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Abstract

In this work the multiaxial constitutive theory for the viscoelastic deformation of

ice developed by Jordaan and others is examined and modified. The microstructural

changes undergone by the material while under deformation have been modelled via

a finite collection of state variables which represent the average “damage” within

a region (originally coined to describe the degradation of mechanical components,

damage is here used to refer to any change in microstructure). The accumulation of

damage causes an enhancement in creep deformation via the process of microcracking

at low pressures, or dynamic recrystallization and pressure melting at high pressures.

The damage evolution is modelled based on Schapery’s approach, modified to include

the effects of low- and high-pressure damage separately. The damage rate is influenced

by confining pressure, axial stress, and temperature, with a pressure-temperature shift

function introduced to define the relationship between pressure and temperature.

An exploratory series of triaxial tests was carried out in the laboratory at Memorial

University; a description of the program, sample preparation, testing equipment, and

procedure are provided. These tests were designed to investigate the deformation of

ice under high shear and confining pressure. The ice samples were found to have an

upper limit to their strength, failing at a stress difference (which is equivalent to the

von Mises stress for a traditional triaxial test) of 26.0±1.6 MPa. Thin sections of the

samples showed the region along the fault to be highly recrystallized. The amount of

recrystallization was found to decrease with distance from the fault line, with nearly

half of the failed sample being practically undamaged in some cases.

The role of numerous properties on ice-structure interactions have been investi-
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gated via a numerical scheme and the finite element program ABAQUS. The proper-

ties examined include: the effect of elastic damage; the inclusion of power-law break-

down; the implementation of a non-linear damage exponent; the effect of the high-

shear elastic failure discovered in the above experiments, and; the use of a pressure-

temperature shift function for high-pressure damage.

Constant elastic properties were found to most closely resemble the results of

indentation experiments, particularly with the addition of the non-linear damage

exponent. Power-law breakdown was found to be suppressed under confining pressure,

and had little effect upon the qualitative behaviour of an ice-structure interaction.

Implementing the high-shear elastic limit of 26.0 MPa on the von Mises stress was

found to produce plastic deformation, instead of the expected viscoelastic behaviour;

the internal stress along the fault-line of a sample is likely higher by a factor of five,

leading to the discrepancy in behaviour. Applying the limit via a reduction in elastic

modulus led to results more consistent with experimental evidence.

A pressure-temperature shift function based on the process of pressure melting was

used to enhance or inhibit the accumulation of recrystallization damage; pressures at

one temperature were translated to the corresponding pressure at the reference tem-

perature of -10 ◦C by assuming either a constant distance from melting point or a con-

stant homologous temperature. The results were promising, producing the expected

differences in loading and layer development. Extension to a reference temperature

of -22 ◦C, the temperature limit for pressure melting, is worth consideration.
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Chapter 1

Introduction

The deformation of a solid often results in changes in the structure of the material.

The nature and extent of these changes depend upon the factors involved, from the

geometry of the interaction and the loads applied to the environmental temperature

at which the deformation takes place. The accumulation of these changes, often

referred to as “damage”, will generally result in changes in the mechanical and energy

dissipation behaviour of the material. In some cases, such as ice, the accumulation

of damage will lead to truly dramatic changes in material behaviour. Understanding

damage processes is thus a key component to understanding ice-structure interactions,

the main focus of this work.

1.1 Purpose of Investigation

Canada’s northern oceans cover a vast area, stretching from the iceberg packed wa-

ters off the coast of Newfoundland to the Beaufort Sea, terminating at the Yukon-

Alaska border. The presence of ice in the northern oceans has always been the major
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challenge facing development within the region. Only in the last century has the

application of scientific knowledge and engineering methods enabled transportation

pathways and certain development activities to proceed - albeit with significantly

higher costs than those found in more agreeable climes.

Standard construction and design practices form only the baseline knowledge nec-

essary for development in Arctic oceans. The core of Arctic offshore engineering lies

in the understanding of ice mechanics, particularly with regards to how ice generates

loads on platforms and vessels; local and global ice pressure estimates are necessary

for the safe design of both. Several offshore platforms have already been constructed

for the sub-Arctic conditions found off the coast of Newfoundland and Labrador. The

knowledge and expertise gained during their construction and operation will be used

to inform the design of the next generation of offshore platforms, which will have to

contend with deeper waters and more severe Arctic weather conditions. Understand-

ing ice-structure interactions is vital in determining ice loads and for the safe and

efficient design of offshore structures under both Arctic and sub-Arctic conditions.

The form of ice failure observed during an ice-structure interaction depends upon

the conditions involved. Contact with vertical walled structures will predominantly

lead to crushing failure, while ice in contact with a sloped surface will often fail via

some combination of bending or buckling. This work will primarily focus on the

mechanics of ice crushing, a complex process characterized by the development and

subsequent failure of high pressure zones (hpz s), which limit ice failure pressures and

are of great importance to the design of offshore structures.

The main objective of this research is to improve the modelling of ice-structure

interactions via the study of hpz s. This requires the analysis of ice under conditions
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relevant to an ice-structure interaction, particularly at large compressive and shear

stresses under a range of hydrostatic pressures. While spalling and other fracture

events are a component of ice-structure interactions, this study is primarily interested

in the continuum behaviour of the hpz itself, and will focus on loading rates and

stresses that do not produce primarily brittle failure.

1.2 Methodology

This project focused on the study of the high-pressure, high-shear regions within a

hpz via a series of triaxial experiments. The experiments examined the deformation

of ice under a range of confining pressures and shear stresses, with the objective of

gaining a deeper understanding of hpz failure behaviour and its relative importance

during ice-structure interactions. Finite element modelling was used to simulate both

the latest test series and the earlier triaxial and indentation experiments of other

researchers. The results of these simulations are used to improve the constitutive

model used to describe the behaviour of ice during an ice-structure interaction.

1.2.1 Experimental Background

To accomplish these goals, a number of triaxial experiments were conducted. The

test series examined the failure behaviour of ice under increasing deviatoric stress,

extending the earlier work of Meglis et al. (1999) to higher deviatoric stresses and

hydrostatic pressures. This set of experiments was designed to help clarify the con-

ditions necessary for failure to occur in a high-pressure zone and whether there are

changes in failure behaviour with increasing deviatoric and hydrostatic stresses.
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A wide range of experimental data from earlier investigators was also studied and

analysed in an effort to improve the finite element model, including: the triaxial

damage study of Stone et al. (1997); the constant strain rate triaxial tests of Melan-

son et al. (1999b); the trixial experiments used by Barrette and Jordaan (2003) to

develop a pressure-dependent activation energy; and the deformation, loading, mi-

crostructure, and temperature data gathered from the indentation experiments of

Wells et al. (2011), Browne (2012), and O’Rourke et al. (2015).

1.2.2 Model Development

The results from the test series are used to refine the constitutive equations of ice,

allowing for more accurate estimates of ice loads and more efficient structural design.

The constitutive relations are refined to ensure that delayed elastic recovery occurs

and expanded to include the effects of temperature-dependent damage and power-law

breakdown. Finite element models implementing the refined constitutive relations

are used to simulate the evolution and failure of hpz s during compression, with direct

comparisons to experimental results being used to validate the model.

1.3 Scope of Thesis

This thesis focuses primarily on the temperature-dependence of ice deformation and

its interdependence with hydrostatic pressure. The scope of this work can be outlined

as follows:

1. Review of fundamental theories on viscoelasticity, thermodynamics, damage

mechanics, and fracture.
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2. Review of the relevant ice mechanics, particularly focused on the results of

extensive triaxial and indentation experiments.

3. Experimental results from triaxial experiments used to guide theoretical mod-

elling.

4. Outline of constitutive model and introduction of new factors, including tem-

perature-dependent damage and power-law breakdown.

5. Validation of constitutive model as implemented by finite element program

Abaqus via single element and indentation simulations.

6. Results of new developments in constitutive modelling for ice indentation ex-

periments using finite element modelling.

7. Summary of conclusions and recommendations.
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Chapter 2

Ice Mechanics

Ice-structure interactions pose a very real challenge to ships and structures in Arctic

and sub-Arctic conditions (Lehmann, 2010), necessitating a range of “ice-strengthen-

ing” design techniques. This has provoked a thorough examination of the ice loads

produced during such an interaction, from ship ramming tests (Cowper and Edge-

combe, 1987; Edgecombe et al., 1992; Glen and Blount, 1984; Riska et al., 1990), and

full-scale measurements on fixed structures (Blenkarn, 1970; Brown, 2001; Jefferies

and Wright, 1988; Määttänen, 1978; Morsy and Brown, 1996; Yue and Bi, 2000), to

medium- (Frederking et al., 1990; Masterson et al., 1993) and small-scale indentation

tests (Barrette et al., 2002; Browne, 2012; Browne et al., 2013; O’Rourke et al., 2015;

2016a;b; Wells et al., 2011).

These tests found that while the measured global pressure was relatively low, on

the order of one MPa at all scales, local pressures were drastically greater; pressures

of 70 MPa in areas of 1 cm2 have been observed during medium-scale indentation

experiments (Frederking et al., 1990) while pressures of over 100 MPa have been
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observed in laboratory-scale experiments in areas on the order of a few mm2 (Wells

et al., 2011).

The stark difference between the observed global and local pressures can be ex-

plained by the development of high pressure zones (hpz s), which, due to the geometry

of the interaction or some pre-existing flaw in the ice, localize the load into a number

of small regions, as illustrated in Figure 2.1. Note that a sufficiently large interaction

rate is required to produce hpz s, the size of which will be dependent upon the ice and

structure involved. Hpz s have been observed to transfer more than 90 % of the load

to the structure (Johnston et al., 1998) in regions that cover less than 10 % of the

global interaction area (Taylor et al., 2008); summing the hpz s over the nominal con-

tact area leads to the small measured global pressures. Understanding the behaviour

of hpz s is thus a key component to understanding ice-structure interactions. Jordaan

(2001) provides a thorough review of the mechanics of ice-structure interactions, with

a focus on the behaviour of hpz s.

Of particular relevance to this work are the medium-scale indentation experiments

that took place at the Hobson’s Choice ice island in 1989 (Frederking et al., 1990) and

1990 (Masterson et al., 1993), as they provided an early examination of hpz (referred

to as the failure zone at the time) structure and behaviour. The two experimental pro-

grams examined the failure behaviour of ice during indentation with eight indentors

of different design, including:

1. A rigid, spherical end-cap indentor with a surface area of 0.8 m2. Unlike flat

indentors, the geometry of indentation produced by a spherical end-cap indentor

avoids the loading singularity at the edge of the indentor, minimizing plastic
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(a) (b) (c)

Figure 2.1: Illustration of hpz distributions for common ice-structure interaction ge-

ometries. (a) shows the distribution for a small, stationary rectangular area, (b)

represents the distribution for a larger rectangular area, where the hpz s have become

densely packed within the centre of the interaction zone, while (c) illustrates the dis-

tribution for a continuous ice sheet, where the hpz s occur predominantly along the

centre line.

deformation.

2. Three flat, compliant indentors 1.8, 0.8, and 0.7 m2 in area, designed to test

contemporary revisions to shipping regulations. These indentors were designed

to yield under the expected pressures, to simulate a section of a ship’s hull.

3. Two rigid, flat indentors with total areas of 1.8 and 0.375 m2. These indentors

were used as both a comparison to the results of the compliant tests and a

mount for special purpose sensors.

4. Two wedge indentors with included angles of 90◦ and 143◦ were designed to test

a design concept for use on fixed offshore structures.

8



Note that the ice face was shaped into one of three forms for indentations involv-

ing the flat indentors, to reduce the load necessary to induce crushing failure; both

horizontally and vertically aligned, truncated wedges, as well as truncated pyramids

of various initial contact areas, were tested.

In total, 26 indentation tests were performed, covering indentor velocities ranging

from 0.3 mm/s to 400 mm/s and contact areas from 0.2 m2 to 1.5 m2. Peak nominal

pressures of 6.2±3.4 MPa were observed, with the highest local pressures of 70 MPa

being observed at the centre of the indentor. Changes in failure mode were observed

with increasing indentor velocity; low velocities produced a smooth loading curve

indicative of creep deformation, while higher velocities produced saw-tooth loading.

Examination of the the ice post-deformation showed a clear distinction between the

highly damaged layer of ice near the contact surface and the practically undamaged ice

beneath. The clear, intact ice beneath the centre of the indentor is here mistakenly

labelled as undamaged; analysis of the relevant thin-sections has since shown this

region to be highly recrystallized.

These tests sparked a wide range of laboratory-scale indentation and triaxial ex-

periments designed to determine the parameters that contribute to hpz development.

The results of these tests will be discussed in detail later, starting in Section 2.6.3.

To fully understand the development of hpz s, an in-depth knowledge of the proper-

ties of ice is required. To facilitate understanding, brief introductions to viscoelastic

theory, molecular deformation theory, thermodynamic constitutive theory, fracture

mechanics, and damage mechanics are provided.
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2.1 Viscoelastic Deformation

Ice, like many materials at high homologous temperatures, deforms viscoelastically;

when subjected to a constant stress it will continue to deform after an initial elastic

response, proceeding through three phases of deformation commonly termed primary,

secondary, and tertiary creep (da Costa Andrade, 1910), as illustrated in Figure

2.2. Conversely, a constant strain will result in a gradual reduction in stress. The

mechanical processes behind this behaviour are described in detail by Sinha (1978;

1982), who developed an early viscoelastic theory for ice under uniaxial conditions. A

thorough review of viscoelasticity is provided to aid in understanding the deformation

behaviour of ice.

Figure 2.2: Creep response to constant stress. ϵ0 represents the instantaneous elastic

response to the application of a constant stress σ0 applied at time t0.
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2.1.1 Linear Viscoelasticity

The simplest viscoelastic model assumes that stress and strain are linearly dependent.

The stress response of such a material to the successive application of strain (or vice

versa) is then additive; a series of changes, each at a different time, will have a cumu-

lative effect on the stress or strain state, which can be represented mathematically

by:

ϵ (t) =
N∑
i=1

J (t− ti)∆σ (ti) (2.1)

σ (t) =
N∑
i=1

R (t− ti)∆ϵ (ti) (2.2)

where σ and ϵ are the total stress and strain resulting from the application of a series

of step increases in strain and stress, represented by ∆ϵ and ∆σ, respectively, at

times ti, J and R are the creep compliance and relaxation modulus, respectively, and

t is the time. An example viscoelastic response is illustrated in Figure 2.3. If these

changes occur continuously then the sum can be reduced to an integral, producing

the general representation of linear viscoelasticity:

ϵ (t) =

∫ t

0

J (t− τd)
dσ (τd)

dτd
dτd (2.3)

σ (t) =

∫ t

0

R (t− τd)
dϵ (τd)

dτd
dτd (2.4)

where τd is a dummy integration variable. This is generally referred to as the Boltz-

mann superposition principle. Due to the nature of convolution integrals, J and R

are related simply by:∫ t

0

J (t− τd)R(τd)dτd =

∫ t

0

R (t− τd) J(τd)dτd = t (2.5)
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Figure 2.3: Linear viscoelastic response to cumulative increases in applied stress.

Note that there is no viscous component in this example.

or, in the Laplace space:

s2LJ̄ (sL) R̄ (sL) = 1 (2.6)

where sL is the transform variable and the over-bars indicate the Laplace transform.

Biot (1954) used the thermodynamics of irreversible processes to derive the fol-

lowing relations for the creep compliance and relaxation modulus:

J (t) =
1

E1

+
t

µ1

+
n∑

i=2

1

Ei

(
1− e−

Eit/µi

)
(2.7)

R (t) = E1 +
n∑

i=2

E ′
ie

−E′
it/µ′

i (2.8)

where Ei, µi, E
′
i, and µ

′
i are material constants, which can be theoretically represented

by arrays of springs and dashpots.
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Maxwell

EM
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Kelvin-Voigt

EK

µK

Figure 2.4: Basic models of viscoelastic behaviour.

2.1.2 Viscoelastic Modelling

Springs and dashpots provide the basic elements of viscoelastic analysis; springs are

used to describe the instantaneous elastic response of a material, while dashpots

can be used to model the time-dependent, viscous deformation. The linear, uniaxial

constitutive relations for these elements are given by:

σ = Eϵ (spring) (2.9)

σ = µϵ̇ (dashpot) (2.10)

where σ is the stress, E is the elastic modulus of the spring, µ is the viscosity of

the dashpot, and ϵ and ϵ̇ are the strain and strain rate, respectively. These elements

can be arranged to describe the behaviour of various viscoelastic materials. The

most basic arrangements are known as the Maxwell (spring and dashpot in series)

and Kelvin-Voigt (spring and dashpot in parallel) materials. These arrangements are

illustrated in Figure 2.4.

While both arrangements describe viscoelastic materials, their responses are ac-

tually quite different. For example, consider the application of a generalized uniaxial
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stress-relaxation cycle:

σ = σm

[
1−H

(
t− t′

)]
(2.11)

where σm is a constant representing the magnitude of stress, t′ is the time at which

relaxation begins, and H(t− t′) is the Heaviside step function, which is defined as:

H(t− t′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if t < t′

1, if t ≥ t′
(2.12)

The normalized responses of the Maxwell and Kelvin-Voigt materials, respectively,

are then:

ϵM
σm

=
t− (t− t′)H (t− t′)

µM

+
1−H (t− t′)

EM

(2.13)

EK
ϵK
σm

= 1− e−
EKt/µK −H

(
t− t′

)(
1− e−

EK(t−t′)/µK

)
(2.14)

An example of this response is shown in Figure 2.5. The Kelvin-Voigt material

represents what is known as a delayed elastic response; a recoverable strain that

rises to a plateau based on the applied stress. The Maxwell material represents both

an instantaneous elastic response (due to the spring) and a non-recoverable, viscous

strain. This is an example of irrecoverable strain; while elasticity implies the storage

of energy, viscous flow implies its dissipation, as well as the generation of heat.

To properly represent creep behaviour, chains of Maxwell or Kelvin units with

a spectrum of moduli and viscosities are required. This is known as the Broad-

Spectrum Approach (BSA). Schapery (1962) proposed a collocation method for fitting

experimental data to such a spectrum. For example, consider the relaxation modulus

14



Figure 2.5: Example viscoelastic response. From top to bottom is shown: the ide-

alized stress state; the normalized strain response of a Maxwell material, with an

instantaneous elastic strain response of σm/EM and a time-dependent viscous strain

of σmt
′/µM that is non-recoverable; and finally, the fully recoverable normalized strain

response of the Kelvin material, which plateaus at a strain of σm/EK .

of Equation 2.8:

R(t) = E1 +
N∑
j=2

Eje
−Ejt/µj (2.15)

R(t)− E1 =
N∑
j=2

Eje
−t/τj (2.16)

where τj =
µj/Ej

and E1 = R(∞). An arbitrary set of collocation points for τj and tk

that coincide with available experimental data are then chosen, reducing the problem

to a set of linear algebraic equations:

{bk} = {ajk}{Ej} (2.17)
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where {bk} = R(tk)−E1 and {ajk} = e−
tk/τj . The response of the model can then be

evaluated by solving for Ej and comparing the result of Equation 2.8 to experimental

results. Multiple iterations may be necessary to locate suitable values of tk and τj.

Some values of Ej may be significantly smaller than others and will contribute little

to the total response. These values can be safely ignored to reduce computation time.

This method was successfully applied to ice in Xiao (1997).

2.1.3 Non-Linear Viscoelasticity

While linear viscoelasticity is a useful starting point for the analysis of some vis-

coelastic materials, solids such as ice exhibit highly non-linear behaviour, and require

more robust modelling tools. A generalization of linear viscoelastic theory for such

cases is possible by using multiple integrals (Green and Rivlin, 1957). To illustrate,

consider the application of an initial constant stress, ∆σ0, at time t = 0, followed

by an additional stress, ∆σ1, at time t = t1. The resulting non-linear strain can be

represented in polynomial form by:

ϵ(t) = ∆σ0J1(t) + ∆σ2
0J2(t, t) + ∆σ1J1(t− t1) + ∆σ2

1J2(t− t1, t− t1)

+ 2∆σ0∆σ1J2(t, t− t1) (2.18)

where J2 represents the second-order terms of the creep compliance; terms greater

than second-order have been ignored. If N such load steps are applied, then the strain

becomes:

ϵ(t) =
N∑
i=0

∆σiJ1(t− ti) +
N∑
i=0

N∑
j=0

∆σi∆σjJ2(t− ti, t− tj) (2.19)
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which reduces to an integral form in the limit that dt → 0, as per the Boltzmann

superposition principle used to derive the linear viscoelastic relations. A similar

process gives the non-linear, time-dependent stress:

ϵ (t) =

∫ t

0

J1 (t− τ1)
dσ (τ1)

dτ1
dτ1 +

∫ t

0

∫ t

0

J2 (t− τ1, t− τ2)
dσ (τ1)

dτ1

dσ (τ2)

dτ2
dτ1dτ2

(2.20)

σ (t) =

∫ t

0

R1 (t− τ1)
dϵ (τ1)

dτ1
dτ1 +

∫ t

0

∫ t

0

R2 (t− τ1, t− τ2)
dϵ (τ1)

dτ1

dϵ (τ2)

dτ2
dτ1dτ2

(2.21)

Additional terms can be added as necessary. This formulation can be used to

approximate the behaviour of all classes of materials to the desired level of non-

linearity. For generality, higher order terms are necessary to effectively model creep

behaviour. The difficulty lies in the determination of the functions Ji and Ri from

experimental data, which becomes prohibitive for strongly non-linear materials such

as ice.

A more cost-effective method for describing a non-linear viscoelastic response was

developed by Schapery (1969) using the concept of reduced time; by folding the

non-linearities into the time formulation, Schapery found it was possible to reduce a

non-linear problem to a formulation identical to a linear response. The general result

for a uniaxial stress state is given by:

ϵ (t) =

∫ t

0

J [ψ (t)− ψ (τd)]
dσ (τd)

dτd
dτd (2.22)

σ (t) =

∫ t

0

R [ψ (t)− ψ (τd)]
dϵ (τd)

dτd
dτd (2.23)

where:

ψ (t) =

∫ t

0

dτd
ad

(2.24)
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is the reduced time and ad is a function of the desired non-linearities, such as stress,

temperature, or ageing.

This theory was successfully applied to the creep of ice by Jordaan and McKenna

(1988a). In their formulation, ad took the form of a non-linear, stress-dependent

viscosity, given by:

ad = µ(σ) =
σn
0

σn−1ϵ̇0
(2.25)

where σ0 and ϵ̇0 are a reference stress and strain rate, respectively. This formulation

is suitable for materials which do not undergo substantial changes in microstructure

during deformation. To account for such changes, other methods are required.

The modified superposition principle (MSP) is another generalization of the lin-

ear theory of viscoelasticity (Findley et al., 1976). For a uniaxial stress-state, this

generalization is given by:

ϵ =

∫ t

0

L (σ, t− τd)
dF (σ, τd)

dτd
dτd (2.26)

where L and F are empirically determined functions. This is an approximate method

that uses the results from a unit step creep test to describe the function L under

arbitrary stress conditions. The accuracy of this formulation is highly variable, and

is not general enough to describe all materials and stress histories.

Schapery (1981; 1991) proposed a model that isolated non-linearities within the

stress function, F . In this formulation, the function L takes the form of the linear

creep compliance, J , and the uniaxial strain becomes:

ϵ =

∫ t

0

J (t− τd)
dF (σ, τd)

dτd
dτd (2.27)
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When generalized to three-dimensional loading, this provides a simple method

for predicting viscoelastic solutions from elastic ones. Schapery (1981) applied this

concept to the inclusion of microstructural changes during deformation. Assuming

that the stress function is also a function of the internal microstructural parameters

(Si, i = 1, 2, . . . ), the uniaxial constitutive relation becomes:

ϵ = ER

∫ t

0

J (t− τd)
dϵps (σ, Si)

dτd
dτd (2.28)

where ϵps is an explicit function of stress, time, and microstructural parameters,

referred to as the pseudostrain. The coefficient ER is the reference modulus introduced

to produce the correct units for strain. In effect, ϵps is the strain that exists in an

elastic material with the same set of microstructural parameters, Si. For many cases,

a single microstructural parameter is sufficient. More complex materials such as ice

require at least two parameters, one to describe the effect of microcracking at low

pressures, the other dynamic recrystallization, pressure melting, and other relevant

phenomenon at high pressures. Inverting Equation 2.28 provides the general form of

the pseudostrain, given by:

ϵps(t) =
1

ER

∫ t

0

R (t− τd)
dϵ

dτd
dτd (2.29)

Extended to multi-axial deformation, the constitutive relation becomes:

ϵij = ER

∫ t

0

J (t− τd)
d

dτd

(
∂W c

∂σij

)
dτd (2.30)

whereW c is the complementary pseudo-strain energy density used to define the pseu-

dostrain:

ϵpsij =
∂W c

∂σij
(2.31)
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As the creep compliance and relaxation modulus are independent of state vari-

ables and the coefficient ER is a constant, this theory imposes the restriction that the

elastic properties, such as the Young’s Modulus and Poisson’s ratio, remain constant

during the process. The use of a single function to represent non-linearities poses

some restrictions on the types of materials that can be represented. Ice, for example,

displays a combination of linear elastic, delayed elastic, and secondary creep defor-

mation, with the later two following separate power laws; the application of a single

power law does not satisfactorily model these features simultaneously, except at large

strains where the elastic components become negligible.

It should be noted that Laplace transforms can often be used to reduce viscoelas-

tic problems to mathematically equivalent elastic solutions. Known as the correspon-

dence principle (Findley and Davis, 2013; Findley et al., 1976), this provides a simple

method to perform a linear viscoelastic analysis, provided the boundaries are inde-

pendent of time and inertial terms are neglected. Additional restrictions apply for

non-linear analyses; the time and space dependence of creep and relaxation functions

must appear as separate factors. Jordaan et al. (1992a) provide validation for this

theory with respect to the deformation of ice.

2.2 Thermodynamic Constitutive Theory

Many viscoelastic materials are history dependent, particularly at high stresses and

temperatures, both of which are common conditions during ice-structure interactions.

Internal variable theories represent history-dependent materials with structural vari-

ables, such as microcrack density or void ratio. These theories are based upon the
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thermodynamics of irreversible processes.

In a thermodynamic system, internal energy and force are state functions defined

by state variables such as temperature, strain, etc. Reversible systems can be ex-

plicitly defined using external variables, but are insufficient to define an irreversible

system; these systems require internal variables to account for the loss of energy dur-

ing deformation (Biot, 1954; Bridgman, 1950; Coleman and Gurtin, 1967; Schapery,

1969). These internal variable theories postulate that a free energy function exists

that is dependent upon all external and internal variables.

A similar theory, proposed by Kestin and Rice (1970) and Rice (1971), supposes

that it is possible to define a finite set of internal variables with which to approximate

a non-equilibrium state under investigation sufficiently close to the thermodynamic

equilibrium state. Under most conditions, these theories will produce identical results.

A review of the necessary thermodynamic theory is provided here.

2.2.1 Strain Energy and Work

To describe viscoelastic behaviour, we first assume that a strain energy density func-

tion, W , exists for all processes of interest. W is a function of all external variables

(strain, temperature, etc.) and independent internal variables, Sk:

W = W
(
ϵij, Sk

)
(2.32)

The stress tensor can then be derived by taking the partial derivative of the strain

energy function with respect to strain:

σij =
∂W

∂ϵij
(2.33)
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The internal variables Sk generally define changes in microstructure (crack geom-

etry, void volume, grain boundary sliding, etc.). Constant Sk imply a hyperelastic

material (Malvern, 1969); the theory is not limited to linear elastic materials.

The strain energy is equivalent to the work done during a reversible process

(∆Sk = 0). Most real processes will be partially or entirely irreversible, producing

some form of change in internal state variables. The energy lost due to dissipation

includes frictional energy, creep, plastic flow, etc. The total work per unit volume is

then given by:

WT =

∫
σijdϵij (2.34)

WT includes the surface energy (Rice, 1977), Ws, given by:

Ws = 2γmAm (2.35)

where γm is the surface energy per unit area of the mth crack and Am is the corre-

sponding surface area. This surface energy is both reversible and often negligible.

The strain energy density and total work done per unit volume are interrelated;

consider an infinitesimal change in strain energy density:

δW =
∂W

∂ϵij
δϵij +

∂W

∂Sk

δSk = σijδϵij − fkδSk (2.36)

where fk are the thermodynamic forces involved; see Schapery (1997a) for more detail

on the thermodynamic forces involved in viscoelastic and viscoplastic deformation.

These forces produce changes in the microstructure parameters Sk that effect the

storage of energy within the material. For example, if Ak is the surface area of a

crack, fk is a function of the energy release rate, Gk, for crack propagation:

fk = Gk −
∂Ws

∂Ak

(2.37)
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The change in total work per unit volume obtained through integration from an

arbitrary initial state, W0, is given by:

∆WT = W −W0 +

∫
0

fkdSk (2.38)

The total work per unit volume can then be separated into reversible strain energy

density and irreversible energy density, WI = WI(Sk). A process starting from the

reference state with zero strain energy then gives:

WT = W +WI (2.39)

2.2.2 Entropy

Thermodynamic theory stipulates that a material must satisfy entropy requirements

in addition to equilibrium equations and constitutive relations. Entropy is a function

of all state variables, including non-observable internal variables. The rate of entropy

production per unit mass of the universe, Ṡ, is zero for a reversible process and

positive for an irreversible one; it can never be negative:

Ṡ = Ṡsys + Ṡsur ≥ 0 (2.40)

where Ssys is the entropy production of the system under consideration, while Ssur is

the entropy production of the surroundings. We assume that the system is in contact

with a heat reservoir that maintains a constant temperature, T . If Q̇ is the rate of

heat transfer to the reservoir, then the entropy production rate of the reservoir is

Ṡsur =
Q̇/T and the total entropy production becomes:

Ṡ = Ṡsys +
Q̇

T
≥ 0 (2.41)
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The first law of thermodynamics states that the rate of work done per unit volume,

ẆT = σij ϵ̇ij and the rate of change in internal energy density, U̇i, are related to the

rate of heat transfer via:

U̇i = σij ϵ̇ij −
Q̇

V
(2.42)

where V is the volume under consideration. Noting that the change in strain energy

density can also be defined as Ẇ = U̇i −
T ˙Ssys

V
, the rate of entropy production then

becomes:

Ṡ =
V

T

(
σij ϵ̇ij − Ẇ

)
= fkṠk

V

T
(2.43)

fkṠk
V

T
≥ 0 (2.44)

The above formulation is suitable for constant strain-rate testing. Some test

procedures call for force-control, due to the hardness of the sample, flexibility of test

frame, or simply the goals of the test. The complementary strain energy density, W ′,

is then used:

W ′ = σijϵij −W (2.45)

As illustrated in Figure 2.6, the complementary strain energy density can be

thought of simply as the area to the left of the stress-strain curve. The differential is

then:

δW ′ = δσijϵij + σijδϵij − δW = ϵijδσij + fkδSk (2.46)

which implies that the strain and thermodynamic forces are given by:

ϵij =
∂W ′

∂σij
, (2.47)

fk =
∂W ′

∂Sk

(2.48)
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Figure 2.6: Illustration of complementary strain energy density.

