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ABSTRACT 
Land capability classification describes boreal podzols as soils with severe to moderately severe 

limitations that restrict the capability of the land to produce crops.  Nevertheless, they are used 

for crop production and it is predicted that more boreal podzols will be converted from forestry 

use to agricultural uses. This usually requires intensive conservation and fertility improvement 

practices aimed at correcting the excessively low pH and improving soil carbon parameters.  

Under such management, it is expected that the biotic parameters and drivers of soil fertility 

would be drastically affected. It is hypothesized that mass and energy fluxes across the edge of a 

cropped field, between natural and managed conditions of soil, will alter the diversity of 

microbial populations and their fertility relevant functions. 

To verify this, I surveyed a cropped field and its immediate surrounding areas, located within a 

Boreal Forest Ecosystem in Western Newfoundland. The surrounding areas, outside the four 

field edges covered four distinct non-cropped conditions, i.e. forested, wetland, grassland and 

grassed farm road border. Bacterial taxonomic diversity was assessed via a 16S rRNA obtained 

through an Illumina MiSeq PE 250bp amplicon sequencing of the V4 hypervariable region. 

Fungal taxonomic diversity was assessed on an ITS dataset obtained through an Illumina MiSeq 

PE 250bp amplicon sequencing of the ITS1-2 region. A predictive functional profiling of the 

bacterial community, based on the 16S rRNA results (PICRUSt) was then carried out. Results are 

contextualized by standard abiotic soil parameters and compared to potential nitrogen mineralization rates 

along a management intensity gradient, i.e. a gradient crossing from natural to cropped conditions. Both 

surface and subsurface layers were considered. Standard and exploratory statistics were carried out and 

included an analysis of ecological indicators for population diversity. Statistical analysis was carried out 

separately on soil physicochemical properties, microbial taxonomic diversity, and microbial functional 

diversity. Correlational analyses between microbial diversity and physicochemical properties and were 

carried out separately. It was found that, while the natural conditions tested had distinct diversities, the 

results became increasingly similar towards the field centre, away from the natural edge. Thus, land 

management affects the taxonomic and functional diversity of microorganisms and also found 

that the shift in taxonomic and functional diversity is directly related to the distance from the 

natural areas. 
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1 Literature Review 
1.1 Soil 

1.1.1 Soil Formation 

Soil is a mineral and organic material which acts as a natural medium for the growth of plants. It 

is the result of pedogenetic process and environmental mechanisms driven by climate, including 

water and temperature, physical, chemical and the related biological activities of a range of 

macro and microorganisms (USDA Natural Resources Conservation Service Soils). Soil can be 

described in  terms of physical, chemical, biological and morphological features (USDA Natural 

Resources Conservation Service Soils). Differences in climate, parent material, landscape 

position, and living organisms from one location to another as well as the amount of time the 

material has been in place all influence the soil-forming process (Fortner. R, 2010; Landeweert et 

al., 2001).   

 

Soil is therefore a heterogeneous natural body that, under ideal conditions, comprises solids 

(minerals, and organic matter, 50%), liquids (25%), and gases (25%), occurs at the Earth’s 

surface, and is characterized by either horizons, or layers, that are distinguishable from the initial 

material as a result of additions, losses, transfers, and transformations of energy and matter or by 

the ability to support rooted plants in a natural environment (Resources and Service, 1999). Soil 

Physical Properties 

 Soil physical properties such as soil particle size, proportion, arrangement and mineral 

composition play a crucial role in soil infiltration rate, water holding capacity, permeability, 

aeration, plasticity, nutrient supply and availability. 

1.1.2 Soil Texture and Structure 

Soil texture describes the relative proportions of sand, silt and clay. Silt particles (2-50 µm 

diameter) are more reactive than sand due to their larger specific surface area (i.e. m2 g-1). Clay 

particles (<2 µm diameter) are secondary minerals, the product of the weathering of alumino-

silicates, and have highly reactive surfaces and the largest specific surfaces among the soil 

textural groups.  

Soil structure is the arrangement of elementary particles (primary and secondary) into 

aggregates. In combination with texture, soil structure controls the soil porosity thereby affecting 

the soil-water relation, aeration, root penetration and the metabolic activities of soil microbes 
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(Chesworth, 2006).  

Clays have high nutrient and water holding capacities. The former is due to their large surface 

charges associated with the isomorphic substitution of high valence ions, e.g. Al3+, with lower 

valence ions, i.e. K+, during chemical weathering of clay minerals and thus the more weathered 

clays have larger specific surface charges combined with larger specific surfaces (m2 g-1); these 

charge properties are commonly described by soil’s cation exchange capacity (CEC, cmol kg-1) 

as shown in Table 1.1. 

 

Table	1.1:	Electrical	Conductivity,	(EC)	of	clay	minerals	(Mandal,	1998)	

Colloid Type CEC (cmol Kg-1) 
Kaolinite 2-15 
Montmorillonite 80-150 
Chlorite 10-40 
Vermiculite (Trioctahedral) 100-200 
Vermiculite (Dioctahedral) 10-150 
Allophane 3-250 
Gibbsite 4 
Goethite 4 
The presence of charged clay particles leads to more aggregation and soil structure formation 

(mainly granular), with a larger proportion of micropores; this leads to greater soil water holding 

capacity. Thus, clay controls most of the soil properties (Mandal, 1998). Consequently, sandy 

soils are highly permeable and well-drained with low water holding capacity. Thus, they require 

frequent irrigation compared to fine-textured soil for better growth and productivity whereas clay 

soil has a disadvantage of waterlogging and poor aeration and workability. The moderate fine-

textured soil (loams) therefore are the best soil group for plant growth and productivity as they 

have an advantage of balanced proportion of sand, silt and clay (Mandal, 1998). 

1.1.3  Soil Air and Soil Water 

Soil air and water are the two components that fill the soil pores. Soil air is lighter than soil 

water, and it may be pushed out of the soil as more and more water fills the pores. Soil air has an 

impact on weathering and decomposition of minerals and organic materials and in other 

chemical process such as oxidation and reduction. The amount and composition of air in the soil 

have direct and indirect effect on plant growth. Soil air is different from the atmosphere above 

the soil. Soil usually contains 10-100 times more CO2, slightly less O2 than the atmosphere, and 



	

13	

	

is saturated in water vapor (Table 1.2). The plants root and many soil microorganisms need O2 

for normal respiratory processes (Batten and Gibson, 1977; Russell, 1957). 

Table	1.2:	Average	composition	of	soil	air	

 Oxygen Carbon dioxide Nitrogen 

Soil Air* 20.65 0.25 79.20 

Atmospheric air* 20.97 0.03 79.00 

* % volume (Bridges, 1978). 
 
1.1.4 Soil Temperature: 

Soil air and temperature are important parameters as they govern seed germination, plant growth 

and microbial activities (Chesworth, 2006). Soil temperature governs the thermal management of 

soil and plant growth and productivity. Apart from solar energy as a source of soil temperature, it 

is found that decomposition of organic matter and mineralization of nitrogen increases the soil 

temperature (Chesworth, 2006). Thus, in low temperature soil, it is expected the amount of 

organic matter will be high and also germination found to be very slow (Chesworth 2006; 

Mandal 1998). 

1.1.5 Soil Chemical Properties/ Nutrients: 

Based on their essentiality to plants, nutrients are grouped into macronutrients, i.e. nitrogen, 

phosphorus and potassium, and micronutrients such as iron, manganese, zinc, and copper. The 

total amount of nutrient content depends on the nature of the parent material and biological 

activities. The availability of nutrients to plants also varies with soil type and varies with depth.  

Chemical properties of soil largely depend on soil colloids which are the most reactive part of 

soil.  Soil colloids are grouped into two phases as organic compounds such as fresh or 

decomposed debris of plants, animals and microbes, and inorganic compounds mainly composed 

of clay particle of variable electrostatic charges (Batten and Gibson, 1977).  

1.1.6 Podzolization: 

Podzol comes from Russian word “pod” meaning under or beneath and “zola” meaning ash. 

Most podzols are found in temperate or boreal forest regions with cool temperatures, humid or 

humid soil moisture regimes, and in medium to coarse textured acid parent materials generally 

rich in quartz. Podzols are characterized by a strongly differentiated horizon sequence with a 

light coloured eluvial A or E horizon which overlies a darker illuvial B horizon enriched with 
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aluminium and iron oxides and organic matter (Sanborn et al., 2011). 

1.2 Soil Microbiology 

1.2.1 Soil and Ecosystem Services 

The terrestrial ecosystem is an important resource for almost all biotic parameters on Earth via 

biogeochemical cycling and climate regulation. The soil ecosystem functions and services help 

in food production, regulation of atmospheric greenhouse gases, regulation of water quality and 

maintenance of above and belowground biological communities (Finn et al., 2017).  

Microorganisms play a vital role in ecosystem functions, nutrient cycling (Dobrovol’skaya et al., 

2015), decomposition of plant and animal residues, formation of humus (Fedotov and Lysak, 

2014), and soil formation (Hobara et al., 2014), help in the conservation of organic matter, 

nitrogen immobilization and recycling of nutrients (Powlson, 2001), plant growth promotion 

(Hayat et al., 2010), control plant pathogens and weeds, and affect soil structure by the 

production of organic and inorganic acids, accumulation of nutrients in soil, organic pollutants 

mineralization and bioremediation of contaminated soils (Hayat et al., 2010)  

Enormous land area has been converted to agricultural uses to meet the requirement of food and 

fiber. This conversion affects the soil physical properties by altering soil water capacity (Tong 

and Chen, 2002), soil aggregate stability, nitrogen and phosphorus, and below-ground 

communities (Islam and Weil, 2000), soil organic carbon and carbon storage (Houghton et al., 

1999) and affects the microbial community composition and its functions (Bossio et al., 2005). 

Microbial diversity and community composition plays an important role in agricultural processes 

such as plant productivity through regulation of nutrient cycles  (Finn et al., 2017). Agricultural 

management practices such as fertilisation helps to increase bioavailability of carbon and energy 

for microbial activity which results in the alteration of microbial community structure (Finn et 

al., 2017). The land conversion also affects the abundance of plant and animal community which 

in turn affects the soil ecosystem functioning (Laliberte et al., 2010).  

Land use such as cropping and pasturing and land management practices such as tillage, crop 

rotation, fertilizer application increases the carbon bioavailability, disturbs soil aggregates, 

aboveground plant biomass (increase/ decrease). They also affect the quality and quantity of 

bioavailable soil organic matter (SOM) by decreasing the molecular complexity of plant biomass 

or by decreasing the SOM stability in soil via altering the pH. Change in the carbon 

bioavailability affects growth rate of soil microbes and also induce a narrowing of microbial 
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functions due to decreased Carbon Use Efficiency (CUE). CUE is the microbial efficiency when 

converting available organic substrates into stable biosynthesized products. Microorganisms 

metabolize a wide range of compounds to satisfy the heterotrophic demands for carbon and 

energy (Karhu et al. 2014; Frey et al. 2013). This results in higher mineralization of SOM in 

agricultural ecosystem compared to natural ecosystem (Finn et al., 2017). More conversion of 

natural to agricultural ecosystems affects the ecosystem services (Poulin and Darveau, 2016) by 

decreasing soil fertility, soil productivity, and bringing on a slew of environmental issues such as 

erosion that can also lead to eutrophication of water bodies, and increased greenhouse emissions 

among others (Defries et al., 2004; Matson et al., 1997)  

1.2.2 Resistance and Resilience 

It is very important to understand the concepts of resistance and resilience as these two aspects 

are directly connected to stability of soil ecosystem functions, critically so in disturbed soil 

ecosystem. 

Resistance is the ability of a system to withstand the disturbance whereas ecological resilience is 

defined as amount of disturbance needed to migrate a community from one steady state to 

another/alternative steady state (Griffiths and Philippot, 2013).  

1.2.3 Soil microbial biomass,  

Soil microbial biomass (SMB) acts a sink for C and N immobilizing available mineral nutrients 

in unavailable organic forms. SMB comprises 2-3% and 3-5% of  SOC and nitrogen, 

respectively (McGill et al., 1986). Lysis of microbes allows for mineralization and release of 

fixed nutrients. Thus, SMB acts as both source and sink of nutrients and as a catalyst for the 

conversion of nutrients between organic and mineral forms, the latter an available form of 

nutrient to plants (McGill et al., 1986). Land management practices such as tillage generally 

decrease the SOC in microbial biomass (McGill et al., 1986). 

1.2.4 Soil Enzymatic Activity 

Microorganisms produce exo-enzymes which help in soil organic matter (SOM) degradation. 

Microorganisms target and obtain the required substrate, carbon and nutrients through exo-

enzymes. Thus, exo-enzyme activities relate to the chemical composition of SOM, carbon and 

nitrogen. Individual microbial abundance and diversity govern exo-enzyme production whereas 

the structure of microbial community is governed by environmental factors such as pH, moisture, 

temperature and carbon availability. Changes in environmental factors lead to shift in the 
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dominant microbes within a community, with an advantage for the ones that can adapt more 

efficiently to the new circumstances; this in turn can alter the functional processes of that 

community. Such shift will change the microbial enzymatic profile, and related processes and the 

decomposition rates of SOM (DeForest et al., 2012; Eilers et al., 2012; Kaiser et al., 2010; 

Schimel and Schaeffer, 2012; Sinsabaugh et al., 2009, 2008; Strickland et al., 2009; Talbot et al., 

2013; Waldrop and Firestone, 2006) 

1.2.5 Bacterial and Fungal Communities 

Soil bacterial community is the wide, abundant and diverse group of organisms in soil with an 

approximated 10-4 to 10-6 different genomes (Mader et al., 2002; Torsvik and Goksoyr, 1978). 

Microbial community composition is affected by many factors including soil pH, nutrient 

availability, toxic compounds, plant cover, soil structure and land use history and practices. 

These factors affect the soil bacterial and fungal community in terms of community structure and 

diversity (Dequiedt et al., 2011; Fierer et al., 2007; Girvan et al., 2003; Gomes et al., 2003; 

Halling, 2017; Lauber et al., 2009, 2008; Lupwayi et al., 1998; Nacke et al., 2011; Rousk et al., 

2010). Soil environment such as soil fertility, soil type, soil pH, carbon, man-made flooding in 

rice field, and seasonal variation influences the bacterial activity and diversity (Bossio and Scow, 

1998; Girvan et al., 2003; Schutter et al., 2001)  

The soil environment is reported to harbor the majority of fungal species. Of these, 80,000 to 

100,000 species were isolated and characterized while more than 1 million species are not yet 

described (Bridge and Spooner, 2001; Hoorman, 2011). Fungi are found to carry out about 20 

different essential functions out of which the primary degradation of soil’s complex organic 

polymers is the most important. Soil fungi interact and associate with plants, nematodes, 

arthropods and with other fungi (Bridge and Spooner, 2001; Hoorman, 2011). Fungi play many 

important roles in soil such as water dynamics, nutrient cycling and disease suppression (Bridge 

and Spooner, 2001; Hoorman, 2011). Fungi population is found to be dominant under no tillage 

compared to bacteria. They have a CUE 40-55% and can recycle more carbon and have higher 

C:N (10:1) and less nitrogen (10%) compared to bacteria (Bridge and Spooner, 2001). 

Fungi have the ability to produce extracellular substances that help in the breakdown of complex 

polymers such as lignin and cellulose. Fungal hyphae also help in the transport of immobile 

nutrients, such as phosphorus, enhancing the reach of plants’ roots (Carlile.R.W and Coules A 

2012). Soil microbes helps in the breakdown of soluble and insoluble organic matter and convert 
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them to inorganic form, in such a way it is available to crop plants (Schimel and Bennett, 2004).  

1.2.6 Ecological Niches  

In an ecological niche microbes respond similarly to environmental conditions and possibly 

compete for resources (Maire et al., 2012). The agricultural practices, such as tillage affect the 

available soil niches. Fungal community plays a strong role in symbiotic activities with plant 

roots and lignocellulose decomposition. This affects the evolutionary pressure on bacterial 

population. The competition between bacterial and fungal population for root exudates, cellulose 

and lignin results in the domination of decomposing fungal community but as well as creating a 

new niche for bacterial community (De Boer et al., 2005; Smith and Read, 2008). Every change 

in soil ecosystem affects the microbial communities to adapt to the change by altering the 

equilibrium among the microbial population. This results in decreased ability to properly adapt to 

environmental stress or adversity in the ecosystem (Mazzetto et al., 2016). 

Soil Microbes and Soil Health:  

Ammonium and nitrate-N are the available forms of nitrogen to plants.  Microbes help in the 

conversion of proteins to amino acids, which in turn converted to ammonium (ammonification). 

Microbes such as Nitrosomonas and Nitrobacter helps in the formation of nitrate (Khan et al., 

2009; Marschner and Rengel, 2007). Pseudomonas, Aspergillus, Penicillium, Trichoderma acts 

as P- solubiliser. Ectomycorrhizal fungi and pseudomonas acts as manganese reducers by which 

it can be available to crop plants (Khan et al., 2009; Marschner and Rengel, 2007) 

Microorganism such as Azospirillium and Cyanobacteria fix atmospheric nitrogen in soil 

through symbiosis. Biological Nitrogen Fixation(BNF) involves legumes interacting with soil 

microbes such as Rhizobium and Bradyrhizobium (Pradesh, 2010). 

1.2.7 Role of Soil Depth  

At every depth of soil organic matter is degraded by exo-enzymes (produced inside the cell and 

secreted outside the cell). Most studies show that enzyme activities mostly occur in the upper 20 

cm of soil even as 60% of the carbon stored in the soil is below 30 cm (Jobbágy and Jackson, 

2000; Kaiser et al., 2010; Sinsabaugh et al., 2008; Wallenstein et al., 2009). Soil depth controls 

mass and energy flow and thus temperature, soil moisture and pH, which are the main factors for 

enzymes activity and microbial growth (Rovira and Ramón Vallejo, 2002). In subsoil (below 30 

cm), SOM is bound to minerals. Therefore, microbes access to this deep, chemically stable SOM 

is limited in subsoil. In the top soil, the proximate source of SOM  is plant debris while in the 
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subsoil, is due to microbial activity in the top soil layer, which results in soluble SOM that 

eventually is leached to the mineral rich B-horizon (Wallander et al., 2003). 

Through mineralization of SOM in subsoil, carbon is lost through respiration as CO2 and N is 

recycled. This leads to lowering of C: N in soil, and microorganisms adapt to this situation by 

adjusting the enzyme production. The SOM enzyme activities are higher in the mineral top soil 

than in mineral subsoil (Rumpel and Kögel-Knabner, 2011). The functional diversity is 

influenced by soil depth, types of vegetation, and climate (Klimek et al., 2016). The soil surface 

has different physical, chemical and biological circumstances as the result of level of exposure to 

light, wind, erosion and agricultural management practices. Often the soil surfaces form a 

Biological Soil Crust( BSC) through the development of agglomerations of photosynthetic 

Cyanobacteria, algae, mosses and Lichens, which leads to an increased nutrient content 

compared to the bulk soil and also erosion resistance (Jeffery et al., 2009). 

1.2.8 Relationship to Plant community 

The change in the plant community as a result of land use change has a direct impact on 

composition and abundance of diazotrophs (N-Fixers). An increase in plant diversity, results in 

increased nitrogen mineralization and increased net nitrogen supply (Mirza et al., 2014) A 

combination of increased carbon content and decreased nitrogen content is suitable for nitrogen 

fixers. Nitrogen, C: N ratio and pH is directly affected by land use change (Mirza et al., 2014). 

The land use change has notable influence on below ground community (Nielsen et al., 2015) 

This influence is different on larger and smaller organisms in the food web (Nielsen et al., 2015). 

 

Rhizosphere microbial community is a part of soil microbial community. Studies show that 

rhizosphere microbial community of different plants growing in same soil are distinct and 

rhizosphere community of a plant species are similar when they grow in different soil (De Deyn 

et al., 2008; Jassey et al., 2013; Wardle et al., 2012). However, other studies also show that 

different plant species that grow in same soil may have similar rhizosphere community (De Deyn 

et al., 2008; Jassey et al., 2013; Wardle et al., 2012). The rhizosphere microbial community 

structure mainly depends on the amount and composition of root exudates (De Deyn et al., 2008; 

Jassey et al., 2013; Wardle et al., 2012).  Root exudates serves as major carbon source for 

microbial population, chelates nutrient in such a way that it is available to plants and helps in 

desorption of iron and phosphorus (less soluble) (De Deyn et al., 2008; Jassey et al., 2013; 
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Wardle et al., 2012). In forest ecosystems, trees influence soil by changing soil structure through 

the penetration of roots, increase organic carbon by root litter decomposition and root exudates. 

