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Abstract

Recommendation systems have become very popular and are integrated into many

applications that we use everyday. We are recommended music pieces, articles, books,

and movies by many websites and devices in our everyday life. Education is another

example of a domain where recommendation systems can help make better and wiser

decisions that can affect someone’s future. With the growing number of available

online courses, it is difficult to choose the right courses. In this thesis, a proof-of-

concept of a course recommendation system is proposed that takes the users’ career

goals into consideration in order to help them with choosing the right path toward

their desired future job. First, data is extracted from Indeed job postings for the

desired job titles showing the relations between job titles and skills. Then, a second

dataset is gathered which contains a set of available online courses and the skills that

they cover. The first phase of the method generates some association rules using

the Apriori algorithm which is then used in the second phase that runs a Genetic

Algorithm to find the best set of skills for each career goal. After finding the best

set of skills for a desired career goal, we need to find the minimum number of courses

that can cover all of these skills to be able to recommend them to users which is

an instance of the Set Cover problem. In our method, the last phase runs another

Genetic Algorithm on the course dataset in order to find the optimum set of courses.

This proof-of-concept approach demonstrates that courses that are suggested to users

with a specific career goal add key skills that are trending in the market to their list

of qualifications.
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Chapter 1

Introduction

Recommendation systems have become extremely popular in recent years, and are

used in a variety of applications, as can be observed in daily web browsing. For

instance, Amazon1 usually suggests additional items, and YouTube2 provides a rec-

ommendation list of further videos. Sometimes the recommendations we receive are

surprising as they are exactly the things that we were looking for or things that we

are interested in.

One of the popular categories in Netflix 3, that uses recommendation systems is

called “Top picks for you”. Google Scholar 4 is another popular tool with a recommen-

dation system, useful for getting article recommendations, relevant to a research area.

All it needs is the creation of a public Scholar profile. It then analyzes articles, scans

the entire web looking for new articles relevant to the user’s research area. Social

1https://www.amazon.com
2https://www.youtube.com
3https://www.netflix.com
4https://scholar.google.com
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networks such as Facebook 5 and Instagram6 also have recommendation systems for

friend suggestions, pages the user may like, groups to join, or hashtags to use while

posting.

Three main approaches for recommendation systems can be distinguished as fol-

lows:

1. Collaborative filtering systems recommend items to users based on their simi-

larities to other users. In this method, the system collects and analyzes a large

amount of information on user behaviours and activities and then recommends

items which are already chosen by other users, which have similar attributes.

2. Content-based filtering systems recommend items to users based on item sim-

ilarities. Content-based recommendation systems have profiles of items which

contain item descriptions and profiles of user preferences. For example, in the

case of movies; the name of the director, actors, genre of the movie and other

attributes are provided on item profile. Also, a user profile is built to indicate

the type of items that a user likes; the director that a user has shown interest

in, the genre of movies a user prefers, actors that a user has watched frequently

in movies, etc. In other words, this approach tries to recommend items that are

similar to some other items that a user already have chosen or liked in the past.

3. Hybrid recommendation systems that combine collaborative and content-based

filtering have recently been demonstrated to be more effective in many cases.

Hybrid approaches can be implemented in several ways, such as: making content-

5https://www.facebook.com
6https://www.instagram.com
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based and collaborative-based predictions separately and then combining them;

adding content-based capabilities to a collaborative-based approach (and vice

versa).

As the amount of educational resources on the internet increases, it is possible to

find courses from almost every knowledge domain. The percentage of higher education

institutions in the United States that currently offer online courses increased from

2.6% in 2012 to 11.3% in 2015. In 2015, 28% of all students took at least one online

course and from those students, 83.5% were undergraduate students and 16.5% were

graduate students [12]. Although online learning is expanding in availability and

popularity, the high dropout rates remain a challenging problem [57]. With the

growing number of available online courses, students can easily get overwhelmed while

making decisions on which courses to take and taking courses that are not a good

match to their needs may result in a dropout. Many students graduate every semester

from schools and universities, who have taken a variety of courses, but often do not

know if these courses are useful for their desired job. It is also hard for the students

to decide which courses would be useful for a specific career goal. For instance, if a

student wants to become a data scientist in the future, they should know what skills

are essential and trending on the market for that job title, and acquire those skills to

be a good candidate for that position.

The process of finding appropriate courses and deciding which ones to take can be

challenging and time-consuming. In the process of choosing a course, many factors

may be relevant: finding the right places to look for course offerings, the details, and

content of each course, length, prerequisites, instructors, workload, etc. Using other
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people’s experience and suggestions to choose a course may be misleading, because

each person has their own background, education, and desired career goal. A course

that was helpful for one person might be somehow unrelated to another’s interests

and career path.

Almost none of the currently used course recommendation systems consider the

user’s future career goal or target job. Instead, they suggest courses from the com-

munity point of view. For instance, they suggest courses based on other students’

feedback [50, 73], or courses with better overall student performance based on marks

[17, 19, 63, 75], or they have implemented a content-based recommendation system

which considers the similarities between course materials [25, 38, 39].

In this thesis, we are proposing a personalized course recommendation system

based on the principles of all recommendation systems. Also, this new system takes

the career goals of users into account, aiming to improve the recommendation results.

Our system tries to choose the best courses to recommend from courses relevant

to the career goals by using a combination of association rule mining and Genetic

Algorithms. Data mining can help reveal hidden relations between skills that are

essential for different jobs, and then Genetic Algorithm helps with optimizing the list

of skills. After obtaining an optimized list of skills, the system uses another Genetic

Algorithm for solving the Set Cover problem of recommending the best set of courses

that can cover the entire set of required skills for the career path chosen by the user.

This thesis is structured as follows: Chapter 2 provides background information

about knowledge discovery in databases, Genetic Algorithms, and recommendation

systems. Chapter 3 discusses related works using recommendation systems, especially

in the field of course recommendation systems. Chapter 4 introduces our personalized

5



course recommendation system. Chapter 5 details the implementation of the proposed

method. Chapter 6 shows the results of this research and compares results in different

scenarios. Finally, conclusions and future suggested works are discussed in Chapter

7.
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Chapter 2

Background

2.1 Motivation

William J. Frawley et al. [37] quoted a frustrated Management Information System

(MIS) executive as saying “Computers have promised us a fountain of wisdom but

delivered a flood of data”. The amount of data and the complexity of features in any

computational environment and task are increasing rapidly. Huge amounts of raw

and often complex data cause big organizations and market players to want to extract

valuable knowledge from their data collections. This demand prompts scientists to

find new ways to understand the data and find the latent knowledge behind the raw

data.

2.2 Knowledge Discovery in Databases (KDD)

Knowledge discovery in databases was first posed at the first KDD workshop in

1989 [62] and has since been popularized in the artificial intelligence and machine-
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learning research communities. KDD encompasses the whole process of creating and

developing methods and tools for extracting meaningful information for understand-

ing large and noisy data. KDD aims to make data more compact and abstract so that

they are useful for future decision making. KDD comprises different steps, such as

data selection, data preprocessing, transformation, the process of data mining (which

is the most important step in KDD), and finally proper interpretation [35]. Selection

is the initial insights into the data, and detection of relevant data subsets. Preprocess-

ing includes finding errors, incorrect, and missing data in a data set. Errors are then

corrected or removed, and missing data supplied. Transformation transforms data

into a format that is appropriate for the next step. Data mining assigns models to, or

extracts patterns to be used in the final step. As Sankar noted in [59], “Data is a set

of facts F (e.g., cases in a database), and a pattern is an expression E in a language

L describing the facts in a subset FE of F . E is called a pattern if it is simpler than

the enumeration of all facts in FE”. Finally, in the interpretation/evaluation step,

patterns are analyzed to extract knowledge. Figure 2.1 demonstrates the steps of the

KDD process.

The goals of KDD for specifying patterns to be found can be categorized into two

classes:

1. Verification: The system verifies a user’s hypothesis.

2. Discovery: The system finds a new pattern. Discovery, in turn, can be classified

into two subclasses:

• Prediction: Here, the system wants to predict unknown or future behavior

of some entities by finding patterns.

8



Figure 2.1: Steps of the KDD process [35].

• Description: Here, the system’s purpose is to find a pattern describing the

data which would be understandable for the human [35].

Some predictive models can be used as descriptive patterns and vice versa.

2.2.1 Data Mining

Data mining refers to the pattern discovery step in the KDD process. Fayyad et al.

define data mining as “The non-trivial extraction of implicit, previously unknown,

and potentially useful information from data” [35]. In fact, data mining is an ap-

proach of assigning models to, or extracting patterns from raw data. There exist

many alternative names for data mining, such as knowledge extraction, data/pattern

analysis, data dredging [42], business intelligence, data archeology, or information

harvesting.

Although machine learning algorithms are the core of many data mining methods,
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there are fundamental differences between machine learning and data mining [56].

Data mining integrates various techniques, depending on the problem and the actual

mining approach. For example, methods from database systems, statistics, machine

learning, information retrieval, fuzzy and/or rough set theory, pattern recognition,

image analysis, signal processing, and bio-informatics are integrated for particular

data mining applications [42].

Several groups of data mining algorithms with the goal of prediction and descrip-

tion [2] have emerged, whose main categories could be roughly as follows:

Mining frequent patterns, associations, correlations, sequence mining, similarity search,

deviation detection, classification, k nearest neighbors (which is a subset of classifi-

cation), regression, clustering, the k-means algorithm (which is the simplest common

clustering algorithm), scalability, outlier analysis, evolution analysis, mining stream,

time-series, summarization, dependency modeling, change and deviation detection,

and sequence data, etc.

2.2.1.1 Association Rule Mining

The purpose of association rule mining is to discover interesting relations among items

and variables to find frequent patterns in a dataset, by discovering items frequently

appearing together [62].

Let I = {i1; i2; ...; ik} be a set of k items and B = {b1; b2; ...; bn} be a set of n

subsets of I (bi ⊆ I). Item set X is associated with item set Y : X ⇒ Y , where

X ⊆ I and Y ⊆ I [3].

