








1+1 NationalUbrary
ofGanada

Acquisitions and
Bibiiographic5ervicesBranch

=~~~ Ir'~

NOTICE

Biblioth~uenatioc'lale
d"GaMda

Direction des acquisilions et
des services bibliograpNques

:l95.rueWelinglon

=~OIUriol

AVIS

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Can cl'". a.a

La qualite de cette microforme
depend grandement de la qualite
de la these soumise au
microfilmage. Nous avons tout
fait pour assurer une qualite
superieure de reproduction.

S'il manque des pages, veuillez
communiquer avec I'universite
qui a contere Ie grade.

La qualite d'impression de
certaines pages paut laisser a
desirer, surtout si les pages
originales ont ete
dactylographiees a I'aide d'un
ruban use ou si I'universite nous
a fait parvenir une photocopie de
qualite inferieure.

La reproduction, meme partielle,
de cette microforme est soumise
it 1a loi canadienne sur Ie droit
d'auleur, SRC 1970, C. C-30, el
ses amendements subsequents.



A BRILLOUIN GAIN SPECTROMETER AND ITS EVALUATION

BY THE STUDY OF SOME LIQUIDS

by

OChunxia. Fan, B.Se.(Hons), M.Sc.

A thesis submitted to the School of Graduate

Studies in partial fulfLlment of the

requirements for the degree of

Master of Science

Deparunenl of Physics

Memorial University of Newfoundland

August t994

Sdohn's Newfouodl:1nd



1+1 ~1.b"'Y

=:=C~Branch..._-
~~

DirectioodesacqLisitionset
des services bibliogtaphiques

fFaF

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON·EXCLUSIVE
UCENCE AI.l.OWlNG TIlE NATIONAL
LmRARY OF CANADA TO
REPRODUCE, LOAN, DIST1UBUlE OR
SElL COPIES OF HISIHER tHESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING nus lHESIS
AVAILABLE TO INTERESTED
PERSONS.

TIlE AUTIIORRETAINS OWNERSHIP
OF 1lIE COPYRIGHT IN HISIHER
TIlESIS. NEITHER THE THESIS NOR
SUBSTANIlAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITIIOUT lDSJHER
PERMISSION.

ISBH 0-315-96079-5

Canad~

L'AUlEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT ALA BmUOTIlEQUE
NATIONALE DU CANADA DE
REPRODUlRE, PRETER. DIST1UBUER
OU VENDRE DES COPIES DE SA
TIlESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETIE THESE ALA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR. CONSERVE LA PROPRIETE
DU DROIT D'Al.ITEUR QUI PROTEGE
SA THESE. Nt LA 1HES(NI DES
EXIRAITS SUBSTANTIEl;S DE CELl.£.
CI NE DOIVENT ETRE IMPRJMES OU
AtrrREMENT REPRODUITS SANS SON
AUTORISATION.



Abstract

The construction and testing of a Brillouin gain spectrometer is discussed. 'The

spectrometer employs a high power (150 mW) tunable dye laser and a low power (1.7

mW) stabilized HeNe laser in a pump-probe arrangement. Because of the small sign:l.l

gain (I x 10-;. several noise reduction schemes were used 10 enhance the sign:l.l to noise

ratio. The spectrometer was evaluated by studying the strongly scattering liquici CS: and

the weakly scattering liquid c.a.. Brillouin shiflS and linewidths were aCCUIaLely

determined for both liquids. 'The high resolution of this :nstnlment permined measurement

of the small asymmetry in the measured lineshapes. In CCl. we were able to observe the

so..called Moun~n mode and to confinn that ca~ can be modeled as a iiquid exhibiting

a single relaxation time.
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CHAPTER 1.

INTRODUCTION

1·1. Brillouin Scattering

The phenomenons of light scattered by sound waves was first predicted by Brillouin I

in 1922. Brillouin speccroscopy has proven to ~ a powerful spectroscopic technique for

studying the elasto-optic properties of optically transparent materials:"'. Brillouin studies

provide accurate measurements of the sound velocity in I maccria!. This infonnanon C3II

then be userl to determine elastic constants and structure of the material. The advent of

lasers in the 1960's as monochromatic light sources and the ~uirement of only a slTUll

sample size has made this technique ideal for studying low temperature liquids and solids.

Brillouin spectroscopy has found widespread applications ranging from the study of phast:

tr:I.nsitions in materials'" to the analysis of automobile: exhaust emissions.

Brillouin speCtr:l. iUC characterized, in frequency, by a centrol unshifted component,

due 10 elastically scattered light, and upshifted and downshifted Brillouin doublets( Fig

(1.1». The intensity of the coherent, or Rayleigh, component is generally much larger



than me shifted component

RAYL£JCH UNE

(OUASI-ElASTIC COMPONEm)

BRILLOUIN UNE

(STOKES COMPONENT)
BRILLOUIN LINE

(ANTI STOKES COMPONENT)

- vq o +vq

Fig. 1.1. Rayleigh-Brillouin Spectrum

Classically, Brillouin scauering can be described as the scauering of light by

thermally generated sound waves, i.e. compression waves travelling Ihrough the medium.

The thenna! motion of molecules in a medium creates regions of compression and

rarefaction resulting in loc<l.lized fluctuations in the density. These variations propagate

through the medium as sound waves, which, in solids, are referred to as phonons. Since

these density variations produce corresponding changes in the refractive index, the sound

waves may be thought of as three-dimensional diffraction gratings moving through the

medium at sound velocity. Incident light waves are reflected from a grating according to



the usual Bragg diffrolction condition mA=dsin9. Since the incident light is diffracled by

me sound wave, i.e. a grating which is moving at the velocity of the sound, the frequency

of the reflected light is shifted due to Ihe Doppler effect. The frequency shiltis equal to

the frequency of the sound waves which arc effective in the scauering along the particu1ar _

direction of observation. The frequency shift is given by"

(1.1)

where n is the refractive index of the medium, Alhe wavelength of the incident light, V~

the velocity of the sound waves in the medium in a particular direction, and e the

scattering angle. Typically, for observation of 900 scattering, the shift is 5-15 GHz.

Quantum mechanicallyll, Brillouin scattering can be considered as the interaction

between incident photons and phonons in a medium. An incident photon of frequency VI

and wavevtttor it, interacts with a phonon of frequency v, and wavevectorq,

resulting in a scattered photon of frequency v, and wavevetlor Ks ' as shown in Fig 1.2.

In this scattering process, the energy and momentum arc conserved. i.e.

It is easily seen from equation (1.2) that the frequency difference between the incident

photon and the scattered pholon !J.v is equal to the phonon frequency v~. The momentum

of the phonon ij is much less than that of the photon Kj • so that we can write If,l.lf.~

From Fig 1.2. we can also wrile~



~.
K.

Flgl.2IlriklUn&:inerlngProl:eSI

(1.4)

substituting q",21CV.;v~ and !Ii=21tnv/c, where c is the light velocity, we get the Brillouin

equation. as before

(1.5)

From this relation, it is clear that the light spectra will contain an upshifted and

downshifted component. and that the shih will be greatest for backscanered light

((1.180').

The Brillouin spectta observed in liquids are different from those obsented in solids.

According 10 the dynamical theory of crystals '2• the equilibrium configuration corresponds

to the time averaged configuration of the crystal. Each atom executes motions about its



equilibrium position. In fluids, the atoms are not bound to equilibrium positions and are

free to move over large distances. In most liquids, the major source of light scattering

is from longitudinal sound waves. The Brillouin spectrum is composed of a central

Rayleigh peak and two shifted peaks (Brillouin peaks) with equal and opposite splitting.

In solids. both longitudinal (compressional) and transverse (shear) acoustic waves exist

and have different velocities, leading to separate Brillouin scattering peaks.

1-2. Limitations of a Conventional Brillouin Scattering Apparatus

In a conventional Rayleigh-Brillouin scattering apparatus, a Fabry-Perot (FP)

interferometer1l
,Il is used to obtain the frequency spectrum of the scattered light. The FP

is scanned in frequency over the region containing the Brillouin spectrum. The frequency

scale of the FP is calibrated using a known scatterer. such as a grating or a block of fused

quartz, where the Brillouin shifts for specific scattering angles are known. Because of the

weak signal. many scans must be averaged to obtain a go?d signal to noise ratio.

Unfortunately, in some applications the use of conventional Brillouin spectroscopy has

been limited by the capabilities of the interferometers employed, These limitations include

limited finesse. conlIaSt, and the absence of an internal standard for frequency

calibration14,u.