Change in vegetation, plants species and diversity has an influence on microbial community and 

diversity through the variation in microclimate and debris chemistry (De Deyn et al., 2008; 

Jassey et al., 2013; Wardle et al., 2012) and affect the soil substrate quality and quantity (De 

Deyn et al., 2008; Jassey et al., 2013; Wardle et al., 2012).  Each forest has distinct above and 

belowground communities (Haichar et al., 2008; Krashevska et al., 2015). In boreal forests, 

enormous amount of organic matter is stored on the surface soil due to slow decomposition rate. 

Various organic matter pools are at different decomposing stages, which includes highly, 

moderately and minimal decomposed, septic and hemic substances. The organic surface layer 

and bulk mineral soil have different substrate quality by which microorganisms grow and 

reproduce. Therefore, the microbial communities at soil surface and in the bulk mineral soil are 

distinct (Chapin et al., 2002; R. He et al., 2017). Forest conversion by grazing, logging and crop 

cultivation leads over years to increased soil compaction, bulk density and reduced pore space 

(Johnson.E et al., 1989).  This condition results in change of aerobic and anaerobic microbial 

community and eventually reduce nutrient cycles such as N, P and C (Waldrop et al., 2000).  

1.2.9 Nitrogen Cycle 

The nitrogen cycle is microbial driven and can be simply described as three major processes, N2-

fixation, nitrification and denitrification. The microorganism involved in these processes are 

therefore known as N-fixers, nitrifiers and denitrifiers (Stein and Klotz, 2016). 

1.2.9.1 Nitrogen fixation 

Nitrogen is the most important naturally available element which is essential for growth and 

reproduction of plants and animals (Egamberdieva and Kucharova, 2008; Shrimant Shridhar, 

2012).Nitrogen is found in amino acids and proteins and also in many other organic compounds, 

derived from the fixation of atmospheric nitrogen (Egamberdieva and Kucharova, 2008; 

Shrimant Shridhar, 2012). Biological nitrogen fixation (BNF) that accounts for about 97% of 

total natural input to the Terrestrial Ecosystem (Vitousek et al., 1997) is mediated by 

microorganisms with bacteria and archaea species playing a main role.  

Another major source of N input to the ecosystem is industrial fixation of N in fertilizers applied 

mainly to agricultural lands. Thus, while about 413 Tg of reactive nitrogen is added to the 

terrestrial and marine ecosystems annually, about 210 of these are the result of anthropogenic 
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activities (Zou et al., 2011). Anthropogenic sources account for the sum of chemical N fertilizers 

(the Haber-Bosch process) and the N fixed indirectly due to high energy driven reactions such as 

industrial activities. Nitrogen fixing microorganism (N-fixers or diazotrophs) fix molecular 

nitrogen (N2) from the atmosphere into organic N, within their biomass, and organic nitrogen 

(i.e. NH3, common for symbiotic diazotrophs); the biomass fixed N pool is ammonified and 

available to plants upon the death and decomposition of microbial cells, while the symbiotic 

bacteria can provide NH3 directly to its respective symbiotic host (Zou et al., 2011). 

Nitrogenases are the enzymes that catalyze the process of BNF  (Gaby and Buckley, 2014; Zehr 

et al., 2003). BNF varies greatly across ecosystems. In tropical ecosystems diazotrophs, that are 

capable of taking up molecular N2, are estimated to fix 12.2 to 36.1 kg ha-1yr-1 of atmospheric 

nitrogen (Vitousek et al., 1997). In boreal forest, most of BNF is through the association between 

feather moss species of Pleurozium schreberi and Hylocomium splenders and several species of 

cyanobacteria. Studies have shown that this association can fix nitrogen up to 4 kg ha-1yr-1 in 

boreal forest (DeLuca et al., 2002; Gundale et al., 2015, 2011; Lagerström et al., 2007).  

1.2.9.2 Ammonia Oxidation 

The oxidation of ammonia, obtained directly via nitrogen fixation and also secondarily via 

degradation of organic matter, is carried out by ammonia oxidizers. This is the first and rate 

limiting step in nitrification. The ammonia oxidizers convert ammonium (NH4
+) to 

hydroxylamine (NH2OH). This process is catalyzed by ammonia monooxygenase enzyme 

(AMO) which results in the subsequent formation of nitrite (NO2
-) (Szukics et al., 2012). Given 

the biological character of ammonia oxidation, or nitrification, is affected by factors affecting 

biological processes such as temperature, soil pH, soil water content, availability of carbon 

sources (Szukics et al., 2012). Depending on the abiotic conditions the oxidation may be carried 

out predominantly by bacteria or by archaea; for example in alkaline soil and at lower 

concentration of NH4
+ archaeal oxidizers, AOA, may be favoured (Marusenko et al., 2013; Wu 

et al., 2013). 

1.2.9.3 Denitrification 

As a facultative respiratory pathway, denitrification is also a microbial process. Nitrate, nitrite, 

nitric oxide and nitrous oxide are reduced to eventually produce atmospheric dinitrogen. 

Incomplete denitrification, and the release of incompletely reduced gaseous nitrogen species is 
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the major cause for nitrogen losses from agriculture which contributes to the production of 

greenhouse gasses, with nitrous oxide (N2O) a most important one (Jones et al., 2008). 

1.2.10 Phosphorus cycle 

Phosphorus (P)-cycle in soil is an integrated process involving soil, plants and microbes. The 

mineral phase of P mainly consists of calcium, iron and aluminium phosphate, depending on the 

pH of the soil (Usda, 1994). The most labile pool of P in soil consists of phosphate ions in the 

soil solution, with the greatest availability at pH ranging from 6.5 to 7.5; below 5.5 and between 

7.5 to 8.5, the P-availability is limited due to fixation by aluminium and iron, and calcium 

respectively (Usda, 1994). In soil, 20-80% of total P is in the form of organic P (Marschner and 

Rengel, 2007). Organic P includes labile phospholipids, inositols and fulvic acids and humic 

acids (Sharpley, 1995). Phosphorus is made available for biological uptake in the form of 

phosphate ion (PO4
-). Phosphate ions are very reactive and thus immobile in most soils making 

phosphorus unavailable to roots through simple diffusion along a concentration gradient, as is 

common for nitrates (Sharpley, 1995). Phosphorus transport is thus facilitated by mycorrhizal 

fungi which are able to explore a volume of soil larger than the one explored by plant roots 

(Sharpley, 1995). 

1.2.11 Carbon Cycle and SOM 

In the boreal ecosystems, change in the land use from forest to agriculture increases the 

mineralization of carbon and nitrogen (Grünzweig et al., 2003). Moreover any supplementary 

source of nitrogen such as fertilizer and excess atmospheric nitrogen deposition, has a direct, 

positive impact on carbon loss from the ecosystem (Grünzweig et al., 2003). Soil aeration 

through tillage also favors loss of soil carbon associated with enhanced activity of aerobic 

microorganisms.  Drainage also leads to enhanced aeration and thus enhanced oxidation and thus 

loss of SOC (Bagchi et al., 2017; Gougoulias et al., 2014). Microbes control the chemical 

processes leading to the breakdown of SOM  and also act as the largest pool of sequestered C in 

the soil (Schimel and Schaeffer, 2012), pH and salinity also affect total soil carbon, in a negative 

correlation (Rath and Rousk, 2015; Trivedi et al., 2016).  

In natural soil-plant systems, 80-90% of soil nutrients are obtained through microbial 

degradation of plant litter (Bardgett, 2005). SOM creates conditions favorable to many soil 

functions relevant to nutrient retention, soil aggregation and associated enhanced water holding 

capacity. Intensive agriculture leads to a decline of SOM; examples are overgrazing, tillage and 
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land use conversion. This decline leads to reduced soil fertility, increased erosion and increased 

use of chemical fertilizers (Mccauley et al., 2017; USDA, 2016).  

SOM content may be described as the balance between the amount of organic residues present in 

soil and the decomposition rate. The decomposition rates, as hinted above, depends on soil 

texture, drainage, C: N of organic residues, climate, cropping pattern and the forms of SOM 

(DOM, Dissolved Organic Matter, or POM, Particulate Organic Matter). Soils with high clay 

content tend to have more SOM compared to sandy soils, as clays-humic complexes act as a 

physical protector of SOM.  The small sizes of soil pores in clay soils also limits oxygen 

diffusion and thus limits organic matter oxidation (Mccauley et al., 2017; USDA, 2016).  

1.2.12 Impact of Agricultural Practices 

Farming is estimated to be approximately 12,000 years old, as shown by evidence to cultivation 

of crop plants by humans (Pradesh, 2010). This process occurred at first after clearing or burning 

of natural vegetation such as grasslands and forests (Pradesh, 2010). Intensive agricultural 

practices, which include chemical fertilization, tillage and drainage among others,  alter 

biogeochemical processes  and lead to soil degradation through erosion, loss of SOM, decreased 

soil nutrients, increased greenhouse gas emission, compaction that eventually lowers land 

productivity (Balmford et al., 2010). In extreme situations, it may also lead to desertification and 

decrease in biodiversity. About 38% of total agricultural lands, 21% of pasture lands and 38% of 

forests lands around the world are considered as degraded (O’Donnell et al., 1994; Thomasson, 

1992; Utuk, 2015). Agriculture has an impact on ecosystem’s biodiversity which affects both the 

above and below ground ecosystems, affecting soil microorganisms, which in turn leads, in a 

feedback loop, to decreased SOC and loss of microbial diversity (García-Orenes et al., 2013; 

Lauber et al., 2013; Ramirez et al., 2012).  

Reversal of intensive agriculture to practices that include reduced tillage, such as zero tillage or 

minimum tillage and accelerated replacement of SOM have been shown to increase microbial 

activity (García-Orenes et al., 2013; Zornoza et al., 2009). Abundance of microbes, especially 

bacteria, can be greater under such conditions (García-Orenes et al., 2013; Zornoza et al., 2009). 

1.2.12.1 Tillage 

Tillage makes soil susceptible to erosion and loss of SOM (Hobbs et al., 2008). Researchers have 

found that no till (NT) practices help to improve soil health and the microbial biomass and 

relative abundance in surface soil mainly because of litter residues (Chen et al., 2014; Govaerts 
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et al., 2007; Mathew et al., 2012; Nivelle et al., 2016; Plaza-Bonilla et al., 2010; Shi et al., 2012). 

This  improves the soil water content, SOC, the C: N ratio and soil physical  characteristics such 

as bulk density, porosity and soil penetration resistance (Chen et al., 2014; Govaerts et al., 2007; 

Mathew et al., 2012; Nivelle et al., 2016; Plaza-Bonilla et al., 2010; Shi et al., 2012). NT was 

reported to improve soil stability and to protect macro aggregates when wetting process 

continues over a long period of time whereas the micro aggregates are less influenced by tillage. 

The increase in SOC is not only due to the increase in soil aggregate stability but also to 

enhanced soil moisture storage capacity (Douelle, 2014).   

1.2.12.2 Crop Rotation 

Crop rotation (e.g. CSW- Corn, Soybean and Wheat compared to CC- Continuous Corn and CS- 

Corn and Soybean) significantly increases the soil microbial biomass (Cmic) and the soil 

biological quality index (SBQI). SBQI refers to many soil components and processes related to 

organic matter cycling such as total organic carbon and nitrogen, microbial biomass, 

mineralizable carbon and nitrogen and enzyme activities (Gregorich et al., 1997). SBQI such as 

Cmic and SBQI decrease with increase in depth with the exception of the respiration quotient 

(microbial respiration per unit microbial biomass, qCO2). Total and active carbon, total nitrogen 

and soil chemical quality (SCQ) are enhanced. SCQ  refers to the chemical speciation of 

nutrients and contaminants in soil which are controlled by chemical reactions occurring in soil 

environment and it depends on soil chemical attributes such as mineralogy, SOM, pH,  Electrical 

Conductivity (EC) and cation exchange capacity (CEC) (Gregorich et al., 1997). The soil 

chemical quality index (SCQI), total and available carbon and total nitrogen was found to 

decrease with increase in depth under CR.  Rate of soil biological quality change was also found 

to be higher under CR (Topp et al., 1997). CR has no significant change in the total soil porosity 

whereas soil aggregate stability and particulate organic matter increased by 15% and 8%, 

respectively (Topp et al., 1997). Soil physical quality index (SPQI) refers to mass and energy 

transfer and storage properties that permit water, dissolved nutrient, and air contents appropriate 

for maximizing crop development while minimizing environmental degradation, as well as 

adequate soil strength for maintaining structure and allowing root growth (Topp et al., 1997). 

SPQI parameters such as total porosity and soil aggregate stability decrease with increase in soil 

depth. The composite soil quality index (CSQI), a composite of SBQI, SCQI and SPQI, 

increased under crop rotation and was found to decrease with increase in soil depth. Under crop 
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rotation of CSW, the increase in the soil micro aggregates is mainly by root exudates and by 

enhanced microbial activities crop Rotation of CSW. The same trend was also found under no 

tillage when compared with conventional tillage practices  (Aziz et al., 2013). Several studies 

have shown that soil aggregate stability is mostly influenced by amount of SOM addition in soil 

than by SOM quality (Abiven et al., 2007; Aziz et al., 2011; TISDALL and OADES, 1982). The 

significant change in soil quality indicators under crop rotation over a long period is 

characteristic to the type of crop residue, soil microclimate and microbial food web status. The 

low qCO2 under crop rotation reveals that microbial communities need labile carbon for 

metabolism, growth and activity. The low qCO2, i.e. lower respiration per unit microbial mass 

and higher Cmic also proves that under crop rotation, where there is no tillage, implies more 

efficient and stable ecosystem (Aziz et al., 2011; Wardle and Ghani, 1995). Under conventional 

tillage, the combination of high qCO2 and low Cmic as an indicator of soil ecosystem stress like 

due to physical disturbances ( Aziz et al. 2011).  

In southern Ontario, Canada, NT in combination with crop rotation (Soybean- Winter Wheat > 

Soybean - Corn > Soybean- Winter Wheat- Corn> continuous corn) was reported to increase the 

total N and SOC, C and N storage (Van Eerd et al., 2014). NT alone in  a Corn - Soybean 

rotation improved the N status of plant compared to conventional tillage in maize (Kovács et al., 

2014); microbial abundance increased with greater plant diversity in rotation. Findings show that 

under NT and crop rotation, the abundance of microbes has increased in the surface soil and their 

function has improved in up to 20 cm in the soil (Sun et al., 2016). However, some finding 

shows that NT led to no significant effect/ difference in the microbial community abundance and 

function or soil structure compared to tilled soils (Bartlová et al., 2015; Plaza-Bonilla et al., 

2010; Sapkota, 2012; Spedding et al., 2004).  
 

1.2.12.3 Fertilization (Inorganic Vs Organic Fertilizers) 

Many findings reported that mineral fertilizers, especially nitrogen-based, tend to affect the 

microbial community whereas organic nitrogen fertilizers tend to improve the biological activity 

and soil carbon and nitrogen content. Organic manure application helps to increase the microbial 

enzymatic activity in the soil and increases availability of nitrogen and phosphorus (Gryndler et 

al., 2006; Lazcano et al., 2012; Yu et al., 2012).  

Long-term fertilization has an impact on soil chemical properties. Mineral fertilizer found to 
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increase the soil pH compared to organic fertilizers. Organic fertilizers found to increase the 

stock of SOC compared to mineral fertilizers. Fertilization was found to increase the total 

primary nutrients such as nitrogen and phosphorus. Soil microbial biomass carbon and 

dehydrogenase activity has increased as result of long-term organic fertilizer (pig manure) 

application compared to mineral fertilizer.  Studies revealed that long term fertilization results in 

the increased soil bacterial and fungal diversity and taxonomic richness. Mineral fertilizers have 

increased the abundance and diversity of Acidobacteria, Gammaproteobacteria, Mortierella, 

Knufia petricola and Zygomycetes whereas organic fertilizers have increased the Firmicutes, 

Cyanobacterium, Myxococcales, Acidobacteria, Betaproteobacteria, Mortierella, 

Aleuriaaurantia and Chytridiomycota, also suppressed the Nectria sp. Community (Luo et al., 

2015; Stackerbrant and Goebel, 1994).  Studies have shown that long term mineral fertilizers 

found to alter the microbial community composition and diversity. mineral fertilizer has a 

negative impact on soil bacterial composition and diversity. pH and SOM have negative impact 

on Acidobacteria and are  positively correlated with bacterial diversity (Yu et al., 2016). Studies 

have found that nitrate and ammonium fertilizer stimulated the consumption of methane in forest 

and rice soils (Mohanty et al., 2006). Available P, NO3-N were found to have positive correlation 

with organic fertilizer application where the OM is high. Fresh organic fertilizer found to 

increase the microbial biomass. The high abundance of Fungi in organic fertilizer due to their 

decomposition and OM forming ability which results in the high OM content in the soil. 

Microorganisms also found to have more stress under mineral fertilizer application compared to 

organic fertilizer application (Y. H. Lee et al., 2013). 

Mineral fertilizer (urea) alter the microbial abundance. Urea application results in the increase of 

ammonium and nitrate over a period of time. This process leads to increase the nitrate reducing 

bacteria results in the production of harmful compounds such as nitrogen dioxide, nitrogen oxide 

and nitrous oxide which in turn indirectly suppresses the methanogens (Fan et al., 2016).  Also, 

urea application results in decreased ammonia oxidizing archaea (AOA) and increased ammonia 

oxidizing bacteria (AOB) in rice field. However, the functional composition of  bacteria did not 

change under rice field (Fan et al., 2016).   

1.2.12.4 pH 

The soil pH reflects soils forming factors such as parent material and weathering processes 

associated with release of cations. Over a period of time, free cations, oxides and carbonates 



	

26	

	

leach or are removed by plant uptake (USDA Natural Resources Conservation Service 2011). 

Continuous formation of carbonic acids acidifies soils. For acid soils the crop growth, nutrients 

and yield increase with increase in pH towards a neutral range (6-7.5). In acidic soil, nutrients 

such as calcium, magnesium and phosphorus are found to be in deficit whereas aluminium, iron 

and manganese found to abound sometimes at toxic levels (USDA Natural Resources 

Conservation Service 2011). Bacterial growth increases with increase in pH whereas fungi can 

adapt to a wide range of pH (acidic-alkaline). Nevertheless, most microorganisms survive and 

function best at an optimum pH; this is around 7 for bacteria, 5 for fungi and >7 for 

cyanobacteria (USDA Natural Resources Conservation Service 2011). At very high or low pH, 

the microbial activity is impeded slowing down organic matter mineralization (USDA Natural 

Resources Conservation Service 2011).  

Land conversion also results in severe change in soil pH over years. This change is caused by 

several processes such as cations removal by plant uptake, leaching, high water percolation and 

infiltration rate, and loss of OM, or by cation addition in inorganic, organic fertilizers, and 

chemical amendments, positive changes in OM content (USDA Natural Resources Conservation 

Service 2011).  

Studies show that at low pH (5.2), bacterial diversity and evenness were high compared to a 

neutral soil (7.7) (Cho et al., 2016) whereas fungal growth increases with decrease in pH from 

8.3 to 4.5(Rousk et al., 2009).  At high pH, the dissimilarity of bacterial composition is smaller. 

For example, Bacteriodetes, Actinobacteria and Proteobacteria relative abundance increase with 

increase in pH (4.5 to 8.3). Mitosporic basidiomycetes abundance increases with decrease in pH 

(8.3 to 4.5). The bacterial diversity is higher in pH ranges of 4-7 (Brookes et al., 2010). Bacterial 

growth is faster at the pH of 7, below which the growth started to slow by 80% under Leu 

(leucine) and dT (Thymidine) incorporation, bacterial growth was high whereas fungal growth 

under acetate incorporation into ergo sterol, the fungal growth increases with decrease in pH. 