The total complementary work per unit volume, W ′
T , is then:

W ′
T = σijϵij −WT (2.49)

Like the total work per unit volume defined in Equation 2.39, the total compli-

mentary work can also be separated into a reversible complimentary strain energy

density term, W ′, and the irreversible energy density term W ′
I :

W ′
T = W ′ +W ′

I (2.50)

To separate the recoverable strain from non-recoverable, we first examine the

incremental form of Equation 2.47:

δϵij =
∂ϵij
∂σkl

δσkl +
∂ϵij
∂Sm

δSm (2.51)

25



where:

∂ϵij
∂σkl

=
∂2W ′

∂σij∂σkl
= Jijkl (2.52)

∂ϵij
∂Sm

=
∂fm
∂σij

(2.53)

where Jijkl is the compliance tensor. The recoverable strain, δϵeij, and non-recoverable

strain, δϵpij, are then:

δϵeij = Jijklδσkl (2.54)

δϵpij =
∂fm
∂σij

δSm (2.55)

The selection of internal variables should be based on experimental observations

and theoretical considerations. The number of variables should be large enough

(within reasonable limits) to represent the material being studied, and should all

have some physical significance such that they can be derived from measurable quan-

tities. At least one internal variable is necessary to represent a history-dependent

material; two if the response is also non-linear. A general description of such a sys-

tem is provided by the thermodynamics of irreversible processes.

2.2.3 Thermodynamics of Irreversible Processes

Physical systems undergoing deformation tend towards increasing entropy, which can

be thought of as moving towards a more probable state. Consider a system in the

vicinity of its equilibrium state, defined by n thermodynamic variables qi and their

generalized force conjugates Qi (See Alberty (2009) for an example application of
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conjugate variables). The entropy production of such a system is given by:

dSu = dSsys −
dU

T
+
∑
i

Qi

T
dqi (2.56)

where Su is the entropy production of the universe and dU is the change in internal

energy. The reference equilibrium state, represented by S ′, occurs at a constant T

with qi = Qi = 0 and is given by:

TS ′ = TSsys − U = −1

2

∑
ij

aijqiqj (2.57)

where aij is a matrix of constants. Since we are describing an equilibrium state, the

entropy S ′ is a maximum and can be represented by the quadratic function, V :

V =
1

2

∑
ij

aijqiqj (2.58)

which is a positive-definite variable with a symmetric matrix of coefficients aij. Under

external forces, the entropy is then:

TSu = −V +
∑
i

Qiqi (2.59)

If the system is displaced from the reference state slowly and reversibly then it

can be considered to follow a series of equilibrium states that produce maximum

entropy, represented mathematically by ∂Su/∂qi = 0. Otherwise, Onsager’s principle

(Onsager, 1931) applies:

T
∂Su

∂qi
=
∑
j

bij q̇j (2.60)

where the matrix of coefficients, bij, is symmetric. The basic relationship for irre-

versible processes is then:

∑
j

aijqj +
∑
j

bij q̇j = Qi (2.61)
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It is useful to introduce the quadratic form:

D =
1

2

∑
ij

bij q̇iq̇j (2.62)

which is equivalent to:

D =
1

2
T
∑
i

q̇i
∂Su

∂q̇i
=

1

2
T
∂Su

∂t
(2.63)

This shows that the function D must be positive-definite due to its dependence on

the entropy production rate. Equation 2.61 may then be rewritten in the Lagrangian

form using the quadratic expressions for V and D:

∂V

∂qi
+
∂D

∂q̇i
= Qi (2.64)

The invariant V is seen to play the role of a potential energy while D that of a

dissipation function. Consider the case of a constant external pressure, P , acting on

a system. The conjugate variable is then the volume of the system, −v, giving:

∑
i

Qidqi = −Pdv (2.65)

Integrating Equation 2.56 gives:

−TSu = U − TSsys + Pv (2.66)

which, for a uniform temperature, represents the Gibbs free energy of the system.

Equation 2.56 can thus be thought of as an extension of the Gibbs free energy to non-

equilibrium conditions, while the quadratic function V is the Helmholtz free energy

at equilibrium, since:

V = U − TSsys (2.67)
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Biot (1955) notes that these formulae for systems in the vicinity of equilibrium

apply to a large class of phenomena, including mechanical dissipation and elastic

forces, heat transfer, etc., as well as the coupling between these phenomena. Biot

also notes that these expressions may be represented by a network of springs and

dashpots, as per the viscoelastic models described in Section 2.1.

Schapery (1966) successfully applied these principles to the description of non-

linear viscoelastic material behaviour; a viscoelastic material element was considered

to be a closed thermodynamic system defined by n state variables qi and an absolute

temperature T . Generalized force conjugates were defined such that Qiδqi represented

an infinitesimal amount of external work, δW , done on the system, which in this

case correspond to the stresses induced by infinitesimal changes in strain. Schapery

(1966) also successfully proved that this generalized formulation could be represented

by a Maxwell chain with non-linear springs and dashpots. This description was

later expanded (Schapery, 1981; 1991; 1997a) to include the effect of microstructural

changes in the material; the resulting viscoelastic equations were presented in Section

2.1.3.

For a more in-depth review of the basic principles of the thermodynamics of ir-

reversible processes, refer to De Groot (1951); for an example of its application to a

viscoelastic medium, see Schapery (1991).

2.3 Molecular Theory of Deformation

The molecular theory of deformation (Krausz and Eyring, 1975) has been successfully

used to describe the behaviour of ice within a particular deformation regime; a review
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is provided to enhance understanding of the constitutive models introduced in Chap-

ter 4. The theory posits that the thermally-activated, time-dependent deformation of

a solid can be described via the same methods used to describe a chemical reaction,

which, in general, obey an equation of the following form:

k = A exp

[
−B
T

]
(2.68)

where k is the rate constant, T is the absolute temperature, and A and B are reaction-

and material-dependent constants. Arrhenius (1889) established that a reacting sys-

tem consists of both ordinary and “active” molecules, with only the latter being

energetically capable of reacting. Arrhenius suggested the following rate constant,

based on the van’t Hoff (1884) description of the chemical equilibrium constant:

k = Ae exp

[
−∆Ee

kBT

]
= Ae exp

[
− Qe

RgT

]
(2.69)

where Ae is the empirically obtained frequency factor, which represents the number

of times a possible reaction occurs per unit time; the frequency factor can be thought

of as the maximum possible rate constant. It generally takes the form of a collision

between molecules for a chemical reaction, or the breaking of atomic bonds during

creep flow.

∆Ee and Qe are the empirically obtained activation energies in units of joules and

joules per mole, respectively; for a reaction to occur, there has to be enough kinetic

energy to overcome the potential energy barrier and form the products. The height

of that barrier is the activation energy. There are two types of reactions, endothermic

and exothermic, that differ only in the enthalpy change of the system; endothermic

reactions produce a positive enthalpy change, absorbing heat from the surroundings,

30



Figure 2.7: Examples of endothermic (left) and exothermic (right) reactions. En-

dothermic reactions are defined by absorption of energy by the system, represented

by a positive enthalpy change (∆H), while exothermic reactions release energy (neg-

ative ∆H).

while exothermic reactions release heat into their surroundings, leading to a negative

enthalpy change. This is illustrated in Figure 2.7.

kB and Rg are the Boltzmann and universal gas constants, which relate the average

kinetic energy of particles to their average temperature, as per the equipartition

theorem (Pathria, 1972). While initially developed to describe the behaviour of gases,

the equipartition theorem is broadly applicable and provides a useful approximation

for both solids and liquids. For a solid, this may represent a measure of the vibrational

motion of atoms or molecules within the crystal lattice. The higher the temperature,

the higher the likelihood that inter-atomic or inter-molecular bonds will be broken.

The exponential term, e−
Qe/RgT , is a number between 0 and 1, representing the

fraction of molecules with kinetic energy high enough to make it over the activation

barrier during a given interaction. For a small number of collisions, this energy

is large enough for the reaction or process to occur. This proportion follows the

Boltzmann principle; it is larger at higher temperatures and lower activation energies.
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Multiplying the frequency factor by the exponential term, we get the rate constant,

which is the rate of successful collisions.

Scheffer and Kohnstamm (1911) introduced the concept of activation entropy

to account for the dynamic nature of chemical equilibrium, which had been noted

previously by van’t Hoff (1884). Using equilibrium theory, it was supposed that

molecules go both in the “forward” direction, from reactants to products, and vice

versa in the “backward” direction. This is written formally as:

kf = Af exp

[
∆Sf

kB

]
exp

[
−∆Hf

kBT

]
(2.70)

kb = Ab exp

[
∆Sb

kB

]
exp

[
−∆Hb

kBT

]
(2.71)

where ∆S and ∆H are the entropy and enthalpy of the transition state, respectively;

equilibrium is achieved when the forward and backward rates are equal.

The effect of work on the rate constant must also be considered; deformation

generally occurs under the effect of some external force acting on the material. The

work done by these forces is found to change the height of activation barrier as follows:

kf = Af exp

[
−Qf −Wf

kBT

]
= k′

f exp

[
Wf

kBT

]
(2.72)

kb = Ab exp

[
−Qb +Wb

kBT

]
= k′

b exp

[
− Wb

kBT

]
(2.73)

where Wf and Wb are the work in the forward and backward directions, respectively.

The forward activation barrier is thus decreased by Wf , while the backwards barrier

increases by Wb, as illustrated in Figure 2.8 for a symmetrical barrier. The net rate

constant observed is then:

k = kf − kb (2.74)
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Figure 2.8: Effect of stress on activation energy. The activation barrier is reduced (or

increased) by an amount equal to the total work done, W = σAλ/2, where A is the

effective cross-sectional area of the flow unit.

The work done is partly dissipated as heat and partly converted into the new prod-

uct configuration. If the material is brittle, part of the work may also be dissipated

via fracture.

Assuming that each activation results in an average contribution to strain of δ

and that the number of activations is ρ, then the strain rate is given by:

ϵ̇ = δkρ (2.75)

While Equation 2.69 is sufficient for the analysis of many systems, a more in-

depth description will be provided to assist in understanding the connection between

molecular interactions and viscoelastic deformation.
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2.3.1 Absolute Rate Theory

Simply put, the absolute rate theory is the application of statistical mechanics to

the description of reaction kinetics. This requires a quantum mechanical calculation

of the potential energy surface for a given reaction or process, which, as with any

quantum mechanical description of a macroscopic process, involves a truly staggering

number of dimensions to define the configuration space; approximately 3n, where n

is the number of particles, for a solid subjected to stress. This does not take into

account the possibly infinite number of higher energy excited surfaces. Eyring and

Polanyi (1931) provide a description of the semi-empirical methods used to calculate

these surfaces.

The potential energy surface consists of a series of maxima and minima, hereafter

referred to as peaks and valleys. Molecules can be considered to be within a stable

configuration while within the potential energy valleys, each of which are connected to

its neighbouring valleys by a saddle point. Molecules in a metastable position within a

saddle point are said to be in the transition or activated state. A reaction corresponds

to the system moving from one valley to another; the system is stable when in valleys.

The lowest pass determines the ambient temperature at which stability is lost; larger

barriers require high temperatures.

The rate of reaction can be calculated via statistical mechanics if we assume

that equilibrium exists between initial and activated states; the rate is then equal to

the concentration of activated complexes multiplied by the rate at which they pass

through the transition state. The rate of forward reaction over a single barrier is
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given by (Eyring, 1935):

Ratef = κfCf
v̄f
∆f

= κfCf
kBT

h
(2.76)

where κf is the transmission coefficient in the forward direction, Cf is the concentra-

tion of activated complexes per unit volume along length ∆f , h is Planck’s constant,

and v̄f is the average velocity of the activated complexes moving along ∆f . The ratio

v̄f/∆f therefore represents the frequency at which the path ∆f is emptied.

The transmission coefficient is introduced to account for both the possibility of

an activated complex being reflected back to its initial state and for a reactant to

tunnel through the potential energy barrier to the product state, which is known as

quantum tunnelling. Both effects are generally negligible during creep flow and plastic

deformation; the additive binding is generally greater than the exchange binding in

these cases, and the masses, temperatures, and potential energy barriers considered

are large (or wide in the case of the energy barrier) enough that tunnelling is unlikely.

The transmission coefficient can be calculated via the methods of Eyring (1935).

Applying the Boltzmann statistics of equilibrium, Eyring (1935) showed that Cf

could be related to the concentration of reactants by:

Cf =
Zf

Zr

Cr =
Z

Zr

exp

[
−
∆E0

f

kBT

]
Cr (2.77)

where Zf , Zr, and Z represent the partition functions for various groups of molecules;

the activated complexes in the forward direction, the reactants, and the ground state

activated complexes, respectively. Cr is the concentration of reactants, and ∆E0
f is the

activation energy at absolute zero. The rate constant can then be defined generally
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as:

k = κ
kBT

h

Z

Zr

exp

[
−∆E0

kBT

]
(2.78)

or, alternatively, either in terms of the Gibbs free energy needed for the system to

reach the activated state, ∆G0, or the activation entropy, ∆S0, and heat of activation,

∆H0, as:

k = κ
kBT

h
exp

[
−∆G0

kBT

]
(2.79)

k = κ
kBT

h
exp

[
∆S0

kB

]
exp

[
−∆H0

kBT

]
(2.80)

The forward and backward reaction rates are then:

Ratef = kfCr (2.81)

Rateb = kbCp (2.82)

where Cp is the concentration of products. The net rate of flow is thus:

Rate = kfCr − kbCp (2.83)

Rate theory not only applies to chemical reactions, but to any transition that

is due to some underlying quantum process, such as the deformation of solids. To

describe the highly non-linear deformation of a material such as ice, the rate theory

of viscoelastic deformation is necessary.

2.3.2 The Rate Theory of Viscoelastic Deformation

As discussed in Section 2.1, viscoelastic deformation is the combination of time-

independent (elastic) and time-dependent (viscous) deformation. This behaviour is
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observed in both crystalline and polymeric materials, particularly at high homologous

temperatures, Th = T/Tm, where T and Tm are the absolute temperature and the

melting point of the material, respectively.

The statistical description of the behaviour of an elastic material is relatively

simple; an applied stress displaces atoms slightly from their equilibrium positions

within valleys, such that the atoms do not reach the product state. These atoms

return to their equilibrium positions upon the removal of stress. The elastic moduli

are then a function of the steepness of the potential energy surface.

During viscous deformation, old neighbours are exchanged for new ones. Even

with no stress, the breaking and forming of bonds takes place at some equilibrated

rate; these processes are only accelerated by the application of an external stress.

Movements can only occur where there are loose or empty spaces in the atomic

structure, since molecules cannot occupy the same space. These empty sites are

provided by dislocations or vacancies in crystal structures, which will be the focus of

discussion here.

Empty sites can be assumed to occur at average intervals of λ1 along the direction

of force. If stress is denoted as σ, then the force is given by σλ2λ3, where λ2λ3 is the

cross-section being acted on by said force. Assuming a symmetrical energy barrier,

the flow unit will go through the transition energy state at a distance of λ/2. The

applied stress contributes work proportional to σ(λ2λ3λ/2) toward surmounting the

barrier. As a result, the movement of the flow unit in the forward and backward
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directions is:

k exp

[
σλ2λ3λ

2kBT

]
(2.84)

k exp

[
−σλ2λ3λ

2kBT

]
(2.85)

times per second, giving a net forward movement per second of:

k

(
exp

[
σλ2λ3λ

2kBT

]
− exp

[
−σλ2λ3λ

2kBT

])
= 2k sinh

[
σλ2λ3λ

2kBT

]
(2.86)

The forward velocity is simply the net forward movement per second times the

distance moved, λ:

2λk sinh

[
σλ2λ3λ

2kBT

]
(2.87)

The strain rate can then be obtained by dividing this velocity by the distance

between empty sites:

ϵ̇ = 2
λ

λ1
k sinh

[
σλ2λ3λ

2kBT

]
(2.88)

The vacancy volume swept out by this movement is given by Vh = λλ2λ3, while

the volume swept out by the atom or molecule is Vm = λ1λ2λ3, so that the strain rate

becomes:

ϵ̇ = 2
Vh
Vm

k sinh

[
σVh
2kBT

]
(2.89)

Finally, applying Equation 2.79, the strain rate becomes:

ϵ̇ = 2
Vh
Vm

kBT

h
exp

[
−∆G0

kBT

]
sinh

σVh
2kBT

(2.90)

It should be noted that this section describes only the simplest kind of viscous

behaviour, controlled by a single, symmetrical barrier that is independent of both time

38



and the state of deformation. While never fully valid, it is a good approximation for

most situations. Frequently the effect of time, stress, deformation, and the presence

of multiple processes cannot be ignored. The modifications necessary to adequately

describe some of these effects can be found in Ree and Eyring (1955) and Ree and

Eyring (1958).

2.3.3 The Experimental Activation Energy and Volume

For a given deformation step, the rate constant can be described by either the appar-

ent activation energy, ∆Ei, measured via experiment, or the true activation energy,

∆Et
i , which accounts for the energy lost due to work being done on the system:

ki = Ai exp

[
−∆Ei

kBT

]
= Ai exp

[
−∆Et

i −Wi(τa)

kBT

]
= kt

i exp

[
Wi(τa)

kBT

]
(2.91)

where τa is the applied shear stress. The activation volume plays a similar role as the

activation energy; the activation energy describes the necessary energy for a trans-

formation, while the activation volume is the local volume required for molecular

rearrangements. Both are characteristic of the bond breaking and atomic rearrange-

ment process associated with the transition. These are important indicators of the

atomic processes involved in the deformation. While both the activation energy and

volume can theoretically be determined exactly from the relevant wave equation, it is

rarely practical to do so. Instead, approximate theoretical and empirical results must

be compared to discover the identity of the mechanism associated with the elementary

process under investigation.

The experimental activation energy can be calculated from strain rate data gath-

ered at different temperatures. Early studies in metals based on Becker (1925) gave
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the following relation:

Rate = Ae exp

(
∆Ee

kBT

)
(2.92)

Dorn (1957) and Seeger (1958) suggest that the strain rate equation of Orowan

(1940) can be redefined as:

γ̇ = αbρmAe exp

(
−∆Ee

kBT

)
(2.93)

where γ̇ is the shear strain rate, α is a geometric factor, ρm is the mobile dislocation

density, and b is the Burgers vector, which represents the magnitude and direction of

the lattice distortions produced during deformation. Over a temperature range where

other variables remain constant, strain rates can then be compared via the standard

Arrhenius shift function:

γ̇1
γ̇2

≃ exp

[
−∆Ee

kB

(
1

T1
− 1

T2

)]
(2.94)

The experimental activation energy is thus proportional to the slope of a standard

Arrhenius type plot:

∆Ee = −kB
d ln γ̇

d(1/T )
(2.95)

Variations in slope indicate a change in the rate controlling mechanism. Many

materials undergo multiple changes in rate controlling mechanism as the temperature

is increased. In general, the activation energy of solids is seen to increase as the

melting temperature is approached, as shown in Figure 2.9. Note that a corresponding

increase in the frequency factor is also observed, otherwise the deformation rate of

solids would decreases due to the increase in activation energy; the opposite behaviour

is observed experimentally.
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Figure 2.9: Change in activation energy with homologous temperature for iron and

aluminium. Recreated from Krausz and Eyring (1975).

The correlation between the experimental and theoretical activation energies is

quite complex in cases where the backward movement over the activation barrier can-

not be ignored, as noted by Eyring (1936), Orowan (1936), and Kauzmann (1941).

The simplest case, where temperatures are low and stresses are high, was examined

by Krausz (1970) and Suzuki and Kojima (1966). Further refinements to the deter-

mination of the Arrhenius activation energy were made by Schoeck (1965), Osborne

(1963), Hirsch and Warrington (1961), and Makin (1964).

While Equation 2.91 implies that the work supplied by the applied shear stress

is independent of changes in temperature, Conrad and Wiedersich (1960) noted that

since it is the effective shear stress, τeff, given by:

τeff = τa − τi (2.96)
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that produces the work necessary to overcome the energy barrier, and that the internal

stress, τi, is temperature dependent, so too are the work done and the apparent

activation energy.

The theoretical activation volume, V t, has been shown to be (Laidler, 1965):

V t = −kBT
(
∂ lnk

∂p

)
T

(2.97)

where p is the hydrostatic pressure. The activation volume is related to the amount

of work necessary to change the volume of the system, and is generally negligible at

low pressures; high pressures are necessary to measure sufficiently accurate values of

the activation volume. Most measurements of activation volume are carried out by

varying the applied shear stress. The experimental activation volume, Ve, is then:

Ve = −kBT
(
d ln γ̇

dτa

)
T,struct

(2.98)

As per the earlier discussion of the activation energy, the measured activation vol-

ume must be related to the activation volume of the correct kinetics equation, which

must then be compared to the theoretical value. Approximate solutions are once again

used, as the theoretical calculation from the atomic configuration is impractical.

The key point is that experimental values gain significance only when correlated

with true values from the kinetics equations. Validity must be established first, by

comparing effects of observable experimental values to the predictions of the kinetics

equation.
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2.4 Fracture Mechanics

Fracture plays a significant role in the behaviour of an ice-structure interaction, gen-

erally acting as a limiting factor on the strength of ice. Here, we examine only the

aspects of fracture mechanics that are related to the continuum behaviour of ice,

particularly with regards to the development of microcracks.

Fracture can be generally categorized into three modes based on the relative move-

ment of the upper and lower crack surfaces (Liebowitz, 1968). Different approaches

to modelling fracture are employed depending upon both the material characteris-

tics and crack mode. All approaches must deal with the difficulty of modelling the

material behaviour near the crack tip stress singularity; a common shortcoming of

elastic fracture theories is that they predict infinite stresses in this region, even at

low stresses. In reality, this is not physically possible and energy near the crack tip

must be dissipated through some local mechanism, such as creep or microstructural

change.

2.4.1 Linear Elastic Fracture Mechanics

Griffith (1921) studied crack extension from the point of view of energy balance,

avoiding the stress singularity at the crack tip. He compared the energy released

from crack extension to the energy required for the creation of new surfaces. The

analysis required that a strain energy potential, W , exists where:

σij =
∂W

∂ϵij
(2.99)

and that stress is either monotonically increasing or constant. Since cracks cannot

support stress, we assume that there is a stress-free area above and below the crack
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of height na, where a is half the crack length. The strain energy, Uϵ, released by the

stress-free volume for a material under plane stress conditions is then:

Uϵ =
nσ2a2

2E
(2.100)

Griffith (1921) found that n ≈ π. The strain energy release rate per increase in

crack length is then:

dUϵ

da
=
πσ2a

E
(2.101)

Crack growth occurs when the critical energy release rate is achieved; this may be

expressed as:

dUϵ

da
≥ dWs

da
(2.102)

where Ws = 4aγs is the surface energy and γs is the surface energy per unit area.

Equation 2.102 then becomes:

πσ2a

E
≥ 4γs (2.103)

The plane strain expression differs only slightly, requiring the addition of a (1− ν)

term in the denominator of the left-hand term, where ν is the Poisson’s ratio of the

material. Early comparisons between the theoretical results of Griffith (1921) and the

total work required to induce crack growth were generally found to differ by orders

of magnitude, with glass and ice having the smallest difference, at factors between 5

and 10. This reflects the additional work being done in the region around the crack

tip (sometimes referred to as the process zone) due to inelastic deformation within

the process zone, such as plastic flow, viscoelastic creep, etc., as well as changes in

the internal microstructure, generally referred to as damage.
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All such processes consume additional energy, greatly exceeding the work required

to produce new crack surfaces; these processes must be accounted for if accurate

predictions of the critical energy release rate are to be made. For metals, which

generally have well defined yield strength, Irwin (1958) developed a correction for

the plastic deformation within the process zone based on the material yield strength.

Other developments in the description of the process zone include the strip yield

model of Dugdale (1960) and the work on crack tip cohesion by Barenblatt (1962),

which were later tied to the theory of Griffith by Willis (1967) and shown to be

equivalent during brittle fracture by Rice (1968); these developments are summarized

in Kanninen and Popelar (1985).

The use of linear elastic fracture mechanics (LEFM) is appropriate when the

process zone at the crack tip is much smaller than the crack size; such a material will

exhibit brittle failure behaviour and can be treated as entirely elastic. The work of

Dempsey (1996), Abdel-Tawab and Rodin (1995), and others has shown that LEFM

may only be applied to the description of ice deformation when two conditions are

met: 1) when brittle behaviour dominates, generally observed at high loading rates,

and; 2) when samples are of sufficient size that heterogeneities can be treated as a

continuum, with their effects distributed throughout the sample. At lower strain or

loading rates, where creep and damage processes dominate, the more involved, time-

dependent, methods developed by Schapery (1981) and others are required. This

approach is based upon the J-Integral method of Cherepanov (1967) and Rice (1968);

a basic review of the theory is provided here. For a recent investigation into the

time-dependent fracture of ice, see Kavanagh et al. (2015) and Kavanagh (2018).
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2.4.2 J-Integral Theory

J-Integral theory is used to calculate the energy release rate due to crack extension

within a material subjected to a two-dimensional deformation field. The theory is

based on the path-independent contour integrals of Eshelby (1956; 1951). In this

case, the contour of interest for crack extension (Rice, 1968) is given by:

J∫ =

∫
Γ

(
Wdy − Tn

∂u

∂x
ds

)
(2.104)

where ds is an increment along the contour, Tn is the traction normal to ds, u is the

displacement, and W is the strain energy density, given by:

W (x, y) =

∫ ϵ

0

σijdϵij (2.105)

The integral makes use of Green’s theorem, which notes that the double integral

over a region bounded by a simply connected, closed contour with no singularities is

equivalent to the line integral around the boundary. In other words, assuming there

are no cracks within or on the contour (singularities) and no gaps within the region

(simply connected), then:∮
C

(Ldx+Mdy) =
x

D

(
∂M

∂x
− ∂L

∂y

)
dxdy (2.106)

where the path of integration for C is counter-clockwise, as illustrated in Figure 2.10.

The theoretical concept for the J-Integral was developed independently by Cherepanov

(1967) and Rice (1968), who showed that an energetic (i.e. related to energy) contour

path integral, J∫ , was independent of the path around a crack; an example of such a

path is provided in Figure 2.11. It was found that the J-Integral for a virtual crack

extension, da, was equal to the change in potential energy, Up:

J∫ = −dUp

da
=
πσ2a

E
(2.107)
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Figure 2.10: Illustration of Green’s theorem.

Schapery (1981; 1984) extended the theory to larger process zones and used corre-

spondence principles to obtain rigorous solutions to viscoeleastic problems involving

crack growth. The results were used to define a damage parameter, S, that accounts

for the effect of distributed microcracks. To adequately describe this model, an in-

troduction to damage mechanics is provided.

2.5 Damage Mechanics

An early exploration of damage and its effect on the material properties of a material

was carried out by Kachanov (1958), who posited that the amount of damage within

a material could be represented by a single scalar factor. Microcracks and voids were

presented as a reduction in cross-sectional area, with the damage factor simply being

47



Figure 2.11: Illustration of the crack-tip process zone as defined by Schapery (1984).

the ratio of the damaged cross-section to the original, or total, cross section. This

can be viewed as an increase in effective stress or a reduction in effective modulus:

D =
A

An

(2.108)

σeff =
σn

1−D
(2.109)

Eeff = E0(1−D) (2.110)

where D is the damage parameter, An and A are the nominal and damaged area, σn

and σeff are the nominal and effective stress, and E0 and Eeff are the initial and

effective elastic modulus.

Budiansky and O’Connell (1976) described the effect of microcracking on a mate-

rial’s elastic properties in three dimensions. Their approach was based on the strain
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energy lost during crack nucleation in a brittle elastic material. The effect of crack

interaction was included, but they did not account for the traction across crack sur-

faces, limiting its application to tensile regions. For an isotropic array of flat, circular

cracks, they found that the damage parameter was related to the crack density, N ,

by D = a3N , where a is the crack radius (or half crack length).

Traction across crack surfaces cannot be ignored under compression, which effec-

tively reduces the accumulation of microcracks by both closing existing cracks and

reducing crack nucleation. Horii and Nemat-Nasser (1983) developed a general 2D

solution for a compressive state of stress where plane strain conditions were enforced.

The approach of Kachanov (1993) is applicable to both two and three dimensional

configurations; assuming an elastic solid with N cracks per unit volume with an ap-

plied stress, σa, at the remote boundary, the problem becomes one of crack surfaces

loaded with tractions of T = niσa and stresses vanishing at infinity. Under these con-

ditions, Kachanov (1993) found that the effective moduli for non-interacting cracks

with a random isotropic distribution becomes:

Eeff

E0

=
1

1 + C1N
(2.111)

νeff
ν0

=
1 + C3N

1 + C1N
(2.112)

where C1 and C3 are constants dependent upon the initial Poisson’s ratio, ν0. The re-

maining moduli can be derived from the above equations through the basic equations

for the shear and bulk moduli. These forms have been shown to provide accurate

results for both low and high crack densities; crack interactions can, in general, be

safely ignored.

Schapery (1981; 1984; 1990; 1991) developed a continuum model based on J-
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Integral theory, successfully estimating the energy flux into the process zone at the

crack-tip (idealized previously in Figure 2.11) and using it to define a damage param-

eter, S, for microcracking.

The viscoelastic crack-growth analysis of Schapery begins with several assump-

tions: first, proportional loading is assumed; the stress, σij at any point is given

by:

σij = σσ′
ij (2.113)

where σ′
ij is a constant tensor and σ is a scaling parameter. Power law material

behaviour is also assumed, which produces a complementary strain energy, W ′, of:

W ′
(
σσ′

ij

)
= σr+1W ′

(
σ′
ij

)
(2.114)

Schapery (1981; 1984) proved that not only could the J-Integral be defined in

terms of the complementary strain energy function by:

J =
∂W ′

∂a
(2.115)

but also that a power law relationship existed between the J-Integral and crack-

growth rate, ȧ, for non-linear viscoelastic materials that undergo power law stress-

strain behaviour. Similar to the results observed experimentally by Atkins and Mai

(1985) and others, this is usually expressed as:

ȧ = c1J
k (2.116)

where c1 and k are constants. Combined, these results give a crack-growth rate of:

ȧ = c1σ
k(r+1)

(
∂W ′

∂a

)k

(2.117)

50



where ∂W ′/∂a can be shown (Schapery, 1984) to be approximately equal to a for

penny-shaped (flat, circular) cracks of the same radius. Equation 2.117 can then be

rewritten in the form:

ȧ = c1 (c2a)
k σq (2.118)

where c2 is the proportionality constant and q = k (r + 1). Integration yields:

a

a0
=

1[
1− (k − 1) (c2a0)

k−1 S
]1/(k−1)

(2.119)

where a0 is the initial crack length and S is the integral of the stress history:

S =

∫ t

0

c1c2σ
qdτ (2.120)

which is hereafter referred to as the Schapery damage measure. Assuming that each

crack produces only a small decrease in strain energy (in other words, that a large

spall does not occur) and that the stress history of the sample is known, then the

cumulative damage from distributed microcracking can be estimated and its effect

on viscoelastic deformation calculated. Schapery accounted for this total damage

through the definition of a pseudostrain, discussed previously in Section 2.1.3, and a

damage enhancement factor, g (S), given by:

g (S) = eλS (2.121)

where λ is also a positive constant. While the above method does not provide any

insight into “damage” of other forms, such as dynamic recrystallization or pressure

melting within ice, the formulation has been successfully extended to these condi-

tions through the addition of additional damage parameters as required under such

circumstances (Jordaan, 2001).
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2.6 Properties of Ice

Snow and ice are familiar phenomena to those of us living within the Arctic and

Northern Temperate Zones. Many questions remain to be settled about these com-

mon materials, particularly with regards to their interactions with ships and offshore

structures. The study of ice is thus scientifically interesting and a matter of economic

importance. A review of the relevant properties of water, in both liquid and solid

form, as well as the literature regarding ice behaviour, is provided in the following

sections.

2.6.1 Basic Properties

The properties of water have been used as a standard with which other materials

are compared to due to its ubiquity; an unhappy coincidence given water’s numer-

ous anomalous properties. Indeed, it has been argued that without the anomalous

properties of water that life as we know it would not be possible (Podgornik, 2011).