When studying systems that exhibit complex dynamics, such as viscoelastic fluids

and low temperature glasses. the technique must be cap;lble of simultaneously measuring



large Brillouin frequency shifts and narrow lincwidths with reasonable accuracy, i.e. a

high finesse is required. In some materials. such as supercooled liquids, where the

underlying relaxation processes occur over a broad range of time scales. thes~ must

be obtained over a wide range of scattering angles and Brillouin frequencies. In such

cases the parasitie broadening and strong Rayleigh peale. tends to obscure the Brillouin

peaks at small scattering angles, and imposes a lower limit on the range of frequencies

accessible to conventional Brillouin spectroscopy.

The absence of an internal frequency standard in the interferometer limits the

accuracy and precision with which Brillouin shifts and Iinewidths can be mellsured. The

development of tandem in:erferometersl~.l0 and specialized monochromators21 with

improved finesse and conlnlst has helped overcome some of the difficulties mentioned

above, but the fundamental problems still remain. An attractive alternative invokes the

coherent stimulated scattering technique which make use of the nonlinear optical

properties of the medium.

1-3. Stimulated Gain Spectroscopy: Literature Review

In the early 1960's, the advent of high power pulsed Jasers brought with it the

discovery that these lasers produced many nonlinear effects in the medium through which

the laser propagation occurred. Some examples of this are: induced defocusing, harmonic

generation and the output of lower frequency light than the input lilSCf light. This



downshifted light was recognized as being due to tile Raman effect, and tile process was

called stimulated Raman scatteringJ2
• Funhermore, it was observed that under certain

conditions. tIlese laser pulses produced shock waves in the cell, filled witllliquid. and in

some cases would blow the windows off the ceD. This was attributed to stimulated

Brillouin scattering. with the subsequent generation of frequency downshifted laser light

and an acoustic wave.

This idea was revived in 1977 by OwyoungU who observed stimulated~ gain

scanering in chlorobenzene using two continuous wave (CW) lasers. In this experiment,

a tunable CW dye laser was used as a pump. to stimulate Raman gain which was then

detected as a change in the AeNe probe laser imensity. When the difference frequency

between the two lasers was equal to a Raman resonance in chlorobenzene, energy was

transferred from the pump laser to the probe laser. The single pass gain in the experi.nent

was about l.Oxl()"l. This result showed the feasibility of doing gain measurements with

CW lasers. The narrow linewidth of CW lasers, compared to pulse lasers, suggested that

this technique might have great promise in studying linewidths and lineshapes.

Mter the first observltion of stimulated Brillouin scattering in the mid 1960·~.

several improvements in the frequency resolution of this technique have made coherent

Brillouin spectroscopy a valuable tool for studying liquid dynamics 11,u.a. However. it

is only in the last dec.ade that significant improvements in frequency resolution hive been

made.

tn 1979. Jacobson and Shen~9 fUlt reponed coherent Brillouin spectta of liquid carbon

disulfide by using two lasers and a RIKES (Raman-induced kerr effect scheme) scheme»



in which one of the lasen was tunable. 1be resolution was limited by the 1 GHz.

linewidth of the pulsed laser. Shortly after this, in 1983, She 31.n et al obtained stimul:ited

R'Y";gh-Brinoolln (RGl g~n 'J"Cln of "'"" pwe g""' ..d ... ';;;-;;;..., us;ng • sing1,- '\

mode pulsed laser. The frequency resolution was again limited by !he linewidth of the

pulsed lasers used. In 1987, they used a CW frequency·stabilized laser to olMain the BG f

spectrum of SF" with a resolution of about 4 MHz)). 1be resulting linewldlh

measurements agreed very well with the theoretical predictions.)ncluded were the rust

measurements of forward scattering at small angles. A high-resolution Brillouin study in

fused silica, glasses and crystals using pulsed lasers was reponed by Faris et allf.}6. It

should be noted that in BO spectroscopy, the Rayleigh line present in conventional

Brillouin spectra, is not present. allowing for very small angle scattering measurements,

which are normally obscured by this peale:.

More recently, since 1991, a great deal of work has been done on~ and glycerol

in the liquid state by Grubbs and MacPhailJ7-a. nus work has elearly shown that BG

spectroscopy with CW lasers is possible and can provide very aceurnte Brillouin

measurements of the liquid Slate, including accurate lineshape measurements.

In this thesis we will describe a (y{ Brillouin gain spectrometer which we have

COflSO'UCted. The spectrometer utilizes a Coherent 699·29 Dye laser as a pump laser and

a stabilized HeNe laser as a probe laser. The results of measurements on liquid CS2 and

ca.. will be presented.

In Chapter 2, the theory of stimulated Brillouin scattering (S8S) will be presented.

Chapter 3 will be a detailed description of the BG specttometer. A great deal of time on

.,.;~



this project was spent constructing and improving this apparatus. Several improvements

to the apparacus and !he experimental technique will also be presenced. Chapter 4 is a

presentation of the results from liquids CS~ and CCI_. A comparison of these results wi!h

theory wiH be given. In Chapter 5, a sununary of our work along with conclusions is

given.



CHAPTER 2.

THEORY OF STIMULATED

SPECTROSCOPY

2-1. Stimulated Brillouin Scanering.

J
BRILLOUIN.! GAIN

.~. "

The phenomenon of stimulated Brillouin scanerini" 4) occurs when the acoustic

wave that scatters the optical beam is produced by the optical beam itself.

When an intense laser beam of frequency COj passes through a medium, a coherent

acoustic wave at a frequency Wi is produced within the medium and al the same time an

optical beam is generatcd.1be optical frequency, according to energy conservation, is ~.

(I),. Both the acoustic and scattered optical beams are emitted along specific directions.

The directions can be detennined from momentum conservation where the wavevectors

satisfy the condition Kj:K
f
+K•.

Stimulated Brillouin scattering occurs only when the incident light intensity

approaches a well-defined threshold value". This Ihreshold nlue is typically 10' W/cm~

for most gases, liquids, and solids·'.

10



2-2. Brillouin Gain Spectroscopy

In a stimulated Brillouin .scattering experiment, a strong laser benm. with frequency

and wavevector (00..> k.). and a weaker probe laser beam, wilh frequency and

wavevector(OOI' k1), are loosely focused and overlapped at an angle ein a sample cell. The

two beams interact in the sample and, through electrostrietion, the medium produces an

acoustic wave whose frequency and wavevector are Q;;OO;:-Cl)1 and K"'~-Kl

respectively. When the difference frequency Q is equal to the Brillouin frequency, energy

will be transferred between the higher frequency beam and the lower frequency beam

Ihrough interaction with the acoustic wave. By tuning the pump beam frequency and

simuhaneously monitoring the probe inlensity, a stimulated Brillouin gain spet"lrum is

generated. such chat !he gain (or loss) in the probe power is plotted versus .n. The

Brillouin shifl is still expressed by equation (1.5), but now e is the crossing angle

betw~ the pump and probe laser beams.

2-3. Expression of Brillouin GainJ1
.....

ol6

Consider a finite box of volume V containing N molecules. The number density

fluctuation at point f lit time t is ~p(i;t). This density fluctuation may be wrilten as

II



fUtlCtion of wavcveaor KJ ~ angular frequencies n, , xcordin& [0 the Fourier

trnnsfonn:

lJp(K,r).flJp(f,t~-l1i 'd'f (2.1)

where lJP(f,t)·i~~p(K)e·lQJ'eIXJ" (2.2)

and lJp(K,r)cfJp(K)e-·Cj .

For a given K , the autocorrelation function of fJp(K) may be expressed in terms

of its power spectral density ~(K,C) as

<fJp(K,t)a"p(K,O»,.!e-tCre.(K,C)dC (2.3)

where < > denoteS an ensemble average. The normalized spcctrnl density per molecule

S(ii."):~If>(i(.,,) (2.4)

is the space-time Fourier transfonnarion of Ihe Van Hove's space-time correlation

function G(r,l)~7.

Assuming two electric fields are in the fonn of plane waves travelling in an arbitrary

direction.

