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Abstract

This thesis is mainly focused on the estimation and filtering of extreme events time

series and models with generalized extreme value distributed marginals and the mul-

tiplicative errors from α-stable distribution.

First a non-linear time series with Fréchet distributed marginals and α-stable

distributed errors is considered. To estimate the stability parameter, three recursive

procedures are proposed. The first is based on the Hill estimation, the second is a

modified Fan’s estimation that uses the property of the α-stable distribution, and the

last is an application of Kantorovich-Wasserstain metric.

For the state space model with generalized extreme value distributed marginals

and α-stable distributed errors, the estimation is more complex, especially when the

stability parameters are small. In the model with Gumbel distributed marginals, if

one of the stability parameter is known, a procedure that generates an ensemble from

the known error distribution by Monte Carlo followed by estimation is proposed. For

a model with generalized extreme value distributed marginals and unknown stability

parameters, first a recursive regression estimation is applied to obtain the general-

ized extreme valued parameters, then the Yule-Walker estimation or generalized least

square regression model is used to estimate the stability parameters.

Regarding filtering, the estimation of unobserved states and their empirical con-

ditional densities are our interests. The estimation of states is obtained numerically

via Monte Carlo, based on the model structure. This procedure outperforms Kalman

filter. As to the empirical conditional density, sequential importance sampling with

different importance functions, particle filter with discrete sample space, auxiliary

particle filter and plain linearization are used and compared.

The asymptotic properties and rates of convergence of the proposed estimations are

studied analytically and through simulation. The methods and procedures developed

in this thesis have been applied to analyze the air pollution data in New York city.
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Lay summary

There are many practical situations that we deal with extreme events. It is also

quite common to make the assumption of linearity and Gaussian errors. However,

there is conspicuous evidence that these models may not be good enough since the

errors may come from heavy-tailed distributions. We are mainly interested in the time

series of extremes associated with errors from a special type of stable distribution.

A random variable is said to be stable if a linear combination of the samples from

this distribution still belongs to the same family. Gaussian distribution is the most

famous member of stable family. We are interested in a positive stable distribution,

the α-stable distribution, which has no finite expectation and whose density function

does not have a simple expression.

First, we studied a non-linear time series with the extreme events, which is Fréchet

distributed, and an α-stable distributed error. The difficulty here is that some com-

monly used methods do not produce good estimates. We used the properties of the

α-stable distributed errors in estimation. Some recursive procedures, based on Hill es-

timation, Fan’s estimation and Kantorovich-Wasserstain metric, are proposed. These

methods need to be applied recursive since the errors are unobserved.

Our next goal is the estimation of a state space model with an observed sequence

(generalized extreme value distributed) and an unobserved sequence (Gumbel dis-

tributed, called the states) and two α-stable distributed errors. We would like to

estimate the parameters as well as the unobserved states. The parameter estimation

is complex because of the mixed effect of errors and the limited information driven

from the observation sequence. We proposed a numerical method when one stability

parameter is known, guessing the errors using the model structure. When both sta-

bility parameters are unknown, Yule-Walker estimation and the regression estimation

are applied.

After parameter estimation, I proposed a Monte Carlo procedure to estimate the

states. Such a procedure outperforms Kalman filter. Some filtering methods are

applied to obtain the conditional density of the states, by generating guesses of the

states with reasonable weights.

Finally, the time series model and the state space model were applied to the weekly

maxima pollution data (CO, SO2) in New York city.
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Statement of contribution

The main original contributions of this manuscript are:

1. General results about the α-stable distribution are presented, and in some cases,

alternative proofs are provided in the first chapter.

2. For the non-linear time series with Fréchet distributed marginals and the α-stable

distributed errors, I developed three recursive procedures to estimate the unknown

parameters, providing a way of using the properties of the error in estimation.

3. Since the observation sequence has generalized extreme value distributed marginal

and satisfies the strong mixing condition, I proposed a recursive regression model to

estimate the generalized extreme value parameters which works well with small chain

size for heavy tailed marginal distributions.

4. In the state space model with Gumbel distributed marginals and α-stable distributed

errors, I developed a Monte Carlo procedure based on the generated error samples and

model structure to estimate the unobserved states when only one stability parameter

is known. This procedure outperforms Kalman filter.

5. To obtain better estimates for the empirical filtering density of the state space model

with generalized extreme value distributed marginals and α-stable distributed errors,

I applied and compared three numerical filtering methods through simulations.

This thesis is the product of the collaboration with my supervisor, Dr. JC Loredo-Osti.