Different constraints can be used to extract and evaluate interesting association

rules. Well-known constraints are minimum thresholds on support and confidence.

10



The support of an item set is defined as the percentage of those transactions in the

dataset which contain that item set.

The confidence of an association rule is defined as:

confidence(X ⇒ Y ) =
support(X ∪ Y )

support(X)
(2.1)

Item sets which have at least a minimum support threshold and a minimum con-

fidence threshold are called strong association rules [42, 46].

There exist different algorithms for generating association rules, such as apriori

algorithms, sampling algorithms, tree projection algorithms, partitioning algorithms,

or parallel algorithms.

2.2.1.2 Apriori Algorithm

The apriori algorithm is one of the most famous data mining techniques, which was

proposed by Agrawal and Srikant in 1994 in their research on fast algorithms for

mining association rules in large databases [4]. Apriori uses level-wise search, where

each item set of size k will make the next level item sets of size k + 1.

The main idea behind this approach is based on the principle of apriori : All

non-empty subsets of a frequent item set (with a minimum support) must also be

frequent. So item sets that have infrequent subsets can be pruned.

The algorithm is given below:

1. Scan the data set to count each candidate (support).

2. Compare the support of item sets of size one with minimum support and omit

those with support less than minimum support.

11



3. Starting from size i = 1, generate candidates of size i + 1 (all combinations

of sets with size i), and prune those candidates whose support is less than the

minimum support until no larger item sets are found.

Figure 2.2 shows the generation of frequent item sets where the minimum support

count is 2.

Figure 2.2: Generation of frequent item sets. [6]

Generating association rules from frequent item sets is usually done in two steps [10]:

1. Finding all non-empty subsets from frequent item set named L.

2. For each non-empty subset of L, find associations like S where S → (L− S) if

Support of L
Support of S

≥ Minimum confidence.

12



2.3 Evolutionary Algorithms

Evolutionary computation refers to a problem-solving process using computational

models of evolutionary processes such as natural selection, survival of the fittest, and

reproduction, as the fundamental components of such computational systems [13]. In

evolutionary computation, each single candidate solution is called an individual, the

set of all candidate solutions is called the population, and each step of the evolution

process is called a generation. The ability of an individual to solve the given problem

is measured by the fitness function. This ranks how likely one solution is to propagate

its characteristics to the next generations.

There are five important questions that need to be answered before designing an

evolutionary algorithm [13]:

1. What data structure will be used for designing the solution?

2. What will be the fitness function?

3. What reproduction methods will be used?

4. How are parents selected from the population and are children entered to the

population of the next generation?

5. What will be the termination criterion?

In the process of an evolutionary algorithm, the first step is to initialize the first

population, which is created randomly or using prior knowledge. In most cases,

generating an initial population is achieved by assigning random values from the

13



allowed domain to each candidate solution. The size of the initial population affects

computational complexity and the exploration abilities of the algorithm as well.

After a population is initialized, the evaluation process will be done on the popu-

lation using the defined fitness function. The goal of the fitness function is to assign

a quality measure to individuals so that the algorithm can get feedback regarding

which individuals should have a higher probability of being allowed to multiply and

reproduce, and which individuals should have a higher probability of being removed

from the population [16].

The selection task in an evolutionary algorithm ensures that an individual with

a higher fitness will have a greater chance of being selected for reproduction. There

are various selection operators such as tournament selection, proportionate selection,

and ranking selection [32].

After applying the selection operator to the population, the reproduction process

will apply crossover and/or mutation operators to the selected parents to generate

offspring. Then, variation operators are applied to the selected individual solutions

so that the current population size reaches the predefined population size, and ready

to loop back to do the process all over again in order to find the fittest popula-

tion [15]. An illustration of the general process of an evolutionary algorithm is shown

is Figure 2.3

2.3.1 Genetic Algorithms

Computational complexity theory has shown that there are many problems that are in

the NP complexity class. NP problems are solvable by a non-deterministic polynomial

14



Figure 2.3: The general process of an evolutionary algorithm [15]

algorithm [30]. Despite the lack of polynomial time algorithms to solve NP problems,

there are some heuristic algorithms that run in polynomial time that are used for

finding approximate solutions. Genetic Algorithms (GA), which are subset of Evo-

lutionary Algorithms, are known to be in this category of heuristic algorithms. GAs

are widely utilized meta-heuristics for optimization, which are based on evolutionary

ideas of genetics and natural selection [68].

GAs were first introduced by John Holland during the 1960s to 1970s. GAs work

based on Darwin’s principle of “survival of the fittest” [29]. The process of GAs is

very similar to other evolutionary algorithms that were mentioned earlier.

In GAs, each individual is represented by a set of parameters known as genes.

The set of all genes that form an individual is called chromosome. A GA encodes a

potential candidate solution to a problem (the phenotype) in a chromosome-like data

structure called the genotype [43, 77].
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2.3.1.1 Genetic Algorithms Process

There are three essential elements in each GA:

1. Population: A group of solutions to the problem.

2. Fitness function: A way of evaluating candidate solutions.

3. Breeding or mating: The process of generating one or more new candidate

solutions from two solutions that are chosen as parents.

A GA gives a higher chance of breeding for the next generation to an individual

with a better fitness score; therefore most fit individuals have a better chance to

transfer their genes to next generation. By choosing the fittest solutions for breeding

over and over, it is expected that populations will consist of fitter individuals over

more generations.

Encoding the candidate solution individuals to prepare the problem for applying

GA is an important process that needs to be determined before GA is applied. There

are many strategies that scientists have been using for encoding a problem such as

tree encoding, permutation encoding, value encoding, and binary encoding which is

the most common one.

The traditional process of a simple genetic algorithm is as follows:

1. Initialization: Start with a first population which is seeded by randomly gener-

ated individuals

2. Calculate the fitness of each individual in the population

3. Repeat the following steps until the termination criterion is met:
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• Do selection

• Do crossover

• Do mutation

4. Replace the old population with the created population.

5. Go to step 2.

The stopping condition would typically be the discovery of a solution with the

predefined ideal fitness, or running out of computational resources.

2.3.1.2 Selection

After measuring the fitness of all individuals from a population, the GA needs to

decide whether to apply genetic operators to that individual and whether to keep it

in the population or allow it to be replaced [16]. The selection operator performs this

task in a GA.

Some of the most commonly used selection methods are random selection, rank

selection, tournament selection, steady-state selection and fitness-proportionate se-

lection which was used by Holland in his original Simple GA [72].

Roulette wheel selection [72] is one of the most common fitness-proportionate

selection techniques. In this method, each individual is assigned a slice of a roulette

wheel based on their fitness, with fittest candidates having the biggest slices of the

wheel. The wheel is spun a number of times equal to the size of the population, and

the individual which is allocated to the winning section would be selected each time.
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2.3.1.3 Genetic Operators

The role of genetic operators is to create new individuals from the old ones selected for

reproduction. In the corresponding phenotype space, these operators are responsible

for generating new candidate solutions. One of the critical decisions in implementing

a genetic algorithm is what operators to choose and how to apply them [74]. Main

genetic operators are:

• Crossover: Crossover or recombination is a mating method of two individuals

with different favorable characteristics. Crossover merges the features of parents

and creates one or more offspring with a combination of their genes. Single-point

crossover is the simplest form which randomly chooses a gene and exchanges

the genes before and after that point between two individuals to create two

offspring. There are other crossover methods such as N-point crossover and

uniform crossover.

• Mutation: Mutation is a unary variation operator which is always stochastic.

The type of this operator depends on the encoding. For instance, in the binary

encoding, bit-flip mutation is usually used where a mutation probability is de-

fined for each gene (mutation rate), and each gene in an individual might flip

its value based on that probability [32]. Some other types of mutation operator

are order changing in permutation encoding, adding or subtracting in real value

encoding, and node changing in tree encoding.
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2.4 Set Cover Problem

The Set Cover problem is a classical problem in combinatorics, computer science, and

complexity theory and is known to be NP-complete [36, 48]. In this problem, we have

a set of n elements called U = {e0, e1, ..., en−1} and a collection of m subsets of U

called F = {S0, S1, ..., Sm−1} where S0, S1, ..., Sm−1 ⊆ U . Each of these subsets Si

has a non-negative cost of ci. The goal is to find a set I ⊆ {S1, S2, ..., Sm−1} that

minimizes
∑
i∈I

ci, such that
⋃

Si∈I
Si = U [36, 48].

In the un-weighted Set Cover Problem, the associated cost with all of the subsets

of U is considered to be 1 (ci = 1) [27, 48]. In this thesis, our work is based on the

un-weighted version of this problem.

Finding the optimal solution to this problem through an exhaustive process needs

testing of every possible solution to the instance (brute-force search). This type

of method has a search time of O(2n) on an instance of m sets. Like many other

combinatorial problems, an approximation technique for solving the problem is a

compromise between solution effectiveness and implementation efficiency, with high

effectiveness usually only possible at the cost of low efficiency [52]. In this section we

present a greedy approximation algorithm for this problem.

2.4.1 Greedy Algorithm

The following greedy algorithm for the Set Cover problem executes in polynomial

time. It starts by adding a set that can cover the largest number of uncovered

elements to a solution and repeats this for the remaining sets, trying to achieve the

greatest gain until all the required elements are covered [45].
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Algorithm 1 Greedy algorithm

1: procedure GreedySetCover(U, S1, S2, ..., Sm)

2: i← {}

3: while U 6= {} do . Do this until all elements in U are covered

4: Let d(j) = |Sj ∩ U |. . This is the number of uncovered elements in Sj

5: Let j = argmaxi∈[1,2,...,m]d(i). . Break ties by taking lower i

6: I ← I ∪ {j}; . Include set Sj into the set cover

7: U ← U\Sj; . Remove elements in Sj from U

8: return I

Figure 2.4 shows an example of Set Cover problem with 12 elements and 5 sets

where U = {1, 2, ..., 12} and F = {S1, S2, ..., S5}. The goal is to find the smallest

collection of set that can cover all of the elements in U .