EI(r.,t)·~ileltfl"'''Il)+C.C (2.5)

~(F,t)-~~e~"-<>tl+c.c (2.6)

In a light scattering experiment. the densily f1uCluanon is excited by the pump fidd

~("t) . In coherent gain spectroscopy, the excited density fluctu:uion is probed by the

probe field E1(f,t) . The pump lind probe fields select II nonnal mode with a particular

(i,O), which satisfies momentum and energy conservation, i.e. K.il-~ and 0-(,).-(,)1'

In this ma.nner, the intensity of [he probe beam is modified ( stimulated gain cr loss) by

12



the density nucmation 6p(i>t'~Cl. The electric field acting on the molecule is

i(r,t).ll(F,l)+~(f,l)

.~[tlecr''''''14+~e(f.M¥I+c.c] . (2..7)

The density change due to this f1C:(d will modify the pennittivity E of the medium

As a result. the molecules gain potential energy from the fiC:(ds:

AW·~f15eli(i",l)~d3F

=~f(~)o15P(r,t)li(f.r)11d3i". (2.8)

Substituting eqs (2.2) and (2.7) into (2.8), we obtain the energy of the excited nonnal

mode as

(2.9)

Equation (2.9) suggests the existence of a force

(2.10)

which induces the density fluctuation

(2.11)

where R(D) is the response function depending on the dynamics of the medium. To

ultimately relate (0 the gain coefficient. the amplitude of me associated third-order

polarization is usually Wl'itlen""' , for one normal mode, as

13



pOO=3eEi

:(~)"p(f)'"

.(~>. 'P(K)",
ap Y

• -:iv[~Ji1«O) I"'I'E,
• XOl(c.>\) lEi11E\ (2.12)

Solving the wave equation:

(2.13)

in the steady state. under the slowly varying wave approximation, the Stokes probe field

grows according to

~:i..::ixE x=xO>IEiI1

tk 2ceo l'

The gain coefficient is

(2.14)

Solving equation (2.12) and (2.14), we obtain the gain coefficient for the probe beam:

g(c.>I)·-~(l..x~12 (2.150)
(c~

=-~[-..!-(~>"1 1«0)]1 (2.lSb)
(~4Yap· ,

where ~ is the intensity of the pump beam. Equation (2.15a) indicates that the gain

coefficient is proponional to the third-order nonlinear susceptibility.

In equation (2.15b), the imaginary pan of the responsc function R (0) relates to the

spectral density function by the fluctuation dissipation theorem, as

14



~l.,RlC)."(.i'.C)'NS(ii'.n) (2.16)

Also, in equation (2.l5b).<i;)o is the molecular polarizability a. It can be related to

the Rayleigh cross section by electromagnetic theory as

(E!.'Jo1:a.'l: (
41teol

1
!!2.. (2.17)

ap 1c.
1
• dQ

where ~ is the differential Rayleigh cross section. Substihlting eqs (2..16) and (2.17)

into eqs (2.15), the Brillouin gain coefficient can ~ expressed as :

g«(,lI)·8l'l)~2n(OS(K.O)]~12 (2.18)
~, .

Usually, cross-sectional intensity profile of a laser beam is Gaussian, and the total

gain of the interaction can be shown to bell:

GZTl~47t~:~2~[CS(K.O)J~P2 (2.19)

where Tk is the crossing efficiency of the two beams and P1 is the power of the pump

beam. Equations (2.18) and (2.19) are the expressions for the gain coefficient and total

gain in the steady state respectively. They are linearly proportional to the pump intensity

or power.

2-4. Advantages of a Stimulated Brillouin Gain Spectroscopy Apparatus

Stimulated BriUouin gain spectroscopy has all of the usual advantages associated

with coherent spectroscopies. such as, high signll1-to-noise ratio and excellent

IS



discrimination from stray light and fluorescence backgrounds. This technique also offers

several advantages over conventional interferometric Brillouin scattering techniques. In

eq (2.19), the 11=<0,-(1)\ factor appearing in the gain expression goes to zero as m:~

thereby suppressing the Rayleigh peak in the spectrum. This is particularly important for .

small angle scattering, where the Brillouin shift is small and Brillouin peaks may be

obscured by the Rayleigh peak. In addition, the frequency resolulion in BGS is limited

only by the linewidths of the lasers (typically < 4MHz). so that high resolution can be

obtained by employing narrow linewidth continuous-wave (CW) lasers. In addition, the

difference between the frequencies of the pump and probe beams can be determined very

accurately, allowing for a highly accurate determination of the frequency of the pcilks in

the gain spectrum and thus accurate measurements of spectral shifts and linewidlhs. The

available spectral range is only restricted by the tuning range of the pump IllSCf. In

contrast 10 conventional Brillouin spectroscopy, this tochnique pennits measurement of

large Brillouin shifts and narrow linewidths, something which is diffJCUIt to do wilh a

Fabry Perot interferometer. Fmally, the scattering wavevector i is ~isely defined by

the crossing angle 9 of the pump and probe laser beams.

16



CHAPTER 3.

EXPERIMENTAL SETUP AND TECHNIQUE

3-1. Brillouin Gain Spectrometer

The experimental setup for Brillouin gain Specttoscopy is shown in figure 3.1. The

pump and probe beams with parallel polarizations were focused and overlapped in the

sample cell by a pair of lenses CLJ,f=20 em ,md L~,f=40 em) using a backscaltering

geometty. The pump beam was provided by a frequency siabilized. scanning ring dye

laser (Coherent CR 699-29), which is pumped with the multi-line output of a Coherent

Innoy:!. 90-6 argon ion laser. In the experiment, the pump laser beam power was rypiCillly

120-150 mW al633 nm using IGton Red dye. The jitter in the pump laser frequencyw~

previously me.3.~ [0 be less than 2 MHz. The probe beam was provided by a pohuized

single-frequency (632.8 om) st3bilized HeNe laser (Spectra-Physics Model! 17) with an

output power of 1.7 mW. The W;lvemeler, computer and software of the Coherent CR

699-29 were used to record the probe gain (or loss) as a function of pump frequency. In

order 10 enhance the signal-to-noise ratio of the Brillouin gain Sign~l)h~~ is typiC3Uy
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I part in ICf of the probe intensity, a double modulation teChnique and a balanced

detection scheme were used.

3~2. Coherent Radiation 699-29 Auto5can Ring Dye Laser System ""1

Fi&ure 3.2 shows the configuration of the CR 699-29 autoscan ring dye laser system.

This system is controlled by an Apple IT computer and can scan in frequency over a range

of up to 10 THz (10' GHz) with betler than 4 MHz resolution. II can also provide an

absolute wavelength readOUt lO an accuracy < 4xlo-' nm. digitize and store data under

active computer control, and present the data as seamless spectra, normalized to the dye

laser power.

The width of the gain profile of the laser dye. in this case Kiton Red. is about 30

nm. Single frequency operation is obtained by the use of several intracavity elements. A

3-plate birefringent filter (BRF) and a pair of etalons (thick etalon and thin elalon) form

the tllnable filter stack, which selects a single frequency. These optical elements have free

spectrnl. ranges of 1680 GHz, 10 GHz and 225 GHz respectively, producing a final laser

linewidth of about 2 MHz. In practice, due to acoustic noise, etc., the longterm linewidth

is slightly larger than this « 4 MHz).
.~...
The operating wavelength of the dye laser was determined by a built in wavemeler.

This wavemeter consists of a high resolution vernier etalon (VEl) and a low tl~sotution;;-

optical activity monochromator (OAM). The OAM consists of two different lengths of
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optiCally active quam. The laser beam is split into two parts and then ~assed through

these crystals. The resulting light is analyzed for polarization, and a C03ISC wavelength

is detennined from a look up table stored in the computer. 1he VET consists of twO

temper.l~W"C stabilized etalons, of slightly different length. In a given eUllon order, the

transmission maxima of the two etalons have a unique relationship, very similar to the

vernier scale principle. To detennine the laser wavelength, the laser is scanned over II

shon 10 GHz region. A coarse wavelength reading is detennined from the DAM, which

then uniquely delermines the VET order. Once the VET order is known, the computer

calculates Ihe wavelengdl 10 better than 4xl0"1 nm.

Because of alignment errors, as die light passes through the wavemeter eralons, die

frequencies measured by the Wllvemeter are often shifled slightly from the comet values.

