in the lower energy state is higher than that in the higher energy state. The

local fields will either rotate a given spin towards or away from the z-axis. However,

the Boltzmann distribution ensures that the rotation towards the z-axis are more

frequent than the rotation away from the z-axis. Thus, the magnetization is driven

to equilibrium by thermal motions.

The above termed mechanism is often refer as a “non-secular” contribution [1] (i.e.

arising from local fields oscillating at frequencies close to the Larmor frequency) to

transverse relaxation; when the longitudinal magnetization relaxes back to equilib-

rium, so does the transverse magnetization.

3.2.2 Transverse (spin-spin) Relaxation

In equilibrium, there is a net longitudinal (z) magnetization, which is practically un-

detectable in comparison with the diamagnetic response of the sample to the B0 field.
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NMR therefore typically involves (90o)x or (90o)y pulses which rotate the nuclear

spins into the transverse (xy) plane. In the presence of uniform external magnetic

field B0, these spins precess in synchronization with the Larmor frequency and thus

the macroscopic transverse magnetization also undergoes precessional motion [1, 2].

Transverse relaxation is the process during which the transverse components of the

sample magnetization decay to zero [1]. In the presence of nearby nuclear spins, a

nuclear spin will precess about the direction of the uniform magnetic field with a

frequency which is proportional to the sum of both B0 and the net z-component of

the local field Bz,loc [1]

ω = −γ(B0 + Bz,loc), (3.13)

where B0 >> Bz,loc, but the amplitude of the local field and the z-component of

the local field vary at different nuclear spin locations in the sample. The nuclear

spins will thus precess at slightly different values of Larmor frequency. This causes a

loss in synchronization or phase coherence, and results in an irreversible decay in the

macroscopic transverse magnetization. This mechanism is often called the “secular”

contribution to transverse relaxation: it arises from the z-component of local fields

varying from one spin to spin.

In NMR, the peak width is directly proportional to the transverse relaxation rate.

Therefore, losing synchronization due to the secular contribution causes a peak broad-

ening that is called homogeneous broadening. However, another broadening in a NMR

peak might be caused due to the existence of an inhomogeneous magnetic field. This

peak broadening is called inhomogeneous broadening [1]. Inhomogeneous broadening

arises from variation of macroscopic magnetic fields due to sample imperfection or

susceptibility inhomogeneities (or because of Bo field non-uniformity, which is mini-

mized by “shimming”, which is NMR terminology to describe the careful tweaking of

the Bo field using auxiliary field adjustment coils known as shim coils).
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Figure 3.2: Inversion recovery pulse sequence. The function of the 180o pulse is to
flip the initial longitudinal magnetization (Mo) opposite to the direction of the main
magnetic field (Bo). During the τ interval, these inverted magnetization undergo T1
relaxation as they variably seek to re-establish magnetization along the +z-direction.

Two techniques have been used to measure longitudinal relaxation time T1 and

transverse relaxation time T2 of different species in the solution.

3.2.3 The Inversion Recovery Technique

This technique is used to measure the longitudinal relaxation time T1 associated with

different chemical groups inside a sample. As shown in Figure 3.2, the pulse sequence

includes two successive pulses, 180o and 90o pulses respectively with a delay time τ

between these two pulses [2].

The first 180o pulse inverts the magnetization of the sample, which is at equi-

librium, from the z-axis to the −z-axis. As soon as the 180o pulse is turned off,

the magnetization vector starts to relax back to its previous orientation along z-axis

(equilibrium) during the delay time. During this period no signal can be detected

by the NMR device because there is no available magnetization component in the

xy-plane. Then, the sample is exposed to 90o pulse which is responsible for creating

a transverse magnetization in the xy-plane which can be detected by the receiver coil
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and recorded as a peak with specific intensity and polarity.

The pulse sequence is repeated at different values of delay time τ in order to be

able to record different positive and negative peaks with different intensities such that

the intensity of each peak is proportional to the magnitude of the sample longitudinal

magnetization at any time τ after 180o pulse Mz(τ) [2]

Mz(τ) =Mo

(
1− 2 exp

(
−τ

T1

))
, (3.14)

where Mo is the magnitude of sample magnetization at equilibrium and T1 is the

longitudinal relaxation time. Based on Equation 3.14, turning on the 90o pulse right

away after turning off 180o (i.e. τ = 0) then a maximum peak intensity with magne-

tization amplitude −Mo and with negative polarity is detected by the NMR receiver

coil. On the other hand, turning on the 90o pulse at large value of τ (i.e. τ = ∞)

after turning off the 180o pulse then a maximum peak intensity with magnetization

amplitude Mo and positive polarity is detected.

According to Equation 3.14, the longitudinal relaxation time T1 is defined as the

value of delay time at which the longitudinal sample magnetization recovers to ≈ 0.26

of its equilibrium magnetization value Mo.

The longitudinal relaxation time T1 for PEG and Ficoll70 at all volume fractions

in water were measured 770 ± 12 ms and 783 ± 14 ms respectively. Hence, the time

between successive repetitions of the experiment (for signal averaging), d1, was chosen

to be large compared to the T1 relaxation time (d1 > 5T1).

3.2.4 The Spin Echo Technique

This technique is used to measure the transverse relaxation time T2 of different kind

of nuclei magnetization inside a sample [2]. The pulse sequence, shown in Figure 3.3,
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Figure 3.3: Spin echo pulse sequence. The NMR signal observed following an initial
excitation 90o pulse decays with time due to both spin relaxation and any inhomo-
geneous effects which cause different spins in the sample to precess at different rates.
The first of these, relaxation, leads to an irreversible loss of magnetization. However,
the inhomogeneous dephasing can be removed by applying a 180o inversion pulse that
inverts the magnetization vectors.

includes two successive pulses, 90o and 180o pulse respectively with a delay time τ

between these two pulses and same period of delay time between 180o and the signal

acquisition.

The first 90o pulse inverts the sample magnetization at equilibrium and creates

a transverse magnetization along the -y-axis. After turning off the 90o pulse and

during the first delay time τ between 90o and 180o pulses the nuclear spins start

spreading out and possessing slightly different values of precession frequencies ac-

cording to Equation 3.13 such that some nuclear spins precess with frequency slightly

higher than Larmor frequency while some others precess with frequency slightly lower

than Larmor frequency.

The next 180o pulse inverts the orientation of individual nuclear spins to the

opposite side in the xy plane and it reverses the precession of nuclear spins in order

to cancel the effect of nonhomogeneity in the applied uniform magnetic field which

can cause dephasing in the transverse component of the sample magnetization. The

77



signal intensity is recorded from the top of the echo, i.e. a time τ after the 180o pulse.

The pulse sequence is repeated at different values of delay time τ in order to detect

different peaks intensities such that the intensity of each peak is proportional to the

magnitude of sample transverse magnetization My(τ) [2]:

My(τ) =My(0) exp
(
−τ

T2

)
(3.15)

whereMy(0) is the magnitude of the transverse magnetization right away after turn-

ing off the 90o pulse.

According to Equation 3.15, the transverse relaxation time T2 is defined as the

value of delay time at which the transverse component of sample magnetization decays

to ≈ 0.37 (the e-folding timescale, 1/e) of its maximum value My(0).

The transverse relaxation time T2 for PEG was 254 ± 3 ms while for Ficoll70, T2

was measured 13 ± 1 ms.

3.3 NMR and Translational Motion

In the description of a one-dimensional single-pulse experiment, both B0 and therefore

ω0 are homogeneous throughout the system. If in addition to B0, there is a spatially

dependent magnetic field gradient g, the Larmor frequency becomes spatially depen-

dent and [4]

ω = γB0 + γgz . (3.16)

The phase shift in the time interval t is given by

φ(t) = γB0t+ γ

∫ t
0
g(t ′)z(t ′)dt ′ (3.17)
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Figure 3.4: The pulsed-field-gradient spin echo pulse sequence. A 90◦ pulse followed
by a delay of τ, then a 180◦ pulse followed by a second delay of length τ. The gradient
pulses are of amplitude g and duration δ, and applied first after the 90◦ RF pulse and
second after the 180o pulse.

In the most common diffusion experiments, this gradient is “pulsed” for a time du-

ration δ. The dephasing due to the gradient pulse is a function of the gyromagnetic

ratio of the nucleus and gradient strength. So a magnetic field gradient can be used

to label the position of the spins.

3.3.1 The PGSE Experiment

The most common experiment to measure diffusion coefficients using NMR is the

pulsed-gradient spin-echo experiment [5]. The basic premise of this technique, and

all NMR techniques that measure diffusion, is the application of a magnetic field

gradient which labels a specific position in the sample with a specific precessional

frequency. Figure 3.4 shows a diagram of the PGSE pulse sequence. The RF portion

of the pulse sequence is, as the name suggests, a simple spin-echo pulse sequence,

a 90o pulse followed by a delay of τ, then a 180o pulse followed by a second delay

of length τ. At this point the magnetization of the sample will refocus resulting
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in an “echo”. In the PGSE experiment, a magnetic field gradient pulse is applied

after both RF pulses. The gradient pulses are of duration δ, and ∆ is the time

from the start of the first gradient pulse to the start of the second gradient pulse.

The first gradient pulse causes a certain amount of phase development relative to

ω0, the precessional frequency due to the static applied field. The 180o RF pulse

then inverts the sign of this phase development. If no diffusion takes place during

the course of the experiment, the second gradient pulse will remove all the phase

development that resulted from the first gradient pulse and the net magnetization will

completely refocus, momentarily, at 2τ. This refocussing is the spin echo. However,

if diffusion takes place, an incomplete refocusing of the net magnetization at 2τ will

result. This means the observed signal will be attenuated [5]. Both random and

directed translational motion can be measured via a pulsed-gradient spin echo [6].

In what follows, we make the above description more precise. The pulse sequence

of a spin echo pulse sequence with gradients (thus called the pulsed-gradient spin echo

or PGSE experiment) is shown in Figure 3.4. A 90ox radio frequency pulse is applied

which rotates the magnetization from the z axis to the xy plane. During the first τ

period at time t1 a gradient pulse of duration δ and magnitude g is applied. At the

end of the first τ period, the phase shift is a function of z,

φ(τ) = γB0τ+ γg

∫ t1+δ

t1

z(t)dt . (3.18)

Here g has a constant amplitude over the time duration δ, i.e., it is a rectangular

gradient pulse. At the end of the first τ period, a 180oy RF pulse is applied which

reverses the sign of the precession. At time t1 + ∆, a second gradient pulse of equal

magnitude and duration is applied. If the spins have moved, the degree of dephasing

is proportional to the displacement in the direction of the gradient in the duration ∆.

80



Now the total phase shift is given by [5]

φ(2τ) =
[
γB0τ+ γg

∫ t1+δ

t1

z(t)dt

]
−

[
γB0τ+ γg

∫ t1+∆+δ

t1+∆

z(t ′)dt ′
]

= γg

[∫ t1+δ

t1

z(t)dt−

∫ t1+∆+δ

t1+∆

z(t ′)dt ′
] (3.19)

The echo signal attenuation S(∆, δ,g) at t = 2τ can be written as

S(∆, δ,g) = S0

∫∞
−∞ P(φ, 2τ) exp (iφ)dφ = S0 〈exp (iφ)〉 (3.20)

where S0 is the signal in the absence of a field gradient. P(φ, 2τ) is the phase distri-

bution function. The above expression must be ensemble averaged in order to yield

the signal in the expression. Since for randomly varying quantities (as in diffusion),

the ensemble-averaged phase distribution function becomes a Gaussian function, and

the signal can be written as

S(g) = S0 〈exp (i∆φ)〉 = S0 exp
− 〈(∆φ)2〉

2 , (3.21)

where 〈〉 refers to an ensemble average.

In the short gradient pulse limit (the SGP approximation), i.e. assuming δ� ∆,

this equation can be written (for a rectangular gradient pulse) as

S(g) = S0 exp (−γ2g2δ2D(∆− δ/3)), (3.22)

where D is the self diffusion coefficient. Therefore in a pulsed-field-gradient ex-

periment, one can vary a generalized gradient strength parameter k, where k =

γ2g2δ2(∆ − δ/3). While g is the parameter that is ramped (up or down) during

a single experiment to vary k, ∆ can also be varied. Observation of the signal atten-
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Figure 3.5: The pulsed-field-gradient stimulated echo pulse sequence. Transverse
relaxation occurs during the time τ1, longitudinal relaxation during the time τ2, and
∆ is the diffusion time. The gradient pulses are of amplitude g and duration δ, and
applied after the first and third 90o RF pulse.

uation with increasing k yields the self-diffusion coefficient [4].

For the systems in which we are interested, the transverse relaxation time is short

(10 - 300 ms) which causes a severe restriction on diffusion time ∆ . This is because

there is a second term in the attenuation equation due to transverse relaxation

S(g) = S0 exp (−γ2g2δ2D(∆− δ/3)) exp
(
−∆

T2

)
. (3.23)

So we use a stimulated echo pulse sequence (Figure 3.5), discussed next.

3.3.2 Pulsed Field Gradient Stimulated Echo

In the stimulated echo pulse sequence (Figure 3.5), the 180o pulse is replaced by two

90o pulses separated by a time interval τ2 much longer than the first time interval
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Figure 3.6: Stimulated echo signal attenuation of Ficoll70 in a solution for increasing
gradient value.

τ1 [6]. After the second 90o pulse a “homospoil” gradient (a gradient pulse that

rapidly reduces the magnetization zero by dephasing the spins) is applied to kill the

remnants of transverse magnetization.

The diffusion time in this experiment is determined by the largest time which is

τ2 and echo signal attenuation due to spin relaxation is determined by T1. So the

stimulated echo pulse sequence is well suited to measure slow diffusion. In all samples

we study, T1 is much longer than T2.

3.3.3 PFG NMR Measurements

PFG NMR offers simultaneous measurement of different species either by chemical

shift or relaxation time. A molecule having different chemical species has different

relaxation times and individual chemical shifts. A liquid sample containing differ-

ent molecular species will thus have chemical shifts for each chemical group of each
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molecule. We can easily trace the particle motion just by observing the echo attenu-

ation of these peaks in a pulsed-field-gradient spin echo experiment. By this process,

the diffusion coefficient for different chemical species can be measured simultaneously

in the same experiment. In a single sentence, the advantage of a PFG NMR study

would be to obtain spectrally resolved diffusion coefficients.

3.3.4 Calibration of Diffusion Coefficients

It is necessary to consider the calibration of the gradient strength, since this is a

pre-requisite to the determination of accurate diffusion coefficients and can itself be

problematic. A number of different options are available to calibration [4]. The

simplest and probably the best technique is by indirect calibration using a standard

sample of known diffusion coefficient. For example, diffusion coefficient of HDO in

pure D2O or H2O/D2O mixtures are ideal. In this work a standard calibration sample

(pure D2O) was run prior to every set of experiments to ensure consistency between

datasets. In all cases we used the diffusion coefficient of trace HDO in pure D2O

(1.902 × 10−9 m2/s at 25oC) [7] as our calibration standard.

3.3.5 Analysis of Diffusion Experiments

A stimulated echo pulse sequence was used to measure the diffusion coefficient. The

parameters included ∆ from 50 ms to 500 ms, δ = 2 ms and gradient values in the

various experiments reported in Chapters 5, 6, 7, and 8 were varied according to the

purpose of each experiment.

In PEG/Ficoll70 solution, one can obtain diffusion coefficients for the PEG and

Ficoll70 simultaneously by using their relaxation time. The signal attenuation of each

peak yielded the diffusion coefficient according to the equation (from Equation 3.21)
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Figure 3.7: The attenuation of the signal S(g)/S(0) on a log scale versus k =
(γδg)2(∆ − δ/3) for PEG and Ficoll70 in solution. The PEG signal exhibits mono-
exponential decay as a function of the gradient parameter, k; the Ficoll signal does
not.

S(g) = S0 exp
(
− γ2g2δ2D(∆− δ/3)

)
= S0 exp(−Dk) (3.24)

where k is a gradient strength parameter where k = γ2g2δ2(∆ − δ/3). Shown in

Figure 3.6 is the signal attenuation for the water and Ficoll70 for gradient strengths

(in G/cm) from 40 G/cm to 100 G/cm in 32 steps where the gradient is so large

that the water signal has been completely eliminated. A signal attenuation curve for

such an experiment is shown in Figure 3.7 indicates that NMR signal attenuation

for Ficoll70 (packing fraction, φF = 0.14) can not be fitted with a mono-exponential

function.

In the situation where the molecular exchange between monomer and cluster is

very slow (or more generally if there are multiple sizes in the chemical species that
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remain stable over the NMR experiment), one expects the total signal to be given by

Stotal = Smonomer + Scluster

= S0,monomer exp(−Dmonomerk) + S0,cluster exp(−Dclusterk) (3.25)

which is bi-exponential in nature.

A generalization to multi-exponential behaviour may be made for macromolecules

existing in more than two species: Stotal =
∑
i S0,i exp(−Dik). For two species,

Equation 6.3 may be written in the form Stotal/Smax = f exp(−D1k)+(1−f) exp(−D2k),

where f = S0,1/(S0,1 + S0,2).
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Figure 3.8: Schematics of the geometry of SANS experiments.

3.4 Small Angle Neutron Scattering

Small Angle Neutron Scattering (SANS) is a very well established method for the

study of polymer and colloidal samples [8, 9], because it can detect inhomogeneities

from around the atomic scale (1 nm) to close to the micron scale (600 nm), and

partial deuteration can be used in order to enhance the contrast between scatterers,

and between the scatterers and the solvent.

SANS exploits the dual wave/particle nature of the neutrons. Since they have

zero charge, neutrons are scattered by nuclei in samples or by the magnetic moments

associated with unpaired electron spins (dipoles) in magnetic samples. Neutrons are

mainly produced in two ways: continuously by a nuclear fission reactor or in pulses

by spallation from a metal target bombarded by protons in a particle accelerator.

Immediately after been produced the neutrons are moderated usually using liquid

hydrogen in order to slow them down (make them lose kinetic energy). These neutrons

are the ones used for SANS and they are called “cold neutrons” [10]. Neutrons are

scattered with the same intensity in all directions, because the wavelength of neutrons
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Figure 3.9: Schematic drawing of a basic scattering geometry. The incident plane
wave (ki) is scattered from two scattering center. A scattered wave (ks) propagates
into the direction of Θ. Due to the path difference of the scattered waves interference
takes place. The scattering intensity is detected in a certain distance on the detector
plane within an area defined by the solid angle Ω.

is orders of magnitude larger than the nucleus that scatters it. The main consequence

of this is that in neutron scattering nuclei can be consider as “point scatterers”.

3.4.1 Scattering Length and Cross Section

In SANS, a two dimensional detector is used. In a fixed-wavelength instrument once

the wavelength (λ) has been selected (the typical operating wavelength of a SANS

instrument is 6 Å [10]), the scattering length (|~q|) can be changed by varying the

sample-detector distance [11]. As shown in Figure 3.8, for each sample-detector dis-

tance, several values of the radial distance (corresponding to different |~q| values) at

which neutrons are scattered can be measured. In this geometry and at small angles,

the following expression for |~q| can be derived:

|~q| =
4π
λ

sinΘ (3.26)
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In this study, experiments were carried out at the General Purpose (GP-SANS) CG-2

instrument at Oak Ridge National Laboratory. Two sample to detector distances were

used (1.7 m and 18.5 m) for a range of scattering vectors from 0.004 Å−1 to 0.5 Å−1.

The scattering of the incident wave takes place at individual scattering centres.

The detected scattering intensity results from the interference of the scattered waves

propagating from the different scattering centres and having a phase difference Ψ.

The phase difference (Ψ) between incident and scattered waves is

Ψ = ~q. (~ri −~rj) = ~q .~rij. (3.27)

The individual scatterers are linked by the vector ~rij. The scattering vector ~q is

defined by the following relation and describes the momentum transfer during the

scattering process:

|~q| = | ~ks − ~ki| (3.28)

Here, ~ki (|~ki| = 2π/λ) is the incident wave vector with the wavelength λ and ~ks is the

one of the scattered waves. For an elastic small-angle scattering experiment, only the

magnitude of the scattering vector is considered, which is related to a length in the

reciprocal space. In the following discussion it will be assigned the unit nm−1.

In neutron scattering, the sample and solvent should have different scattering

length densities (ρ(r)) in order to have contrast (making it possible to distinguish

one from the other), in the same way as in light scattering they should have different

refractive indices or in small angle X-ray scattering they should have different electron

densities. The scattering length densities can be calculated using the expression,

ρ(r) =

∑n
i=1 bi

V
. (3.29)
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Herein, bi is the scattering length of the different species embodied in the sample and

V is the molar volume, accessible via measurements of the macroscopic density of the

sample [12]. The total amplitude of the three-dimensional Fourier transform of ρ(r)

of the scattering ensemble is [12]

A(q) =

n∑
i=1

bi exp(i~q .~rij)

=

∫
V

ρ(~r) exp(i~q .~rij)d3r.
(3.30)

This relation takes into account that the integration is done over the total scattering

volume V. In neutron scattering, the differential scattering cross–section
(
dΣ
dΩ

(q)
)
is

the dependent variable measured. It has dimensions of (length)−1, usually cm−1).

This quantity is usually termed the “intensity” and is represented by the symbol I(q),

but this term can be misleading since in SANS what is measured is the number of

neutrons at a given wavelength, scattered through a particular angle that arrive to a

small area of the detector in a unit time (flux). This flux can be expressed as

I(q) =
dΣ

dΩ
=
〈
A(q)A∗(q)

〉
=

∫
V

∫
V

ρ(~ri) ρ(~rj) exp(i~q .
(
~ri −~rj)

)
d3ri d3rj .

(3.31)

The differential scattering cross section contains information about the size, shape,

and interactions between scattering centers of the sample [13]. The experimental

access to differential scattering cross section is provided by the number of events on

the position sensitive detector with respect to the incident number of neutrons.
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3.4.2 Scattering of Particles in Solution

Until this point, only single objects non-affected by their surrounding matrix have

been discussed. Now we consider particles with a homogeneous scattering length

density bs are dispersed in a continuous medium with a scattering length density bm.

Hence, Equation 3.31 can be written as [13]:

I(q) = (N/V)(∆b)2P(q) (3.32)

In this expression N is the number density of scattering centers, V is the volume

of one scattering center, ∆b = bm − bs is the scattering length contrast. Here P(q)

is the particle form factor describing its corresponding spatial geometry [12].

The simplest case is limited to single scatterer within a matrix or for high dilution.

This approximation assumes that there is no correlation between the positions of

the particles and thus there is no phase relation between the scattered waves [13].