Figure 2.4: An example of Set Cover problem

Figure 2.5 illustrates how the greedy algorithm executes for this example. In the

first iteration, it chooses the set that covers the most elements (S2). In the second
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iteration, sets S3 and S4 both cover 3 elements and the algorithm chooses S3 because

it has a lower index. In the third and fourth iteration, sets S4 and S1 are added to

the solution respectively. After the fourth iteration, all elements in U are covered and

the minimum set cover found by the greedy algorithm consists of four sets (S1, S2,

S3, and S4) but the optimal solution to this problem has only sets which are S1, S4,

and S5.

Figure 2.5: Greedy algorithm’s solution to the Set Cover problem in Figure 2.4
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2.5 Recommendation Systems

Vast amounts of data in each domain on the internet need to be processed, and

the knowledge from these data need to be extracted in a way that makes people’s

life easier. Recommendation systems are software tools and techniques that provide

suggestions for users about many items such as products, video, music, etc. in a

personalized manner [1, 65].

The vast offering of items on different websites can quickly overwhelm the users.

The process of finding appropriate items that they want, and deciding which ones to

choose can be challenging and time-consuming. The personalized assistance provided

by recommendation systems has proven to be an effective way of increasing user

satisfaction and improving the revenue of many businesses. For example, Netflix and

YouTube are media streaming services that recommend movies and music to their

users, and social networks such as Facebook and Twitter recommend friends, groups,

and many other items to their users.

Most of the recommendation systems that we use are personalized recommenda-

tion systems which base their recommendations on user-specific information. There

has been much research done regarding recommendation systems in different personal

activities. Some examples are:

Chan introduced a TV program recommendation system in [22] and Choi talks

about recommendation of movies in [24]. Dao discusses a location-based advertising

recommendation system in [28]. Paranjape also introduced a recommendation system

for stock market portfolio in [61] and Lucas in [55] explains a recommendation system

for tourism.
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2.5.1 Classifications of Recommendation Methods

There are various types of recommendation systems that are integrated into different

applications to generate recommendations. The most common methods are discussed

in this section.

2.5.1.1 Random Prediction Method

This approach randomly chooses items from the set of available items and recommends

them to the user. The random prediction method usually serves as a reference point

that helps to define how much better results are obtained by the utilization of more

sophisticated methods [60].

2.5.1.2 Popularity Model

This approach recommends the most popular items to all of the users based on the

most popular choices. For instance, in an online store, the items are ordered by the

number of ratings that all users have given them, and then the system will recommend

some of the most popular items to the new user. This model is easy to implement and

computationally inexpensive. It will somehow accomplish the goal of reducing user

effort, but ratings may be uninformative since most users like popular items. New

items and unpopular items will almost never appear in the recommendations. This

problem causes unequal distribution of ratings in the dataset [58].

2.5.1.3 Demographic-based Filtering Systems

This type of recommendation systems utilizes users in different classes based on their

demographic data stored on their profiles (i.e.. age, job, gender, city, and education).
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The main assumption in this type of recommendation system is that users with similar

demographic attribute(s) will rate items similarly [67].

2.5.1.4 Knowledge-based Recommendation Systems

This type of recommendation systems are based on users’ requirements and how a par-

ticular item meets a particular user’s need. The main difference between knowledge-

based recommendation methods and other methods is that they have functional

knowledge, meaning they know how a particular item meets a particular user need

and can reason about the relationship between a need and a possible suggestion [20].

There are many applications for this type of recommendation systems such as travel

websites which limit providing suggestions by asking questions such as duration, price

range, and location.

2.5.1.5 Content-based Filtering Systems

A content-based recommendation system suggests the items that are similar to the

items that the user liked in the past regarding the item content. The system receives

users activity history and generates appropriate user models based on the content

of items to indicate which items the user may like [31]. The system will eventually

provide a recommendation of items that are similar to high rated items in users’

profile.

For example, in case of movie recommendations, the name of the director, actors,

genre are described in item profiles. Also, the user profile is built to indicate the

type of items this user likes; the director whom the user has shown interest in and

the genre of the movies they prefer. This approach then tries to recommend movies
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which have common characteristics with the movies that the user liked in the past.

2.5.1.6 Collaborative Filtering Systems

This type of recommendation system collects and analyzes existing users’ details,

ratings, and feedbacks; then recommend items to users based on user similarities [71].

Collaborative filtering can be separated into two types:

• Memory-based collaborative filtering: The system provides a recommen-

dation with the use of the entire collection of user ratings and reviews. The

similarity of users in this can be discovered with two approaches [70]:

– User-based collaborative approach: If two users have similar details

(i.e., demographic data on their profile), they are considered to be similar

and the system recommends items that are highly rated by one of them to

the other one.

– Item-based collaborative approach: If two items are being liked and

disliked by some users similar to each other, the system considers those

two items as similar items. If a new user likes one or more of those similar

items, that new user is considered to be similar to those users that liked

those items as well. Hence if users who liked those two items, also like

some other items, these other items would be recommended to the new

user.

• Model-based collaborative filtering: This approach provides recommenda-

tions with the use of the patterns extracted from datasets. Model-based collab-

orative filtering is based on matrix factorization (MF). Using this approach, the
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system learns the latent preferences of users and the latent attributes of items

from known ratings to predict the unknown ratings through the dot product of

the latent features of users and items [70].

2.5.1.7 Hybrid Recommendation Systems

Hybrid recommendation systems are a combination of two or more recommendation

methods for gaining higher quality with fewer drawbacks of any technique separately.

This type of recommendation has been demonstrated to be more efficient in some

cases. Hybrid approaches can be implemented in several ways such as making content-

based and collaborative-based predictions separately and then combining them, or by

adding content-based capabilities to a collaborative-based approach (or vice versa).

A comparison of the most used recommendation system approaches is presented

in Table 2.1.

Approach Benefits Limitations

Content-based filtering No domain information required Cold start, Over-

specialization

Collaborative filtering No domain information required Cold start, Sparsity

Knowledge-based filtering Sensitive to preference change Knowledge acquisi-

tion

Hybrid filtering Improve item-user cold start

problem

Slow performance,

Time complexity

Table 2.1: Comparison of recommendation system approaches [26]
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2.6 Course Recommendation Systems

In recent years, web-based learning has become very popular. The number of digi-

tal libraries and e-learning materials has been growing rapidly. With the increasing

number of available resources, the traditional approach of users to simply search for

useful courses is not very practical any more in many cases. The role of recommen-

dation systems and search tools is to help instructors and learners to overcome this

information overload by finding relevant resources.

An e-learning recommendation system presents an environment that helps learn-

ers make choices without sufficient personal information of the alternatives. These

recommendation systems are aiming to shorten the search process with better services

and to let learners find more useful and suitable courses. Some examples of course

recommendation systems are discussed in more details in the next chapter.
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Chapter 3

Related Works

There are many recommendation systems that incorporate collaborative filtering

methods, content-based methods, or the combination of them as hybrid systems.

In this section, some of the most relevant systems to this research are reviewed. Each

section briefly reviews some related works with similar focus and methodology in the

domain of educational recommendation systems.

3.1 Performance and Feedback of Users

Many of the educational recommendation systems focus on how good students’ per-

formance or final marks are. Some of these recommendation systems are discussed in

this section.
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3.1.1 Collaborative Filtering Systems

Bobadilla proposed an equation in 2009 for memory-based collaborative e-learning

recommendation system that uses the learners’ grades for the weighting of the recom-

mendations (users with better scores have a greater weight than the users with lower

scores) [19].

Thai in [75] used a matrix factorization for predicting student performance, so

users can better decide in selecting the right level of difficulty. El-Bishouty in [33]

proposed a smart online course recommendation tool which considers different stu-

dents’ learning styles and provides teachers with recommendations to attract more

students with different learning styles to get better performance.

Chen in [23] proposed an e-learning material recommendation which considered

both course difficulty and users ability to learn. They used a collaborative voting

method as well as Rasch’s item characterized function [14] to define a parameter for

the difficulty of each course. The ability of the user would be calculated based on user

explicit feedback. Students can select course categories and materials and also search

through the system using keywords of interesting course material. Courses will be

recommended to students, then the system asks them to answer two questionnaires.

Ray proposed a system which uses both item-based and user-based collaborative

filtering on a data set of 255 students’ marks in 25 subjects. Their system could

provide each student with a prediction of the grade they may get if they choose a

particular course. Their system is based on other users’ course marks. Users must

evaluate as many courses as possible. Their system is not able to recommend to

students who have not taken any courses yet [63].
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Some researchers focus on using recommendation systems in a specific field. For

example, Zhang’s article from 2009 [80] focuses on civil engineering professional

courses and Liu’s article in 2010 [54] focuses on physical education.

Many of collaborative educational recommendation systems are based on explicit

or implicit student feedback. Liu in [50] introduced a system which is based on IEEE

Learning Technology Systems Architecture (IEEE LTSA)1 which is a component-

based framework for a general learning system with high scalability and re-usability.

This system uses a feedback extractor to combine multiple feedback measures and

find user interests. The system then recommends personalized information based on

collaborative approach.

Tan in [73] used a user-based collaborative filtering approach for their recommen-

dation system. Their system recommends courses to a learner based on the correlation

between that learner and other learners who have completed courses in the system.

They got user ratings on courses both implicitly and explicitly and made a matrix

of learner ratings for courses. Then they used the Pearson correlation for computing

the similarity between learners to form a proximity-based neighborhood of a target

learner and some like-minded users in an ordered list from most similar one to the

least similar one. Finally, they used association rule mining to find the top courses

that were taken by a neighborhood of learners and recommended them as the output

of their system.

Salehi in [69] presented a recommendation system for e-learning material from

historical learner logs and ratings. They made a user-item matrix to discover implicit

attributes of learners and learning material of historical rating data. Their system

1http://ltsc.ieee.org/wg1/index.html
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also uses explicit attributes models and genetic algorithm to find the relationship

between the overall rating and the implicit weight vector of each learner.