The bacterial activity is higher at higher pH (Fernández-Calviño and Bååth, 2010; Rousk et al., 

2009). Soil pH has a significant effect on soil microbial composition, enzyme activities, 

respiration, metabolic quotient in crop lands and anthropogenic forests (Aciego Pietri and 

Brookes, 2009; Cao et al., 2016; Reth et al., 2005; Wittmann et al., 2004). In acidic soil, the 

nitrification rate is higher. AOA contribution to ammonia oxidation is higher than AOB under 

acidic soils (Li et al., 2018). In natural forest, heterotrophic nitrifiers contribute to nitrification 
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(Li et al., 2018). Studies found that under low pH, microbial population is higher in arable soils 

of tea gardens and vegetable farm and low under anaerobic condition of rice field and oil drilling 

area Nitrate reductase activity were higher under anaerobic condition of rice field whereas 

alkaline phosphatase activity is higher in botanical garden and in rice field which has higher litter 

composition of plant residues and straw (Nath and Samanta, 2012). Microbial activity, Nitrate 

reductase activity and alkaline phosphatase activity was low in oil drilling area due to more 

acidic nature because of the formation of toxic acids and by oil spills (Nath and Samanta, 2012). 

At low pH, nitrification and nitrogen fixation is inhibited. pH plays an important role in 

herbicides and insecticides mobility and heavy metals solubility, availability of cations, 

aggregate stability, also survival of some plant disease causing organisms. For example: 

Gaeumannomyces graminis which infest wheat, barley, rye and several grasses is favored by 

alkaline pH (USDA Natural Resources Conservation Service 2011). 

Soil pH affects the fungi bacterial ratio. Fungi are more tolerant to acidic conditions compared to 

bacteria, leads to fungal community dominance in acidic soil. Apart from pH, moisture plays a 

crucial role in microbial community. Bacteria is more sensitive to change in moisture content 

compared to fungi because of the presence of chitinous cell wall in fungi makes it tough to 

change in moisture content and temperature (Fierer et al., 2009; Fierer and Jackson, 2006; 

Holland.A.E and Coleman.C.D, 2015; Joergensen and Wichern, 2008; Rousk et al., 2009; 

Stevenson et al., 2014).  

Liming 

Liming has a positive correlation with pH, microbial biomass, and phosphatases and 

dehydrogenases activities overtime (>1 year) (Bezdicek et al., 2003). However while liming is 

associated with microbial activity the change in microbial mass is unpredictable (Bezdicek et al., 

2003). Liming is the most common practice  to increase soil pH in acidic soils (Mccauley et al., 

2017). Liming supplies two major nutrients to crops, calcium and magnesium. By regulating soil 

pH, plant diseases, such as potato scab, can also be controlled (Lawton and Kurtz, 1957).  

Liming can influence solubility of many compounds. For example, under acidic condition, large 

amount of iron, aluminium and manganese may be into soluble and thus available form. High 

levels of most of these elements are toxic to plants. 

Liming affects phosphorus forms in soil. Phosphate ions are highly reactive under acidic pH and 

form aluminium and iron phosphates which are complex stable and plant unavailable forms (i.e. 
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chemically immobilized). Liming of acid soils brings pH closer to neutral where P reaches its 

maximum solubility and thus availability to plants (Lawton and Kurtz, 1957). 

1.2.13 Chemical Amendments 

Microbial enzymatic system covers 60-90% of the total metabolic activity in soil. Microbial 

composition, diversity, enzymatic activity and their functions act as a bio indicator of changes 

happening in soil due to agricultural practices such as application of herbicides and pesticides. 

Chemical amendments such as pesticides, insecticides and herbicides have a negative impact on 

microbial diversity within a short period of time (7-30 days), affecting the function and 

composition of microbial community  (Muturi et al., 2017). 

Microorganisms play an efficient role in the degradation of chemical substance such as aliphatic, 

hydroxyl and aromatic compounds through metabolic and catabolic pathways (Cook and Hütter, 

1981; Milosevic and Govedarica, 2002; Seo et al., 2009). Nevertheless, excessive application of 

herbicides affects the microbial physiology (Cook and Hütter, 1981) and enzymatic activity by 

affecting biosynthesis mechanisms including protein biosynthesis, cellular membranes, 

production of plant growth regulators such as gibberellins (GA) and indolacetic acid (IAA) 

synthesis (Milosevic and Govedarica, 2002).  Soil microbes use chemical amendments and their 

metabolites as the source of biogenic elements such as carbon and nitrogen. Some of the 

herbicides decomposing microbes are Arthrobacter, Pseudomonas, Bacillus, Actinomycetes, 

Mycoplana, Agrobacterium, Achromobacter, Rhizobium, Corynebacterium, Arthrobacter, 

Flavobacterium, Nocardia, Trichoderma, Rhizopus japanus, Aspergillus ssp., Penicillium ssp. 

and Metharizium anosoplie (Miskovic et al., 1983). Decomposition of pesticide mainly depends 

on the abundance and composition of microbial population. Impacts on the morphology and 

composition of microbes by chemical amendments such as herbicides depends on the 

composition and dosage of the chemicals and also microbial group present in the soil (Miskovic 

et al., 1983). Adsorption and desorption of chemical molecules depend on the physical and 

chemical properties of soils such as pH, OM content, CEC, texture, moisture and temperature. 

For example, moisture content and temperature have positive impact on the degradation of 

atrazine and 2,4-D. High doses however may also cause complete demise of susceptible group of 

microbes (Willems et al., 1996). 

 

1.2.14 Soil Compaction 
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In healthy soil ecosystems, particles bind together into a stable aggregate via fungal hyphae, 

microbial, plant root, and earthworm exudates which in turn improve soil structure which 

improves infiltration rate, protects soil from erosion, crusting and compaction (USDA, 2004). 

Earthworm and other burrowing creatures helps in the movement of water through the soil 

through the formation of macropores. As mentioned above, in soil ecosystems, microorganisms 

help reducing the impacts of pollutants by buffering, detoxifying and decomposing the pollutants 

(USDA, 2004). Some microbes therefore help in the reclamation of contaminated soil and water 

bodies. Soil have approximately 50-60% of the volume as pore space (USDA, 2004). 

Compaction reduces the range, continuity and tortuosity characteristics of the pore size 

distribution and alters the movement of air and water in soil, which in turn leads to a shift in the 

microbial community from aerobic towards anaerobic (Jordan et al., 2003). The later conditions 

favor denitrification. Compaction can therefore cause drastic change in soil moisture and 

temperature fluxes and profile which governs the microbial abundance and activity in soil and 

nutrient release to plants. Compaction reduces the capacity of soil to store and transport water or 

to hold air which results in water runoff, leaching to nutrients, and increased erosion in steep 

slopes. Compaction also limits the root penetration depth, which supports microorganisms 

(Jordan et al., 2003). 

Sandy loams, loams and sandy clay loams are more susceptible to compaction (USDA, 2001). 

 

1.2.15  Anaerobic conditions 

Nitrification and denitrification govern bioavailability of  nitrogen (Van Der Heijden et al., 

2008). Approximately 98% of soil nitrogen  comes from dead organic matter in the form of 

complex insoluble polymers such as proteins and nucleic acids which are broken-down to DON 

(Dissolved Organic Nitrogen) by microbes using exoenzymes (Schimel and Bennett, 2004). 

Soil anaerobic condition have negative impact on plant productivity, organic matter content and 

nutrient dynamics. Anaerobic conditions mostly occur in flooded and poorly drained, compacted 

soils. In well drained soils, anaerobic/ anoxia is limited in time and space. Anaerobic, reducing 

conditions, is associated with reduction of Fe3+ and Mn4+, denitrification, fermentation, nitrate 

respiration, sulfate reduction, CO2 reduction, acetate splitting and proton reduction (J. M. Tiedje 

et al., 1984). Some anaerobes play an important role in pollutant degradation, including 

pesticides and xenobiotics. Denitrification and fermentation is mostly carried out by facultative 



	

30	

	

anaerobes in soils (J. M. Tiedje et al., 1984). Aerobic and anaerobic conditions vary on a 

gradient with depth and are greatly influenced by tillage. For example, in no tillage aerobes and 

anaerobes population are found to be greater in top 7.5 cm compared to conventional tillage 

whereas for the 7.5 cm to 30 cm layer the trend was totally reversed (aerobes and anaerobes 

population higher in conventional tillage) and facultative anaerobes did not follow any trend 

(Linn and Doran, 1984). Denitrification under anaerobic conditions is also influenced by pH 

(positive correlation), drainage (fallow land > poorly drained soil > wetland) and fertilizer type 

(combination of fertilizer with animal manure > calcium ammonium nitrate)(Hofstra and 

Bouwman, 2005).  

Potential methane production is high under anaerobic conditions, in chemotrophic natural 

wetlands, oligotrophic natural wetlands, rice paddy field and in landfills. Methanogens are 

sensitive to temperature and oxygen. Methanogenic bacteria are highly active under the optimum 

pH of 7.0 and in the temperature range of 20-40 °C (Topp and Pattey, 1997). Roots and rhizomes 

can affect methane production via root decaying process and root exudates which has been found 

in wetland plants such as Calamogrostis canadensis and Typha latifolia. In paddy field, root 

associated methane production contributes up to 52% (Segers, 1998). Methanobacterium, 

Methanosarcina, Methanosaeta and Methanospirillum are known methanogenic bacteria (Le 

Mer and Roger, 2001). Mechanism of slope position also affects the methanogenic and 

methanotrophic activities as for higher slopes soil, water and OM will be lost and accumulates in 

lower slopes. This leads to wet moisture regime for prolonged period where oxygen 

concentration is significantly less in lower slope or depression leads to increased methanogenic 

and methanotrophic activities (Brzezińska et al., 2012).   

Sulfur cycling mainly depends on soil texture and moisture as these parameters plays an 

important role in soil aeration. Sulfur oxidation takes place under aerobic condition whereas 

sulfur reduction takes place under anaerobic condition. The inorganic forms of sulfur are 

sulphate in aerobic condition and sulphide in anaerobic condition. Sulphates are mostly water-

soluble salts such as sodium, magnesium and calcium sulphates while some are insoluble 

sulphates such as sulphate as impurity in calcium carbonate in calcareous soils. The soluble 

sulphates generally increase with increase in depth as the results of leaching and drainage. 

Podzolic soil contains total sulfur of about 0.1-1.5 tones ha-1 (Konstanz, 1981). Under arable 

condition, formation of sulphates with lower oxidation states are very low whereas under 
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anaerobiosis they increase (anaerobiosis is the process in which oxygen consumption rate 

exceeds the supply rate due to high moisture content as the result of waterlogging condition). 

Microaerobic or anaerobic conditions may lead to several negative impacts to soil such as N loss 

by denitrification, production of organic acids and hydrogen sulphide. This condition also favors 

N2-fixation by free-living heterotrophs, slow due the mineralization process of OM, increase the 

degradation of pesticides such as DDT and lindane. Under anerobiosis, denitrification and 

fermentation are the most important process driven by facultative anaerobes (J. M Tiedje et al., 

1984), especially in tidal swamps, a considerable amount of sulphides is formed which are 

mostly confined to subsoils below the water table. Under tidal marsh, accumulation of sulphur is 

mostly sulphides and polysulphides of iron due to reduction process (Konstanz, 1981). Apart 

from sulfur reduction, iron and Mn translocation is predominantly occurs under anaerobiosis 

(Stolzy and Fiuhler, 1978). 

Sulfur oxidizing bacteria (SOB), sulfur reducing bacteria (SRB), and iron-reducing bacteria 

(IRB) are found in acidic landfills cover soil (pH 4.7- 5.37) and in coastal acid sulfate soils. 

Some of the SOB are Halothiobacillus, Thiobacillus, Thiovirga and Bradyrhizobium whereas 

SRB are Desulfobacca, Desulforhabdus and Syntrophobacter and IRB are Geothrix, Bacillus, 

Geobacter, Desulfuromonas and some SOBs (Ling et al., 2015; Xia et al., 2014). Sulfur reducing 

microorganisms like Desulfosporosinus spp are found in wetlands of rice cultivation (Pester et 

al., 2012).  

 

1.2.16  Aerobic conditions 

Soil pH, total carbon and moisture play an important role (positive correlation) in 

ammonification process (Wolińska et al., 2016).  

Under aerobiosis, nitrate is formed which is then denitrified in the intermediate period of 

anaerobiosis (Ulehlova, 1988).  

Nitrification can occur only under aerobic condition where the dissolved oxygen (DO) level is 1 

ppm or more. If DO is less than 0.5 ppm, it restricts the growth of nitrifying microbes (Johnson, 

2011). 

Nitrification is the process by which ammonium (NH4
+) or ammonia (NH3) is converted into 

nitrite (NO2
-) called ammonia oxidation which is a rate limiting process and nitrite to nitrate 

(NO3
-) is called nitrite oxidation. This process is rapid in warm, moist and aerated soil and slow 
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<10°C soil temperature (Wiederholt and Johnson, 2005). Nitrifying organisms are usually 

heterotrophic and use carbon dioxide as their energy source (Wiederholt and Johnson, 2005). 

In nitrification process, ammonia oxidation is performed by  AOB such as Nitrosomonas spp. 

and Nitrosospira spp. of Betaproteobacteria and Nitrococcus spp. of Gammaproteobacteria and 

by  AOA (Xia et al., 2014).  

Nitrite oxidation is performed by Nitrite Oxidizing Bacteria (NOB). Some of NOB are 

Nitrobacter spp. of Alphaproteobacteria, Nitrospira spp. of Deltaproteobacteria, Nitrococuus 

spp. of Gammaproteobacteria and Nitrospira spp. of Nitrospira. Nitrospira spp. dominates 

Nitrite oxidation in paddy fields, wastewater and in agricultural grasslands (Ishii et al., 2011) 

under microaerophilic condition where the oxygen level is low. 

1.3 Functional diversity 

1.3.1 Amino acid production and catabolism 

Under low temperature, low availability of inorganic N is due to slow decomposition. In such 

conditions, amino acids and peptides act as a source of N for microorganisms for growth and 

energy (Atkin, 1996). L-Amino acid is the key component of nitrogen cycle in soil in association 

with non-mycorrhizal plants such as wheat and arctic sedges and also found to be transported 

through plant roots (Chapin III et al., 1993; Hill et al., 2011b; Nasholm et al., 2008; Tegeder and 

Rentsch, 2010). The D & L notations on amino acids and other compounds like carbohydrates 

refer to a property known as stereoisomerism, where compounds are identical in atomic 

structure, but are non-super imposable mirror images of each other. The L and D in front of an 

amino acid is a shortened scientific notation for “levorotatory’, ‘dextrorotatory’ respectively.  

D-amino acids are found in some of bacterial cell wall as D-alanine and D-glutamic acid, or D-

aspartic acid (Vranova et al., 2012). Bacteria can produce 10 different kinds of D-amino acids 

such as D-alanine and D-glutamate. Both D and L-amino acids occur as free amino acids and/or 

bound to soil OM (Vranova et al., 2012). L-Peptides can be taken up by plant and 

microorganisms(Hill et al., 2011a; Tegeder and Rentsch, 2010). D-enantiomers of amino acids 

are also a source of N used by plants and microbes (Dowd and Hopkins, 2009; Hopkins et al., 

1997). D-amino acids are utilized by microbes as N-sources but not by plants (Hill et al., 2011b). 

In Maritimes Antarctic, it was found that microbial communities have the capability to 

metabolize D-peptides (Hill et al., 2011b; Wilkinson et al., 2014). Studies also shown that 

alanine is mostly used up by gram positive bacteria whereas L-enantiomers are utilized by a wide 
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group of both bacteria and fungi (Broughton et al., 2015). 

1.3.2 Biosynthesis of secondary metabolites  

Secondary metabolites are not intrinsically necessary for growth and development. However, 

many secondary metabolites help microorganism adapt and compete. For example some help 

form symbiotic relationships with plants and higher animals (Karlovsky, 2008). Fungi and 

actinomyces are prolific producers of secondary metabolites; penicillin, erythromycin and 

streptomycin which act as antibacterials are produced by Penicillium chrysogenum, 

Saccharopolyspora erythraea and Streptomyces griseus respectively. Clavulanic acid produced 

by Streptomyces clavuligerus act as enzyme inhibitors. Cephalosporin produced by 

Streptomyces. spp acts as antibiotic under anaerobic condition (Barrios-González et al., 2003). 

1.3.3 Lipids 

Plants are major producer of lipids. Animals also produce lipids. Plants require lipids for 

signaling, membrane biogenesis and to store carbon and energy. In some plants, it helps to 

protect them from desiccation and infection (Schmid and Ohlrogge, 1973). Fungi store energy in 

the forms of neutral lipids such as triacylglycerol (Joann and Luis, 2009). The lipids are 

classified as storage/simple (neutral) lipids as triacylglycerol, membrane/compound (polar) lipids 

such as phospholipids and glycolipids and derived lipids such as cholesterol and carotenoids 

(Fahy et al., 2014). 

In soil, 20% of humus is in the form of lipids. This value is higher in podzol and peat soils. 

Lipids are of different types based on their composition and function such as paraffin, 

hydrocarbons, carotenoid, phospholipids, fats, waxes, fatty acids and terpenoids. They play 

different roles such as phytotoxic effects, example Gibberellins (diterpenes) produced by plant 

fungus and some may cause depression in seed germination (Stevenson, 1966). Plant derived 

lipids present in the soil due to incorporation by above ground biomass whereas root-derived 

lipids contribute to SOM (Wiesenberg et al., 2010). Phospholipids fatty acids are the key 

component of microbial cell membrane and it is  widely used to identify the microbial 

community structure in soil (Quideau et al., 2016). Sterols are found in plants, bacteria 

(methylotrophs) and in fungi (Mucor spp.) (Harwood, 1984; Jones, 1970).  

1.3.4 Vitamins and co-factors 

Soil contains vitamins and co factors which are used up by microbes for their growth. In 

rhizosphere region, microbes found to produce large amount of growth factors. The amount of 
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free vitamins present in the soil depends on the assimilation and decomposition rate (Quastel, 

1965). 

1.3.5 Carbohydrates metabolism 

Carbohydrates is classified into three major classes based on the number of sugars as 

monosaccharides (one sugar molecules), oligosaccharides (two to ten monosaccharides) and 

polysaccharides (> hundred monosaccharides) (Clara et al., n.d.). Carbohydrates constitute about 

5-25% of organic matter in soils (Cheshire, 1979). Land use change leads to significant decrease 

in carbohydrates due to increased mineralization and tillage and decreased organic matter (Plante 

et al., 2005). Studies found that in cultivated area of tropical climate, carbohydrates are higher 

due to increased soil litter compared to forest (Ratnayake et al., 2013). Carbohydrates 

metabolism by microbes play an important role in carbon and nitrogen cycles in soils (Gianfreda 

and Bollag, 1996). Plants and plant parts are the main sources of carbohydrates in soil. 

Carbohydrates also play a role in N cycle (Quastel, 1965). Arabinose and xylose which are 

derived from plants serve as energy source for microorganism whereas galactose, mannose, 

rhamnose and fucose are released from microbes to soil (Cheshire, 1979; Murayama, 1984).  

 

1.4 Soil Microbiology – Methodological approaches, molecular perspective 

Total number of operational taxonomic units (OTUs), in a single soil habitat is huge ranging up 

to millions (Gans et al., 2005; Schloss and Handelsman, 2006) Soil is considered to have a large 

proportion of genetic diversity on earth, thus the microbes establish a wide range of metabolic 

process in soil ecosystem (Whitman et al., 1998).  

There are different databases for microbial diversity such as Ribosomal Database Project (RDB)- 

16RrRNA database (“RDP,” 1992),  SILVA - rRNA database (https://www.arb-silva.de/), 

Greengenes - 16RrRNA database (“Green Genes,” 2005), BIGSdp, Bacterial Isolate Genome 

Sequence database (Jolley, 2010), European Bioinformatics Institute (EBI)- metagenomics portal 

for submission and analysis of metagenomics data (“EMBL- European Molecular Biology 

Laboratory European Bioinformatics Institute (EMBL-EBI),” 1980), UNITE, Unified system for 

the DNA based fungal species -ITS, Internal transcribed spacer (“Unite community,” 2012).  

Microbial community functions cannot be studied directly by profiling phylogenetic marker 

genes such as the 16s rRNA. However, PICRUSt (Phylogenetic Investigation of Communities by 

Reconstruction of Unobserved States), a computational approach, used in this study, predicts the 
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metagenomic functional composition using 16S rRNA and Greengene database. PICRUSt 

currently can only use an OTU table with Greengenes OTU identifiers which is the output from 

closed-reference picking or by filtering out de-novo OTUs after open-reference picking (Langille 

et al., 2013).  