The shift can be determined, and corrected for, by periodically mea.suring the absorplion

spectrum of low pressure J~ vapour and then comparing with the known spectrumS2
• The

setup for this calibration is shown in Fig 3.3. The wavemeter was then conected by this

value, This conection is significant, as a typical signal scan is only 0.25 cm' l , and an

error in calibration could mean missing Ihe BG signal altogether. Figure 3.4 shows a

typical set of I~ scan dllta, in which the wavemeter WllS found to be shifted 10 lower

frequency by 0.2358 em·l .

ft is important 10 note thai the wavemeter had 10 be recalibrllted exh time the laser

WllS more than slightly adjusted. Any large adjustmentS of the laser mirrors means thllt

the light will travel through the wavemeter elalons at a slightly different angle, and hence,

the wavemeter will relld differently, The sensitivity of this laser to temperature ch.mges
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Table 3.1. Calibration of the laser shift

line measured frequency (em· l
) standard frequency (em·l

) shift. (em· l )

190 15772.2393 15772.4773 0.2380

191 15m.4000 15772.6364 0.2364

192 15772.4656 15172.6976 0,2320

193 15173.6229 15773,8571 0.2342

194 15773.8234 15774.0609 0.2375

195 15773.8815 15774.1152 0.2337

196 15774.5364 15774.1703 0.2339

197 15774.7560 15174.9918 0.2358

198 15175.2313 15775.4662 0.2349

199 15775,2827 15775.5166 0.2339

200 15775.6487 15775.8867 0.2380

201 15775.8679 15776.1096 0.2417

mean N/A N/A 0.2358

value
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means that a great number of these calibrations must be camed OUl It is almost a full+

time job to keep the CR 699-29 aligned properly and calibrated.

3-3. Noise-reduction Schemes

Since the magnitude of the Brillouin gain signal is very small. at beSt about 1 pan

in lOS of the probe beam intensity, sevenJ noise-reduction schemes were employed to

enhance the signal-lo-noise ratio. A double modulation schcJne'l, similar to that used in

imermodulated fluorescence spectroSCOpy, is used to reject noise which is no( at the signal

modulation frequency. A major source of noise in dlis experiment is power amplitude

fluctuation of the probe laser. To funher enhance the signal to noise ratio, a balanced

detection scheme~ was used for the probe laser beam, effectively reducing such noise.

3-3-1. Double Modulation Teclmique

We have employed a double modulation teChnique, in which the pump and probe

bc3ms are each modulated at different frequencies and the gain signal is detected

synchronously using a lock-in amplifier tuned to the difference frequency. This allows for

rejection of spurious signals from stray pump reflections at the detector.

In our SSO experiment, the pump beam was modulated at 1.4 KHz by 11 mechanical

chopper (Chopper OC 4000), and the probe beam at 4.7 KHz by an acousto-optic (Aq)

2'



modulator. Initially, \VC tried modulating the pump beam at 19.2 KHl: by an AO

modulator while the probe beam was mechanically chopped at 2 KHz.. The gain signal

wasdetected synchronously at 17.2 KHl: by a lock-in ampliflCT (Stanford Rese:IrCh system

SR510) with a input filter Q of 10. Experimentally it was detennined that the pump and

probe modulation frequencies were roo close, within the bandwidth of rhe filler, and that

leakage from the pump at 19.2 KHl: was swamping the difference frequency signal at 17.2

KHz. To make effective use of the Q=1O lock-in filter, the pump modulation frequency

was reduced to 4.7 KHl: and the probe modulation to 1.4 KHl: (as noted above), so thOlt

the difference frequency was 3.3 KHz.. The reference signals from the chopper and AO

modulator were electronically mixed in a diode mixer (Watkins-Johnson (WJ-MI»,

amplified and filtered to remove harmonics, to produce a reference signal at the difference

frequency (3.3 KHz) for use in lock-in detection. Figure 3.5 shows the electronic

schematic for this circuit. The TIL(0-5V) signal from the mechanical chopper was level

shifted and transformed to a ±2.5V sine wave by the upper amplifier stage. This sine

wave was then fed into one input of the mixer. The output of the mixer contained many

harmonics of fl and f2, as well as the difference frequency. Consequently, the l:LSt three

Stages are bandpass filters with a center frequency of 3.3 KHz and a quality factor of 15.

The output of the circuit is a good clean IV pop sine wave with a frequency of 3.3 KHz..

The electronics for the experiment were then tested by observing linear lind doppler­

free fluorescence from low pressure Ii vapour'S. The doppler-free fluorescence signal is

generated by Ii molecules which absorb both laser beams simultaneously, that is, the
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molecules which are moving perpendicular to both be:uns. Detection of the doppler·free

fluorescence signal requires that the fluorescence signal be deteCted at the difference

frequency, and hence serves as a good test of our difTemlCe frequency circuitry. The

experimental setup is shown in fig 3.6. The dye laser beam was split into two~

modulated at two frequencies fl and f2. and overlapped at the centre of a cell contlining

12 vapour. A photodiode at the side of the cell monitored the fluorescence as the dye laser

was tuned over as GHz range. Lock-in detection at frequency fI or f2 yielded the linear

fluorescence spectrum (Fig 3.7a), while detection at the difference frequency produced

the doppler.free intermodulated fluorescence spectrum (Fig 3.7b). The advantage of the

difference frequency detection is obvious. The fact that the doppler.free spectra COln be

detected verified that the electronics circuit, we buill, works very well.

3-3-2. Balanced Detection Scheme

The Brillouin peaIc. gain is typically 100S of the intensity of the probe beam. Any

amplitude fluctuations in the probe beam can obscure the gain signal. In order to suppress

this noise, a balanced detection scheme was used (see figure 3.1). The HeNe probe beam

is split into a signal beam and a reference beam by a SO/SO beam splitter. The signOlI

beam goes through the sample cell to the silicon photodiode (Silicon Detector Corp. SD·

200-12·12·241 ). The reference beam traverses a similar distance and is focused onto a

matched photodiode. The two pholovoltaic diodes are isolated from their cases <Ind are
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connected in a push-pull conf:guntion.

In the push-pull arrangement the ar.odc of one photodiode is connected to the

cathode of the second photodiode and vice vena. The output is measured aCfOU either

diode. U light falling on both pholodiodes is the same. then lhe output from the pair will

be zero. The diodes in effect act as a differentiall!mplifier. The output of the diode pair

is used as input to a high gain current preamplifier. The output of the preamplifier is fed

inlO a Lock-in amplifier (Princeton Applied Research model 124A). By using a variable

neutral density filter in the reference beam to balance the signals on the two photodiodes.,

the current inlO the input of current ampliflU is :woed. This has the effect that much of

the noise due to the probe beam amplitude fluctuations is canceUed out.

A key part of this setup is that the two photodiodes are connected in a push-pull

configuration with very short leads. Earlier in this work we anempted using separate

pholodeteetors /preamps in the signal beam and reference beam. These were respectively

fed into the differential input of the lock-in amplifier channel (Stanford Research System

SRSIO). Due to cable capacitance. the phases of the two signals from the photodctectDrs

were slightly different. We would invariably see a large noise pulses in the outpul of the

diffcn:ntial amplifier. Comparing these two schemes. the advantage of the push-pull

configuration is that much of the luge background noise can be nulled before

amplification and the gain on the preamp can be turned up higher without saturating it.
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3-3-3. Additional Refinements to Our Noise Reduction Scheme

Our initial experimental setup incorporated both the balanced detcction scheme and

the double modulation technique. We were however unable to observe any DO signal. It

was suspected that because, of the high collinearity of the pump-probe beams some pump

light was being reflected either into the photodiodcs, or directly into the HeNe probe

laser. Scat<cred pump light entering unequally into the photodiodes would not be

cancelled out by the balanced detection scheme. and would. to a certain degree, contribute

amplitude noise 10 the difference frequency signal. In order to prevent the reflections of

the pump beam from entering the dettttor, a spatial filter using a 20 cm lens and a 200

pm'pinhole was used in the signal beam path. It effectively reduced the noise due to the

Stray pump beam reflections.

Light entering the probe laser is a bigger concern, since it could cause the probe

laser power to fluctuate, as the electronics try to stabilize the Ii~t intensity. When the

probe laser amplitude varies, the signal from the phOlodiodes becomes unbal3nced. This

unbalanced signal contributes a large varying synchronous background which is much

bigger than the DO sign.al A great deal of care was taken 10 ensure that very little pump

laser light was incident on the entrance apenure of the HeNe laser. There was of course

a tradeoff here. In backward scattering. as the angle gets bigger. the DO signal gets larger

and the light scattered into the HeNe laser increases.