For our purposes, the vital property of water is its expansion upon freezing by a

factor of almost 10 %; while this is not a unique property, the sheer extent of the

expansion that occurs during the transition from water to ice is exceptional. The

additional fact that fresh water has a maximum density at 4◦C is quite extraordi-

nary. The thermal properties of water are also anomalous, with an abnormally high

specific heat and latent heat, which minimizes temperature variations in regions with

abundant water and greatly affects climates around the world.

The majority of the world’s water is contained within its oceans, which contain

enormous quantities of salts. Fortunately, the composition of sea water is sufficiently
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uniform to describe with a single parameter, the salinity, S, defined as the ratio of

solid material to sea water. The salinity is usually reported in parts per thousand,

h, with a value of S = 35h being typical for ocean water.

The freezing of such solutions is a complicated problem. The freezing point and

density inversion temperature are essentially linear functions of salinity, with the

density inversion temperature disappearing at salinities greater than S = 24.7h,

which corresponds to a freezing point of -1.3 ◦C. During the freezing process the

majority of salts are rejected from the newly formed crystal lattice, leading to the

formation of nearly pure ice. The freezing of salt water and fresh water can then

be thought of to differ in degree but not in kind, though it must be noted that the

expulsion of impurities during the freezing process leads an increase in salinity in

the nearby sea water, which can prevent further freezing. These are known as brine

pockets, which reduce sea ice strength through their inability to support stress.

Due to the density inversion temperature, water and ice produce interesting circu-

lation behaviour. Cooled water sinks until the entire body of water reaches a uniform

temperature at maximum density. Further cooling leads to a reduction in density,

trapping the top layer of water and leading to the formation of a layer of ice. This

layer of ice acts as heat insulator, reducing heat transfer to the water below. A con-

siderable temperature gradient develops, from the ambient temperature at the surface

of the ice sheet to the freezing point of water at the bottom. The water beneath the

ice develops a separate temperature gradient, with the temperature increasing from

the freezing point near the ice layer to the density inversion temperature at greater

depths. This is referred to as a thermocline, the depth of which is dependent upon

environmental conditions. Water and air currents modify this behaviour by varying
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degrees, but the basic process remains the same.

The formation of ice around the world varies due to variations in climate. The

primary division is between sea ice and fresh-water ice. The ice of interest in this

work is fresh-water, granular ice, a form of polycrystalline ice with randomly oriented

grains. This form of ice can be easily grown in the laboratory from seed ice crystals of

a desired grain size and can be treated as a statistically isotropic material; see Section

3.5.1 for verification via experimental results. The results observed from experiments

with granular ice can then be extrapolated out to other forms of ice based on saline

content, age, or type of ice (iceberg, ice island, first year sea-ice, multi-year sea

ice, etc.). See Pounder et al. (1965), Sanderson (1988), and others for an in-depth

discussion of the numerous forms of naturally occurring ice and their properties.

2.6.2 Hydrogen Bonding and Crystal Structure

Almost all naturally occurring ice, as discussed throughout this text, is made up

the hexagonal crystal form generally referred to as ice-Ih, with the exception of only

a small amount of the cubic form, ice-Ic, that is occasionally present in the upper

atmosphere. Other forms of solid H2O are possible at very high pressures and very

low temperatures, but these conditions do not occur naturally, at least terrestrially.

These other solid forms require pressures greater than 2000 atm or temperatures of less

than -200 ◦C; the largest ice sheet in the world, at over 4000 m, exerts a maximum

pressure of only 350 atm, while the coldest surface temperature ever measured on

earth was -89.2 ◦C.

The forces which bind atoms into molecules, and ultimately into solid and liquid
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aggregates, arise due to the internal structures of the atoms involved. A full review

of the theories behind these forces would require a quantum mechanical treatment; a

simplified discussion will be presented here (Pounder et al., 1965).

The binding forces holding a water molecule together are primarily of the covalent

type; the hydrogen atoms “share” their electrons with the oxygen atom, forming a

closed shell. The hydrogen ions form an angle of 104.5◦ with the central oxygen ion

at a distance of approximately 0.96 Å.

This is not an unusual atomic structure. The anomalous properties of water

arise instead from the additional binding force provided by hydrogen bonding; as the

separation between water molecules decreases, it becomes possible for the positive

axis of hydrogen ions to align with the negative charge concentrations of the oxygen

molecules, providing a small electrostatic attraction. The space between oxygen atoms

containing a hydrogen bond is only 3.10 Å, a little over three times the covalent bond

length. While possible, it is highly unlikely for water molecules to form more than

one hydrogen bond at temperatures above the freezing point.

Liquid water forms a random hydrogen-bonded network, with molecules having

an ice-like local environment but lacking long-range periodic order. Near freezing, at

temperatures below the inversion point, the number of hydrogen bonds per molecule

approaches four, the same as in ice, and hence the liquid becomes less dense. The

transition to ice forces the molecules into a rigid tetrahedral arrangement of oxygen

atoms, resulting in a very open lattice structure. This explains the drop in density

between water and ice; melting breaks some of the hydrogen bonds, allowing water

molecules to pack more closely, increasing density.

While seemingly minor, these anomalous properties lead to very interesting side-
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effects within the context of the mechanical behaviour of ice.

2.6.3 Mechanical Behaviour

Investigators have examined the properties of ice under a wide range of conditions.

Key parameters include temperature, confining pressure, deviatoric stress, and strain

rate. Each follows a similar trend in behaviour while the others are held constant, from

brittle to ductile failure (or vice versa). Under uniaxial stress or strain conditions,

the differences in material behaviour are clear; at low strain rates ice fails in a ductile

manner, reaching a peak stress and then decaying to a plateau and eventually failing.

Low deviatoric stresses cause similar, though inverted, behaviour; a minimum strain

rate is reached followed by an increase to a plateau. As strain rate/deviatoric stress

increases the ice transitions to brittle behaviour, where failure occurs immediately

upon reaching peak stress/minimum strain, as seen if Figure 2.12. The differences

between ductile and brittle behaviour are more difficult to discern directly from the

resulting stress or deformation history for ice under states of triaxial stress. Instead,

the underlying microstructural changes within the ice must be examined to determine

the failure regime (Melanson et al., 1999a; Mizuno, 1998; Rist et al., 1988).

The reverse trend is observed for temperature; at low temperatures ice is brit-

tle and transitions to ductile behaviour as the melting temperature is approached

(Durham et al., 1983). The same trend is observed for confining pressure, due to

the onset of pressure melting (Meglis et al., 1999). The brittle-ductile transition

has a notable effect upon the strength of ice, and must be accounted for during an

ice-structure interaction.
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Figure 2.12: Transition from ductile to brittle behaviour with increasing strain rate.

(Keegan et al., 2013)

2.6.4 Ice Strength

The practical purpose of ice testing is to determine the strength of ice during an

interaction, which will provide a limit to the amount of force that can be transferred

to the structure; ice will fail far in advance of the materials commonly used in the

construction of offshore ships and structures. Simonson et al. (1974) examined the

strength of cylindrical ice samples up to 0.2 GPa hydrostatic pressure at a temperature

of -10 ◦C. They found that the strength of ice increased with increasing strain rate and

decreased with increasing hydrostatic pressure. The application of pure hydrostatic

pressure (no deviator) was found to reduce the porosity of ice, decrease the elastic

modulus, and induce melting at approximately 100 MPa, which is consistent with the

pressure-melting curve of Nordell (1990).
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Jones (1978; 1982) and Jones and Chew (1983) studied the compressive strength of

cylindrical ice samples up to confining pressures of 85 MPa and 60 MPa for constant

strain rate and deviatoric stress, respectively. In both test series, they found that ice

strength increased to a maximum between confining pressures of 20 and 30 MPa, then

decreased. This behaviour was more pronounced at higher strain rates, with lower

rates showing only small changes in strength. It is unclear why this behaviour was

not observed in the results of Simonson et al. (1974), which examined ice strength

at confining pressures of up to 200 MPa, though later work confirms the results of

Jones and Chew (Barrette and Jordaan, 2003; Mizuno, 1998; Nadreau and Michel,

1986a;b).

Jones also noted a change in ice appearance between low and high confining pres-

sures tests; at low pressures, ice became cracked and opaque after testing, while high

pressure tests produced ice that was free of cracking and, in some cases, clearer than

prior to testing due to a reduction in air content. Further study by Jones and Chew

found that the activation volume of ice changed with increasing hydrostatic pressure,

implying that more than one deformation mechanism was involved. To confirm this,

an examination of the microstructure of ice post-deformation is required.

2.6.5 Microstructure

Ice undergoes significant changes in microstructure when deformed. The type and

extant of this microstructural change is primarily dependent upon the applied stress

conditions and the temperature of the ice. Changes in microstructural behaviour have

been observed in numerous indentation experiments, both with increasing loading
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(a) v = 0.21 mm/s (b) v = 3.0 mm/s (c) v = 21 mm/s

Figure 2.13: Thin sections of ice samples at ice-indentor interface, photographed

between crossed polarizing film with back lighting. Varying levels of recrystallization

near the interface are evident. Spherical end-cap indentor with a 70 mm diameter

was used for all tests. Indentation proceeded to a depth of 12 mm for Figure c), 15

mm for the others.

rates (or velocity) (Turner et al., 2015), and with increasing temperature (Browne,

2012). Low speed creep tests produce a widespread damage zone which transitions

to a thin damage layer of mixed composition (a recrystallized zone at the centre,

microcracking at the edges) as the loading rate required to induce cyclic loading is

reached. This layer becomes more dominated by microcracking damage with further

increases in velocity, as illustrated in Figure 2.13.

Similarly, low temperature indentation experiments produce significantly more mi-

crocracking, transitioning to a thicker, more recrystallized layer in the central region

at higher temperatures, as seen in Figure 2.14. It should be noted that some investi-

gators (Gagnon, 2008) mistakenly label the central region of the hpz as “intact” ice.

This is highly misleading, as the ice in this region has been found to deform at rates

several orders of magnitude larger than that observed for virgin, undamaged ice.

Rist et al. (1988) observed changes in microstructure in cylindrical samples of
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(a) T = −15◦C. (b) T = −5◦C.

Figure 2.14: Thin sections of ice samples at ice-indentor interface, photographed

between crossed polarizing film with back lighting. Varying levels of microcracking

and recrystallization are evident. Results obtained from the indentation test series of

Browne et al. (2013)

polycrystalline ice during constant strain rate tests with confining pressures up to 30

MPa. Both microcracking and recrystallization were observed, with recrystallization

dominating at lower rates, then transitioning to microcracking at higher rates. Stone

et al. (1997) discovered a similar trend with increasing confining pressure, observing

that the application of a confining pressure suppressed microcracking in favour of

recrystallization. These results were confirmed and greatly expanded by the work of

Melanson et al. (1999a) and Meglis et al. (1999).

Melanson et al. (1999a) examined the microstructural response of cylindrical sam-

ples of polycrystalline ice for a constant confining pressure of 20 MPa at two different

strain rates: 10−4 s−1 and 10−2 s−1. By stopping tests at increasing levels of total

axial strain and examining the resulting thin sections they were able to investigate

the progress of microstructural change during deformation. Their results confirmed

those of Rist et al. (1988); ice was found to transition from recrystallization at low
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rates to microcracking at high. They also observed a reduction in grain size in all

tests where the peak stress was reached; no change in microstructure was observed

prior to this point. This corresponds to a strain of approximately 1 %. The grain

size was found to stabilize after approximately 10 % strain to an average size that

was consistent across all tests.

Meglis et al. (1999) examined the response of cylindrical samples of cylindrical

ice to confining pressures ranging from 5 to 60 MPa and deviatoric stresses up to 25

MPa. They confirmed the results of Stone et al. (1997); microcracking dominates at

low confining pressures, is suppressed as confining pressure increases, and transitions

to dynamic recrystallization with further increases in pressure, as seen in Figures 2.15.

Interestingly, the reduction in grain size appears to depend more on total axial

strain than the applied confining pressure; while higher confining pressures initially

produce smaller grains at low strains, grain size appears to plateau at similar levels

for true strains greater than approximately 30 %. This contradicts the results of Kuon

and Jonas (1973) for polycrystalline ice during extrusion, who found that the grain

size decreased with increasing strain rate and decreasing temperature, or, in other

words, that brittle deformation led to a smaller average grain size. This contradiction

may be due to differences in testing method.

2.6.6 Strain Localization

Rist et al. (1988) first studied the variation of failure mode with confinement. They

found that axial splitting occurred at low confining pressures, as expected for nearly

uniaxial conditions. As confining pressure was increased, ice began failing along 45◦
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(a) Pc = 6 MPa

(b) Pc = 51 MPa

Figure 2.15: Thin sections of triaxial ice samples, photographed between crossed

polarizing film (left) and side lighting (right), respectively. Applied von Mises stress

was 12 MPa in all cases.

shear faults, while only softening occurred under still higher confining pressures. Sim-

ilar results were found by Sammonds and Murrell (1989) and Sammonds et al. (1989;

1998). The faulting behaviour of ice was further examined by Barrette and Jordaan

(2001) and Li et al. (2003; 2005) for columnar and granular ice respectively. Both

applied significantly higher confining pressures. Both observed that shear faulting oc-

curred at an angle of 45◦. Barrette and Jordaan found that the fault plane consisted
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of a highly microcracked (or pulverized) layer at low confining pressures while the

bulk of the columnar ice remained unchanged. At higher confining pressures, recrys-

tallization occurred throughout the entire specimen but was greatly enhanced near

the fault plane. Li et al. (2005) observed that faulting, here termed strain localization,

was generally confined to hydrostatic pressures less than 10 MPa and greater than 50

MPa, as well as temperatures of -10 ◦C or higher. They also studied iceberg ice un-

der the same conditions and found that, while strain localization most often occurred

under the same restrictions, some samples faulted at medium confining pressures and

low temperatures. They concluded that strain localization is largely dependent upon

initial flaws in the ice. Jordaan and Barrette (2014) discuss the relevance of this be-

haviour with regards to the load oscillations commonly observed during ice-structure

interactions. They conclude that strain localization is practically guaranteed to oc-

cur under the stress conditions observed within a hpz. The various types of faulting

behaviour are summarized in Figure 2.16.

Blair (1987) was the first to note the effect strain localization had on ice strength.

He compared the results of uniaxial and triaxial tests for first-year sea ice at different

strain rates. Strength was found to dramatically increase with strain rate during

triaxial testing but decrease slightly during uniaxial testing. At high strain rates,

ice strength at failure varied from 10 MPa to over 200 MPa, with the low strength

samples faulting along well-defined, 45◦ planes with little deformation and the high

strength samples deforming uniformly. A later analysis by Barrette (2014) showed

a similar trend with increasing hydrostatic pressure; the strength of samples where

strain localization occurred decreased dramatically while the strength of other sam-

ples increased. Samples which did not fail via strain localization were said to have
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Figure 2.16: Failure behaviour of ice under triaxial compression with increasing con-

fining pressure. From left to right we have: (a) axial splitting at little to no confining

pressure; (b) 45◦ fault at low confining pressures. Damage is localized in a heavily

microcracked failure plane; (c) Softening only. Possible at all confining pressures,

but most common at medium pressures; (d) 45◦ fault at high confining pressures.

Recrystallization present throughout sample, though highly localized in fault plane.

undergone uniform grain refinement (UGR) and could be up to an order of magnitude

stronger.

It is interesting to contrast these seemingly similar results. Blair (1987) noted

the drastic difference in strength while increasing the applied strain rate, or, in other

words, while transitioning to more brittle-like behaviour. Barrette (2014), on the

other hand, noted the strength difference while transitioning from brittle to ductile

behaviour, though Li et al. (2005) had earlier noted that strain localization also occurs

at low confining pressures under brittle conditions. The exact conditions required for,
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as well as the outcome of, strain localization requires further attention.

2.6.7 Pressure-Temperature Effects

One of the essential, and almost unique, properties of ice (shared by some elements

and compounds that form spacious crystal lattices with tetrahedral coordination,

such as Be, Mg, Ca, Sr, Ba (Wax et al., 2001), SiO2, P, Se, Ce, Cs, Rb, Co, and Ge

(Debenedetti, 1996)) is that the density of its solid phase is less than the density of

its liquid phase, which is most easily seen in the fact that ice floats on water.

An important consequence of this property, in terms of the analysis of ice-structure

interactions, is the process of pressure melting; as the applied hydrostatic pressure

increases, the melting point of ice actually decreases. This is represented by the

Clausius–Clapeyron relation:

dT

T
=

(vl − vs)

Lf

dP (2.122)

where T is the absolute temperature, Lf is the latent heat of fusion, P is the pressure,

and vl and vs are the specific volume of the liquid and solid phases, respectively, which

are simply the inverted densities. Nordell (1990) determined the pressure required for

melting at temperatures as low as -22 ◦C, as recreated in Figure 2.17. At temperatures

lower than -22 ◦C the trend reverses due to the transition to other forms of crystalline

ice, all of which have higher densities than water. Note that the combinations of

pressure and temperature required to produce these high density forms of ice do not

occur terrestrially.

In this way, changes in pressure can be considered equivalent to changes in tem-

perature, and vice-versa. One of the earliest triaxial tests on ice was performed by
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Figure 2.17: Pressure melting curve. The pressure required to induce melting de-

creases as the temperature increases. Recreated from Nordell (1990).

Rigsby (1958) and confirmed that the effect of hydrostatic pressure was equivalent to

an increase in temperature for monocrystalline ice; the creep behaviour at -3 ◦C and 1

atm (0.1 MPa) of pressure was shown to be practically identical to the behaviour at -5

◦C and 270 atm (27 MPa), a pressure which Nordell (1990) had shown decreased the

melting point of ice to -2 ◦C. Thus, the two tests occurred at an identical ‘distance’

from the melting point, and also at similar homologous temperatures, Th, which is

defined as the ratio between the current temperature, T , of a material and its melting

point, Tm:

Th =
T

Tm
(2.123)

The homologous temperatures of Rigsby’s tests were thus quite similar, at 0.9890

and 0.9889 respectively.
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Haefeli et al. (1968) proved that this pressure-temperature equivalence did not

strictly hold for polycrystalline ice. They observed that an increase in hydrostatic

pressure combined with a corresponding drop in temperature produced a slightly

lower strain rate. This must be attributed to the presence of grain boundaries within

polycrystalline ice, and, more specifically, the stress concentrations that accompany

them; Raj and Ashby (1971) theorized that the applied shear stress at a grain bound-

ary can be magnified by a factor of five or more, depending on the geometry of the

boundary. It has since been shown that the presence of grain boundaries greatly affect

the behaviour of ice (Barnes et al., 1971; Mae and Azuma, 1989; Mizuno, 1992).

It is clear that the behaviour of ice is highly dependent upon the ambient tem-

perature. This has motivated the study of the temperature-dependence of ice during

ice-structure interactions. Several studies of the surface temperature of ice during

indentation testing have been undertaken (Gagnon, 1994b; Gagnon and Sinha, 1991;

Turner et al., 2015). They show that temperature near the indentation surface can

increase by several degrees, increasing the probability of pressure melting.

The observed temperature fluctuations can also be used to confirm changes in

the deformation regime; low speed creep tests produce temperature changes that

are smaller than those observed at higher speeds. The average temperature change

increases dramatically as cyclic loading conditions begin to dominate at higher speeds;

the “medium” speed tests of Turner et al. (2015) correspond to a regime dominated

by cyclic loading and consistently measured an average temperature change of 4.49

degrees over a range of speeds and maximum loads. It is interesting to note that

a temperature increase of this magnitude would reduce the pressure required for

melting from approximately 110 MPa (at T = −10◦C) to approximately 55 MPa.
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With a maximum contact area of 4000 mm2 the indentor used produced an average

nominal pressure at maximum load of 26.7 MPa. Given that higher than average

pressures are present in the hpz it seems likely that pressure melting occurred under

these conditions.

Turner et al. (2015) also showed that the temperature traces provided by the ther-

mocouples during indentation could be used to infer changes in the contact conditions;

initial rapid increases in temperature were noted where contact with each thermocou-

ple was made, and, more interestingly, some load drops could be correlated with large

temperature drops in one or more thermocouples followed by an increase in others.

This is likely due to a shift in hpz position after spalling, leading to the loss of contact

with some thermocouples and a redistribution of pressure on others. Heat transfer at

the centre of a hpz also has some interesting characteristics, with many tests display-

ing a similar pattern of a rapid increase in temperature followed by a plateau that

lasts until some later layer failure. A notable deviation from this behaviour can occur

prior to a failure event; a significant temperature drop can be observed leading up to

some load drops. These are the moments when pressure in the hpz is largest, making

it likely that pressure melting is involved. While the data is inconclusive, it seems

likely that these thermocouples happened to be within a very short range of the point

of failure; with more information, it may be possible to correlate failure events with

surface temperature fluctuations.

Finally, the results show that, under certain conditions, the loading and temper-

ature traces oscillate inversely to one another, as seen in Figure 2.18. This can be

explained by pressure melting within the ice; as the load increases, ice melts at inter-

nal grain boundaries, drawing heat away from the surface. When the load is removed,
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Figure 2.18: Load and temperature results from indentation experiments at Hobson’s

Choice ice island. Temperature decreases as load increases, and vice-versa. Recreated

from Gagnon and Sinha (1991)

the ice recrystallizes and heat is transferred back to the surface. The amount of melt

required to cause this temperature drop can be estimated from basic thermodynamic

relations:

mici∆T = mwLf (2.124)

where mi/w and ci/w are the mass and specific heat of ice and water, respectively, and

∆T is the temperature change.

Rearranging in terms of the volume of melt water, Vw, per volume of ice, Vice,

gives:

Vw
Vice

=
ρici∆T

ρwLf

(2.125)
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where ρi/w are the densities of ice and water, respectively. This produces a melt

volume of approximately 0.5 % for temperature drops of 1 ◦C, as seen in Figure 2.18.

This basic model makes several assumptions, including:

1. That the density of ice remains constant. Not only does the density change

with temperature, but also with damage. The reduction in ice density also

depends upon position within the hpz ; ice near the centre has the same density

as undamaged ice, while ice near the edge is less dense by ≈ 0.06 g/cm3 (Meaney

et al., 1991). These changes in density have relatively little effect on the melt

volume results, for two reasons:

(a) The change in ice density from 0 to -25 ◦C, the range over which standard

pressure-melting can be considered to hold, is minor, amounting to only

3.4 kg/m3, less than 0.4 % of the average density.

(b) Pressure-melting is believed to occur primarily within the centre of the

hpz, where no change in density due to damage is known to occur.

2. That heat transfer within the layer is uniform. Experiments have shown that

the surface temperature varies across a hpz. Pressure melting must therefore be

confined to a relatively small region within the layer. It is interesting to note

that Equation 2.125 describes an arbitrary volume and can be used to model

a region of any size; with sufficient information it should be possible to extend

the analysis to the correct regions within the hpz.

3. That the mass of ice and water remain constant. The mass of water is initially

zero and increases as pressure melting continues, causing an equal drop in ice
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mass. Heat can then be drawn from this newly created melt water during later

occurrences of pressure melting. Additionally, mass is often lost to spalling

events during ice-structure interactions. These effects are negligible over the

course of a single load cycle.

Other estimates agree that the internal melt volume amounts to less than 1 %

of the layer volume (Jordaan, 2001; Jordaan et al., 2005; 1999). It should be noted

that the mechanism behind the temperature changes observed during indentation

experiments are disputed; Gagnon (1994a; 2008) posits that viscous heating produced

by a layer of melt water at the ice-indentor interface is the root cause of the observed

temperature increases. The supposed proof of the existence of a layer of melt water

comes from conductance measurements at the ice-indentor interface; no attempt is

made to isolate this increase in conductance due to melt water thickness from the

standard increase in conductance observed from any solid under pressure. Indeed,

Gagnon (1994a) notes an immediate increase in conductance at contact, at pressures

well below those necessary to induce pressure melting, indicating that some, if not

all, of the observed changes in conductance may be due simply to fluctuations in

pressure.

The viscous heating hypothesis also conflicts with numerous pieces of experimental

evidence, including:

1. The temperature plateaus observed in Turner et al. (2015); a continuous vis-

cous flow of melt water would produce a corresponding continuous increase in

temperature.

2. The cyclic temperature drops with sawtooth loading observed in Gagnon and
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Sinha (1991) and Turner et al. (2015); assuming viscous flow, an increase in

load should lead to a corresponding increase in temperature at the ice-indentor

interface, not a decrease as is observed.

Finally, from a theoretical standpoint, the energy dissipated via the viscous flow of

water is simply insufficient to produce significant heating; the energy balance equation

for viscous heating (in one dimension for simplicity) would be:

ρc
∂T

∂t
= µ

(
∂v

∂y

)2

(2.126)

where ρ, c, and µ are the density, specific heat capacity, and dynamic viscosity of

water, respectively, while T , t, v, and y represent the temperature, time, velocity,

and layer thickness, respectively. Since water is a low viscosity, high specific heat

capacity liquid, the velocity gradient necessary to produce significant viscous heating

is truly excessive, on the order 106 s−1 for a single temperature cycle.

2.6.8 Activation Energy

As described in Section 2.3, the activation energy is the minimum amount of energy

necessary for a reaction or process to overcome the corresponding energy barrier.

Originally developed to describe the temperature dependence of chemical reaction

rates, the description has been shown to extend to many other thermally activated

processes, such as the creep strain rates of metals (Zener and Hollomon, 1944) and

ice (Glen, 1955). In effect, the strain rates are controlled by an underlying thermally

activated process, such as dislocation glide.

In general, the strain rate, ϵ̇, produced by an applied stress can be represented by
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an Arrhenius formulation:

ϵ̇ = Afe
−Q
RgT (2.127)

where Af is the pre-exponential or frequency factor. The activation energy of ice has

been examined under many conditions. Glen (1955) demonstrated that, for uniaxial

compressive stresses between 0.1 MPa and 1 MPa and temperatures between 260.15

K and 273.15 K, the creep of ice followed an Arrhenius rate equation of the form:

ϵ̇min = Afσ
ne

− Q
RgT (2.128)

where ϵ̇min is the minimum strain rate, σ is the uniaxial stress, and n is an exponential

factor of approximately 3.2. He found that, for these conditions, Af and Q had

values of 7× 1024 barn/years (2× 1017 barn/s) and 134 J/mol, respectively. These

experiments also demonstrated that creep results at different temperatures could be

compared using a shift function; the stress dependence of Equation 2.128 can be

eliminated by taking the ratio of two strain rates, assuming that both the activation

energy and the pre-exponential term remain constant:

ϵ̇(T1) = ϵ̇(T2) exp

[
Q

Rg

(
1

T2
− 1

T1

)]
(2.129)

Barnes et al. (1971) extended the rate equation to higher stresses (up to 10 MPa)

using the formulation Garofalo (1963) proposed for high-temperature metals:

ϵ̇sc = Af sinh
n (ασ) e

− Q
RgT (2.130)

where ϵ̇sc is the secondary creep strain rate and α is a normalization constant. This

simplifies to the form of Equation 2.128 at low stresses:

For 0 < ασ << 1, sinhn (ασ) ≈ (ασ)n = Afσ
n (2.131)
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Barnes found that there was a clear change in behaviour as the temperature

approached the melting point of ice that was not noted by Glen; the activation energy

jumped from 78 kJ/mol to 120 kJ/mol, while the pre-exponential factor increased by

eight orders of magnitude, from 2.58× 1010 s−1 to 4.60× 1018 s−1.

Sinha (1978) examined the activation energy of ice during creep. He found that the

activation energy for the delayed elastic strain rate was 67 kJ/mol, which compared

well to the 65 kJ/mol activation energy for the secondary creep strain rate found by

Gold (1973).

Barrette and Jordaan (2003) examined the effect of hydrostatic pressure on the

activation energy of ice. They found that the activation energy remained constant for

low confining pressures but increased dramatically at the highest confining pressures

studied, from 80 kJ/mol to 130 kJ/mol, similar to the increase in activation energy

with increasing temperature found by Barnes et al. (1971) and others (Mellor and

Testa, 1969). Taken together, these results would seem to indicate that the dominant

deformation process of polycrystalline ice at both high pressures and high tempera-

tures is similar, if not identical. This is likely the result of pressure melting; in the

case of ice, an increase in pressure is equivalent to an increase in temperature, as

noted by Jordaan et al. (2005).

Mizuno (1992) examined the deformation behaviour of ice as temperature was

increased at two different hydrostatic pressures and found that, while the activation

enthalpy of ice at low temperatures was identical for the two hydrostatic pressures, it

was slightly larger for the higher hydrostatic pressure at temperatures above -6 ◦C.

This change was not reported by Barrette and Jordaan (2003), who performed few

tests at temperatures above -6 ◦C. However, the strain rate data acquired from the
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Figure 2.19: Strain rate at increasing levels of axial strain for a wide range of temper-

atures. A noticeable change in slope occurs in the 5 % and 10 % axial strain curves

at a temperature of approximately -6 ◦C. Recreated from Barrette (2014).

tests that took place at -5 ◦C do lend some support to the result, as seen in Figure

2.19.

Recently, Jordaan and Barrette (2014) expanded upon their earlier results, report-

ing a change in the pre-exponential term of the Arrhenius equation by nearly nine

orders of magnitude, as reproduced in Table 2.1. This explains how strain rate in-

creases by several orders of magnitude while activation energy increases, which would

normally cause a reduction in rate were the pre-exponential term to remain constant.
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Table 2.1: Variation in pre-exponential term, Af , and activation energy, Q, with

increasing hydrostatic pressure, p, obtained at the minimum strain rate.

p (MPa) 15 35 55 65 70

Af (s−1) 6.98E+12 2.46E+12 2.41E+11 1.46E+16 1.81E+23

Q (J) 1.33E-19 1.30E-19 1.22E-19 1.60E-19 2.16E-19

2.7 Modelling Ice

The preceding Chapter provided the background necessary to understand the con-

stitutive model developed by Jordaan and McKenna (1988a;b) and others for the

compressive deformation of ice, which will be presented in full in Chapter 4. The

model was chosen due to the fact that it includes the effect of both viscoelasticity

and damage on the deformation of ice, which have been shown to be key compo-

nents of the development of hpz s. A brief introduction to other constitutive models

is presented and discussed here for completeness.

Numerous constitutive models have been proposed, generally for the case of ice

subjected to increasing loads only (Santaoja, 1990; Sinha, 1978); these models do

not effectively simulate the observed load drops during cyclic or saw-tooth loading.

Several models have been proposed which attempt to rectify this omission.

One of the more promising such models, developed in Derradji-Aouat (1992; 2000;

2003) and Derradji-Aouat et al. (2000), sought to describe the deformation behaviour

of ice under any loading scenario. The total strain was composed of elastic, viscoelas-

tic, and viscoplastic terms, similar to the delayed elastic and viscous creep terms used
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elsewhere, along with an additional term representing the effect of microcracking de-

velopment. The effect of strain rate, temperature, hydrostatic pressure, salinity, and

grain size on the various strain terms was also accounted for. Good agreement with

experimental evidence was found under a variety of scenarios, particularly after the

addition of a brittle failure envelope for ice subjected to high strain rates (> 10−3 s−1,

which accounted for the transition to purely brittle deformation. The model lacks

for only a term to describe the extensive dynamic recrystallization observed in most

ice-structure interactions; as such, the model of Jordaan and others, which already

possessed such a term, was used as the basis for this work.