 

1.4.1  Temporal and spatial variation 

Microbial community is subjected to both temporal and spatial variations. Temporal variability is 

the temporary change in the structure of microbial community of a given site due to succession 

and evolutionary change (Bargett et al., 2005). Spatial variability is the change in the structure of 

the microbial community of an agricultural landscape across a distance due to management 

practices such as tillage and fertilizer application (Naveed et al., 2016; Peigné et al., 2009).  

For example, in a temperate forest ecosystem in Norway, tree distance and seasonal variation 

plays an import role in bacterial and fungal community composition. Bacterial community was 

found to respond more quickly to stressors than fungal community (Nacke et al., 2016).  

Exploration of the α and β-diversity profiles can help understanding the temporal and spatial 

variation of the soil microbial community. The α-diversity represents the total microbial diversity 

within a given site whereas  β-diversity represents the total microbial variation between different 

sites (Bargett et al., 2005). 

 

1.4.2 Exchanges of mass, energy and information between managed soils and the non-

managed soils surrounding agricultural plots 

Agroforestry is defined as the integration of trees and shrubs into crop and animal farming 

systems to create environmental, economic, and social benefits (USDA, 2011). 

Agroforestry is an interdisciplinary approach to land use, different from sum of agriculture and 

forestry (Lundgren and Raintree, 1983). In Canada, agroforestry is intensively followed in 

Ontario, Quebec, Saskatchewan and Alberta to increase carbon storage and to reduce greenhouse 

emission (Baah-Acheamfour et al., 2017). In boreal regions, agroforestry with the utilization of 

short-rotation of willow plantation was encouraged (McCaughey, 1986). Agroforestry in 

Northern America mainly consist of tree, forb and shrubs species (Bandolin and Fisher, 1991).  

In US, the average annual loss of top soil was up to 12 tones in 1976 whereas the annual 

fertilizer (N-P-K) losses exceeded 50 million tones. The solution for this problem was 
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multifaceted and included the development of alternative, less energy-intensive technologies, 

improved soil practices, more efficient and diversified farming system. One such technology 

solution to this problem lies in the field of agroforestry (Pimentel et al., 1976).  

 Most of the Newfoundland farms are naturally in an nearly agroforestry like setup consisting of 

relatively small arable patches surrounded by trees, shrubs and pastures as shown in the Error! 

Reference source not found..1. In my study field, the agricultural land is surrounded by natural 

vegetation. It was used for agriculture for more than 50 years expected to have uniformity in 

terms of nutrient content and microbial diversity in the managed land. On other hand, it is 

expected to be altered due to management such as tillage and fertilizer application as it directly 

and indirectly affecting the soil physical, chemical and biological properties of soil compared to 

natural land. Thus, it is clearly important to investigate the nutrient transfer and microbial 

diversity and function from agricultural to natural lands and vice -versa. 

Cormack Pasadena 

  
St. John Codroy Valley 

  

Figure	1.1:	Farmland	setup	in	Newfoundland;	inadvertent	Agroforestry?		

Deleted:	Figure 1
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2 Introduction: 

2.1 Newfoundland: unique scenario of land-use change in a boreal system? 

Soil types in western Newfoundland especially in Cormack and Deer Lake areas are  Orthic 

Humo-Ferric Podzol and Gleyed Humo-Ferric Podzol respectively (Button, 1983). In Cormack, 

the texture is loam to sandy loam (well-drained) from the shale and soft sandstone parent 

material whereas in Deer Lake, it is sandy loam (Imperfectly drained) from granite parent 

material (Button, 1983). Farming is of minor importance to the economy of Newfoundland 

because of the poor soil and short growing season. Agriculture in Newfoundland is limited to the 

areas of south St. John’s, near Deer Lake and in Codroy Valley. The major crops grown in these 

areas are potatoes, turnips, carrots, beets, cabbage and broccoli (Ricketts, 2004). 

 

Under the current impetus for food security in Newfoundland and Labrador boreal forests are 

currently being converted to agricultural land [64,000 ha over the next 4-5 years] (Agrifoods, 

2017).This conversion will affect the physical, chemical and biological properties of soil which 

in turn affects the soil quality (Costanza et al., 1998). Biotic parameters are expected to be 

affected and to reflect these changes.  

2.2 Hypothesis 

Land use changes from boreal forest to agriculture are expected to affect the physical, chemical 

and biological parameters of the soil. The act of converting a podzol has drastic effects on the 

soil structure, and affects soil hydrology (Altdorff et al., 2017). Changes and/or reduces the 

SOM; eventually longer-term agriculture, especially as associated with livestock farming, leads 

to an increased addition of manure and plant residues which affects soil carbon cycling and 

eventually control soil biological functions. Drainage modifies the hydrologic equilibrium 

effectively modifying the abiotic pressures on the soil microbes (Altdorff et al., 2017). 

It is hypothesized therefore that agricultural use of boreal podzols affects the soil abiotic 

parameters and this is reflected in the microbial taxonomic and functional diversity, and that the 

relationship between managed and the surrounding non-managed lands will affect the extent of 

shift in soil biotic parameters: 

 

- Agricultural management of boreal podzols will affect soil microbial taxonomic and 

functional diversity. 
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- The shift in taxonomic and functional diversity is directly related to the distance from the 

non-managed/natural areas. 
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3 Methodology 

3.1 Site Description  

The study was conducted in Cormack (49°20’40° N 57°19’26°W) in Central Newfoundland, 

Canada. It has a temperate Boreal climate. Annual average temperature ranges from -1.18°C to 

8.06° C and precipitation of 1254 mm of which 332 mm as snow. The soil was classified as 

Orthic Humo-Ferric Podzol l (Button, 1983). This land is being used for agriculture for 60-70 

years. Variable rotation is going on, but mostly entailing wheat, potato and more recently, 

occasionally corn silage. This field receives manure about twice a year, somewhat irregularly. 

The field is tile-drained, but the consistency of the drainage efficiency is unknown. 

 

3.2 Site Description and Sampling Design 

Sampling was carried out on transects across the field edges, designed to include a managed, 

tilled agricultural field (AgField) and the surrounding, non-tilled, natural field (NatField). The 

field was chosen as a representative of the varied conditions found in the agricultural regions of 

western Newfoundland due to its variability in the conditions in the NatField edge strips Error! 

Reference source not found.1. 
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Figure	3.1:	Description	of	sampling	transects	across	the	field	edge.		

 
Soil sampling was done as a fully replicated design. Sampling was carried out on a transect at the 

four sites as North (N), East (E), South (S) and West (W) (Figure 3.1). On each transect, two 

sampling points were located outside the AgField (-3 m and -1 m from field edge) and four 

points inside the AgField (1 m, 3 m, 5 m and 10 m) from the field boundary. At each sampling 

point, soil samples were collected from two depths, identified as Depth 1 (0-10 cm) and Depth 2 

(10-20 cm). At each site, each transect was replicated three times (i.e. transect A, B and C; 

Error! Reference source not found.). Thus, every tested condition was run three times, for a 

total of 144 soil samples (Table 3.1:.1). Sampling was done in late August 2015 at grain filling 

stage of wheat.  
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Table	3.1:	Summary	of	the	sampling	design	(n=144)	

Location 
Replicates/Transects 

(i.e. runs) 

Sample location on 

transects (m) 
Sampling depths (cm) 

North, 

East, 

South, 

West 

 

A, B, C 

-3 (outside the field), 

-1 (outside the field), 

1 (inside the field), 

3 (inside the field), 

5 (inside the field), 

10 (inside the field) 

D1, Depth 1 (0-10) 

D2, Depth 2 (10-20) 

 

The north site has a slope of 0.07% towards the AgField. The NatField strip consists of mainly 

shrub/grass. The water table at the outermost sampling point along the sampling gradient was at 

0.38 m. 

The east site has a slope of 14.67% sloping away from the AgField. The NatField strip is mainly 

covered by a mixture of grasses and with a treed region, between the experimental field and a 

forage field, on the farther east edge of the hedge. The trees are in a surface drainage collection 

canal, at the outer edge (3-7 m from the edge of the AgField). The water table at the outermost 

sampling point along the sampling gradient was at 0.75 m.  

The south site has a slope of 7.2%, sloping away from the AgField. The NatField is covered by a 

mix of grasses over a variable width of about 5-10 m, ending into a wetland that is created and 

collects the tile-drainage from the field. The groundwater table is below 2 m (i.e. a test profile of 

2 m depth at the site did not reach the water table). 

The west site has a slope of 1.13% sloping away from the AgField. The NatField strip along the 

outer edge of the field is a grassed strip of about 2 m width separating the AgField from an 

unpaved farm road.  
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Figure	3.2:	Soil	sampling	design		

 

3.3 Sample analysis 

3.3.1 Soil handling  

For microbial analysis, fresh sample (i.e. within 24 h of sampling) was used to extract DNA. The 

samples were stored at -20°C. For each experiment, the frozen samples were thawed for 24-48 h 

at 4°C and then the required amount of soil was air-dried at room temperature and sieved through 

2 mm for moisture content, texture, pH, available P and total cations analyses and through 500 

µm for total carbon and nitrogen analyses. To determine moisture content, 10 g of soil sample 

was oven-dried at 105°C for 24 h. overnight. 

 

3.3.2 Soil Physicochemical Analyses  

3.3.2.1 Soil texture 

The procedure was carried out as described (M.R. Carter and E.G. Gregorich, 2006).  A 50 g of 

air dried and sieved through 2 mm soil sample was placed in a commercial glass blender 

(Waring®, Torrington, CT, USA) with 50 mL of Calgon solution (50 mg L-1) and 350 mL of 

deionized (DI) water and blended for 5 mins at slow speed. The soil suspensions were poured 
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into 1 L sedimentation cylinders and the solution was made up to 1 L with DI water. The blank/ 

reference solution was made with 50 mL Calgon solution and 950 mL of DI water in a separate 

sedimentation cylinder. The soil suspensions and the blank, in the sedimentation cylinders, were 

stirred vigorously with a wooden plunger for 2 min (about 25 strokes) from close to the bottom 

to top of the suspension carefully. The Buoyocous hydrometer (Fisher Scientific™, Pittsburgh, 

PA, USA) was then lowered in the suspension 40 sec after stirring and a reading (R40) was taken. 

After cleaning of the hydrometer, the same procedure was done for the blank solution (RL). After 

2 h, the readings (R2) were repeated. Temperature of the solutions was also measured after each 

reading. 

 

The temperature changes were corrected by adding 0.36 graduation for every 1°C above 20°C 

and 0.36 graduation was subtracted for every 1°C below 20°C. 

Textural proportions were calculated and expressed per air-dry soil mass. 

Sand	% = 100 − R,-. −	R/ 	×	
100

oven − dried	soil	(g)
 

Clay	% = R=> −	R/ ×	
100

oven − dried	soil	(g)
 

Silt	% = 100 − (Sand	% + Clay	%) 

 

3.3.2.2 pH 

The procedure was carried out as described (M.R. Carter and E.G. Gregorich, 2006). 

Ten grams of 2 mm sieved air-dried soil samples were mixed with 20 mL of 0.01M CaCl2. The 

samples were mixed for 30 secs and let to stand for 1 h. Measurements were taken after 1 h using 

pH meter (Oakton bench 700 and 2700 series®, Vernon Hills, IL, USA). 

A three-point calibration of the pH-meter (at pH 4, 7 and 10) was carried out daily (at 25°C). To 

ensure quality control, the pH of the 0.01M CaCl2 was verified to be in the range of 5.5-6.5 pH 

and its electrical conductivity (EC) around 2.3 mS cm-1, at 25°C. 

 

3.3.2.3 Available phosphorus 

Phosphate phosphorus equivalents (PO4
-3-P) was measured on pre-treated sample via the 

Mehlich3 standard method (Mehlich, 1984). Soil extraction was done on 2 g of 2 mm sieved air-
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dried soil. Soil was added to 50 mL Erlenmeyer flasks and 20 mL of the Mehlich3 extraction 

solution (0.2 M CH3COOH, 0.25 M NH4NO3, 0.015 M, NH4F, 0.013 M HNO3, 0.001 M EDTA 

[(HOOCCH2)2NCH2CH2N(CH2COOH)2]) was added. The mixture was shaken at 200 rpm for 5 

min at room temperature (24 to 27 °C). The mixture was then filtered through a Whatman No.42 

filter paper. As the filtrate was not clear, a second filtration was carried out and the filtrate stored 

at 4 °C. 

Filtrates were diluted 20x and analyzed colorimetrically on an AA3 (Seal Auto Analyzer, 

Fareham Hampshire, United Kingdom). A calibration curve was prepared using 500, 400, 300, 

200, 100 and 0 ppm of potassium dihydrogen phosphate solutions. Method blank was used to 

verify for any cross-contamination. Calibration curve was linear with a correlation coefficient 

(i.e. regression fit, R2) of 0.9996 to 0.9999. 

 

3.3.2.4  Survey of total cations  

Cationic trace elements were analysed via ICP-MS, Inductively Coupled Plasma-Mass 

Spectrometry (Thermo scientific™ Burlington, ON, Canada): magnesium (Mg), aluminium (Al), 

iron (Fe), sodium (Na), phosphorous (P), potassium (K), calcium (Ca), manganese (Mn), zinc 

(Zn), and copper (Cu). 

 

Digestion Procedure: 

Digestion was carried out according to EPA 3050b method (Acid digestion of sediments, sludge, 

and soils)(USEPA, 1996). 

- An aliquot of 0.5 g of 2 mm sieved air-dried homogeneous soil samples was placed in a 

50 mL Teflon tube; to this 10 mL of 1:1 trace element grade HNO3
- was added and the 

slurry mix covered with a watch glass.  

- Samples were then heated at 95°C ± 5 °C (name the equipment used here). The 

temperature was monitored by using a sensor immersed in one of the sample.  

- Samples were allowed to cool off for 5 min and supplemented with 5 mL of 70% HNO3 

solution, and reheated to 95°C ± 5°C and reflux for 5 min.  

- Samples were then allowed to cool 

- Added 2 mL of deionized (DI) water and 3 mL of 30% hydrogen peroxide (H2O2) 

solution 
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- Warming to approximately 60-70 °C 

- 1 mL of 30% H2O2 solution was dripped into the slurry mix until no effervescence was 

observed (not to exceed 10 mL).  

- After the sampled cooled off the volume was completed to 50 mL by adding DI water.  

- The mixture was filtered through Whatman No. 41 paper filter 

- Filtrates were stored at 4 °C until analyzed.  

Note: The material used for digestion, measuring and preparation of solution was plastic and 

Teflon which was acid-washed overnight. For every batch of digestion, a blank was used to 

insure minimal contamination. The Operational conditions for plasma and Instrument Detection 

Limit, IDL for all cations based on seven replicates are attached in the (see Appendix Error! 

Reference source not found.). 

 

3.3.2.4.1 Sample Preparation and analysis on ICP-MS: 

Analysis for Na, P, K, Ca, Mn, Zn and Cu was done on a 100x dilution with 2% solution of trace 

element grade nitric acid supplemented with 50 ppb of rhodium as internal standard. For Mg, Al, 

and Fe a 1000x dilution with 2% solution of trace element grade nitric acid supplemented with 

50 ppb of Rhodium as internal standard was used. 

Data integrity, instrument performance, method accuracy was ensured by using a Soil Reference 

Material (SRM): 2711a Montana Soil II, obtained from the National Institute of Standards and 

Technology (NIST). The SRM was a moderately contaminated soil. Method blanks were used to 

ensure minimal contamination (Mackey et al., 2010). The comparison of certified values of NIST 

and obtained values of all cations for NIST is attached in the (see Appendix Error! Reference 

source not found.). 

Calibration/Standard Curve: 

Calibration curve was obtained using working standards of 0, 10, 50, 100, 200 and 300 ppb, each 

containing 50ppb of the internal standards (Rh). The working standard stock contained 10 µL 

mL-1 of each of Al, Ca, Cu, Fe, K, Mg, Mn, Na, P and Zn. Calibration curves for all runs and 

isotopes selection are attached in the (see Appendix Error! Reference source not found.). 
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Table	3.2:	Calibration/Standard	Curve	of	standard	at	different	concentration 

Standard 
Concentration 
(ppb) 

Na 
(ppb) 
± 2 

P 
(ppb) 
± 2 

K 
(ppb) 
± 2 

Ca 
(ppb) 
± 2 

Mn 
(ppb) 
± 2 

Cu 
(ppb) 
± 2 

Zn 
(ppb) 
± 2 

Al 
(ppb) 

Mg 
(ppb) 

Fe 
(ppb) 

Blank 0 0 0 0 0 0 0 0 0 0 
10 95.30 12.98 11.55 15.66 9.57 15.46 6.5 12.48 10.46 12.38 
50 117.43 47.71 55.07 61.85 48.35 77.6 45.77 49.56 50.17 51.33 
100 147.24 108.06 97.63 104.32 96.92 98.91 96.09 101.37 101.71 103.51 
200 208.54 202.44 201.70 208.09 201.97 203.95 202.82 196.51 199.10 198.03 
300 264.48 295.97 298.76 290.67 190 292.95 300.24 301.94 299.98 299.84 

	

3.3.2.5 Total Carbon and Nitrogen: 

Total carbon and nitrogen, were analyzed on a Perkin Elmer model 2400 CHNS/O Series II 

(100V) elemental Analyzer (Waltham, Massachusetts, USA)(PerkinElmer, 2011). This method 

uses combustion and reduction columns at 925 °C and 640 °C respectively. Approximately 13-

15 mg of 500 µm sieved air-dried soil samples were weighed in a tin capsule (8x5mm). 

Calibration was done using 1.25 to 2.50 mg of Acetanilide Standard. 

Accurately weighed Acetanilide standard was run to obtain a conversion factor of each element 

(%C, %H, %N) from the detector. By normalizing detector reading by weight and dividing the 

normalized reading by the theoretical %weight of C, H and N in the standard. These values are 

called K-Factor, which is automatically given by machine (Veysey, 2015). 

Table	3.3:	Minimum	Precision	Criteria	for	Blanks	and	K-Factors	with	reproducibility		

% Elements Acetanilide as sample Acetanilide as K-Factor Blank 
Carbon  71.09 +/- 0.40 16.5 +/- 3.5 <100 +/- 30 

 
Hydrogen 6.71 +/- 0.40 50.0 +/- 20.0  200-300+/- 100 

 
Nitrogen 10.36 +/- 0.40  6.0 +/- 3.0  <50+/- 16 

 
 
3.3.3 Microbiological methods 

Microorganisms act as an indicator of soil health, which cannot be assessed only from physical 
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or chemical parameters of soil or by analyzing higher organism level. Microorganisms have 

quick response to changes in environment and will survive only under favorable condition. 

Therefore, analyzing the microbial community and their function helps us to find the quality of 

soil/soil health. Sometimes changes in the microbial community have noticeable change in soil 

physical and chemical parameters (Kibblewhite et al., 2008; Zornoza et al., 2009). 

 

3.3.3.1 DNA extraction 

DNA was extracted using a Power Soil DNA isolation kit (MO BIO lab, QIAGEN Inc, Carlsbad, 

CA, USA) from ~0.25 g of fresh soil per extraction reaction. Extraction steps were carried out 

according to manufacturer’s protocol (MO BIO lab, QIAGEN Inc, Carlsbad, CA, USA). After 

extraction, a 1.00 µL aliquot was used to verify for DNA yield and quality on a Nano Drop 

2000c spectrophotometer (Thermo scientific™ Burlington, ON, Canada) at the wave lengths of 

260 and 280 nm. The 260/280 nm ratio is commonly employed to verify the efficiency of protein 

removal during extraction, and thus purity of DNA extract. 

 

3.3.3.2 Sequencing 

3.3.3.2.1 Bacterial taxonomic diversity via amplicon sequencing 

Sequencing of selected hypervariable regions of the 16S ribosomal RNA (rRNA) gene 

sequencing is a common amplicon sequencing protocol employed to describe bacterial 

taxonomic diversity in environmental samples. The 16S gene is used as a genetic marker because 

it is a household gene conserved over time, with a relatively constant and predictable mutation 

rate, as it carries out essential functions, translating of mRNA (messenger RNA) into protein; it 

is also a relatively short gene, at 1.5 k base pairs (bp), and it is therefore fast and cheap to 

sequence. Amplicon sequencing for the DNA extracts was carried out on an Illumina MiSeq 

Sequencing platform at Genome Quebec.  