Increasing the number density causes a spatial correlation and the scattered waves

interfere. The correlation of the dispersed particles is provided by the structure factor

S(q), which also enters the observed scattering intensity,

I(q) = N/V(∆b)2P(q)S(q) (3.33)

The spatial correlation between the individual particles is described by the structure

factor S(q). The observed scattering intensity is thus proportional to product of the

form factor and the structure factor. Any information about the form factor should go

here. The corresponding transformation of S(q) leads to the pair correlation function

g(r). For dilute systems the structure factor is unity.
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3.4.3 Debye Scattering Theory

The Debye theory is used when the scatterers have dimensions comparable with λ [13],

which is the case in the work in Chapter 5 and 6 (i.e. polyethyleneglycol). This has

as a consequence that different parts of the same particle can behave as scattering

centers. Because the distances between these centers have the same magnitude as the

wavelength, there will be interference by the waves scattered by different parts of the

same molecule. The form factor (P(q)) in this case depends on the nature and shape

of the scattering particle (i.e. Gaussian chain, rod, sphere). For a Gaussian coil, for

example, the expression of P(q) is:

P(q) =
2
x2

(
exp(−x) − 1+ x

)
(3.34)

where x = q2R2
g and Rg is the radius of gyration of the scattering object.

In this work, SANS data are presented as plots of the intensity of the scattered

neutron beam, I(q) as a function of scattering vector q = (4π sinΘ/λ), where Θ is

one half of the scattering angle and λ is the neutron wavelength. The intensity can be

written as I(q) = I0 P(q), where P(q) is the form factor which provides information

on the size and shape of the scatterers. Hence the radius of gyration of the scattering

object, Rg, can be extracted from fitting the plot of I(q) vs q to the Debye model.

3.4.4 Guinier Approximation

The analysis of the scattering intensities at small scattering angles (the low q limit) is

useful in obtaining model independent information on the investigated structure [11].

It reveals the radius of gyration Rg, which is a measure for the density distribution

around the centre of mass. It can also be used for the determination of the particle

volume Vp. The Guinier equation yields
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I(q) = I0 P(q) = I0 exp
(
−q2 Rg

2

3

)
. (3.35)

The approximation is restricted to the following assumptions [13]:

1. The relation is only valid for small scattering angles to fulfil qRg << 1.

2. An isotropic system without inter-particle interactions is considered. Thus, the

structure factor becomes unity.

3. The particles are randomly oriented and isotropically distributed.

The radius of gyration of the scattering object, Rg, can be extracted from the

slope of a plot of ln(I/I0) vs q2. This is is commonly known as the Guinier plot.

3.4.5 Contrast Variation

One of the important features in neutron scattering is the difference in scattering

length between hydrogen (−3.741× 10−15 m) and deuterium (6.671× 10−15 m) [14].

This difference is the basis of SANS measurements since molecules composed of light

atoms (such as hydrocarbons) have a very good contrast when dissolved in deuterium

oxide (D2O). D2O is the solvent preferred for such measurements due to its low inco-

herent scattering. When the scattering length contrast is equal to zero (∆b = 0), it is

said that the solute is “contrast matched” (it has the same scattering density as the

solvent) [13]. This can be achieved by replacing the hydrogen by deuterium in the

molecule, or by changing the mixture of hydrogen/deuterium (water/heavy water) in

the solvent, or both. The possibility of contrast matching the solute makes SANS

measurements very suitable for work with mixtures of components (such as polymers,

surfactant mixtures, surfactants and polyelectrolyte mixtures, among others) because
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Figure 3.10: Contrast variation Ficoll70 samples in solutions containing various
H2O/D2O ratios. The concentration at which Ficoll70 contributed minimally to the
scattering signal was determined to be 60% H2O and 40% D2O.

it allows detecting separately the scattering from each component, permitting to see

separately the conformation that each component adopts in the mixture.

In this work, the H2O/D2O composition points of minimum scattering intensity

for Ficoll70 were determined using contrast variation Ficoll70 sample in solutions

containing various H2O/D2O ratios. The ratio at which the scattering length densities

of Ficoll70 and H2O/D2O were matched and therefore Ficoll70 did not contribute to

the scattering signal was determined as 60% H2O and 40% D2O. This is shown in

Figure 3.10 where intensity is plotted against H2O/D2O ratios. The ratio at which

the scattering length densities of Ficoll70 and H2O/D2O were matched and therefore

Ficoll70 did not contribute to the scattering signal was determined as (60± 1)% H2O

and (40± 1)% D2O. Therefore only the PEG contribution appears as a q dependent

intensity in the spectra regardless of Ficoll70 packing fractions.
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Figure 3.11: Examples of flow curves for different fluids. (a) shear stress and (b)
viscosity as a function of shear rate.

3.5 Rheology

Conventionally, the flow or “rheological” properties of liquids such as water or oils

are characterized by their viscosity, η, which can be thought of as the resistance of a

liquid to flow or internal friction [15]. Applying a shear stress (σ) on a simple liquid

will produce a time-dependent strain, γ, which is equivalent to a constant value of

strain rate, γ̇ = dγ
dt

, in Newtonian liquids. Thus,

σ = η γ̇. (3.36)

Therefore, in Newtonian liquids, the shear stress σ is linearly proportional to the

strain rate γ̇, and a plot of shear stress against shear rate yields a straight line pass-

ing through the origin, the slope of the line being the viscosity, η. However, for many

suspensions there is no such linear relation between the rate of shear and the shearing

stress, and the rheological behaviour is said to be non-Newtonian. Figure 3.11 shows
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different types of basic flow behavior that can occur. For non-Newtonian suspension,

the system exhibits shear thickening, shear thinning, or both in the same system.

Shown in Figure 3.11 (a) and (b), shear thinning materials are those where the vis-

cosity of the material decreases with increased shear rate. This phenomenon can be

naturally occurring, or it can be engineered to occur. Polymer solutions are known to

thin in the presence of shear, with the decrease in viscosity attributed to alignment of

the polymers occurring at high shear rates. Examples of fluids that are produced so

that they exhibit shear thinning include toothpaste and paints. In both cases, there

are times when the user would require the fluid to be less viscous, i.e. during brushing

or painting, but also times when the material is required to be viscous to reduce the

likeliness of spillage or dripping. Shear thickening on the other hand is where the

viscosity of the material increases with shear rate (short, green dashes in Figure 3.11

(a) and (b)). Classic examples of this property are custard or corn starch, which can

become almost solid in appearance under force at short time scales. The rheological

properties of a macroscopic volume of material can be measured using a viscometer

or rheometer, of which there are several different forms or geometries. However, all

apply a controlled stress or strain upon the material, and the response of the sample

is then measured. As rheological phenomena can be observed over several decades of

time, rheometers rely on accurate feedback loops in order to control the rate of flow

and also accurately measure the viscosity of the fluid.

In this work, experiments were performed on an Anton Paar Physica MCR 301

rheometer, where the cone-plate measuring system was used to extract the flow curves.

The cone-plate geometry has a diameter of 50 mm and cone angle of 0.5o. The flow

curves experiments were carried out with shear rate varying from 0.001 to 100 s−1.

For all samples reported in this work, viscosity remains constant as the shear rate

is varied (Figure 3.12). Thus, the Newtonian behaviour of Ficoll70 suspensions is
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Figure 3.12: Flow curves for Ficoll70 for different packing fractios.

consistent with simple colloidal behaviour at least insofar as the σ - γ̇ relationship

being linear.

3.5.1 Viscosity of a Colloidal Suspension

The viscosity of a colloidal suspension ηs is greater than the viscosity of the liquid

medium ηL and the ratio (ηs/ηL) is referred to as the relative viscosity ηr. For a

very dilute suspension of non-interacting spheres in a Newtonian liquid, the viscosity

is described by the Einstein equation

ηr = ηs/ηL = 1+ 2.5φ (3.37)

where φ is the packing fraction of dispersed spheres. The higher viscosity is caused by

the dissipation of energy as liquid flows around the particles. A more general equation
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for the viscosity of a suspension of non-spherical particles is

ηr(φ) = ηs/ηL = 1+ KHφ (3.38)

where KH is the apparent hydrodynamic shape factor of the particles, and KH = 2.5.

As the concentration of the dispersed phase increases, the viscosity of a suspension is

increased due to the interaction between the dispersed particles, and does not obey

the Einstein equation. The rheological behavior of concentrated suspensions is much

more difficult to work out. Since the publication of Einstein’s basic analysis of the

viscosity of a dilute suspension of rigid spheres, many investigations have attempted

to predict the rheology of hard-sphere colloidal dispersions. Much of the effort has

focused on extending theoretical models for dilute dispersions to concentrated disper-

sions of hard spheres [16–18]. Commensurate with these theoretical developments,

experimentalists have worked toward developing real colloidal dispersions that ap-

proximate hard spheres [19–21]. Computational techniques that include many body

hydrodynamic interactions have also been developed to enable direct numerical cal-

culation of hard-sphere colloidal behavior [22]. As the volume fraction of particles

increases, the interaction between particles during flow causes the viscosity to increase

greatly. Rheological data for suspensions of uniform spherical colloidal particles are

often approximated by the Krieger-Dougherty equation [19].

ηr = ηs/ηL = (1− φ/φm)−[η]φm (3.39)

where φm is the maximum packing fraction, and [η] is the intrinsic viscosity, which is

equal to 2.5 for dilute dispersions as defined by the Einstein relation. In suspensions

of particles of anisometric shape both φm and [η] depend on particle orientation.

Brownian motion somewhat randomizes colloidal particles and increases the effective
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hydrodynamic shape factor. Woods and Krieger obtained values of φm = 0.67− 0.68

and [η] = 2.7 for aqueous suspensions of dispersed monodisperse latex sphere smaller

than 1 µm [23].

Recently, a model has been proposed that introduces an “appropriate form” of the

excluded volume effects and gives a better quantitative description of the viscosity of

solid and liquid suspensions of spherical particles at arbitrary packing fractions [24].

This model incorporates an effective packing fraction φeff as a scaling variable that

leads to an universal representation of all experimental results on a master curve. For

finite-sized particles, this relation leads to Einstein’s expression (Equation 3.38) with

the excluded volume factor φ/(1 − cφ) instead of φ. Hence the the viscosity of a

suspension takes the following form:

ηr(φ) =
(
1− φ

1− cφ
)−2.5 . (3.40)

where the constant c depends on the critical concentration at which the suspension

loses its fluidity.

There are other models based on hydrodynamic interactions between the sus-

pended particles. For example, Batchelor and Green gave an exact description of

the viscosity of a semi-dilute suspension of hard spheres in the limit of vanishing

shear rate [16]. This theory was extended to higher particle concentrations by Russel

and Gast who took the mean thermodynamic force in a concentrated dispersion into

account, and treated the hydrodynamic interactions at the pair level. Wagner and

Russel calculated the viscosity as a function of volume fraction taking the hydrody-

namic interaction between an arbitrary number of spheres into account [17].

Even though many models have been established, there is still a discrepancy be-

tween the data and the prediction, apparently in part due to the incomplete treatment
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of the hydrodynamics, and in part due to the effect of inter-particle interactions and

particle softness on the rheological properties.
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Chapter 4 Synopsis

The work in this chapter measures polymer radius of gyration and self-diffusivity

in the presence of macromolecular crowding in a polymer-colloid system, studied in

tandem by pulsed-gradient-NMR and SANS, published in Physical Review Letters,

vol. 118, p. 097801, 2017. SP carried out all NMR experiments. Neutron scattering

experiments at Oak Ridge National Lab were carried out by SP and AY with the

assistance of instrument scientists Lilin He and William A. Hamilton. SP and AY

co-wrote the paper with input from all other authors.



Chapter 4

Combining Diffusion NMR and
SANS Enables Precise
Measurements of Polymer Chain
Compression in a Crowded
Environment

4.1 Abstract

The effect of particles on the behavior of polymers in solution is important in a

number of important phenomena such as the effect of “crowding" proteins in cells,

colloid-polymer mixtures, and nano-particle “fillers” in polymer solutions and melts.

In this work, we study the effect of spherical inert nano-particles (which we refer

to as “crowders") on the diffusion coefficient and radius of gyration of polymers in

solution using pulsed-field-gradient NMR and small-angle neutron scattering, respec-

tively. The diffusion coefficients exhibit a plateau below a characteristic polymer

concentration, which we identify as the overlap threshold concentration c?. Above
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c?, in a crossover region between the dilute and semi-dilute regimes, the (long-time)

self-diffusion coefficients are found, universally, to decrease exponentially with poly-

mer concentration at all crowder packing fractions, consistent with a structural

basis for the long-time dynamics. The radius of gyration obtained from SANS in the

crossover regime, changes linearly with increase in polymer concentration, and must

be extrapolated to c? (obtained from NMR) in order to obtain the radius of gyration

of an individual polymer chain. When the polymer radius of gyration and crowder size

are comparable the polymer size is very weakly affected by the presence of crowders,

consistent with recent computer simulations. There is significant chain compression,

however, when the crowder size is much smaller than the polymer radius gyration.

4.2 Introduction

The cell is a dense mixture of a number of different components including flexible

(e.g. nucleic acids) and globular (e.g. proteins) macromolecules. There has been

considerable recent interest on these “crowding" effects, i.e., the effect of inert macro-

molecules on the conformational properties of flexible molecules, and on the reaction

between enzymes and substrates [1, 2]. Similar physics is expected in seemingly dif-

ferent problems such as colloid-polymer mixtures, where the addition of polymers can

either stabilize or de-stabilize a colloidal dispersion [3–5], or nano-particle polymer

composites [6] where the properties of the composite are sensitive to the nature of

particle-polymer interactions. In this paper we are concerned with the effect of inert

spherical particles which, following the biophysics community we refer to as “crow-

ders", on the conformational properties and dynamics of polymers in solution.

Entropy, via the excluded volume effect, is an important ingredient in macro-

molecular crowding [1, 2]; although non-specific chemical interactions can also play
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a role [7, 8]. From a colloid- and polymer-science perspective, a quantitative under-

standing of the entropic contributions to crowding is a necessary pre-condition to an

understanding of the broader crowding problem. Even in the absence of other inter-

actions, the osmotic pressure of the crowder (radius Rc) can alter the size of a flexible

macromolecule (radius of gyration Rg). Entropy can give rise to attractions due to

depletion forces in both the “colloid limit” (λ = Rg/Rc << 1) [9] and the “protein

limit” (λ >> 1) [10]. In a simple model system, i.e., a colloid-polymer mixture con-

sisting of a flexible polymer (i.e. macromolecule) and compact crowder [11, 12], one

thus qualitatively expects a compression of polymer chains for large λ. On the other

hand, a recent study suggests [13] that changing crowder size has a weak effect. It is

safe to say that we still do not have a quantitative understanding of the differences

between various simulations and experiments on the degree of compression.

We emphasize the distinction between the focus of this Letter, which is on the

effect of spherical particles on the properties of the polymers, and on the focus of

work in colloid-polymer mixtures [3–5] and polymer nano-composites [6], which is on

the effect of polymers on the interaction between the particles. While polymers can

induce either a net attraction or repulsion between particles (depending on the inter-

actions and polymer concentration), the effect of particles on polymers is generally

compressive when the particles are mobile, although the situation is more complicated

if the positions of the particles is quenched [14,15].

Computer simulations of crowding employing a variety of simulation methodologies

[11,12,16–20] indicate that crowding decreases the radius of gyration for the unfolded

state, but quantitatively the results are mixed even for simple systems: for example, a

polymer-nanoparticle simulation with λ ∼ 1 found that the polymer chains collapsed

into a compact globular form with an overall decrease of Rg by 20% forΦc = 0.35 [11],

while another simulation found more modest chain compression of about 5% [12].
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Intrinsically disordered proteins (IDP) are flexible biopolymers that should be

influenced by crowding. Two small-angle neutron scattering (SANS) experiments

found that IDP exhibited a varying degree of compression for similar λ: in one study

a 13% size decrease resulted at a moderate crowder packing fraction Φc = 0.07 [21]

while in another only a 6% reduction of Rg was seen for Φc ∼ 0.20 [22]. Single-

molecule FRET spectroscopy was used to quantify IDP size, using a linear polymer,

polyethylene glycol (PEG), as a crowder. Here, IDP chain compression was observed

to be stronger with larger crowders (i.e. with λ closer to 1) [23]; in other words, IDP

in a polymer solution, i.e., in an extended polymeric crowder, does the opposite of a

compact crowder.

In order to make quantitative the comparisons between simulation and experiment,

a useful model system employs PEG as polymeric macromolecule and a polysucrose

(Ficoll70) as nanoparticle spherical crowder [24]. For λ ∼ 1 and Φc = 0.25, the

PEG was reported to undergo significant chain compression to 50% of its size in

free solution, significantly more than simulations have found [11, 12]. In these SANS

Figure 4.1: The osmotic pressure of pure PEG in water (no crowder) is well described
by a phenomenological scaling form (solid black line, from Cohen et al. [25]). The
solution is dilute when cscale ≡ cp/c# 6 0.2, and in the semi-dilute entangled regime
when cscale > 6 (dashed red line): the crossover regime (green hashed region) is in
between (0.2 < cscale < 6). The expected scaling of the self-diffusion coefficient in
the dilute (blue hashed) and semi-dilute (red hashed) regimes [26] is D ∼ c0

p and
D ∼ c

−7/4
p .
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experiments [24], isolated chain behaviour was extracted from experiments at finite

concentrations (0.004 g/cm3 < cp < 0.03 g/cm3) by linear extrapolation to cp = 0.

Figure 4.1 demonstrates why such an experimental extrapolation is problematic. The

osmotic pressure of neutral flexible polymer in solution may be written down as a

phenomenological sum of scalings as a function of a scaled polymer concentration

c# [25]. The scaled osmotic pressure (details in Supplemental Material) obeys a

universal behaviour as a function of the scaled concentration. In terms of scaled

concentrations, the SANS experiments [24] were carried out in the range 0.2 < cscale <

2 in Figure 4.1, and are thus completely in the (green hashed) cross-over regime. It

is thus wise to carry out experimental measurements to low enough concentrations in

order to determine the overlap concentration c? below which the polymer is dilute.

The strength of the current work is that we combine SANS measurements of

polymer size with self-diffusion measurements via pulsed-field-gradient (PFG) NMR.

The latter can be carried out to much lower polymer concentrations cp than the SANS

measurements, enabling clear estimates of c? at different crowder packing fractions.

We then use this to obtain reliable estimates of Rg(0,ΦF) that we compare with

simulations.

4.3 Polymer Self-Diffusion

PFG NMR diffusion measurements were carried out for aqueous PEG-Ficoll70 so-

lutions in water prepared for PEG concentrations between 0.0003 and 0.03 g/cm3

and Ficoll70 volume fractions ΦF between 0 and 0.30. The details of the PFG NMR

method were reviewed recently [27] and are summarized in the Supplemental Mate-

rial. The dashed blue line in Figure 4.2(a) shows the diffusion coefficient of the last

sample in a solution series that did not phase separate.
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Figure 4.2: Self-diffusion: (a) Diffusion coefficient of PEG (Mw = 20, 000) polymer
in water as a function of polymer concentration cp, in the absence of the crowder,
Ficoll70, as well as for several Ficoll70 volume fractions ΦF (λ = Rg/Rc = 1.09). A
good fit to exponential behaviour is possible, in all cases, above a characteristic
PEG concentration. c?, with an extrapolated value D?. Below this PEG concentra-
tion, a plateau is observed at D(0,ΦF). (b) A log-log plot of DPEG vs. cp shows the
plateau, and also that a power law cannot fit the data in the crossover regime. (c)
Dependence of characteristic PEG concentration c? as a function of ΦF for 3 polymer
molecular weights (Mw = 20, 000, Mw = 42, 800, and Mw = 132, 000), correspond-
ing to λ=1.09, 1.78 and 2.85. The solid blue curves may be treated as a guide to the
eye. (d) From the phenomenological exponential decay in (a), a second characteristic
concentration c2 is obtained (for each ΦF).

The PEG diffusion coefficientD(cp,ΦF), shown in Figure 4.2(a) with a logarithmic

scale on the ordinate, is constant for low cp. For all ΦF, the self-diffusion coefficient

decreases sharply above a (ΦF dependent) characteristic concentration which we iden-
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tify with c?. A piecewise fit of D(cp,ΦF) as a function of cp,

D(cp,ΦF) = D(0,ΦF), cp 6 c?,

D(cp,ΦF) = D?(ΦF) exp(−cp/c2), cp > c
?, (4.1)

with exponential dependence above c? and a plateau value below, provides a good fit

to all the results. From this, we extract the dilute-limit diffusion coefficient D(0,ΦF)

as well as c? and a second characteristic concentration c2 for each Ficoll70 volume

fraction ΦF. D?(ΦF) = D(0,ΦF) exp(c?/c2) is not fit, but evaluated from continuity

at c?.

For ΦF = 0, referring to Figure 4.1, we expect D(cp,ΦF = 0) ∼ c0
p in the dilute

(blue hashed) regime and D ∼ c
−7/4
p in the des Cloizeaux (also referred to as the semi-

dilute entangled) regime [26]. As a higher-order correction, the friction coefficient is

expected to show a linear dependence on polymer concentration due to the occasional

interactions of polymer chains in the dilute regime, but this dependence has been

seen to be very weak for short chain polymers [28]. The log-log representation in

Figure 4.2(b) shows, first, that the plateau regime is well-defined in all cases, and

second, that a power law cannot fit. While the presence of a plateau for all ΦF is

experimentally clear, the reason for it is not obvious: it signifies that a dilute polymer

limit continues to exist in the limit of crowding!

Figure 4.2(c) shows that c? is a decreasing function of ΦF, not only for Mw =

20, 000 (λ = Rg/Rc = 1.09), but also for two other longer polymers (Mw = 42, 800

and 132, 000, see Supplemental Material, Figure 4.7), corresponding to λ = 1.78 and

2.85. For all polymer molecular weights and crowder volume fractions, there is a

characteristic polymer concentration c? below which the dynamics is independent

of polymer concentration: the “polymer-dilute” regime. In addition, in all cases, c?
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changes little beyond ΦF ∼ 0.1, perhaps indicative of the onset of crowding.

From the exponential decay in Figure 4.2, we also obtain a second characteris-

tic concentration c2; e.g. for λ = 1.09, c2 decreases from 0.035 to 0.005 g/cm3 as

ΦF approaches the crowding limit (Figure 4.2(d)), which implies a 7-fold increase in

“effective” PEG concentration for ΦF= 0.3. Physically, the value of c2 appears con-

sistent with the end of the crossover regime. The decrease in c2 with ΦF is consistent,

too, with the decrease in the observed phase separation concentration as ΦF increases

(dashed blue line in Figure 4.2(a)).

Figure 4.3: Universal behavior in the dynamics: Using the values D?, c? and c2
(all functions of only ΦF) from each fit, all the diffusion results (as a function of
cp and ΦF) are replotted in dimensionless form, Y = (c2/c

?) ln(D(cp,ΦF)/D?) as
a function of a scaled polymer concentration X = cp/c

?. For all 3 polymers, there
is good collapse onto one master plot that shows a sharp transition at X = 1 (see
inset) from a polymer-dilute plateau to an exponential concentration dependence of
the diffusion coefficient.