Gagnon (2011) describes a numerical model for ice crushing where the ice has been

modelled as a crushable foam, a material with a Poisson’s ratio of practically zero

(i.e. no lateral expansion will occur under a uniaxial stress), a decision unsupported

by experimental evidence; studies of ice properties report a Poisson’s ratio of approx-

imately 0.3 during elastic deformation, while a value of 0.5 is generally assumed for

plasticity models after yielding has occurred. Two main assumptions are made in

the development of this model: 1) that rapid melting due to the viscous flow of melt

water at the surface of the centre of the hpz, here referred to as a “hard” zone, plays a

significant role in the deformation behaviour of ice, and; 2) that spalling controls the

size and shape evolution of the hard zones and that they occur at regular intervals.

The viscous heating hypothesis was previously discussed in Section 2.6.7 and its

shortcomings highlighted. To summarize, viscous heating is generally inconsequential

for a low viscosity, high heat capacity liquid such as water, and no credible evidence

has been presented to the contrary for the case of ice-structure interactions.

As for the second assumption, while spalling does play a significant role in the
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development and failure of hpz s, the occurrence of spalling is highly probabilistic in

nature while also not the sole cause of the load drops observed during saw-tooth load-

ing; the pressure scans of Wells et al. (2011), O’Rourke et al. (2016a), and O’Rourke

et al. (2016b) show that there is little to no change in hpz area during the majority

of load drops, indicating that most load drops are due to the failure and extrusion of

the damage layer. In this case, spalling, if it occurs at all, occurs outside the contact

area, and plays an insignificant role in the observed load.

Finally, the model is independent of both time and damage; viscoelastic defor-

mation and changes in microstructure are not considered. Combined with the use of

unproven underlying assumptions, this model is deemed inappropriate for the study

of ice-structure interactions.
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Chapter 3

Experimentation

Triaxial compression tests are used to examine a particular region of interest within

a hpz, from the high-pressure region at the centre of the hpz to the low-pressure,

high-shear regions on the periphery. While the failure behaviour of triaxially com-

pressed specimens may differ from that which is observed during a full indentation

experiment, possibly due to the absence of the intense stress gradient present during

indentation experiments, the results of triaxial compression tests have been found

to closely resemble the material behaviour observed within specific regions of a hpz,

particularly with regards to the accumulation of microstructural damage.

The exploratory test series described in the following sections was focused on the

examination of ice deformation behaviour under excessive shear. The results of these

tests are used to improve the damage model of ice described in Chapter 4.
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3.1 Specimen Preparation

Ice was prepared as per Stone et al. (1989), with some modifications. Granular

blocks of ice were grown from 2 – 3.35 mm seed ice that had been flooded with

distilled, deionized, and deaerated water. The seed ice was obtained by crushing and

sifting sculptors ice (growth process minimizes air content and grain volume) via a

commercial ice crusher and copper sieves of the appropriate mesh size. The remaining

crushed ice of size greater than 3.35 mm was also flooded with distilled, deionized,

and deaerated water, frozen into ice blocks, then crushed to obtain further seed ice.

This process produced ice blocks with grains of approximately 3 – 5 mm, slightly

larger than the seed ice itself.

The resulting ice block was machined into cylinders approximately 150 mm in

length and 70 mm in diameter using a bandsaw and lathe installed in the cold room.

Efforts were made to test samples immediately after machining, so as not to expose

them to the cold room defrost cycles. If this was not possible, the samples were stored

in a separate insulated cooler within the cold room at temperatures of -10 ◦C until

testing, to prevent significant changes in the sample microstructure.

Ice samples were mounted to hardened-steel end platens with a matching diame-

ter (approximately 70 mm) within a Structural Behaviour Engineering Laboratories

Model 10 triaxial cell. The specimen assembly was enclosed in a latex membrane

to exclude the confining fluid, as seen in Figure 3.1. Silicone oil was chosen as the

confining fluid, as per the earlier studies of Barrette and Jordaan (2003) and others.

The fluid was supplied by a pressure intensifier that could apply confining pressures

of up to 70 MPa. The entire test series took place at an environmental temperature
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Figure 3.1: Triaxial equipment prior to testing.

of -10 ◦C.

3.2 Equipment and Procedure

A Materials Testing Systems (MTS) test frame was used to supply the axial load

necessary to deform the samples. The system was rated for a maximum applied load

of 500 kN, which corresponds to a nominal stress on the ice samples of approximately

130 MPa. Two load cells were used to measure the axial load applied to the ice
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samples, one inside the triaxial cell, the other out; the internal cell is used to measure

the difference between the applied axial load and the axial load supplied by the

confining pressure, while the external cell measures the total applied load. Both cells

are rated for a maximum load of 500 kN, to match the test frame. The confining

pressure, ram displacement, and loads were all recorded via the test frame’s data

acquisition software.

Contact between the ice sample and ram was made prior to the start of testing

to ensure that the ram displacement would proceed in the desired direction; previous

investigators found that the ram would sometimes proceed in the opposite direction

otherwise. The confining pressure was then applied slowly at a rate of 18 MPa/hr

to minimize heating of the ice sample. This is consistent with the time necessary

to maintain temperature equilibrium in the work of Barrette and Jordaan (2003),

although in that study the confining pressure was applied in a series of steps instead

of at a constant rate. Force control was then used to apply a near-instantaneous,

constant axial load (corresponding to the desired nominal von Mises stress) until the

desired total engineering strain was reached or sample failure occurred. The axial

load was then quickly removed and the confining pressure slowly reduced to ambient

pressure.

The samples were immediately examined post-testing to check for signs of failure

and leakage through the latex membrane. Samples were photographed, numbered,

and packaged within plastic bags, then stored within an insulated cooler in an external

freezer at a temperature of -30 ◦C for later thin sectioning.

To examine the microstructure of samples, thin sections were prepared using a

bandsaw and microtome. A bandsaw was used to make an initial section approxi-
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mately one cm thick. This section was then frozen to a clean glass slide using beads

of supercooled water. The exposed surface was then shaved down to produce a flat

surface for further microtoming. This surface was securely frozen to another slide

with additional water. The sample was then microtomed down to the desired thick-

ness. A thickness of approximately 0.3 mm was found to be necessary to produce the

highest quality thin section photographs under both polarized- (used to highlights

grains and grain boundaries) and side-lighting (used to highlight cracking).

3.3 Large Deviatoric Stress Tests

This test series was designed to extend the constant hydrostatic pressure data of

Meglis et al. (1999) to higher deviatoric stresses. As per their work, a hydrostatic

pressure of 55 MPa was examined for the majority of tests, with a single exploratory

test at a higher pressure of 70 MPa. The test parameters are listed in Table 3.1. Note

that repeat tests were used to assess the capabilities of the test system and the data

acquisition software.

Each test was designed to deform to an axial engineering strain of 40% under a

constant axial load and confining pressure. The majority of the samples failed via

shear faulting within a few percent axial strain, prior to reaching the desired von

Mises stress or hydrostatic pressure. An example failure is shown in Figure 3.2.
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Table 3.1: Planned nominal stress conditions for latest test series.

Test Confining Pressure von Mises Stress Hydrostatic Pressure

(MPa) (MPa) (MPa)

11 49 18 55

1a1 49 18 55

21 49 18 55

31 49 18 55

4 45 30 55

5 45 30 55

61 53 6 55

7 40 45 55

8 40 45 55

9 60 30 70

1 Repeat test of conditions studied by Meglis et al. (1999)
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Figure 3.2: Example of shear faulting during triaxial compression. Deformation took

place under a confining pressure of 40 MPa and a nominal axial stress of 85 MPa.

3.4 Corrections and Calibrations

The standard triaxial compression experiment takes place under a constant axial load

and confining pressure. As such, the applied axial stress actually decreases with in-

creasing deformation as the cross-sectional area of the sample increases. Fortunately,

ice has been shown to maintain an approximately constant volume (measured at at-

mospheric pressure) under triaxial compression (Melanson, 1998) with some minor
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deviations due to extrusion around the platens. With the further assumption that

the sample deforms uniformly (i.e. barrelling of the samples is ignored), the cross-

sectional area, A, is given by:

A = A0
L0

L
(3.1)

where A0 is the initial cross-sectional area, while L and L0 are the current and initial

sample lengths. Note that some deviation from the constant volume assumption is

to be expected; the application of a hydrostatic pressure, p, will cause a reduction in

volume approximately equal to the inverse bulk modulus, K−1 per MPa of applied

pressure, or:

∆V

V
≈ p

K
(3.2)

where ∆V is the change in volume and V is the initial volume. Under a hydro-

static pressure of 70 MPa, the maximum hydrostatic pressure applied here, the elastic

change in volume amounts to less than a percent, and can be safely ignored.

Under these assumptions the true axial stress during deformation is estimated to

be:

σt =
F

A
=

FL

A0L0

= σeng
L

L0

= σeng(1 + ϵeng) (3.3)

where F is the applied axial load, σt and σeng are the axial true and engineering

stresses, respectively, and ϵeng is the engineering strain in the axial direction.

The fact that the true stress does not remain constant complicates the damage

analysis slightly; the constant axial load results must be used to estimate the true

strain that would have resulted from the desired constant stress test. A constitutive

86



relation is necessary; in this case, the true strain rate in the axial direction, ϵ̇t, is

assumed to obey Glen’s law:

ϵ̇t = Bσn
t (3.4)

where B and n are constants that are assumed to be independent of stress. The

estimated true strain is then:

ϵ̇est = ϵ̇t

(
σc
σt

)n

(3.5)

where ϵ̇est is the true strain that would result from the application of a constant stress,

σc. Note that this estimate does not take into account the effect of damage on the

strain rate. Assuming that the creep enhancement factor can be accurately applied

to Glen’s law:

ϵ̇t = Bσn
t e

βSt (3.6)

ϵ̇est = ϵ̇t

(
σc
σt

)n

eβ(Sc−St) (3.7)

where St is the damage accumulated during the constant load test and Sc is the

damage that would have accrued under a constant stress test.

St can be estimated from Equation 3.6 by taking the natural logarithm:

ln(ϵ̇t) = βSt + lnB + n lnσt (3.8)

which, for the special case of a constant damage rate, Ṡt, becomes:

ln(ϵ̇t) = βṠtt+ lnB + n lnσt (3.9)

The damage rate can therefore be acquired from the slope of the natural logarithm

of the strain rate vs. time curve. At this stage the initial transitory behaviour of the
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ice has ended but runaway creep has not yet begun, after which the model no longer

applies. Sc is currently estimated using the same process applied to Equation 3.5.

The above process has been used by Xiao (1997) and Li (2002) to calibrate the

damage model. The resulting damage rates are plotted in Figures 3.3a and 3.3b for

reference. It would be preferable to conduct constant axial stress tests, and thus avoid

the calibration process. To accomplish this, the axial load would have to be modified

with increasing strain as:

F =
F0

1 + ϵeng
(3.10)

where F and F0 are the current and initial applied axial loads, respectively. The dam-

age parameters could then be calculated directly, without the need for calibrations,

and used when calibrations are required in later tests. Unfortunately, this option was

not available during this test series; it was not possible to define the load command

in terms of other variables due to limitations in the test software.

3.5 Results and Observations

Previous investigators (Li et al., 2005) found that samples under triaxial compression

were more likely to fail via strain localization at both low and high confining pressures

than at medium confining pressure, as well as high temperatures. This is consistent

with the general observation that ice becomes stronger at confining pressures between

the two extremes, where microcracking is suppressed but dynamic recrystallization

and pressure melting have yet to become a significant factor in the deformation be-

haviour of ice.
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(a)

(b)

Figure 3.3: Damage rates of a) Xiao (1997) and b) Li (2002)
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The tests of Meglis et al. (1999) took place at nominal von Mises stresses (σ1−σ3

for a standard triaxial test) ranging from 6 MPa to 18 MPa. The new test series was

designed to examine von Mises stresses of 30 and 45 MPa. It was found that, unlike

the work of Meglis et al. (1999), the ice samples failed due to strain localization,

without exception, producing a 45◦ shear fault similar to the one shown in Figure 3.2

in all cases. The loading conditions for each test, converted to nominal stresses for

ease of analysis, are provided in Figures 3.5. None of the tested samples are able to

reach the desired axial load, as seen more clearly in Figure 3.4; the ice appears to be

unable to elastically support a von Mises stress greater than approximately 26 MPa.

This point will hereafter be referred to as sample failure for ease of communication.

The plateaus observed after the application of the axial load are actually post sample

failure; the samples can no longer maintain the previous loading rate, but the DAQ

attempts to reach the desired load until the failure is detected some time later, at 80

% of the maximum axial load.

Similar behaviour is observed for all other high shear tests. Table 3.2 lists the ob-

served von Mises stress at failure for each test, along with the loading rates observed

prior to failure and the strain rates observed post-failure. The failure stresses are

remarkably consistent, with a mean failure stress of 26.0 MPa and a standard devia-

tion of only 1.6 MPa. The minor differences between tests are likely due to changes

in confining pressure, with the stress at failure decreasing with increasing confining

pressure. The loading rate appears to have no bearing upon the observed failure

stress; the loading rate was found to be insufficient to produce a near-instantaneous

load during test 4, and was subsequently increased in further tests. Comparing tests

4 and 5, an increase in loading rate of a factor of 30 produced an increase in stress
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Figure 3.4: Nominal von Mises and axial stresses during test 7. The load command

issued by the DAQ software, converted to the corresponding nominal stress on the

ice sample, is plotted for comparison. The sample is seen to have failed within 15 ms

of the application of stress, as noted by the black circle. Note that there is a minor

delay between the readings of the external and internal load cells

difference at failure of 0.14 MPa, an increase of approximately half a percent.

With failure occurring in such a short amount of time, it is reasonable to assume

that the deformation is mostly elastic in nature; for example, the amount of damage

enhanced creep strain produced by the loading conditions of test 7 is estimated to be

approximately 7 × 10−6, or less than one thousandth of a percent. Figure 3.6 shows

the engineering and true strain for test 7, along with the expected elastic strain

at sample failure, assuming isotropic material behaviour with an elastic modulus of

9.5 GPa (theoretical upper limit on elastic modulus of ice, generally only observed

during high-frequency vibration tests) and a Poisson’s ratio of 0.3. The expected
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(a) Test 4, Pc = 45, s = 30 (b) Test 5, Pc = 45, s = 30

(c) Test 7, Pc = 40, s = 45 (d) Test 8, Pc = 40, s = 45

(e) Test 9, Pc = 60, s = 30

Figure 3.5: Nominal von Mises and axial stresses during testing. The tests were

programmed to maintain confining pressures ranging from 40 to 60 MPa and to reach

nominal von Mises stresses of 30 or 45 MPa. The load command issued by the DAQ

software, converted to the corresponding nominal stress on the ice sample, is plotted

for comparison. Loss of elastic strength in each sample is observed to occur at a von

Mises stress of approximately 26 MPa, noted by the black circles, prior to reaching

the desired axial stress.
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Table 3.2: Shear stress and loading rate at elastic breakdown, strain rate post-failure.

Test 4 5 7 8 9

Confining Pressure (MPa) 45 45 40 40 60

Maximum Stress Difference (MPa) 25.08 25.22 27.44 27.77 24.30

Loading Rate (MN/s) 0.11 3.4 7.7 7.5 5.1

Axial Strain Rate (s−1) 0.105 0.109 0.281 0.273 0.114

elastic strain makes up only a third of the observed strain; an elastic modulus of

less than 0.8 GPa is necessary to produce the observed elastic strain at failure. The

samples continued to deform after the apparent loss of elastic strength in a manner

consistent with viscous deformation, following a power law relationship with a power

of approximately n = 3.

These results indicate that strain localization is heavily dependent upon the ap-

plied shear stress; the majority of these tests took place at a hydrostatic pressure of

55 MPa, a pressure that Li et al. (2005) found to suppress strain localization at tem-

peratures less than -6◦C when a von Mises stress of 15 MPa was applied. Here, each

sample failed due to strain localization at a von Mises stress of approximately 26 MPa,

above which the ice could no longer sustain elastic stress (stress is still supported via

viscous components, as seen in Figures 3.5). Further experimentation is necessary, as

five samples are insufficient to confirm these results. Further studies may also wish

to determine the relation between stress at elastic failure and the applied confining

pressure and axial stress.

The implications of this high-pressure elastic softening will be discussed further
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Figure 3.6: Engineering and true strain during test 7. The test was conducted under

a confining pressure of 40 MPa and was programmed to reach a nominal von Mises

stress of 45 MPa. The expected elastic strain (--) assuming linear isotropic elasticity

for the stress conditions at sample failure is added for comparison. Note that failure

occurs when the slope changes, at approximately t = 8022.62 s.

in Chapter 4.

3.5.1 Microstructure

Thin sectioning of some of the test samples was undertaken to examine the resulting

microstructure. Due to unforeseen delays, thin sectioning could not be completed for

several months post-testing. Samples were stored at -30 ◦C for this period of time,

to minimize static recrystallization, which refers to any process by which grains may

grow and/or rearrange to reduce internal energy while not undergoing deformation.
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(a) (b)

Figure 3.7: Microstructure of untested sample under polarized lighting.

Thin sections of an untested sample are provided in Figure 3.7 to serve as a baseline

for comparison. The majority of the grains are seen to be only a couple millimetres

in diameter, comparable to the size of the initial seed ice, with the largest grains

being approximately five millimetres in diameter. This is unsurprising, given both

the growth process and the extended period of time prior to thin sectioning.

By comparison, the thin sections of tested samples show little sign of static re-

crystallization, as seen in Figure 3.8a, indicating that the observed microstructure

should indeed correlate to the deformation processes produced during testing of the

samples. This test was also used as a comparison to the experiments of Meglis et al.
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(a) (b)

Figure 3.8: Microstructure of sample 6, in its entirety. Sample was deformed under a

confining pressure of 53 MPa at a nominal von Mises stress of 6 MPa. a) uses polarized

lighting conditions to highlight the grain structure, while b) uses side-lighting to

highlight microcracking. The observed extensive dynamic recrystallization is common

for samples that undergo uniform grain refinement.

(1999). Unfortunately, the matching thin sections for these test conditions are not

available. However, the resulting microstructure is as one would expect, with high

levels of dynamic recrystallization and comparatively little microcracking, which has

been suppressed by the high confining pressure.

As the von Mises stress is increased a new failure regime is observed; a large region

around the fault line is observed to be highly damaged, while the remainder of the

sample is practically undamaged, comparable to the microstructure of the untested

sample. This is shown in Figures 3.9a, 3.10a, and 3.11a. The corresponding im-
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ages under side-lighting show that less and less microcracking occurs with increasing

confining pressure, indicating that the majority of the damage is due to dynamic

recrystallization.

The faults are observed to occur in the topmost region of each sample, likely due

to differences in the end-platens; the bottom platen is fixed to the base of the triaxial

cell, while the top platen rests on the ice sample and is free to rotate. Imperfections,

due to scratching, corrosion, etc., at the contact surfaces of the plunger and/or top

platen may then lead to the uneven application of stress within the topmost region

of the ice samples.

There are some interesting differences between the samples. The damage in Figure

3.9a forms an x-shaped shear band, with relatively undamaged regions between, as

found in the triaxial simulations of Li (2002); the other samples form only a single,

large shear band.

The topmost region in Figure 3.10a was found to be relatively undamaged, indi-

cating that the regions near the end-platen are not always zones of high damage; it

is likely in this case that some internal stress concentration immediately focused a

significant amount of damage within the sample, away from the ice surface.

Finally, the tests show that higher confining pressures lead to recrystallization

being dispersed throughout the sample, as seen in 3.11a. This is also consistent with

the results of earlier investigators, who found that samples that failed under high

confining pressure were likely to be highly recrystallized throughout.
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(a) (b)

Figure 3.9: Microstructure of sample 5, deformed under a confining pressure of 45

MPa.
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(a) (b)

Figure 3.10: Microstructure of sample 8, deformed under a confining pressure of 40

MPa.
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(a) (b)

Figure 3.11: Microstructure of sample 9, deformed under a confining pressure of 60

MPa.
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Chapter 4

Constitutive Modelling

In this chapter a constitutive model for the compressive deformation of ice is presented

and examined. Originally published by Jordaan and McKenna (1988a;b), the model

is based on the power law relation of Glen (1955) and the non-linear viscoelastic

damage formulation of Schapery (1981; 1984; 1991; 1997a;b), and has been expanded

by numerous authors (Li, 2002; Liu, 1994; Moore et al., 2013; Xiao, 1991; 1997) to

include additional effects, particularly the hydrostatic pressure on the sample. The

model is reproduced here for completeness. Modifications and additions, including a

new, temperature-dependent damage function, are then introduced, and their effects

examined.

4.1 Mechanical Model

The deformation of ice is a complex process whose properties are strongly influenced

by the presence of damage. The non-linear Burgers model is considered a practical

model for the primary and secondary creep response of many viscoelastic solids, in-
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Maxwell unit

EM
µM

Kelvin unit

EK

µK

Figure 4.1: Basic composition of Burgers model for viscoelastic behaviour.

cluding ice. The model consists of a combination of the Maxwell and Kelvin units

with non-linear dashpots aligned in series, as seen in Figure 4.1. The spring of the

Maxwell unit models the initial elastic response of the sample while the dashpot

models the creep response, which continually increases under stress. The Kelvin unit

models the delayed elastic response of the sample, with strain increasing to a plateau

under constant stress, as seen in the example response of Figure 4.2. It should be

noted that an infinite series of Kelvin units with varying properties is required to

accurately model the viscoelastic behaviour of real materials. Known as the Broad

Spectrum Approach, this level of precision is both numerically intensive and, as noted

by Xiao (1991) and Melanson (1998), unnecessary when viscous deformation domi-

nates. Instead, a single Kelvin unit representing the average delayed elastic response

was used for this model.

The response of the model to a uniaxial stress can be described by the combination

of elastic, delayed elastic, and secondary creep strains:

ϵ = ϵe + ϵd + ϵc (4.1)

The elastic component is given by:

ϵe =
σ

EM

(4.2)
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Figure 4.2: Basic response of the non-linear Burgers model to a constant uniaxial

stress.

where σ is the axial stress and EM is the elastic modulus of the Maxwell spring. The

delayed elastic and secondary creep strains are derived from the strain rates of the

Kelvin and Maxwell units, respectively:

ϵ̇d =
σ

µK

(4.3)

ϵ̇c =
σ

µM

(4.4)

where µK and µM are the viscosities of the Kelvin and Maxwell dashpots. Assuming

both dashpots follow a power law relationship with stress, their strain rates can be
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represented by:

ϵ̇d = ϵ̇d0

(
σd

σ0

)n

(4.5)

ϵ̇c = ϵ̇c0

(
σ

σ0

)m

(4.6)

where ϵ̇d0 and ϵ̇
c
0 are the delayed elastic and secondary creep strain rates at the reference

stress, σ0 = 1 MPa, n and m are constants, and σd is the stress in the Kelvin dashpot,

given by:

σd = σ − EKϵ
d (4.7)

where EK is the elastic modulus of the Kelvin spring. The viscosities can therefore

be represented by:

µK =
σ

ϵ̇d0

(
σ0
σd

)n

(4.8)

µM =
σ

ϵ̇c0

(
σ0
σ

)m

(4.9)

Extension to three dimensions follows a similar approach. The total strain is again

described by a combination of elastic, delayed elastic, and secondary creep strain:

ϵij = ϵeij + ϵdij + ϵcij (4.10)

The elastic strain can be described by any desired formulation. Here the linear

isotropic form is used for convenience:

ϵeij =
1 + ν

EM

σij −
ν

EM

σkkδij (4.11)

where δij is the Kronecker delta, which is equal to one when i = j and zero otherwise.
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The delayed elastic and secondary creep strains can be conveniently expressed in

terms of their deviatoric components, eij, and volumetric components, ϵv:

ϵdij = edij + ϵdv (4.12)

ϵcij = ecij + ϵcv (4.13)

where the deviatoric components describe the change in shape of the sample, while the

volumetric components describe the change in volume. Note that this volume change

is due to the accumulation of damage within the sample and is not an inherent result

of creep deformation.

Assuming that creep behaviour is isotropic and that the normal and shear viscosity

coefficients are identical, the deviatoric strain rates can be described by:

ėdij =
3

2

(
sij
µK

)
(4.14)

ėcij =
3

2

(
sij
µM

)
(4.15)

where sij = σij −
1

3
σkk is the deviatoric stress tensor. The von Mises stress, s, is used

to define unique viscosity coefficients, given by:

µK =
s

ϵ̇d0

(
s0
sd

)n

(4.16)

µM =
s

ϵ̇c0

(
s0
s

)m

(4.17)

where the von Mises stress is defined as:

s =

√
3

2
sijsij (4.18)

and sd is the von Mises stress in the Kelvin dashpot, given by:

sd = s− EKe
d (4.19)
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where ed is the equivalent delayed elastic strain, which can be shown to be equal to

the strain when sij = s. Note that the absolute value of sd must be taken and a sign

function, sgn, applied as follows to ensure that delayed elastic recovery occurs:

(
sd
)n

= sgn
(
s− EKe

d
)
|s− EKe

d|n (4.20)

Otherwise, any even value of n would always produce a positive value of ed, which

would lead to an increase in delayed elastic strain from a decrease in applied stress

instead of the expected delayed elastic recovery.

Combining Equations 4.14, 4.15, 4.16, 4.17, and 4.20, it is found that:

ėdij =
3

2
ϵ̇d0 sgn

(
s− EKe

d
)( |s− EKe

d|
s0

)n
sij
s

(4.21)

ėcij =
3

2
ϵ̇c0

(
s

s0

)m
sij
s

(4.22)

which, assuming the volumetric components are negligible, reduces to the uniaxial

formulation described in equations 4.1-4.9 under a uniaxial stress. Using the von

Mises stress to define the viscosities is thus both consistent and convenient, though

its positive-definite nature does produce some complications that must be accounted

for, as discussed further in Section 4.2.

To obtain the volumetric strain component the dilation of ice under compression

must be examined. Frederking et al. (1990) found that the density of ice at the

indentation surface decreased with distance from the centre of the indentor, with the

recrystallized ice at the centre having a density nearly identical to that of virgin ice.

This indicates that dilation due to microcracking occurs during the compression of

ice. Singh (1993) proposed an empirical equation for the volumetric strain rate of ice,
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ϵ̇v, under triaxial compression, given by:

ϵ̇v = −f3
p
s(ė− ėe) = −f3

p
s(ėd + ėc) (4.23)

where f3 is a constant, ė and ėe are the total and elastic equivalent strain rates of the

sample, respectively, while ėd, and ėc are the equivalent delayed elastic and secondary

creep strain rates, which are represented by:

ėdij =
sij
s
ėd (4.24)

ėcij =
sij
s
ėc (4.25)

The total strain rate is then:

ϵ̇ij = ϵ̇eij + ėdij + ėcij + ϵ̇vδij (4.26)

4.2 Damage Evolution

The formulation of Section 4.1 does not account for enhanced creed due to the accu-

mulation of damage; a damage evolution factor is necessary to describe the effect of

microstructural change on the creep response of ice. The theory behind such damage

factors has been described in detail in Section 2.5.

Early investigations focused on the effect of microcracking on the deformation of

ice. An early model, developed by Xiao (1991) and Xiao et al. (1991), described the

effect of microcracking on the creep response of ice via the crack density, as detailed in

Jordaan and McKenna (1991) and Jordaan et al. (1990; 1992b). In short, the change

in crack density, Ṅ , was given by:

Ṅ = Ṅ0

(
e

σ−σc
σ0 − 1

)
(4.27)
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and subsequently reduced to:

Ṅ = Ṅ0

(
σ − σc
σ0

)m

(4.28)

where Ṅ0 is a reference rate, σ is the applied stress, σc is the stress required for crack

nucleation, σ0 is a reference stress, and m is a constant. This was used to estimate

an isotropic, bounded damage parameter, DN , as per the work of Budiansky and

O’Connell (1976), given by:

DN = a3N (4.29)

where a is half the crack length and N is the crack density. The effect of crack density

on the delayed elastic and creep response of ice was given as:

ϵ̇′ij = ϵ̇ije
βDN (4.30)

where ϵ̇ij and ϵ̇
′
ij are the undamaged and enhanced strain rates, respectively, and β is

a constant. This damaged enhanced creep formulation is similar to the approach of

Schapery (1981; 1984; 1991; 1997a;b), which allows for the examination of numerous

forms of damage within a similar format. Schapery defined an unbounded damage

parameter, given by:

S =

∫ t

0

f

(
σ

σ0

)q

dτ (4.31)

where S is the accumulated damage, f is a function of the material properties, known

as the damage function, σ and σ0 are the applied and reference stress, respectively,

and q is a constant.

Singh (1993) extended the formulation to multi-axial stress states by defining

the stress dependence in terms of the von Mises stress and included the effect of
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hydrostatic pressure, p, on the damage function, redefining f as f/p. The model was

refined in Singh and Jordaan (1996) to include the effect of porosity, based on earlier

work on crushed ice (Singh et al., 1995). Xiao and Jordaan (1996) refined the model

further, defining two damage factors; one for the creep response of ice, another for

the delayed elastic:

Sm,k =

∫ t

0

fm,k

p

(
s

s0

)qm,k

dτ (4.32)

where the subscripts m and k represent the Maxwell dashpot (corresponding to the

creep response) and Kelvin unit (corresponding to the delayed elastic response), re-

spectively. Liu (1994) accounted for the effect of pressure hardening by defining the

following pressure-dependent function, F (p):

Ṡ = S0

(
s

s0

)q

F (p) (4.33)

F (p) = F0

(
p0
p

)f

(4.34)

where S0, F0, q, and f are constants, while s0 and p0 are the reference von Mises stress

and hydrostatic pressure, respectively. Liu (1994) further defined a separate pressure

enhancement factor, G(p), to describe the softening effect of pressure melting:

G(p) = eαM (4.35)

Ṁ = G0

(
p

p0

)g

(4.36)

where α, G0, and g are constants. Combined, these produce enhanced delayed elastic

and viscous creep strain rates of:

ϵ̇′ij = ϵ̇ije
βSG(p) = ϵ̇ije

βS+αM (4.37)
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Figure 4.3: Transition from microcracking (f1) to dynamic recrystallization and pres-

sure melting (f2) with increasing hydrostatic pressure (p)

which is mathematically equivalent to the addition of another damage function, as

seen in Equation 4.37. Later models express this explicitly, defining separate damage

functions for low and high hydrostatic pressures:

S = S1 + S2 =

∫ t

0

(
f1(p) + f2(p)

)( s

s0

)q

dτ (4.38)

This was done in an effort to model the transition from microcracking to dynamic

recrystallization and pressure melting (Jordaan et al., 1999; Melanson et al., 1999b),

which can be seen in Figure 4.3.

Xiao (1997) altered the stress dependence of the dynamic recrystallization and

pressure melting damage function from a power law to an exponential, to better reflect

the effects of dynamic recrystallization on the creep response of ice, as described by

Jonas and Muller (1969). Simulations of the model have produced promising results,
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Parameter a1 a2 p1 p2 r1 r2 q1

Xiao 0.712 0.1 37 42.8 2 5-7 5

Li 0.7 0.12 50 50 2 6 2.4

Recalibration 0.983 0.1 11.1 42.8 N/A 5-7 5

Table 4.1: Calibration constants used in damage models of Xiao and Li. Values used

in recalibration of f1(p) are provided for comparison.

exhibiting the expected rise to peak stress followed by a drop in stress, as well as the

development of a highly damaged surface layer at the ice-indentor interface (Jordaan

et al., 1999; Li, 2002; Melanson, 1998; Xiao, 1997). The model is given by:

S = S1 + S2 =

∫ t

0

{
f1(p)

(
s

s0

)q1

+ f2(p)e
s/s0

}
dτ (4.39)

f1 = a1

(
1− p

p1

)2

[1−H (p− p1)] (4.40)

f2 (p) = a2

(
p

p2

)r2

(4.41)

where f1(p) is the microcracking damage function, f2(p) the dynamic recrystallization

damage function, and a1, a2, p1, p2, and r2 are calibration constants. S is used to

define the enhanced delayed elastic and viscous creep strain rates, as per Equation

4.30. The calibration parameters used by Xiao (1997) and Li (2002) are listed in

Table 4.1; they are used extensively in the finite element simulations described in

Chapters 5 and 6.