The following barcoded primers were employed: 

515F: (5´ GTGCCAGCMGCCGCGGTAA 3´) 

806R: (5´ GGACTACHVGGGTWTCTAAT 3´) 

This produces an amplicon of 253 bp in length, excluding the primers’ sequences. This primer 

set targets the V4 region of both Bacteria and Archaea and has a high sequence coverage, of 

about 93.6 for bacteria and 90.9 for archaea (Wu et al., 2015).  
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3.3.3.2.2 Fungal taxonomic diversity via amplicon sequencing 

Fungal taxonomy was also assessed via amplicon sequencing, targeting the ITS region (Internal 

Transcribed Spacer) of the rDNA a commonly used barcoding marker for fungi (Porter and Brian 

Golding, 2011). ITS refers to spacer DNA situated between the small subunit and large subunit 

of ribosomal RNA (rRNA) in the chromosome (White et al., 1990; Wu et al., 2002). 

Primers Used (Wu et al., 2003). 

1. Forward, ITS1: 5'-TCCGTAGGTGAACCTGCGG-3' 

2. Reverse, ITS4: 5'-TCCTCCGCTTATTGATATGC-3' 

3.3.3.3 Sequence Analysis: 

16SrRNA and ITS seducing was done Illumina MiSeq Sequencer. The generated sequences were 

then processed through QIIME (Quantitative Insights Into Microbial Ecology) pipeline which 

has 95 cut off, which performs demultiplexing, removal of primers, quality based sequence 

trimming, obtaining Operational Taxonomic Unit (OUT) table and assemblage of paired-end 

sequences. Chimeras (two or more biological sequences joined incorrectly) was checked using 

UCHIME. 

Profiling microbial community via High-throughput sequencing (in this study, we used Illumina) 

is an emerging powerful tool. MiSeq produces a data of > 1 gigabase (Gb) via sequence by 

synthesis technique which has quality comparable to HiSeq® 2000 platform. In this process, the 

reads/sequences were scanned for contaminants and PhiX reads (0-25% of the samples are 

contaminated with PhiX). From the above process of screening, one read pair was lost and was 

discarded. The remaining pairs were trimmed to 165bp by default depending on the quality on 

sequence run and amplicon length. These pairs were assembled to reconstruct 16S amplicons 

using FLASH software. The assembled reads were then screened for quality score of >10 to <30 

nucleotides, Ns. These reads were referred as filtered reads. These filtered reads were then 

clustered using in-house clustering algorithm. In this process, 100 identity reads were clustered 

then at 99 identity. Clusters with abundance <3 were eliminated. The remaining clusters were 

scanned for chimeras using UCHIME denovo and UCHIME reference and clustered at 97 

identity, which final clusters are called operational taxonomic unit (OTUs). OTUs were then 

analyzed for taxonomic distribution using a combination of in-house program and scripts from 

QIIME software. In this process, OTUs were classified with RDP classifier using an in-house 

program containing a complete set of Greengenes database supplemented with eukaryotic 
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sequences from the Sliva databases and a customized set of mitochondria and chloroplast 16S 

reads. ITS database consists of the UNITE ITS database (ITS1-2) region. The RDP classifier 

gave a score of 0-1 to each taxonomic level of each OTUs and the taxonomic level having a 

score ≥ 0.5 was left for reconstruction of final lineage.  From the taxonomic lineage, a raw OTU 

table was generated; from there an OTU table of Bacteria and Fungi was generated. Then it was 

checked for rarefaction and a final OTU table was generated. 

Microbial community functions cannot be studied directly by profiling phylogenetic marker 

genes such as the 16s rRNA. PICRUSt (Phylogenetic Investigation of Communities by 

Reconstruction of Unobserved States), a computational approach was used in this study to 

predict the metagenomic functional composition using 16S rRNA and Greengene database. 

3.3.3.4 Taxonomic diversity 

3.3.3.4.1 Bacteria 
There were a total of 22,144,080 bacterial read sequences obtained, of which 3,192,399 

sequences were of insufficient quality; the remaining 18,951,681 reads were assembled in to 

8,774,064 reads, of which 6,889,880 passed the QC (Quality Control) protocols as implemented 

at the sequencing facility (GenomeQuebec) in the standard QIIME pipeline. These were 

clustered into 3,280,215 sequences using a 97% identity cut-off. Eventually 3,267,545 sequences 

were clustered into 18,763 OTUs (Operational Taxonomic Units). 

 

3.3.3.4.2 Fungi: 
There were a total of 25,909,070 fungal read sequences, of which 1,054,075 sequences were of 

insufficient quality; the remaining 24,854,995 reads were assembled in to 9,791,260 reads, of 

which 6,578,766 were passed the QC (Quality Control) protocols as implemented at the 

sequencing facility (GenomeQuebec) in the standard QIIME pipeline. These were clustered into 

6,360,925 sequences using a 97% identity cut-off. Eventually 6,359,109 sequences were 

clustered into 3,932 OTUs (Operational Taxonomic Units). 

 

3.4 Statistical Analysis 

3.4.1 Physicochemical Analyses 

The significance of the replicates and factors on the  physical and chemical soil parameters, and 

the significance of the relevant variables, i.e. statistical covariates,  were determined using a 
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general linear model (GLM); p values ≤0.05 were used to determine statistical significance 

(Shin, 1995). These tests were carried out in Minitab. Multivariate analyses were carried out by 

Principal Component Analysis (PCA) using the Orange vs. 3.8 software (Mining, 2016; 

Orange.biolab, 2014). 

3.4.2 Microbial Taxonomic Diversity Analysis 

The clustered OTUs were classified taxonomically by alignment against the Greengene database. 

Note that the approach is only accurate up to the genus level. Bacterial OTUs dataset was first 

depleted of the mitochondrial, cyanobacterial/chloroplast and archaeal sequences. The success of 

this classification approach is summarized in Table 6.  

Table	3.4:	Summary	of	the	taxonomic	assignment	success			

Bacteria  OTUs (sequence count)  
Total   18,763  
After Deleting Mitochondria, Cyanobacteria and Archaea  17,821 (25,07,590)  
Fungi    
Total   
  

3,932 (46,41,274)  

Unclassified Sequences:    
Taxonomic Level  Bacteria OTUs (sequence count)  Fungal OTUs (sequence count)  
Phylum  75, (2,151)  785, (80,890)  
Class  111, (4,545)  1,189, (2,26,000)  
Order  180, (6,287)  1,569, (3,11,370)  
Family  261, (9,461)  1,777, (6,30,310)  
Genus  362, (20,330)  1,947, (7,85,419)  
  
The data for the NBD2 sample was eventually eliminated from all bacterial analyses due to its 
unsatisfactory rarefaction curve.  
  
 

3.4.2.1 Alpha Diversity 

Alpha diversity, i.e. the diversity within each sample, was assessed for both bacteria and fungi at 

OTUs level; this included Simpson 1-D, Dominance-D (number of individuals belonging to the 

most abundant species), Shannon-H, and Chao1 indices. Tests were carried out in the PAST3 

ecological statistics software (Hammer 2017). 
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Dominance= 1-Simpson, 𝐷 = 𝑆𝑢𝑚( EF
E

=
) 

Where ni is the number of individuals of taxa 

n is the total number of individuals 

Simpson1-D (diversity based on abundance and richness),  

Simpson Index=1-Dominance 

Shannon H (diversity based on abundance and richness) 

𝐻 = 𝑠𝑢𝑚	
𝑛F 𝑛

𝑛 𝑛F 𝑛
 

 

 

Chao-1 (Calculates diversity with accounting of rare species) (Hammer, 2017). 

 

Singletons and doubletons were not removed for this analysis, and all analyses were performed 

at the OTU level. Approximate confidence intervals were computed using a bootstrap with 9999 

cycles.  

 

3.4.2.2 Beta Diversity 

Analyses for beta diversity, i.e. the similarity and dissimilarity levels between samples, of the 

bacterial and fungal communities were carried out at the class taxonomic level using EstimateS 

Mac910 Statistical software (Colwell and Elsensohn, 2014); a Bray-Curtis similarity matrix was 

employed.  Before this analysis, the datasets were depleted of OTUs represented only by 

singletons or doubletons.  

A SIMPER analysis (Similarity Percentage) was carried out at the class taxonomic level. 

SIMPER is another assessment of the beta diversity that calculates the proportional contribution 

of each variable (class proportional abundance in this case) to the similarity or dissimilarity 

between treatments. The proportional contribution to dissimilarity of bacteria or fungi was 

carried out at class level. SIMPER was carried out using the PAST3 ecological statistics software 

(Hammer 2017) using a Bray-Curtis dissimilarity matrix. For this analysis, singletons and 

doubletons were not removed.   
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3.4.2.2.1 Discriminant analysis 

The capability of predictive approaches to identify a given treatment option, e.g. site or location 

on the sampled gradient may be employed to identify similarity levels.  Neural network (NN), 

Logistic regression (LR), Naïve Bayesian (NB), and Support Vector Machine (SVM) approaches 

as implemented in the Orange vs. 3.8 (Demsar et al., 2013) were employed. The first two were 

found to be most effective and are therefore presented and discussed in the respective sections 

later in the manuscript. The quality of the predictive analyses is described by several quality 

indicators: 

- Area under an Receiver Operating Characteristic (ROC) curve, (AUC) (Wigton et al., 

1986) describes the accuracy of a test, or how well the test separates the group being 

tested from other groups. An area of 1 represents a perfect prediction; an area of 0.5 

represents a meaningless prediction (Demsar et al., 2013).  

- The Classification accuracy (CA) is the proportion of correctly classified examples. 

- The F score (F1) is the harmonic average of the precision and recall; an F1 score ranges 

between 0 and 1 with 1 being best (Powers, 2011). 

- Precision, is the number of correct positive results divided by the number of all positive 

results returned by the classifier (Demsar et al., 2013). 

- Recall, is the number of correct positive results divided by the number of all samples that 

should have been identified as positive (Demsar et al., 2013). 

For these analyses, we have employed the taxonomic diversity of bacteria or fungi, at OTUs 

level and also the PICRUST inferred functional diversity. As the latter is dependent on the 

taxonomic identification of bacteria via 16s rDNA structure it is expected to offer a similar 

discriminant power. On the other hand, the non-uniform distribution of functions across taxa 

does lead to the discriminant power of the said inferred functional profile to be sufficiently 

distinct from the one of the bacterial taxonomic profile. 

3.4.3 Correlation between microbial diversity and soil properties 

An assessment of the correlation between microbial taxonomic diversity and soil 

physicochemical properties was carried out using Megan bioinformatics software (Huson et al., 

2007). For this analysis, the class level taxonomic diversity was used. The 17,710 bacterial 
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OTUs were, classified into 49 taxonomic classes, whereas the 2,743 fungal OTUs were classified 

into 23 taxonomic classes. A total of 111 bacterial OTUs and 1189 fungal OTUs could not be 

classified at class level. 

 

3.4.4 Functional Diversity 

Multivariate analysis of bacterial functional diversity for all metabolic functions (132 functions) 

except functions relevant to the metabolism of xenobiotics (21 functions), which were assessed 

separately, was carried out by, Principal Component Analysis (PCA) using the Orange vs. 3.8. 

software (Mining, 2016; Orange.biolab, 2014). Functional diversity was inferred from the 16s 

RNA based taxonomic diversity as described in section (Appendix 7.11). An assessment of the 

relationship between the inferred functional diversity and the soil parameters was also carried out 

in the same software using Double Hierarchical Dendogram Heat Map.  
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4 Results 
4.1 Soil Physiochemical Parameters 

4.1.1 Soil Physical properties 

Soil Texture 

The texture across the entire test site was relatively similar, being classified as sandy loam or 

sandy clay loam (Figure 4.1). There was a general trend of the lower depth to have a slightly 

finer texture than the top soil depth.   

Statistical analyses were carried out on the proportions of sand (Figure 4.2) and clay (Figure 4.3). 

Sand% was found to be significantly highest at the west site, with a 31.2% average, and the 

lowest at the south site with an average of 28.9% irrespective with depth (see Appendix 7.1.1). 

The proportion of sand is generally higher in the AgField samples versus the NatField, but not 

statistically significant (see Figure 4.2, Appendix 7.1.2).  

The proportions of clay were found to be higher in East site (33.2%) and significantly lower for 

the North site (27.9%) (see Appendix 7.2.1). The Depth 2 has significantly more clay (32.7%) 

than Depth 1 (30.0%) (see Appendix 7.2.3).  
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Figure	4.1:	Textural	distribution	of	soil	samples		

  

Depth 1 

 
Depth 2 
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East North 

  
South West 

  

Figure	4.2:	Sand%	across	the	sampling	gradients	in	both	the	depths	at	all	sampling	sites	

 
 
Variation of the sand% for Depth 1 (0-10 cm) and Depth 2 (10-20 cm) with respect to 

management intensity/sample location (-3 m and -1 m at NatField and 1 m, 3 m, 5 m and 10 m in 

the AgField) and slope with the significant difference (ANOVA, General Linear Model, P≤ 

0.05). R2 describes the variability in measurements along the length of the gradients (m). The red 

dots describe Depth 1 data while the blue diamonds describe the Depth 2 data; the dotted lines 

describe the % topographical slope (secondary y-axis).  
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East North 

  
South West 

  

Figure	4.3:	Soil	texture	across	the	sampling	gradients;	clay	(%)	in	both	the	depths	at	all	sampling	

sites	

 
Variation of the clay% for Depth 1 (0-10 cm) and Depth 2 (10-20 cm) with respect to 

management intensity/sample location (-3 m and -1 m at NatField and 1 m, 3 m, 5 m and 10 m in 

the AgField) and slope with the significant difference (ANOVA, General Linear Model, P≤ 

0.05). R2 describes the variability in measurements along the length of the gradients (m). The red 

dots describe Depth 1 data while the blue diamonds describe the Depth 2 data; the dotted lines 

describe the % topographical slope (secondary y-axis).  
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4.1.2 Soil Chemical parameters 

pH 

Soil pH was found to be significantly higher for north site (mean = 6.09) and significantly low 

for the east (mean of 5.27) (Figure 4.4) (see Appendix 7.3.1). Within the AgField, the 10 m 

gradient location has produced significantly lower pH values (mean of 5.32) than the NatField, 

(e.g. a mean of 5.78 at -1 m gradient location) (see Appendix7.3.2). The pH of the Depth 1 has 

an average pH slightly higher than Depth 2 (means of 5.66 vs 5.55) (see Appendix 7.3.3). 

Sodium 

Soil sodium (Na) (Figure 4.5:	4.5) was found to be significantly high in the west site (mean of 

318.6 mg/kg soil dry matter [DM]) and significantly low in the South site (mean of 73.7 mg/kg 

soil DM) (see Appendix 7.4.1). Within the AgField, the 5 m gradient location has significantly 

higher Na (mean of 360.7 mg/kg soil DM) than the -3 m NatField gradient location (65.8 mg/kg 

soil DM) (Figure 4.5:	 and Appendix 7.4.2).  

Potassium 

Soil potassium (K) was found to be significantly higher in the East and West sites 3957.7 and 

3823.7 mg/kg soil DM respectively) and low in the North site (3309.4 mg/kg soil DM) (Error! 

Reference source not found.) (Appendix 7.5.1). 

Calcium 

Soil calcium, Ca is significantly higher in north site with the mean of 4392.7 (mg/kg) than rest of 

the sites (see  Figure 4.7:	, Appendix 7.6.1). Ca is significantly lower in AgField, 10 m and 1 m 

with the mean of 2553.7 (mg/kg) and 1773.4 (mg/kg), respectively than in NatField, -1 m and -3 

m with the mean of 3996.6 (mg/kg) and 3696.0 (mg/kg), respectively (see Appendix 7.6.2) 

Manganese 

Soil manganese, Mn is significantly lower in north site with the mean of 527.4 (mg/kg) than rest 

of the sites (see Figure 4.8:, Appendix 7.7.1). AgField, 10 m has significantly higher Mn than 

other sampling location (see Appendix 7.7.2) 

Copper 

Soil copper, Cu is significantly lower in North site with the mean of 40.3 (mg/kg) than rest of the 

sites (see Figure 4.9, Appendix 7.8.1). AgField, 10 m has significantly higher Cu with the mean 

of 119.3 (mg/kg) than NatField, -3 m with the mean of 40.7 (mg/kg) in all the sites (see 

Appendix 7.8.2). 
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Zinc 

Soil zinc, Zn is significantly lower in North site with the mean of 84.4 (mg/kg) than rest of the 

sites (see Figure 4.10, Appendix 7.9.1). AgField, 1 m has significantly higher Zn with the mean 

of 128.3 (mg/kg) than NatField, -3m and -1m with the mean of 107.3 (mg/kg) and 107.1 (mg/kg) 

respectively in all the sites (see Appendix 7.9.2) 

Magnesium 

Soil magnesium, Mg is significantly high in the East site with the mean of 18770(mg/kg) and 

significantly low in West site with the mean of 14312 (mg/kg) (see Figure 4.11, Appendix 

Error! Reference source not found.). AgField, 10 m has significantly low Mg with the mean of 

14972 (mg/kg) and NatField, -1m has high Mg with the mean of 17969 (mg/kg) in all the sites 

(see Appendix 7.10.2). 

Aluminium 

Soil aluminum, Al is significantly high in the East site with the mean of 33663 (mg/kg) and low 

in the North and South sites with the mean of 28381 (mg/kg) and 28273 (mg/kg) respectively 

(see Figure 4.12, Appendix 7.11.1) 

Iron 

Soil iron, Fe is significantly higher in the East site with the mean of 48045.60(mg/kg) than rest 

of the sites (see Figure 4.13, Appendix 7.12.1) 

 

Total Organic Carbon  

Soil Total Organic Carbon, TOC is significantly high in the South and the North sites with the 

mean of 44403 (mg/kg) and 44342 (mg/kg) respectively and low in the West and East sites with 

the mean of 35408 (mg/kg) and 32483 (mg/kg) respectively (see Appendix Error! Reference 

source not found.). AgField, 5 m has significantly lower TOC with the mean of 36746 (mg/kg) 

than the NatField, -3 m with the mean of 43983.30 (mg/kg) in all the sites (see Appendix Error! 

Reference source not found.). Depth 1 has significantly higher TOC with the mean of 41999 

(mg/kg) than Depth 2 with the mean of 36319 (mg/kg) (see Figure 4.14, Appendix 7.13.3). 

 

Total phosphorus 

Soil Total Phosphorus, TP is significantly different from each other in all the sites with the mean 

of 2154 (mg/kg) in the South site and 1623 (mg/kg) in the west site and 1336 (mg/kg) in the East 
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site and 1118 (mg/kg) in the North site (see Appendix 7.14.1). AgField, 1 m and 5 m has 

significantly higher TP with the mean of 2084 (mg/kg) and 1615 (mg/kg) respectively than the 

NatField, -3 m and -1 m with the mean of 1302 (mg/kg) and 1291 (mg/kg) respectively (see 

Figure 4.15, Appendix 7.14.2). Depth 1 has significantly higher TP with the mean of 1661 

(mg/kg) than Depth 2 with the mean of 1454 (mg/kg) (see Appendix 7.14.3). 

Available phosphorus  

Soil available phosphorus, PO4 is significantly high in the South and the West sites the mean of 

4.10 (mg/kg) and 3.88 (mg/kg) respectively and significantly low in the East and the North sites 

with the mean of 2.27 (mg/kg) and 2.16 (mg/kg) respectively (see Figure 4.16, Appendix 7.15.1). 

Depth 1 has significantly higher P with the mean of 3.43 (mg/kg) than Depth 2 with the mean of 

2.77 (mg/kg) (see Appendix 7.15.3) 

Total nitrogen 

Soil Total Nitrogen, TN is significantly higher in South site with the mean of 3383 (mg/kg) than 

rest of the sites (see Appendix 7.16.1). Depth 1 has significantly higher P with the mean of 2921 

(mg/kg) than Depth 2 with the mean of 2407 (mg/kg) (see Figure 4.17, Appendix 7.16.3). 
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East North 

  
South West 

  

Figure	4.4:	Soil	pH	across	the	sampling	gradients	for	both	depths	at	all	sampling	sites	

 
Variation of soil pH measurements for Depth 1 (0-10cm) and Depth 2 (10-20cm) with respect to 

management intensity/sample location (-3m and -1m at NatField and 1m, 3m, 5m and 10m in the 

AgField) and slope with the significant difference (ANOVA, General Linear Model, P≤ 0.05). 