Bendakir in [18] presented a course recommendation system which combines a

data mining process with user ratings to recommend the best combination of courses.

In their system, every student has a profile which contains their basic information and

chosen courses. The structure of this system has five primary attributes (four courses,

with the fifth attribute representing the research laboratory). The C4.5 algorithm is

applied to build a decision tree of student profiles that represent the different paths of

courses (nodes) chosen and goes toward a leaf labeled with a research laboratory. For

each student, the recommendation system looks for paths which have the same start

courses and recommends the remaining courses of these paths. The recommendation

will improve with user ratings.

Reddy in [64] proposed a system which used learners’ past courses information and

a user’s preference to recommend courses to them. In their system, users determine

their interest areas, and then their profile will be created for them. Figure 3.1 shows

interest ratings of two students for five different areas.

Figure 3.1: User’s ratings for different areas [64]
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The system defines a vector for each course while each vector defines ratings for

the same attributes of each course. Ratings describe the areas that are going to be

covered in that courses. Figure 3.2 shows an example of ratings of different areas in

different courses.

Figure 3.2: Ratings of different areas in different courses [64]

Then learners provide a rating from 0 to 5 for each course they have completed.

Figure 3.3 shows an example where we have records of two students’ ratings for six

courses.

In Figure 3.3, it can be seen that the user named meghz17 did not take the course

Algorithm. To find the value of that empty cell they do a vector multiplication with

course attributes and the transpose of learner’s attributes, which produces a score of

6.4. Since this is more than 5, the course Algorithm would be a recommendation for

user meghz17.

Ghauth in [40] has explained their recommendation system in which users could

view and rate items, so the system recommends items similar to the viewed item and
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Figure 3.3: Student’s ratings for completed courses [64]

also make recommendations based on good learners’ average rating on the viewed

items.

There exist many collaborative educational recommendation systems that recom-

mend users based on users’ similarity. They find similarities between users based on

different factors in various ways. Some of them are mentioned below.

Tai in [76] proposed a course recommendation system which uses artificial neural

networks to classify the learners with similar behavioral patterns in different groups,

then uses association rule mining to find the best learning path for each group. Then
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members of the groups could receive recommendations based on each group’s opinion.

Liu in [53] also used collaborative filtering technique based on collecting and analyzing

information about user activity.

Bydžovská in [21] introduced a tree-like template in their research to represent

mandatory and elective courses for each field of study. In their system, each completed

course is marked with a green ring, and the uncompleted courses are marked with a red

cross. They used 67 templates for active students in their data set. A recommendation

method was designed based on four algorithms to recommend elective courses which

belong to their templates.

1. Finding interesting courses with the help of the most frequent path of graduate

students in the template (each node is associated with the number of students

that passed through).

2. Selected the most similar students and recommended their courses.

3. The teachers’ popularity was calculated based on students’ feedback. The sys-

tem then recommended other teachers’ courses if their popularity was higher

than the popularity threshold.

4. The system explicitly discovered friendship of users relying on posts and com-

ments in discussion forums, e-mails statistics, publication co-authoring, or file

sharing and then recommended courses that were interesting for their friends.

Imran in [44] described that their recommendation system recommended courses

considering the learning object they are visiting and also the learning objects visited

by other learners with similar profiles.
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3.1.2 Content-based Filtering Systems

Some of the educational recommendation systems that use content-based methods

are mentioned in this section.

Ghauth in [38] explains their recommendation system, which recommends learning

materials with similar content to the item being viewed. Their system first retrieves

documents’ keywords as materials attributes. Then uses a vector-space model on

attributes table of items to calculate the value of similarity among learning resources.

Top-N resources that exceed the similarity value threshold are chosen for the next

step which is calculating good learners predicted ratings for learning resources. For

recommending resources, they used the average ratings of good learners.

Chu in [25] used course selection records from senior college students for their

data set. They categorized elective courses based on the material of courses with the

help of professors and assigned percentages to the relatedness between course and

categories. For instance, they said in fuzzy logic courses, AI is more important than

mathematics. Then a directed graph (DG) was created from the expression of the

order of each category’s importance. So, with the preference sequence of students,

their system was able to recommend the most preferred courses to students. They

evaluated their system by a questionnaire which was conducted by students who

already graduated.

3.1.3 Hybrid Recommendation Systems

Liang in [51] presented a hybrid personalized course recommendation system with

the combination of content-based filtering and collaborative filtering. In their system,
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every user has an interest group of users. When a learner enters keywords on the portal

of the courseware management system, it searches within his/her interest group of

users and finds k courses with the same or similar keywords that other users have

chosen. A recommendation degree will be associated with each of those k courses

which are the multiplication of the degree of trust (the similarity between that specific

user and other users of interest group) and the evaluation of course by the user. The

top five courses of the list would be recommended to the user.

Khribi in [49] used data mining techniques and the combination of content-based

and collaborative filtering to recommend relevant resources to active users. Their

recommendations were based on learners recent navigation history and extracting

similarities and dissimilarities between user preferences and contents of the learning

resources.

Some of existing course recommendation systems consider different factors such

as time, availability, and prerequisites. Xu in [78] proposed a course sequence recom-

mendation tool that could select course sequences in a way that would try to decrease

the time required for graduation and increase the overall GPA of the student, while

considering prerequisite requirements, and course availabilities.

Some personalized recommendation systems are based on user’s personal activities

e.g. doing an on-line quiz, running an on-line simulation. Zaiane in [79] used data

mining techniques to translate learners’ access history stored in web servers’ logs and

recommend e-learning activities or shortcuts of course navigation in a course website.

The logs of web servers, which contain time ordered transactions, is mapped to either

known actions, i.e., learning activities like doing a test or URLs of a web resource in

a transactional format. Then, association rule mining technique will be applied on a
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pruned set of transactions for finding associations rules.

3.2 Courses and Enrollment History

The following articles, which use association rule mining to find relations between

courses, are most similar to our proposed method.

Aher has published multiple papers regarding their recommendation systems and

compared them. In [7], they used real data from the Moodle Learning Manage-

ment System of their college which is an open-source course management learning

system [66]. They collected information from computer science and information tech-

nology in the Moodle database which contained information about enrolled courses

and activity, including every click students made. They used these logs to find courses

in which a student may be interested.

They tried an Apriori association rule technique before and after pre-processing

the data using the open source data mining tool, Weka. In the pre-processing step,

they eliminated subjects whose count was less than 20 (less than 20 students had

taken that course), and students whose count was less than two (students who have

taken less than two courses). They discovered that without pre-processing, there are

association rules that contain “no” for some courses. For each association rule that

contains “no”, it means that a specific course is not recommended for that user.

In 2012, after pre-processing the data, they applied four different association rule

algorithms (Apriori, predictive Apriori, Tertius, and filtered associator) using Weka

on their data. They concluded that the Apriori association rule algorithm works

better than other algorithms because this is the only one that consists of “yes” only

37



association rules [10].

In their next paper in 2012, they clustered the data using Simple K-means al-

gorithm into two clusters. The first cluster gives the correct result, and the other

cluster gives the incorrect result. Then they classified correct clusters using ADTree

algorithm. In the last step, they applied the Apriori association rule algorithm on

classified data to find the best combination of courses. They discovered the com-

bination of these three algorithms works better than only Apriori association rule

algorithm because not only there is no need for preprocessing the data, but also this

combined approach increases the strength of the association rule [9].

In their next research, they compared seven classification algorithms (ADTree,

Simple Cart, J48, ZeroR, Naive Bays, Decision Table, and Random Forest Clas-

sification algorithm) for their recommendation system and found that the ADTree

classification algorithm works better in finding the best combination of courses than

other five classification algorithms [11].

In another research, they tried different combinations of data mining algorithms

using Weka. First, they applied Apriori association rule algorithm on those courses

for which the value of ADTree classification was negative. Second they applied Apri-

ori association rule algorithm on sub-table of simple K-means clustering algorithm

which gives the correct result. Third, they combined ADTree classification algo-

rithm, simple K-means clustering algorithm, and Apriori association rule algorithm.

The final combination was the order of simple K-means clustering algorithm, ADTree

classification algorithm.

They concluded that the best combination of the mentioned algorithms is the

combination of clustering, classification, and association rule mining [8].
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In their next paper which was published in 2014, they discovered that combination

of expectation maximization clustering and Apriori association rule algorithm works

better than using only Apriori association rule algorithm [5].

3.3 Career Goals of Users

CourseAgent [34] is a community-based recommendation system to recommend courses

based on students assessment of their particular career goals. It obtains students’ ex-

plicit feedback implicitly, as part of their natural interaction with the system for

self-benefit. The system uses three different aspects of data to suggest courses to

students:

1. Students selected career goals in their profiles

2. Evaluation of students for courses workloads on a scale of 1 to 3

3. Evaluation of students for relevance of course to their selected career goals on

a scale of 1 to 5

The overall workload of a course is the average of all ratings of different students

for a course. Since each student can choose more than one career goal in the system,

the relevance of each course to a student depends on the relevance of the course to his

career goals. Therefore, only those courses with the relevance ranking of 3 or more in

at least one career goal of a student will contribute to overall relevance of the course

to that student.

Rating the relevance of courses to career goals by students themselves who may

not have enough information either about the course or their career goals might
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be misleading for the system. They also refer in their paper that “An example of

self-deception which can be provoked by our incentive approach is what we called

positive rating bias.” Students ratings affect system’s recommendation. Hence, the

system recommends courses to students based on students assumptions [34].
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Chapter 4

Method

This research aims to design and implement a personalized course recommendation

system based on the career goals of users. The goal of this system is to recommend

a set of courses toward a user’s career goals that will cover key skills trending in the

market among many employers.