Using the fitted c? and c2, as well as D?(ΦF), we plot a scaled and dimensionless

version of the self-diffusion coefficients Y = (c2/c
?) ln(D/D?) as a function of a scaled

polymer concentration X = cp/c
?. From the model equation 5.3, Y = −1 for X 6 1
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and Y = −X for X > 1. Figure 4.3 shows a master plot of all data for all three

polymers: clearly, both the plateau below c? and the exponential dependence above

c? are universally valid in the crossover regime at all λ and ΦF.

Why is there no power-law scaling, even for pure polymer? Indeed, there is clear

experimental indication (Callaghan and Pinder [28]) that power-law scaling fails for

short-chain polymers. It is also possible (see Figure 2(b) and Supplemental Mate-

rial, Figure 4.7) that there could be power-law scaling at large concentrations (the

red-hashed regime in Figure 4.1) if this was accessible in the presence of crowding.

Why the exponential dependence? Rosenfeld [29] and Dzugutov [30] have proposed

an exponential relationship between atomic diffusion and the excess entropy S2/kB

(in the 2-particle approximation); moreover, recent 2D simulations and colloids ex-

periments [31] show that S2/kB is proportional to the colloid packing fraction for

packing fractions less than 0.4. Due to the PEG’s conformational degrees of freedom,

it is inadvisable to invoke the 2-particle excess entropy; nevertheless it is reasonable

to believe that the exponential dependence of the long-time self-diffusion coefficient

at all ΦF is purely structural in origin. To our knowledge, this is the first evidence of

this in 3D.

4.4 Polymer Size

Next, we describe our SANS measurements for d-PEG-Ficoll70 solutions (carried out

at HFIR at Oak Ridge National Laboratories on the GP-SANS instrument [32]) for

PEG concentrations between 0.005 and 0.03 g/cm3 and Ficoll70 volume fractions

between 0 and 0.3. In contrast with PFG NMR, measurements at lower polymer con-

centrations were impractical due to long acquisition times. Polymer radius of gyration

Rg was obtained in two ways: by a fit of the q-dependent scattering intensity to the
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Figure 4.4: Diffusion vs. SANS: A comparison of R2
g from diffusion (blue, cp <

0.005g/cm3) and SANS (cp > 0.005g/cm3) for PEG/water solution (ΦF = 0) con-
firms that the overlap concentration deduced from diffusion (c?Diff = 0.005g/cm3) is
also meaningful as the thermodynamic overlap concentration c?.

Debye model as well as by fitting the low-q scattering intensity using the Guinier

approximation. Both gave consistent Rg; an example is shown in the Supplemental

Material, (Figure 4.6). Consistent with the previously reported SANS study of Le

Coeur et al. [24], Figure 4.5(a)) shows that for pure PEG/water, there is a decrease

in Rg with increasing PEG concentration, while at ΦF = 0.1, 0.15, 0.2 and 0.3, there

is an increase. When each data set is fit to a straight line, a linear extrapola-

tion at each Ficoll70 concentration suggests a convergence at non-zero cp: around

cp ∼ 0.003 g/cm3. Quantitatively, the linear-extrapolated R?
g in our work (denoted by

a star symbol in Figure 4.5(a)) and those of Le Coeur et al. are in rough agreement

for low ΦF but deviate at ΦF > 0.2 (a comparison is shown in Supplemental Mate-

rial, Figure 4.8). In both cases, linear extrapolation would imply a decrease in size

of isolated polymer chains due to increasing ΦF. The self-diffusion measurements,

however, have demonstrated clearly that such an extrapolation from the crossover

regime (cp > c?) to the dilute (plateau) regime (cp < c?) is not valid. We identify
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Figure 4.5: SANS: (a) Rg(cp,ΦF) vs. polymer concentration cp for λ = 1.09. Rg is fit
to Equation 4.2 assuming that the c? is the same as for the diffusion experiment. The
blue asterisks reflect the value that would be obtained by a naive extrapolation of Rg
from the crossover regime. (b) The fit shows that Rg(0,ΦF) in the “polymer-dilute”
limit exhibits at most a weak dependence on Ficoll70 volume fraction ΦF. (c) Rg de-
pendence on packing fraction ΦF for three polymer molecular weights, corresponding
to λ = 1.09, 1.78 and 2.85 respectively. Results are compared with simulations from
Kang et al. [12].

the c? obtained from diffusion measurements with the thermodynamic overlap con-

centration. The validity of this identification is shown in Figure 4.4, which shows

(for ΦF = 0) that R2
g from diffusion at lower polymer concentrations cp and SANS

mostly at higher cp converge at a common c?; this is further discussed in Supplemen-

tal Material. Since the self-diffusion coefficient is unchanging in the polymer-dilute

regime, Rg must therefore also be constant. Simulations [33] have also observed that

the polymer Rg(0, 0) (no crowder) is essentially constant in the dilute limit.

In Figure 4.5(a), we plot Rg as a function of cp for the different ΦF, and employ

a piecewise linear fit,

Rg(cp,ΦF) = Rg(0,ΦF), cp 6 c?,

Rg(cp,ΦF) = Rg(0,ΦF) +m(ΦF)(cp − c
?), cp > c

?, (4.2)

with slope m(ΦF), and a plateau value Rg(0,ΦF) at and below cp = c?, i.e., in

the polymer-dilute limit. c? itself is not a fit parameter, since we have it from the
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diffusion measurements carried out to much lower cp. In the absence of crowder, we

can calculate the ratio Rg(0, 0)/RH. Rg(0, 0) is obtained from SANS and RH from

D(0, 0) and the Stokes-Einstein relation: we obtain a value Rg(0, 0)/RH = 1.18±0.04

consistent with renomalization group calculations [34].

The resulting Rg(0,ΦF), for λ = 1.09, is shown in Figure 4.5(b). This Rg value is

remarkably insensitive to the Ficoll70 volume fraction, and is quantitatively consistent

with the simulations of Kang et al. [12], but not with the simulation and free volume

theory of Denton and coworkers [11]. This quantitative agreement signals that Ficoll70

is an inert crowder in this experiment. Identifying macromolecule-crowder interactions

is a key challenge in the study of macromolecular crowding, and this is therefore

significant.

Interestingly, Rg in the dilute polymer limit is insensitive to ΦF (Figure 4.5(b))

but the value of the overlap concentration c? is not (Figure 4.2(c)). At first glance

this might seem strange because c? ∼ N/R3
g where N is the number of monomers.

Note, however, that this relation comes from equating the “internal concentration”

of the polymer (N/R3
g) to the overall concentration of pure polymer solutions; at c?

different molecules being to touch each other on average. The presence of crowders

decreases the volume available to polymers and therefore as ΦF increases one expects

c? to decrease: the internal concentration is still N/R3
g but the relevant overall con-

centration is not the polymer concentration. Using an effective medium or mean-field

model one would expect c? to decrease linearly with ΦF at low values of ΦF. We

do not have a good structural explanation for why c? is insensitive to ΦF for large

values of ΦF but note that at high ΦF the system is closer to phase separation, and

the crowder structure might be heterogeneous.
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4.5 Varying the Macromolecule-Crowder Size Ra-

tio

Next, we use the c? obtained from our diffusion studies for the 2 polymers with larger

molecular weights (λ = 1.78 and 2.85) in order to reanalyze pre-existing SANS re-

sults [35]. The overlap concentration obtained from diffusion measurements decreases

substantially with increasing λ (Figure 4.2(b)). Figure 4.5(c) shows that the radius

of gyration exhibits significant compression as a function of ΦF. While the data at

λ ∼ 1 is close to those from simulation at a similar λ (Figure 4.5(c)), those for higher

λ show much stronger compression than predicted by simulation.

4.6 Conclusion

We have obtained polymer size as well as diffusion coefficients of a polymer-crowder

solution using SANS and PFG NMR in tandem, as a function of the crowder packing

fraction ΦF. The spectral selectivity of PFG NMR provides us with the sensitivity to

measure diffusion coefficients at low polymer concentrations. These diffusion measure-

ments unambiguously establish that there exists a “polymer-dilute” regime, c?(ΦF),

for each crowder packing fraction. One upshot of this study is that the polymer

(polyethylene glycol), in the dilute limit, appears to be unchanged in hydrodynamic

size even at relatively large crowder (Ficoll70) volume fractions for polymer-crowder

size ratio λ ∼ 1, as predicted in the simulation of Kang et al. [12].

In contrast with λ = 1.09, we find significant chain compression for isolated poly-

mers when λ is 1.78 and 2.85 respectively. This is much more pronounced than the

predictions from simulation; however, the 10 - 15% reduction in Rg at ΦF = 0.1 for

λ = 2.85 are close in magnitude to experimental observations in IDPs [21].
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4.7 Supplemental Material

4.7.1 Materials

For PFG NMR studies, we used three different molecular weights of polyethylene

glycol (PEG,Mw= 22,000 withMw/Mn = 1.10,Mw= 42,800 withMw/Mn = 1.18,

and Mw= 132,000 with Mw/Mn = 1.20), purchased from Polymer Source Inc. In

SANS experiments, for contrast reasons, we used deuterated PEG (Mw = 20, 000

withMw/Mn = 1.15). Deuterated PEG was also obtained from Polymer Source Inc.

Ficoll R©PM 70 (referred to as Ficoll70 in the text) with average molecular weight of

70,000 (Rc = 4.6 nm) was purchased from Sigma Aldrich. Deuterium Oxide (D2O,

99.9%) was purchased from Cambridge Isotope Laboratories, Inc.

4.7.2 Method: PFG NMR

For sample preparation, the desired volume fraction of Ficoll70 was dissolved in

deionized H2O. The solution was stirred for 10 hours. For each polymer concen-

tration the appropriate mass of (undeuterated) polyethylene glycol (Mw= 22,000

with Mw/Mn = 1.10, Mw= 42,800 with Mw/Mn = 1.18, and Mw= 132,000 with

Mw/Mn = 1.20) was added to 1 cm3 of this solution. Each time, the solution was

stirred five hours before experiment. Samples were then transferred to 5 mm outer

diameter NMR tubes.
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PFG NMR measurements were carried out on a Bruker Avance II 600 spectrometer

equipped with a Bruker 14.08 T magnet and a Bruker diffusion Diff30 probe with

a maximum Z gradient strength of 1800 G/cm (18 T/m). A stimulated echo pulse

sequence was used to measure the diffusion coefficient. The gradient steps were varied

and the signal for H2O, PEG and Ficoll70 were collected as a function of gradient.

The procedure for analysis of the results is described elsewhere in detail [27]. To avoid

probe heating and to control sample temperature, the probe was cooled by flowing

water and the temperature was maintained at 25oC.

4.7.3 Method: SANS

Figure 4.6: SANS scattering intensity I(q) vs q for a PEG/Ficoll70 mixture with a
cp=0.05g/cm3 and ΦF = 0.3. (a) Radius of gyration, Rg, of PEG, obtained from a
fit to the Debye model is 6.9 ± 0.96 nm. (b) Guinier plot shows linearity of ln(I(q)
as a function of q2 for qR60.89, yielding Rg equals to 6.8 ± 1.9 nm.

Solution preparation was identical to that for PFG NMR, with the only difference

that we used deuterated PEG (Mw= 20,000 with Mw/Mn = 1.15, from Polymer

Source Inc.), and the solutions were made in 60%:40% H2O:D2O. In order to check

for consistency between NMR and SANS, one set of PFG NMR measurements were

carried out in 60% H2O/40% D2O solutions.
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For sample preparation, the desired volume fraction of Ficoll70 was dissolved in

a solution of H2O and D2O with 40% in D2O. The solution was stirred for 10 hours.

An appropriate mass of deuterated polyethylene glycol was added to 1 cm3 of this

solution. Each time, the solution was stirred five hours before experiment.

SANS measurements were conducted at Oak Ridge National Laboratory (ORNL)

on the GP-SANS instrument [32]. Two sample to detector distances were used (1.7

m and 18.5 m) for a range of scattering vectors from 0.001 Å−1 to 0.5 Å−1. The

H2O/D2O composition points of minimum scattering intensity for Ficoll70 were de-

termined using contrast variation Ficoll70 samples in solutions containing various

H2O/D2O ratios. The ratio at which the scattering length densities of Ficoll70 and

H2O/D2O were matched and therefore Ficoll70 did not contribute to the scattering

signal was determined as 60± 1% H2O and 40± 1% D2O. Samples were loaded into

quartz banjo cells mounted in temperature-controlled brass sample holders and a con-

stant temperature of 25oC were maintained for all experiments. Scattering intensity

profiles were analyzed using Igor Pro macros developed at NIST [36].

SANS data are presented as plots of the intensity of the scattered neutron beam,

I(q) as a function of scattering vector q = (4π sin θ/λ), where θ is one half of the

scattering angle and λ is the neutron wavelength. The intensity can be written as

I(q) = I0 P(q), where P(q) is the form factor which provides information on the

size and shape of the scatterers. For a Gaussian polymer radius of gyration Rg, the

shape factor is determined by the Debye formula, P(q) = 2
x2

(
e−x − 1 + x

)
, where

x = q2R2
g and the radius of gyration of the scattering object, Rg, can be extracted

from fitting the plot of I(q) vs q to the Debye model: this is shown in Figure 5.9(a)

for a PEG/Ficoll70 mixture with a cp=0.05g/cm3 and ΦF = 0.3.

In the limit of very low angle or small q (the Guinier approximation) one can

further write P(q) = exp
(

−q2 Rg
2

3

)
, where the radius of gyration of the scattering
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object, Rg, can be extracted from the slope of a plot of ln(I(q)) vs q2. Such a

fit is shown for a PEG/Ficoll70 mixture with a cp=0.05g/cm3 and ΦF = 0.3 in

Figure 5.9(b).

4.7.4 Scaling Form for the Osmotic Pressure

We present a short discussion of polymer scaling following Cohen et al [25], which

shows that the osmotic pressure of neutral flexible polymer in solution may be written

down as a phenomenological sum of scalings as a function of the polymer concentra-

tion, enabling perfect collapse of two very dense datasets of rather dissimilar polymers

(PEG in water and poly-α-methylstyrene in toluene). The concentration is scaled with

respect to a crossover concentration c# = α−4/5c? = α−4/5N−4/5/V̄ , where c? is the

overlap concentration, and for PEG, α = 0.49 ± 0.01, and the partial specific vol-

ume V̄ = 0.825 cm3/g. For the polymer in the Le Coeur et al. SANS study [24]

(Mw = 18, 000), the degree of polymerization for PEG is N = (Mw −Mend)/Mm;

with end-group and monomer molecular weight Mend = 18.02 and Mm = 44.05 for

PEG, N = 408. In terms of the normalized osmotic pressure Π̃ = Π/(RT/MmV̄), the

scaling form is

Πscale = Π̃N9/5α4/5 =
( cp
c#

)
+
( cp
c#

)9/4
. (4.3)

In this form, crossover occurs at cscale ≡ cp/c
# = 1. For PEG with molecular

weight 18,000, the scaled concentration c# = α−4/5N−4/5/V̄ ∼ 0.02 g/cm3, which is

related by a constant factor of 1.77 to the overlap concentration c? = 0.01 g/cm3.

It can be seen that the expected dilute limit (look in the main manuscript for Fig-

ure 1, dotted blue line) occurs for cscale < 0.2 (actual polymer concentrations cp <

0.002 g/cm3) and the semi-dilute regime (look in the main manuscript for Figure 1,

dashed red line) for cscale > 6 (cp > 0.1 g/cm3). The SANS experiments in this
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Figure 4.7: Diffusion coefficient shown (left) on log-linear and (right) on log-log scale
for (a) PEG (Mw = 42, 800) and (b) PEG (Mw = 132, 000) in water as a function of
polymer concentration cp. Results are shown in the absence of the crowder, Ficoll70,
as well as for several Ficoll70 volume fractions ΦF. Similar to shorter-chain PEG
(Mw = 22, 000), a good fit to pure exponential behaviour is possible, in all cases,
above a characteristic PEG concentration c?, with an extrapolated value D?. Below
c?, a plateau is observed at D(0,ΦF). A power-law fit (e.g., of −7/4) is not possible,
but is a plausible asymptote.

work are carried out in the range 0.001 g/cm3 < cp < 0.03 g/cm3, corresponding to

0.05 < cscale < 1.5. All except the cp = 0.001 g/cm3 experiment are thus completely

in the cross-over regime. The PFG NMR results are carried out over a wider range,

0.0003 g/cm3 < cp < 0.04 g/cm3, corresponding to 0.015 < cscale < 2.
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4.7.5 Diffusion Measurements for Higher-Molecular-Weight

Polymers

For completeness, we plot DPEG vs. cp for the two longer-chain (higher molecular-

weight) polymers here. Figure 4.7 shows that the two higher-molecular-weight polyethy-

lene glycol,Mw = 42, 800 andMw = 132, 000, both exhibit a trend that is similar to

that of the short PEG chain (Mw = 22, 000). For low cp, there is a plateau value for

each crowder packing fraction, that indicates DPEG ∼ c0. There is also a characteristic

polymer concentration c?, above which the dynamics depends exponentially on poly-

mer concentration. Callaghan et al. [28] had found power law scaling, DPEG ∼ c−7/4,

for longer polymers (but not for short-chain polymers). While our results are clearly

not consistant with a power law, such a power law at higher concentrations (not

physically accessible due to phase separation) cannot be ruled out.

The log-log plot shows that there is no power law scaling in the crossover regime,

even for longer-chain polymers. While we do not observe the (−7/4) power law re-

ported by Callaghan et al. [28] for longer-chain polymers, it is likely because our

measurements are not carried out in the semi-dilute (entangled) regime, but instead

in the crossover regime. Indeed, even the experimental results shown by Callaghan

et al.for shorter-chain polymers are consistent with an exponential concentration de-

pendence.

4.7.6 Comparison of SANS Radius of Gyration Results

We compare the SANS results from this work with those from previous SANS exper-

iments [24], for the PEG-Ficoll70 system with λ ∼ 1. In plotting the data from Le

Coeur et al., we have converted their mass fractions into volume fractions using the

partial specific volume of Ficoll70, which is 0.67 cm3/g [37]. The true Rg(0,ΦF) is
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Figure 4.8: Comparison of R?
g, the radius of gyration, obtained by linear extrapolation

to zero cp from the crossover regime, as a function of Ficoll70 volume fraction ΦF.

obtained by linear extrapolation to c?, as reported in the main manuscript. However,

in order to aid comparison with the previously reported SANS results, we carry out

a linear extrapolation to zero cp of our results of Rg(cp,ΦF) vs cp at each ΦF, Our

results show a weaker dependence on ΦF as compared to the ones in the work of

Ref. [24].

4.7.7 The Validity of Using Diffusion Measurements to Esti-

mate the Overlap Concentration

It is not clear, a priori, if the concentration above which one observed the onset of

hydrodynamic coupling has anything to do with the thermodynamic overlap concen-

tration. For pure polymer, in the absence of crowder, one can obtain the hydrody-

namic radius RH from diffusion measurements and the Stokes-Einstein relation in the

dilute regime for diffusion: cp 6 c?Diff = 0.005g/cm3. From RH, we can obtain a

radius of gyration Rg,Diff = kRH in the dilute limit (k = 1.24 from renormalization

group calculations and 1.16 from past experiments; given the experimental uncertain-
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ties we use k = 1.2 ± 0.04 [34]). Using this, R2
g,Diff is plotted (Figure 4 in the main

manuscript) for cp 6 c?Diff (random errors indicated by the error bars and systematic

uncertainties indicated by blue shading).

From the SANS measurements carried out above c?, at concentrations 0.005 6

cp 6 0.03g/cm3, we get the radius of gyration: Rg,SANS. Observing the decrease, we

test the scaling expected for semi-dilute polymer solutions above c?: R2
g ∼ c−0.23

p [38].

While there are not many data points, it is to be noted (see Figure 4 in the main

manuscript) that the fit is a one-parameter fit to the pre-factor of the −0.23 power

law. It is thus a better fit than the piecewise linear fit employed in Figure 5 of the

manuscript, but the resulting radius of gyration is not significantly different, given

the uncertainties.

In Figure 4 (main manuscript), the self-diffusion and SANS measurements ap-

pear to converge at c?Diff, suggesting that this concentration is also not far from the

thermodynamic overlap concentration c?, within the uncertainties.
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Chapter 5 Synopsis

The tandem use of pulsed-gradient NMR (PFG NMR), SANS and rheology on near-

identical systems is not very common. In this chapter, using these methods, we mea-

sure macromolecular size and self-diffusivity of an uncharged polymer in the “crowding

regime” that corresponds to physiological concentrations. This work is published in

The Journal of Chemical Physics, vol. 147, no. 11, p. 114902, 2017. SP carried out

all the NMR experiments. Neutron scattering experiments at Oak Ridge National

Lab were carried out by SP and AY with the assistance of instrument scientists Lilin

He and William A. Hamilton. SP and AY co-wrote the paper with input from all

other authors.

Erratum: In the published article, the cell lysate concentration is reported incor-

rectly as “13.7 g/cm3”. The corrected sentence is “The bacterial cell lysate solution

is prepared at a mass fraction of 13.7%”.



Chapter 5

The Effect of Crowder Charge in a
Model Polymer–Colloid System for
Macromolecular Crowding:
Polymer Structure and Dynamics

5.1 Abstract

We have examined the effect of crowder particle charge on macromolecular struc-

ture, studied via small-angle neutron scattering (SANS), and translational dynamics,

studied via pulsed-field gradient (PFG) NMR, in addition to bulk viscosity measure-

ments, in a polymer macromolecule (polyethylene glycol, PEG)–nanoparticle crowder

(polysucrose, Ficoll70) model system, in the case where polymer size and crowder

size are comparable. While there are modest effects of crowder charge on polymer

dynamics at relatively low packing fractions, there is only a tiny effect at the high

packing fractions that represent the limit of molecular crowding. We find, via differ-

ent measures of macromolecular mobility, that mobility of the flexible polymer in the
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crowding limit is 10-100 times larger than that of the compact, spherical crowder in

spite of their similar size, implying that the flexible polymer chain is able to squeeze

through crowder interstices.

5.2 Introduction

The cell cytoplasm is crowded [1, 2] and macromolecular crowding affects molec-

ular transport inside living cells profoundly, with a nanoparticle soup of crowders

of different sizes, shapes, hydrophobicities, and charge occupying much of the intra-

cellular space. While much study of macromolecular crowding has focused on the

(entropic) volume exclusion effect [3–5], other (enthalpic or chemical) interactions are

likely equally important: examples are charge, hydrophobicity, and hydrogen bond-

ing [6–9]. In addition to these, solution micro-viscosity has also been identified to play

a big role in macromolecular crowding [10–13]. As a result, depending on the environ-

ment, macromolecules can either compact into smaller localized regions (as happens

with DNA in the presence of added polymer and salt solutions [14]) or adopt more

complex conformations. Thus, a careful unraveling of the effect of intermolecular in-

teractions on macromolecular conformations and dynamics in crowded environments

have been recognized to be important [6].