The latest model, developed by Moore et al. (2013), reproduced the pressure drop

via the deletion of excessively damaged elements, simulating the effect of extrusion

during ice-structure interactions. While interesting, the use of a deletion criterion was
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deemed unsatisfactory due to difficulties defining the contact surfaces post-element

deletion; element deletion was therefore not implemented here.

Several aspects of this model have been modified in the present program of work.

Firstly, it was noted that the cut-off pressure, p1, of the microcracking damage func-

tion was likely temperature dependent; ice is known to transition from dynamic re-

crystallization to microcracking with decreasing temperatures. The damage function

was therefore remodelled to remove the temperature dependence of the cut-off pres-

sure. Two models were considered; a power law formulation similar to the dynamic

recrystallization damage function, and a decaying exponential. The exponential form

was chosen to avoid a numerical singularity at zero pressure. The pressure-dependent

microcracking damage function then becomes:

f1(p) = a1e
(−p/p1) (4.42)

The strain rate data of Xiao (1997), Melanson (1998), and Li (2002) for hydro-

static pressures less than 30 MPa was used to perform the calibration, in an effort

to isolate the microcracking damage function from the effects of recrystallization and

pressure melting. The dynamic recrystallization pressure function was assumed to

be consistent with the new microcracking pressure function and was left unmodified.

The resulting calibration can be seen in Figure 4.4 and the fit parameters are found

in Table 4.1. Note that the error on the high-pressure data points is significant due

to the onset of runaway strain, as noted in Jordaan et al. (1999).

Secondly, the exponential function used to represent the effect of von Mises stress

on dynamic recrystallization produces a non-zero damage under pure hydrostatic
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Figure 4.4: Recalibration of microcracking pressure-dependent damage function.

pressure. This behaviour was rectified by normalizing the exponential:

S = S1 + S2 =

∫ t

0

⎧⎨⎩f1(p)
(
s

s0

)q1

+ f2(p)

(
es/s0 − 1

e− 1

)⎫⎬⎭ dτ (4.43)

where the divisor is implemented to insure that the von Mises stress function is equal

to unity at the reference stress, similar to the power law behaviour of earlier models.

This can also be achieved by using a geometric function:

S = S1 + S2 =

∫ t

0

{
f1(p)

(
s

s0

)q1

+ f2(p)
(
2s/s0 − 1

)}
dτ (4.44)

A comparison of the three formulations is provided in Figure 4.5. The origi-

nal exponential formulation is non-zero at a von Mises stress of zero, as described,

producing damage under a pure hydrostatic pressure. The normalized exponential

and geometric forms correct this behaviour and are nearly identical, though the nor-

malized exponential form does produce significantly higher damage at stresses much
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Figure 4.5: A comparison of the three formulations used to describe the von Mises

stress component of high-pressure damage function.

greater than the reference stress, s0.

Finally, it should be noted that, due to the positive definite nature of the von Mises

stress, the model can produce identical damage rates under different combinations of

confining pressure, Pc, and axial stress, σ1, as outlined here:

σ1 = p± 2

3
s

Pc = p∓ s

3

(4.45)

In other words, there are stress states with axial stresses both above and below the

desired hydrostatic pressure that produce identical amounts of damage. It is currently

unclear whether this corresponds to physical results, as this author is unaware of any

experiments examining this behaviour. However, it seems likely that the stress state

with higher axial stress (and therefore a higher axial strain rate) would produce more
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damage. Further examination of this behaviour is recommended.

4.2.1 Rate Equation Based Shift Function

As noted in Section 2.6.8, a shift function based on the rate equation can be used

to compare the results of tests conducted at different temperatures, as per Barnes

et al. (1971) and others. A review of the work of previous investigators is provided

to highlight the need for a temperature-dependent damage function; the formulation

of Barrette and Jordaan (2003) is given by:

ėij(T1) = ėij(T2) exp

[
Q(p)

Rg

(
1

T2
− 1

T1

)]
(4.46)

where Q(p) is the pressure-dependent activation energy. While applicable at temper-

atures lower than approximately -8 ◦C, this formulation does not take into account

the observed changes in either the pre-exponential or activation energy terms that

occur at higher temperatures; to accurately apply the shift function to triaxial ex-

periments, the effects of the hydrostatic pressure, von Mises stress, and temperature

must be accounted for separately. Assuming that both the pre-exponential factor and

the activation energy are dependent upon all three variables, we can represent the

strain rate as:

ϵ̇ = Af (s, p, T ) exp

[
−Q(s, p, T )

RgT

]
= Af (s)Af (p)Af (T ) exp

[
−Q(s)Q(p)Q(T )

RgT

]
(4.47)

assuming that separation of variables is possible. The ratio of strain rates at different
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temperatures can then be represented by:

ϵ̇(s, p, T )

ϵ̇(s, p, T0)
=
Af (s)Af (p)Af (T )

Af (s)Af (p)Af (T0)
exp

[
−Q(s)Q(p)Q(T )

RgT
+
Q(s)Q(p)Q(T0)

RgT0

]

=
Af (T )

Af (T0)
exp

[
Q(s)Q(p)

Rg

(
Q(T0)

T0
− Q(T )

T

)] (4.48)

While the stress dependence of the pre-exponential factor cancels, the temperature

dependence does not. To reproduce all experimental activation energy results, Af (T )

and Q(T ) must increase at a transition temperature variably found to be -10, -8, or -6

◦C by Glen (1955), Barnes et al. (1971), and Mizuno (1992), respectively, while Af (p)

and Q(p) must increase dramatically at very high pressures, as noted by Barrette

and Jordaan (2003). It has also been shown (Mizuno, 1992) that the activation

energy and pre-exponential term transition with increasing temperature occurs even

under hydrostatic pressure, at least up to intermediate pressures; it is unclear if this

behaviour extends to even higher pressures.

To model this behaviour, some assumptions about the form of Af (p) and Q(p) are

made. First, it is assumed that the results of Barrette and Jordaan (2003) represent

the transition from one plateau to another; the low pressure results are averaged to

provide a single value for all such pressures, while the values measured at 70 MPa

(the limit of testing) are assumed to represent the high-pressure plateau. This corre-

sponds to activation energies of 77.28 and 130.07 kJ/mol and pre-exponential terms

of 3.227·1012 and 1.81·1023, respectively. A linear extrapolation using the two high-

pressure data points is then applied to bridge the plateaus; the complete functions can

be seen in Figures 4.6. Finally, Q(T ) is assumed to take the form of a step-function

with values identical to those of Q(p) and a transition temperature of -8 ◦C. As per

the results of Barnes et al. (1971), this is assumed to correspond to an increase in
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Af (T ) of approximately 108.

While useful within temperature and pressure ranges where the activation en-

ergy remains constant, the shift function method generally fails otherwise; Figure

4.7 presents the natural logarithm of the minimum strain rate at temperatures from

-5 to -15 ◦C using the parameters from Table 2.1. The strain rate should increase

drastically as the depressed melting point is approached (at approximately 55 MPa),

which the shift function fails to produce. Instead, a temperature-dependent damage

function is necessary.

4.2.2 Temperature-Dependence of Damage

While useful when comparing the results of experiments performed at different am-

bient temperatures, the shift function does not model changing sample temperatures

or elucidate the underlying relation between damage and temperature. Experiments

have shown that the dominant microstructural change within an ice sample under

identical stress conditions but different temperatures will differ; microcracking will

dominate at low temperatures, while dynamic recrystallization dominates at high

temperatures. To represent this, a temperature dependent damage function is neces-

sary.

To illustrate, a brief exploration of the relevant material is provided. First, as-

suming that the temperature dependence is separable, the damage parameter can be

represented generally by:

S = S1 + S2 =

∫
{f1(p)f1(s)f1(T ) + f2(p)f2(s)f2(T )} dt (4.49)

where S1 and S2 are the microcracking and dynamic recrystallization damage factors
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(a) Activation energy

(b) Pre-exponential term

Figure 4.6: Pressure-dependent shift function parameters based on the results of

Barrette (2014).
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Figure 4.7: Natural logarithm of minimum strain rates at increasing temperatures

and pressures recreated from the results of Jordaan and Barrette (2014) and Barnes

et al. (1971).

respectively, and f(p), f(s), and f(T ) are functions dependent upon hydrostatic

pressure, von Mises stress, and temperature respectively.

Li (2002) defined a shift function similar to the Arrhenius relation to compare the

damage rate at different temperatures, given by:

Ṡ = {f1(p)f1(s) + f2(p)f2(s)} e
− Q

RgT (4.50)

which is equivalent to defining the temperature-dependent damage functions of Equa-

tion 4.49 as:

f1(T ) = f2(T ) = e
− Q

RgT (4.51)
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Taking the natural logarithm of the damage rate gives:

ln(Ṡ) = ln(Ṡ0)−
Q

RgT
(4.52)

By taking the natural logarithm of the damage rate and plotting it versus the

inverse temperature for a range of hydrostatic pressures, Li showed that this function

produced a decent fit to his data. Two of these plots have been reproduced in Figure

4.8. Note that the straight line fit of the 70 MPa data appears to diverge at high

temperatures, similar to the effect seen in Barnes et al. (1971); it is possible a change

in activation energy occurs here as well.

It should also be noted that this formulation is incompatible with the standard

shift function. Assuming that damage enhanced creep is given by:

ϵ̇′ = ϵ̇eS (4.53)

and that constant stress and temperature are applied, Li’s shift function reduces to:

S = Ṡ0ṠT t = {f1 (p) f1 (s) + f2 (p) f2 (s)} e
− Q

RgT t (4.54)

The ratio of strain rates under the same stress conditions but different tempera-

tures is then given by:

ϵ̇′(T1) = ϵ̇′(T2)e
Ṡ0(ṠT1

−ṠT2)t = ϵ̇′(T2)e
Ṡ0

(
e
− Q

RT1 −e
− Q

RT2

)
t

(4.55)

This form, while consistent with experimental results, does not describe the tem-

perature dependence of the microcracking or dynamic recrystallization damage func-

tions, and is thus of little interest. Instead, a damage function based on the thermal

“distance” from the melting point was developed; in this case, the effect of pressure

and temperature are inseparable.
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(a)

(b)

Figure 4.8: Damage rate vs. inverse temperature plots. Above are the results for 70

MPa confining pressure, below are the 15 MPa results. Recreated from Li (2002).
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Figure 4.9: High-pressure (S2) damage rates of Xiao and Li compared to the pressure,

distance from melting point, and homologous temperature. Environmental tempera-

ture is -10◦C.

In order to develop a temperature-dependent formulation for the high pressure

damage rate of ice, two assumptions were made and their results compared:

1. That the damage rate vs thermal distance from the melting point, ∆Tm =

T − Tm, is constant, or

2. That the damage rate vs homologous temperature, Th =
T

Tm
, is constant.

Under these assumptions, the pressure-dependent damage functions, f2(p), of Xiao

(1997) and Li (2002), obtained from triaxial compression tests at -10 ◦C, become either

f2(∆Tm) or f2(Th), as seen in Figure 4.9.

These functions can then be used as a master curve from which the damage
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parameter at other combinations of pressure and temperature can be obtained, first

by calculating the melting temperature, Tm, of ice at a given pressure, p, using:

δp

δT
=

Lf

T
(
Cwe(Aw−Kw) − Cie(Ai−Ki)

) (4.56)

where Lf is the latent heat of fusion, Aw/i and Kw/i are the integrals of the coefficient

of thermal expansion, αw/i, with respect to temperature and the compressibility, κw/i,

with respect to pressure, respectively, and Cw/i are the resulting integration constants:

Aw/i =

∫
αw/i(T )δT − CAw/i

(4.57)

Kw/i =

∫
κw/i(P )δP − CKw/i

(4.58)

Cw/i = exp
[
CAw/i

+ CKw/i

]
(4.59)

as outlined in the work of Nordell (1990). ∆Tm or Th can then be calculated, fol-

lowed by the corresponding pressure at the reference temperature, T0 = −10◦C. This

pressure can then be used to calculate the damage rate from the master curves, as

can be seen in Figure 4.10. Note that this relation only holds for pressures up to

approximately 220 MPa, past which the melting temperature begins to increase due

to the formation of other forms of crystalline ice. A numerical integration scheme

is required to solve Equation 4.56, as all parameters are temperature and pressure

dependent.

It should be noted that this formulation is limited by the range of possible pres-

sures at -10 ◦C; the damage rate is only defined for compressive forces, or pressures

greater than 0 MPa, while sample-wide pressure melting will occur at hydrostatic

pressures of approximately 117.6 MPa or greater. These limits correspond to a ∆Tm

of [−10, 0] and a Th of [0.9634, 1]. If a wider range is desired, a series of experiments at
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Figure 4.10: High pressure damage rates for temperatures ranging from -5◦C (left)

to -15◦C (right). Solid lines represent the results assuming that the rate is constant

with respect to the distance from the melting point, dashed the results assuming that

the rate is constant with respect to the homologous temperature. The results differ

only slightly, with the differences becoming more pronounced with distance from the

reference temperature. While the non-zero damage at p = 0 is unrealistic, damage is

not calculated under such a stress condition, and as such can safely be ignored.

-22 ◦C is recommended, which represents the lower limit of relation 4.56. The range

of applicability would then extend from a ∆Tm of [−22, 0] and a Th of [0.9195, 1].

Currently, f2(∆Tm) and f2(Th) are assumed to equal zero for values of ∆Tm and Th

that are less than these lower limits.

An in-depth examination of the response of this temperature-dependent damage

function is presented in Chapter 6.
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4.3 Elastic Damage

The effect of damage on the elastic properties of the sample must also be taken into

account to accurately model the compressive behaviour of ice. Multiple formulations

for elastic damage have been implemented and examined; the constant Poisson’s ratio

model, the constant bulk modulus model, and the crack-based model of Kachanov

(1993). Each can be defined in terms of a series of constants; C1, C2, C3, and C4:

E

E0

=
1

1 + C1S1

(4.60)

G

G0

=
1

1 + C2S1

(4.61)

ν

ν0
=

1 + C3S1

1 + C1S1

(4.62)

K

K0

=
1

1 + C4S1

(4.63)

where G and K are the shear and bulk moduli, respectively, while 0 represents the

initial value for each elastic property. It is important to note that microcracking

damage alone, represented by S1, should be used to describe elastic damage; the model

of Kachanov is based upon the presence of dilute microcracks, and does not provide a

theoretical basis for the accumulation of dynamic recrystallization or pressure melting.

The use of the full damage parameter, S = S1+S2, in the elastic damage formulation

is explored in the following sections only for the sake of completeness.

There is also some evidence to suggest that the elastic properties of ice do not

change under compressive damage (Jordaan et al., 1992b; Kalifa et al., 1992; Stone

et al., 1997), unlike the creep and delayed elastic behaviour. The effect of constant

elastic properties can also be examined by setting the constants in equations 4.60-4.63

to zero. The constants for each model are listed in Table 4.2.
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Model ν = ν0 K = K0 Kachanov

C1 1 1
16(1− ν20)(1− 3ν0/10)

9(1− ν0/2)

C2 C1
3C1

2(1 + ν0)

16(1− ν0)(1− ν0/5)

9(1− ν0/2)

C3 C1
C1

2ν0

8(1− ν20)

45(1− ν0/2)

C4 C1 0
16(1− ν20)

9(1− 2ν0)

Table 4.2: Constants for elastic damage models.

The effect of damage on elastic strain can be seen when applied to equation 4.11:

ϵeij =
1

E0

(
(1 + ν0)σij − ν0σkkδij + S1

(
(C1 + ν0C3)σij − ν0C3σkkδij

))
(4.64)

where σkk is the sum of the normal stresses, which is related to the hydrostatic pressure

by the equation p = σkk/3. In terms of the deviatoric and volumetric components

the elastic strain becomes:

ϵeij =
1

E0

(
(1 + ν0) sij + (1− 2ν0) pδij + S1

(
(C1 + ν0C3) sij + (C1 − 2ν0C3) pδij

))
(4.65)

The effect of damage on elastic strain under each model can be seen in Figures

4.11 and 4.12. All models produce an increase in elastic strain as damage accrues

under a constant stress. Only the constant bulk modulus model produces a constant

elastic strain with increasing damage under a constant hydrostatic pressure. Note

that this is only a concern when the exponential form of the high-pressure damage

function is used.

These damage forms are also used to describe the deterioration of the Kelvin

spring of the Burgers model, represented by EK . The results of different models
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Figure 4.11: Normalized elastic axial ( ) and lateral ( ) strains under uni-

axial compression for three elastic damage models. Note that the constant Poisson’s

and Bulk modulus models produce the same axial strain under these conditions.

Figure 4.12: Normalized elastic strains under hydrostatic pressure for three elastic

damage models.

127



under different conditions are shown in Figure 4.13. Unlike elastic strain, the delayed

elastic strain results depend upon the chosen applied stress and calibration.

Figure 4.13: Delayed elastic strain for three models of elastic damage under a confining

pressure of 30 MPa and a von Mises stress of 15 MPa. Note that the constant Poisson’s

and Bulk modulus models produce identical results.

4.4 Power Law Breakdown

It has long been known that a material undergoing creep deformation diverges from

power law behaviour under large uniaxial stresses. This is commonly referred to as

power law breakdown. The source of this breakdown is still debated, though evidence

suggests that the transition is one from a regime of homogeneous deformation to one

dominated by grain boundary sliding (Nabarro, 2004).
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Empirical modelling of this behaviour generally produces an exponential stress-

dependence (see Jonas et al. (1969) for an example). Garofalo (1963) proposed the

use of the hyperbolic sine function, sinh, to accurately model the full range of stress

behaviour in metals. The function was successfully applied to ice under uniaxial stress

conditions by Barnes et al. (1971), using the following model:

sinhn ασ ≈

⎧⎪⎪⎨⎪⎪⎩
(ασ)n : ασ < 0.8

enασ

2n
: ασ > 1.81

(4.66)

where n is the standard power law exponent, α is a normalization factor, and σ is the

applied uniaxial stress. The ασ limits are chosen such that the results of the limit

functions differ from the results of the sinh function by less than 10 %, as can be seen

in Figure 4.14.

To discern whether power law breakdown is a concern under the conditions of

interest during an ice-structure interaction, the data Meglis et al. (1999) gathered from

triaxial compression experiments on ice was inspected for signs of divergence from

power law behaviour. As per that work, the stress and strain rates were examined

at strains from 2 % to 40 %. The minimum strain rate and the corresponding true

stress were also extracted from the available raw data. Data points where the sample

could no longer support stress, hereafter referred to as outliers, were ignored during

the data analysis. The outliers were isolated by comparing the ratio of current stress

to initial stress; it was found that a ratio of less than 0.5 was always associated with

the samples inability to support stress, as illustrated in Figure 4.15 for a total strain

of 40 %.

1Note that the value of 1.2 printed in Barnes et al. (1971) appears to be a typo
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Figure 4.14: Example behaviour of sinh function and its limits over relevant ασ range.

A value of n = 3 was used.

The full data set is recreated in Figures 4.16. A notable increase in strain rate

is observed with increasing strain. Signs of divergence from power law behaviour are

observed to begin at strains of 20 % and greater, which likely corresponds to the point

at which secondary creep begins to dominate the strain rate behaviour.

All data sets show signs of a secondary trend consisting of significantly higher

strain rates at low stresses, as seen in Figure 4.17. This appears to correspond to the

data noted as outliers in Figure 4.15. These data points are likely associated with

strain localization (SL) and are ignored during the analysis of power law breakdown;

the remaining data points are assumed to undergo uniform grain refinement (UGR).

A linear fit to the natural logarithms of the strain rate and stress data at lower

strains was used to provide a baseline comparison to the work of Meglis et al. (1999)
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Figure 4.15: Internal true stress and true strain during test IT960812. The coloured

circles represent increasing levels of strain, from 2 % up to 40 %.

and others; assuming a power law relation, the slope will provide the value for

the exponent n, while the intercept, b, will provide a limiting function for the pre-

exponential term, A, and the normalization constant, α, of the form:

eb = Aαn. (4.67)

The fit produces satisfactory results when applied to the data points that under-

went UGR, with n ranging from 2.75 at 2 % strain up to 3.65 at 10 % strain and

b ranging from -13.9 to -14.1, with adjusted R2 values of 0.76 or greater. Note that

the results for n are significantly lower than those reported by Meglis et al. (1999),

possibly due to the exclusion of data deemed associated with strain localization in

this work.

While the linear fit fails to adequately describe the the full range of data, it can
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Figure 4.16: Meglis et al. (1999) strain rate vs stress data at increasing levels of strain.

be used to provide a suitable estimate of the parameters of Equation 4.66 if the

data points associated with power law breakdown are ignored. Since the y-intercept

provides only a limiting function for α and A, assumptions on their form must be

made. The average value of α = 0.27 from Barnes et al. (1971) was found to provide

a satisfactory starting point, as seen in Figure 4.18.

Noting that deviations from power law behaviour appear only after reaching 20 %

strain, it seems plausible that observed behaviour may be due to damage accumulation

instead of power law breakdown. Sorting the data based on the hydrostatic pressure

produces Figure 4.19; the data with strain rates significantly greater than the power-

law fit line all correspond to either high or low hydrostatic pressures, which map to

the conditions where strain localization and excessive damage are more likely.

Given these results, it would seem reasonable to conclude that power law break-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Strain rate data at range of % strains. The total strain increases from

(a)-(f) as follows: 2 %, 5 %, 10 %, 20 %, 30 %, and 40 %.

down is suppressed during the triaxial compression of ice, at least for the von Mises

stresses examined here. Since power law breakdown is known to occur under uniaxial

test conditions, the calibration values of Barnes et al. (1971) should be thought of as
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Figure 4.18: Sinh fits to Meglis et al. (1999) data at 40 % strain with α ranging from

0.2 to 0.3.

a lower limit, with a pressure-dependent α of the form:

α(p) = 0.27e−
p
pn (4.68)

where pn is some normalization constant. Taking power law breakdown into account,

the modified formulation for secondary creep becomes:

ėcij =
3

2
ϵ̇c0

(
sinhα(p)s

sinhα(p)s0

)m
sij
s

(4.69)

which reduces to the reference strain rate of Sinha (1978) under uniaxial conditions

when s = s0.
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Figure 4.19: Meglis data at 40 % strain color-coded based on hydrostatic pressure.

The dashed line represents the power-law fit to the data, as per Figure 4.18

4.5 Summary of Additions to Model

Numerous modifications and additions, both major and minor, to the constitutive

model of earlier investigators have been presented in this Chapter; a brief summary

of these changes is provided here for the sake of clarity:

1. The definition of the deviatoric delayed elastic strain rate, ėdij, was modified to

include the absolute value of the von Mises stress in the Kelvin dashpot, sd, and

apply the sign function to the same stress. Otherwise, delayed elastic recovery

would never occur in cases where the power law exponent, n, was even.

2. The definition of the pressure-dependent microcracking damage function, f1(p),

was changed from a quadratic relation to a decaying exponential. This was done
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in order to remove its dependence on a cut-off pressure, which was highly likely

to be temperature dependent; the transition from microcracking to dynamic

recrystallization requires larger pressures at lower temperatures.

3. The exponential function used to describe the effect of von Mises stress on high-

pressure damage, f2(s), was normalized such that f2(0) = 0 and f2(s0) = 1, as

per the original power law expression.

4. The shift function previously used to describe delayed elastic and viscous creep

strain rates at different temperatures was modified to include the noted increases

in activation energy, Q, and pre-exponential factor, Af , at increasing pressures

and temperatures.

5. A temperature-dependent damage function was developed to describe the changes

in damage evolution observed at different temperatures. Two versions of this

function were developed; one assumes that the amount of dynamic recrystalliza-

tion observed is dependent upon the thermal distance from the melting point,

Tm, the other that homologous temperature, Th, is the defining parameter. Both

are found to produce similar results theoretically.

6. The definition of the deviatoric viscous creep strain rate, ėcij, was modified to

include a term accounting for power law breakdown; as discussed, power law

breakdown appears to be suppressed at high hydrostatic pressures. As such, a

decaying exponential form for the normalizing factor, α(p), was implemented

such that power law breakdown would occur only at low hydrostatic pressures,

as per Barnes et al. (1971).
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Chapter 5

Validation of Finite Element Model

This chapter describes the steps taken to validate the finite element model prior

to examining the additions and refinements to the constitutive model introduced in

Chapter 4; the results of these changes can be found in Chapter 6.

5.1 Validation

To acquire useful information from any simulation a series of validation tests must

first be completed. To be considered valid, the simulation must: a) output results that

agree with theoretical calculations, and b) output results that reproduce experimental

results. As mentioned in Chapter 4, there are a wide variety of potentially accurate

models to simulate. To ensure that each model was accurately simulated, a series of

single element creep-relaxation simulations were performed.
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5.1.1 Creep-Relaxation Simulations

Single element triaxial creep-relaxation cycles were used to validate the implementa-

tion of the constitutive models described in Chapter 4. A creep-relaxation cycle can

be represented in general by the following conditions: first, a confining pressure, Pc,

is applied and held constant throughout the cycle. An axial stress, σa
1 , is applied for

a period of time ending at t = t1, followed by a period of time at a reduced axial

stress, σa
2 . Such a state of stress is often presented in terms of its hydrostatic and

deviatoric components as follows:

σij (t) = ph (t) δij + sij (t) (5.1)

σij (t) =

⎡⎢⎢⎢⎢⎢⎣
Pc +∆σ (t) 0 0

0 Pc 0

0 0 Pc

⎤⎥⎥⎥⎥⎥⎦ = ph (t)

⎡⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦+
∆σ (t)

3

⎡⎢⎢⎢⎢⎢⎣
2 0 0

0 −1 0

0 0 −1

⎤⎥⎥⎥⎥⎥⎦ (5.2)

with:

∆σ (t) = ∆σ1 + (∆σ2 −∆σ1)H(t− t1) (5.3)

∆σ1 = σa
1 − Pc, ∆σ2 = σa

2 − Pc (5.4)

ph(t) = Pc +
∆σ (t)

3
= ph1 +

(
ph2 − ph1

)
H(t− t1) (5.5)

ph1 = Pc +
∆σ1
3
, ph2 = Pc +

∆σ2
3

(5.6)

where the stress difference, ∆σ (t), has been simplified for convenience, ∆σ1, ∆σ2,

ph1 , and ph2 are the stress differences and hydrostatic pressures before and after t1,

respectively, and H(t − t1) is the Heaviside step function. ∆σ (t) can be positive or

negative, but the model is designed with a positive ∆σ (t) in mind. In either case,
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the von Mises stress is given by:

s(t) = |∆σ (t)| = sv1 + (sv2 − sv1)H(t− t1) (5.7)

sv1 = |∆σ1|, sv2 = |∆σ2| (5.8)

where sv1 and sv2 are the von Mises stresses before and after t1, respectively. Under

these conditions, sij/s is a constant (either ±2/3, ∓1/3, or 0) for all values of s save

zero, where it is mathematically undefined. The lim
s→0

sij/s does exist, and retains the

value sij/s had prior to reaching zero. This stress state is reproduced in Figures 5.1.

Analytical solutions exist for each component of the constitutive relation described

in Chapter 4, save for the case of delayed elastic strain with damage. For the special

case of no damage, the isotropic elastic strain is given by:

ϵeij(t) =
1

E0

⎡⎢⎢⎢⎢⎢⎣
(1− 2ν0)Pc +∆σ (t) 0 0

0 (1− 2ν0)Pc − ν0∆σ (t) 0

0 0 (1− 2ν0)Pc − ν0∆σ (t)

⎤⎥⎥⎥⎥⎥⎦
(5.9)

The resulting strain can be seen in Figure 5.2.

The deviatoric component of the secondary creep strain rate is given by:

ėcij = ėc
sij
s

=
ėc

3

⎡⎢⎢⎢⎢⎢⎣
2 0 0

0 −1 0

0 0 −1

⎤⎥⎥⎥⎥⎥⎦ (5.10)

where ėc =
3

2
ϵ̇c0

(
s

sµ0

)m

is the equivalent secondary creep strain rate, the general
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(a)

(b)

Figure 5.1: General state of stress during validation. (a) demonstrates the normal

stresses, (b) the stress invariants.
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Figure 5.2: Elastic strain with no damage.

solution to which is simply:

ec = Acs
mt+ C (5.11)

Ac =
3

2

ϵ̇c0(
sµ0
)m (5.12)

where m is the secondary creep exponent and C is an integration constant. Applying

a general creep-relaxation cycle produces an equivalent secondary creep strain of:

ec = Ac

[
(sv1)

m t+
(
(sv2)

m − (sv1)
m) (t− t1)H(t− t1)

]
(5.13)

The deviatoric components of the delayed elastic strain rate have a similar formu-

lation:

ėdij = ėd
sij
s

=
ėd

3

⎡⎢⎢⎢⎢⎢⎣
2 0 0

0 −1 0

0 0 −1

⎤⎥⎥⎥⎥⎥⎦ (5.14)
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where ėd =
3

2
ϵ̇d0

(
sd

sµ0

)n

is the equivalent delayed elastic strain rate. The equiva-

lent delayed elastic strain has one of two general solutions under a constant stress,

depending on the exponent n:

E0e
d =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s− Ce−AdE0t : n = 1

s− (AdE0 (n− 1) t− C)
1

1−n : n ̸= 1

, (5.15)

Ad =
3

2

ϵ̇d0(
sµ0
)n (5.16)

The solutions for a general creep-relaxation cycle are more complex. For n = 1,

the equation is given by:

E0e
d = sv1

(
1− e−AEt

)
+ (sv2 − sv1)

(
1− e−AE(t−t1)

)
H(t− t1) (5.17)

while the solution for n ̸= 1 is:

(5.18)

E0e
d =

⎛⎜⎜⎜⎝sv2 −
⎛⎜⎝An(t− t1)

+

⎛⎝sv2 − sv1

(
1−

(
An (s

v
1)

n−1 t1 + 1
) 1

1−n

)⎞⎠1−n
⎞⎟⎠

1
1−n

⎞⎟⎟⎟⎠H(t− t1)

+

⎛⎝sv1
(
1−

(
An · (sv1)

n−1 t+ 1
) 1

1−n

)⎞⎠(1−H (t− t1)
)

where:

AE = AdE0 (5.19)

An = AE(n− 1) (5.20)
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Note that for the case of simple uniaxial creep (sv1 = σ, t < t1) the solution when

n ̸= 1 reduces to:

ed =
σ

E0

⎛⎜⎝1−

(
3

2

ϵ̇d0(
sµ0
)nE0(n− 1)σn−1t+ 1

) 1
1−n

⎞⎟⎠ (5.21)

which is equivalent to the result of Jordaan and McKenna (1988a) when the initial

viscosity of the Kelvin dashpot, µk0 , is given by:

µk0 =
2

3

(
sµ0
)n

σn−1ϵ̇d0
(5.22)

The delayed elastic and viscous strain components are shown in Figures 5.3.

Finally, the general solution for the non-elastic volumetric strain component under

a constant stress is simply:

ϵv =
f3s

ph

(
ed + ec

)
+ C (5.23)

where f3 is a constant. This results in the following solution for a creep-relaxation

cycle:

ϵv =
f3s

v
1

ph1

[
(ed + ec) [1−H(t− t1)] +

[
ed(t1) + ec(t1)

]
H(t− t1)

]
+

f3s
v
2

ph2

[
(ed + ec)−

[
ed(t1) + ec(t1)

]]
H(t− t1) (5.24)

An example of the volumetric response is given in Figure 5.4.