Our proposed method addresses some of the existing challenges in many of the

existing recommendation systems that were mentioned in the previous chapter. Our

system does not depend on implicit or explicit feedback from the users to be able

to make recommendations which will help eliminating the cold start problem. Some

recommendation systems try to predict users’ performance or grades for a course

based on their background and history in their system but our system doesn’t depend

on such predictions to make recommendations. This chapter details these challenges

and addresses how our system compares to other course recommendation systems.
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4.1 Data Gathering

For a personalized course recommendation system to consider the career goals of

users, some preliminary information is required. Specifically, information about the

relation between job titles (career goals) and required courses is essential. The pri-

mary connection between the two is a set of skills needed for someone to be a good

candidate for hiring into a career, as well as a set of skills covered in each course.

To achieve this purpose, two different datasets were designed. The first provides

the set of skills required for a specific job position. Data was gathered from the

Indeed website1, which is a worldwide job posting website available in more than 60

countries. Indeed launched in 2004 and is now one of the most popular job search

websites in North America.

The Octoparse crawler2 was used to export information from the job postings in

North America on the Indeed website. The title of each job posting and the required

skills were crawled from each job posting. As a result, we have a dataset in which

each record contains a job title and a set of skills. We extracted 400 records from

job postings for each of the three job titles: “Software Developer”, “Data Scientist”,

and “Hardware Engineer”. Each record of this dataset has a maximum number of 15

skills depending on the number of skills that was mentioned on that job posting.

The second dataset was designed to associate courses and skills. We used MOOC

List3 for gathering the associations between courses and skills.“A MOOC (Massive

Open Online Course) is an online course aimed at unlimited participation and open

1https://ca.indeed.com
2https://www.octoparse.com
3https://www.mooc-list.com
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access via the web” [47]. MOOC List is an aggregator (directory) of Massive Open

Online Courses (MOOCs) offered by different providers that helps users find online

courses (MOOCs) offered by top providers and the best universities around the world.

The Octoparse crawler was employed to identify the skill associations from each avail-

able and related online course on the MOOC List. The information we extracted for

creating our dataset is the name of the course and all of the skills that are covered

in that course. We extracted the top 500 MOOCs in the field of computer science,

computer engineering, and electrical engineering.

4.2 Proposed Method

The proposed personalized course recommendation system has three phases designed

to perform sequentially. For each job title, these phases were performed in order to

get the desired recommendation, which are briefly summarized here:

• In the first phase, the Apriori algorithm was used to discover the most frequent

skill sets for that job title from the records of the first dataset. In each row of

the dataset, the first column contains a job title, and the others list skills that

are associated with that job title extracted from the Indeed job postings. There

exist multiple rows for each job title, and the goal of this phase is to aggregate

all these data rows into a desired number of association rules, each containing

a set of skills. Each association rule that is created using Apriori algorithm in

this phase will have the same structure as the mentioned dataset.

• In the second phase of the method, a Genetic Algorithm (GA) was run for
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evolving the extracted association rules with the goal of improving those found

by the Apriori algorithm in the first phase. The input to the GA in this phase

consists of the set of discovered association rules from the previous phase and

some random skill sets. The fitness function measures the coverage of each

individual against the dataset of job titles and skills. It assigns each individual

a fitness score based on two parameters. One is the number of skills that exist

in the individual and a row of the dataset with that job title (one score is given

for each covered skill). The other parameter is the number of skills that exist

in the individual but do not exist in the dataset for that job title (one negative

score is given for each extra skill). This GA was run 10 times for each job title,

and the fittest individual after 100 generations was used as input to the next

phase.

• Once an optimized set of skills for a job title was identified, they were mapped

to some courses so they could be recommended to users with that career goal.

This phase of our method is a Set Cover problem. The challenge is to find the

minimum number of courses that cover all of the desired skills. We use another

GA in this method in order to find an optimized solution. By using the GA

designed for this phase and with the help of the second dataset that contained

the list of skills covered in each course, an optimized set of courses can be

identified and recommended to users. Each individual in this GA contains a set

of randomly generated courses that were evolved over generations using genetic

operators. The fitness function measured each individual based on two factors:

the coverage of skills that are required from the output of the previous phase
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and the total number of courses suggested to cover those skills.

4.2.1 Phase One

In order to provide more details about the process, assume that there are 10 job titles

in the first dataset and 100 records of data for each of these job titles (a total of 1000

rows in the first dataset). Table 4.1 illustrates an example of our job-skill dataset

for the job title G1 and the mentioned set of skills (Sn) on each of the extracted job

postings.

G1 S1 S2 S4

G1 S1 S3 S4 S8

G1 S4 S5 S7

G1 S1 S4 S6 S7 S8

Table 4.1: Job-skill dataset extracted from job postings including a job title and the

set of skills mentioned on those job postings

Association rule mining using the Apriori algorithm was used to determine 10

association rules for each job. After analyzing 100 sets of skills, for each job (Gm),

one of the most frequent skill sets (association rules) looks like S1, S4, S8 → G1 where

S1, S4, and S8 are the three main skills that can lead to the job G1. As shown in

Table 4.2, at the end of the first phase, a desired number of association rules for other

jobs are provided as well.
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G1 S1 S4 S8

G2 S2 S8 S12

G3 S3 S6 S8

Table 4.2: Career goals (Gm) and their extracted set of main skills (Sn)

4.2.2 Phase Two

In the second phase of the method, to optimize the resulting sets of skills found

in the first phase, a Genetic Algorithm was used. A fitness function measured skill

coverage and completeness of each association rule, during the process of evolution, for

selecting the best individuals of each generation for reproducing into next generations.

For measuring the fitness of each association rule, it is compared against all records

of the dataset with that specific career goal. The fitness of an individual is calculated

in two steps:

RowFitnessi = SkillCoveragei − ExtraSkillsi (4.1)

Where:

RowFitnessi: each individual is compared against each record of the job-skill

dataset and will receive a score based on the covered skills and missed skills

on that row. RowFitnessi is the fitness score that is assigned to an individual

against row i of the dataset.

SkillCoveragei: total number of skills from the individual that are present in

the row i of the dataset.
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ExtraSkillsi: total number of skills from the individual that are not present

in the row i of the dataset.

Fitness = Average(RowFitness1...n) (4.2)

Where:

Fitness is the average value of RowFitness for an individual that is calculated

against all n rows of the job-skill dataset.

Considering the example job-skill dataset in Table 4.1, the fitness of an individual

for the job title G1 that consists of the skills S1, S4, and S8 can be calculated as

follows:

• Since the dataset has 4 records for G1, first we need to calculate RowFitness[1..4]:

RowFitness1 = 2− 1 = 1

RowFitness2 = 3− 0 = 3

RowFitness4 = 1− 2 = −1

RowFitness4 = 3− 0 = 3

• Fitness of this individual is then calculated as follows:

Fitness = Average(RowFitness[1..4]) = 1.5

After measuring the fitness of all individuals in each generation, roulette wheel

selection was applied for choosing parents for reproduction. Crossover and mutation
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operators were used on parents respectively to generate offspring in each generation.

Elitism was used to ensure the fittest individual of each generation survives into next

generation.

4.2.3 Phase Three

After the second phase is completed, the fittest evolved set of skills for each career

goal was used in the final phase. This phase is aiming to find an optimized solution to

a Set Cover problem using a Genetic Algorithm. The problem is to find the minimum

number of courses that can cover all of the required skills in order to be recommended

to the users as the output of our system.

In the second dataset that was mentioned earlier in this chapter, each course is

associated with some skills that will be learned by a student after passing that course

successfully. Table 4.3 shows a simple example of our course-skill dataset. It shows

which skills (Sn) are covered in each course (Cm). For example, course number 2 (C2)

covers skills number 2, 3, and 4 (S2, S3, S4). This view of the dataset is used in the

fitness function of our method.

C1 S3

C2 S2 S3 S4

C3 S3 S5

C4 S1 S2 S5

C5 S6

Table 4.3: Courses (Cm) and set of skills that they cover (Sn).
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We also build another view of this dataset as shown in Table 4.4 which will be

used while generating new individuals in the GA of this phase. This view of the

dataset shows which courses can cover each skill.

S1 C4

S2 C2 C4

S3 C1 C2 C3

S4 C2

S5 C3 C4

S6 C5

Table 4.4: Skills (Sn) and set of courses that will cover those skills (Cm).

The GA designed for this final phase of the method aims to suggest the best

combination of courses to cover all skills that are required for each career goal. That

set of skills was the output of the previous phase (target skill set) and were used in

the fitness function of this GA to measure the quality of each individual. In this GA,

each individual contained a list of courses, and the initial population was randomly

generated. The fitness function of this phase is designed to assign a lower fitness score

to individuals with more genes (more number of courses) so that the best individual

covers more skills using a fewer number of courses. Fitness is calculated as follows:

Fitness =
# of covered skills

Total # of required skills
− # of suggested courses

Total # of available courses
(4.3)
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Where:

# of covered skills: the number of skills from target skill set of that career

goal that is covered by courses suggested by the candidate individual.

Total # of required skills: size of target skill set.

# of suggested courses: the number of courses in the candidate individual.

Total # of available courses: total number of rows (courses) in our course-

skill dataset.

Consider that we want to recommend a set of courses for the job title G1 and the

best set of skills for G1 that was found in the previous phase consists of S2, S3, and

S6. Having an individual that consists of the set of courses C2, C3, and C5, and the

example of course-skill dataset in Table 4.3, the fitness will be calculated as follows:

Fitness = 3
3
− 3

5
= 0.4

For the mentioned example, an individual that consists of the skills C2 and C5 is

the optimal solution which will get a fitness of 0.6 which means that this candidate

solution can cover all of the 3 required skills for the job title G1 by recommending 2

courses to the user.

As in the earlier GA, this GA uses roulette wheel selection, the same genetic

operators for reproduction, and elitism. The output of this phase, which is our

system’s final output, is a set of courses required to achieve the desired chosen career

goal and will be recommended to the user.
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4.3 Challenges

Some earlier research in the area of recommendation systems and the methods that

were used to solve some problems were mentioned in the previous chapter. Some of

the critical challenges from those previous works, and the way our method addresses

them are discussed here.