The local environment plays an important role in macromolecular transport, and

molecular shape has been suggested to be important: in particular Wang et al. [15]

have shown that a disordered protein that diffuses slower than a globular protein in

dilute conditions in fact exhibits 5-to-50-fold faster diffusion in a crowded environ-

ment, indicating shape-dependence of the macromolecular dynamics. Such a dramatic

speed up could be important in phenomena from protein diffusion to cell signalling

in vivo [16–18]. Addressing the question of macromolecular transport in a simple
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colloid-polymer system would thus enable a deeper understanding of this enhanced

dynamics.

A colloidal sphere in dilute solution obeys the Stokes-Einstein (S-E) relation, which

relates the molecular self-diffusion coefficient to its hydrodynamic radius and the bulk

solvent viscosity. A modified S-E relation, where the self-diffusivity of the macro-

molecule varies inversely as the bulk suspension viscosity, remains valid even in envi-

ronments where it might be expected to break down: a recent example in soft colloids

finds that it is valid, surprisingly, even close to the glass transition [19]. In crowded

cellular environments, however, breakdown of the modified S-E relation has been in-

ferred via the observation of multiple microscopic viscosities, distinct from the bulk

suspension viscosity, in a single multi-component medium [10]. While the validity of

an S-E like relationship between self-diffusivity, hydrodynamic size and viscosity is

not obvious in a heterogeneous environment, the microscopic viscosities, or alterna-

tively, diffusion timescales τ = R2
H/D, provide a useful way to report simultaneously

the change in macromolecular size and the change in macromolecular dynamics.

Experimentally disentangling the effects of changes to macromolecular size, hy-

drodynamic coupling between macromolecules, and direct obstructed diffusion, which

all occur simultaneously, is very challenging in nanoscale systems. In this study, we

employ multiple experimental techniques to examine the effect of crowder particle

charge on macromolecular structure and dynamics. Via pulsed-field-gradient (PFG)

NMR, we can obtain self-diffusivities of each chemical species in a simple model system

consisting of non-ionic polymer (polyethylene glycol, PEG) and a compact, spheri-

cal polysucrose crowder (Ficoll70), both of roughly the same size, with the ratio of

polymer radius of gyration Rg and crowder radius R, i.e λ = Rg/R ∼ 1.

The Ficoll70 diffusivity exhibits complex behaviour that we examine in a related

work, see companion paper [20]. We obtain polymer size (Rg) in very similar samples,
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apart from using deuterated PEG and contrast-matched Ficoll70 solutions, by small-

angle neutron scattering (SANS). The independent access to diffusivity and size allows

us to examine other contributions to macromolecular dynamics: e.g., in this system

the polymer and crowder have very similar hydrodynamic sizes, but the polymer is a

Gaussian chain while the crowder is compact spherical object.

In a recent study [21], we have shown that the uncharged Ficoll70 crowder induces

little compression in the polymer, consistent with a simulation that assumes hard-

sphere crowders [22]; this suggests that Ficoll70 does not associate, and is thus an inert

crowder, at least with respect to PEG. However, it is unclear whether an uncharged,

hard-sphere crowder is relevant to real biophysical situations, such as macromolecular

crowding in living cells where the macromolecules are charged entities, such as proteins

and nucleic acids.

This work examines the biophysical relevance of the polysucrose crowder. We

introduce charge on the crowder as a way of softening the crowder-crowder interactions

via electrostatic repulsions, and compare polymer diffusion in charged crowders with

those in bacterial cell lysates.

5.3 Background

The spectral sensitivity of PFG NMR allows one to obtain dynamics of multiple

species in complex systems simultaneously [23–26]. Using this spectral selectivity,

we measure the self-diffusion coefficient (of both polymer and crowder) as a function

of polymer concentration (cp) and crowder packing fraction (ΦF). For a polymer

diffusing in a colloidal suspension, one may write a modified Stokes-Einstein equation,

D(cp,ΦF) =
kBT

6πηµ(cp,ΦF)RH(cp,ΦF)
(5.1)
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where RH(cp,ΦF) is the hydrodynamic radius and ηµ(cp,ΦF) is an effective mi-

croscopic viscosity that is not necessarily the same as the suspension viscosity η(ΦF)

(due to the low polymer concentrations, the suspension viscosity depends only on

the crowder packing fraction). ηµ(cp,ΦF) is sensitive to hydrodynamic coupling and

is thus a function of cp and ΦF: in dilute aqueous solution (cp → 0 and ΦF → 0),

ηµ(cp,ΦF)/η0 → 1, where η0 is the viscosity of water.

While writing D in a S-E like form is valid in the Zimm regime where D ∼ 1/RH,

deviation of ηµ(cp,ΦF) from the bulk suspension viscosity ηBulk(ΦF) signals break-

down of the S-E relation. One can, regardless, always define a characteristic timescale

for a macromolecule to diffuse its own size

τ = RH
2/D (5.2)

which also accounts for both size and diffusivity changes.

Using SANS, we measure the radius of gyration, Rg, of the deuterated polymer

as a function of cp and ΦF in an environment where the crowder contrast has been

minimized (see Materials and Methods for details). The ratio α = Rg/RH, is known

to be constant in the dilute regime, and its value varies from 1.2 to 1.5 as one goes

from a Gaussian to a self-avoiding polymer chain. The cp and ΦF dependence of α

is thus relatively weak, and we can replace RH ≈ Rg/α in Equation 5.1 and obtain

the microscopic viscosity ηµ(cp,ΦF) of the polymer chain: generically a decreasing

function of both cp and ΦF. Measuring all the above quantities would allow a com-

plete comparison to any theoretical model for the hydrodynamics of macromolecular

crowding.

In previous work on polymer dynamics in the presence of uncharged crowders [21],

we discovered that the polymer self-diffusion coefficient exhibits a sharp change from
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a polymer-concentration independent dilute regime (with a plateau value D(0,ΦF))

to a crossover regime above a concentration c? where D(cp,ΦF) could be fitted with

an exponential dependence on cp. This is expressed in the piecewise function

D(cp,ΦF) = D(0,ΦF), cp 6 c?,

D(cp,ΦF) = D?(ΦF) exp(−cp/c2), cp > c
?. (5.3)

For each Ficoll70 packing fraction ΦF, we obtain, in addition to D(0,ΦF) and c?,

a second characteristic concentration c2 that describes the exponential dependence

above c?. The polymer radius of gyration Rg, measured via SANS, was constant below

a characteristic concentration c?–we refer to this value as Rg(0,ΦF)–and showing a

linear dependence on polymer concentration above c?. The existence of a common

polymer overlap concentration c? to the diffusivity and size is unsurprising in pure

polymer solution, but the surprise was that this persists even for finite crowder packing

fraction ΦF, and even into the crowding limit.

5.4 Materials and Methods

For PFG NMR studies, we used PEG (Mw= 22000 withMw/Mn = 1.10), purchased

from Polymer Source Inc. In SANS experiments, for contrast reasons, we used deuter-

ated PEG (Mw = 20000 with Mw/Mn = 1.15). Deuterated PEG was also obtained

from Polymer Source Inc. Ficoll R©PM 70 with average molecular weight of 70000

(Rc = 4.5− 5.5 nm) was purchased from Sigma Aldrich. Deuterium oxide (D2O,

99.9%) was purchased from Cambridge Isotope Laboratories, Inc. Charged Ficoll

(Ficoll CM 70) was a carboxymethylated derivative of Ficoll PM70, made as de-

scribed in reference [27]. It was a gift from Dr. William H. Fissell, and was used as

received after having been neutralized and dialyzed against distilled water for 4 days.
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Figure 5.1: The attenuation of the signal S(k)/S(0) on a log scale versus the gradient
strength parameter k = (γδg)2(∆− δ/3) for PEG/charged Ficoll70 mixture of dif-
ferent PEG concentration and (a) ΦF = 0.1 and (b)ΦF = 0.3. All signal attenuation
curves exhibits simple mono-exponential behaviour.

5.4.1 PFG NMR

For all samples the desired packing fraction of Ficoll70 was dissolved in deionized

H2O. For charged Ficoll70 solutions, the conductivity was controlled, using KCl, to

a value of ≈ 1 mS/cm in order to ensure a consistent Debye-Hückel screening length

for all samples. The solution was stirred for 10 hours. Appropriate concentration of

(undeuterated) polyethylene glycol (Mw= 22000 withMw/Mn = 1.10) was added to

1 cm3 of this solution. Each time, the solution was stirred five hours before experiment.

Samples were then transferred to 5 mm outer diameter NMR tubes. To avoid

probe heating and to control sample temperature, the probe was cooled by flowing

water and the temperature was maintained at 25oC.

PFG NMR measurements were carried out on a Bruker Avance II 600 spectrometer

equipped with a Bruker 14.08 T magnet and a Bruker diffusion Diff30 probe with

a maximum Z gradient strength of 1800 G/cm (18 T/m). A stimulated echo pulse

sequence was used to measure the diffusion coefficient. The gradient steps were varied

and the signal for H2O, PEG and Ficoll70 were collected as a function of gradient.
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Figure 5.2: SANS scattering intensity I(q) vs q for PEG/charged Ficoll70 mixture of
different PEG concentration: (a) ΦF = 0.1 and (b)ΦF = 0.3. In all cases radius of
gyration, Rg, of PEG, obtained from a fit to the Debye model.

The procedure for analysis of the results is described elsewhere in detail [26]. In

Figure 5.1 the attenuation in PEG signal intensities were observed as a function of k.

All plots were linear for all ΦF used in this study, which indicates that PEGs have a

single diffusion component.

5.4.2 SANS

The solution preparation was identical to that for PFG NMR, with the only difference

that the PEG (Mw= 20000 with Mw/Mn = 1.15, from Polymer Source Inc.) was

deuterated and the solutions were made in 60%:40% H2O:D2O. In order to check

for consistency between NMR and SANS, one set of PFG NMR measurements were

carried out in 60% H2O/40% D2O solutions.

For sample preparation, the desired packing fraction of Ficoll70 was dissolved in

a solution of H2O and D2O with 40% in D2O. The solution was stirred for 10 hours.

Appropriate concentration of deuterated polyethylene glycol was added to 1 cm3 of

this solution. Each time, the solution was stirred five hours before experiment.

SANS measurements were performed at General Purpose (GP-SANS) CG-2 instru-
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ment at Oak Ridge National Laboratory [28]. The scattered neutrons from samples

were detected using a 1 m2 area detector at two sample to detector distances of 1.7

and 18.5 m with a detector offset of 40 cm and a neutron wavelength of λ = 6Å.

This resulted in the overall q (q = 4π sinΘ/λ, where Θ is one half of the scattering

angle) range of from 0.004Å−1 to 0.5Å−1. Due to the coherent-scattering length dif-

ferences [29] between hydrogen (−3.741× 10−15 m) and deuterium (6.671× 10−15 m),

the neutron-scattering length density difference between fully hydrogenated Ficoll70

and the deuterated PEG is very significant. The H2O/D2O composition points of

minimum scattering intensity for Ficoll70 were determined using contrast variation

Ficoll70 samples in solutions containing various H2O/D2O ratios. The ratio at which

the scattering length densities of Ficoll70 and H2O/D2O were matched and therefore

Ficoll70 did not contribute to the scattering signal was determined as (60± 1)% H2O

and (40± 1)% D2O. Therefore only the PEG contribution appears as a q dependent

intensity in the spectra regardless of Ficoll70 packing fractions.

Samples were loaded into quartz banjo cells with a thickness of 2.0 mm mounted

in temperature-controlled brass sample holders and a constant temperature of 25oC

were maintained for all experiments. Data were corrected for background and empty

cell contributions, and normalized to an absolute intensity using standard proce-

dure. Scattering intensity profiles were analyzed using Igor Pro macros developed at

NIST [30]. The measured neutron scattering intensity in dilute solutions per unit

volume is expressed as [31]

I(q) =
cp (∆ρ)

2 v2
p

Na
Mw P(q)

(
1− 2A2 cpMw

)
, (5.4)

where cp is the concentration in g/cm3, Mw is the weight average molecular weight,

∆ρ is the scattering length density difference between the polymer and solvent, vp

is the volume of one polymer, and Na is the Avogadro number. A2 is the second
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virial coefficient that characterizes the average interactions between two polymers in

infinitely dilute solutions, P(q) is the form factor, and P(q = 0) = 1.

The intensity as shown in Equation 5.4 can be written as I(q) = I0 P(q), where

P(q) is the form factor which provides information on the size and shape of the

scatterers. As shown in Figure 5.2, SANS data are presented as plots of the intensity

of the scattered neutron beam, I(q) as a function of scattering vector, q. For a

Gaussian polymer radius of gyration Rg, the shape factor is determined by the Debye

formula [32], P(q) = 2
x2

(
e−x − 1+ x

)
, where x = q2R2

g and the radius of gyration of

the scattering object, Rg, can be extracted from fitting the plot of I(q) vs q to the

Debye model.

5.4.3 Zeta Potential

The Zeta potential (ζ) and electrophoretic mobility of Ficoll70 solutions were mea-

sured by a Zetasizer Nano Z system (Malvern Instruments Ltd, Malvern, United

Kingdom). The dimensionless Zeta potential Ψ = ζe/kBT = 1.1± 0.2 and 0.21±0.02

for charged and uncharged Ficoll70 respectively. The solutions of charged Ficoll70

were all prepared with added salt in order to keep the conductivity at 1 mS/cm, re-

sulting in a Debye-Hückel screening length κ−1 = 3.2± 0.5 nm. This corresponds to

a κRc ∼ 1.4. Given the value of the dimensionless Zeta potential Ψ and κRc, i.e., both

of order unity, electrostatics should clearly be important, but not overwhelmingly so.

5.4.4 Bulk Viscosity Measurement

Experiments were performed on an Anton Paar Physica MCR 301 rheometer, where

the cone-plate measuring system was used to extract the flow curves. The cone-plate

geometry has a diameter of 50 mm and cone angle of 0.50. The flow curves experiments

were carried out with shear rate varying from 0.001 to 150 s−1.
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Figure 5.3: Polymer dynamics in charged crowder: (a) Self-diffusion coefficient of PEG
(Mw = 20, 000) polymer in water as a function of polymer concentration cp, and for
several packing fractions ΦF of charged (color, filled symbols) Ficoll70. Each depen-
dency is fit to Equation 5.3 to obtain D(0,ΦF), and the characteristic concentrations
c? and c2. (b) For each Ficoll70 packing fraction, a plateau in the self-diffusion coeffi-
cient, D(0,ΦF), obtained via fits to the concentration dependence, is observed below
a characteristic PEG concentration c?, indicating the existence of a “polymer-dilute”
regime at all ΦF. (c) For every crowder packing fraction, there is a characteristic
PEG concentration c?, below which the diffusion coefficient is unchanging. The value
of c? shows a very different dependence on packing fraction ΦF for uncharged and
charged Ficoll70; however, it converges near ΦF = 0.3. (d) Above c?, the diffusion
coefficient shows an exponential decrease; yield a second characteristic PEG concen-
tration c2 as a function of uncharged and charged Ficoll70 packing fractions ΦF. (e)
Using the values D?, c? and c2, from each fit, all the diffusion results (as a function
of cp and ΦF) are replotted in dimensionless form, Y = (c2/c

?) ln(D(cp,ΦF)/D?) as
a function of a scaled polymer concentration X = cp/c

?. There is good collapse onto
one master plot that shows a sharp transition at X = 1 from a polymer-dilute plateau
to an exponential concentration dependence of the diffusion coefficient. The results
for uncharged Ficoll70 are shown in gray.
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5.5 Polymer Self-Diffusivity in Charged Crowder

Figure 5.3(a) shows plots of the diffusion coefficient of PEG in aqueous suspension

of charged polysucrose (charged Ficoll70, colored symbols represents diffusivities for

different Ficoll70 packing fraction ΦF). In all cases, below a critical concentration c?

which is a function of ΦF, there is a plateau in the diffusion coefficient. This plateau

is indication of the approach (with decreasing concentration) to a “polymer-dilute”

regime.

Qualitatively, the existence of a polymer-dilute regime for all ΦF for PEG self-

diffusion suggests that charged Ficoll70 crowders behave similarly to uncharged crow-

der (which were studied previously [21]). Figure 5.3(b) shows DPEG(0,ΦF) as a

function of ΦF, obtained from fits of the results in Figure 5.3(a) to Equation 5.3.

DPEG(0,ΦF) in both curves is of course identical for ΦF = 0 because there is no

crowder. For ΦF > 0, D(0,ΦF) decreases for both charged and uncharged crowder;

however, the difference in D(0,ΦF) between charged and uncharged crowder increases

to a maximum near ΦF = 0.15, and then the two curves converge. The mechanisms

responsible for the difference in polymer dynamics between charged and uncharged

Ficoll70 is uncertain. This cannot be explained by a simple volume exclusion model of

crowding. It is feasible that the structure of the cluster and void space of charged and

uncharged Ficoll70 are different. A more detailed understanding of Ficoll70 structure

and inter-particle interactions will be necessary in order to understand this differ-

ence; computer simulations with charged and uncharged crowders as a function of the

packing fraction would be useful in this regard.

We see in Figure 5.3(c) that the critical concentration c? is very sensitive to elec-

trostatics: as ΦF is increased, c? is initially 0.005 g/cm3 at ΦF = 0, but decreases

much less rapidly for charged Ficoll70 than for uncharged Ficoll70.
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However, the two decreases converge for larger ΦF, with c? ∼ 0.015g/cm3 for

ΦF = 0.3. For polymer solutions, one normally expects c?(0) ∼ N/R3
g (where N is the

number of monomers). Therefore, in the presence of crowder, if one expects the “inter-

nal concentration” c?(0) to be constant, then we would expect c?(ΦF) = c?(0)(1−ΦF)

(solid blue line in Figure 5.3(c)). Instead one sees roughly linear behavior at low

ΦF with c?(ΦF) = c?(0)(1− β1ΦF), where β1 = 10± 3 for uncharged Ficoll70 and

3.0± 0.2 for anionic Ficoll70. This suggests that even if the picture above is correct,

the effective free volume is reduced much more than expected but this reduction is

much smaller for anionic Ficoll70, where one would expect less self-clustering.

Above c?, the story is different. The exponential dependence of D(cp,ΦF) on

polymer concentration cp yields a second characteristic concentration, c2, shown in

Figure 5.3(d), which decreases from c2 = 0.0345g/cm3 to c2 = 0.005g/cm3: note that

this behavior is identical for charged and uncharged crowder, suggesting that while the

diffusivity at infinite polymer dilution depends on crowder charge, its dependence on

polymer concentration is independent of crowder charge. We can use the fitted results

to recast all the measurements of polymer self-diffusion in charged Ficoll70 (colored

symbols), as well as the previous results with uncharged Ficoll70 [21] (gray symbols),

plotting a dimensionless quantity Y = (c2/c
?) ln(D(cp,ΦF)/D?) as a function of a

scaled polymer concentration X = cp/c
?. Agreement with Equation 5.3 would require

Y = −1 when X 6 1, and Y = −X otherwise. Clearly, all the results (for polymer

dynamics in both charged and uncharged crowder) obey this behaviour. Moreover,

the sharp transition in the dynamics that separates the dilute and the crossover regime

is valid, regardless of the degrees of crowding, or the crowder charge.

As discussed in the Background, and in previous work in the presence of uncharged

crowder [21], such an exponential relationship could be consistent with theory for

atomic liquids where an exponential relationship between atomic diffusion and the
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excess entropy is predicted [33, 34]. Such a remarkably universal exponential depen-

dence at all ΦF, and independent of crowder charge, suggests that above c?, only

structure is important, and colloidal hydrodynamics is unimportant. One should also

be able to examine the ΦF dependence of c2 further. Up to ΦF = 0.2, one can fit the

dependence to c2(ΦF) = c2(0)(1− β2ΦF), with β2 = 3.8± 0.2 for both uncharged and

anionic Ficoll70. This suggests, interestingly, that the effective free volume above the

polymer overlap concentration is insensitive to crowder structure, and decreases pro-

portionally with increasing ΦF. The reason for the observed value of β1 and β2 is not

known. However, it is noted that there is a relationship between c2 and the polymer

concentration, cps, where phase separation is first observed in the PEG-Ficoll system

(see Supplementary Materials). Indeed the ratio c2/cps, at a given ΦF, depends nei-

ther on polymer molecular weight Mw nor on crowder charge, suggesting that it is

related in some way to polymer-polymer association.
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Figure 5.4: Comparison of polymer diffusion in bacterial cell lysate and Ficoll70:
The self-diffusion coefficient of PEG in bacterial cell lysate lies in between the corre-
sponding values in charged and uncharged crowder(at comparable packing fractions,
Φ = 0.1): a good match is found to a 50:50 mixture of charged and uncharged crowder.

Whether high concentrations of inert synthetic crowders can faithfully mimic cy-

tosolic conditions is an important question. One could ask “What is the relevance
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to cellular environments of the dynamics of a polymer chain in charged and un-

charged colloidal crowder?” The cellular environment is composed of macromolecules

of different shape and size (entropy), with, additionally, electrostastic and chemical

interactions of all macromolecules (enthalpy). Bacterial cell lysates are physiologi-

cally more relevant and more closely mimic the soft interactions of the cytosol, but it

was unclear a priori if macromolecular dynamics is even qualitatively similar to model

crowders. What the above shows is that macromolecular dynamics in cell lysates is

indeed, qualitatively and at least semi-quantitatively, comparable to model crowders.