The accumulated damage, Si, and damage rate, Ṡi, for a given formulation can

be represented generally by the following equations:

Si = A0

(
A1(t− (t− t1)H(t− t1)) + A2(t− t1)H(t− t1)

)
(5.25)

Ṡi = A0

(
A1(1−H(t− t1)) + A2H(t− t1)

)
(5.26)
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(a)

(b)

Figure 5.3: Delayed elastic and viscous responses to generalized stress state. (a)

demonstrates the viscous strains, (b) the delayed elastic strains.
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Figure 5.4: Volumetric strain with no damage. Note that the figure is presented as

positive for ease of viewing. Volumetric strain represents dilation due to irreversible

processes, and will have the opposite sign of compression, depending on sign conven-

tion.

where A0, A1, and A2 are the simplified forms of the calibration constants of Xiao and

Li, presented in Table 4.1. The differences between damage models are highlighted in

Figures 5.5. The amalgamated constants can be found in Table 5.1. The accumulated

damage and damage rate are cumulative; a simple summation is all that is required

to obtain the full damage parameter, S, or damage rate, Ṡ.

To represent elastic damage, the desired damage function is substituted into one
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(a)

(b)

Figure 5.5: Response of damage functions using the calibration constants of Xiao

(1997). (a) is the response to a constant von Mises stress of 10 MPa over a range

of hydrostatic pressures, (b) is the response to a constant hydrostatic pressure of 30

MPa over a range of von Mises stresses.
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Table 5.1: Amalgamated damage constants.

Damage
A0 A1 A2

Function

S1
a1

(p1)
r1

(
1

ss0

)q1

(sv1)
q1
(
p1 − ph1

)r1
(sv2)

q1
(
p1 − ph2

)r1
Sp
2

a2
(p2)

r2

(
1

ss0

)q2

(sv1)
q2
(
ph1

)r2
(sv2)

q2
(
ph2

)r2
Se
2

a2
(p2)

r2 es
v
1/s

s
0

(
ph1

)r2
es

v
2/s

s
0

(
ph2

)r2
Sne
2

a2
(p2)

r2

(
1

e− 1

) (
es

v
1/s

s
0 − 1

)(
ph1

)r2 (
es

v
2/s

s
0 − 1

)(
ph2

)r2
Sg
2

a2
(p2)

r2

(
2s

v
1/s

s
0 − 1

)(
ph1

)r2 (
2s

v
2/s

s
0 − 1

)(
ph2

)r2

of the three elastic models detailed in Chapter 4:

ϵeij(t) =
1

E

⎡⎢⎢⎢⎢⎢⎣
(1− 2ν)Pc +∆σ (t) 0 0

0 (1− 2ν)Pc − ν∆σ (t) 0

0 0 (1− 2ν)Pc − ν∆σ (t)

⎤⎥⎥⎥⎥⎥⎦
(5.27)

where:

E =
E0

1 + C1S
(5.28)

ν = ν0

(
1 + C3S

1 + C1S

)
(5.29)

Substituting in the values for C1 and C3 (which can be found in Table 4.2) pro-
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duces:

ϵeij(t, ν = ν0) =
(1 + S)

E0

⎡⎢⎢⎢⎢⎢⎣
Ph +∆σ (t) 0 0

0 Ph − ν0∆σ (t) 0

0 0 Ph − ν0∆σ (t)

⎤⎥⎥⎥⎥⎥⎦ (5.30)

ϵeij(t,K = K0) =

1

E0

⎡⎢⎢⎢⎢⎢⎣
Ph +∆σ (t) (1 + S) 0 0

0 Ph −∆σ (t) (1 + S/2) 0

0 0 Ph −∆σ (t) (1 + S/2)

⎤⎥⎥⎥⎥⎥⎦ (5.31)

ϵeij(t,Kachanov) =

1

E0

⎡⎢⎢⎢⎢⎢⎣
Ph +∆σ (t) +K1S 0 0

0 Ph − ν0∆σ (t) +K2S 0

0 0 Ph − ν0∆σ (t) +K2S

⎤⎥⎥⎥⎥⎥⎦ (5.32)

where:

Ph = (1− 2ν0)Pc (5.33)

K1 = PK +∆σK1 (t) (5.34)

K2 = PK − ν0∆σK2 (t) (5.35)

PK =
16

9
(1− ν20)Pc (5.36)

∆σK1 (t) =
16(1− ν20)(1− 3ν0/10)

9(1− ν0/2)
∆σ (t) (5.37)

∆σK2 (t) =
8(1− ν20)

45(1− ν0/2)
∆σ (t) (5.38)

The response of each model to increasing damage is shown in Figure 5.6.

Secondary creep with damage requires a more complicated representation due to
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Figure 5.6: Elastic strain with damage for a unit hydrostatic pressure and von Mises

stress under the three formulations examined. Note that compression is positive in

this figure. Axial ( ) elastic compression increases with damage for all three

formulations. Lateral ( ) expansion occurs under the constant Bulk Modulus

formulation, while lateral compression increases under the Kachanov formulation.

its history dependence. The general solution for a constant stress state is given by:

ec =
Acs

m

βcṠ
eβcṠt + C (5.39)

where C is a constant. For a creep-relaxation cycle this becomes:

ec = Ac

[
(sv1)

m

β1

(
eβ1t − 1− eβ1

[
et − et1

]
H(t− t1)

)
+

(sv2)
m

β2
eβ2
[
et − et1

]
H(t− t1)

]
(5.40)

where β1 = βcA0A1 and β2 = βcA0A2 are constants that depend upon the damage

formulation used. An example response of Equation 5.40 to a creep-relaxation cycle
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Figure 5.7: Viscous strain with damage for various damage formulations.

is given in Figure 5.7.

No analytical solution exists for delayed elastic strain with damage during loading.

The forward Euler method was instead used to estimate the delayed elastic strain

response to a creep-relaxation cycle; more accurate modelling techniques exist, but

the increased confidence was deemed not worth the increased complexity.

Analytical solutions do exist for unloading to a stress of s = 0, and are given by:

ed =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ce−AdE0f(t) : n = 1

(AdE
n
0 (n− 1) f (t) + C)

1
1−n : n ̸= 1

(5.41)

f (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t : Ṡ = 0

e
−βd/C1

βdṠ

(
− βd
C1

)n

Γ

[
1− n,−βdC1

(
Ṡt+1 /C1

)]
: Ṡ ̸= 0

(5.42)

where Γ is the incomplete gamma function. It should be noted that only the expo-
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nential form of the high-pressure damage function produces a non-zero damage rate

for a von Mises stress of zero. These forms are presented only for completeness; given

that a numerical solution is required for the loading portion of a cycle it was deemed

unnecessary to switch to a theoretical solution for unloading.

An example comparison between the theoretical and finite element results for the

simple case of no damage is presented in Figure 5.8. The finite element model matches

the theoretical results perfectly, lending credibility to the model implementation. Re-

sults of the creep-relaxation cycles for all other parameter combinations are presented

in greater detail in Appendix 1. The majority are seen to match theoretical results,

save for a handful of cases where some numerical instability at the sudden load drop

created excessive, erroneous strain results.

Figure 5.8: Total strain with no damage.
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5.1.2 Delayed Elastic Recovery

A key component of the model is the presence of delayed elastic recovery, a common

element of viscoelastic behaviour. It was discovered during the validation process

that Equation 4.21 does not lead to delayed elastic recovery under all circumstances;

a numerical singularity is encountered as hydrostatic pressure is approached due to

the presence of the sij/s term. A theoretical limit for this term does not appear to

exist. As the von Mises stress, s, approaches zero, so too do the components of the

deviatoric stress tensor, sij, necessitating the application of L’Hospital’s rule:

lim
s→0

sij
s

= lim
s→0

∂sij
∂s

/
∂s

∂s
= lim

s→0

∂sij
∂s

(5.43)

For reference, the von Mises stress is defined as:

s =

√
3

2
sijsij (5.44)

Taking the derivative with respect to the deviatoric stress components gives:

∂s

∂sij
=

3

4

1√
3
2
sklskl

∂ (sklskl)

∂sij
=

3

4s

∂ (sklskl)

∂sij
(5.45)

Since s2 =
3

2
sijsij, Equation 5.45 reduces to:

∂s

∂sij
=

1

2s

∂s2

∂sij
=

3sij
2s

(5.46)

the limit of which remains undefined:

lim
s→0

sij
s

= lim
s→0

1
∂s
∂sij

= lim
s→0

2s

3sij
(5.47)

Applying L’Hospital’s rule again reproduces the original limit, providing no useful

information. Fortunately, numerical solutions have shown that the ratio will remain
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constant as a hydrostatic pressure is approached from a randomly chosen stress state.

When applied to the delayed elastic strain rate we obtain:

ėdij =
sij
s
ėd =⇒ sij

s
=
ėdij
ėd

= C (5.48)

where C is a constant. Assuming that there is some time, t0, at which the delayed

elastic strain rate is defined and using the fact that the equivalent delayed elastic

strain rate is defined for all stress states, the delayed elastic strain rate for some later

time, t1, where
sij/s is undefined can be represented by:

ėdij(t1) =
ėdij(t0)

ėd(t0)
ėd(t1) = Cėd(t1) (5.49)

We thus avoid the singularity as s ⇒ 0 and successfully produce delayed elastic

recovery under a pure hydrostatic pressure.

5.2 Indentation Validation

A variety of indentation finite element simulations were implemented to compare the

results of the models to existing experimental evidence. There is a wide range of

indentation data available for use in model validation. Two indentation geometries

from the test series that took place on Hobson’s Choice ice island (Frederking et al.,

1990) are modelled here; one involving a cylindrical indentation into a truncated

pyramidal ice face, the other a spherical end-cap indentation into a smooth ice face.

The results of these simulations are compared to theoretical results and the simulation

results of earlier investigators.
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5.2.1 Elastic Validation

The first step in the validation process is to ensure that the finite element simulation

reproduces known theoretical results where they are available. The stress-strain fields

produced during the indentation of an elastic material are well known (Timoshenko

and Goodier, 1951). Of interest here are the axisymmetric solutions for the inden-

tation of rigid cylindrical and spherical indentors into smooth, elastic surfaces. The

stress distributions along the contact surface during such an indentation are given by:

pc
pm

=
a

2
√
a2 − r2

(5.50)

ps
pm

=
3

2a

√
a2 − r2 (5.51)

where pc and ps are the pressure distributions for the cylindrical and spherical inden-

tors, respectively, pm is the mean pressures over the entire contact surface, a is the

radius of the contact surface, and r is the radial coordinate. These distributions are

presented in Figure 5.9. Note that the surface pressure outside the contact area is

zero for both indentors.

These surface distributions provide the first validation check for the finite element

model; they should hold for all stages of an elastic indentation, provided the stresses

and radii are properly normalized. It must be noted that the contact area during

a spherical indentation increases with time, unlike a cylindrical indentation which

provides a constant contact surface. The surface stresses for pure elastic finite element

analyses for both indentor geometries are provided in Figure 5.10. Both geometries

show minor discrepancies from the theoretical curves at the centre node and the

indentor edge, but otherwise provide a sufficiently accurate recreation of theoretical
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Figure 5.9: Theoretical surface pressures for cylindrical and spherical indentors in

contact with a semi-infinite plane. Note the singularity at the edge of the cylindrical

indentor. In practice, this region will undergo some plastic yielding.

results. The corresponding indentor displacements are giving by:

dc =
F
(
1− ν2

)
2aE

(5.52)

ds =
3F
(
1− ν2

)
4aE

(5.53)

where dc and ds are the penetration depth of the cylindrical and spherical indentors,

respectively, F is the total load on the indentors, while E and ν are the elastic

modulus and Poisson’s ratio of the indented material, respectively. A comparison

of the theoretical and numerical load vs. displacement curves is provided in Figure

5.11. The simulations slightly overestimate the load on the indentors in both cases,

as is common with finite element models. The error in loading for the cylindrical

indentor is on the order of 10 % for all displacements, while the error in loading for
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(a) (b)

Figure 5.10: Surface pressure on rigid (a) cylindrical and (b) spherical indentors for

an elastic medium across a number of time steps during a simulation. The pressure

is normalized with respect to the total pressure on the indentor, while the radius is

normalized with respect to the indentor radius.

the spherical indentor decreases from nearly 25 % to less than 5 % with increasing

displacement, due to the increase in contact area.

(a) (b)

Figure 5.11: Force on rigid (a) cylindrical and (b) spherical indentors for given pene-

tration depth within an elastic medium. Note that the contact radius during spherical

indentation is dependent upon the penetration depth by a =
√
rcds, where rc is the

radius of curvature of the indentor, which in this case is 256 mm.
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Figure 5.12: von Mises stress produced by a cylindrical indentation into an elastic

medium for both the VUMAT (left) and built-in Abaqus (right) elastic definitions.

Note that indentation proceeds from the top right corner of both structures.

On the practical end of validation, a simple and efficient check on the custom user

subroutine (VUMAT) code is to ensure that its pure elastic results match the results

from the built-in elastic definition provided by Abaqus. One such comparison for the

von Mises stress produced by the cylindrical indentor is provided in Figure 5.12; the

VUMAT result is seen to match Abaqus’ built in elastic result perfectly under these

conditions. The same is true for the spherical indentor.

Finally, only a direct comparison of the theoretical and numerical stress fields

within the specimen remains. The theoretical formulations used are summarized in

Fischer-Cripps (2000). The stresses within an elastic medium during indentation with
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a rigid cylindrical indentor are given by:

σr
pm

= −1

2

[
J0
1 − z

a
J0
2 − (1− 2ν)

a

r
J1
0 +

z

r
J1
1

]
(5.54)

σθ
pm

= −1

2

[
2νJ0

1 + (1− 2ν)
a

r
J1
0 − z

r
J1
1

]
(5.55)

σz
pm

= −1

2

[
J0
1 +

z

a
J0
2

]
(5.56)

τrz
pm

= − z

2a
J1
2 (5.57)

where:

J0
1 = R

−1/2 sin
φ

2
(5.58)

J1
0 =

a

r

(
1−

√
R sin

φ

2

)
(5.59)

J1
2 =

r

a
R

−3/2 sin
3φ

2
(5.60)

J0
2 =

√
1 +

z2

a2
R

−3/2 sin

(
3φ

2
− θ

)
(5.61)

J1
1 =

√
1 +

z2

a2
a

r
R

−1/2 sin

(
θ − φ

2

)
(5.62)

R =

√(
r2

a2
+
z2

a2
− 1

)2

+ 4
z2

a2
(5.63)

tanφ =
2za

r2 + z2 − a2
(5.64)

tan θ =
a

z
(5.65)

For comparison, the theoretical and numerical hydrostatic pressures are presented

in Figures 5.13 and 5.14. The results are comparable, once the mean pressure is

accounted for, save for the introduction of edge effects at the periphery. This is not

unexpected, as the model is not truly infinite.
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Figure 5.13: Theoretical hydrostatic pressures within an elastic medium. Both depth

and radius are normalized to the radius of the indentor.

5.2.2 Validation of Indentation With Cylindrical Indentor

Test TFR07 from the Hobson’s Choice test series was used by previous investigators

(Li, 2002; Moore et al., 2013; Xiao, 1997) to validate earlier constitutive models. Each

found that they could reproduce both the expected load drop from pressure softening

as well as the formation of the damage layer at the ice-indentor interface. Here, this

test is simulated via a two-dimensional, axisymmetric model, which is used to reduce

computation time; this symmetry will not hold perfectly during a true indentation

experiment due to the random nature of hpz development and spalling failure. The

results are then compared to the work of Li; the model of Xiao used a plane strain

formulation, while the model of Moore requires element deletion. They are thus
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Figure 5.14: Numerical hydrostatic pressures within an elastic medium. Note that

Abaqus always denotes compressive hydrostatic pressure as positive, opposite the

common usage.

ignored.

The ice-indentation system, consisting of a servo-controlled hydraulic actuator, a

back plate, and an indentor, was reduced to a single flat, rigid indentor for ease of

modelling. The indentor was constrained to move only towards the ice surface, with

a constant speed of 68 mm/s. Note that indentor velocity is not constant during

the actual test referenced, as shown in Frederking et al. (1990); velocity increases

dramatically for brief periods of time post-layer failure or spalling (i.e. during a load

drop) before stabilizing at a constant rate once more. A constant speed is modelled

here to reduce complexity.

Contact between the indentor and ice surface is modelled via the penalty contact
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method so as to prevent conflicts with other constraints. The finite sliding option is

also used to account for the possibility of large deformations at the contact interface.

Note that this method introduces additional stiffness that must be accounted for dur-

ing analysis and increases computation time. Contact was assumed to be frictionless

to reduce complexity; stresses at the surface will thus be slightly lower than expected.

An explicit analysis was chosen over implicit due to the inclusion of contact surfaces

and the highly non-linear nature of ice, both of which are modelled better by an

explicit analysis; the increased computation cost is made up elsewhere.

The simulation is designed to begin after initial spalling has occurred, which is

assumed to have reduced the ice to a truncated pyramidal shape with an upper radius

of 100 mm and a slope of 2:3. The region of interest near the ice-indentor interface

is given a much finer mesh than the majority of the ice, which is modelled only to

reduce the boundary effect (Xiao, 1991). The mesh size was reduced significantly (by

a factor of 4) compared to the work of Xiao (1997) and Li (2002) while maintaining

a run time of only a few hours; numerous runs with different combinations of model

parameters were desired, so run time could not be excessive.

Linear quad elements with both distortion and combined hourglass control were

used for all regions. Quadratic elements, which would likely have provided a signif-

icant increase in model accuracy, were not available for use with the axisymmetric

model. Distortion control was used to prevent excessive distortion of the ice elements

at the ice-indentor interface, which would otherwise extrude out from underneath the

indentor, reaching aspect ratios of 1:20 or greater; the accuracy of such elements could

not be verified and were thus prevented. The use of distortion control is expected

to increase the stiffness of the ice slightly. Combined hourglass control was found to

161



Figure 5.15: Basic simulation geometry used by earlier investigators.

be the only method capable of preventing hourglassing in this model, introducing an

artificial stiffness and viscosity to the zero-energy deformation modes of each element.

The base of the ice is fixed in only the vertical direction; further constraints are

unnecessary due to the distance from the contact surface. Strangely, an additional

constraint was required to enforce contact between the reference node of the indentor

and the top left-most node of the ice, otherwise the ice node would slip around the

indentor. This produces higher than expected stresses at the node in question, as will

be noted in later sections. This geometry is shown in Figure 5.15.

The modelled ice obeys the viscoelastic damage model outlined in Chapter 4,

which is implemented via a custom user subroutine. The model of Li (2002) appears

to use the following settings:
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� The exponential high-pressure damage function,
(
f2(p) = es/s0

)
must be used,

along with;

� the elastic damage model of Kachanov,

(
C1 =

16(1− ν20)(1− 3ν0/10)

9(1− ν0/2)

)
, with;

� full elastic damage, (S = S1 + S2), and;

� an initial damage of S0 = S1(0) = 1.2.

However, these settings did not produce the expected results; damage developed

along a circular path from the top-right corner towards the centre of the sample, as

seen in Figure 5.16, and no load drop was evident after a period of 0.2 s, four times

the length of time required to produce a load drop in Li (2002), as seen in Figure

5.17.

Attempts to rectify this inconsistency led to the identification of the conditions

necessary to induce a load drop and/or the development of a surface damage layer, as

well as the possible parameter combinations that could be used to do so. The three

main parameters are: 1) the elastic damage type; 2) the indentor velocity, and; 3) the

high-pressure damage exponent, r2. All three operate under the same principle; each

increases the rate at which high-pressure damage accrues in its own way. It seems

likely that the parameters of Li were misprinted, and that either the microcracking

damage or constant elastic properties formulation was used. This, combined with a

high-pressure exponent, r2, greater than the calibration value of five, are sufficient to

produce the expected damage layer and load drop.

A more detailed examination of the results under a wide range of parameters is

provided in Section 6.1.
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Figure 5.16: Damage layer resulting from best estimate of parameters implemented

in Li (2002).

5.2.3 Geometry of Indentation

As noted in Chapter 3, a scaled down version of the spherical end-cap indentor used at

Hobson’s Choice (Frederking et al., 1990) was tested in recent laboratory indentation

experiments (Barrette et al., 2002; Browne, 2012; Browne et al., 2013; O’Rourke et al.,

2015; 2016a;b; Wells et al., 2011). The spherical end-cap indentor provides several

benefits over the cylindrical geometry, in particular the lack of a singularity at the

edge of the contact region, while also complicating the analysis of the experimental

results due to the non-constant contact area.

To study the effects of modelling a spherical end-cap indentor, three different

geometries were implemented. The first simply replaced the cylindrical indentor with
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Figure 5.17: Force data from Frederking et al. (1990) test NRC07. Initial load drop

occurs a little over 0.05 s after initial transitory loading behaviour ends (i.e. after

slope becomes constant).

a spherical end-cap. This geometry was found to produce excessive element distortion

and fail well before full contact with the indentor could be achieved. To compensate

for this, the ice surface was grooved to match the radius of curvature of the indentor.

Full contact was thus achieved from the start of the simulation, similar to the earlier

cylindrical indentation simulations. Finally, the corner near the edge of the indentor

was rounded to prevent stress concentrations in the corner elements. The region of

interest for the two geometries are presented in Figure 5.18.

The results of the grooved geometry were promising, providing a smoother load

drop and similar layer development, possibly due to lack of additional contact at

larger strains. As such, it was chosen as the basis for all further investigations. It
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(a)

(b)

Figure 5.18: Geometry used to model spherical end-cap indentations with (a) and

without (b) a rounded corner near the edge of the contact region.
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must be noted that the grooved geometry produces elastic stress fields similar to

those of a cylindrical indentation; the cylindrical geometry can be thought of as an

iso-parametrization of the grooved geometry.
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Chapter 6

Further Development of Finite

Element Model

This chapter describes the results of finite element simulations of ice indentation

experiments using the constitutive relations described in Chapter 4 and the experi-

mental results presented in Chapter 3 and earlier studies. Note that in all cases the

desire is to match, as closely as possible, the saw-tooth loading cycle seen previously

in Figure 5.17. The relevant relations include the strain rate equations, given by:

ϵ̇ij = ϵ̇eij + ėdij + ėcij + ϵ̇vδij (6.1)

ϵeij =
1 + ν

EM

σij −
ν

EM

σkkδij (6.2)

ėdij =
3

2
ϵ̇d0 sgn

(
s− EKe

d
)( |s− EKe

d|
s0

)n
sij
s

(6.3)

ėcij =
3

2
ϵ̇c0

(
s

s0

)m
sij
s

(6.4)

ϵ̇v = −f3
p
s(ė− ėe) = −f3

p
s(ėd + ėc) (6.5)
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the damage parameter and related damage functions:

S = S1 + S2 =

∫ t

0

{
f1(p)

(
s

s0

)q1

+ f2(p)
(
2s/s0 − 1

)}
dτ (6.6)

f1(p) = a1e
(−p/p1) (6.7)

f2 (p) = a2

(
p

p2

)r2

(6.8)

the elastic damage relations of Kachanov (1993):

E

E0

=
1

1 + C1S1

(6.9)

G

G0

=
1

1 + C2S1

(6.10)

ν

ν0
=

1 + C3S1

1 + C1S1

(6.11)

K

K0

=
1

1 + C4S1

(6.12)

the equations used to describe power law breakdown:

sinhn ασ ≈

⎧⎪⎪⎨⎪⎪⎩
(ασ)n : ασ < 0.8

enασ

2n
: ασ > 1.8

(6.13)

α(p) = 0.27e−
p
pn (6.14)

ėcij =
3

2
ϵ̇c0

(
sinhα(p)s

sinhα(p)s0

)m
sij
s

(6.15)
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the four relations used in an attempt to describe high-shear elastic failure:

σij =

⎧⎪⎪⎨⎪⎪⎩
σij : s ≤ 26.0MPa

σij
26.0

s
: s > 26.0MPa

(6.16)

S1 =

⎧⎪⎪⎨⎪⎪⎩
S1 : s ≤ 26.0MPa

Smax : s > 26.0MPa

(6.17)

EM =

⎧⎪⎪⎨⎪⎪⎩
EM : s ≤ 26.0MPa

EM
26.0

s
: s > 26.0MPa

(6.18)

EM =

⎧⎪⎪⎨⎪⎪⎩
EM : s ≤ 26.0MPa

EM/100 : s > 26.0MPa

(6.19)

the non-linear high-pressure damage exponent described in this Chapter, given by:

r2 = r0e
S2/S0 (6.20)

as well as the temperature and pressure relations used to define a master curve for

the temperature dependent damage model:

f2(p) = f2(∆Tm) = f2(Th) (6.21)

∆Tm = T − Tm (6.22)

Th = T/Tm (6.23)

δp

δT
=

Lf

T
(
Cwe(Aw−Kw) − Cie(Ai−Ki)

) (6.24)

Aw/i =

∫
αw/i(T )δT − CAw/i

(6.25)

Kw/i =

∫
κw/i(P )δP − CKw/i

(6.26)

Cw/i = exp
[
CAw/i

+ CKw/i

]
(6.27)
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The initial sections focus on determining the parameters that best reproduce the

myriad experimental results obtained by previous investigators. This is accomplished

primarily by: varying the elastic damage formulation and damage type; comparing

the results of the microcracking damage formulation of Kachanov (1993) and the

constant Poisson’s ratio model of Moore et al. (2013); as well as studying the effects

of implementing constant elastic properties, microcracking elastic damage only, or

high-pressure elastic damage (S1 + S2); varying the high-pressure damage exponent,

r2, as per the work of Xiao (1997); and examining the results of simulations at constant

normalized velocities, vn, but for different scales.

The later sections explore the effect of entirely new parameters and models, in-

cluding: the recalibration of the microcracking damage function, f1(p); the inclusion

of power law breakdown in the description of creep behaviour; the effect of the high-

shear elastic failure observed in the test series described in Section 3.5; the outcome

of implementing a non-linear high-pressure damage exponent, r2(S2), that increases

with damage; and the repercussions of assuming that high-pressure damage, S2, is

constant for a given thermal distance, ∆T , or homologous temperature, Th. The

various studies are summarized in Table 6.1. It should be noted that all models are

valid for compressive states of stress only, and over only a single load cycle; without

some form of damage healing or layer extrusion it is impossible for the finite element

model to describe the cyclic load failures commonly seen in indentation experiments.

Further development is required in order to simulate multiple load cycles.
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Table 6.1: Summary of indentation simulations.

Series Purpose

Establishing Baseline Param-

eters

Examined three components: 1) elastic damage formu-

lation; 2) elastic damage type, and; 3) high-pressure

damage exponent

Normalized Velocity Testing Show that model is scale-independent

f1(p) Recalibration Ensure that new calibration approximates earlier results

Power Law Breakdown Examine effect of pressure on power law breakdown

High-Shear Elastic Failure Implement newly observed high-shear elastic failure

Non-Linear r2 Cursory examination of effect of making high-pressure

damage exponent increase with high-pressure damage

Temperature-Dependent

Damage

Study effect of new temperature-dependent damage

model
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6.1 Model Implementation

Finite element simulations based on the Hobson’s Choice spherical end-cap indenta-

tion tests (Frederking et al., 1990) were developed to examine the behaviour of the

constitutive model during indentation. The simulation is designed to examine the pe-

riod some time after indentation begins. A portion of the ice is removed to ensure that

full contact between the indentor and the ice surface occurs at the beginning of the

simulation, forming a curved contact surface with a radius of curvature corresponding

to that of the indentor. This avoids complications arising from infinitesimally small

contact areas while better representing the conditions observed mid-indentation test.

Nearby ice is assumed to be lost due to initial fracture behaviour, represented by a

slope with a ratio of 2:3. In some simulations, ice in the region near the indentor

is also assigned some initial microcracking damage, as per the work of Li (2002).

The remaining bulk of ice is supplied to ensure semi-infinite conditions and remains

largely unaffected by the majority of simulations. The indentor was based on a scaled

down model of the Hobson’s Choice spherical end-cap indentor, with the diameter

and radius of curvature reduced by a factor of five, to approximately match the con-

tact radius modelled by earlier investigators (Li, 2002; Moore et al., 2013; Xiao, 1997)

when investigating cylindrical indentations. The indentor was then extended to pre-

vent excessive element distortion at the edge. The described geometry is presented

in Figure 6.1. All remaining parameters, from contact controls to element type, are

identical to those described in Section 5.2.2.
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Figure 6.1: Basic simulation geometry.

6.1.1 Establishing Baseline Parameters for Simulations

Initial simulations were used to establish the set of parameters that best reproduce

the results of experimental studies. The relevant parameters included: the elastic

damage formulation (Kachanov’s, constant Poisson’s ratio, constant bulk modulus);
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the elastic damage type (constant elastic properties, microcracking elastic damage,

high-pressure elastic damage), and; the high-pressure damage exponent (r2). Each

simulation enforced an indentor velocity of 68 mm/s, as per the work of Xiao (1997),

Li (2002), and Moore et al. (2013).

As discussed in Section 4.3, several types of elastic damage were implemented

and investigated. All were based on the microcracking (S1) damage formulation of

Kachanov (1993), with constants modified to produce specific properties (either a

constant Poisson’s ratio or a constant Bulk modulus). The effects of using constant

elastic properties (no elastic damage), as well as including high-pressure (S2) elastic

damage, were also examined. It must be noted that including high-pressure elastic

damage is a theoretically unsound approach; the formulation of Kachanov (1993) is

based on the effects of dilute, distributed microcracking, and can make no extrapola-

tions on the effect of dynamic recrystallization and pressure melting. Finally, a brief

study of the effect of increasing r2 was undertaken to provide a baseline from which

to examine the effect of implementing a damage dependent, non-linear r2 into the

constitutive model.

The three elastic damage types were initially examined, with the calibration values

of Xiao (1997) being used for the remaining parameters (See Table 4.1). The corre-

sponding indentor loads produced by these conditions are shown in Figure 6.2. The

load drop produced under constant elastic properties is much more pronounced than

the other conditions. This result led to it being chosen as the baseline for all further

testing, as significant load drops are one of the defining characteristics of indentation

experiments. Time to failure and peak load are seen to differ between experimental

and numerical data; numerous model properties (primarily the initial damage and
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Figure 6.2: Load traces under various elastic damage formulations. The high-pressure

exponent r2 is set to the calibration value used by Xiao (1997) and Li (2002) for all

simulations. The first load cycle of test NRC07 from the Hobson’s Choice 1989 test

series (Frederking et al., 1990) is plotted for comparison. Note that a constant slope

was used to extrapolate load curve back to zero force, so as to ignore the initial

transitory loading conditions.

the elastic properties chosen, respectively) combine to produce this discrepancy.

The case of constant elastic properties, which has some supporting experimental

evidence under uniaxial and low triaxial stresses (Jordaan et al., 1992b; Kalifa et al.,

1992; Stone et al., 1997), was then further examined to establish a baseline for mate-

rial behaviour. The loading behaviour for increasing r2 values are shown in Figure 6.3.

The results were as expected when constant elastic properties were enforced; increas-

ing r2 values led to more pronounced load drops, as per the work of Xiao (1997), and
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a highly localized damage layer composed predominantly of S2 damage, the evolution

of which can be observed in Figures 6.4. This assumes that the velocity of the test

is sufficient to induce dynamic recrystallization; within regimes where microcracking

dominates, increasing r2 actually leads to a reduction in S2 damage.