At this point in our investigation. we had still not observed a BO signal. Because of
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the long palhlengths traversed by (he probe be.am(about 2ri.i. the amplitude fluctuations

from lhe airborne dust panicles could contribule subslantial noise thai would not be

cancelled by the balanced detection scheme. Upon confirming that the rest of the

experimental setup was functioning properly, and after many fruitless hours of searching

for a signal, we placed the entire probe beam-sample ccll-detector setup inside a covered

plexiglass box". Almost immediately we saw our fU'S1 gain signal in CS1(fig 3.8).

3-4. Procedure for Overlapping The Pump and Probe Beams

In our experimental setup, a great deal of effon was made to maximize the overlap

of the pump and probe beams. The objective was to bring both beams to a common focus

with malching-~m waists. From equation (2.19), the Brillouin gain signal is proportional

to the beam crossing efficiency f'k. A value of 1'10',,0 indicates that there is no overlap,

whereas Tl.-I indicates complete overlap. In the experiment, in order to maximize the

beam overlap, we first calculated the focal position and focal diameter of the probe beam

inside the cell and then using a simple telescope (l.., and ~ in Fig 3.1) matched the

diameter of the pump and probe beams at their muwal focus. The focal point for the

pump beam was sct by moving lens L... To maximize the overlap of the pump and probe

beams it was first necessary to determine the characteristics of each of the Gaussian

beams produced by the lasers. To do this, a small pinhole on an xy mount was placed

between the laser .100 a large apenure power meIer. By moving the pinhole through the
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laser beam, the radial intensity distribution of each of the laser beams was detennined.

Typical profiles, at two distances, are shown in Fig 3.9. The solid lines correspond to fitS

of Gaussian profiles to the experimental data. D is the distance between the measured

plane and the laser output mirror and h is the distance between the measured point to the

edge of the laser beam in the measuring plane( Fig 3.10). The Gaussian fitting results

Fig a 10 taser Bum C<o•• seetlon

~
02 J !

show that the laser intensity I and the distance h across the beam have the following

relation:

For the HeNe laser:

D=2.35m I=80.743exp(.0.4725(h-3.1W) (jIW)

D=5.84m I=12.626exp(·O.091(h·6.567)1) (j1W)
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For the dye laser:

D::2.25m I=402.4exp(-2.044(h-1.506)2) (pW)

D=5.47m I=62.83exp(·O.3786(h-2.832)2) (pW)

From these fits the divergence of each beam can be calculated as shown in Fig 3.11. The

divergence for the HeNe laser is e=5.32xl~ rad and for the dye laser is 9=2.88xlO"" rad.

The HeNe probe beam is loosely focused by a 20 cm focal length lens into the

sample cell. The waist or focus size of the beam at the center of the cell was calculated

from»:

W22:w11(l+(.2:!....)~
nw,2

nw'
R,.=zll+(----!",)2J

A'
1 1 1
R,R;-7
wo·.f!:...

nw,

where f is the lens focal length. The parameters woo WI> w2•RI> R2and z are shown in Fig

3.12. We determined that the HeNe beam is focused at 25.6 cm from the lens with a

waist of about lOOpm. This was confLmled by using a microscope to look at this point

in the cell. The focus of the pump beam was then adjusted by L~ in fig 3.1. A 40 cm

focal length lens was used for L~ to facilitate easy alignment and overlap of the laser

beams. In previous wor~, both beams passed through both lenses making alignment and

overlapping the beams difficult Our scheme allows independent adjustment of both

beams. The longer focal length lens still allows the pump beam to be focused at the

correct place in the cell. By using two telescopes to view the focal region in the vertical
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and honzonlal d~tions we overlapped the beams. with the pump beam waist slightly

larger than the probe beam waisL

Flg3.12. ImaglrlgolaGaussfatlBeambyaThlnLens

3-5. Procedure for Collecting SBG Spectra

The procedure for collecting saG speetnl varied slightly, depending on the liquid

sample used and the length of the scan. To collect spectra for C~, the dye laser was

scanned with a speed of 10 MHz/sec and a step increment 10 MHz over a 200Hz

frequency region, containing both the gain and loss peaks. For ca., we typically scanlled
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a 15 GHz region containing the loss and gain peaks. 'The laser Scan speed was 20

MHvsec with a step increment of 10 MHz. All specba were taken with the samples at

room temperature (2l1'C) and a 35 time coostant for the lock-in amplifier. The autoscan

data acquisition program collected data via 8 bit AID conveners. housed in a separate .

interface box. The data were normalized to the dye laser power to reduce the effects of

pump laser power fluctuations. Once collected, data were viewed on the Apple screen

where a CUDOr driven program can be used 10 determine the frequencies of any intensity

features. The data were then transferred to an mM PC computer from the Apple using

an RS·232 interface set to 9600 baud. The data from the PC were typically viewed with

commercial plotting routines. Because of the low resolution of the Apple screen. one of

the drawtoacks of OUI present setup is that we don't usually know how good the scan data

are until we plol them on the PC computer.

3-6. Sample Preparation

Since the Brillouin gain signal is much weaker than the overall inlensity of the probe

beam. care must be taken to insure thai samples are dllSl free. The liquid sample was

filled into a quartz cell. Before the sample was introduced. the quartz cell was rinsed

several limes with acetone. When the cell had dried, the sample liquid was filtered under

gravity through a a.2pm letlon syringe filler and injected directly into the cell. The cell

was rinsed this way several times and then filled and sealed wi~ teflon caps. In our
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experiments. the carbon disulfide is A.C.S reagent grade and the carbon tetrachloride is

spectranalyzcd A.C.S. grade.



CHAPTER 4.

EXPERIMENTAL RESULTS AND DISCUSSION

4-1. Carbon Disulphide (CS,)

Fig 4.1 shows one represc:ntative sweep of the CW SaG spectra of liquid carbon

disulfide. The sweep time of this spectrum was 2000 s. The spectrum is comprised mainly

of the two Brillouin gain and loss peaks. The sharp Rayleigh peak in the center of the

spontaneous Brillouin spectrum is absent as expected. The loss peak appears at lower

pump frequencies and the gain peak appears at high pump frequencies. The loss peak

corresponds to a loss in probe power as energy is uansfemd via phonons from the higher

energyp~ beam to the lower energy pwnp beam. The gain peak occurs when energy

is transferred from the low energy probe beam to the higher energy pump beam. As can

be seen from !he piols, the signal-to-noise ratio is excellent in the SBG spectrum of this

strong scantring sample.
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4M I-1. Measurement of Line Width, Brillouin Shift and Asymmetry

Parameter

The effective laser linewidth of the dye laser is small enough « 4 MHz) that

accurate linewidth measurements of the BG signal can be made. In order to measure line

widths and Brillouin shifts accurately, the loss and gain peaks are fined by nonlinear least

squares to the Lorentzian Iineshape functions of the following forrn.ln:

This function is Lorentzian in nature, but includes an asymmeay term characterized by

the parameter A. This parameter characterizes the relative contribution of the Lorentzian

and dispersive lineshapes to the experimentallioe shape.

The +(or.) sign refers to gain (or loss) peak, vI:; is the frequency of the gain or loss

peak, flv, is the width, in frequency units, of the Brillouin peak and Go is an intensity

scaling factor to normalize the peak height to the experimental peak height. As expected,

this function is maximum when v=Vo, i.e. when the frequency is at a gain or loss peak.

Fig 4.2 shows one of the filting results. The Brillouin shift CiJ,/2rt was taken to be

half the distance between the maxima of the gain and loss peaks. The half width 6vB and

asymmetry factor A were taken to be the average of the gain and loss peaks values.

The lower trace in Fig4.2 is the difference between the experimental data and the

4'
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fitted one. The fit is very good except for a small derivative shaped feature at the gain

and loss peak frequencies. This is most likely due 10 a deviation of the line.shape caused

by the time constant used in the experiment. The runaining noise in this spectrum is due

to stray pump laser light which gets through the kxk-in flItC!S.

The Brillouin shift, llnewidth and asynunelJ)' par.uneter were also detennined for

several other backscattering angles near 18<1'. The results, and the valueS from the

literature are shown in Table 4.1. The literature results were measured by spontaneous

Brillouin scattering, in a 9(f .scattering geometry, and have been corrected to the

scattering wavevector used in our experiments. The consistency between Out experimental

results and literature results is good.

Substitution of the Brillouin shifl and known value of the refractive index into

eq{l.1) yields a value for the sound velocity in CS: of 1.209x1O' cm/s, which is in good

agreement with the previous result 1.241xlO' cmlsS'.