In Figure 5.4, we make a first attempt at addressing this question by comparing

polymer self-diffusion coefficients at ΦF = 0.1, for PEG (as a function of polymer

concentration cp) for charged Ficoll70, uncharged Ficoll70, and a bacterial cell lysate

solution. The bacterial cell lysate solution is prepared at a mass fraction of 13.7%

which corresponds to a packing fraction of 0.1, chosen because there is much more

quantitative difference in diffusivities between uncharged and charged crowders at

ΦF = 0.1 than in the crowding limit. The polymer self-diffusivity in the bacterial cell

lysate shows the same exponential dependence as a function of polymer concentra-

tion. In addition, the polymer self-diffusivity in bacterial cell lysate lies in between

the charged and uncharged crowder. Indeed, shown in Figure 5.4, PEG diffusion

in bacterial cell lysate is quantitatively close to PEG diffusion in 70:30 and 50:50

mixtures of charged and uncharged Ficoll70. This suggests that once one controls for

crowder charge, macromolecular diffusion in an artificial crowder might be meaningful

in biologically relevant systems.
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Figure 5.5: The effect of crowder charge: (a) Radius of gyration Rg(cp,ΦF) in the
crossover regime shows a linear dependence with cp at each ΦF. In gray symbols,
Rg(cp,ΦF) for uncharged crowders (data from Palit et al. [21]) is shown for com-
parison. A linear extrapolation of the radius of gyration Rg(cp,ΦF) to c? yields the
polymer size in the polymer-dilute regime: Rg(0,ΦF). (b) A linear extrapolation of
the radius of gyration Rg(cp,ΦF) to c? yields the polymer size in the polymer-dilute
regime: Rg(0,ΦF). (c) Above c?, the radius of gyration Rg(cp,ΦF) for uncharged
crowder is plotted as a function of ΦF. In (b) and (c), the cp=0.01 g/cm3 and cp = 0
results are shown in gray to aid comparison. (d) Ratio of self-diffusion coefficients
δ(0,ΦF) = Dcharged(0,ΦF)/Duncharged(0,ΦF) has a maximum value of 1.75 at
ΦF = 0.15 and then decreases to ∼ 1.1 at ΦF = 0.35 (e) The ratio of Rg(0,ΦF) of PEG
in charged and uncharged Ficoll70, ρ(0,ΦF) = Rchargedg (0,ΦF)/Runchargedg (0,ΦF) in-
creases to a maximum value of 1.4, and then decreases to 1.3 in the crowding limit,
i.e. at ΦF = 0.35.

5.6 Quantifying the Effect of Crowder Charge

In Figure 5.5(a), the polymer radius of gyration Rg, obtained from SANS, is plotted

as a function of cp, for different charged Ficoll70 packing fractions ΦF. For each

ΦF, the polymer-concentration dependence is linear, and actually shows an increase
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above ΦF = 0.15. The expansion in polymer size is most likely due to the formation

of clusters of polymer, a phenomenon that is known for aqueous solution of PEG

without crowder [35].

One can linearly extrapolate the radius of gyration Rg(cp,ΦF) (in Figure 5.5(a))

to c?. This yields (Figure 5.5(b)) the polymer size in the polymer-dilute regime:

Rg(0,ΦF). For uncharged crowder results from previous work [21] show a weak de-

pendence on ΦF. For charged crowders, there is a ≈ 30− 40% increase in Rg in both

cases, which is significant. Above the overlap concentration, c?, the radius of gyra-

tion Rg(cp,ΦF), for cp= 0.01 g/cm3, is plotted as a function of ΦF (Figure 5.5(c)).

Here there is a steady and significant increase of Rg, attributed to polymer-polymer

clustering. This increase is insensitive to the crowder charge.

5.7 Enhanced Micro-Scale Mobilities

Figure 5.5(d) shows theΦF dependence of the ratio ρ(0,ΦF) = R
charged
g (0,ΦF)

R
uncharged
g (0,ΦF)

, which

compares polymer size in charged versus uncharged Ficoll70. PEG in the dilute

limit is relatively unchanged when the crowder is uncharged. There is evidence from

previous work [21] that the size of isolated PEG chains in PEG-Ficoll70 suspensions

agrees quantitatively with simulation, indicating that Ficoll70 is an inert crowder for

PEG. For charged crowder, however, PEG expands by a factor of 1.35 at ΦF = 0.15

and 1.3 at ΦF = 0.35.

From Figure 5.3, we can also calculate the ratio δ = Dcharged/Duncharged (in the

polymer-dilute limit) as a function ofΦF, shown in Figure 5.5(e), which increases from

unity at ΦF = 0 to 1.75 at ΦF = 0.15, but decreases back to 1.1 at ΦF = 0.35. Hence,

in the crowding limit, the polymer dynamics is nearly unaffected by crowder charge

in spite of the size (shown in Figure 5.5(d)) increasing modestly by 30% of its value in
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dilute solution. Above the polymer concentration c?, how polymer chains interact

with other polymer chains is also not sensitive to the charge of the crowder, and

exhibits universal exponential behaviour. This is seen both in the structure (Fig-

ure 5.5(c), colored symbols) and in the dynamics (Figure 5.3(e)). A precise under-

standing of the behavior in this regime would require unraveling polymer-polymer

clustering and the structure of the free volume, and will be the focus of future work

where we can examine the structure of the crowder via SANS.

We do not know the reason either for the expansion of Rg in the presence of

charged crowder or the enhancement of self-diffusion in the presence of charged crow-

der. Polymer-crowder interaction is unlikely since PEG is uncharged, so it must

be indirectly be the result of Ficoll-Ficoll interactions. While examining Ficoll70

structure via SANS requires extensive experiments with deuterated Ficoll, crowder

dynamics is accessible directly from PFG NMR experiments, and is discussed in a

companion paper [20].

We are finally ready to examine the macromolecular environments for polymer and

crowder, by looking at the relative polymer self-diffusivities, timescales and micro-

viscosities.

Using Equation 5.1, and the diffusion coefficient D(0, 0) (from PFG NMR) and

Rg(0, 0) (from SANS) of an isolated polymer in the presence of crowder, and setting

ηµ(0, 0) ≡ η0, we obtain Rg/RH = 1.18. This may be compared with the theoreti-

cal and experimental values of 1.24 and 1.16 respectively (for a θ solvent) [36], as

tabulated by Oono & Kohmoto [36].

In a companion work [20], we find that Ficoll70 solutions form clusters above a

characteristic ΦF (0.05 for uncharged and 0.1 for charged Ficoll70). In addition, we

obtain the the fraction of cluster fcluster and the fraction of monomer 1 − fcluster,

for a range of ΦF, and the diffusivities Dcluster and Dmonomer of both cluster and
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monomer species.
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Figure 5.6: Enhanced micro-scale mobilities: (a) Comparison of the diffusivity ratio
DPEG(0,ΦF)/DeffFicoll for charged and uncharged Ficoll70 as a function of ΦF shows a
significant (10 - 100 fold) enhancement of the polymer (PEG) dynamics, relative to the
compact (Ficoll70) crowder. (b) The ratio of characteristic time scale τPEG/τFicoll
concomitantly decreases by 1 - 2 orders of magnitude as a function of ΦF. (c)
Relative micro-scale viscosity of PEG, ηPEGµ (0,ΦF)/η0, obtained from D(0,ΦF) and
Rg(0,ΦF) as a function of uncharged and charged relative Ficoll70 viscosity ηBulk/η0.
The broken curves may be treated as a guide to the eye.

Figure 5.6(a) shows the ratio of polymer to crowder self-diffusivity, DPEG/DeffFicoll,

as a function ofΦF. Since the Ficoll70 forms clusters,DeffFicoll is obtained by a weighted

average DeffFicoll = fclusterDcluster + (1− fcluster)Dmonomer. All the quantities in

this weighted average are measured (Figure 6.3 (a) and (b) and Figure 6.4 in the

companion article [20]). PEG dynamics is enhanced sharply (by a factor of 10 -

100 with respect to Ficoll70 dynamics, in uncharged and charged crowder) as ΦF

approached the crowding limit. Denoting τ as the timescale for a macromolecule to
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diffuse its own radius (Equation 5.2), the ratio τPEG/τFicoll (Figure 5.6(b)) shows a

concomitant decrease by 1 - 2 orders of magnitude with increasing ΦF.

Finally, we plot the relative polymer microscale viscosity ηµ(0,Φ)/η0 against

its bulk equivalent η(Φ)/η0 (Figure 5.6(d)), using the Ficoll70 suspension viscosity

measured using a cone-plate rheometer to obtain both the viscosity of water η0, and

the viscosity of the suspension as a function of Φ, η(Φ) (see Materials and Meth-

ods). At ΦF = 0, ηPEGµ (0,ΦF)/η0 = 1. As ΦF increases to ΦF = 0.3, ηPEGµ (0,ΦF)/η0

increases only by a factor of ≈ 4, while ηBulk(ΦF)/η0 increases by a factor of 30-40;

the micro-viscosity is thus approximately 10 times smaller than the bulk viscosity in

the limit of crowding.

Fluorescence correlation spectroscopy (FCS) has been used to obtain the micro-

viscosity via diffusion of a probe molecule (protein) in in the presence of a macro-

molecular crowder (Ficoll70). According to these studies, depending on the size of the

protein, the micro-viscosity of Ficoll70 is found 4-7 times larger than the viscosity of

pure water [11, 37]. Other studies have also reported diffusion coefficients of proteins

that suggest a difference between micro-viscosity and bulk viscosity [38, 39]. Rashid

et al. [13] have reported that the micro-viscosity experienced by a fluorescent probe

molecule in Ficoll70 is up to 8 times smaller than the bulk viscosity in the limit of

crowding, roughly consistent with our findings.

By all measures, two macromolecules of similar nanometric size have very

different mobilities. The flexible linear polymer, which has access to chainlike dynam-

ical modes (such as reptation) is 10 to 100 times more mobile than the more compact

crowder.
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5.8 Discussion and Conclusion

In this work, we examine the role of crowder charge on macromolecular dynamics,

with no other parameters changing.

Charge has a weak effect on crowding: At ΦF = 0.35, crowder charge only

barely affects dynamics. The ratio δ(0,ΦF) of polymer diffusivity (for charged versus

uncharged crowder), while large at ΦF = 0.15, is only ∼ 1.1 in the crowding limit.

Ficoll70 has biophysical relevance in crowding: While Ficoll70 is thus non-

ideal, its use as a crowder might nevertheless have biophysical relevance. The con-

centration dependence of polymer self-diffusivity in charged and uncharged Ficoll70

appear to be upper and lower bounds for the self-diffusivity in a more biologically

relevant cell lysate solution at the same concentration! We find that we can con-

struct an artificial crowder that mimics polymer dynamics in cell lysate by making

an appropriate mixture of charged and uncharged crowder.

Flexibility aids macromolecular transport: A comparison between the poly-

mer self-diffusivity and diffusion timescales with that of the compact crowder (and a

polymer micro-viscosity with the bulk suspension viscosity) suggests that the micro-

scopic dynamics of the polymer is significantly enhanced in the crowding limit relative

to the expectations for a homogenous solution of the same bulk viscosity. In particu-

lar, the polymer (PEG) has a mobility that is 10 - 100 times larger than the compact,

Ficoll70 crowder. Wang et al. [15] have indicated that macromolecular shape might

be a key parameter in protein diffusion in the presence of macromolecular crowding.

The current work implies, in a simple model system for crowding, that flexibility

(i.e., the changing transient shape) makes a diffusing chainlike macromolecule very

different from a diffusing colloid and affects its mobility profoundly.

It is, of course, possible that it is not the polymer dynamics that is enhanced,
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but that the crowder hydrodynamic size is enhanced due to factors such as hydrogen

bonding. Having measured Ficoll70 cluster size (Figure 6.3 (c) in the companion ar-

ticle [20], Rcluster/Rmonomer < 3), this would account for only a small enhancement,

not the 10 -100 fold enhancement seen.

The long time goal of tandem PFG NMR and SANS studies of crowding is to

study charged polymers or proteins in charged crowder. In addition, examining the

role of flexibility (e.g. comparing disordered proteins with globular proteins) is of

interest. The current work represents an important step towards that goal.

5.9 Supplementary Material

The Supplementary Material contains physical interpretation of second characteristic

concentration (c2), a plot of the optimum contrast matching to wipe out the contri-

bution of Ficoll70 in scattering intensity, and comparison of Rg obtained from Debye

and Guinier fits.
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Figure 5.7: Ratio of c2 and cps: The ratio of second characteristic concentration to
phase separtion concention ( c2/cps) as a function of ΦF. This ratio at a given ΦF is
the same for all samples.
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5.11 Supplemental Material

5.11.1 Physical Interpretation of c2

In this work, diffusion measurements were carried out for PEG-Ficoll70 from a low

polymer concentration, cp, in the dilute limit, to a value close to the limit of phase

separation (cps). In all cases, the second characteristic concentration, c2, shows a

linear decrease with increasing ΦF for three independent samples of PEG (Mw=

20000 (in charged and uncharged Ficoll70, and Mw= 42800 (in uncharged Ficoll70)).

The qualitative behavior of cps correlates strongly with c2 that decreases rapidly

with Ficoll70 packing fraction. Figure 5.7 suggests the ratio, c2/cps, at a given ΦF

is independent of polymer molecular weight and crowder charge–suggesting that c2 is

indeed an indicator of the threshold of polymer stability in the PEG-Ficoll70 solution.
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5.11.2 Contrast Variation Study

In this paper small-angle neutron scattering (SANS) with D2O based contrast match-

ing was used to examine the effects of a crowder (Ficoll70) on the structure of a chain

like molecule (PEG). In these experiments, in order to obtain the scattering signal,

deuterium labeled PEG was used. The scattering contrast between the solvent and

unlabeled Ficoll70 was eliminated by adjusting the D2O fraction (ΦD2O) of the sol-

vent.
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Figure 5.8: Contast matching: The H2O/D2O composition points of minimum scat-
tering intensity for Ficoll70 were determined using contrast variation Ficoll70 samples
in solutions containing various H2O/D2O ratios. The ratio at which the scattering
length densities of Ficoll70 and H2O/D2O were matched and therefore Ficoll70 did
not contribute to the scattering signal was determined as (60±1)% H2O and (40±1)%
D2O.

The ΦD2O for optimum contrast matching was determined by recording scattering

profiles for Ficoll70 (ΦF = 0.3) dissolved in solutions containing 0, 20, 40, 60, 80, and

100% D2O. The scattering intensity was plotted as a function of ΦD2O (Figure 5.8)

from which the minimum scattering was determined using a quadratic funtion. In

this work we used (60 ± 1)% H2O and (40 ± 1)% D2O to wipe out the contribution

Ficoll70 selectively in scattering intensity.
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Figure 5.9: Debye and Guinier fits: SANS scattering intensity I(q) vs q for a
PEG/charged Ficoll70 mixture with a cp=0.015g/cm3 and ΦF = 0.2. (a) Radius
of gyration, Rg, of PEG, obtained from a fit to the Debye model is 8.1 ± 0.08 nm. (b)
Guinier plot shows linearity of ln(I(q)) as a function of q2 for qRg 60.92, yielding Rg
equals to 8.2 ± 1.9 nm. (c) Comparison of Rg obtained from Debye and Guinier fits.

5.11.3 Debye and Guinier Plot

The radius of gyration of the scattering object, Rg, can be extracted from fitting the

plot of I(q) vs q to the Debye model: this is shown in Figure 5.9(a) for a PEG/charged

Ficoll70 mixture with a cp= 0.05 g/cm3 and ΦF = 0.3.

In the limit of very low angle or small q, the scattering pattern of an isolated

polymer can approximated by a Gaussian, the width of which is proportional to

the square of the radius of gyration of the particle: this is known as the Guinier

relation. This is valid when qRg < 1. Using the Guinier approximation one can
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further write [40]:

I(q) = exp
(
−q2 Rg

2

3

)
(5.5)

In this work, a linearized representation was used, by plotting ln(I(q)) vs q2–

known as Guinier plot–where a simple linear regression yields the radius of gyration

from the slope. Such a fit is shown for a PEG/Ficoll70 mixture with a cp= 0.05

g/cm3 and ΦF = 0.3 in Figure 5.9(b).

As shown in Figure 5.9(c), while for pure PEG at low cp the Debye fit (Fig-

ure 5.9(a)) and a Guinier fit (Figure 5.9(b)) at small q give slightly different Rg

(suggesting it is not a Gaussian polymer chain), for all samples with any crowder in

it, the Debye and Guinier fits give the same Rg.
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Chapter 6 Synopsis

A commonly available polysaccharide, Ficoll70, has been used as a macromolecular

crowding agent to produce a resemblance of the high total concentrations that are

encountered in the cytoplasm. In this chapter, using pulsed-field gradient (PFG) NMR

and rheology, we assess the most prominent characteristics of charged and uncharged

Ficoll70 in water. This work is published in the Journal of Chemical Physics, vol.

147, no. 7, p. 074901, 2017. SP carried out all experiments. SP and AY co-wrote the

paper.



Chapter 6

Dynamics and Cluster Formation
in Charged and Uncharged Ficoll70
Solutions

6.1 Abstract

We apply pulsed-field-gradient NMR (PFG NMR) technique to measure the transla-

tional diffusion for both uncharged and charged polysaccharide (Ficoll70) in water.

Analysis of the data indicate that NMR signal attenuation above a certain packing

fraction can be adequately fitted with a bi-exponential function. The self-diffusion

measurements show also that the Ficoll70, an often-used compact, spherical poly-

sucrose molecule, is itself non-ideal, exhibiting signs of both softness and attractive

interactions in the form of a stable suspension consisting of monomers and clusters.

Further, we can quantify the fraction of monomer and cluster. This work strength-

ens the picture of the existence of a bound water layer within and around a porous

Ficoll70 particle.
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6.2 Introduction

A highly branched copolymer of two short building blocks, sucrose and epichlorohy-

drin, Ficoll70 has been widely used in studies of macromolecular crowding, and for

applications in blood preservation and renal filtration due to its high hydrophobicity

as well as its charge neutral globular form [1–12]. This synthetic carbohydrate poly-

mer has been used by many investigators to produce a resemblance of the high total

concentrations that are encountered in the cytoplasm [13].

While some experiments found that the diffusion of Ficoll70 fits the accepted

model for diffusion of hard sphere through cylindrical pores [14,15], other experiments

found either that Ficoll70 was more spherical and protein-like than dextran [16], or

that it is more deformable than globular proteins [17]. Based on experiments in vivo,

Asgeirsson et al. conjectured that Ficoll70 is sufficiently crosslinked that it cannot

reptate, but is not a rigid sphere [18]. Fissell and collaborators measured transport

of Ficoll70 through silicon slit nanopore membranes. They observed that Ficoll70

molecules could penetrate the pore even when the Stokes-Einstein radius was greater

than the slit width, implying deformability. They surmised Ficoll70 molecule either

is not spherical, is not rigid, or exhibits a different conformation in ionic solutions [5].

The most advanced analysis of Ficoll70 solution properties has been done in the

renal filtration literature [4–6,19–22]. Fissell et al. used standard multidetector size-

exclusion chromatography (SEC) on Ficoll to show that the Mark-Houwink exponents

for the molecular mass dependence of the intrinsic viscosity were 0.34 (Ficoll70) and

0.36 (Ficoll400), between the value of 0 for a solid sphere and 0.5 - 0.8 for a random

coil [23]. Their result agree closely with those of Lavrenko et al. [24]. Groszek et

al. used similar experiments to demonstrate that charged Ficoll70 was significantly

retarded compared with uncharged Ficoll70 across the rat glomerular filtration bar-
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rier [4]. Georgalis et al. found two different sizes of particles in Ficoll70 by means of

light scattering experiments [25].

Figure 6.1: 1D 1H-NMR spectrum for Ficoll70 /H2O sample at a sample temperature
298 K.

In this study, we employ pulsed-field-gradient (PFG) NMR to monitor the self-

diffusivities of uncharged and charged Ficoll70 in deionized water. Because of the

spectral selectivity of NMR, we can simultaneously (see Figure 6.1) obtain signal

from both the Ficoll70 and water species. In a companion work, we focus on polymer

structure and dynamics [26] in the presence of Ficoll70 crowder. Ficoll is an often-

used crowder. In the understanding of macromolecular crowding, it is important

to understand well the properties of the crowder. In this work, we examine the

properties of both charged and uncharged Ficoll70 for evidence of cluster formation

in equilibrium, a phenomenon, distinct from bulk phase separation, that has been

identified in colloids and proteins where short-ranged attractions coexist with longer-

ranged (typically electrostatic) repulsive interactions [27–32].
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6.3 Materials and Methods

Ficoll R©PM 70 (referred to as Ficoll70 in the text) with average molecular weight of

70000 (mean radius (Rc) 4.5-5.5 nm [8,25,33–35]) was purchased from Sigma Aldrich

and used without further purification. In this work, we use the value of Rc=4.6

nm [34]. Charged Ficoll70 (Ficoll CM 70) was a carboxymethylated derivative of Ficoll

PM70, made as described in reference [4]. It was a gift from Dr. William H. Fissell,

and was used as received after having been neutralized and dialyzed against distilled

water for 4 days. Experimental packing fractions (ΦF) of Ficoll70 were calculated

using the partial specific volume of Ficoll70, v̄ = 0.67 cm3/g [10] and are defined as:

ΦF =

(
MFicoll × 0.67

MFicoll × 0.67+ VH2O

)
(6.1)

HereMFicoll, and VH2O are the mass of Ficoll70 in units of gram and volume of water

in units of cm3 respectively.

For sample preparation, the desired packing fraction of Ficoll70 was dissolved in

deionized H2O. For charged Ficoll70 solutions, the conductivity was controlled, using

KCl, to a value of ≈ 1 mS/cm (see Table 1) in order to ensure a consistent Debye-

Hückel screening length (κRc ∼ 1.4) for all samples. The solution was stirred for 10

hours. Samples were then transferred to 5 mm outer diameter NMR tubes.

6.3.1 PFG NMR

The one-dimensional 1D proton NMR spectrum has been observed for different species

in all samples at a resonance frequency of 600 MHz on a Bruker Avance II spectrom-

eter. Figure 6.1 shows well-separated peak regions related to this system. Peak 1

and Peak 3 are the Ficoll70 peaks whereas Peak 2 is for H2O molecules in solution.
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Table 6.1: Comparison of the zeta potential for charged and uncharged Ficoll70

Species Zeta Potential Mobility Conductivity

(mV) (µm cm V/s) (mS/cm)

Charged Ficoll70 -27 ± 4 - 1.4 ± 0.2 0.1 ± 0.02

(without salt)

Charged Ficoll70 -29 ± 2 -1.3 ± 0.4 1.1 ± 0.01

(salt added)

Uncharged Ficoll70 -5.2 ± 0.2 - 0.4 ± 0.02 0.04 ± 0.01

All NMR experiments were performed at T =298K. The self-diffusion measurements

were carried out in a diffusion probe Diff 30 and with maximum field gradient 1800

G/cm (18 T/m). Diffusion was measured with a pulsed-field-gradient stimulated echo

sequence with trapezoidal gradient pulses [36]. The diffusion coefficient of a molecule

in aqueous solution is obtained from the attenuation of the signal according to the

equation

S(k) = S(0) exp(−Dk), (6.2)

where S(k) is the intensity of the signal in the presence of field gradient pulse, S(0) is

the intensity of the signal in the absence of field gradient pulse, k = (γδg)2(∆− δ/3),

γ = γH = 2.657× 108 T−1.s−1 is the proton gyromagnetic ratio, δ= 2 ms is the dura-

tion of field gradient pulse, ∆= 100 ms is the time period between two field gradient

pulses, and g is the amplitude of field gradient pulse.