Figure 6.3: Load traces for increasing high-pressure exponents with constant elastic

properties. The load drop becomes more sheer as r2 is increased, as noted by Xiao

(1997). The first load cycle from test NRC07 (Frederking et al., 1990) is plotted for

comparison; these results are seen to compare much more favourably to experimental

results.

Including either type of elastic damage leads to undesired loading behaviour; mi-

crocracking elastic damage produces slight load drops with gentle slopes, while the

inclusion of high-pressure elastic damage produces plastic-like loading behaviour, with
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(a) r2 = 5 (b) r2 = 7

(c) r2 = 10 (d) r2 = 12

(e) r2 = 15

Figure 6.4: Damage layer development at approximately peak load for increasing

values of r2. The layer becomes highly localized, similar to experimental indentation

results.

each r2 exponent producing a slightly different load plateau, as seen in Figures 6.5. It

is therefore recommended that constant elastic properties be enforced while increasing
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the high-pressure damage exponent (r2), as is done throughout the remainder of this

work. Further experimental verification of this constant elastic modulus assumption

would be highly valuable.

(a) E = E(S1) (b) E = E(S1 + S2)

Figure 6.5: Load traces for increasing high-pressure exponents with elastic damage.

Finally, the effects of the constant Poisson ratio formulation of Moore et al. (2013)

and the microcracking formulation of Kachanov (1993) on the elastic modulus of the

Kelvin spring were compared (it should be noted that the constant Bulk modulus

formulation introduced in Chapter 2 produces an elastic modulus identical to the

constant Poisson’s ratio formulation, and thus produces identical results when the

remaining elastic properties are assumed to be constant). The differences are in-

significant when constant elastic properties are assumed, which is to be expected;

the delayed elastic spring decays very quickly and eventually disappears under both

formulations. The effects are much more pronounced when microcracking or high-

pressure elastic damage are assumed, though these results are of little interest here.

The Kachanov model was chosen as a baseline for further simulations, as it has some

theoretical basis.
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6.1.2 Normalized Velocity Testing

The microstructural behaviour of ice during indentation has been shown to scale rela-

tively well from small-scale laboratory testing up to medium-scale in-situ experiments

and beyond. The normalizing factor appears to be the velocity; if the diameter of

the indentor is reduced by a factor of ten, then the velocity must also be reduced

to match. Note that while microstructural behaviour does appear to scale, fracture

behaviour does not; as the interaction volume increases the probability of it including

a flaw of sufficient size to act as a “weakest” link increases, leading to a decrease in

global pressure with increasing contact area that is known as the scale effect. See

Sanderson (1988), Jordaan and Pond (2001), Taylor and Jordaan (2015), and others

for more detail.

Careful thought must be put into the comparison of results from indentation tests

with different geometries. In this case, three geometries are of interest; the cylindrical

indentation geometry of the Hobson’s Choice 1989 test series, which was used to verify

the models of Xiao (1997) and Li (2002); the spherical end-cap geometry from the

same series, which was used as a basis for the laboratory indentation tests of Browne

(2012) and O’Rourke et al. (2015); and the simplified finite element model used to

reproduce their results, as described in Section 6.1.

The Hobson’s Choice tests using the flat indentor were pressed into a flattened

wedge of ice. The initial contact area was not the full indentor area. Final contact

area was dependent upon the depth reached during indentation, as well as the extent

of fracturing and deformation; for low speed tests it is possible the ice deformed con-

tinuously, coming into further contact with the indentor and increasing the contact
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area. For high speed tests, it is more likely that the ice on the periphery simply frac-

tures, reducing the amount of contact area instead. Under these conditions, the initial

contact diameter seems the most suitable metric by which to define the normalized

velocity.

This is not the case for the spherical end-cap indentations, as a flat ice surface

was used. The initial contact area would therefore be infinitesimal, and is not a

useful metric by which to define the normalized velocity. The final contact region

again depends upon the depth of the indentation and the extent of fracture. In this

case, the final contact diameter provides the most suitable metric for defining the

normalized velocity.

The geometry used for simulations was designed to model a spherical end-cap

indentation after initial contact and fracture occurs. It therefore closely resembles

the late stages of such a test, with practically the full contact area already achieved.

Since the model does not include fracture behaviour, the contact area will continue

to increase during indentation. The effect is relatively minor, and the benefits of

the extended indentor outweigh the cons; nodes from the ice mesh would otherwise

creep around the indentor surface, giving the mistaken impression that the ice passed

through the indentor. The diameter of the groove in the ice is used to define the

normalized velocities for these simulations.

Indentor velocities over a range of three orders of magnitude were simulated. The

examined velocities and their corresponding normalized velocities, vn, are listed in

Table 6.2. These velocities where chosen to match both the normalized velocities

examined in the indentation experiments described in O’Rourke et al. (2015) as well

as the velocity used in simulations by earlier investigators (Jordaan et al., 2016; Li,
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Table 6.2: Indentor velocities simulated; v represents the true velocity, vn the nor-

malized velocity.

v (mm/s) 68 6.8 0.68

vn (s−1) 0.34 0.034 0.0034

2002; Xiao, 1997).

The resulting load traces can be seen in Figure 6.6. The ice transitions to creep

behaviour with decreasing velocity, as seen in the reduction in the magnitude of the

load drop for the 0.68 mm/s indentor velocity simulation. It should be noted that

the maximum loads observed in the high speed tests may be excessive; in a true

indentation experiment, fracture may occur prior to reaching these loads, as noted in

Turner et al. (2015).

The simulations produced the expected damage layer evolution, with a thin, highly

damaged layer observed in the high speed test and a disperse damage zone produced

by the low speed creep test, as shown in Figure 6.7 (Note that a high-pressure damage

exponent of at least r2 = 10 is required to produce this behaviour). These results

compare well to recent laboratory-scale experiments (Kavanagh et al., 2015; O’Rourke

et al., 2015; Turner et al., 2015) when the normalized velocity is taken into account,

as seen in Figure 6.8.

The surface stresses and damage distributions during layer development were also

examined for both the low- and high-speed simulations. For both speeds, the surface

stresses are initially parabolic, with the minimum stress occurring near the centre of
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Figure 6.6: Load traces for examined indentor velocities. Relevant parameters in-

clude: 1) used calibration values of Xiao; 2) no elastic damage was implemented,

and; 3) the high-pressure damage exponent, r2, equals 10.

(a) vn = 0.34 mm/s (b) vn = 0.034 mm/s (c) vn = 0.0034 mm/s

Figure 6.7: Damage layer development at approximately peak load for high, medium,

and low indentor velocities. The layer becomes highly localized at high velocities,

similar to experimental indentation results.

the indentor and the maximum at the edge, as expected from the geometry of the

simulation.
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(a) vn = 0.3 s−1 (b) vn = 0.043 s−1 (c) vn = 0.003 s−1

Figure 6.8: Thin sections for normalized velocities of 0.3, 0.043, and 0.003 s−1 under

polarized light.

Simulation results begin to differ as damage accrues under the edge of the in-

dentor; for the high-speed test, the material at the edge becomes unable to support

shear stress, leading to a drop in von Mises stress and a corresponding increase in

hydrostatic pressure. This process spreads from the edge towards the centre of the

indentor, with maximum load occurring when approximately half the surface can no

longer support shear stress. Damage also begins to accrue at the centre of the in-

dentor at this time, which may also influence the timing of the load drop. The full

damage layer develops within 0.003 s of the peak load, corresponding to the complete

collapse of shear strength within the layer. It is reasonable to believe that the layer

would be extruded from beneath the indentor at this point during a true indentation

experiment, after which the cycle would begin anew. This series of developments is

shown in Figures 6.9; the load trace is provided for convenience.

It should be noted that the stresses observed are significantly higher than those

observed by Li (2002) under similar conditions. This can be explained by a combi-

nation of factors: firstly, a much finer mesh is used here, which localizes the surface

loads into a smaller area and leads to stresses approximately 10 MPa higher, and;
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(a) t = 0.01 s (b) t = 0.016 s (c) t = 0.022 s

(d) t = 0.0286 s (Peak Load) (e) t = 0.03 s (f) t = 0.032 s

Figure 6.9: Development of surface stresses over the course of indentation simulation

with indentor velocity of 68 mm/s. Note that the slightly higher stresses at the centre

of the indentor are an anomaly, likely due to the constraints imposed at this location.

secondly, some form of elastic damage was implemented in the work of Li, which

drastically reduces the observed stresses.

The observed softening in the layer is related to the flux of energy into the hpz, as
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(a) Radial. (b) Vertical.

Figure 6.10: Energy at peak load. Energy is seen to flow into undamaged region in

surface layer; majority of ice left unstrained and undamaged.

shown in Figures 6.10. The majority of the energy is absorbed in the layer, with little

energy flowing into the remainder of the ice; this explains why the latter region is

relative undamaged. Note that the results differ slightly from the work of Li (2002),

due simply to the change in geometry; the ice at the edge of the hpz under a spherical-

end cap indentor flows out and up, which cannot occur under a flat indentor.

Similar surface behaviour is observed for the low-speed simulation, with two major

differences: 1) the surface damage is entirely microcracking based, and 2) runaway

damage does not occur, so the complete collapse of shear strength is not observed.

This is seen in Figures 6.11, where the von Mises stress is still comparable to the

hydrostatic pressure post-peak load.

To confirm that layer development is indeed dependent upon normalized velocity,

two additional ice geometries were examined, one with half the contact radius, the

other with double, as shown in Figures 6.12. The radius of curvatures of the indentors

and the indentor velocities were also modified by these ratios. The simulations were

found to produce similar behaviour at a given normalized velocity, no matter the scale
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(a) t = 0.5 s (b) t = 1 s (c) t = 1.3 s

(d) t = 1.42 (e) t = 1.5 s (f) t = 1.6 s

Figure 6.11: Development of surface stresses over the course of indentation simulation

with indentor velocity of 0.68 mm/s. Note that the slightly higher stresses at the

centre of the indentor are an anomaly, likely due to the constraints imposed at this

location.
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of the interaction; the ratio of layer depth to indentor radius for the examined cases

were found to be approximately equal to four, as seen in Figures 6.13 and 6.14.

Figure 6.12: Scaled ice geometries.

Figure 6.13: Layer development, vn = 0.34 s−1.

Figure 6.14: Layer development, vn = 0.034 s−1.
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6.2 Further Development

Numerous additions and modifications to the constitutive model developed by pre-

vious investigators were implemented and examined in this study in an effort to

improve both our understanding of the processes involved in an ice-structure inter-

action as well as the estimation of the loads produced. An indentor velocity of 68

mm/s,
(
vn = 0.34 s−1

)
, is enforced for each simulation, to match the work of previ-

ous investigators. The results of these simulations are summarized in the following

sections.

6.2.1 Recalibration of Microcracking Damage Function

Recalibration of the pressure-dependent microcracking damage function, f1(p), was

undertaken to remove its dependence upon the cut-off pressure, pc, which is likely

to be highly dependent upon the environmental temperature. The triaxial data of

Meglis et al. (1999) were used to produce the necessary fit parameters, which are

presented in Table 4.1.

The recalibrated damage function was found to produce results nearly identical to

those of Xiao (1997), with only minor differences in damage development and indentor

load, as shown in Figures 6.15 and 6.16. With this calibration, the damage function

should now be applicable for all combinations of temperature and pressure, and was

then used for all further simulations.
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(a) Xiao Calibration (b) Decaying Exponential Calibration

Figure 6.15: Damage layer development for recalibrated and original f1(p) at approx-

imately peak load.

Figure 6.16: Comparison of indentor loads produced by recalibrated and Xiao (1997)

f1(p).
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6.2.2 Power Law Breakdown

Power law breakdown is known to occur under uniaxial conditions for applied stresses

of up to approximately 10 MPa, but appears to be suppressed under triaxial com-

pression, as discussed in Section 4.4. To investigate this behaviour, the secondary

creep rate of Xiao (1997) and others was modified to include a pressure-dependent

sinh function, as described by Equations 4.68 and 4.69.

The effects of this addition were examined within a series of simulations with dif-

ferent normalization pressures, pn. The limits of the function α(p) provide a baseline

for comparison; the lower limit reduces to the standard power law behaviour, while

the other corresponds to the pressure-independent application of power law break-

down, with α(p) = 0.27 in this formulation. The indiscriminate application of power

law breakdown leads to a drastic increase in secondary creep, which, in turn, signif-

icantly reduces the applied stress, as seen in Figures 6.17; this produces behaviour

similar to the effect of increasing the power law exponents for delayed elastic (n) and

secondary creep (m) deformation or significantly reducing the indentation velocity, as

discussed in Section 6.1.2. It is clear that the parameters involved in ice deformation

are all intimately linked, with multiple avenues to the same result.

Between these extremes, a number of normalization constants were implemented

to examine the effects of power law breakdown on regions of varying hydrostatic

pressure. The effect of increasing the normalization constant on the indentor load

can be seen in Figure 6.18. Low values are seen to be practically identical to pure

power law behaviour, as expected. The loading traces begins to diverge from power

law behaviour as the normalization constant approaches a value of ten; exponential
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(a) Hydrostatic Pressure (b) Hydrostatic Pressure

(c) von Mises Stress (d) von Mises Stress

Figure 6.17: Stress conditions near peak-load with (right) and without (left) power

law breakdown. A value of r2 = 10 was used to ensure a significant load drop under

power law conditions.

behaviour in low-pressure regions has begun to slightly alter the stress distributions

in the peripheral regions.

A qualitative difference in behaviour has occurred by the time the normalization

constant has reached a value of twenty; the peak load has been delayed due to the

decrease in stress brought on by higher secondary creep strain, and the magnitude of

the load drop has decreased due to the corresponding change in damage distribution,

as shown in Figures 6.19. At still higher normalization constants the deformation

behaviour closely resembles pure exponential behaviour, and is of little interest. Given
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Figure 6.18: Resulting indentor load from varying normalization constants for power

law breakdown.

that there is little evidence for power law breakdown at the pressure observed within

high-pressure zones, any normalization constant that affects that region should be

avoided. Thus, a value of between ten and twenty is recommended; any lower and

the implementation is virtually pointless, any higher and power law breakdown is no

longer suppressed within the hpz.

6.2.3 High-Shear Elastic Failure

The recent study described in Chapter 3 showed that there may exist a limit to the

amount of shear stress a triaxially confined ice specimen can support elastically. This

limit was found to decrease slightly as confining pressure was increased from mid-to-

high levels, which is consistent with a decrease in strength with confining pressure that
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(a) Microcracking Damage (b) Microcracking Damage

(c) Recrystallization Damage (d) Recrystallization Damage

Figure 6.19: Damage distributions with (right) and without (left) power law break-

down. Microcracking damage can be seen to have spread throughout the sloped

region, where confinement is practically non-existent, with the addition of power law

breakdown.

has been found in other studies (Jones and Chew, 1983). Finite element simulations

produce von Mises stresses that at times greatly exceed this limit. In an attempt

to replicate this behaviour, a limit to the von Mises stress of each element of 26.0

MPa was applied. To accomplish this, all stresses were scaled by a factor of 26.0/s

whenever the von Mises stress was found to be greater than 26.0 MPa.

The results of this restriction on previously examined simulation conditions dif-

fer greatly from the observed experimental evidence; applying the limit element-by-
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element prevents the formation of a damage layer, as the stress is dispersed throughout

a much larger region with the ice sample, and instead produces a radial layer of mi-

crocracking damage starting from the edge of the indentor, as shown in Figures 6.20

and 6.21.

(a) v = 68 mm/s (b) v = 6.8 mm/s

Figure 6.20: von Mises stress distribution for two different indentor velocities when

von Mises stress is limited to 26.0 MPa.

(a) v = 68 mm/s (b) v = 6.8 mm/s

Figure 6.21: Damage distribution for two different indentor velocities when von Mises

stress is limited to 26.0 MPa.
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This implementation produces behaviour that is similar to plastic deformation,

as can be seen in the load traces for the two velocities shown in 6.22; the resulting

indentor loads are practically identical when plotted versus indentation depth, as

would be the case for general elastic-plastic materials. Combined with the lack of layer

development, it is clear that this implementation does not reproduce experimental

results.

To effectively reproduce the results observed in triaxial experiments, the von Mises

stress limit should be applied at the ice-indentor interface (likely as a load limit on

the indentor) instead of the element-by-element method presented here. This would

allow for the development of excessive stress in single elements without violating the

stress limit at the boundary. The author is unaware of any method with which to

enforce such a limit using Abaqus at this time.

In an attempt to sidestep this problem, the von Mises stress limit was re-imagined;

rather then applying a hard limit to the applied stress, any element which exceeded

the stress limit was instead assumed to immediately reach an excessive level of micro-

cracking damage, drastically reducing the elastic modulus. In this case, the damage

was assumed to immediately reach the damage cap of 14, which represents a reduction

in elastic modulus by a factor of 15 and an increase in the delayed elastic and viscous

strain rates of e14 = 1.2× 106, which was hypothesized to produce effects comparable

to elastic failure. It should be noted that this requires that microcracking elastic

damage be assumed.

The resulting load trace for these conditions is presented in Figure 6.23; the stan-

dard result when the elastic failure limit is not included is provided for comparison.

The new limit is seen to produce a sharp load drop almost immediately, reaching less
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Figure 6.22: Load vs. indentation depth for two different indentor velocities when

von Mises stress is limited to 26.0 MPa.

than a third of the maximum load observed without the elastic failure limit. The

corresponding damage layers both before and after the load drop are provided in

Figures 6.24; the layer is observed to increase in size dramatically within these 0.002

s, particularly at the centre of the indentor.

These results contradict experimental evidence in several ways. Firstly, layer de-

velopment is a continuous process, characterized by the continuous expansion (and

removal) of damage with increasing indentation. Secondly, many indentation exper-

iments produce layers that are thinnest at the centre, with large, undamaged grains

below. It would seem that this implementation is excessive in its application of

damage; a more controlled reduction in elastic modulus may produce results more

consistent with experiments.

197



Figure 6.23: Load traces with and without elastic failure assuming microcracking

elastic damage.

(a) Before Load Drop (b) After Load Drop

Figure 6.24: Damage layers before and after load drop when elastic failure is assumed.

In a final attempt to model the observed high-shear elastic failure, the reduction

in elastic modulus due to exceeding the von Mises stress limit was separated from the

effects of microcracking and dynamic recrystallization damage. Two implementations
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were investigated: the first scaled the elastic modulus by sm/s during any time step

where s exceeded sm, while the second simply reduced the elastic modulus a single

time, by a factor of 100. The resulting load traces are plotted in Figure 6.25, with the

load during the corresponding constant elastic modulus test plotted for comparison.

Both results are seen to conform closely to those of the constant elastic modulus test,

producing results consistent with experimental indentation tests. Layer development

is also maintained, and does not differ significantly from comparison tests. Given

these results, reducing the elastic modulus separately would appear to be the most

viable method with which to implement high-shear elastic failure. Note that this

directly contradicts the assumption of constant elastic properties made in Section

6.1.1; further theoretical and experimental verification is required in order to fully

resolve this issue.

6.2.4 Non-Linear High-Pressure Damage Exponent

The possible existence of a non-linear high-pressure damage exponent, r2, was intuited

from the triaxial data of earlier investigators (Barrette and Jordaan, 2003; Meglis

et al., 1999; Xiao, 1997), who had difficulty accurately measuring and estimating its

value from experimental data. To investigate this behaviour, a damage-dependent r2

value was implemented in the following form:

r2 = r0e
S2/S0 (6.28)

where r0 is the initial damage exponent and S0 is a normalization constant. A range

of initial damage exponents was examined, beginning with the calibration values of

r2 up to a maximum of r2 = 10, which had earlier been found to be the point where a
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Figure 6.25: Load traces with high-shear elastic failure separated from effect of dam-

age.

significant load drop and a highly localized damage layer had developed for a constant

r2 value. The loading results for the series of indentation simulations are provided in

Figures 6.26.

The addition of a non-linear r2 exponent is seen to produce an incredibly sheer

load drop for sufficiently small normalization constants, as seen in all three cases;

higher values of S0 are seen to produce results that are very similar to those for a

constant r2 value. The normalization constant required decreases with decreasing

r0, as would be expected; higher values of r2 already produce significant load drops,

as seen in the case of r0 = 10. It is therefore recommended to use a non-linear r2

formulation only in the case of lower values of r0. Note that the magnitudes of the

observed load drops are noticeably larger than that observed in test NRC07; this can
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(a) r0 = 5

(b) r0 = 7
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(c) r0 = 10

Figure 6.26: Load traces produced for non-linear and constant r2 values with different

initial damage exponents and normalization constants. The first load cycle from test

NRC07 (Frederking et al., 1990) is provided for comparison. Note that in the few cases

where the simulations failed prior to completion the load was extrapolated simply as

a constant.

be attributed to the lack of refreezing within the numerical model.

The damage layers produced under these circumstances are extremely localized,

as seen in Figure 6.27; the r2 exponent increases in a run-away manner, as increasing

S2 damage leads to a higher damage rate under this formulation. This leads to the

formation of regions with a significant damage gradient, as regions of microcracking

will remain relatively undamaged by comparison.

Given the observed load drops, this formulation appears to be a worthwhile avenue
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Figure 6.27: Total damage produced by non-linear r2 value at peak load. Values of

r0 = 5 and S0 = 10 were used in this case. The damage is seen to be highly localized,

with very little damage accruing outside the layer.

for further investigation; experimental and theoretical validation is recommended.

6.2.5 Temperature-Dependent Damage Model

The effect of temperature on the deformation of ice has been shown to be practically

equivalent to the application of hydrostatic pressure, with some minor deviations due

to the existence of stress concentrations at grain boundaries within polycrystalline ice;

in this study, these deviations were assumed to be negligible. A pressure-temperature

damage function was developed to transform the pressure at some environmental

temperature to the corresponding pressure at the reference temperature, T = −10 ◦C.

This pressure was then used in the high-pressure damage function, f2(p), described
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throughout this work. Temperatures lower than −10 ◦C would thus produce less

recrystallization damage, with the opposite occurring at higher temperatures, as is

observed in indentation experiments.

To examine the effect of this pressure-temperature damage function, several sim-

ulations were run at environmental temperatures of -5, -10, and -15 ◦C. Two indentor

velocities (68 and 6.8 mm/s) were examined, to observe the interrelation between the

two parameters. An attempt to apply the shift function of earlier investigators, based

on rate theory and experimental results, was also made. However, the transition to a

higher activation energy at temperatures above -8 ◦C was found to interfere with the

functioning of the model; this can be seen in the load traces of Figure 6.28, wherein

the simulation at -5 ◦C is seen to fail early. The rate theory-based approach was thus

suppressed in favour of using the pressure-temperature damage function approach.

The pressure-temperature damage function was found to produce results that

are consistent with experimental evidence at high indentor velocities; the damage

layer increases in size with temperature, while the amount of microcracking decreases

significantly, as was observed in Figure 2.14 in Section 2.6.3. The microcracking that

does occur is observed to form shear “rings” that move closer to the ice-indentor

interface with increasing temperature.

The low velocity results are more difficult to interpret; the above trends still apply,

but the low temperature simulation is seen to produce a damage zone similar to a

creep test instead of a damage layer with significant microcracking, indicating that

there may be a relation between environmental temperature and the onset velocity

of creep behaviour. These results are all presented in Figures 6.29. The results are

separated into S1 and S2 damage in Figures 6.30 and 6.31, respectively.
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Figure 6.28: Load traces at temperatures of -5, -10, and -15 ◦C with rate theory-based

shift function included.

The corresponding load traces are provided in Figures 6.32. The model produces

the expected load drop, and, unlike the activation energy based shift function, pro-

duces larger loads at lower temperatures, consistent with experimental evidence, as

shown in Figure 6.33. Anomalous behaviour is observed in two cases: for the high-

speed, low temperature simulation, the load drop is unexpectedly gentle, providing

further evidence for a link between the extent of dynamic recrystallization and the

steepness of the load drop, and; the low-speed, high temperature simulation produced

a significantly lower maximum load well before the formation of the full damage layer.

This is related to the stress conditions associated with this indentor velocity; lower

velocities produce lower pressures, leading to the accumulation of little dynamic re-

crystallization at -10 ◦C. Thus, there is little difference between the -15 and -10 ◦C

205



(a) T = -15◦C (b) T = -10◦C (c) T = -5◦C

Figure 6.29: Damage layers at temperatures from -15 to -5 ◦C near peak-load. The

top layer of figures were taken from simulations with an indentor velocity of 68 mm/s,

while the bottom layer were taken from simulations with an indentor velocity of 6.8

mm/s

simulations, as microcracking dominates both. When the temperature is increased,

dynamic recrystallization becomes more prominent, leading to a significant decrease in

ice strength. It should be noted that fracture becomes much more likely at colder tem-

peratures, as the loads required to produce microstructural damage become greater

than those required to initiate failure through fracture.

It must be noted once again that the pressure-temperature damage function is

currently only valid for ∆Tm = [−10, 0] and Th = [0.9634, 1] due to the environmental

temperature of the experiments used to calibrate the models of Xiao (1997) and

Li (2002). A series of triaxial compression experiments at -22 ◦C and hydrostatic

pressures ranging up to 220 MPa are required to produce a complete master curve

for the pressure-temperature damage function.
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(a) T = -15◦C (b) T = -10◦C (c) T = -5◦C

Figure 6.30: Microcracking damage layers at temperatures from -15 to -5 ◦C near

peak-load. The top layer of figures were taken from simulations with an indentor

velocity of 68 mm/s, while the bottom layer were taken from simulations with an

indentor velocity of 6.8 mm/s

(a) T = -15◦C (b) T = -10◦C (c) T = -5◦C

Figure 6.31: Recrystallization damage layers at temperatures from -15 to -5 ◦C near

peak-load. The top layer of figures were taken from simulations with an indentor

velocity of 68 mm/s, while the bottom layer were taken from simulations with an

indentor velocity of 6.8 mm/s
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(a) v = 68 mm/s

(b) v = 6.8 mm/s

Figure 6.32: Load traces produced for three temperatures and two indentor velocities.

208



Figure 6.33: Experimental load traces at temperatures of -5 and -15 ◦C. The low

temperature test reaches significantly higher loads. Figure recreated from the data

of Browne (2012). The displacement rate for both tests was 4 mm/s, with a 40 mm

diameter indentor.

6.3 Summary of Results

Numerous potential modifications to the constitutive model of ice were implemented

and their results examined via a finite element analysis of a standard ice indentation

experiment. The results are summarized here for ease of reference:

1. The role of elastic properties was examined to determine whether elastic damage

plays a significant role in hpz behaviour. Constant elastic properties were found

to produce the largest load drops, a common feature in hpz behaviour for the

indentor velocities studied. Constant elastic properties were therefore used as

209



the baseline for further study.

2. Increasing values of the high-pressure damage exponent, r2, were examined as

a comparison to the work of Xiao (1997) and were found to produce equivalent

results; larger, sheerer load drops are observed with increasing values of r2. A

value of r2 of at least 7 is recommended based on this work.

3. A brief examination of the damage accumulation in the Kelvin spring used to

describe delayed elastic behaviour was made. Both the constant Poisson’s ratio

formulation and the microcracking based form of Kachanov were examined;

little difference between the two was observed. The Kachanov model was chosen

as a baseline, due to its solid theoretical grounds.

4. The effect of indentor velocity was examined. The model behaviour was found to

correlate well with experimental evidence, with low speed simulations produce

a large damage zone and high speed tests producing a highly localized damage

layer. This behaviour was also found to scale with changes in geometry when a

normalized velocity was enforced, similar to experimental results. A normalized

velocity of 0.34 s−1 (v = 68 mm/s) is used for further simulations.

5. The recalibrated microcracking damage function, f1(p), was found to produce

results similar to those obtained by the earlier quadratic model. It was used for

further simulations to avoid the temperature dependence of the earlier function.

6. The effect of power law breakdown was examined under a range of normaliza-

tion constants. Low values of this constant were found to produce practically

pure power law loading behaviour; allowing power law breakdown to occur in

210



regions of low stress has little effect upon hpz behaviour, which controls load-

ing. Implementing power law breakdown over an increasingly wide range of

pressures, the loading traces were found to slowly transition to plastic-like load

plateaus, contradicting experimental evidence. A low value for the normalizing

constant is thus recommended.

7. Several modifications were made in an effort to implement the high-shear elastic

failure observed in the experiments of 3, including:

(a) A limit of 26 MPa on the von Mises stress, which was found to produce

plastic loading behaviour and was thus discarded.

(b) A drastic increase in microcracking damage at s = 26 MPa, which was

found to produce exaggerated loading behaviour, with a sudden, shear

load drop occurring at loads much lower than expected. This model was

also discarded.

(c) A decrease in elastic modulus, either continuous or sudden, was found to

produce loading behaviour similar to experimental evidence, with a larger

load drop observed than the model where a constant elastic modulus is

assumed. This method is recommended for further examination.

8. A non-linear high-pressure damage exponent, r2, was briefly examined and

found to produce highly sheer load drops, similar to those observed during

saw-tooth loading. This seems like a promising avenue for further examination.

9. The effect of implementing the temperature-dependent damage function was

examined with and without the use of the standard rate-based shift function.
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The addition of the shift function was found to produce numerical instabilities at

high temperatures, and was not consider further. The temperature-dependent

damage function was found to produce results consistent with experimental

evidence, with larger loads (and load drops) observed at lower temperatures,

and damage layers of increasing thickness with increasing temperature. Further

examination is advised.
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Chapter 7

Conclusions

The present study examined the role of damage processes during the deformation

of viscoelastic materials, particularly ice. It focused primarily upon the deformation

behaviour of ice under triaxial compression, particularly with regards to the develop-

ment and failure of high-pressure zones, which provide the majority of the structural

load during an ice-structure interaction.

The development of the constitutive damage model of Jordaan and others was

reviewed, and modifications to the theory have been described and examined. Triaxial

compression tests and both medium- and laboratory-scale indentation experiments on

ice performed by previous investigators have been described and the results used for

comparison. An exploratory series of triaxial tests at high stress differences (σ1 − σ3)

was performed and described. The results show a clear limit to the stress difference

ice is capable of supporting elastically (approximately 26 MPa), even under high

confining pressures (40, 45, and 60 MPa). Though interesting, this result has yet to

be connected to hpz behaviour, where stresses can exceed 100 MPa; its effect upon
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design criteria is therefore currently unknown. If such a link can be established, these

results could prove quite useful in the development of failure tools for use in the design

of future offshore structures and ships, as they provide a possible limit to the amount

of load ice can sustain during an interaction.

Thin sections of the tested samples provide clear evidence of dynamic recrystal-

lization in the regions near the resulting shear faults, with significantly less damage

in regions further from the fault; here, microcracking is more evident, though micro-

cracking damage in general is suppressed under these confining pressures.

A wide range of finite-element simulations were performed based on the modifica-

tions made to the constitutive model and their results presented, focused primarily

on the region of high-pressure at the centre of an indentation. The multiaxial consti-

tutive theory for viscoelastic materials upon which the study was based was derived

from continuum damage theory coupled with Glen’s power law relationship. The

changes in material microstructure (damage) brought on by deformation have been

modelled via a finite collection of state variables, which represent the average effect

of damage within a region. The damage evolution model is based on the approach

of Schapery, the re-calibration of which was accomplished using numerous constant

load triaxial tests of previous investigators.

This study has re-examined the effect of numerous parameters on the deformation

behaviour of ice, including: elastic damage, both with and without high-pressure

damage, as well as the case of constant elastic properties; the formulation used for

elastic damage, primarily those of Kachanov (1993) and Moore et al. (2013); the

high-pressure damage exponent, r2, and; the normalized velocity, vn.