45



Table 4.1. Experimenlal results for the Brillouin shift and half·linewidth at different

scattering angles for CS1

S(degree) experimental result liter.1tureresull

w.,/2n(GHz) rlP'"2'1t(MHz) A CJ)J2lt(GHz)

179.5 6.40 117 0.062 6.41 S1,6.36"

179.0 6.31 85 0.045 6.41, 6.36

176.9 6.39 110 0.054 6.41, 6.36

174.2 637 110 0.051 6.40. 6.35

172.0 6.39 133 0.12 6.39, 6.34

4-1-2. Absolute Gain

The absolute gain for~ was estimated from the mca.surements of amplification of

the probe beam and the change in the probe beam intensity. The current generated by the

probe laser in one of the photodiodes was measured. and compared to the differential

current generated at a gain peak. A value of 3.6xlO"' was obtained for the gain. which is

consistent the value of 2xlO's obtained by Ratanaphruks19
•

We have also calculated the absolute gain for the gain peak using equation (2.19).
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~ 4-n'cw P d
G"T1c---;;f~(nS(K.Q)]ip2 (2.19)

To detennine SCi,C) • we note that CSz is a substance which relaxes with a single

relaxation time. According to MountainS7
, for a single relaxation time process, the

spontaneous scauering spectral density SCX.O) can be expressed as:

(4.2)

where

K is the. scattering wavevector, n is the difference frequency between the two lasers, and

't is the relaxation time of the mecliwn. All the eUler constants a, bo. Co. b"r,n;y were

taken from Mountain$'l. Mountain has shown that this expression fitS the spontaneous

Brillouin spectra of CS2 very well, indicating that it does indeed relax with a single

relaxation time. By fitting S(K,O) and equation (2.19), we obtained a peak gain of

4.3x1O"S, which again is consistent with the above values.

;-'--"
"~
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4-1-3. Relation Between Gain Signal and Pump Power

Equation (2.19) is the expression for the gain in the steady state. In the steady Slate,

the gain is linearly proportional to the pump intensity or power. If the interaction rime is

shorter than the characteristic time of the medium, the trnnsient behaviour of the

interactiCfn must be considered"'·!. and the gain becomes proportional 10 the square root

of the pump intensily. In this work the laser modulation frequency was in the kHz range,

COIJespo~ng to a modulation period of order I IDS. and the relaxation time of the liquids

studies w~ on the order or IxlW-lxlCr ll s. Our experiments easily fall into Ihe steady

st:lteregime.