6.3.2 Zeta Potential

The Zeta potential (ζ) and electrophoretic mobility of Ficoll70 solutions, shown in

Table 1, were measured by a Zetasizer Nano Z system (Malvern Instruments Ltd,
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Malvern, United Kingdom). The dimensionless Zeta potential Ψ = ζe/kBT = 1.1± 0.2

and 0.21 ± 0.02 for charged and uncharged Ficoll70 respectively. The solutions of

charged Ficoll70 were all prepared with added salt in order to keep the conductivity

at 1 mS/cm, resulting in a Debye-Hückel screening length κ−1 = 3.2± 0.5 nm. This

corresponds to a κRc ∼ 1.4. Given the value of the dimensionless Zeta potential Ψ

and κRc, i.e., both of order unity, electrostatics should clearly be important, but not

overwhelmingly so.

6.3.3 Bulk Viscosity Measurement

Experiments were performed on an Anton Paar Physica MCR 301 rheometer, where

the cone-plate measuring system was used to extract the flow curves. The cone-plate

geometry has a diameter of 50 mm and cone angle of 0.50. All samples were pre-

sheared for 1 minute before collecting data. The flow curves experiments were carried

out with shear rate varying from 0.001 to 100 s−1. For all samples reported in this

work, viscosity remains constant as the shear rate is varied.

6.4 Diffusion Model

The PFG NMR signal attenuation of Ficoll70 shows a monoexponential decay with

the gradient strength parameter at low packing fraction (ΦF < 0.05 (uncharged) and

ΦF < 0.1 (charged)). This implies either that it is a single component system or

that there are multiple components (e.g. a monomer and cluster) that exchanges very

rapidly between monomer and aggregate on the timescale of the NMR experiment [37].

Given the larger size of Ficoll70, the diffusion time of the monomer ∼ 1µs; thus

residence times of the Ficoll70 molecule within clusters will be a few micro-seconds or

longer. Hence the fact that the signal attenuation associated with the Ficoll70 peak
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Figure 6.2: (a) The attenuation of the signal S(k)/S(0) on a log scale versus the
gradient strength parameter k = (γδg)2(∆− δ/3) for an aqueous solution Ficoll70 is
mono-exponential at low ΦF for both uncharged and charged Ficoll70 solutions. Sig-
nal attenuation for Ficoll70 solution at ΦF = 0.02 exhibits simple mono-exponential
behaviour. (b) For ΦF > 0.05 (0.10) for uncharged (charged) Ficoll70, the signal at-
tenuation is not mono-exponential. As an example, signal attenuation for Ficoll70
solution at ΦF = 0.15 and (c) at ΦF = 0.35, is well-fit to a bi-exponential form. (d)
Signal attenuation for uncharged Ficoll70 solution at ΦF = 0.15 is shown alongside
decoupled monomer and cluster signal attenuations obtained after the bi-exponential
fit.
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exhibits monoexponential behaviour (Figure 6.2(a)) at low packing fractions suggests

that the exchange between Ficoll70 clusters and monomers must be very rapid on the

NMR time scale.
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Figure 6.3: Ficoll70 forms clusters: Biexponential signal attenuation indicates emer-
gence of a cluster state above ΦF = 0.05 (uncharged) and ΦF = 0.1 (charged). (a)
Ficoll70 monomer diffusion coefficient as a function of ΦF and (b) Ficoll70 cluster
diffusion coefficient as a function of ΦF. (c) The monomer-to-cluster self-diffusivity
ratio shows no clear dependence on ΦF, but appears somewhat larger for charged
Ficoll70 than for uncharged Ficoll70. In (a) and (b) cluster and monomer diffusion
results are shown in gray to aid comparison.

On the other hand, if the molecular exchange between monomer and cluster is
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very slow, one expects the total Ficoll70 signal to be given by

S(k) = Smonomer(k) + Scluster(k)

= Smonomer(0) exp(−Dmonomerk)

+ Scluster(0) exp(−Dclusterk) (6.3)

which is bi-exponential in nature (Figure 6.2(b) and (c)). A generalization to

multi-exponential behaviour may be made for macromolecules existing in more than

two species: S(k) =
∑
iSi(k), where i= momomer or cluster. For two species,

Equation 6.3 may be written in the form S(k)/S(0) = f exp(−Dmonomerk) + (1 −

f) exp(−Dclusterk), where f = Smonomer(0)/(Smonomer(0) + Scluster(0)).

6.5 Results

6.5.1 Ficoll70 Forms Clusters

The self-diffusion coefficient is obtained in pure Ficoll70 aqueous solutions. The key

observation is that the PFG NMR signal attenuation is not mono-exponential when

ΦF is greater than a threshold value: 0.05 (0.10) for uncharged (charged) Ficoll70.

When there are two species with the same chemical signatures, and when there is slow

exchange (or no exchange) between the species, one obtains bi-exponential signal at-

tenuations in a PFG NMR experiment (Figure 6.2(b) and (c)). Shown in Supplemental

Material is a plot of the coefficient of determination R2 in a linear fit of log(S(k) vs.

k. For ΦF = 0.05 and greater, there is marked decrease in R2 below a plateau value

of 0.99. This signals the onset of cluster formation. Our observations thus indicate

the co-existence of (fast diffusing) monomers and (slow diffusing) clusters of Ficoll70.

We plot the diffusion coefficients for charged and uncharged crowder, and for
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monomer (Figure 6.3(a)) and for cluster (Figure 6.3(b)), as a function of ΦF. Every D

dependence onΦF is exponential! In dilute polymer solutions one sees a linear decrease

in diffusivity. The corresponding diffusion interaction parameter kD is ∼ −2.3 for

polystyrene solutions when the second virial coefficient A2 is zero [38]; A2 is negative

for lower (more negative) kD. For hard-sphere colloids, the linear ΦF term would

have a prefactor of ∼ −2.5. A linearization of the exponential dependence that we

observe yields kD ∼ −9.5 (−10.4) for uncharged (charged) Ficoll70, much larger than

those for typical polymer solutions or hard-sphere colloids, possibly indicative of the

propensity for Ficoll to self-associate.

As discussed in earlier [1] and companion [26] works, the work of Rosenfeld [39]

and Dzugutov [40] connected structural properties of atomic liquids to their diffusion

coefficients. Both studies have proposed an exponential relationship between atomic

diffusion and the excess entropy S2/kB (in the 2-particle approximation); moreover,

recent 2D simulations and colloids experiments [41] show that S2/kB is proportional to

the colloid packing fraction for packing fractions less than 0.4. The same connection

would hold in colloidal suspensions if hydrodynamics is not important in the long-time

limit.

The spectral selectivity of PFG NMR allows us to simultaneously obtain diffusion

coefficients of water and Ficoll70. We can thus obtain, not only Ficoll70 dynamics,

but also the information about the interaction of water with the crowder.

The monomer-to-cluster self-diffusivity ratio (Figure 6.3(c)) shows no clear depen-

dence on ΦF, but appears somewhat larger for charged Ficoll70 than for uncharged

Ficoll70. When the Stokes-Einstein relation remains valid (i.e., at low enough ΦF),

this ratio should report on the ratio of cluster to monomer sizes. This ratio is approx-

imately 2.5 and 3, respectively, for uncharged and charged Ficoll70. For uncharged

Ficoll70, Georgalis et al. have measured the value of Dmonomer/Dcluster = 2.37 [25],
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Figure 6.4: Structure of Ficoll70 via diffusion: Fraction of Ficoll70 cluster (fcluster)
as a function of ΦF for both charged and uncharged Ficoll70.

which is consistent with this work. The fraction of clusters (shown in Figure 6.4)

increases from 5% at onset of clustering to ∼ 60% in the crowding regime: in fact,

this fraction is very similar for charged and uncharged crowder.

The clusters reported here are unlike micellar aggregates in that the cluster sizes

are tiny (2-3 as opposed to an aggregation number of 50-80 in micelles), and are

more similar to the equilibrium clusters seen in protein solutions and in colloids with

competing attractive and repulsive interactions [28, 29]. As an additonal note, one

would expect there to be a distribution of cluster sizes. However, we cannot obtain fit

to a distribution without adding an additional fit parameter. The cluster size should

thus be treated as a mean cluster size.

One can use the measured monomer and cluster self-diffusivities to calculate an

effective diffusion coefficient Deff

DeffFicoll = fclusterDcluster + (1− fcluster)Dmonomer. (6.4)
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This diffusivity may be compared to its bulk analog from the measured bulk Fi-

coll70 viscosity ηBulk and the hydrodynamic radius of Ficoll70 monomer RH = 4.6

nm using a Stokes-Einstein form kBT/(6πηBulkRH). A slope of 1 in the plot of

kBT/(6πηBulkRH) versusDeff would imply agreement with Stokes-Einstein behaviour

(dashed line). As can be seen in Figure 6.5, there is agreement for uncharged Ficoll70

solutions so long as cluster formation is not significant, while for charged Ficoll70

there is significant deviation for much smaller ΦF than the cluster-forming threshold.

Even for uncharged Ficoll70 solutions, there is significant deviation for ΦF > 0.15.

6.5.2 Ficoll Hydration is Quantifiable via Water Dynamics

Another interesting aspect is the water diffusion coefficient. The similarity of the

water diffusion for charged and uncharged Ficoll70 in Figure 6.6 is reassuring, as it

indicates that the physical structure of the polysucrose is unchanged by the charge.

Why does the water diffusion coefficient change with ΦF? Water dynamics, mea-

sured on PFG NMR timescales, is well modeled by assuming rapid exchange of the

water molecule between bulk and surface-associated environments [42]. In the present

case the self-diffusion of the surface-associated water would be similar to that of the

Ficoll70 particle, i.e., between 20 and 1000 times slower than the bulk water self-

diffusion coefficient. In the rapid exchange limit, the observed diffusion coefficient

DH2O(ΦF) = fD0 + (1− f)Dsurface, where f is the fraction of free (bulk) water,

while (1− f) is the fraction of surface-associated water. Since Dsurface << D0, this

yields the approximate form for the fraction of free (bulk) water f ≈ DH2O(ΦF)/D0;

this fraction is shown in Figure 6.6.

For solid, spherical colloids, the fraction f of bulk water would be expected to

decrease with ΦF. One water layer is approximately 0.3 nm thick and the Ficoll

radius is 4.6 nm. The dependence of f ≡ DH2O(ΦF)/D0 for n = 1, 3 and 5 water
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layers is shown. In contrast, the measured dependence of f on ΦF (Figure 6.6) shows

a high degree of linearity, with a fit to DH2O/D0 = 1− β1ΦF, with β1 = 2.10± 0.03.

As shown in Supplemental Material (Section IV), β ∼ 2 implies that a water volume

per gram of Ficoll70 that corresponds roughly to 2v̄ (i.e., twice the partial specific

volume of Ficoll70) is surface-associated.

At ΦF = 0.3, as much as 60% of the water is surface associated, suggesting that

Ficoll70 is very porous and hydrated; this is not surprising, in hindsight, but we

believe that it has not been adequately recognized in the crowding literature, apart

from clear indications that Ficoll70 is not a rigid sphere [5,6], as well as the practical

knowledge about the lack of overall stability of Ficoll70 solutions above ΦF = 0.35.

It should be noted that this bound water is likely not available to the polymer, and

should be accounted for in any free-volume calculations.

6.6 Discussion and Conclusion

In this work, we examine the dynamics of Ficoll70 in water, for both uncharged and

charged system. Ficoll70, an often-used artificial crowder, is not hard-sphere-like.

This has been indicated elsewhere [5,6], but our water diffusion measurements suggest

that 60% of the water is surface-associated in the crowding limit, indicating that the

polysucrose particle is highly porous. Even more surprisingly, Ficoll70 diffusivity is

bi-modal, indicating that it self-clusters at modest concentrations, with cluster sizes

approaching 2 to 3 times the size of the single Ficoll70 particle size (“monomer”).

This is reminiscent of indications, from maximum entropy analyses of fluorescence

correlation spectroscopy experiments, of multiple modes of probe mobility in crowded

solutions [43].

Coexistence of monomers and clusters in equilibrium has been seen experimen-
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tally [28–30], and is expected in systems which have short-ranged attractions and

longer-ranged repulsions [27, 32]. Considering both the 5 nm particle scale and that

polysaccharide surfaces in water have a Hamaker constant of ∼ 2kBT [44]), attractive

forces should be relevant in the presence of even small long-ranged (e.g. electrostatic)

repulsions, and is consistent with the observed weak clustering.

The generic behavior–formation of small clusters with the fraction of clusters in-

creasing with packing fraction ΦF, and the exponential dependence of all the self-

diffusivities as a function of ΦF–is the same for uncharged and charged Ficoll70 solu-

tions. The striking difference is in the actual values of the self-diffusivities, with the

charged Ficoll70 being as much as an order of magnitude slower in the crowding limit.

A more detailed understanding of Ficoll70 structure and inter-particle interactions will

be necessary in order to understand this difference.
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6.7 Supplemental Material

6.7.1 Bulk Viscosity Measurement

The rheological measurements were carried out on an Anton Paar Physica MCR 301

rheometer, where the cone-plate measuring system was used to extract the flow curves.

The cone-plate geometry used in this study was of R = 50 mm diameter and 0.5o

cone angle. The main advantage of using cone-plate geometry is that the shear rate

is homogeneous and it remains constant throughout the sample. All samples were

pre-sheared for 1 minute before collecting data. The flow curves experiments were

carried out with shear rate varying from 0.001 to 100 s−1.
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Figure 6.7: Viscosity of Ficoll70: Comparison of the bulk viscosity ηBulk for charged
and uncharged Ficoll70 as a function of packing fraction ΦF. The dashed lines may
be treated as a guide to the eye.

A plot of the viscosity values ηBulk(ΦF) versus the packing fractions ΦF of the

aqueous dispersions of Ficoll70 is shown in Figure 6.7.
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6.7.2 The Self-Diffusion Measurement

One of the key observations of this study is that Ficoll70 diffusivity is bi-modal,

indicating that it self-clusters at modest concentrations. The PFG NMR signal at-

tenuation exhibit bi-exponential when ΦF is greater than a threshold value: 0.05

(0.10) for uncharged (charged) Ficoll70.

Shown in a plot (Figure 6.8) of the coefficient of determination R2 from a linear fit

of ln(S(k)/S(0)) vs. k = (γδg)2(∆− δ/3) for aqueous solutions of uncharged Ficoll70.

It is seen that there is relatively sharp decrease in R2 at ΦF. This is how we determine

the onset of the biexponential fit.
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Figure 6.8: Onset of the biexponential: Coefficient of determination R2 from a linear
fit demonstrates a significant change above ΦF: 0.05 for uncharged Ficoll70.

6.7.3 Effective Diffusion Coefficient

The fact that the signal attenuation associated with the Ficoll70 peak exhibits bi-

exponential behaviour over ΦF > 0.05 (0.1) for uncharged (charged) suggests that the

observed self-diffusion coefficient of Ficoll70 is a linear combination of the self-diffusion

coefficient Dmonomer of the free molecules in bulk and that of the bound molecules in
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Figure 6.9: Effective diffusion coefficient: Effective diffusion coefficient for charged
and uncharged Ficoll70 as a function of packing fraction ΦF.

the cluster Dcluster in the solution. The validity of this “two-species model" has long

been known [45–48]. Using the two-species model, the effective diffusion coefficient

(Deff) is written as:

DeffFicoll = fclusterDcluster + (1− fcluster)Dmonomer. (6.5)

Hence we obtain DeffFicoll (Figure 6.9) from the fraction of cluster fcluster and the

fraction of monomer (1 − fcluster), for a range of ΦF, and the diffusivities Dcluster

and Dmonomer of both cluster and monomer species.

6.7.4 Linear Dependence of the DH2O on ΦF

Given a partial specific volume v̄ for Ficoll70, we can write ΦF = v̄MFicoll/V , where

V is the total solution volume. Let f be the fraction of bulk water. The fraction

of water that is associated with the Ficoll70 surface must, if we treat Ficoll70 as a

branched polymer, be proportional to the Ficoll70 concentration, i.e.,

1− f = αMFicoll/V , (6.6)
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which means that the fraction of surface-associated water

1− f = α

v̄
ΦF ≡ βΦF, (6.7)

would increase linearly with the volume fraction ΦF (or the concentrationMFicoll/V

in g/cm3).

In contrast, if we were considering water layers on a solid sphere, we would expect

(1− f)VH2O = N
[
(4π/3)(Rc + x)3 − (4π/3)R3

c

]
, (6.8)

where Rc is Ficoll radius, and x = n(0.3) nm is the thickness of n water monolayers.

Using ΦF = VFicoll/V = N(4π/3)R3
c/V and 1−ΦF = VH2O/V , we get the expecta-

tion that the fraction of surface-associated water depends nonlinearly on ΦF:

1− f = g(n) ΦF

1−ΦF
, (6.9)

where g(n) = (1+ x/Rc)3 − 1.
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Chapter 7 Synopsis

In this chapter we report the dynamics of macromolecules in the presence of hier-

archical confinement: in a nanometer-scale porous gel matrix and within stable and

monodisperse micrometer-scale water- in-oil drops. This work is published in Soft

Matter, vol. 14, no. 3, p. 448, 2018. SP carried out all experiments. SKT performed

the calculations to obtain the droplet size distribution reported in Figure 7.2. SP and

AY co-wrote the paper.



Chapter 7

Realization of a Stable,
Monodisperse Water-in-Oil Droplet
System with Micro-Scale and
Nano-Scale Confinement for
Tandem Microscopy and Diffusion
NMR Studies

7.1 Abstract

In this work we generate stable and monodisperse water-in-oil emulsions using a co-

flowing geometery that produced droplet sizes between 13 µm and 250 µm. The

drops survived transfer to NMR tubes and were stable for at least 26 hours, enabling

the performance of pulsed-field-gradient NMR experiments in addition to microscopy.

The drops sizes achieved as a function of flow rate agree well with a simple model for

droplet generation: this yields a precise measure of the interfacial tension. The de-

sign of a cell mimetic environment with nano-scale confinement has also been demon-
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strated with diffusion measurements on macromolecules (PEG and Ficoll70) within

droplets that are further structured internally using agarose gel networks. Containing

the agarose gel in droplets appears to provide very reproducible and homogeneous

network environments, enabling quantitative agreement of Ficoll70 dynamics with

a theoretical model, with no fit parameters, and, with PEG, yielding a systematic

polymer-size dependent slowing down in the network. This is in contrast with bulk

agarose, where identical macromolecular diffusion measurements indicate the presence

of heterogeneities with water pockets.

7.2 Introduction

Diffusion in inhomogeneous media such as biological cells is complex because molecules

encounter obstructing structures at both nano- and micro-scales [1]. In living cells

the presence of the cytoplasm provides compartmentalization, crowding and above all

a heterogeneous distribution of macromolecules [2,3]. In vitro compartmentalisation,

using water-in-oil emulsions, is one system that can begin to mimic this complexity [4].

Encapsulation of macromolecules in microscopic water droplets is also powerful in that

it enables the performance of laboratory operations using a fraction of the volume of

reagents and significantly less time [5, 6].

Microfluidics offer opportunities for fundamental studies in cell biology [7, 8]. In

particular, it has been used for the generation of well-defined cellular microenviron-

ments by encapsulating cells in droplets or microgels, followed by studies of cell growth

and viability [9, 10], gene expression [11], and enzymatic activity [12]. Hydrogels are

an attractive starting point for re-creating the hierarchical structure of biological

cells [13, 14]. Agarose is a neutral polysaccharide that forms hydrogels at reduced

temperatures [15]. It is extensively used in biomedical research because it is gener-
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ally bio-inert, non-adsorptive to proteins and non-adhesive to cells, and its mechanical

properties can be tuned by varying the agarose concentration in the gel [16,17]. While

hydrogels can mimic nano-scale confinement, it is more challenging to generate robust

and controlled multi-scale confinement spanning the nanometer and the micrometer

scales.

The microfluidic encapsulation strategy has several important advantages: the

ability to create 3D cellular microenvironments with precisely controlled dimensions,

the capability to vary the properties of these environments at high throughputs of

about 100 to 1000 highly monodisperse aqueous droplets per second [18–20] However,

it is not always obvious that these high-throughput strategies produce droplets that

are stable when produced in the large quantities and for the long durations that are

needed for small-angle scattering or nuclear magnetic resonance (NMR) spectroscopy.

Thus, the challenge is to achieve long-time stability for droplets that can be loaded

with macromolecules of choice and confining environments on the micro- and nano-

scale.

One of the primary objectives of the current study is the generation of stable and

monodisperse water-in-oil emulsions where we can incorporate micro-scale confine-

ment via control of the water drop size, and nano-scale confinement by loading the

drops with agarose gel, which forms a filamentous network that may be considered a

physical, non-active analog of the cytoskeletal network.

In this study, the diffusion behaviors of two kinds of macromolecules–a flexible non-

ionic polymer, polyethylene glycol (PEG) and a compact uncharged polysaccharide

(Ficoll70)–are determined in three kinds of environments using pulsed-field-gradient

NMR (PFG NMR), while employing, in tandem, the more rapid technique (optical

microscopy) to ensure that the drops remain unchanged from production to NMR.

The first environment is a simple water-in-oil emulsion which generates micro-scale
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confinement. The second environment is bulk agarose gel. The third is a water-in-oil

emulsion where the aqueous phase is loaded with agarose gel: we refer to these as

agarose gel microbeads. Using these three environments, we can examine the role of

macromolecular diffusion in the presence of micro-scale confinement, nano-scale con-

finement, and a hierarchical micro- and nano-scale confinement. The significance of

this work is that the results will enable a deep understanding of the diffusion behav-

ior of these solutes in a biomimetic system, which is needed for further progress in

research of molecular diffusion in vivo.

7.3 Background

7.3.1 Stable and Monodisperse Micron-Scale Droplets

Using microfluidic technology, one can produce a uniform stream of droplets having

diameters ranging from a few micrometres to hundreds of micrometres (corresponding

to volumes between 0.5 pl and 4 nl) in a uniform, evenly spaced, continuous stream.

Popular geometries for microfluidic droplet generation geometries are the T-junction,

flow-focusing and the co-flow geometry. In the T-junction geometry, droplet formation

occurs due to the combined effect of pressure changes in the continuous phase and

the squeezing of the dispersed phase. This geometry is popular due to the ease with

which droplets can be formed and the uniformity of the resulting droplets [21,22]. In

flow-focusing microfluidics, the dispersed and continuous phases are forced through

a narrow region in the microfluidic device. The design employs symmetric shearing

by the continuous phase on the dispersed phase which enables more controlled and

stable generation of droplets [23,24]. In a co-flowing geometry there are two concentric

channels: the dispersed phase liquid is driven into the inner channel into parallel

flowing stream of the continuous phase liquid. Co-flowing configurations result in
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highly monodisperse droplets with polydispersity values ranging from 1% to 2%. The

droplet sizes produced range from as small as 80 µm up to a few hundred micrometres

in diameter [25,26].