4.3.1 Implicit Feedback

Many course recommendation systems use implicit feedback of users. Implicit feed-

back is inferred from user behavior. Some examples of possible implicit feedback

from users for a recommendation system are their browsing behavior logs in online

course websites, the time that users have spent on their previous courses, learning

styles, online activities, grades, and instructors that they usually take courses with.

Extracting these pieces of data not only is time-consuming and in some cases even

impossible, but it might also carry privacy issues. Our proposed method does not

depend on any implicit feedback from users.

4.3.2 Explicit Feedback

Some recommendation systems use explicit feedbacks from users. e.g., they ask users

to fill out surveys about the usefulness of each course after taking it, course difficulty,

rating the instructor, time sufficiency, and course coverage. Asking lots of questions

and filling surveys to make a user’s profile to be able to recommend courses based

on their interest and background might be annoying for some users and it also might

have privacy issues.
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Our system does not have the problem of dependency on user’s explicit feedback

after taking each course. It does not need the engagement of users or the need to

encourage them to give feedback which can become an obstacle to testing the system

and measuring performance. The only piece of information it needs from users is

their career goal.

4.3.3 Cold Start

The cold start problem is a challenge for recommendation systems when there is not

enough information available at the outset for making recommendations. Depending

on the nature of each recommendation system, the reason behind this might differ

from the other systems, but in many cases, it happens because the system is designed

to compare the user’s profile to some reference characteristics to create recommen-

dations. It can also be caused by the small number of users or items in the system,

or users may not have provided enough information at the starting point. Before

providing any recommendations, there should be information about user interests or

item details. Some systems can recommend to only those users of the system who

have taken at least one course such as Ray’s in [63].

Our course recommendation system does not have the cold start problem when

there is no information regarding user’s history of courses taken. It has the ability to

recommend courses to users just by having their career goal.
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4.3.4 Performance of Users

Some systems predict users’ final grades in a course, based on their background knowl-

edge and their previous grades to decide whether it is a good recommendation. These

systems depend on the performance of users. Uncertainty when predicting the per-

formance of users in a future course based on their previous performance might affect

the performance of the system too.

Systems that look at a user’s performance will most probably have a different

purpose compared to our system. The focus of our system is toward a career goal while

the mentioned systems mainly target academic progress or minimizing graduation

time for users [17, 19]. Our system recommends students to take some courses with

the aim of achieving some skills so that they can become good candidates for their

target job.

4.3.5 Similarity of Users vs. Career Goal

Most course recommendation systems suggest courses to users based on similarities

between users, or the similarities between the courses that they took. Almost none

of the existing systems focus on addressing the connection between courses and job

opportunities, based on the skills that they could achieve in those courses. Our

system recommends practical courses that cover essential skills for specific jobs and

is designed for users whose goal is to reach a career goal they are interested in.
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Chapter 5

Implementation

In this chapter, the implementation of each phase of our method is explained in more

detail. For the first phase, we use the R programming language and the arules library

to apply the Apriori algorithm on the extracted job-skill dataset. For the second and

the third phase of the method, we use HTML and JavaScript to implement and

visualize both Genetic Algorithms.

5.1 Data Gathering

As mentioned in the previous chapter, our system needs two datasets. The first one

is a job-skill dataset that associates each career goal (job title) from a job posting on

Indeed to a set of skills. The second one is a course-skill dataset that is used in the

third phase of this method and includes the associations between each course and the

set of skills covers in that course.

We used the Octoparse website scrapper tool to build our job-skill dataset from

Indeed job postings. We extracted 400 rows of data from job postings for each of the
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three job titles: “Software Developer”, “Data Scientist”, and “Hardware Engineer”.

Each record in this dataset contains a job title for the first column and a set of skills

for the next 15 columns. Job postings that mentioned less than 5 skills were ignored

during the extraction process and a maximum number of 15 skills were found on one

job posting. Choosing 5 as the minimum number of skills for each job posting will

result in recommending a combination of courses to the user that will cover at least

5 skills. In this implementation, we chose 5 so that we can see how our system works

if someone is looking to learn at least 5 trending skills for a specific career goal. This

number can be an input parameter to our system that can be set by the users so that

each user has the ability to choose the minimum number of skills they are aiming to

learn. The same number needs to be used in the first phase of our method as the

minimum length of association rules so that each association rule consists of at least

5 skills.

We then built the course-skill dataset using Octoparse to extract data from the

MOOC List1 which offers a list of MOOCs and the set of skills that can be acquired

during each course. We extracted the top 500 MOOCs in the field of computer

science, computer engineering, and electrical engineering (sorted by average rating)

and created the course-skill dataset.

1https://www.mooc-list.com
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5.2 First Phase

In this phase of our method, we used RStudio2 to apply the Apriori algorithm on our

job-skill dataset so that we can achieve the most frequent skill sets for each career

goal. The tasks of this phase are done in the following order:

• Importing the job-skill dataset into RStudio environment

• Applying Apriori algorithm using the arules package3. The arules package for R

provides the infrastructure for representing, manipulating, and analyzing data

for mining frequent itemsets and applying association rules [41]. In this step

we extracted the most frequent skill sets for each career goal with the following

criteria:

– Minimum length of association rule: 5

– Minimum support of association rule: 0.1

Where minimum length of the association rule represents the minimum number

of skills that are required for each association rule to have. Since we want

to recommend a list of courses to the users that cover at least 5 skills in this

implementation, this parameter is set to 5. Minimum support represents how

frequently that itemset appeared in the dataset on a scale of 0 to 1. Since we

are sorting the association rules by their support value to pick the top ones,

this parameter is not effectively impacting the results and will only improve the

performance by ignoring less useful association rules.

2https://www.rstudio.com/
3https://cran.r-project.org/web/packages/arules/index.html
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• Sorting itemsets based on their support value

• Exporting top 20 output

At the end of this phase, we selected the top 20 sets of skills for each of the career

goals to be used in the next phase. Based on the gathered datasets for the mentioned

job titles, choosing more than 20 sets of skills would result in using the ones with

lower support values that are less useful and less likely to change the final output of

our method. Figure 5.1 shows a sample of generated itemsets from our dataset.

Figure 5.1: A sample list of itemsets with different supports in RStudio

5.3 Second Phase

For this phase of the method, JavaScript and HTML are used to implement the

Genetic Algorithm (GA). We used a basic GA implemented by Daniel Shiffman4 as

a template to implement the second and third phases of our method.

4http://natureofcode.com/
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During this phase, the initial population consists of two parts. The first part

consists of the set of individuals (skill sets) that are created using the output of the

previous phase and the second part consists of randomly generated individuals.

5.3.1 Chromosome Representation

Each individual in this GA is implemented using the value encoding method. In

our implementation, each chromosome is a bit string of ASCII characters that are

encoded from skills to genes using the Base64 encoding method. We encode skills to

be used in our chromosome structure using built-in JavaScript functions for Base64.

Listing 5.1 shows the implementation of three functions that are used for the

encoding and the decoding process. Function newGene generates a random skill

and returns the encoded string using window.atob function. This function is used

whenever a random gene is needed. Function skill2gene gets the string name of a

skill as an input and returns the encoded character associated with that skill. For

instance, if the input of this function is “python”, the output will be the encoded

string “cHl0aG9u”. Function gene2skill gets an encoded string and decodes it to its

skill using window.btoa function. For example, if the input of this function is the

string “cHl0aG9u”, the output will be “python” that was originally encoded using

skill2gene function. A string array named skillSet is used in these functions that

contains a set of 170 skills (extracted from datasets) that are available to choose from.
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function newGene() {

var s = Math.floor(Math.random()*skillSet.length);

return window.atob(skillSet[s]);

}

function skill2gene(skill) {

for(var i=0; i<skillSet.length; i++) {

if(skillSet[i]===skill)

return window.atob(skill);

}

}

function gene2skill(gene) {

if(gene)

return window.btoa(gene);

else

return ‘‘ERROR’’;

}

Listing 5.1: Encoding functions

5.3.2 GA Parameters

The GA configuration we used for this phase of our method is presented in Table 5.1.

The minimum length of each individual in this GA is 5 and the maximum length is

15. These numbers are chosen in a way that can help improve performance of the

GA without limiting the search space. The latest population of individuals after 10

runs of this GA had an average length of 8.5.

5.3.3 Fitness

As shown in the Listing 5.2, each individual is compared to the records of the job-skill

dataset which was imported into the data array, and will receive a score (rowScorep)

on each record of the dataset with the same career goal. Then, the average of all the

“rowScore”s is returned as the fitness of that individual. The function indexOf(s)

which is used in this implementation, searches for the given input s in an array and
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Table 5.1: GA parameters of the second phase of our method

Parameter Name Value

Population Size 200

Number of Generations 100

Creation Type Top 20 of first phase + 180 random individuals

Crossover Probability 98%

Mutation Probability 2%

Selection Type Roulette Wheel

Elitism True

Steady State True

returns a non-negative integer if s is found in the array. If s is not present in the

array, it will return -1. Each rowScore is calculated as follows:

• For each row p of data array (datap), the rowScorep is initialized to 0

• +1 point for each skill that exists in the individual AND in the datap

• -1 point for each skill that exists in the individual but doesn’t exist in the datap
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this.calcFitness = function() {

var rowScore=[];

for(var p=0; p<data.length; p++){

rowScore[p]=0;

for(var s=0; s<data[p].length; s++){

if(this.gene.indexOf(skill2char(data[p][s]))>=0)

rowScore[p]=rowScore[p]+1;

}

for(var k=0; k<this.genes.length; k++){

if(data[p].indexOf(char2skill(this.genes[k]))<0)

rowScore[p]=rowScore[p]-1;

}

var sum=0;

for(var i=0; i<rowScore.length; i++)

sum=sum+rowScore[i];

this.fitness=sum/rowScore.length;

};

Listing 5.2: Fitness function of the second phase

5.3.4 Selection

We used the roulette wheel selection technique for our method. Based on their fitness

value, each member will be added to the mating pool for a certain number of times.