To test this dependence of signal on pump laser power, we have carried out a

sequence of measurements of gain at different pump ~wers while keeping the other
~~~.--~~

experimental parameter! unchanged. The d~penaence of the relative gain. 0; ~n the pump

..... .. ~~'" .
laser power, PI> IS shown m Figure 4.3.. II shows clearly that G IS hnearly prop..;''1lonal

'"to PI as equation (2.19) predicts. This linear dependence conftrms that Ihe interacti6\is

in the steady state. \~~

\
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4-2. Carbon Tet.rachloride (CCI4)

Fig 4.4 (a) is a typical saG spectra of carbon tetrachloride. The scan time of this

spectrum was 750 s. The loss and gain peaks are clearly visible in the spectrum but the

signal to noise ratio is degraded relative 10 the carbon disulfide spectrum.

4-2-1. Signal to Noise Ratio and Signal Averaging

The gain for CC1~ was estimaled at 2xlO'*, a factor of 10 less than the gain in CS:.

In order to enhance the signal to noise ratio, signal averaging was used. The autoscan

program uniquely identifies the frequency of each data point to the precision of the

wavemeler, allowing accurate addition of multiple data scans. To test the feasibitity of

signal averaging we set the laser to a specific frequency just below the gain·loss region.

The laser can be scanned over a shon frequency (20 GHz) range by using a feature which

tips only the thin etaJon. The etalon then resets vCI')' accurately to the initial frequency.

We eollectc:d the spectrum 16 times under the same conditions and added the spectra

together. Fig 4.4(b) shows the final result- The signal to noise ratio is much improved.

The larger amplitude nuctuations which are evident, especially in the nat portion of the

spectrum, BIe due to slow power variations in the pump laser power as the dye laser was

scanned in frequency. The small amplitude fluctuations, of very shon deviation,

correspond to random noise from other sourses
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4-2-2. Line Width and Brillouin Shift

U1ing the same procedure as used for CSz, the loss a;ld gain peaks of ca.. were.

fitted to a lorentzian profile (eq(4.l» using nonlinear least squares fitting. The result of

such a fit is shown in Fig 4.5 and the fit is very good. The width of the Brilfouin peak,

r a=2Jt6v•• and the Brillouin shift, Wp/2.1t, were determined from the fit. The Brillouin

shift was taken to be half the distance between the maxima of the gain and loss peales.

The peak width was taken as the average value of the width of the gain and loss peak.

It is clear from the data in table 4.2 that the agreement of the measured SBO shift from

this work with the Iiteroture result is very gooo.

Table 4.2. Experimental result of CCI..

parameter

Brillo:·il\shift(OHz)

half width (MHz)

present result

4.87

407
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literature value"

4.82
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4-2-3. Mountain Mode

The SBG spectra of CS: and ca. differ in several ways. The CS: peaks are much

sharper and more intense than those in ca~. Funhennore the baseline between the twO

peaks in the CS: signal is very flat, whereas, the baseline in the Co. signal shows a

definite slope upward from the loss to the gain peak. This asymmcuy is quite

reproducible, and corresponds to the presence of the well-knbwn Mountain mode suo in

the spontaneous Brillouin spectrum.

The .Mountain mode is a nonpropagating thennal mode, which relaxes with a rime

scale of the same order liS the relaxation time 't of the liquid. Usuaily, in liquids, there are

thennal and phonon modes which give rise to the central and two shifted Brillouin

components. The spectral distribution can be expressed using eq(4.2). Mountain pointed

OIlt that a mode using I single relaxation time could not explain the Brillouin spectrum

of CCI., and that another slow thermal mode must be present. This new mode results

from the weak coupling of the internal degrees of freedom of the molecules 10 the

translational degrees: of freedom of the fluid and gives rise to density fluctuations. The

affect on the spectral distribution is the appearance of a broad line at zero frequency. The

observation that the SBG experiment has the sensitivity to detect the Mountain mode is

puticularly significant for applications of SBG spectroscopy to supercooled liquids,r.,61.

In supercooled liquids, structural relaxation processes cause a similar spectral feature. An

accurate measurement of the shape of lhis feature can provide imponant infonnation about

these relaxation processes. This can complement the infonnation from Brillouin shih and
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linewidth measurements. We have fit the data shown in Fig 4.4 to the theoretical

expression ( eqs 4.2) given by Mountain using non-linear least squares filting. The

adjustable parameters were the center frequency of the spectrum, the position of the

baseline and the height of the peaks. The results are shown in Fig 4.6. The sound velocity

was calculated to be 898 mls. It can be seen that the fit is very good, although'not'

perfect. This can either be attributed to the uncertainty in some of the consunts used. to

a small experimental error or perhaps to lhe limited nature of the single relaxation time

theory.
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4-3, Accuracy of Frequency and Linewidth Measurements

The frequencies of the Brillouin componenls were ITle3SUred using the built·in

wavemeter of the CR 699-29 ring dye laser. The wavemtttt has an inherent uncc:ruinty'

of 0.0005 em·1 (15 MHz) which corresponds 10 Ihe uncertainty in re3ding the high

resolution part of the wavemeler (VEl). The absolute frequency sc:l.1e for the wo.vemeler

was determined as outlined in sect. 3.2 by a calibration using the well known I: spectrum.

The error in the standard spectrumn is (± 0.0025) cm· l corresponding 10 an o.bsolute

frequency uncertainty of 75 MHL

The accuracy of the linewidth measurements will be determined by the effective

instrumentallinewidth of our BO spectrometer and by Ihe effect of K broadening due

10 the focusing of both laser beams. Although we have not o.ccllr.ltely measured lhe

effective instrumental linewidth, the linewidth in a similar system~ wu me:L$ured 10 be

7 MHL It is rusonable 10 expect thai our experimental linewidth is len than this. i.e.,

as mentioned before, 10 the order of 4 MHz

The Kvector broadening is due to the angular spre:ld of Kvectors in the laser

beam interaction region. This spread is caused by the focusing of the beams by the lens.

The Brillouin shift is given as ~=vJ;:, where v, is the sound velocity in the medium, so

an uncenainty in K produces an uncertainty, Le. broadening in the Brillouin line

frequency. The .uncenainty in it is given by"
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:where e is the scauering angle and w.1f is the SPOt size in the focal region. It is evKlent

from this expression thu it vector broadening is small for backward 'Flnerlng and

largest for forward scauering and that the more tightly focused the be:l~ :,he greater the

spread in the it. vectors. The corresponding uncertainty in the frequency of the Brillouin

peak is fJv""I;V"fJX.

In our experimc:ntal .setup a 20 cm focal length lens was used and produced a 100

Ilm be:1m wahl in the centre of the focal region. Assuming a scattering angle of 17!f. the

broadening is calculated to be about 36 KHz. In the backscattering geometry the CSt

linewidths were typically 90 MHz, so this broadening can be considered insignificant

This type of broadening mechanism will be much more important in the forward

sc:1uering geometry where the linewidths are on the order of 10 MHz. For the same

experimental parameters, and a scattering angle of~, Ihe uncenainty in linewidth due to

it broadening is approximately 4 MHz, a significant fraction of the expected li.'lev.1dth.

We can conclude that in a baclcscauering geometry,X broadening effectS are

insignificant and mC3Suremc:nts are limited by the instrumental linewidth of the

spectrometer.
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CHAPTER 5.

CONCLUSION

We have constructed a high resolution BriUouin gain spectrometer and demonslr:l.Ied

its usefulness in obtaining Brillouin gain signals in liquids. The DO spet:tr.l of a strong

scat:erer. carbon disulfide and a much we3lcer seauercr, carbon tcmchloride have been

presented. In a 1800 backscattering geometry the measured gains were 3.6xW' for CS:

and 2)(W6 for ce~. These results are consis-ten! with vo.lues reponed in the literature.

The frequency resolution of this system is limited by jitter :md me effective laser

linewidths. and is less than 4MHz.. In the recorded speclra the 85MHz wide Brillouin

peaks of CS: were easily resolved, and the parameters associated with the asymmetry of

the lineshape were determined. The 50 spectra of CC1~ clearly showed the asymmetry

and sloping baseline associated with a slow ther~1 or Mounl3in mode in this liquid. The

ability of this instrumenllO discern such subtle asymmelries is an indicator of its polenliaJ

for these kinds of studies.

One of the major motivations underlying the construction of this appar:1tus W:lS to

eventually do temperature gradient studies of liquids. using:l forward sc:lttering geometry.
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The absence of the Rayleigh pec-..!c in the SaG spectrum provides the possibility of

observing such scattering at very small angles. In small angle or forward scanering the

signal 10 noise ratio of the BG signal is much smaller than for the backscanering

ge0!TIetry. This lack of available signal to noise ratio demonstrates a serious limitation of
J,

our present spectrometer.

There are, however. several ways of improving the signal to noise ratio achievable.

with Ihis system. It has been demonstrated by our results in CCI. that data acquisition by

a compuler lends itself 10 the possibility of the averaging of multiple scans and to a

subsequent increase in the signal to noise ratio. In comparison to conventional Brillouin

spectrosco~y. where the addition of several thousand scans is ~ot unusual, averaging

should produce the same increases in signal to noise ratio in SBG spectroscopy. Since the

Rayleigh peak is absent in this type of spectroscopy. an external Fabry-Perot could be

used to generate frequency markers by which to overlap the scans properly.

The gain signal scales with the pump laser power so that the signal 10 noise ratio

could be improved by increasing the pump laser power. One option would be to pulse