Making stable water-in-oil emulsions is challenging. Emulsions can be stabilized

by amphiphilic surfactants and surface-active polymers [27], colloidal particles [28],

or a combination of particles and surfactants [29]. In surfactant-stabilized emulsions,

the HLB value, which is a measure for the ratio of hydrophilic to hydrophobic parts of

the surfactant, is often considered to classify low-molecular-weight amphiphiles, while

the main factor influencing the ability of colloidal particles to form so-called Pickering

emulsions is the particle-surface wettability [28].

7.3.2 Agarose Gel and Nano-Scale Confinement

For a macromolecule in dilute solution, the Stokes-Einstein relation,

D0 =
kBT

6πηRH
, (7.1)

relates the self-diffusion coefficient D0 with the hydrodynamic radius, RH, and the

solvent viscosity, η.

Agarose gel is an irregular 3D matrix of fibers filled with water [30]. A solute

can diffuse freely in the water, but in agarose it will be impeded by the fibers. The

arrangement of the fibers in the matrix also has an effect on the magnitude of steric

interaction. An ordered arrangement of fibers impedes diffusion less than a disordered

or random arrangement, as is found in agarose [31].

The relationship between the hydrodynamic radius of a solute and the pore size

of a fibrous medium plays a large role in how the solute is able to diffuse in such a

medium. The pore size describes the amount of space between the fibers that make
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up the medium. It is well known that the mesh sizes in polymer hydrogels depend

on the volume fraction, Φ, or mass fraction µ (in agarose µ = 1.025Φ), of polymeric

material in solution: this is also referred to as the fiber density. There is wide variance

in pore size, from 1 nm to 900 nm [32–40]. A smaller pore size results from a higher

fiber density (higher µ or Φ) and results in a greater hindrance to diffusion. Typical

mass fractions for agarose gel range from 0.5% to 7.5%.

In general, the relative diffusivity (the diffusivity in the gel divided by the corre-

sponding aqueous value in unconfined water) is found to decrease as molecular size

and/or gel polymer concentration are increased. One way to describe the effects of

molecular size is to use hindered transport theories developed for membranes with

long, regularly shaped (such as cylindrical) pores [41]. Thus, a given gel might be

viewed as having a certain effective pore size and pore number density. However,

there is no clear way to predict those pore parameters from actual compositional

variables, such as the volume fraction of crosslinked polymer. Closer to reality are

models that envision a gel as a network of polymeric fibers with fluid-filled interstices.

In such models, it is usually assumed that a single type of rigid, cylindrical fiber is

arranged in either a random or spatially periodic array. Thus, a given gel might be

viewed as having a certain effective pore size and pore number density. Ogston et al.

proposed a stochastic model for the hindered diffusion coefficient of a solute molecule

in a random fiber matrix [42]. They assumed that a single type of rigid, cylindrical

fiber is arranged in either a random or spatially periodic array, and that the hindered

mobility is due to steric obstructions of the fibers. In their picture, the reduced diffu-

sion coefficient, Dg/D0, is equal to the probability of a random-walk step of the test

particle without collision. The derived expression for the reduced diffusion coefficient

is
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Dg

D0
= exp

(
−

(RH + Rf)

Rf
Φ0.5), (7.2)

where Φ represents the volume fraction of the polymer, RH the hydrodynamic radius

of the diffusing molecule and Rf defines the effective cylindrical radius of the fiber.

A recent experimental work on dextran molecules diffusing as probe through a poly-

acrylamide hydrogel shows excellent agreement with Ogston model [43]. However, the

Ogston model is sometimes unsatisfactory for agarose gels, overestimating the influ-

ence of polymer concentration on the diffusion coefficients in cases where the proteins

and polymeric macromolecules are flexible in structure. [44,45]

NMR relaxation measurements can also be used to get information about pore size.

D’Agostino et al [46] measured the change in relaxation rate with gel concentration.

The relaxation rate is expected to depend linearly on the surface-volume ratio, so

they used the relation

∆

(
1
T1

)
≡ 1
T1(ΦA)

−
1

T1(ΦA = 0) =
2

RPore
ρ, (7.3)

where 2
RPore

is the surface-to-volume ratio assuming that the pores are cylindrical

in shape with a pore radius RPore; ρ is a material property known as the surface

relaxivity.

7.4 Method

7.4.1 Droplet Generation

The liquids we employ were deionized water as the aqueous phase, and mineral oil

(Fisher Scientific, CAS 0122B-4) with a density of 870 kg/m3 and dynamic viscosity

of 32 × 10−3 Pa s as the oil phase. A non-ionic surfactant span-80 (Sigma-Aldrich)
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Figure 7.1: Droplet formation: Schematic of production of water-in-oil emulsion
droplets in microfluidic device with coflowing geometry.

was added into the 100 ml oil phase at 4.5% (v/v) as a surfactant. The resulting

oil-surfactant mixture was stirred on a magnetic stir plate for an hour.

As shown in Figure 7.1, the experimental device used in this work is made of

two coaxially aligned cylindrical capillary tubes. The inner capillary tube with a

tip tapered to an inner diameter, Dtip, that is varied between (26 ± 0.5) µm and

(15 ± 0.2) µm and an outer diameter Dout = 1.2 ± 0.2 mm. The coaxial alignment

of the tubes is achieved by matching the outer diameter of the untapered portion of

the inner capillary to the inner dimension of the outer capillary.

In all the experiments reported here, the generation of droplets of variable size

is achieved by changing both the inner capillary diameter (Dtip) as well as the oil

flow rate (Qoil). The inner fluid is deionized water and the outer fluid is mineral

oil (with Span80), which leads to water drops that form in a continuous phase of oil.

Both liquids are injected through syringe pumps. In this study, the experiments are

performed at constant dispersed phase flow rate (Qwater = 0.001 cm3/min), where

Qoil is always much greater than Qwater.

The measured size distribution of droplets remained unchanged for the maximum

measured duration of 26 hours. However, the water-in-oil droplets were breaking into

smaller droplets while transferring from the production container to the NMR tube.

Several methods had been used to prevent droplet break up. The idea of adding 1%

197



(w/v) hydrophobic fumed silica nanoparticles (Aerosil @ R972, Evonik, with a mean

particle diameter of 16 nm [47]) with mineral oil proved to be the most effective.

The silica nano-particles form a thin layer around the water droplets and provide

better stability against break up. Measurements for simple micro-scale confinement

reported in this article are therefore for the silica particle stabilized water-in-mineral

oil emulsion. As also stated in the next sub-section, introducing nanoscale confinement

in the form of agarose gel was itself adequate to drop stability, and in that case, nano-

particle stabilization was not necessary.

7.4.2 The NMR Self-Diffusion Measurement

Pulsed field gradient nuclear magnetic resonance (PFG-NMR) is a common non-

invasive technique to study the size distribution and dynamics of single emulsion

systems with advantages that it can be used on concentrated opaque emulsions and

is a non-destructive technique [48,49]. PFG NMR measurements were carried out on

a Bruker Avance II 600 spectrometer equipped with a Bruker 14.08 T magnet, and

a Bruker diffusion Diff30 probe (with a 1H radiofrequency coil insert with an inner

diameter of 5 mm) with a maximum Z gradient strength of 30 Gauss/cm/Amp. The

spectrometer was also equipped with a (60A maximum current) gradient amplifier

and thus a maximum gradient of 1800 Gauss/cm (18 T/m). To avoid probe heating

and to control sample temperature, the probe was cooled by flowing water and the

temperature maintained at 25◦C. We use a pulsed-field-gradient stimulated echo pulse

program to measure diffusion [50]. The gradient steps were varied and the signal for

H2O, PEG of different molecular weight and Ficoll70 were collected as a function of

gradient. Signal attenuation due to diffusion in the stimulated echo sequence is given

by
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S(g) = S0 exp
(
− γ2g2δ2(∆− δ/3)D

)
, (7.4)

where S(g) is the intensity of the signal in the presence of field gradient pulse, S(0) is

the intensity of the signal in the absence of field gradient pulse, γ = γH = 2.657× 108

T−1.s−1 is the proton gyromagnetic ratio, δ= 2 ms is the duration of field gradient

pulse, ∆= 500 ms is the time period between two field gradient pulses, and g is the

amplitude of field gradient pulse.

Also, for agarose gel, we measured longitudinal relaxation time (T1) values from a

series of spectra collected using a standard inversion-recovery pulse sequence.

7.4.3 Restricted Diffusion and the Droplet Size Distribution

Diffusion of molecules inside a cavity is known as “restricted diffusion”. As the

molecules inside the cavity are not diffusing freely, the behavior of signal attenua-

tion is different from that of unrestricted diffusion. Callaghan et al. used pulsed-field

gradient spin echo experiment to measure the diffusion coefficients of water and fat

in Cheddar and Swiss cheeses [48]. They considered a cheese matrix as a collec-

tion of droplets with a Gaussian distribution of sphere volume. The resulting echo

attenuation was

S(g) = S0 exp
(
− α2 a2

0
[
1+ σ2 α2]−1

−
1
2 ln

[
1+ σ2 α2]), (7.5)

where a0 is the mean radius and σ/
√
2 is the standard deviation. The variable α2

depends on the gradient strength and gradient pulse duration, γ2g2δ2. The above

expression is valid for the condition exp (−a2
0/σ

2) << 1.
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 (a)  (c)

 (d)

 (b)

 (e)

Figure 7.2: Stable and monodisperse droplets: Monodisperse water-in-oil emul-
sion of different droplet sizes are generated in microfluidic device. These droplets were
verified to be stable for at least 26 hours. (a) Droplet radius are: (13.7 ± 0.2) —m;
(23.2±0.4) —m using Dtip = (15±0.2) µm (top), (38.2±0.4) —m; (59±1) —m using
Dtip = (19±0.4) µm (middle), (126±3) —m; (265±4) —m using Dtip = (26±0.5) µm
(bottom). (b) Flow curve for droplet diameter, normalized by the tip diameter (Dtip)
of the inner capillary, as a function of the external oil flow rate. Here the dashed
line has a functional form of 2a0/Dtip − 1 = b/Qoil that is consistent with the form
suggested by Umbanhowar et al. [25]. The agreement is excellent, with the one fit pa-
rameter b= (9.7± 0.1) cm3/min. (c) Using optical microscopy and image-processing
methods (see text), the mean radius of the water droplets in silica nanoparticle sta-
bilized mineral oil was measured. For example, the droplets in Figure (a) (top left)
had a size distribution yielding (13.7 ±0.2) µm. (d) PFG NMR signal attenuation of
water. From the fit (blue line) the droplet radius was measured (14±0.5) µm. In case
of water in oil emulsion without silica nanoparticles, from the fit (red line), droplet
radius was measured (14±6) µm (e) Comparison of mean droplet diameter (using
silica nanoparticle stabilization) obtained by PFG NMR and microscopy. In all cases
shown, the drops were stabilized with silica nanoparticles, as described in the text.

7.4.4 Optical Microscopy and Characterization

In this work, a Nikon Eclipse 80i upright optical microscope was used. A high speed

camera (model PCO.Edge) was mounted on the microscope rear port. Bright field

microscopy was used to measure the emulsion size and stability. The size distribution
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of droplets was analyzed using a computer program that was coded in Interactive

Data Language (IDL).

7.5 Results: Achieving Stable Confinement

In this work we generated stable, monodisperse water-in-oil emulsion with micro-scale

and nano-scale confinement.

7.5.1 Preparation of Micro-Scale Confinement

As shown in Figure 7.2 (see also Appendix Figure 7.9), our microfluidic system demon-

strates a high degree of versatility in the size of droplets produced. By varying Qoil,

a wide range of droplet sizes (14 µm to 265 µm) was produced with excellent size

selectivity: a summary of results is shown here for silica-nanoparticle stabilized sus-

pensions (with details in the Appendix). We find that a decrease in the rate of flow

of the continuous phase increases the size of the droplets–a phenomenon consistent

with previous studies [23,51]. We observe that the channel dimension governs the size

of the water droplet. With a smaller inner capillary dimension, smaller droplets are

generated. This is because the higher flow rate in the smaller channels increases the

shear rate in the system, resulting smaller droplets.

For small inner fluid flow rates, following Umbanhowar et al. [25], we may write

an equation relating the droplet size (2a0) (scaled by the inner diameter, Dtip, of the

capillary tube) to the velocity v of the continuous phase:

2a0

Dtip
= 1+ vs

v
.

In this equation vs = γ/3ηc, where γ is the interfacial tension and ηc is the viscosity
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of the continuous phase. By introducing the cross-sectional area of the outer channel

(π(Dout/2)2) one can write the above equation as

2a0

Dtip
− 1 =

π(Dout/2)2 γ
3ηc

Qoil

=
b

Qoil
,

(7.6)

where b = π(Dout/2)2 γ
3ηc .

Experiments were performed using three different tip diameters (Dtip): (15 ±

0.2)µm, (19± 0.4)µm, and (26± 0.5)µm. The resulting drops, imaged with a micro-

scope, are shown in Figure 7.2(a) (the top, middle and bottom panels refer to (Dtip=

(15± 0.2)µm, (19± 0.4)µm, and (26± 0.5)µm respectively). A complete set of drop

sizes generated is shown in the Appendix (Figure 7.9). The resulting drop radii a0

are shown as a function of Qoil in Figure 7.10 (Appendix). In Figure 7.2(b), the plot

of 2a0/Dtip − 1 against 1/Qoil collapses all the results of drop sizes onto one master

curve that is remarkably linear and thus in agreement with Equation 7.6, with a fitted

b= (9.7±0.1) cm3/min. Knowing Dout = 12 mm and the measured value of viscosity

ηc = 0.05 Pa.s, we calculate the interfacial tension between water and nanoparticle-

mineral oil suspension: γ = (21 ± 0.3) mN/m. The reported value of water-mineral

oil interfacial tension is about 50 mN/m [52, 53]. So, the addition of nanoparticles

reduces the interfacial tension which is consistent with expectations [54]; in addition,

due to the good agreement with the model function [25], we obtain a rather precise

determination of the interfacial tension in this system.

Next, we transferred these water-in-oil suspensions into NMR tubes for PFG NMR

studies. Without silica nanoparticles, water drops that are monodisperse upon pro-

duction are observed to not only break into smaller droplets, but also coalesce into

larger ones during the transfer to the NMR tube. In Figure 7.2(d), the signal at-
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tenuation of water-in-oil droplets, whose mean radius was determined by microscopy

(Figure 7.2(c)) to be (13.7 ± 0.2) µm, was plotted as a function of α2, the gradient

variable in Equation 7.5.

We used Equation 7.5 in order to determine the droplet size distribution for both

cases: with and without silica particles dispersed in oil phase. From the fit, the

mean droplet radius a0 = (14 ± 6)µm for the system without silica particles. On

the other hand, the addition of silica particles (Figure 7.2(d), solid blue line) as

Pickering stabilizers dramatically reduced the width of the droplet size distribution:

here, a0 = (14 ± 0.5)µm. This difference was seen systematically in two trials.

Hence, water drops that are monodisperse upon production (and thus during sizing

by microscopy) not only break into smaller droplets, but also coalesce into larger ones

during the transfer to the NMR tube, but this broadening of the size distribution is

mitigated by Pickering stabilization.

We show, in Figure 7.2(e) that droplet radii, as determined by NMR in a single

ensemble measurement, correlate very well with those determined painstakingly by

microscopy. This reassures us that the droplet systems that we generate, and charac-

terize using microscopy are not changed upon loading into NMR tubes for long-time

experiments.

7.5.2 Preparation of Nano-Scale Confinement

We used eight different molecular weights of PEG (8000 to 5000000), purchased from

Alfa Aesar. Ultra-low gelling agarose and Ficoll R©PM 70 (referred to as Ficoll70 in

the text) with average molecular weight of 70000 (mean radius, RH = 5.5 nm [55])

were purchased from Sigma Aldrich.

Agarose gels with different agarose concentrations were prepared in a series of

steps. The desired weight of ultra-low gelling temperature agarose purchased from
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(a) (b)

Figure 7.3: Introducing nano-scale confinement: Agarose microbeads with diameter
(a) 2a0 = (283 ± 6) µm and (b) 2a0 = (561 ± 8) µm generated by the microfluidic
device.

Sigma Aldrich was added to distilled water, and then the mixture was heated to the

boiling temperature of the solution for complete dissolution of the agarose. Ficoll70

and PEGs were mixed into the agarose solution before gelation. The volume fraction

of agarose in the gel was calculated with a density of dry agarose powder (1.64 g/cm3)

and a mass fraction of agarose in the agarose gel fiber (0.625) according to Pluen’s

method [38].

Uniform-sized agarose microbeads were prepared by the microfluidic technique in

this study. A mixture of agarose gel with Ficoll70/PEG was used as the aqueous phase.

Agarose-loaded drops did not need the additional silica nanoparticle stabilization.

Both the liquids were driven through the capillaries by syringe pumps. We choose

ultra-low gelling agarose, which has a gelling point of around 16oC. Once melted,

this agarose will remain in the liquid phase until the temperature drops below 16oC,

which ensures easy generation of agarose droplet under room temperature. Uniform

agarose microbeads in oil were cooled to 4oC for 23 hours. When the temperature

dropped to 4oC, agarose emulsion droplets solidified.

We generated agarose microbeads (Figure 7.3) of two different diameters 2a0, using
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the microfluidic device, for our studies of nanoscale confinement: 2a0 = (283± 6) µm

and 2a0 = (561± 8) µm. For the results reported, we used (561± 8) µm microbeads.

7.6 Results: Self-diffusion

7.6.1 Microscale Confinement: Diffusion of PEG Polymer

Polyethyleneglycols (PEG) have been selected as model solutes to study the effects

of confinement. This offers a series of key advantages: a broad range of molecular

weights can be covered, within the same family of unbranched, highly flexible macro-

molecules. A polydispersity factor close to unity is achievable within this family of

macromolecules which prevents complications arising from molecular weight distri-

bution effects. Moreover, the fact that water is a good solvent of PEG at room

temperature ensures a behaviour in solution that is relatively easy to predict. Fig-

ure 7.4 presents the self-diffusion coefficient of PEG (Mw = 20000, RH= 4.8 nm) as a

function of polymer concentration cp in bulk water (red squares) as well as in water

droplet (blue diamonds). In recent work, we found that the polymer self-diffusion

coefficient exhibits a plateau below a characteristic polymer concentration and in a

crossover region between the dilute and semidilute regime, there is an exponential de-

crease in the long-time self-diffusion coefficient with polymer concentration [56]. This

behaviour is seen here as well, but what Figure 7.4 shows is that the diffusion of PEG

in a bulk water is indistinguishable both qualitatively and quantitatively from that

of PEG in the water droplet. This is not surprising: the diffusion time ∆ is much less

than (a0)
2/2DPEG0 , where a0 is the radius of the droplet and DPEG0 is the diffusion

coefficient of the PEG molecules at infinite dilution. Thus, the PEG chains spend

a very small fraction of their time near the droplet surface. This reassures us that

the PEG is uniformly distributed within the drop and not associating strongly at the
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Figure 7.4: Micro-scale confinement is essentially bulk for PEG: Self-diffusion co-
efficient of PEG (Mw = 20000) as a function of polymer concentration cp in bulk
water (red squares) as well as in water droplets of radius a0 = (14± 0.5)µm (blue
diamonds): there is no discernible difference. The diffusion time, ∆ < a0

2/2DPEG0 ,
and therefore, PEG chains do not experience the confinement.

drop surface.

7.6.2 Nanoscale Confinement: Diffusion of Ficoll70 Spheres

Polymers have the ability to deform in order to go through nanopores. Diffusion

models for macromolecules in gel network use the radius of the solute (RH) in their

predictive computations. This hard sphere analogy can be worthwhile for the diffusion

of a spherical polysaccharide (e.g. Ficoll70) but is unlikely to hold for chain molecules.

Thus, we begin by quantitatively examining the experimental self-diffusion of Ficoll70

(which have a compact spherical shape) in agarose gels, which provide the nanoscale

confinement, both without (“bulk”) and with (“bead”) the micro-scale confinement.

Diffusion coefficients of Ficoll70 in H2O and inside the agarose gel were extracted

from the NMRmeasurements using Equation 7.4 to fit the echo amplitudes. Figure 7.5
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Figure 7.5: Dynamics of spherical macromolecule in gel: Diffusion coefficients of
Ficoll70 (ΦF = 0.02) for several volume fractions ΦA of agarose gel both in bulk
and microbead. Diffusion coefficients of Ficoll70 in agarose gel microbeads agrees
reasonably well with Ogston model (green dashed line).

presents the dependence of the diffusion coefficients of Ficoll70 on the volume fraction

(ΦA) of agarose gel. A systematic decrease in diffusion coefficients is observed as a

function of increasing agarose volume fraction in the gels. A decrease is, of course,

expected and can be attributed to the fact that the increase in the volume fraction of

agarose in the gels reduces the space for the diffusion of Ficoll70. It is also consistent

with previous measurements [57–60].

Here, however, we make quantitative connection with a theoretical model.

The dashed lines in Figure 7.5 represent the curve calculated with the Ogston

model (Equation 7.2) using a particle hydrodynamic radius RH = 5.5 nm and the pre-

viously determined agarose gel fibre cylinder radius Rf = 1.9 nm [61,62]. This is espe-

cially notable because the model is overlaid atop the data, with no free parameters.

What is also notable is that, while the agreement of the Ogston model is excellent

for the system with hierarchical nanoscale and micro-scale confinement (agarose
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Figure 7.6: Dynamics of water in gel: Diffusion coefficients of water as a function of
volume fractions for agarose gel (ΦA) in (a) bulk and (b) microbead. (c) Ratio of
self-diffusion coefficients of water in bulk and microbeads as a function of ΦA. This
ratio increases linearly with ΦA.

in microbeads), it is less predictive for diffusion in bulk agarose. This suggests that

producing gel-loaded microbeads might provide a more homogeneous gel environment,

and is an issue we examine next.

7.6.3 Water Dynamics: Bulk versus Microbead Agarose

The reductions in Ficoll70 diffusivities in agarose microbeads as a function of ΦA are

well described by Ogston model. But why is the dynamics of Ficoll70 different for

bulk agarose? Water dynamics allows us to explore this further.
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Figure 7.7: Relaxation rate and pore radius: Relaxation rates of water as a function of
volume fractions for agarose gel (ΦA) in (a) bulk and (b) agarose microbead, (c) Dif-
ference in longitudinal relaxation rate, ∆

(
1
T1

)
for both bulk and agarose microbead,

(d) pore radius as a function of agarose gel volume fractions, ΦA.