A higher fitness results in more entries to the mating pool which will make it more

likely to be picked as a parent.

Our implementation of the selection operator is illustrated in Listing 5.3, in

which population is an array that includes individuals of a particular generation.

maxFitness contains the fitness value of the fittest individual from the population,

which is then used for normalizing the fitness value of all individuals. Finally, each

individual will be added to the mating pool between 0 and 100 times based on their

fitness value. This method generates the mating pool and is then used for generating

a new population.
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this.Selection = function() {

this.matingPool = [];

var maxFitness = -100;

for(var n=0; n<this.population.length; n++){

if(this.population[n].fitness > maxFitness)

maxFitness = this.population[n].fitness;

}

for(var i=0; i<this.population.length; i++){

var fitness = map(this.population[i].fitness,0,maxFitness,0,1);

var m = floor(fitness*100);

for(var j=0; j<m; j++)

this.matingPool.push(this.population[i]);

}

};

Listing 5.3: Roulette wheel selection method

For instance, consider that we have a population of 3 individuals with each con-

sisting of 3 skills: I1 = {S1, S2, S3}, I2 = {S1, S2, S4}, and I3 = {S2, S3, S4}. If the

fitness value of I1 = 1, I2 = 2, and I3 = 4, a mating pool will be generated by using

the implemented selection method with 175 individuals that consists of:

• I3× 100: Because I3 had the highest fitness from this population, it was added

to the mating pool 100 times.

• I2 × 50: Since I2 had a fitness value that was half of the value of the highest

fitness in this population, it was added 50 times to the mating pool to have a

mating chance equal to half of the fittest individual.

• I1×25: Same as the previous individual, I1 gets less chance of mating by having

one-fourth of the chance of the fittest individual.

In order to generate a new population, each time that a parent is being selected

for breeding, a random individual will be chosen from this mating pool.
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5.3.5 Crossover and Mutation Operators

In our GA, we implemented a single-point crossover operator in order to create two

offspring from two selected parents. As shown in Listing 5.4, our crossover method

randomly chooses a midpoint and swaps the genes after the selected midpoint between

two parents to generate two offspring.

The bit-flip mutation is implemented in our method to mutate one or more genes

of the individual. The likelihood of each gene to be replaced by a new randomly gener-

ated gene is specified by the mutation rate, which is one of the predefined parameters

of GA.

this.crossover = function(partner) {

var offspring[] = new DNA(this.genes.length);

var midpoint = Math.floor(Math.random()*this.genes.length);

for(var i=0; i<this.genes.length; i++){

if(i>midpoint){

offspring[0].genes[i] = this.genes[i];

offspring[1].genes[i] = partner.genes[i];

}

else{

offspring[0].genes[i] = partner.genes[i];

offspring[1].genes[i] = this.genes[i];

}

} return offspring;

};

this.mutate = function(mutationRate){

for(var i=0; i<this.genes.length; i++){

if(Math.random() < mutationRate)

this.genes[i] = newChar();

}

};

Listing 5.4: Crossover and mutation implementation

For example, if the two individuals I1 = {S1, S2, S3, S4} and I2 = {S5, S6, S7, S8}

are chosen as parents, the crossover function will choose a random point and generate

two offspring. A possible output for the mentioned example is {S1, S2, S7, S8, } and
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{S5, S6, S3, S4}.

5.4 Third Phase

At the end of performing the second phase, we picked the fittest individual from the

latest generation of our GA for each career goal to be in used in this phase. The GA

designed for this phase tries to find the minimum number of courses that can cover

all of the desired skills so that our system can recommend them to the user.

The evolved target skill set for a career goal, from the previous phase, is used by

the GA in this phase to measure the fitness of each course set. The selection method

and the genetic operators are implemented using the same techniques as the previous

phase.

5.4.1 Chromosome Representation

The representation of individuals in this GA is similar to the previous phase and is

achieved by the value encoding using ASCII characters. The main difference in the

implementation of this GA is that we imported data from our course-skill dataset

instead of the job-skill dataset that was used before. Each gene in an individual

represents a course in this GA.

5.4.2 GA Parameters

The GA configuration we used for the third phase of our method is presented in

Table 5.2. The minimum length of individuals in this GA is set to 1 which is when

a single course can cover all of the desired skills. The maximum length is also set
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to 15 since that is the highest number of possible skills from the GA in the previous

phase. If the desired skill set includes 15 skills, in the worst case scenario where each

suggested course can only cover one skill, we would have no more than 15 courses.

Table 5.2: GA parameters of the third phase of our method

Parameter Name Value

Population Size 200

Number of Generations 100

Creation Type Random

Crossover Probability 98%

Mutation Probability 2%

Selection Type Roulette Wheel

Elitism True

Steady State True

5.4.3 Fitness

The implementation of the fitness function used in this phase is shown in Listing 5.5.

It calculates the fitness value of an individual based on its length, and the total number

of skills that it covers compared to the top individual for that career goal which was

generated in the previous phase. The function getAllCoveredSkills returns an array

of skills that an individual (a set of courses) will cover. The output of this function

(geneSkills) is then used to calculate the number of covered skills.
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this.calcFitness = function() {

var coveredSkills = 0;

var totalRequiredSkills = topIndividual(this.careerGoal).length;

var numOfSuggestedCourses = this.genes.length;

var totalCourses = courses.length;

var geneSkills = getAllCoveredSkills(this.genes);

for(var i=0; i<geneSkills.length; i++){

if(topIndividual(this.careerGoal).indexOf(geneSkills[i]) >= 0)

coveredSkills = coveredSkills+1;

}

this.fitness = (coveredSkills/totalRequiredSkills) -

(numOfSuggestedCourses/totalCourses);

};

Listing 5.5: Fitness function of third phase
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Chapter 6

Results

As mentioned in the previous chapter, we used the R programming language for the

first phase to mine the association rules with the Apriori algorithm. For the second

and third phase, HTML and JavaScript were used to implement the two Genetic

Algorithms. The software and hardware specifications used for our experiments are

as follows:

• Windows 10 x64-based processor

• Intel Core i5-4200U CPU @ 1.60GHz 2.30GHz

• 8 GB Memory

• RStudio 0.98.1103

67



6.1 Phase One

In this phase, we ran the Apriori algorithm on our job-skill dataset for each job title

separately. The top 20 skillsets for each job title are selected based on their support

value to be used in the initial population of the next phase. The top three association

rules generated from our dataset in this phase of the algorithm are presented in

Table 6.1.

Table 6.1: Top 3 extracted association rules for each job title

Job title Skill set Support

Data Scientist {hadoop, python, r, scala, statistics} 0.315

{java, python, r, scala, statistics} 0.315

{java, pig, r, scala, spark} 0.31

Software Developer {agile, css, git, java, c} 0.236

{xml, c, git, java, sql} 0.233

{c++, css, git, java, sql, javascript} 0.231

Hardware Engineer {signal processing, digital design, ethernet, fpga,

embedded systems}

0.145

{architecture, digital design, modeling, rf (Radio

Frequency), signal processing}

0.104

{architecture, digital design, schematic design,

fpga, embedded systems}

0.104
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A higher support value is observed in the discovered skillsets for the job title “Data

Scientist” compared to the other two job titles. A higher support value for a skillset

indicates that those combinations of skills were found in more job postings comparing

to the other skillsets. For example, the top skillset in “Data Scientist” category with

a support value of 0.315 can translate into the fact that the combination of these

skills was found in 31.5% of the extracted job postings with that job title.

6.2 Phase Two

The GA implemented in this phase has a population size of 200. A population size of

200 was chosen for this GA after running it with different population sizes in incre-

ments of 50 in the range of 50 to 300. We observed that there was no improvements

in the fitness of the best individual from the latest generation after the population

size of 200.

For each job title, the top 20 association rules that were found during the previous

phase will form 20 out of 200 individuals in the initial population for this GA. The rest

of the individuals are generated randomly. For each job title, we performed 10 runs

with different random seeds. The development of the fitness for the best, worst and

the average of all individuals in each generation during the evolution of this phase for

the job title “Data Scientist” is shown in Figure 6.1. A higher fitness value represents

a better performance in this GA’s fitness model.

The consistent improvement of the best, average and worst fitness value over 100

generations shows that the evolved individuals had a better performance compared to

the initial individuals. An experiment is detailed later in this chapter that investigates
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Figure 6.1: Evolution of the best, average, and worst fitness in runs of the second

phase for the job title “Data Scientist”

the effectiveness of using the top association rules generated in the first phase of our

method on the evolution of individuals in this GA. The latest improvement in the

best individual of a generation was observed in the 68th generation and after that,

the improvements were limited to the average and worst fitness of individuals.

There was a minor decrease in the average fitness of individuals during the first

few generations that is caused by destructive mutation and crossover operations per-

formed on the 20 individuals that were chosen from the first phase. Those individuals

had a significantly better fitness value at the start compared to randomly created

individuals.

Figure 6.2 illustrates error bars on the average fitness chart using the standard

deviation of individuals that indicates where the majority of each population are.

The fittest individual among all 10 runs in this phase for the job title “Data

Scientist” had a fitness value of 2.4. This individual represents the following set of
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Figure 6.2: Error bars indicating (one) standard deviation of individuals in the second

phase for job title “Data Scientist”

skills:

• {SQL, Hadoop, Python, Statistics, Java, Data Modeling, R, Spark}

In other words, using the method we designed, a candidate with the mentioned

skills can be a strong candidate for “Data Scientist” jobs, considering the current job

postings in the market.

Figure 6.3 and 6.4 show the development of fitness for the best, worst, and the

average of all individuals for the job titles “Software Developer” and “Hardware

Engineer”.