amplify the output of the ring dye laser. The subsequent laser pulses would have the high

peak power associated with a pulsed laser, yet the narrow linewidth associated with Ihe

CW ring dye laser.

The two major sources of noise in this experiment were amplitude fluctuations in the

probe laser output and scattered pump light reaching the photodiodes. The probe laser F·

power could be stabilized using an acousto-optic modulator and a polarizer in a feedback

loop, much as is used in commercial instruments of rnis kind. Pump laser power reaching
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the photodiodes might be less troublesome if the pump modul;uion frequency were far

from the difference frequency. This could be achieved by using two AD modulatCln at,

say,20 and 50 KHz to modulate the lasers. With a lock-in Q of 100, the 50KHz signal

would be about 70 M's away from the difference, as opposed to about 30 with our

presentse~p.

Overlapping the pump and probe beams in the sample ,cell is another difficulty in the

experiment. For example. in quartz. the scauering is so weak that we could not see the

scattered light from the laser beMns. and could not determine if the beams were

overlapped. A memod needs to be developed by which we can errectively overlap the

laser beams independent of direct visual detennination.

The high spectral resolution and narrow linewidth of the DO spectrOmeter should

make it an idea tool for several types of Brillouin studies. As mentioned previously one

of our primary interests is to s~uay Brillouin scanering under the conditions of a large

temperature gradient It has been sryown under such conditions the Brillouin lineshape

should be asymmetric with the asymmetry parameter e given b11

e=....!.. 4'vT
2"fT'q1

where q is the wavevector of the scaueling sound wave, VI is the temperatW'C gradient

in the direction of 4 • v is the sound velocity and r is the sound attenuation coefficienL

The width of a Brillouin line is 2r· q'.

It is important to note that this asymmetry is proportional to the temperature gradient

VT and inversely proportional to the scanering wavevector 4 . This means that this

effect will be greatest for small 4 , i.e. in the forward scattering geomelJ)'. with large
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temperature gradients present.. There are two major limilations to cmyi.ng out this

experiment using conventional Brillouin spcctro.SCOpy. First and foremost, !he presence

of a very Strong Rayleigh peak in lIle spectrum, accompanied by a very small Brillouin

shift make it difficult to sec lIle very weak signal. Secondly, the small asymmetry in lIle

linewidth is hard to measure with a Fabry-Perot imerferometer. Nevenheless, two groups'~

Beysens et alf) and Kiefte et a)62 have carried out measurements on water. The results,

though in reasonable agreement with the theoretical predictions for a liquid,indicate that

a different experimental Iccnnique might be more appropriate to this problem.

The potential of SBG spectroscopy as a tool for investigating this problem is

obvious. The absence of a Rayleigh line in the spectra and the narrow Iinewidth of the

lasers make this technique attractive. The major obstacles to using this technique is the

weakness of the BG signal in a forward scattering geometry. We feel that this can be

overcome with the use of signal averaging techniques, as illustrated in our carbon

tetrachloride data, and by refining our technique for overlapping the pump and probe

beams. With !hese refinements to our system this speCtrometer should be a powerful tool

in temperature gradient work..

The second potential application of this spectrometer is the measurement of

Iinewidths and asymmeny par.uneters in gases and liquids. 1be Brillouin Iinewidth in:=:­

many liquids is often smaller than the instrumental linewwhh of the FP's used in

conventional Brillouin spectroscopy. With our apparatus we can make direct accurale ':-

Iinewidth measurements up 10 the resolution of the laser linewidth.

In conclusion, with signal averaging capabilities this spectrometer has the potential

.,



to carry out high resolution Brillouin measurements. not achievable by other methods.

64



REFERENCES

1. L. Brillouin, A.nn. Physik 17, 88 (1922).

2. W. Hayes and R. Loudon, Scattering of Ught by CryStals. (Wiley-Inletsdence,

New York, 1978).

3. G.D. Patterson and A. Munoz-Rojas, Ann. Rev, Phys. Chem. 38, 191 (1987).

4, P.A. M:ldden, Light Scotterillg ill Physics, Chemistry and Biology, A.D.

Buckingham, O.W. Series, E.R. Pike and J.G. Powles, Eds. (University Press,

Cambridge, 1980), p209.

S. Y. Kate and G.A. Zdasiuk, J. Opt. Soc. Am. 65. 995 (1975).

6. 0.0. Patterson <lJ\d PJ. Carroll, J. Phys. Chem. 89, 1344 (1985).

7. M.M. Sushchinskiy. Int!fastic Ligh! Scattering ill Crystals (Translated by Allen,

ML.J. Vol. 180. (Nova Science Publishers, Comrnx~ 1987).

8. H.Z. Cummins and A.P. Levanyuk. Ligh! Scouering Near Phase Trans;tiolU.

(North-Holland. Amsterdam. 1983).

9. H.Z. Cummins, Light Scattering in Physics, Cht!misrry Gild Biology, A.D.

Buckingham, O.W. Series, E.R. Pike and J.O. Powles, Eds. (University Press,

Cambridge, 1980), p183.

10. LL. Fabelinskii, Molecufar Scattering ofLight, (plenum Press, New York, 1968).

1L B. Chu, Laser Light Scattering, (Academic;:, Press, New York, 1974).

65



12. W. Kaiser and M. Maier, Laser Handbook (Nonh-Holland, Amste~m. 1972),

pIOn

13. R. Pecora, Dyrwmic lighJ Scatten"ng, (plenum Press, New York, 1985).

14. L. Borjesson, M. Elmrothy and LM. Torell, Chern. Phy~. 149,209 (1990).

15. l.R. Sandercock, Light Scattering in Solids, M. Cardona and Gllnlherodt, Eels::

Vol. m (Springer, Berlin, 1982), p173.

16. R. Mock, B. Hillebrands and R. Sandercock, J. Phys. E20, 656 (1986).

17. R. Vacher and J. Pelous, Phy~. utt. 53A, 233 (1975).

18. R. Vacher and 1. Pelous, Phys. Rev. 814, 823 (1976).

19. H. Sussner and R. Vacher, Appf. Opt. 18, 3815 (1979).

20. J. Lorosch, 1. Prlous and A. Levasseur, J. Non-cryst. Solids 69, I (1985).

21. E. DiFabrizio, V. Mau.acurati, M. Nardone, A. Nucara, G. Ruatto and G.

Signorelli, J. Chern. Phy~. 93, 7751 (1990).

22. EJ. Woodbury and W.K. Ng, ProcJRE 50,2367 (1962).

23. A. Owyoung, Opt. Commun. 22, 323 (1977).

24. R.Y. Chiao, C.H. Townes and D.P. Sioicheff, Phy~. Rev. Lett. 12(2J), 592 (1964).

25. E. Garmire and C-H. Townes, Appl. Phys. Lett. 5, 84 (1964).

26. D. Pohl, M. Maier and W. Kaiser, Phys. Rev. utt. 20, 366 (1968).

27. D. Pohl and W. Kaiser, Phy~. Rev. 81, 31 (1970).

28. M. Denariez and G. Bret, Phys. Rev. J71, 160 (1968).

29. A.G. Jacobson and Y.R. Shen, Appf. Phys. Lett. 34, 464 (1979).

30. M.D. Levenson, Introduction 10 Nonlinear Laser Spectroscopy, (Academic Press,

66



New York, 1982).

31. C.Y. She, a,c. Herring, H. Moosmuller and S.A. Lee, Phys. R~, 3U733 (l98's).

32. C.Y. She, G.c. Herring, H. Moosmuller and SA Lee, Phys. R~. Lett. 51, 1648

(1985).

33. S.Y. Tang, c.y. She and SA Lee, Opt. Lett. 12, 870 (1987).

34. G.W. Faris, LE. }usinski, MJ. Dyer. W.K. Bischel and A.P. Hickman, Opt. Lett.

IS, 703 (1990).

3's. G.W. Faris. L.E. Iusinslci and A. Peel Hichman. J. Opt. Soc. Am. B 10, 587

(1993).

36. N. Shibal3., R.O. Waans and R.P. Braun, Opt. utt. 12,259 (1987).

37. W.T. Grubbs and R.A. MacPhail, J. Chern. Phys. 97, 8906 (1992).

38. W.T. Orubbs and R.A. MacPhail. J. Chun. Phys. 97, 19 (1992).

39. K. Ratanaptuuks, W.T. Grubbs and R.A. MacPhail, Chern. Phys. 182. 371 (1991).

40. W.T. Grubbs and R.A. MacPhail, J. Phys. Chun. 96, 8688 (1992).

41. W.T. Grubbs and R.A. MacPhail, Rev. Scl./lIJtrum. 65, 34 (1993).

42. W.T. Grubbs and R.A. MacPhail, J. Chern. Phys. 100(4),2561 (1994).

43. I.L. Fabelinskii. 0.1. Mash, V.V. Morozov and V.S. Swunov. Phys. un. 27a, 253

(1968).

44. A. Yariv, Quontum Electronics. (3nd), (John Wiley & Sons, New York. 1989).

45. M. Sparks, Phys. Rev. Lett. 32, 4,S0 (l974).

46. Y.R. Shen, Principles o/Nonlillear Optics, (Wilcy-Inlerscience, New York, 1984).

47. M. Nellin and A. Ghatak, Phys. Rev. 135, a4 (1964).

67



48. T.F. Johnston Jr., R.H. Brady and W. Proffitt, Appl. Opt. 21, 2307 (1982).

49. T.F. Johnston Jr., encyclopedia 0/ Physical Science alld Techllology, Vol. 14

(Academic Press, New York, 1987), p96.

50. G.H. Williams, J.L. Hoban and T.FJ. Johnston, S.I.C.O.L.S. Conference,

Interlaken, Switzerland, June 29, pl-13 (1983).

51. O.G. Peterson, SA Tuccio and B.B. Snavely, Appl. Phys. Lett. 17,245 (1970).

52.' S. Gerstenkom and P. Luc, Atlas du Spectre D'absorprioll de la Molecule D'iode

14.800 - 20,000 cm·I , (Imprimerie Louis-Jean, Paris, 1978).

53. M.S. Sorem and A.L. Schawlow, Opt. COmnJrln. S, 148 (1972).

54. ~.L. Jansen and J.M. Hams, Appl. Spect. 40, 483 (1986).

55. ~l.D. Levenson and A.L. Schawlow, Phys. Rev. 6, 10 (1972).

56. W. Demtroder, Laser Spectroscopy (Basic Concepts and IIlStrlmlelllatioll),

(Springer-verlag Berlin Heidelberg, New York, 1981).

57. R.D. Mountain, J. Res. Nat. Bur. Stand. - A: Phys. & Chern. 70a, 207 (1966):

58. H.Z. Cummins and K.W. Gammon, J. Chern. Phys. 44, 2785 (1966).

59. D.P. Eastman, A. Hollinger and 1. Kenemuth, J. Chern. Phys. 50, 1567 (1969).

60. W.S. Gomall, GJ.A. Stegeman, B.P. Stoicheff, R.H. Stolen and V. Volterra, Phys.

Rev. Len. 17, 297 (1966).

61. L. Borjesson, Elmroth.M and L.M. Torell, Chern. Phys. 149,209 (1990).

62. H. Kiefte, M.J. Clouter and R. Penney, Phys. Rev. 830, 4017 (1984).

63. D. Beysens, Y. Garrabons and G. Zalczer, Phys. Rev. Lett. 45, 403 (1980).

68










	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Notice
	006_Title Page
	007_Copyright Information
	008_Abstract
	009_Acknowledgements
	010_Table of Contents
	011_Table of Contents v
	012_List of Tables
	013_List of Figures
	014_List of Figures viii
	015_Chapter 1 - Page 1
	016_Page 2
	017_Page 3
	018_Page 4
	019_Page 5
	020_Page 6
	021_Page 7
	022_Page 8
	023_Page 9
	024_Chapter 2 - Page 10
	025_Page 11
	026_Page 12
	027_Page 13
	028_Page 14
	029_Page 15
	030_Page 16
	031_Chapter 3 - Page 17
	032_Page 18
	033_Page 19
	034_Page 20
	035_Page 21
	036_Page 22
	037_Page 23
	038_Page 24
	039_Page 25
	040_Page 26
	041_Page 27
	042_Page 28
	043_Page 29
	044_Page 30
	045_Page 31
	046_Page 32
	047_Page 33
	048_Page 34
	049_Page 35
	050_Page 36
	051_Page 37
	052_Page 38
	053_Page 39
	054_Page 40
	055_Chapter 4 - Page 41
	056_Page 42
	057_Page 43
	058_Page 44
	059_Page 45
	060_Page 46
	061_Page 47
	062_Page 48
	063_Page 49
	064_Page 50
	065_Page 51
	066_Page 52
	067_Page 53
	068_Page 54
	069_Page 55
	070_Page 56
	071_Page 57
	072_Page 58
	073_Page 59
	074_Chapter 5 - Page 60
	075_Page 61
	076_Page 62
	077_Page 63
	078_Page 64
	079_References
	080_Page 66
	081_Page 67
	082_Page 68
	083_Blank Page
	084_Blank Page
	085_Inside Back Cover
	086_Back Cover