Figure 7.6 shows the self-diffusion of water in agarose gel, both in bulk (Fig-

ure 7.6(a)) and in microscale beads (Figure 7.6(b)), as a function of agarose volume

fraction ΦA. A linear decrease of Dw with ΦA was found in both bulk and microbead

environments. This likely can be ascribed to previous findings [63] that the number

of water molecules interacting with hydroxyl groups of agarose gel, through mecha-

nisms including hydrogen bonding and chemical exchange of protons, depends on the

volume fraction of the agarose.

However, what is the most remarkable finding is highlighted in Figure 7.6(c): the

self-diffusivity in bulk agarose is nearly a factor of 100 larger than that for microbead
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Figure 7.8: Dynamics of chain macromolecule in gel: (a) Relative diffusivity of PEG
(Λ(ΦA,Mw = 20000)) of cp = 0.005g/cm3 in agarose microbeads do not agree with
Ogston model (green dashed line). (b) Diffusion coefficients of PEG in agarose gel
(DPEGg (ΦA,Mw)) as a function of molecular weight (Mw) both for bulk and mi-
crobead form. Here the diffusion coefficients of PEG in bulk water (DPEG0 (0,Mw))
are shown in grey. From the power law fit (DPEG0 (0,Mw) = kM

−ν
w ), ν is obtained to

be 0.54± 0.01 for PEG in dilute aqueous solution and 0.53± 0.01 for PEG in agarose
microbeads. (c) The relative value of PEG diffusion coefficients in agarose gel (DPEGg )
compared to those in solution (DPEG0 ) are plotted as a function of molecular weight
(Mw). This ratio is independent ofMw for the microbead environment but increases
with Mw for bulk agarose. The corresponding hydrodynamic radius (RH) for equiv-
alent spheres as estimated by the Stokes Einstein equation is shown for reference. In
(b) and (c) the volume fraction of gel, ΦA = 0.02 and cp = 0.005 g/cm3.
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agarose, when in principle, the two should be identical!

Another way to probe water dynamics is via relaxation rate measurements [46].

We observe in Figure 7.7 (a) and (b) that the longitudinal relaxation rate (1/T1) of

hydrogen atoms of water increased with agarose gel volume fraction. The increase

with ΦA is linear in both bulk and microbead agarose environments (with intercepts

of (0.27 ± 0.001) s−1 and (0.48 ± 0.006) s−1 for bulk and microbead agarose, respec-

tively) and is consistent with the model represented by Equation 7.3. The intercept

for bulk agarose corresponds to the relaxation rates of pure water (1/T1(ΦA = 0)) at

25oC.

In Figure 7.7 (c) we plot the difference ∆(1/T1) ≡ 1
T1(ΦA)

− 1
T1(ΦA=0) for both

bulk and agarose microbead against ΦA: one sees a proportional relationship with

respect to ΦA, but with very different (a factor of 4) slopes. Equation 7.3 predicts a

proportional relationship of ∆(1/T1) with the surface-to-volume ratio, so this implies

that the surface-to-volume ratio is proportional to ΦA.

Regardless of pore geometry, ∆(1/T1) will always be inversely related to pore

radius, and we can thus extract relative pore radii as a function ofΦA. In Figure 7.7

(d), we plot a relative pore radius P(ΦA) ≡ RPore/RPore(ΦA = 0.02), and this

relative radius shows a very similar dependence for bulk and microbead agarose.

Finally, we can obtain numerical estimates of RPore as a function of ΦA using the

P(ΦA) shown in Figure 7.7(d) and tabulated in Table 7.1 (Appendix), along with

the literature values of pore radius for isolated samples. The pore radius reported for

bulk agarose, for a sample at ΦA = 0.02, is (103 ± 13) nm [38], while for a microbead

sample reported in the literature at ΦA = 0.04, it is (120 ± 2) nm [64]. For bulk

agarose, we obtain RBulkPore (ΦA) using RBulkPore (ΦA) = PBulk(ΦA) × 103 nm while for

microbead agarose, we can obtain RBeadPore (ΦA) using RBeadPore (ΦA) =
PBead(ΦA)

PBead(ΦA=0.04)×120

nm. At ΦA = 0.02, for example, this yields RBeadPore = 230 nm.
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We hypothesize at this point that one reason for discrepancy in water dynamics

could be that the pore sizes are more regular in the microbeads, and more heteroge-

neous in the bulk agarose with large water pockets that behave essentially like bulk

water. In order, to examine this hypothesis we measured, next, the diffusivities of

different molecular weights of PEG in agarose gel. If the pore size is regular, one

should see a clear decrease in the diffusivity of PEG, relative to its bulk water value,

as its hydrodynamic size approaches the agarose network pore size.

7.6.4 Diffusion of PEG in Agarose Gel: Bulk vs. Microbeads

As shown in Figure 7.4, dynamics of PEG is insensitive to micro-scale confinement.

Here, we examine the introduction nano-scale confinement, via the agarose gel net-

work. Once again, we compare self-diffusion in bulk agarose with that in microbeads.

The diffusion coefficients for PEGs in water (DPEG0 (0,Mw)) and in agarose gel

(DPEGg (ΦA,Mw)) are measured by the PFG NMR method, at a polymer concentra-

tion cp = 0.005g/cm3 that is in the dilute limit. We define the ratio of the PEG

diffusivity in agarose gel to that in water at dilute solute concentrations as:

Λ(ΦA,Mw) = D
PEG
g (ΦA,Mw)/D

PEG
0 (0,Mw). (7.7)

In Figure 7.8(a), Λ(ΦA,Mw = 20000) is not at all in agreement with the Ogston

model, but in fact is more mobile than the predicted value, consistent with the fact

that PEG is a flexible chainlike molecule.

Next, in Figure 7.8(b), we show the diffusion coefficient of PEGs in agarose gel

(DPEGg (ΦA = 0.02,Mw)) in both microbeads (blue diamonds) and in bulk agarose

(red squares). Shown for comparison is the corresponding diffusion coefficientDPEG0 (0,Mw)

in pure water, with no confinement (grey circles). The polymer hydrodynamic radius
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RH is calculated with Equation 7.1 from DPEG0 (0,Mw): for Mw ranging from 8,000

to 5000,000, RH ranged from 2.2 to 73 nm. The diffusion coefficients of PEG in the

gel decrease with an increase in the molecular weight of PEG both for bulk agarose

and agarose in microbeads. However, there is a clear scaling behaviour for unconfined

PEG (in water) and for PEG in microbeads. If the diffusion follows Zimm dynam-

ics, that is, the interior volume of the polymer behaves like a solid diffusing object,

then, the relationship between Mw and the diffusion coefficient in a dilute solution,

DPEG0 (0,Mw), can be expressed as [65]

DPEG0 (0,Mw) = kM
−ν
w , (7.8)

where k is a pre-factor related to the segment size of the polymer chain and ν is a

scaling exponent that depends on the polymer-solvent system. From a linear fitting of

the plot of DPEG0 (0,Mw) and DPEGg (ΦA,Mw) in agarose microbead with respect to

Mw, ν is obtained to be 0.54±0.01 for PEG in dilute aqueous solution and 0.53±0.01

for PEG in agarose microbeads.

Figure 7.8(c) highlights the difference between agarose bulk vs. microbead by

showingΛ(ΦA = 0.02,Mw) for both environments. We find both ratios converging for

the largest molecular weights, but the key observation is that whileΛ(ΦA = 0.02,Mw)

is independent of Mw for the microbead environment, it increases with Mw for bulk

agarose.

As shown by Monte Carlo simulation of molecular diffusion in gels, this ratio would

be expected to depend on the ratio of the radius of the macromolecule and agarose

gel pore radius (RH/Rpore) for RH/RPore > 0.2 [66]. For ΦA = 0.02, the calculated

value of pore radius is 230 nm for agarose microbead. While we do probe polymer

sizes from RH= 2 nm to 70 nm, we observe no dependence of RH in this range for
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microbead. Experiments are planned for larger RH.

7.7 Discussion and Conclusions

In this work, we have successfully generated a system with hierarchical micro-scale

and nano-scale confinement. We are able to generate water-in-oil systems (without

and with nano-scale confinement) that are stable with respect to transfer and over a

period of days.

While micro-scale confinement is not expected to directly induce confinement for

large macromolecules, because of the large diffusion times, there is, however, a more

subtle effect. The regular procedure for making micro-scale agarose gel microbeads

appears to be an excellent way to manufacture systematic homogeneous gel environ-

ments.

There are three results for dynamics in the nanoscale gel environment. First,

for the case of spherical polysaccharide (Ficoll70) nanoparticles, the diffusivity is in

agreement with the Ogston model with no free parameter. Second, the ratio of bulk-

to-microbead diffusivity of water is approximately a factor of 100, suggesting the

presence of large water pockets in the bulk agarose. Finally, the relative diffusivity

in agarose (with respect to its value in water), as a function of the molecular weight

of a flexible (PEG) polymer, is constant in the case of the encapsulated (microbead)

agarose, but the corresponding ratio in bulk agarose shows an increase with increasing

molecular weight.

How can these results be consistent? While we are simply reporting the experi-

mental observations here, we offer a conjecture that is consistent with these results.

If the bulk gel is more heterogeneous, then it contains regions with larger pores (i.e.,

water pockets). This results in the larger values for the measured water self-diffusivity.
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At the same time, it is feasible that the macromolecules, Ficoll70 and PEG, preferen-

tially partition into the bulk gel’s agarose-rich regions when the hydrodynamic radius

is smaller than the pore size, but preferentially reside in the water pockets when RH

exceeds the pore size. At a given ΦA, the agarose-rich regions have a smaller pore

size, and hence result in lower self-diffusivity due to the increased confinement.

Regardless of whether the above picture is correct, one issue is clear. The agarose

in the hierachical nanoscale/microbead environment shows clean agreement with a

simple model (for the spherical Ficolls), shows a low diffusivity for water consistent

with fully confined water, and shows consistent molecular-weight-dependent scaling

behaviour for flexible chainlike polymer in pure water and in the presence of confine-

ment. Examination of larger and/or more complex macromolecules that have more

direct biophysical relevance is our next target.
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Appendix

7.7.1 Micro-Scale Drop Generation

We used the co-flowing method to generate stable and monodisperse water-in-oil emul-

sions in a glass microcapillary device. As shown in Figure 7.9, we produce uniform

droplets with wide range of size using 3 tip diameters: (a-d) Dtip = (15 ± 0.2)µm;

(e-h) Dtip = (19± 0.4)µm; (i-l) Dtip = (26± 0.5)µm. The key size-controlling factor

is the flow of the continuous (oil) phase that has been altered in a controlled manner.
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Figure 7.9: Stable and monodisperse droplets: Monodisperse water-in-oil emulsion
of different droplet sizes are generated in microfluidic device. These droplets were
verified to be stable for at least 26 hours. Droplet diameters are: (a) 27.4± 0.4 µm;
(b) 46.5±0.9 µm; (c) 60±1.2 µm; (d) 85.2±0.8 µm; (e) 76.4±0.9 µm; (f) 116±2 µm;
(g) 125± 3 µm; (h) 183± 5 µm; (i) 214± 4 µm; (j) 292± 6 µm; (k) 253± 6 µm; (l)
530± 7 µm. In all cases shown, the drops were stabilized with silica nanoparticles, as
described in the text.

This results in monodisperse droplets whose size can be tuned.

The effect of flow rates on droplet size has been measured using bright field mi-

croscopy. In Figure 7.10, droplet radius is plotted as a function of increasing oil flow

rate. Here we note the fact that at higher flow rates, droplet size decreases up to a

point where the droplet radius approaches to the tip diameter of the inner capillary.
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Figure 7.10: Control of drop size: Dependence of the mean radius, a0, measured
via image processing of optical micrographs, as a function of oil flow rate Qoil for
various tip diameters Dtip. (a) Dtip = (15 ± 0.2)µm, (b) Dtip = (19 ± 0.4)µm,
(c) Dtip = (26 ± 0.5)µm. The examples shown are for silica-nanoparticle stabilized
suspensions.

.

P(ΦA)

Volume fraction (ΦA) Agarose bulk Agarose microbead

0.01 1.76 1.63

0.02 1 1

0.03 0.66 0.75

0.04 0.45 0.53

0.05 0.34 0.39

0.06 0.27 0.32

0.07 0.24 0.29

Table 7.1: P(ΦA) ≡ RPore/RPore(ΦA = 0.02) for different volume fractions of bulk
and agarose microbeads

.

7.7.2 Relative Pore Sizes in Agarose Gel

The relative pore sizes P(ΦA) = RPore/RPore(ΦA = 0.02) in agarose microbeads were

determined precisely. These values are tabulated in Table 7.1 in order to serve as a
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look-up table.
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Chapter 8

Conclusion

The effects of macromolecular crowding can have implications for intracellular trans-

port. The presence of large amounts of macromolecules in solution results in an en-

tropic effect: the excluded volume effect as a result of which proteins in the cell have

a significantly smaller portion of volume conformationally accessible to them than

proteins in dilute solution. Entropy can lead to effective attractions: the depletion

force can cause compression of polymer chains. On the other hand, electrostatic in-

teractions can lead to repulsions, and hence can lead to expansion of macromolecules.

In living cells macromolecular size is likely affected by entropy as well as specific and

non-specific interactions. In addition, cytoskeletal elements can provide confining

spaces.

Macromolecular dynamics at low concentrations is directed by macromolecular

size via the Stokes-Einstein relation. In a crowded system, however, hydrodynamic

interactions can be said to lead to an effective microscale viscosity or mobility that is

different from the solvent viscosity. Measuring both size and mobility directly provides

access to this micro-viscosity.

In this thesis, we consider a toy model of a biological system in order to understand
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the effects of crowding in a relatively simple environment. Our model system has two

components: (1) polymer that mimics protein, and (2) a polysaccharide that mimics

the macromolecular crowder. We approach crowding systematically by varying the

key parameters: the concentration of polymers, packing fraction of polysaccharide,

and the charge of the crowding agent.

Do synthetic polymers provide an accurate model for the crowded environment in

cells? Are there important factors that cannot be captured by pure volume exclusion

models? The studies that we have performed should help inform these questions, and

lead us to a better understanding of polymer-nanoparticle system.

8.1 Structure and Dynamics in a Polymer-Crowder

System

In Chapter 4, we reported on pulsed-gradient stimulated echo (PFG-NMR) diffusion

and small-angle neutron scattering (SANS) experiments on a system of uncharged

polymer, polyethylene glycol (PEG) and uncharged crowders (Ficoll 70) at a range of

polymer concentrations and crowder packing fractions. We find that, as a function of

polymer concentration, there are two clear behaviors: for all crowder packing fractions

(ΦF) there is a characteristic concentration c∗ below which the diffusion coefficient is

independent of polymer concentration. In pure PEG, c∗ is identified as the overlap

concentration. In the presence of crowder c∗ is a characteristic concentration that

identifies a “polymer-dilute” regime. What is remarkable is that there is a polymer-

dilute regime even in the crowding limit!

Above c∗, there is an exponential decrease in the long-time self-diffusion coeffi-

cient with polymer concentration. This exponential behavior is valid for 3 polymer

molecular weights and several crowder packing fractions (0 < ΦF < 0.35), and in that
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sense is universal. It should be noted that these experimental observations provide

impetus for theory and simulation studies on this model system.

Above c∗, we established that the system is in a crossover regime between polymer-

dilute and semi-dilute, and results from there cannot be naively extrapolated into

the polymer-dilute regime. We also used SANS to examine the system of PEG and

Ficoll70 at a range of polymer concentrations and crowder volume fractions. In these

experiments, the scattering length density of the solvent, a mixture of H2O and D2O,

was matched [x H2O + (1-x) H2O] to the scattering-length density of the Ficoll70

crowder (for x = 0.41), while providing a significant contrast with respect to the

deuterated PEG. The primary observable was the radius of gyration Rg of the PEG

(monomer or aggregate). It was found that Rg decreases only weakly with increasing

crowder volume fraction fraction, for a macromolecule-to-crowder size ratio λ = 1.1;

however, there appears to be significant compression for λ = 1.8 and 2.9.

8.2 The Effect of Crowder Charge on Polymer Dy-

namics and Structure

The tandem use of pulsed-gradient NMR (PFG NMR), SANS, and rheology on near-

identical systems is not very common. In Chapter 6, we used these methods in order to

examine the role of crowder charge on transport in a model polymer-colloid system for

macromolecular crowding. We have examined the effect of crowder particle charge on

macromolecular structure, studied via small-angle neutron scattering (SANS), and

translational dynamics, studied via pulsed-field gradient (PFG) NMR, in addition

to bulk viscosity measurements, in a polymer macromolecule (polyethylene glycol,

PEG) – nanoparticle crowder (polysucrose, Ficoll70) model system, in the case where

polymer size and crowder size are comparable.
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There are modest effects of crowder charge on polymer dynamics at relatively

low volume fractions: there is a factor of 2 speed up relative to uncharged crowder.

Polymer size Rg, also shows a modest increase, relative to uncharged crowder at large

crowder packing fractionsΦF. The reason for an increase is not known to us. However,

there is only a tiny effect (≈ 10%) at the high volume fractions that represent the

limit of molecular crowding.

By tracking polymer and crowder dynamics via different measures of macromolec-

ular mobility, we find that mobility of the flexible polymer in the crowding limit is

10-100 times faster than that of the compact, spherical crowder in spite of their similar

size. How we picture this result is that the flexible polymer chain is able to squeeze

through crowder interstices while the compact sphere is not. Hence, a key result of

this work is that macromolecular flexibility can be employed to accelerate transport

in cells.

Finally, we examined the role of enthalpic contributions and compared the model

crowder with bacterial cell lysates. Interestingly, the behavior of PEG in cell lysate is

not different from PEG in the Ficolls: one still sees the exponential decay as a function

of polymer concentration. In addition, the quantitative value of the diffusivity of the

cell lysate lies in between the uncharged and charged Ficoll70, indicating that once one

controls for crowder charge, macromolecular diffusion in an artificial crowder might

be meaningful in biologically relevant systems.

8.3 Charged and Uncharged Colloid

Chapter 5 and 6 dealt with polymer structure and dynamics in the presence of Ficoll70,

a polysaccharide that is often used as a model crowder. However, in the course of

our studies, we found that Ficoll70 had interesting non-ideal behaviors. Chapter 7
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reported on these behaviors.

Ficoll70 has been extensively used for application to cryopreservation for different

living cells and renal filtration due to its high hydrophobicity as well as its charge

neutral globular form. This synthetic carbohydrate polymer has also been used as a

macromolecular crowding agent to produce a resemblance of the high total concen-

trations that are encountered in the cytoplasm. The characteristics of Ficoll70 have

not been adequately recognized in the literature. One unsolved question among re-

searchers is whether Ficoll70 in solution is an ensemble of hard spheroids, or whether

it is soft. In Chapter 7 we have applied pulsed-field gradient (PFG) NMR and rhe-

ology in order to assess the most prominent characteristics of charged and uncharged

Ficoll70 in water.

Analysis of the data indicate that NMR signal attenuation above a certain packing

fraction can be adequately fitted with a bi-exponential function. The self-diffusion

measurements show also that the Ficoll70, an often-used compact, spherical poly-

sucrose molecule, is itself non-ideal, exhibiting signs of both softness and attractive

interactions in the form of a stable suspension consisting of monomers and clusters.

Further, we can quantify the fraction of monomer and cluster. This work strength-

ens the picture of the existence of a bound water layer within and around a porous

Ficoll70 particle.

This work suggests that in order to properly model the polymer-crowder system,

simulations must begin by successfully modeling the crowder qualitatively. The ques-

tion arises whether one should use an even simpler crowder. This is possible, however,

we must keep in mind that the crowder should reproduce behaviors seen in more bio-

physically relevant crowders such as cell lysates, and thus some degree of complexity

might be necessary.
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8.4 Micro- and Nano-Scale Confinement

Cytoplasm provides compartmentalization, macromolecular crowding, and small vol-

ume to the cell; features that affect transport inside living cells profoundly. Biological

materials have structures across many length scales. These hierarchical structures

restricts the ability of a solute to diffuse, and such effects often vary depending on

the size of the solute.

In Chapter 7, we study the macromolecular dynamics in of hierarchical length

scale with a heterogeneous distribution of macromolecules. We employed the pulsed-

field-gradient (PFG) NMR technique to monitor the dynamics of macromolecules in

the “hard” (impenetrable) spherical confinement of water droplets as well as in “soft”

gel matrices where molecules can move from one pore to others.

We generated (i) highly monodisperse micro-confinement of water droplets in a

bulk liquid and (ii) homogeneous nano-confinement (iii) hierarchical microscale and

nanoscale confinement in the form of agarose microbeads–both amenable to NMR

studies.

We find, not surprisingly, that micro-scale confinement has no effect on macro-

molecular dynamics. By measuring macromolecular self-diffusivity in the presence of

nano-scale confinement, we find excellent agreement (with zero fit parameters) to

a simple obstruction model for the compact and spherical macromolecule (Ficoll70).

A flexible polymer chain (PEG), not surprisingly, diffuses faster than Ficoll70 in the

presence of nanoscale confinement. We also report the dynamics of water that presents

a difference in gel structure between agarose bulk and microbeads. Our main finding

is that the introduction of microscale confinement also has the side effect of making

the nanoscale confining environment less heterogeneous.
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In this thesis, we have thus examined in detail many aspects of crowding: flexible

polymer vs. compact crowder, role of charge, and non-ideality of crowder. We have

also constructed a model system that incorporates hierarchical micro- and nano-scale

confinement that are stable enough that they can be accessed by slow experiments

like NMR (and in principle SANS or other experimental techniques).

8.5 Future Directions

In this report we have emphasized the fact that the free and random motion of a

macromolecular system undergoes rapid dynamical and conformational modification

with the change of its environment. Future directions could include the diffusion of

macromolecules in the presence of other macromolecules in an environment that can

be altered chemically and by geometric confinement. The flexibility of the polymers

can be changed. For example, the diffusion of rigid, semi-flexible and flexible polymers

(actually changing the entropy) in a crowding environment is of interest.

Another possible future direction is to complement existing and ongoing studies

of structure (SANS) and long-time dynamics (PFG-NMR) with a study of short-

time dynamics using the Fluorescence correlation spectroscopy (FCS) technique. The

inherent global averaging in FCS is significantly lower than NMR which provides

a unique opportunity for using single-molecule probes in crowded environments in

the µs to ms temporal range. The short-time diffusion coefficient should be more

sensitive to hydrodynamic interactions. Direct comparison between NMR and FCS

studies on crowding effects on diffusion would elucidate the role of hydrodynamics

in macromolecular crowding. To our knowledge, no previous work has examined the

question of macromolecular crowding via a combination of SANS, NMR and FCS

studies.
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One can also compare these experiments with simulations in 3D, with the simula-

tions carried both with and without hydrodynamic interactions.

bc
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