The regression coefficient (R2) describes the variability in measurements along the length of the 

gradients (m). The red dots describe Depth 1 data while the blue diamonds describe the Depth 2 

data; the dotted lines describe the % topographical slope (secondary y-axis). 
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East North 

  
South West 

  

Figure	4.5:	Concentration	of	sodium	(Na)	in	soils	across	the	sampled	gradients	for	both	depths	

at	all	sampling	sites	

Variation	of	Na	measurements	for	Depth	1	(0-10cm)	and	Depth	2	(10-20cm)	with	respect	to	

management	intensity/sample	location	(-3m	and	-1m	at	NatField	and	1m,	3m,	5m	and	10m	in	

the	AgField)	and	slope	with	the	significant	difference	(ANOVA,	General	Linear	Model,	P≤	0.05).	

The	regression	coefficient	(R2)	describes	the	variability	in	measurements	along	the	length	of	the	

gradients	(m).	The	red	dots	describe	Depth	1	data	while	the	blue	diamonds	describe	the	Depth	

2	data;	the	dotted	lines	describe	the	%	topographical	slope	(secondary	y-axis).		

  



	

63	

	

East North 

  
South West 

  

Figure	4.6:	Concentration	of	potassium	(K)	in	soils	across	the	sampled	gradients	for	both	depths	

at	all	sampling	sites	

Variation of K measurements for Depth 1 (0-10cm) and Depth 2 (10-20cm) with respect to 

management intensity/Sample Location (-3m and -1m at NatField and 1m, 3m, 5m and 10m in 

the AgField) and slope with the significant difference (ANOVA, General Linear Model, P≤ 

0.05). R2 describes the variability in measurements along the length of the gradients (m). The red 

dots describe Depth 1 data while the blue diamonds describe the Depth 2 data; the dotted lines 

describe the % topographical slope. 
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East North 

  
South West 

  

Figure	4.7:	Concentration	of	calcium	(Ca)	in	soils	across	the	sampled	gradients	for	both	depths	

at	all	sampling	sites		

Variation of Ca measurements for Depth 1 (0-10cm) and Depth 2 (10-20cm) with respect to 

management intensity/Sample Location (-3m and -1m at NatField and 1m, 3m, 5m and 10m in 

the AgField) and slope with the significant difference (ANOVA, General Linear Model, P≤ 

0.05). R2 describes the variability in measurements along the length of the gradients (m). The red 

dots describe Depth 1 data while the blue diamonds describe the Depth 2 data; the dotted lines 

describe the % topographical slope. 
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East North 

  
South West 

  

Figure	4.8:	Concentration	of	manganese	(Mn)	in	soils	across	the	sampled	gradients	for	both	

depths	at	all	sampling	sites	

Variation	of	Mn	measurements	for	Depth	1	(0-10cm)	and	Depth	2	(10-20cm)	with	respect	to	

management	intensity/Sample	Location	(-3m	and	-1m	at	NatField	and	1m,	3m,	5m	and	10m	in	

the	AgField)	and	slope	with	the	significant	difference	(ANOVA,	General	Linear	Model,	P≤	0.05).	

R2	describes	the	variability	in	measurements	along	the	length	of	the	gradients	(m).	The	red	dots	

describe	Depth	1	data	while	the	blue	diamonds	describe	the	Depth	2	data;	the	dotted	lines	

describe	the	%	topographical	slope.	
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East North 

  
South West 

  

Figure	4.9:	Concentration	of	copper	(Cu)	in	soils	across	the	sampled	gradients	for	both	depths	

at	all	sampling	sites	

Variation of Cu measurements for Depth 1 (0-10cm) and Depth 2 (10-20cm) with respect to 

management intensity/sample location (-3m and -1m at NatField and 1m, 3m, 5m and 10m in the 

AgField) and slope with the significant difference (ANOVA, General Linear Model, P≤ 0.05). R2 

describes the variability in measurements along the length of the gradients (m). The red dots 

describe Depth 1 data while the blue diamonds describe the Depth 2 data; the dotted lines 

describe the % topographical slope. 
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East North 

  
South West 

  

Figure	4.10:	Concentration	of	zinc	(Zn)	in	soils	across	the	sampled	gradients	for	both	depths	at	

all	sampling	sites	

Variation	of	Zn	measurements	for	Depth	1	(0-10cm)	and	Depth	2	(10-20cm)	with	respect	to	

management	intensity/sample	location	(-3m	and	-1m	at	NatField	and	1m,	3m,	5m	and	10m	in	

the	AgField)	and	slope	with	the	significant	difference	(ANOVA,	General	Linear	Model,	P≤	0.05).	

R2	describes	the	variability	in	measurements	along	the	length	of	the	gradients	(m).	The	red	dots	

describe	Depth	1	data	while	the	blue	diamonds	describe	the	Depth	2	data;	the	dotted	lines	

describe	the	%	topographical	slope.		 	
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East North 

  
South West 

  

Figure	4.11:	Concentration	of	magnesium	(Mg)	in	soils	across	the	sampled	gradients	for	both	

depths	at	all	sampling	sites	

Variation of Mg measurements for Depth 1 (0-10cm) and Depth 2 (10-20cm) with respect to 

management intensity/sample location (-3m and -1m at NatField and 1m, 3m, 5m and 10m in the 

AgField) and slope with the significant difference (ANOVA, General Linear Model, P≤ 0.05). R2 

describes the variability in measurements along the length of the gradients (m). The red dots 

describe Depth 1 data while the blue diamonds describe the Depth 2 data; the dotted lines 

describe the % topographical slope. 
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East North 

  
South West 

  

Figure	4.12:	Concentration	of	aluminum	(Al)	in	soils	across	the	sampled	gradients	for	both	

depths	at	all	sampling	sites	

Variation of Al measurements for Depth 1 (0-10cm) and Depth 2 (10-20cm) with respect to 

management intensity/sample location (-3m and -1m at NatField and 1m, 3m, 5m and 10m in the 

AgField) and slope with the significant difference (ANOVA, General Linear Model, P≤ 0.05). R2 

describes the variability in measurements along the length of the gradients (m). The red dots 

describe Depth 1 data while the blue diamonds describe the Depth 2 data; the dotted lines 

describe the % topographical slope. 
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East North 

  
South West 

  

Figure	4.13:	Concentration	of	iron	(Fe)	in	soils	across	the	sampled	gradients	for	both	depths	at	

all	sampling	sites	

Variation of Fe measurements for Depth 1 (0-10cm) and Depth 2 (10-20cm) with respect to 

management intensity/Sample Location (-3m and -1m at NatField and 1m, 3m, 5m and 10m in 

the AgField) and slope with the significant difference (ANOVA, General Linear Model, P≤ 

0.05). R2 describes the variability in measurements along the length of the gradients (m). The red 

dots describe Depth 1 data while the blue diamonds describe the Depth 2 data; the dotted lines 

describe the % topographical slope. 
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East North 

  
South West 

  

Figure	4.14:	Total	organic	carbon	(TOC)	in	soils	across	the	sampled	gradients	for	both	depths	at	

all	sampling	sites	

Variation of TOC measurements for Depth 1 (0-10cm) and Depth 2 (10-20cm) with respect to 

management intensity/Sample Location (-3m and -1m at NatField and 1m, 3m, 5m and 10m in 

the AgField) and slope with the significant difference (ANOVA, General Linear Model, P≤ 

0.05). R2 describes the variability in measurements along the length of the gradients (m). The red 

dots describe Depth 1 data while the blue diamonds describe the Depth 2 data; the dotted lines 

describe the % topographical slope. 

  



	

72	

	

East North 

  
South West 

  

Figure	4.15:	Total	phosphorus	(TP)	in	soils	across	the	sampled	gradients	for	both	depths	at	all	

sampling	sites	

Variation of TP measurements for Depth 1 (0-10cm) and Depth 2 (10-20cm) with respect to 

management intensity/Sample Location (-3m and -1m at NatField and 1m, 3m, 5m and 10m in 

the AgField) and slope with the significant difference (ANOVA, General Linear Model, P≤ 

0.05). R2 describes the variability in measurements along the length of the gradients (m). The red 

dots describe Depth 1 data while the blue diamonds describe the Depth 2 data; the dotted lines 

describe the % topographical slope. 
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East North 

  
South West 

  

Figure	4.16:	Available	phosphorus	(PO4-P)	in	soils	across	the	sampled	gradients	for	both	depths	

at	all	sampling	sites	

Variation of PO4-P measurements for Depth 1 (0-10cm) and Depth 2 (10-20cm) with respect to 

management intensity/Sample Location (-3m and -1m at NatField and 1m, 3m, 5m and 10m in 

the AgField) and slope with the significant difference (ANOVA, General Linear Model, P≤ 

0.05). R2 describes the variability in measurements along the length of the gradients (m). The red 

dots describe Depth 1 data while the blue diamonds describe the Depth 2 data; the dotted lines 

describe the % topographical slope. 
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East North 

  
South West 

  

Figure	4.17:	Total	nitrogen	(TN)	in	soils	across	the	sampled	gradients	for	both	depths	at	all	

sampling	sites	

Variation of TN measurements for Depth 1 (0-10cm) and Depth 2 (10-20cm) with respect to 

management intensity/Sample Location (-3m and -1m at NatField and 1m, 3m, 5m and 10m in 

the AgField) and slope with the significant difference (ANOVA, General Linear Model, P≤ 

0.05). R2 describes the variability in measurements along the length of the gradients (m). The 

red dots describe Depth 1 data while the blue diamonds describe the Depth 2 data; the dotted 

lines describe the % topographical slope. 
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4.2 Similarity of the abiotic properties profiles of the sampled sites and gradient locations  

 

 A PCA analysis, carried out in PAST3, that included all the measured physical and chemical 

parameters listed above, and also including textural parameters allowed for a visualisation of 

similarity profiles between the test sites (Figure 4.18 a and Figure 4.19 a) and gradient locations 

(Figure 4.18 b and Figure 4.19 b) 

a. By Sites b. By Management Gradient Location 

  

 

Figure	4.18:	Similarity	of	soil	samples’	chemical-physical	and	textural	profiles	as	described	by	

Principal	Component	Analysis	(PCA).	Data	for	Depth	1.		

 

Figure 4.18 describes similarity profile across a) sampled site (i.e. East, West, North, and South). 

and b) sampled management gradient location (i.e. NatField to AgField: -3m, -1m, 1m, 3m, 5m, 

10m). While each site is distinct from the others this is most obvious for the North site.  On the 

other hand, the dissimilarity along the management gradient locations while less immediately 

evident it does suggest that the inner most AgField location, -10m (bottom left, green) is distinct 

from the other gradient locations.  
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a. By Sites b. By Management Gradient Location 

  

 

Figure	4.19:	Similarity	of	soil	samples’	chemical	profiles	across	sampling	sites	as	described	by	

Principal	Component	Analysis	(PCA).	Data	for	Depth	2	

	

Top	image	describes	similarity	profile	across	sampled	sites	(i.e.	East,	West,	North,	and	South).	

Bottom	image	describes	similarity	profiles	along	the	sampling	location	(i.e.	NatField	to	AgField:	

-3m,	-1m,	1m,	3m,	5m,	10m)	

 

The Depth 1 pattern is mainly due to variability in pH and primary nutrients such as TN, P and 

K, and TOC, whereas for Depth 2, the pattern is driven by clay (%), cations such as Al, Mg and 

Fe, and micronutrients such as Cu and Zn (see Appendix 7.17).  
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4.3 Alpha Diversity 

 

Alpha diversity, in ecological terminology, describes the richness and abundance of a population 

within a defined environment. For this experiment, alpha diversity parameters have been 

estimated within sites and within locations along the management gradient.  

 

Bacterial alpha diversity 

Bacterial alpha diversity assessments were carried out at OTU level. In general, it is difficult to 

glean any notable differences in the alpha diversity parameters across the sampled sites and 

gradients (see Figure 4.20). 

For Depth 1, the Dominance index ranges from 0.004 for South site NatField (-3m) to 0.009 for 

the North site AgField (5m) whereas at Depth 2, the index ranges from 0.004 for South site 

NatField (-1m) to 0.009 in the West site AgField (10m).  

For Depth 1, the Simpson index ranges from 0.991 in North site of AgField (5m) to 0.996 in the 

South site NatField (-3m) whereas at Depth 2, the index ranges from 0.991 for West site AgField 

(10m) to 0.996 for the South site NatField (-1m).  

For Depth 1, Shannon index ranges from 4.710 in North site AgField (5m) to 5.587 in the South 

site of NatField (-3m) whereas for Depth 2, the index ranges from 4.710 for West site AgField 

(10m) to 5.489 for the South site NatField (-1m).  

For Depth 1, Chao index ranges from 6216 in North site of AgField (5m) to 35780 in the South 

site of NatField (-3m) whereas at Depth 2, Chao index ranges from in 6216 West site of AgField 

(10m) to 29400 in the South site of NatField (-1m). 
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Depth 1 Depth 2 
Dominance_D: 

  
Simpson_1-D: 

  
Shannon_H: 

  
Chao-1: 

  
East             North           South          West 

Figure	4.20:	Alpha	diversity	indices	for	the	bacterial	community.	Indices	calculated	using	OTU	

abundance	data.		

Each bar describes the distance between the upper maximum and lower minimum values for 
each condition. 
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Fungal alpha diversity  

Fungal alpha diversity assessments were carried out at OTU level. In general, it is difficult to 

glean any notable differences in the alpha diversity parameters across the sampled sites and 

gradients (see Figure 4.21). 

 

For Depth 1, Dominance index ranges from 0.028 in the West of NatField (-3m) to 0.128 in 

North site of NatField (-1m) whereas at Depth 2, index ranges from 0.035 in West site of 

AgField(3m) to 0.192 in the South site of AgField(1m).  

For Depth 1, Simpson index ranges from 0.872 in North site of NatField (-3m) to 0.973 in the 

West site of NatField (-1m) whereas at Depth 2, index ranges from 0.808 in South site of 

AgField (1m) to 0.967 in the East site of AgField(1m).  

For Depth 1, Shannon index ranges from 3.092 in South site of NatField (-1m) to 4.258 in the 

West site of NatField (-3m) whereas at Depth 2, index ranges from 2.634 in South site of 

AgField(1m) to 4.039 in the West site of AgField(3m).  

For Depth 1, Chao index ranges from 172 in North site of NatField (-3m) to 508.2 in the South 

site of AgField(1m) whereas at Depth 2, index ranges from in 200.1 South site of NatField (-1m) 

to 510.1 in the East site of AgField(1m). 

 

 

 

 

 

 

 

 

 

 

 

 

Formatted:	Font:(Default)	Times	New	Roman

Deleted:	Figure 4.21



	

80	

	

Depth 1 Depth 2 
Dominance_D: 

  
Simpson_1-D: 

  
Shannon_H: 

  
Chao-1: 

  
East            North           South        West 

Figure	4.21:	Alpha	diversity	indices	for	the	fungal	community,	(calculated	on	OTU	abundance).	

Bars	describe	the	distance	between	the	maximum	and	minimum	values	for	each	condition.	
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4.4 Beta Diversity 

Beta diversity is an ecological term used to describe differences between populations. Here beta 

diversity was used to estimate the similarities and dissimilarities between sites and sample 

locations along the management gradients. Beta diversity analyses were carried out using 

multiple approaches as detailed in the Methodology section.  

 

Bacterial beta diversity 

An initial analysis employed a Bray-Curtis similarity index approach; to assess the changes in 

diversity as compared to the least managed location within the NatField natural field the 

sampling location -3m was to all other sampling locations (-1m, 1m, 3m, 5m and 10m). An 

internal diversity comparison, i.e. among the -3m samples, was carried out to offer a comparative 

baseline to any shift in diversity larger than the internal diversity structure (see Figure 4.22 and 

Error! Reference source not found.). The similarity in bacterial diversity to -3m decreased 

towards the inner field locations from NatField to AgField for all gradients and both depths, with 

the exception of except at Depth 1 of East and North Site. However, this might be due to a larger 

than expected variability within the -3m datasets at the two sites; barring this the trend was 

generally also decreasing along the gradient as described from the -1m to the 10m location. 

A SIMPER analysis, was carried out employing the taxonomic class level datasets. This analysis 

allowed an estimate of the proportional role of each class in determining dissimilarities among 

locations along the NatField to AgField gradient. This also allowed for a calculation of the rate 

of change in the proportional abundance of each taxon expressed in proportional abundance per 

distance (m) away from the -3m location.  The classes that were identified as being the top five 

drivers of dissimilarity among gradient locations are shortly discussed. It should be noted that the 

proportional abundance for any one class was relatively small (See Appendix 8.1). 

  

At -3m, the mostly found taxa in the largest proportional abundance for all sites are 

Flavobacteriia class, Ignavibacteria class, Gemmatimonadetes phylum and Betaproteobacteria 

class. At 10m, the mostly found taxa in the largest proportional abundance for all sites are 

Deinococcus class, Acidobacteriia class, Thermomicrobia phylum, Thermoleophilia class, 

Epsilonproteobacteria class, Holophagae class, Ktedonobacteria class, Synergistia class, 

Actinobacteria phylum and Bacteroidia class (See Appendix 8.1). 
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For Depth 1 Deinococci class were found to be in the largest proportional abundance for all sites 

except West while for Depth 2, the same was true for the South and West sites.  

 

Table	4.1:	Changes	in	the	level	of	similarity	of	bacterial	communities	along	the	sampled	

NatField	to	AgField	gradients	as	described	by	the	change	in	the	Bray-Curtis	similarity	index	

value	along	the	sampled	gradient	versus	the	-3m	location	

Sites  R2 at Depth 1  Equation for Depth 1  R2 at Depth 2 Equation for Depth 2 
East 2.6 (+) y = 0.0028x + 0.3319 11.64 (-) y = -0.0026x + 0.5676 
North 37.25 (+) y = 0.0053x + 0.279 8.06 (-) y = -0.0021x + 0.396 
South 87.12 (-) y = -0.0085x + 0.633 17.02 (-) y = -0.0088x + 0.552 
West 96.75 (-) y = -0.015x + 0.6246 63.68 (-) y = -0.0061x + 0.5632 
Similarity increasing (+)      
Similarity decreasing (-)        
R2 represents the strength of the correlation between changes in the Bray-Curtis similarity index 
with the distance from the -3m location. 
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Figure	4.22:	Comparison	of	microbial	diversity	along	the	NatField	to	AgField	gradient;	change	in	

the	Bray-Curtis	similarity	index	value	along	the	sampled	gradient	versus	the	-3m	location.	Error	

bars	describe	the	95%	CI.	
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Fungal beta diversity 

 

Fungal Beta Diversity was carried out at OTU level. Here, sampling location -3m (natural field) 

was compared with itself and other sampling locations (-3, -1m, 1m, 3m, 5m and 10m). Each 

point on the above graph is the mean of transects (A, B and C) of each site (North, South, East 

and West) at each sampling locations. Here the diversity of bacteria was decreasing from 

NatField to AgField in the North, South and West site at both the depths whereas in the East, the 

Beta diversity was increasing at Depth 1 and no change at Depth 2 (see Figure 4.21 and Table 

4.2).  

Rate of change in the proportional abundance of bacterial taxa was done at class level. The Taxa 

was identified as top five drivers of dissimilarity among sites, via SIMPER analysis (Past3) 

(Hammer, 2017).  

At -3m, taxa in the largest proportional abundance for all sites are Saccharomycetes class, 

Lecanoromycetes class, Agaricomycetes class and Dacrymycetes class. At 10m, taxa in the 

largest proportional abundance for all sites are Ustilaginomycetes class, Wallemiomycetes class, 

Pezizomycetes class, Chytridiomycetes class, Tremellomycetes class, Agaricostilbomycetes class, 

Monoblepharidomycetes class, Leotiomycetes class and Cystobasidiomycetes class (See 

Appendix 8.2) 
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Figure	4.23:	Comparison	of	microbial	diversity	along	the	NatField	to	AgField;	change	in	the	

Bray-Curtis	similarity	index	value	along	the	sampling	location	versus	the	-3m	sampling	location.	