It was found that, while high-pressure elastic damage was required to reproduce
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the surface layer of earlier investigators using their calibration parameters, no cor-

responding load drop was observed. Both the microcracking elastic damage model

and the model with constant elastic properties produced the desired load drop, but

resulted in a diagonal band of damage using the calibration parameters of Xiao (1997)

and Li (2002). Increasing the high-pressure damage exponent, r2, was found to both

localize damage into the expected layer and produce an abrupt load drop, indicating

that the calibration values are not a good indicator of the true value of r2 within a

hpz, likely due to the smearing (or averaging) of results over the entire contact area.

The increased r2 values were found to not reproduce the load drop under the high-

pressure elastic damage formulation, instead producing a series of plastic-like load

plateaus. Since the load drop was most significant under constant elastic properties,

these conditions were focused on during further simulations. Under these conditions,

the difference between the Kachanov and constant Poisson’s ratio elastic damage

formulations was practically non-existent, and was not further investigated.

Finally, increasing indentor velocity was found to produce the expected results,

with the damage layer becoming more and more localized with increasing velocity.

High speed tests were found to reach indentor loads much larger than those observed

during indentation experiments due to the absence of spalling failure.

All formulations produce unexpected behaviour at high damage; highly damaged

elements cannot support shear stress under these formulations, producing a von Mises

stress of nearly zero and high surface pressures. This is theoretically consistent with

the constitutive model; since the delayed elastic, viscous, and volumetric strain rates

increase with damage, the elastic component must decrease in response to maintain

an approximately constant total strain rate.
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This study modified and investigated the following aspects of the constitutive

model: the exponential function used to describe high-pressure damage was converted

to a geometric or normalized exponential; power law breakdown was implemented

within regions of low confining pressure; a non-linear high-pressure exponent was

examined; an attempt to model high-shear elastic failure was made, and; a pressure-

temperature shift function for the description of deformation at temperatures other

than the reference temperature, T0 = −10◦C, was implemented.

The use of the normalized exponential or geometric damage function was found

to simply reduce the damage rate slightly, producing results that were qualitatively

identical to those of the previous exponential function. The effects of implementing

power law breakdown were found to differ depending upon the normalization constant

used. The main effect was to increase the amount of secondary creep for a given von

Mises stress, leading to a general reduction in the applied stress, similar to the effect

of decreasing indentor velocity or increasing the power for the secondary creep rate.

The implementation of a non-linear high-pressure damage exponent was found

to produce a highly sheer load drop, as observed in many indentation experiments

during cyclic loading. The localization of the damage layer was found to dramatically

increase, with a sharp separation between damaged and undamaged regions.

Multiple implementations of the high-shear elastic stress limit observed in the re-

cent test series were examined: applying the limit element-by-element led to plastic-

like deformation, instead of the desired load drop, and should be avoided. Applying

the limit globally, at the rigid indentor, may reproduce the desired results, but it

is currently unclear whether Abaqus is capable of applying such a limit. Another

attempt to model the high-shear limit was made assuming that reaching the limit
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produced significant damage, leading to the collapse of the element. This produced

a sheer load drop, but it was both significantly smaller and occurred much sooner

than expected; the applied damage was too excessive to reproduce experimental re-

sults. Finally, reducing the elastic modulus separately from viscous damage produced

promising indentation results; both the load drop and damage layer development were

maintained, while reducing the effect of the elastic properties on the simulation, as

the observed high-shear elastic failure would indicate. Further investigation is recom-

mended.

The pressure-temperature shift function was found to produce results consistent

with experimental evidence; the damage layer was found to contain higher levels of

recrystallization damage and extend deeper into the ice sample with increasing tem-

perature, while also suppressing the development of microcracking damage. The addi-

tion of the rate theory-based shift function used by earlier investigators was found to

interact poorly with the pressure-temperature shift function, causing a numerical in-

stability which prevented the solution from converging. This function was suppressed

in favour of the pressure-temperature shift function, as it had never satisfactorily

accounted for the transition to a new deformation regime at high temperatures and

pressures.

Based on the results of the experiments and simulations described here, some

general conclusions can be made:

1. Confined ice samples appear to have a mean failure stress difference of 26.0 MPa

with a standard deviation of only 1.6 MPa. The minor differences between tests

are likely due to changes in confining pressure, with the stress at failure steadily
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decreasing with increasing confining pressure. The loading rate appears to have

no bearing upon the observed failure stress or the strain rate post-failure.

2. The use of constant elastic properties produces both the largest and steepest

load drops, similar to those observed in indentation experiments. This conflicts

with the long-known detrimental effects of microcracking damage on the elastic

properties of materials, indicating that perhaps high-pressure damage “heals”

the damage done by microcracking within a hpz, which is the determining factor

in indentation behaviour.

3. Power law breakdown is suppressed by confining pressure, and is thus relegated

to the peripheral regions of an indentation where microcracking dominates,

having little effect on the bulk behaviour of an ice-structure interaction.

4. A non-linear, damage-dependent r2 value was found to produce a dramatically

sheerer load drop and a highly localized damage layer. This seems like a promis-

ing avenue for further examination.

5. The pressure-temperature shift function is consistent with experimental ev-

idence, but is incompatible with the rate theory-based shift function. The

pressure-temperature shift function is preferred, as the rate theory-based shift

function does not effectively model the transition to a new deformation regime

at higher temperatures and pressures.

Finally, several areas for further study are recommended based on the results

discussed throughout this work:
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1. The exploratory series of high-shear, high confining pressure experiments out-

lined in this study should be extended; five data points are insufficient to judge

the validity of the results. It is recommended that the full range of confining

pressures (low-to-high) be examined, to illustrate the relation between failure

stress and confining pressure.

2. The pressure-temperature shift function would benefit from a series of triaxial

experiments at -22◦C, at the full range of confining pressures under which pres-

sure melting is possible. This would provide a master damage rate curve that

covered all temperatures and pressures of interest.

3. The Abaqus VUMAT code is designed to update stress based on the elastic

strain, represented by σ̇ij = K̇ijklϵ
e
kl + Kijklϵ̇

e
kl. For the case where the elastic

properties have collapsed, this will produce a stress of zero, when instead the

viscous components should continue supporting stress of some form. Modifying

the code to account for this edge case is recommended, and may provide a

method to successfully describe the high-shear elastic failure observed in this

study.

4. The constitutive relations described hold only for a single load cycle, as, unlike

an actual indentation experiment, highly damaged material is not ejected from

the interaction area. Some combination of element deletion, re-meshing, and

damage healing are likely necessary to model multiple cycles, and would provide

an interesting avenue for improvement to the constitutive model.

5. Not only are high stresses produced during an interaction, but large amounts of
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heat as well, as discussed in Turner et al. (2015) and elsewhere. This will have

an effect on the deformation behaviour in the region, as a higher temperature

will reduce the pressure necessary to induce pressure melting. The heat distri-

bution is seemingly random, but is likely highly dependent upon the pressure

distribution at the ice surface, as well as the location of spalling fracture. A

study of heat transfer processes during an interaction would be highly valuable.

6. Finally, it should be noted that damage development alone does not fully de-

scribe an ice-structure interaction; fracture plays a role in the deformation be-

haviour of ice at most loading rates of interest, as noted by Jordaan and Xiao

(1992). Large, time-dependent fractures are observed to occur at low load-

ing rates, while spalling fractures, localized to the edges of the hpz s, dominate

at high loading rates. A combined fracture and damage analysis is therefore

necessary to accurately describe these interactions.

Overall, the results outlined in this thesis provide significant insight into hpz be-

haviour, outlining several promising avenues for further research while examining

the weaknesses of others. This improved understanding of hpz behaviour can be

translated directly into a better estimation of the local pressures produced by an ice-

structure interaction, a key aspect of offshore structure design. Continued research

into hpz behaviour, concurrent with the development of the presented continuum

damage model, is believed to be essential to improving local pressure estimates.
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Määttänen, M. (1978). On conditions for the rise of self-excited ice induced au-

tonomous oscillations in slender marine pile structures. Dissertation from Helsinki

University of Technology: Teknillinen Korkeakoulu.

232



Mae, S. and Azuma, N. (1989). Ice sheet dynamics and rheology of ice under hydro-

static pressure. In Karato, S. and Toriumi, M., editors, Rheology of solids and of

the Earth, pages 209–222. Oxford University Press, N.Y.

Makin, M. J. (1964). The thermal activation of slip in neutron irradiated copper.

Philosophical Magazine, 9(97):81–98.

Malvern, L. (1969). Introduction to the mechanics of a continuous medium. Prentice-

Hall series in engineering of the physical sciences. Prentice-Hall.

Masterson, D., Frederking, R., Jordaan, I., and Spencer, P. (1993). Description

of multi-year ice indentation tests at hobson’s choice ice island – 1990. In 12th

International Conference on Offshore Mechanics and Arctic Engineering, Glasgow,

volume 4, pages 145–155.

Meaney, R., Kenny, S., and Sinha, N. (1991). Medium-scale ice-structure interaction:

Failure zone characterization. In Proceedings Port and Ocean Engineering under

Arctic Conditions, POAC’91, St. John’s, Canada, volume 1, pages 126–140.

Meglis, I., Melanson, P., and Jordaan, I. (1999). Microstructural change in ice: II.

Creep behavior under triaxial stress conditions. Journal of Glaciology, pages 438–

448.

Melanson, P. (1998). Damage and microstructural change in laboratory grown ice

under high pressure zone conditions. M.Eng Thesis, Memorial University of New-

foundland, St. John’s, Canada.

Melanson, P., Meglis, I., and Jordaan, I. (1999a). Modelling of damage in ice. In Ice

233



in surface waters. Proc. 14th Int. Symp. on Ice, A.A. Balkema, Brookfield, pages

979–988.

Melanson, P., Meglis, I., Jordaan, I., and Stone, B. (1999b). Microstructural change

in ice: I. Constant deformation-rate tests under triaxial stress conditions. Journal

of Glaciology, pages 417–422.

Mellor, M. and Testa, R. (1969). Effect of temperature on the creep of ice. Journal

of Glaciology, 8:131–145.

Mizuno, Y. (1992). High temperature creep of polycrystalline ice under hydrostatic

pressure. In Maeno, N. and Hondoh, T., editors, Physics and Chemistry of Ice,

pages 434–439. Hokkaido University Press, Sapporo.

Mizuno, Y. (1998). Effect of hydrostatic confining pressure on the failure mode and

compressive strength of polycrystalline ice. The Journal of Physical Chemistry B,

102(2):376–381.

Moore, P. F., Jordaan, I. J., and Taylor, R. S. (2013). Explicit finite element analysis

of compressive ice failure using damage mechanics. In Proceedings of the 22nd

International Conference on Port and Ocean Engineering under Arctic Conditions.

Morsy, U. and Brown, T. (1996). Three-dimensional non-linear finite element model

for the Molikpaq, Gulf’s mobile caisson. Computers & Structures, 60(4):541 – 560.

Nabarro, F. (2004). Do we have an acceptable model of power-law creep? Materials

Science and Engineering: A, 387–389:659 – 664. 13th International Conference on

the Strength of Materials.

234



Nadreau, J. and Michel, B. (1986a). Secondary creep in confined ice samples. In

Proc. 8th IAHR Conf., Iowa City, volume 1, pages 307–318.

Nadreau, J. and Michel, B. (1986b). Yield envelope for confined ice. In Proc. 1st Int.

Conf. Ice Technology, pages 25–36.

Nordell, B. (1990). Measurement of P-T coexistence curve for ice-water mixture. Cold

Regions Science and Technology, 19(1):83–88.

Onsager, L. (1931). Reciprocal relations in irreversible processes. i. Phys. Rev.,

37:405–426.

O’Rourke, B., Jordaan, I., Taylor, R., and Gürtner, A. (2015). Spherical indenta-
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Appendix A

Validation of Model

Single element triaxial creep-relaxation cycles were used to validate the Abaqus im-

plementation of the constitutive model, as described in Chapter 5. The relevant

parameters that are consistent between each cycle are: a confining pressure, Pc = 30

MPa, applied over a total time of t = 40 s; an additional axial stress of ∆σ1 = 12

MPa applied until time t1 = 20, then reduced to ∆σ2 = 0 MPa for the remainder of

the simulation.

These values were chosen for three reasons: first, the low confining pressure allowed

for the examination of the microcracking damage function, which disappears at higher

confining pressures; secondly, three of the high pressure damage functions are identical

at the reference von Mises stress (ss0 = 15 MPa), so another value for ∆σ1 had to

be chosen so that comparison was possible; and lastly, ∆σ2 = 0 MPa was chosen

to ensure that delayed elastic recovery was occurring as the numerical singularity at

s = 0 was approached.

Numerous simulations were run to test a variety of models, including those: with
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and without damage; with and without elastic damage; with microcracking elastic

damage only; with one of four types of high-pressure damage: power-law, exponential,

normalized exponential, or geometric; with the damage calibrations of either Xiao

(1997) or Li (2002); and with one of three elastic damage formulations: constant ν,

constant K, or Kachanov’s, for a total of 85 combinations of parameters.

The results produced by the Abaqus VUMAT simulations match the expected

theoretical results in almost every case. Those simulations that do not match do so

not because of theoretical inconsistencies, but due to Abaqus itself having difficulty

modelling a step decrease in stress, a common deficiency in numerical models.

The results for each combination of parameters can be found in the following

Tables and Figures.
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Table A.1: Triaxial validation results for case of no damage. Note that 11 indicates

the axial direction, 22 the lateral.

Theory VUMAT

ϵe11

t = 20 2.53× 10−3 2.53× 10−3

t = 40 1.26× 10−3 1.26× 10−3

ϵe22

t = 20 8.84× 10−4 8.84× 10−4

t = 40 1.26× 10−3 1.26× 10−3

ed
t = 20 1.19× 10−3 1.19× 10−3

t = 40 6.88× 10−5 6.99× 10−5

ec
t = 20 2.63× 10−3 2.62× 10−3

t = 40 2.63× 10−3 2.62× 10−3

ϵt11

t = 20 4.92× 10−3 4.92× 10−3

t = 40 2.92× 10−3 2.92× 10−3

ϵt22

t = 20 −5.35× 10−4 −5.33× 10−4

t = 40 2.14× 10−4 2.14× 10−4
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Table A.2: Total damage using the calibrations of Xiao (1997) and Li (2002).

Xiao Li

Theory VUMAT Theory VUMAT

S1

t = 20 3.06× 10−2 3.05× 10−2 8.36× 10−1 8.35× 10−1

t = 40 3.07× 10−2 3.07× 10−2 8.39× 10−1 8.40× 10−1

Sp
t = 20 2.37× 10−1 2.37× 10−1 9.14× 10−1 9.13× 10−1

t = 40 2.38× 10−1 2.38× 10−1 9.17× 10−1 9.18× 10−1

Se
t = 20 1.43 1.43 1.36 1.36

t = 40 1.78 1.78 1.48 1.48

Sne
t = 20 4.80× 10−1 4.80× 10−1 1.01 1.00

t = 40 4.82× 10−1 4.82× 10−1 1.01 1.01

Sg
t = 20 4.98× 10−1 4.97× 10−1 1.01 1.01

t = 40 5.00× 10−1 5.00× 10−1 1.02 1.02
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Table A.3: Elastic strain with damage using the calibrations of Xiao (1997) and Li

(2002).

Xiao Li

Theory VUMAT Theory VUMAT

ϵe11 (S1)

ν = ν0
t = 20 2.60× 10−3 2.61× 10−3 4.64× 10−3 4.64× 10−3

t = 40 1.30× 10−3 1.30× 10−3 2.32× 10−3 2.32× 10−3

K = K0

t = 20 2.57× 10−3 2.57× 10−3 3.58× 10−3 3.59× 10−3

t = 40 1.26× 10−3 1.26× 10−3 1.26× 10−3 1.27× 10−3

Kachanov
t = 20 2.75× 10−3 2.75× 10−3 8.63× 10−3 8.56× 10−3

t = 40 1.42× 10−3 1.42× 10−3 5.55× 10−3 5.60× 10−3

ϵe22 (S1)

ν = ν0
t = 20 9.11× 10−4 9.11× 10−4 1.62× 10−3 1.62× 10−3

t = 40 1.30× 10−3 1.30× 10−3 2.32× 10−3 2.32× 10−3

K = K0

t = 20 8.65× 10−4 8.65× 10−4 3.56× 10−4 3.53× 10−4

t = 40 1.26× 10−3 1.26× 10−3 1.26× 10−3 1.26× 10−3

Kachanov
t = 20 1.04× 10−3 1.04× 10−3 5.10× 10−3 5.06× 10−3

t = 40 1.42× 10−3 1.42× 10−3 5.55× 10−3 5.59× 10−3

ϵe11 (S
p)

ν = ν0
t = 20 3.13× 10−3 3.13× 10−3 4.84× 10−3 4.83× 10−3

t = 40 1.56× 10−3 1.57× 10−3 2.42× 10−3 2.42× 10−3

K = K0

t = 20 2.83× 10−3 2.83× 10−3 3.68× 10−3 3.68× 10−3

t = 40 1.26× 10−3 1.26× 10−3 1.26× 10−3 1.27× 10−3

Kachanov
t = 20 4.26× 10−3 4.24× 10−3 9.19× 10−3 9.10× 10−3

t = 40 2.48× 10−3 2.47× 10−3 5.95× 10−3 -1.05

Continued on next page
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Table A.3 – Continued from previous page

Xiao Li

Theory VUMAT Theory VUMAT

ϵe22 (S
p)

ν = ν0
t = 20 1.09× 10−3 1.09× 10−3 1.69× 10−3 1.69× 10−3

t = 40 1.56× 10−3 1.56× 10−3 2.42× 10−3 2.42× 10−3

K = K0

t = 20 7.34× 10−4 7.34× 10−4 3.07× 10−4 3.03× 10−4

t = 40 1.26× 10−3 1.26× 10−3 1.26× 10−3 1.26× 10−3

Kachanov
t = 20 2.08× 10−3 2.08× 10−3 5.49× 10−3 5.44× 10−3

t = 40 2.48× 10−3 2.47× 10−3 5.95× 10−3 -2.32

ϵe11 (S
e)

ν = ν0
t = 20 6.15× 10−3 6.15× 10−3 5.97× 10−3 5.97× 10−3

t = 40 3.51× 10−3 3.51× 10−3 3.13× 10−3 3.13× 10−3

K = K0

t = 20 4.34× 10−3 4.36× 10−3 4.25× 10−3 4.27× 10−3

t = 40 1.26× 10−3 1.27× 10−3 1.26× 10−3 1.27× 10−3

Kachanov
t = 20 1.30× 10−2 1.28× 10−2 1.25× 10−2 1.23× 10−2

t = 40 1.03× 10−2 1.10× 10−2 8.82× 10−3 9.52× 10−3

ϵe22 (S
e)

ν = ν0
t = 20 2.15× 10−3 2.15× 10−3 2.09× 10−3 2.08× 10−3

t = 40 3.51× 10−3 3.51× 10−3 3.13× 10−3 3.13× 10−3

K = K0

t = 20 −2.15× 10−5 −3.02× 10−5 2.36× 10−5 1.53× 10−5

t = 40 1.26× 10−3 1.26× 10−3 1.26× 10−3 1.26× 10−3

Kachanov
t = 20 8.11× 10−3 8.11× 10−3 7.75× 10−3 7.67× 10−3

t = 40 1.03× 10−2 1.10× 10−2 8.82× 10−3 9.51× 10−3

Continued on next page
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Table A.3 – Continued from previous page

Xiao Li

Theory VUMAT Theory VUMAT

ϵe11 (S
ne)

ν = ν0
t = 20 3.74× 10−3 3.74× 10−3 5.07× 10−3 5.06× 10−3

t = 40 1.87× 10−3 1.87× 10−3 2.54× 10−3 2.54× 10−3

K = K0

t = 20 3.13× 10−3 3.14× 10−3 3.80× 10−3 3.81× 10−3

t = 40 1.26× 10−3 1.27× 10−3 1.26× 10−3 1.27× 10−3

Kachanov
t = 20 6.03× 10−3 6.00× 10−3 9.86× 10−3 9.76× 10−3

t = 40 3.73× 10−3 3.72× 10−3 6.42× 10−3 6.95× 10−3

ϵe22 (S
ne)

ν = ν0
t = 20 1.31× 10−3 1.31× 10−3 1.77× 10−3 1.77× 10−3

t = 40 1.87× 10−3 1.87× 10−3 2.54× 10−3 2.54× 10−3

K = K0

t = 20 5.81× 10−4 5.79× 10−4 2.49× 10−4 2.45× 10−4

t = 40 1.26× 10−3 1.26× 10−3 1.26× 10−3 1.26× 10−3

Kachanov
t = 20 3.30× 10−3 3.29× 10−3 5.95× 10−3 5.90× 10−3

t = 40 3.73× 10−3 3.71× 10−3 6.42× 10−3 6.95× 10−3

ϵe11 (S
g)

ν = ν0
t = 20 3.78× 10−3 3.78× 10−3 5.08× 10−3 5.08× 10−3

t = 40 1.89× 10−3 1.89× 10−3 2.55× 10−3 2.55× 10−3

K = K0

t = 20 3.16× 10−3 3.16× 10−3 3.80× 10−3 3.82× 10−3

t = 40 1.26× 10−3 1.27× 10−3 1.26× 10−3 1.27× 10−3

Kachanov
t = 20 6.16× 10−3 6.13× 10−3 9.91× 10−3 9.81× 10−3

t = 40 3.82× 10−3 3.81× 10−3 6.45× 10−3 6.91× 10−3

Continued on next page
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Table A.3 – Continued from previous page

Xiao Li

Theory VUMAT Theory VUMAT

ϵe22 (S
g)

ν = ν0
t = 20 1.32× 10−3 1.32× 10−3 1.78× 10−3 1.78× 10−3

t = 40 1.89× 10−3 1.89× 10−3 2.55× 10−3 2.54× 10−3

K = K0

t = 20 5.70× 10−4 5.68× 10−4 2.45× 10−4 2.41× 10−4

t = 40 1.26× 10−3 1.26× 10−3 1.26× 10−3 1.26× 10−3

Kachanov
t = 20 3.39× 10−3 3.38× 10−3 5.98× 10−3 5.93× 10−3

t = 40 3.82× 10−3 3.80× 10−3 6.45× 10−3 6.90× 10−3
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Table A.4: Delayed elastic equivalent strain with damage using the calibrations of

Xiao (1997) and Li (2002). Note that the results for ν = ν0 are identical to the

K = K0 results.

Xiao Li

Theory VUMAT Theory VUMAT

ed (S1)

ν = ν0
t = 20 1.22× 10−3 1.22× 10−3 1.96× 10−3 1.95× 10−3

t = 40 6.94× 10−5 7.14× 10−5 5.31× 10−5 5.62× 10−5

Kachanov
t = 20 1.23× 10−3 1.23× 10−3 2.34× 10−3 2.33× 10−3

t = 40 7.47× 10−5 7.68× 10−5 1.58× 10−4 1.62× 10−4

ed (Sp)

ν = ν0
t = 20 1.39× 10−3 1.39× 10−3 2.03× 10−3 2.03× 10−3

t = 40 7.41× 10−5 7.65× 10−5 4.83× 10−5 5.15× 10−5

Kachanov
t = 20 1.51× 10−3 1.51× 10−3 2.46× 10−3 2.44× 10−3

t = 40 1.16× 10−4 1.18× 10−4 1.55× 10−4 1.58× 10−4

ed (Se)

ν = ν0
t = 20 2.61× 10−3 2.61× 10−3 2.53× 10−3 2.53× 10−3

t = 40 1.05× 10−5 1.39× 10−5 1.85× 10−5 2.18× 10−5

Kachanov
t = 20 3.32× 10−3 3.31× 10−3 3.19× 10−3 3.17× 10−3

t = 40 7.52× 10−5 8.10× 10−5 1.03× 10−4 9.79× 10−5

ed (Sne)

ν = ν0
t = 20 1.61× 10−3 1.61× 10−3 2.13× 10−3 2.13× 10−3

t = 40 7.05× 10−5 7.33× 10−5 4.26× 10−5 4.58× 10−5

Kachanov
t = 20 1.84× 10−3 1.83× 10−3 2.60× 10−3 2.58× 10−3

t = 40 1.47× 10−4 1.51× 10−4 1.50× 10−4 1.48× 10−4

Continued on next page
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Table A.4 – Continued from previous page

Xiao Li

Theory VUMAT Theory VUMAT

ed (Sg)

ν = ν0
t = 20 1.63× 10−3 1.63× 10−3 2.14× 10−3 2.14× 10−3

t = 40 7.00× 10−5 7.27× 10−5 4.22× 10−5 4.54× 10−5

Kachanov
t = 20 1.86× 10−3 1.86× 10−3 2.61× 10−3 2.59× 10−3

t = 40 1.49× 10−4 1.52× 10−4 1.49× 10−4 1.46× 10−4
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Table A.5: Viscous equivalent strain with damage using the calibrations of Xiao

(1997) and Li (2002).

Xiao Li

Theory VUMAT Theory VUMAT

ec (S1)
t = 20 2.67× 10−3 2.66× 10−3 4.11× 10−3 4.09× 10−3

t = 40 2.67× 10−3 2.67× 10−3 4.13× 10−3 4.13× 10−3

ec (Sp)
t = 20 2.96× 10−3 2.95× 10−3 4.29× 10−3 4.27× 10−3

t = 40 2.97× 10−3 2.97× 10−3 4.31× 10−3 4.32× 10−3

ec (Se)
t = 20 5.85× 10−3 5.83× 10−3 5.60× 10−3 5.57× 10−3

t = 40 5.89× 10−3 5.90× 10−3 5.63× 10−3 5.67× 10−3

ec (Sne)
t = 20 3.37× 10−3 3.36× 10−3 4.52× 10−3 4.50× 10−3

t = 40 3.38× 10−3 3.38× 10−3 4.55× 10−3 4.58× 10−3

ec (Sg)
t = 20 3.40× 10−3 3.39× 10−3 4.54× 10−3 4.52× 10−3

t = 40 3.42× 10−3 3.41× 10−3 4.57× 10−3 4.60× 10−3
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(a) E(S) = E(S1 + S2) (b) E(S) = E(S1 + S2)

(c) E(S) = E(S1) (d) E(S) = E(S1)

(e) E(S) = E0 (f) E(S) = E0

Figure A.1: Comparison of total strains with the constant bulk modulus elastic dam-

age formulation and power-law high-pressure damage. (a),(c), and (e) use the damage

calibration of Li (2002), the remainder Xiao (1997). Note that full elastic damage is

represented by E(S) = E(S1 + S2), microcracking elastic damage by E(S) = E(S1),

and no elastic damage by E(S) = E0.
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(a) E(S) = E(S1 + S2) (b) E(S) = E(S1 + S2)

(c) E(S) = E(S1) (d) E(S) = E(S1)

(e) E(S) = E0 (f) E(S) = E0

Figure A.2: Comparison of total strains with the constant bulk modulus elastic dam-

age formulation and exponential high-pressure damage. (a),(c), and (e) use the dam-

age calibration of Li (2002), the remainder Xiao (1997).
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(a) E(S) = E(S1 + S2) (b) E(S) = E(S1 + S2)

(c) E(S) = E(S1) (d) E(S) = E(S1)

(e) E(S) = E0 (f) E(S) = E0

Figure A.3: Comparison of total strains with the constant bulk modulus elastic dam-

age formulation and normalized exponential high-pressure damage. (a),(c), and (e)

use the damage calibration of Li (2002), the remainder Xiao (1997).
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(a) E(S) = E(S1 + S2) (b) E(S) = E(S1 + S2)

(c) E(S) = E(S1) (d) E(S) = E(S1)

(e) E(S) = E0 (f) E(S) = E0

Figure A.4: Comparison of total strains with the constant bulk modulus elastic dam-

age formulation and geometric high-pressure damage. (a),(c), and (e) use the damage

calibration of Li (2002), the remainder Xiao (1997).
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(a) E(S) = E(S1 + S2) (b) E(S) = E(S1 + S2)

(c) E(S) = E(S1) (d) E(S) = E(S1)

(e) E(S) = E0 (f) E(S) = E0

Figure A.5: Comparison of total strains with the Kachanov elastic damage formula-

tion and power-law high-pressure damage. (a),(c), and (e) use the damage calibration

of Li (2002), the remainder Xiao (1997).
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(a) E(S) = E(S1 + S2) (b) E(S) = E(S1 + S2)

(c) E(S) = E(S1) (d) E(S) = E(S1)

(e) E(S) = E0 (f) E(S) = E0

Figure A.6: Comparison of total strains with the Kachanov elastic damage formula-

tion and exponential high-pressure damage. (a),(c), and (e) use the damage calibra-

tion of Li (2002), the remainder Xiao (1997).
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(a) E(S) = E(S1 + S2) (b) E(S) = E(S1 + S2)

(c) E(S) = E(S1) (d) E(S) = E(S1)

(e) E(S) = E0 (f) E(S) = E0

Figure A.7: Comparison of total strains with the Kachanov elastic damage formu-

lation and normalized exponential high-pressure damage. (a),(c), and (e) use the

damage calibration of Li (2002), the remainder Xiao (1997).
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(a) E(S) = E(S1 + S2) (b) E(S) = E(S1 + S2)

(c) E(S) = E(S1) (d) E(S) = E(S1)

(e) E(S) = E0 (f) E(S) = E0

Figure A.8: Comparison of total strains with the Kachanov elastic damage formula-

tion and geometric high-pressure damage. (a),(c), and (e) use the damage calibration

of Li (2002), the remainder Xiao (1997).
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(a) E(S) = E(S1 + S2) (b) E(S) = E(S1 + S2)

(c) E(S) = E(S1) (d) E(S) = E(S1)

(e) E(S) = E0 (f) E(S) = E0

Figure A.9: Comparison of total strains with the constant Poisson’s ratio elastic

damage formulation and power-law high-pressure damage. (a),(c), and (e) use the

damage calibration of Li (2002), the remainder Xiao (1997).
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(a) E(S) = E(S1 + S2) (b) E(S) = E(S1 + S2)

(c) E(S) = E(S1) (d) E(S) = E(S1)

(e) E(S) = E0 (f) E(S) = E0

Figure A.10: Comparison of total strains with the constant Poisson’s ratio elastic

damage formulation and exponential high-pressure damage. (a),(c), and (e) use the

damage calibration of Li (2002), the remainder Xiao (1997).
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(a) E(S) = E(S1 + S2) (b) E(S) = E(S1 + S2)

(c) E(S) = E(S1) (d) E(S) = E(S1)

(e) E(S) = E0 (f) E(S) = E0

Figure A.11: Comparison of total strains with the constant Poisson’s ratio elastic

damage formulation and normalized exponential high-pressure damage. (a),(c), and

(e) use the damage calibration of Li (2002), the remainder Xiao (1997).
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(a) E(S) = E(S1 + S2) (b) E(S) = E(S1 + S2)

(c) E(S) = E(S1) (d) E(S) = E(S1)

(e) E(S) = E0 (f) E(S) = E0

Figure A.12: Comparison of total strains with the constant Poisson’s ratio elastic

damage formulation and geometric high-pressure damage. (a),(c), and (e) use the

damage calibration of Li (2002), the remainder Xiao (1997).
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(a) K = K0 (b) K = K0

(c) Kachanov (d) Kachanov

(e) ν = ν0 (f) ν = ν0

Figure A.13: Comparison of total strains with microcracking damage only using the

calibration of Li (2002). (a),(c), and (e) included full elastic damage, the remainder

no elastic damage.
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(a) K = K0 (b) K = K0

(c) Kachanov (d) Kachanov

(e) ν = ν0 (f) ν = ν0

Figure A.14: Comparison of total strains with microcracking damage only using the

calibration of Xiao (1997). (a),(c), and (e) included full elastic damage, the remainder

no elastic damage.
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