We observe an initial decrease in the average fitness of the first few generations

in the runs for all three job titles. This minor decrease is caused by the portion of

individuals that are created based on the output of the previous phase which was

discussed earlier in this section.
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Figure 6.3: Evolution of the best, average, and worst fitness in runs of the second

phase for the job title “Software Developer”

Figure 6.4: Evolution of the best, average, and worst fitness in runs of the second

phase for the job title “Hardware Engineer”
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The fittest individuals for these two job titles represent the following skill sets:

• Software Developer:

– {Git, Java, JavaScript, SQL, CSS, Agile Software Development, C++}

• Hardware Engineer:

– {Digital Signal Processing, Schematic Design, FPGA, Embedded Systems,

RF (Radio Frequency), Circuit Design, Computer Networks}

6.3 Phase Three

We use the skill sets that were found in the previous phase in the fitness function

of the GA designed for this phase of the method. Similar to the previous phase, we

performed 10 runs for each job title. Figure 6.5 visualizes the average of these 10

runs and shows the fitness development during 100 generations of our GA for job

title “Data Scientist”. A higher fitness value represents a better performance.

Figure 6.6 visualizes error bars on the average fitness of the GA in this phase using

the standard deviation of individuals.

The fittest individual that was found after 10 runs of this GA had a fitness value

of 0.992. Using this GA’s fitness model, no individual can obtain a fitness value of

more than 0.998 which can be achieved only when a single course is found that can

cover all of the required skills. The fittest individual with a fitness value of 0.992

covers all of the 8 mentioned skills that are required for the job title “Data Scientist”

with a combination of 4 MOOCs:
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Figure 6.5: Evolution of the best, average, and worst fitness in runs of the third phase

for the job title “Data Scientist”

Figure 6.6: Error bars indicating (one) standard deviation of individuals in the third

phase for job title “Data Scientist”
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• Using Databases with Python

– By University of Michigan via Coursera

– Covered Skills: Python, Data Modeling, and SQL

• Hadoop Platform and Application Framework

– By University of California, San Diego via Coursera

– Covered Skills: Hadoop and Spark

• Statistics and R

– By Harvard University via edX

– Covered Skills: R and Statistics

• Object Oriented Programming in Java

– By University of California, San Diego via Coursera

– Covered Skill: Java

Figure 6.7 and 6.8 show fitness development during the evolution of 100 gen-

erations in 10 runs for the two job titles of “Software Developer” and “Hardware

Engineer”.

The fittest individuals, which represent the set of courses to be recommended to

a user for these two job titles are:

• Software Developer:

– Java Programming: Principles of Software Design
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Figure 6.7: Evolution of the best, average, and worst fitness in runs of the third phase

for the job title “Software Developer”

∗ By Duke University via Coursera

∗ Covered Skill: Java

– Programming Foundations with JavaScript, HTML and CSS

∗ By Duke University via Coursera

∗ Covered Skills: JavaScript and CSS

– C++ For Programmers

∗ By Udacity

∗ Covered Skill: C++

– SQL for Data Science

∗ By University of California, Davis via Coursera
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Figure 6.8: Evolution of the best, average, and worst fitness in runs of the third phase

for the job title “Hardware Engineer”

∗ Covered Skill: SQL

– Software Development Process

∗ By Udacity

∗ Covered Skills: Agile Software Development and Git

• Hardware Engineer:

– Digital Signal Processing

∗ By Ecole Polytechnique Federale de Lausanne via Coursera

∗ Covered Skill: Digital Signal Processing

– Introduction to FPGA Design for Embedded Systems

∗ By University of Colorado Boulder via Coursera
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∗ Covered Skills: Embedded Systems, FPGA, and Schematic Design

– RF Design Theory and Principle

∗ By Udemy

∗ Covered Skills: Radio Frequency

– Circuits and Electronics

∗ By Massachusetts Institute of Technology via edX

∗ Covered Skill: Digital Design

– Computer Networks

∗ By University of Washington via Coursera

∗ Covered Skill: Computer Networks

6.4 Experiments

6.4.1 Initial Population of the Second Phase

To investigate the effectiveness of the first phase in the output of our method, we

tested the GA of our second phase with two different scenarios and then we compared

the results. We used an initial population with a size of 200 which were all created

randomly and ran the second phase GA to compare it against our method with

combined initial population. The average results of 10 runs for both scenarios on the

job title “Data Scientist” are presented in Figure 6.9.

Comparing the best and the average fitness of these two scenarios reflects the

effectiveness of using the output of our first phase in the initial population of the GA in
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Figure 6.9: Combined initial population vs. random initial population

the second phase. In the early generations, the difference of best and average fitness is

more visible in these two scenarios but as the populations evolve, major improvement

in the all-random scenario is observed. After 70th generation, the difference of the

two scenarios is insignificant. Among the 10 runs, the fittest individual of our method

had a fitness value of 2.4 but in the all-random scenario, the fitness value of the fittest

individual was 1.98 and it had one different skill comparing to our method’s best set

of skills which explains the difference in the fitness value.
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6.4.2 Exhaustive Search vs. Greedy Algorithm vs. Genetic

Algorithm for the Third Phase

The third phase of our method tries to find an optimal solution to the problem of

finding the minimum number of courses that can cover all of the required skills for

a specific job title that was the output of second phase. This is an instance of the

un-weighted Set Cover problem which has no known algorithm that guarantees to find

the optimal solution in polynomial time. There exist many approximation algorithms

for the Set Cover problem. In this experiment, we compared the performance of

our GA-based approach for approximating a near-optimal solution against a greedy

approach and an exhaustive search method. The exhaustive search method that was

implemented in this experiment tests each combination of courses (from 500 total

courses in our course-skill dataset) in order to determine if it is the optimal solution

covering all of the required skills. Such exhaustive examination of all possibilities is

known as exhaustive search, direct search, or the brute force method [27]. It starts

by testing all of the courses individually to see if any single course can cover all of the

required skills. If no result was found, it will try all of the possible combinations of

courses that include two courses. This process will be repeated by adding one more

course in each step until a solution is found.

Table 6.2 shows the result of this experiment for the three mentioned job titles

on our dataset. The Genetic Algorithm that we used in our system was able to

outperform the greedy algorithm for the two job titles “Data Scientist” and “Hardware

Engineer” by finding a solution that has one less course for covering all of the required

skills. By comparing the results of our GA against the exhaustive search method, it
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is evident that our GA was able to find a solution with the optimal number of courses

for all of these three job titles.

Table 6.2: Comparing greedy algorithm and exhaustive search method to the GA we

used for the third phase

Job title
Required

# of skills

Greedy:

courses(time)

Exhaustive:

courses(time)

GA:

courses(time)

Data Scientist 8 5 (1.8s) 4 (37s) 4 (2m 38s)

Software Developer 7 5 (1.7s) 5 (25m 36s) 5 (3m 3s)

Hardware Engineer 7 5 (1.2s) 5 (24m 32s) 5 (2m 52s)

By comparing the running times of these three algorithms, we can see that the

greedy algorithm finds a solution that is not always the optimal solution but it is

very fast compared to the other two methods. The exhaustive search method’s per-

formance decreases exponentially as the length of the optimal solution grows in this

problem. Over a dataset that includes 500 elements (courses), it takes about 37 sec-

onds for the exhaustive search to find a solution with a length of 4. For a solution

with a length of 5, it takes about 25 minutes, and if the optimal solution had a length

of 6, this time would increase to about 6 hours.

6.4.3 Location-based Data Extraction

Another experiment we did was to study the impact of location of the job postings

on the output of our system. The main runs presented in the previous sections were

using a dataset that was gathered from all of the North American job postings on
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Indeed. In this experiment, we extracted three job-skill datasets for the job title

“Data Scientist” from job postings in Toronto, Los Angeles, and Chicago.

After running the first two phases of our method, the best combination of skills

to learn, based on the output of our method, is presented in Table 6.3.

Table 6.3: Top skills for “Data Scientist” based on location

Location Skill set

North America {Python, R, Java, Hadoop, Spark, Data Modeling, SQL, Statis-

tics}

Toronto {Python, R, Java, Hadoop, Spark, Data Modeling, Cassandra,

Scala}

Chicago {R, Hadoop, Scala, Statistics, SQL, Pig, RDBMS (Relational

Database Management System)}

Los Angeles {Python, R, Java, Hadoop, Spark, RDBMS, Scala, C++}

This experiment proves the potential of this method in providing recommendations

based on a user’s geographic preferences.
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Chapter 7

Conclusion and Future Work

In this research, a proof of concept for a course recommendation system is proposed

that takes the users’ career goals into consideration in order to help them with choos-

ing the right path toward their desired future job. First, data is extracted from

Indeed job postings for the desired job title, showing the relations between job titles

and skills. Then, a second dataset is gathered which contains a set of available online

courses and the skills that they cover. The first phase of the method generates some

association rules using the Apriori algorithm which is then used in the next phase

that runs a Genetic Algorithm to find the best set of skills for each career goal. After

finding the best set of skills for the desired career goal, we need to find the minimum

number of courses that can cover all of these skills to be able to recommend them to

users which is an instance of the Set Cover problem. In our method, the last phase

uses another Genetic Algorithm on the course dataset in order to find the optimum

set of courses. We show that the courses that are being suggested to a user with

a specific career goal in mind will cover key skills that are trending in the market
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among many employers. We also show a Genetic Algorithm can find better solutions

compared to a greedy algorithm on our problem of finding the minimum number of

courses to cover all of the required skills.

In this thesis, we only implemented the three phases of the method separately as

a proof-of-concept. Implementing a web-based application for this method that can

be used by real users can help investigate the effectiveness of the method further.

In the second phase, we only pick one skillset that contains a set of skills which

has the highest fitness value. If we pick multiple skillsets instead of one in this part

of the method and then run the GA in the third phase once separately for each of

these skillsets, the system may be able to recommend multiple sets of courses to a

user so that there is some choice. The effectiveness of this idea on the output of the

system can be investigated in future work.

Here, we extracted data and tested this method for three of the most popular job

titles in Computer Science and Computer Engineering. Other potential future work

could implement and test this method for other professions.
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