Error	bars	describe	the	95%	CI.		
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Table	4.2:	Changes	in	the	level	of	similarity	between	fungal	communities	along	the	sampled	

NatField	to	AgField;	change	in	the	Bray-Curtis	similarity	index	value	along	the	sampled	gradient	

versus	the	-3m	location	

Sites R2 at Depth 1  Equation for Depth 1 R2 at Depth 2 Equation for Depth 2 
East 80.56 (+) y = 0.007x + 0.3479 0 (-) y = -0.0003x + 0.4472 
North 43.08 (-) y = -0.0046x + 0.1761 1.06 (-) y = -0.0007x + 0.1532 
South 37.99 (-) y = -0.0049x + 0.6469 16.93 (-) y = -0.0088x + 0.5413 
West 66.05 (-) y = -0.0028x + 0.5685 84.23 (-) y = -0.0061x + 0.4416 
Similarity increasing (+)     
Similarity decreasing (-)     
R2 represents the strength of the correlation between changes in the Bray-Curtis similarity index 
with the distance from the -3m location. 
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4.4.1  Predictive discriminant analyses 

A non-traditional way to assess beta diversity indirectly is to employ brute force self -learning 

and multiple regression approaches to determine the similarity level among tested conditions. 

These approaches allow for the estimation of likely similarities among complex populations. 

Neural network and logistic regression tools were employed as described in the Methodology.  

All such similarities or dissimilarities, and thus prediction success rates, are expected to be a 

function of the conditions induced by site and location along the management gradient.  

These prediction exercises have shown that in general the gradient locations are most similar to 

locations in their immediate neighborhood. For example, while employing the abiotic parameters 

(Figure 4.24) a Neural Network (NN) confusion matrix for depth 1, shows that only 4 out of 12 

samples collected at -3 m were correctly identified. However, another 7 out of 12 were assigned 

to the immediately adjoining location, at -1 m. Thus 11 out of 12 samples were assigned to the 

general -3 m to -1 m region of the sampled gradient. One must note that this analysis bins all 

samples collected at one gradient location for all 4 sites. However, for the true -1 m samples only 

50% (6 out of 6) were identified in the -3 m to -1 m region. As these samples are near the 

NatField/ AgField boundary this suggests similarities across the boundary. On the other hand, far 

inside the AgField 11 out of 12 samples are correctly assigned, an indication of the unique 

abiotic environmental parameters. Again, given the fact that these samples represent all four sites 

(N, E, S and W) this is an indication of the role of management in smoothing differences in soil’s 

parameters. 

It should be noted that the two predictive algorithms, the NN and Logistic regression (LR) were 

best suited to predict location of samples along the management gradient. Therefore, both are 

listed here, for all discriminant analyses.  

A prediction exercise has shown that in general the gradient locations are most similar to 

locations in their immediate neighborhood. Analysis carried out on the bacterial taxonomic 

diversity has confirmed that the similarity between sites extends strongly to the immediate 

vicinity, with commonly 10 to 11 out of 12 samples being correctly assigned or assigned to the 

neighboring sampling locations along the gradient. Moreover, the discriminant analysis 

identified with accuracy close to 100%, nearly always, the 10m samples. This confirms that there 
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is continuity along the gradient and that the inner-field sites do have a distinct bacterial 

population structure (Figure 4.25). 

The same was true for fungal-based analysis, but the trend was only clearly noticeable for the LR 

analysis versus the NN tests (Figure 4.26). 

The same was true for functional diversity structure as that of bacterial taxonomic diversity, 

which confirms that there is continuity along the gradient and that the inner-field sites do have a 

distinct functional diversity structure (Figure 4.27). 
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Depth 1 (Neural Network) 

 

 
Gradient location AUC CA F1 Precision Recall 

-3 m 0.690 0.819 0.381 0.444 0.333 
-1 m 0.660 0.750 0.308 0.286 0.333 
1 m 0.980 0.972 0.917 0.917 0.917 
3 m 0.810 0.833 0.500 0.500 0.500 
5 m 0.795 0.819 0.480 0.462 0.500 

10 m 1.000 0.972 0.917 0.917 0.917 
 

Depth 1 (Logistic Regression) 

 

 
Gradient location AUC CA F1 Precision Recall 

-3 m 0.885 0.861 0.615 0.571 0.667 
-1 m 0.485 0.736 0.174 0.286 0.167 
1 m 0.920 0.903 0.696 0.727 0.667 
3 m 0.650 0.736 0.296 0.267 0.333 
5 m 0.585 0.722 0.091 0.100 0.083 

10 m 0.970 0.931 0.783 0.818 0.750 
 

Depth 2 (Neural Network) 

 

 
 

Gradient location AUC CA F1 Precision Recall 
-3 m 0.884 0.792 0.348 0.364 0.333 
-1 m 0.582 0.792 0.286 0.333 0.250 
1 m 0.963 0.972 0.909 1.000 0.833 
3 m 0.873 0.792 0.483 0.412 0.583 
5 m 0.792 0.764 0.320 0.308 0.333 

10 m 1.000 1.000 1.000 1.000 1.000 

Depth 2 (Logistic Regression) 

 

 
Gradient location AUC CA F1 Precision Recall 

-3 m 0.940 0.889 0.667 0.667 0.667 
-1 m 0.613 0.722 0.167 0.167 0.167 
1 m 0.937 0.847 0.421 0.571 0.333 
3 m 0.588 0.736 0.296 0.267 0.333 
5 m 0.617 0.722 0.286 0.250 0.333 

10 m 0.847 0.861 0.545 0.600 0.500 
 

Figure	4.24:	Discriminant	analysis	of	gradient	locations	based	on	the	structure	of	the	abiotic	

factors.	Confusion	matrices	and	prediction	quality	parameters	(see	Methodology).		
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Depth 1 (Neural Network) 

 

 
Gradient location AUC CA F1 Precision Recall 

-3 m 0.830 0.917 0.667 1.000 0.500 
-1 m 0.745 0.792 0.516 0.421 0.667 
1 m 0.780 0.819 0.480 0.462 0.500 
3 m 0.685 0.819 0.381 0.444 0.333 
5 m 0.630 0.778 0.200 0.250 0.167 

10 m 1.000 0.931 0.828 0.706 1.000 
 

Depth 1 (Logistic Regression) 

 

 
Gradient location AUC CA F1 Precision Recall 

-3 m 0.945 0.889 0.556 0.833 0.417 
-1 m 0.785 0.833 0.538 0.500 0.583 
1 m 0.750 0.792 0.444 0.400 0.500 
3 m 0.780 0.778 0.333 0.333 0.333 
5 m 0.730 0.750 0.308 0.286 0.333 

10 m 0.980 0.958 0.870 0.909 0.833 
 

Depth 2 (Neural Network) 

 

 
Gradient location AUC CA F1 Precision Recall 

-3 m 0.883 0.831 0.522 0.545 0.500 
-1 m 0.641 0.746 0.308 0.286 0.333 
1 m 0.592 0.690 0.083 0.083 0.083 
3 m 0.696 0.803 0.222 0.333 0.167 
5 m 0.799 0.775 0.200 0.250 0.167 

10 m 1.000 0.887 0.733 0.579 1.000 
 

Depth 2 (Logistic Regression) 

 

 
 Gradient 

location 
AUC CA F1 Precision Recall 

-3 m 0.934 0.845 0.522 0.545 0.500 
-1 m 0.589 0.775 0.273 0.300 0.250 
1 m 0.581 0.662 0.200 0.167 0.250 
3 m 0.867 0.845 0.421 0.571 0.333 
5 m 0.794 0.789 0.400 0.385 0.417 

10 m 1.000 0.986 0.957 0.917 1.000 

Figure	4.25:	Discriminant	analysis	of	gradient	locations	based	on	the	bacterial	taxonomic	

diversity	structure.	Confusion	matrices	and	prediction	quality	parameters	(see	Methodology).		
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Depth 1 (Neural Network) 

 

 
Gradient location AUC CA F1 Precision Recall 

-3 m 0.360 0.806 0.300 0.375 0.250 
-1 m 0.630 0.681 0.303 0.238 0.417 
1 m 0425 0.694 0.000 0.000 0.000 
3 m 0.580 0.681 0.080 0.077 0.083 
5 m 0.660 0.736 0.174 0.182 0.167 

10 m 0.640 0.819 0.738 0.818 0.750 
 

Depth 1 (Logistic Regression) 

 

 
 

Gradient location AUC CA F1 Precision Recall 
-3 m 0.940 0.889 0.600 0.750 0.500 
-1 m 0.865 0.833 0.455 0.500 0.417 
1 m 0.805 0.764 0.414 0.353 0.500 
3 m 0.790 0.778 0.467 0.389 0.583 
5 m 0.800 0.861 0.500 0.625 0.417 

10 m 0.960 0.931 0.783 0.818 0.750 
 

Depth 2 (Neural Network) 

 

 
Gradient location AUC CA F1 Precision Recall 

-3 m 0.542 0.764 0.370 0.333 0.417 
-1 m 0.790 0.778 0.385 0.357 0.417 
1 m 0.450 0.764 0.261 0.273 0.250 
3 m 0.365 0.736 0.000 0.000 0.000 
5 m 0.615 0.722 0.231 0.214 0.250 

10 m 0.855 0.847 0.522 0.545 0.500 
 

Depth 2 (Logistic Regression) 

 

 
Gradient location AUC CA F1 Precision Recall 

-3 m 0.790 0.861 0.444 0.667 0.333 
-1 m 0.705 0.764 0.261 0.273 0.250 
1 m 0.285 0.639 0.071 0.062 0.083 
3 m 0.480 0.750 0.182 0.200 0.167 
5 m 0.880 0.819 0.581 0.474 0.750 

10 m 0.790 0.806 0.364 0.400 0.333 
 

Figure	4.26:	Discriminant	analysis	of	gradient	locations	based	on	the	fungal	taxonomic	diversity	

structure.	Confusion	matrices	and	prediction	quality	parameters	(see	Methodology).		
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Depth 1 (Neural Network) 

 

 
 

Gradient 
location 

AUC CA F1 Precision Recall 

-3 m 0.705 0.806 0.222 0.333 0.167 
-1 m 0.835 0.764 0.261 0.273 0.250 
1 m 0.700 0.694 0.267 0.222 0.333 
3 m 0.675 0.778 0.273 0.300 0.167 
5 m 0.535 0.694 0.154 0.143 0.167 

10 m 0.970 0.958 0.880 0.846 0.917 
 
 

Depth 1 (Logistic Regression) 

 

 
 

Gradient 
location 

AUC CA F1 Precision Recall 

-3 m 0.830 0.833 0.333 0.500 0.250 
-1 m 0.750 0.778 0.333 0.333 0.333 
1 m 0.600 0.653 0.242 0.190 0.333 
3 m 0.705 0.778 0.200 0.250 0.167 
5 m 0.680 0.792 0.400 0.385 0.417 

10 m 0.980 0.972 0.917 0.917 0.917 
 
 

Depth 2 (Neural Network) 

 

 
Gradient 
location 

AUC CA F1 Precision Recall 

-3 m 0.789 0.887 0.600 0.750 0.500 
-1 m 0.653 0.761 0.320 0.308 0.333 
1 m 0.546 0.690 0.214 0.188 0.250 
3 m 0.647 0.746 0.182 0.200 0.167 
5 m 0.738 0.732 0.240 0.231 0.250 

10 m 1.000 1.000 1.000 1.000 1.000 
 
 

Depth 2 (Logistic Regression) 

 

 
 

Gradient 
location 

AUC CA F1 Precision Recall 

-3 m 0.863 0.831 0.500 0.500 0.500 
-1 m 0.601 0.761 0.190 0.222 0.333 
1 m 0.579 0.662 0.250 0.200 0.333 
3 m 0.624 0.789 0.348 0.364 0.333 
5 m 0.864 0.873 0.526 0.714 0.417 

10 m 0.960 0.958 0.870 0.833 0.909 
 

Figure	4.27:	Discriminant	analysis	of	gradient	locations	based	on	the	PICRUST	based	inferred	

functional	diversity	structure.	Confusion	matrices	and	prediction	quality	parameters.		
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4.4.2 Relationship between biotic and soil abiotic diversities 

Relationship between bacterial diversity and soil abiotic parameters 

Principal Coordinate Analyses (PCoA) illustrate the relationship between soil abiotic parameters 

and bacterial taxonomic diversity at the class taxonomic level.  

Figure 4.28 through 4.33 describe the diversity and relationships between bacterial communities 

and soil’s abiotic parameters across sites and management gradients.  

A main observation is that the bacterial community for the innermost AgField location (10m) 

clustered separately from the other gradient locations, irrespective of depths in all the sites 

(Figure 4.28 to 4.31). Actinobacteria was always associated with this trend.  

The separation between the outermost (NatField, -3m) and innermost (AgField 10m) locations 

on the gradient is clearly observable for all sites (Figure 4.32 and 4.33) and, moreover, there is a 

closer association among the 10m samples for all sites. This confirms that the bacterial 

populations are more closely similar among themselves at 10m than at -3m.  

The abiotic parameters follow the general trends described in the first part of the results section.  

Most macronutrients and micronutrients associated directly with the 10m locations; Na, an 

indicator of manure addition is in larger proportions inside the AgField. 

Delta- and Beta-Proteobacteria with Nitrospira and Acidobacteriia associate primarily with the -

3m locations. The same NatField locations have more TOC. It is interesting to note that TN in 

the top layer, i.e. Depth 1, is larger in NatField, but for the Depth 2 the trend is reversed. This is 

likely an indication of the surface accumulation of OM in NatField, and of the more uniform 

distribution with depth of the OM in the AgField, possibly a result of tillage. 
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Figure	4.28:	Relationship	between	bacterial	taxa,	(class	level)	and	abiotic	parameters.	East	

sampling	site.	

 

Figure	4.29:	Relationship	between	bacterial	taxa,	(class	level)	and	abiotic	parameters.	North	

sampling	site.	
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Figure	4.30:	Relationship	between	bacterial	taxa,	(class	level)	and	abiotic	parameters.	South	

sampling	site.		

  

Figure	4.31:	Relationship	between	bacterial	taxa,	(class	level)	and	abiotic	parameters.	West	

sampling	site.		 	
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Figure	4.32:	Relationship	between	bacterial	taxa,	(class	level)	and	abiotic	parameters.	

Comparing	AgField	(10m)	and	NatField	(-3m)	at	Depth	1	sample	points		

 

Figure	4.33:	Relationship	between	bacterial	taxa,	(class	level)	and	abiotic	parameters.	

Comparing	AgField	(10m)	and	NatField	(-3m)	at	Depth	2	sample	points.		 	
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Relationship between fungal diversity and soil abiotic parameters 

Principal Coordinate Analysis, PCoA illustrate the relationship between abiotic Parameters and 

Fungal taxonomic diversity at Class Level.  

The fungal community at the AgField (10m) are clustered irrespective with depths in all the sites 

even though the clustering of fungal community is not as strong as bacterial community. 

Micronutrients such as Mn, Cu and Zn correlate with the AgField (10m) (see Figure 4.38 and 

Figure 4.39).  

 

There is no strong distinction between AgField and NatField at both depths, clearly less than 

what was noted for bacteria. This is likely due to the capacity of fungal hyphae to travel across 

larger distances than bacteria, towards the nutrients rich environment/ favorable condition.  
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Figure	4.34:	Relationship	between	fungal	taxa,	(class	level)	and	abiotic	parameters.	East	

sampling	site.		

 

Figure	4.35:	Relationship	between	fungal	taxa,	(class	level)	and	abiotic	parameters.	North	

sampling	site.		 	
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Figure	4.36:	Relationship	between	fungal	taxa,	(class	level)	and	abiotic	parameters.	South	

sampling	site.		

 

Figure	4.37:	Relationship	between	fungal	taxa,	(class	level)	and	abiotic	parameters.	West	

sampling	site.		
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Figure	4.38:	Relationship	between	fungal	taxa,	(class	level)	and	abiotic	parameters.	Comparing	

AgField	(10m)	and	NatField	(-3m)	at	Depth	1	sample	points.		

 

Figure	4.39:	Relationship	between	fungal	taxa,	(class	level)	and	abiotic	parameters.	Comparing	

AgField	(10m)	and	NatField	(-3m)	at	Depth	2	sample	points		 	
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4.5 Functional Diversity 

4.5.1 Metabolic Diversity 

Results: 

Principal Component Analysis (PCA) illustrating the Bacterial Metabolic diversity across 

sampling location in all sites. At Depth 1, PC1 and PC2 explained 78.00% and 18.00% of 

variance respectively. At Depth 2, PC1 and PC2 explained 92.00% and 6.00% of variance 

respectively (Figure 4.40).  

The PCA results of Bacterial Metabolic Diversity in AgField (10m), highly managed field in all 

the sites colonized together illustrates that metabolic function at highly managed field is 

distinctive compared to the other management intensities, which is stronger at Depth 2 (less 

managed) (Figure 4.41). 

Double Hierarchical Dendogram Heat Map illustrating the Bacterial Metabolic diversity across 

sampling location in all sites at Depth 1 and Depth 2. X-axis represents the metabolic functions 

and the Y-axis represent the Sampling Location and Site. The relative abundance at Depth 1 is 

between -4.89 and 6.51 whereas in Depth 2, it is between -3.67 and 5.46 (Figure 4.41). 

The Double Hierarchical Dendogram Heat Map results of Bacterial Metabolic Diversity in 

AgField (10m), highly managed field in all the sites are dense which illustrates the metabolic 

function at highly managed field is distinctive compared to the NatField where they have 

different Bacterial Metabolic Diversity, which is mostly similar at both the depths. 

In all site and at both the depths, amino acids such as cysteine, methionine, tyrosine, valine, 

leucine, isoleucine, arginine and proline and biosynthesis of secondary metabolites such as 

Butirosin and neomycin, Betalain, caffeine, clavulanic acid were found to increase when moving 

from natural to AgField whereas amino acids such as alanine, aspartate, glutamate and 

Phenylalanine and degradation such as lysine decreases when moving from natural to AgField 

(Appendix 9.1).  
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Depth 1 

 
Depth 2: 

 

Figure	4.40:	Relationship	between	Bacterial	Metabolic	diversity	across	Management	Intensity	in	

all	sampling	sites	at	Depth	1	and	Depth	2.		 	
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Depth 1: 
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Depth 2: 

 

Figure	4.41:	Relationship	between	the	Bacterial	Metabolic	diversity	across	Management	

Intensity	in	all	sampling	sites	at	Depth	1	and	Depth	2.		
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4.5.2 Xenobiotics Biodegradation 

Results: 

Principal Component Analysis(PCA) illustrating the bacterial biodegradation of Xenobiotic 

across sampling location in all sites. At Depth 1, PC1 and PC2 explained 70.00% and 19.00% of 

variance respectively and at Depth 2, PC1 and PC2 explained 59.00% and 32.00% of variance 

respectively (Figure 4.42). 

The PCA results of bacterial biodegradation of xenobiotic in Agricultural field (10m), highly 

managed field in all the sites colonized together illustrates that metabolic function at highly 

managed field is distinctive compared to the other management intensities, which is stronger at 

Depth 2 (less managed) (Figure 4.43). 

Double Hierarchical Dendogram Heat Map illustrating the bacterial biodegradation of xenobiotic 

across sampling location and sites at Depth 1 and at Depth 2. X-axis represent the bacterial 

biodegradation of xenobiotic and the Y-axis represent the Sampling Location and Site. The 

relative abundance at Depth 1 is between -4.23 and 3.40 whereas in Depth 2, it is between -2.85 

and 3.28 (Figure 4.43). 

The Double Hierarchical Dendogram Heat Map results for bacterial biodegradation of 

xenobiotics in AgField (10m), highly managed field in all the sites are dense illustrates that 

metabolic function at highly managed field is distinctive compared to the NatField where they 

have different bacterial xenobiotics biodegradation, which is mostly similar at both the depths 

(Figure 4.43).  

Bacterial biodegradation of xenobiotics is dominant at AgField (highly managed field, 10m). 

Such metabolism is similar in both the depths.  

At 10m (AgField), caprolactam degradation, benzoate degradation, ethylbenzene degradation, 

polycyclic aromatic hydrocarbon degradation, bisphenol degradation, naphthalene degradation, 

amino benzoate degradation, dioxin degradation, styrene degradation, fluorobenzoate 

degradation, chlorocyclohexane and chlorobenzene degradation and chloroalkane and 

chloroalkene degradation, toluene degradation, drug metabolism- cytochrome P450, metabolism 

of xenobiotics by cytochrome P450 in both the depths of East and North site. Above all at Depth 

2 of all sites, 1,1,1-Tricholro-2,2-bis(4-chlorophenyl) ethane(DDT) degradation increase from 

NatField to AgField (Appendix 9.2).  
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Depth 1 

 
Depth 2 

 

Figure	4.42:	Relationship	between	Bacterial	Biodegradation	of	Xenobiotic	across	Management	

Intensity	in	all	sites	at	Depth	1	and	Depth	2.		 	
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Depth 1 

 
Depth 2: 

 

Figure	4.43:	Relationship	between	the	Bacterial	Biodegradation	of	Xenobiotic	Biodegradation	

across	Management	Intensity	in	all	sites	at	Depth	1	and	Depth	2.	 	
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5 Discussion 
Physical Parameters: 

Natural and tillage erosion do affect soil texture along slopes (Figure 4.2 and Figure 4.3). Tillage 

is known to accelerate erosion on slopes, leading to transfer of smaller particles, e.g. clay, down 

gradient. Moreover, podzols are known to naturally have coarser textures in the top horizon(s). 

Analyses of the Cormack test site have confirmed that the top layer, i.e. Depth 1, was enriched in 

the sand fraction at the East, North and South sites. Changes along slope, expectedly most 

obvious for the steeper East site, also confirmed the role of downslope erosion in controlling 

texture. Note that the more eroded East site also has larger aluminium and iron concentrations, a 

likely result of the stripping of clays and thus intrinsic increase in the metal oxides more resilient 

to erosion.  On the other hand, the nearly flat West site has shown little difference in texture 

along the sampled gradient, a further confirmation of the governing role of the slope in defining 

texture for the test sites. 

Chemical Parameters: 

Exceedingly low pH values in AgField are deleterious to plant growth and thus acidic soils do 

regularly receive carbonate amendments, commonly limestone, with a goal to increase the pH at 

or nearly a neutral state. It is unclear if large applications of organic matter through the 

application of manure, may lead to an increase or decrease in pH; significant leaching of nitrate 

and addition of ammonium based nitrogen fertilizers are known to acidify soils. The AgField 

receives manure regularly, often at least twice a year, and also has historically received, 

limestone amendments as recommended. However, none of these applications are consistently 

recorded in writting. Moreover, urea and ammonium nitrate are also commonly applied. 

Several parameters point to the fact that AgField receives sufficient manure to modify soil’s 

chemistry. Tests have shown that pH within the AgField boundaries to be significantly lower 

than for NatField, although the difference was within <0.5 pH units; nevertheless, this decrease 

was consistent across the four tested gradients. If this trend is consistent across other soils in the 

province, then such a trend might need to be assessed in the context of the current practices. It is 

also known that manure application increases the total and available phosphorus content in soil 
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(Oloo et al., 2016) much of which can be chemically fixed by the free aluminum and iron 

common in acid soils. For the AgField total and available phosphorus is higher for the Depth 1.   

Extensively leached boreal podzols do not accumulate sodium naturally. However, livestock 

manure contains sodium, and thus one might assume that any significant amount of sodium in a 

manured, managed podzol would originate in the applied livestock manure (Chang et al., 1990). 

AgField had a statistically significant higher concentration of sodium in soil (mean = 360.7) 

whereas the Natural field had significantly lower concentration of sodium (mean = 65.8) (see 

Appendix 7.4.2). Depth 1 and Depth 2 had no significant difference (Appendix 7.4.3). Copper 

and zinc are also commonly found in livestock manure  and thus expected to be found in higher 

concentrations in manured soils (Hokayem and Azzi 2014; Ginzburg 1960); Agfield had higher 

concentrations of both Cu and Zn. All these measurements point to the impact on manure on the 

AgField chemistry.  

Depth 1 had significantly more TN and TOC than Depth 2 irrespective of Agfield and Natfield 

(see Appendix 7.16.3). This confirms the preferential accumulation of recently added organic 

matter and decaying plant material in the top soil layer.  

On the other hand, podsolization leads to mobilization of the organic matter in the topsoil and its 

accumulation as stable organic matter, in the form of organic and humic and fulvic acids, in the 

deeper soil layers, i.e. the B horizon (Mokma and Buurman, 1987). Same podsolization process 

also favours the release, and downward flow of aluminium and iron. This leads to the formation 

of a metal-humic/fulvic acids complexes in the top of the B horizon, mainly as bi and trivalent 

cation complexes. For example, at low pH (<3.5), the fulvic acids form organometallic 

complexes, in the order of Fe3+ >Al3+ >Ca2+ >Mg2+ whereas at pH 5.0, humic acids form 

complexes preferentially in order of Al3+ >Fe3+ >Mg2 +>Ca2+. At the test plots, the East site has 

the lowest average pH (mean= 5.27) and North site has a higher pH (mean= 6.09) (see Appendix 

7.3.1). As mentioned above Natfield had significantly higher pH (mean= 5.78) than Agfield 

(mean= 5.33) (Appendix 7.3.2). Depth 1 had significantly higher pH (mean= 5.66) than Depth 2 

(mean= 5.55) (Appendix 7.3.3). Magnesium, aluminum and iron are higher at East site and lower 

at North site (Appendix 7.10.1, 7.11.1 and 7.12.1) whereas calcium is higher at North site, and 

lower at East site (Appendix 7.6.1). This pattern in the amount and availability of these cations is 

expectedly associated with the respective pH values across the sampled sites. 
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Microbial Taxonomic Diversity: 

Bacterial diversity: 

A greater bacterial diversity was measured in the NatField for both the depths (Figure 4.20). The 

richness and ecological diversity indices (Figure 4.20) have shown that for the NatField both the 

total bacterial abundance and also the proportion of rare bacterial taxa were larger than for 

Agfield (Figure 4.20). A direct comparison (i.e. bacterial beta diversity) with the outermost 

NatField gradient point (-3 m) has shown a decrease in similarity with the -3 m when 

progressing towards the centre of the AgField; this was true across all sites and both depths 

(Figure 4.22 and Error! Reference source not found.).  

 

The proportional abundance of certain taxa decreased towards the center of the AgField while for 

other taxa increased their proportional abundance increased towards the center of the AgField. It 

is expected that these changes are a direct reflection of the changes in the abiotic conditions as 

affected by agricultural management (Figure 4.32 and Figure 4.33).  

  

Bacteria abundance describing the Agricultural field:  

Deinococcus- Thermus phylum, Acidobacteriia- Acidobacteria phylum, Thermomicrobia 

phylum, Thermoleophilia class (Actinobacteria phylum), Epsilonproteobacteria class, 

Holophagae class of the genus Geothrix, and Ktedonobacteria were best described in Agfield 

(Appendix 8.1). These taxa cover a wide taxonomic range with a wide range of environmental 

requirements. For example, the Deinococcus-Thermus phylum, Actinobacteria’s 

Thermoleophilia class, and the Thermomicrobia phylum are known to contain stress resilient 

organisms, many resistant to dry and hot systems (Crits-Christoph et al., 2013; Goodfellow, 

2012; J. J. Lee et al., 2013; Sergio et al., 2011; Shivlata and Satyanarayana, 2015). 

Ktedonobacteria, A class of Chloroflexi phylum, might also be similar to thermobacteria found 

in hot and acid environments. 

 

It was thus of note that Deinococcus- Thermus phylum, while better represented within the 

Agfield they were best represented in the West site, i.e. the driest site in the test plot. This site is 

located at the highest point of the test plot and is the only site with no evidence of groundwater 
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within 2 m from the surface (a parallel research activity was carried at the same time, but do not 

describe in this thesis, involved digging of 2 m deep trenches along the gradients described here). 

This and the larger sand proportion suggests a soil consistently drier and thus expected to be 

warmer than the soil in all other sites. Epsilonproteobacteria, Geothrix spp., and 

Ktedonobacteria class may point to anoxic, and acid conditions and may be associated to 

variability in reactive iron species (Acton, 2011; Fukunaga, 2014; Grote et al., 2007; Kim et al., 

2015; Yabe et al., 2017). Accordingly, these taxa were better descriptors of the wetter North and 

East sites.  

Synergistia class- Synergistetes phylum, Actinobacteria phylum and Bacteroidia class were also 

best describers of Agfield (Appendix 7.18). These taxa are well known to be associated with, 

manure application. For example, Synergistia class- Synergistetes phylum are known to found in 

gastrointestinal tract of animals (Jumas-bilak et al., 2014). Actinobacteria phylum are known to 

have direct impact with manure application and mediates decaying of plant debris and formation 

of organic carbon (Eisenlord et al., 2012; Piao et al., 2008). Bacteroidia class are known to found 

in rotting/ nutrient rich biomass (S. He et al., 2017; Lu and Zhang, 2014; Vladimir et al., 2015). 

Above all, some were best described in Agfield (Appendix 7.18). Bacilli class and Clostridia 

class of Firmicutes phylum are well known to involve in mineralization of organic compounds, 

pesticides and hydrocarbons (Garbeva et al., 2003; Siala et al., 1974).  

 

Bacterial abundance describing the Natural field: 

Flavobacteriia class of Bacteroidetes phylum, Ignavibacteria class of Chlorobi phylum, 

Gemmatimonadetes phylum and Betaproteobacteria class of proteobacteria phylum were best 

describers of Natfield (Appendix 7.18). These taxa are known to involve in nitrogen cycle. For 

example, Flavobacteriia class of Bacteroidetes phylum and Ignavibacteria class of Chlorobi 

phylum are known to involve in denitrification processes (Horn et al., n.d.; Zverlow.V et al., 

2015). Betaproteobacteria class of proteobacteria phylum are known to involve in Ammonia 

Oxidation processes (Fierer et al., 2012; Lepleux et al., 2012; Martin et al., 2012; Prosser, 2012) 

which is confirmed with high TN content in Natfield (Appendix 7.16.2). Mollicutes class of 

Tenericutes phylum and Chlorobi phylum were best describers of Natfield (Appendix 7.18). 

These taxa are well known to be affected by land management practices which causes stress 

(Bertrand et al., 2011; Bryant and Liu, 2013; Canfora et al., 2014; Constancias et al., 2015).  
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Fungal diversity: 

Fungal Alpha diversity, there is no clear shift in NatField and AgField at both the depths whereas 

fungal Beta diversity decreases when moving from NatField to AgField in all the sites at both the 

depths except at Depth 1 of East and North sites (Figure 4.21, Figure 4.23 and Table 4.2). 

Studies have shown notable impacts of spatial distance on microbial community dissimilarity 

(King et al., 2010; Nunan et al., 2003, 2002). 

 
Fungal abundance describing the Agricultural field:  

Ustilaginomycetes and Wallemiomycetes class of Basidiomycota phylum, Pezizomycetes class of 

Ascomycota phylum and Chytridiomycetes class of Chytridiomycota phylum were best describers 

of Agfield (Appendix 8.2). This covers a wide range of taxa causing diseases to crop plants. For 

example, Ustilaginomycetes class of Basidiomycota phylum are known to cause smut disease 

(Fai and Grant, 2009; Renker et al., 2003) whereas Wallemiomycetes class of Basidiomycota 

phylum are known to cause mold in agricultural plants  (Takahiko Nagano, n.d.; Zalar et al., 

2005; Zenova et al., 2007).  Pezizomycetes class of Ascomycota phylum are saprobic and rarely 

plant pathogen(Bell et al., 2014; Pfister.H, 2015; Tedersoo et al., 2013) Chytridiomycetes class 

of Chytridiomycota phylum are saprophytic and parasitic on plants (Agrios.N George, 2005; 

Carol et al., 2004; Glazovsky and Nina, 2009).  

Tremellomycetes and Agaricostilbomycetes class of Basidiomycota phylum, 

Monoblepharidomycetes class of Chytridiomycota phylum were also best describers of Agfield 

(Appendix 7.19). These taxa are well known to be associated with manure application. For 

example, all of the above taxa are saprophytes, bio-degraders and can survive in nutrient rich 

environments degradation (Bauer et al., 2009; de Menezes et al., 2012; Grissa et al., 2010; 

Karpov et al., 2017; Liu et al., 2015; M. Catherine Atme David J. McLaughlin, 2014; Micheal 

Wess Jose Paulo Sampaio Robbert Bauer, 2014; Peter, 2014)  

 

Apart from above taxa, few taxa are well known to be associated with low pH were also best 

describers of Agfield. For example, Leotiomycetes class of Ascomycota phylum and 

Cystobasidiomycetes class of Basidiomycota phylum are well known to found in low pH (<4.5) 

(Jasrotia et al., 2014; M. Catherine Atme, Merje Toome, 2014; Mueller et al., 2016; Tong et al., 
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2017; Yurkov et al., 2015) which confirms with the low pH in Agfield (Appendix 7.3.2). 

 

Fungal abundance describing the Natural field: 

Saccharomycetes and Lecanoromycetes class of Ascomycota phylum and Agaricomycetes and 

Dacrymycetes class of Basidiomycota phylum were best describers of Natfield (Appendix 7.19). 

These cover a wide range of taxa with a wide range of natural environmental requirements. For 

example, Saccharomycetes and Lecanoromycetes class of Ascomycota phylum and 

Agaricomycetes and Dacrymycetes class of Basidiomycota phylum are well known to feed on 

forest tree, decomposer of tree debris and involves in lignin degradation (Aislabie et al., 2013; 

Arfi et al., 2012; Bester, 2005; Capriotti, 1955; Eldridge et al., 2015; Fai and Grant, 2009; 

Francis, 2014; Gueidan et al., 2014; Hibbett et al., 2007; Knight and Goddard, 2015; 

Mohammadi-Sichani et al., 2017; Nagy et al., 2016; Shirouzu et al., 2016; Steven et al., 2015; 

Tonouchi, 2009). 

Microbial Functional Diversity: 

Metabolic function except Xenobiotics: 

Amino acids and proteins are the major sources of organic nitrogen in soil and are readily 

available to microorganisms as the source of carbon, and nitrogen in soil (Vinolas et al., 2001). 

Soil abiotic parameters such as temperature and nutrient content affect the amino acid variability 

(Moe, 2013).  Free amino acids (FAAs) (dissolved in soil solution due to absence of covalent 

bond) produced via protein depolymerisation using extracellular enzymes. Soil mainly consists 

of organic nitrogen and approximately 40% of total nitrogen present in the soil is in the form of 

proteins and peptides. Proteins are the largest, reliable source on FAAs in soil, and 

depolymerisation of protein nitrogen to amino acid nitrogen is the rate-limiting step in the 

nitrogen cycle of soil (Rennenberg et al., 2009; Schimel and Bennett, 2004; Schulten and 

Schnitzer, 1998). In soil, FAA is reduced due to mineralization to inorganic nitrogen via 

ammonification and nitrification, microbial immobilization via binding, plant uptake. Losses via 

leaching and adsorption to charged surface (Stevenson, 1982; Yu et al., 2010). 

Amino acids such as cysteine, methionine, tyrosine, valine, leucine, isoleucine, arginine and 

proline are found to be higher in AgField (see Appendix 9.1). Amino acids found in AgField due 
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to their environmental condition, for example, amino acids such as alanine, cysteine, valine, 

methionine, isoleucine, leucine, tyrosine, and phenylalanine are reported to be high in fields 

growing wheat (Jämtgård, 2010; Sciences, 1981). Amino acids such as arginine and proline 

metabolism found to help in the degradation of aromatic carbon sources (Nikel.I, 2016). In 

plants, it acts as nitrogen storage (Gioseffi et al., 2012; Winter et al., 2015). Cysteine and 

methionine are found to come from crop plant debris (Gahan and Schmalenberger, 2016). 

Glycine, serine and threonine are found in the root exudates (Pearce et al., 1995). Secondary 

metabolites such as neomycin acts as carbon source in soil for microbes which is also resistance 

to antibiotics (Zhang and Dick, 2014). 

Metabolism of Xenobiotics: 

Metabolism of xenobiotics is found to be higher in AgField (Appendix 9.2). Xenobiotics such as 

caprolactam, toluene, bisphenol, ethylbenzene, benzoate, fluorobenzoate, amino benzoate and 

polycyclic aromatic hydrocarbon, naphthalene and styrene are mainly from anthropogenic 

activities. For example, caprolactam, toluene and bisphenol in soil mainly comes from nylon 6 

resins and plastic bags. In soil, caprolactam degradation is very fast due to it low half-life (5-14 

days) via microbial and chemical degradation processes (Howard, 1989). In case of leaching, it is 

expected to biodegrade under aerobic condition and chemical degradation whereas bisphenol is 

biodegraded under aerobic condition and chemical hydrolysis or volatilization was never  noticed 

in soil (Howard, 1989). Even though there is no data available on the biodegradation of toluene, 

it is expected to biodegrade in soil due to the presence of amine group (toluene 2, 4- diamine) 

(Howard, 1989). Ethylbenzene, benzoate, fluorobenzoate, amino benzoate and polycyclic 

aromatic hydrocarbon is mainly come from petroleum and gasoline products. In soil, 

Ethylbenzene is rapidly evaporated in to atmosphere. Ethylbenzene is mostly leached to 

groundwater whereas the SOC content is very low and its biodegradation is very slow after 

acclimation (Howard, 1989). Naphthalene mainly comes from crude oil, forest fires and 

petroleum refining and coal tar distillation which is mostly evaporated from the soil and its 

biodegradation is faster in surface soil and become slow with increase in depth (Howard, 1989). 

Styrene is mainly coming from automobile parts such as paints, waxes and metal cleaners. If 

biodegradation is high under sandy loam soil (87-95%) (Howard, 1989). 
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In response to increasing environmental and safety concerns, most uses of DDT in Canada were 

phased out by the mid-1970s. Registration of all uses of DDT was discontinued in 1985, with the 

understanding that existing stocks would be sold, used or disposed of by December 31, 1990. 

The presence of DDT degradation at Depth 2 and their degradation increases from NatField to 

AgField indicates that the DDT degradation is very slow in soil (“List of Toxic Substances 

Managed Under CEPA (Schedule 1)- Dichlorodiphenyltrichloroethane,” 2013). 

6 Conclusions 
Physicochemical properties are affected by management practices, natural slope and wet and dry 

nature of the field. Depth 1 is affected more than the Depth 2 as management practices are 

mostly on the surface soil. Liming practices are expected to increase the pH, but in our study, 

AgField has the lowest pH in all sites studied. This change might be caused by several processes 

such as cations removal by plant uptake, leaching, inorganic & organic fertilizers and chemical 

amendments, change in OM content, high water percolation and infiltration rates (USDA 

NatField Resources Conservation Service 2011). 

Bacterial community in NatField and AgField are distinct due to the difference in the nutrient 

source, and adaptation and survival behaviors. Nutrients such as Na, Mn, Cu and Zn are in 

AgField at both the depths which likely correlates to manure applications. Fungal community is 

not much distinct in NatField or in AgField. Hyphal movement in search of nutrient from the 

nutrient deficit place to nutrient rich place makes it spread all over the field. 

Some can live in/on both plants and trees and some are myco parasites make it survive in both 

NatField and AgField.  

AgField is found to have distinct metabolic (amino acids, carbohydrates, lipids, glycan, vitamins 

and co-factors) and xenobiotic metabolism. This is mainly due to comparatively high crop plant 

degradation in AgField which is the primary source of lipids, amino acids and carbohydrates. 

Fungi and actinomycetes are the primary producers of secondary metabolism. Xenobiotics such 

as Atrazine and DDT in AgField mainly comes from management practices to control weeds and 

insects.  
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It is found that, while the natural conditions tested have distinct taxonomic and functional 

diversities, they become increasingly similar towards the center of the AgField, away from the 

natural edge. It is found that Depth 1 and Depth 2 has distinct taxonomic and functional 

diversity. Depth 1 has more distinct abiotic factors than Depth 2 towards the center of the field 

from the natural edges. Thus, these results support both of the hypotheses that “Land 

management affects the taxonomic and functional diversity of microorganisms” and also that 

“the shift in taxonomic and functional diversity is directly related to the distance from the 

natural areas”.  
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