Dr. Loredo-Osti suggested the topic of this research and I implemented it, carried

out the simulations and wrote the first draft of the manuscript. This manuscript was

discussed with my supervisor and jointly edited.
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Chapter 1

Introduction

1.1 Generalized extreme value distribution

1.1.1 Definition

When the maximum or minimum of a sequence is under consideration, the Generalized

Extreme Value (GEV) distribution would be of relevance, since the GEV distribution

is the limiting distribution for extreme values.

The research on extreme events has a long history. As early as year 1927, Fréchet

[32] studied the properties of the distribution of the maximum. Later, researchers

such as Fisher and Tippett [30], Gumbel [39], Leadbetter [62], Coles [15], Resnick [83]

and many others, made substantial contributions to the topic.

Suppose that the sample consists of {Xk, 1 ≤ k ≤ n}. Since

max{Xk; 1 ≤ k ≤ n} = −min{−Xk; 1 ≤ k ≤ n},

there is not loss of generality if one considers only the maximum.

Similar to the Central Limit Theorem, which refers to the limiting distribution of

the sample average, there is a theoretical framework that studies the limiting distri-

bution of the sample maximum.

Let {Xn, n ≥ 1} be independent identically distributed random variables with

common function F and define Mn as

Mn = max{Xk, 1 ≤ k ≤ n}.
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If there exist sequences an > 0, bn ∈ R and a non-degenerate distribution G such

that

lim
n→∞

P (Mn ≤ anx+ bn) = lim
n→∞

F n(anx+ bn) = G(x)

for every continuity point of G (Resnick denoted it as F ∈ D(G) in [83]), thus G

belongs to one of the three classes below:

(i) Gumbel (µ, σ > 0)

Fµ,σ(x) = exp
(

−e−x−µ
σ

)

,

fµ,σ(x) =
1

σ
exp

(

−x− µ

σ
− e−

x−µ
σ

)

, x ∈ R;

(ii) Fréchet (µ, σ > 0, γ > 0)

Fµ,σ,γ(x) =

{

0, x < µ,

exp
(

−(x−µ
σ

)−γ
)

, x ≥ µ;

fµ,σ,γ(x) =

{

0, x < µ,
γ
σ
(x−µ

σ
)−γ−1 exp

(

−(x−µ
σ

)−γ
)

, x ≥ µ;

(iii) Weibull (µ, σ > 0, γ > 0,)

Fµ,σ,γ(x) =

{

exp
(

−(−x−µ
σ

)γ
)

, x < µ,

1, x ≥ µ;

fµ,σ,γ(x) =

{

γ
σ
(−x−µ

σ
)γ−1 exp

(

−(−x−µ
σ

)γ
)

, x < µ,

0, x ≥ µ;

Under the random sampling assumption, i.e., X1, X2, . . . , Xn being identically and

independently distributed, the GEV distribution with parameter µ, σ, γ, denoted as

GEV(µ, σ, γ), is defined as:

lim
n→∞

P (Mn ≤ x) = exp

(

−
(

1 + γ
x− µ

σ

)−1/γ
)

= Fµ,δ,γ(x) (1.1)
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for 1 + γ
σ
(x− µ) > 0, σ > 0, and its density function is

f(x;µ, σ, γ) =







1
σ

(

1 + γ(x−µ
σ

)
)− 1

γ
−1

exp
(

−
(

1 + γ(x−µ
σ

)
)− 1

γ

)

, γ 6= 0,

1
σ
exp

(

−x−µ
σ

− exp(−x−µ
σ

)
)

, γ = 0.

1.1.2 Parameters and basic properties

The parameter µ ∈ R is known as the location parameter, σ > 0 is called the scale

parameter, while γ ∈ R is the shape or tail parameter.

The behaviour of these three types of the distributions differs according to their

tail, which is characterized by the tail index. Because of this feature, the tail parameter

would be considered the most important parameter.

The support set of a GEV random variable, 1 + γ x−µ
σ

> 0, depends on those

parameters.

Using the density function of the GEV(µ, σ, γ),

• the mean of a random variable from Gumbel distribution (γ = 0) is µ + σγe,

where γe represents the Euler’s constant (γe ≈ 0.57721).

• When γ < 1 and γ 6= 0, the mean of a GEV(µ, σ, γ) variable is µ + σ Γ(1−γ)−1
γ

,

where Γ(·) is the Gamma function.

• When γ > 1 the mean of a GEV(µ, σ, γ) variable does not exist.

1.1.3 Relationship between the members of GEV family

Taking the limit γ → 0 to the Equation (1.1), we have

lim
γ→0,n→∞

P (Mn ≤ x) = exp

(

− exp

(

x− µ

σ

))

, x ∈ R

which is in Gumbel family, denoted as Gumbel(µ, σ).

When γ < 0, the distribution corresponds to the Weibull family, denoted as

Weibull(µ, σ, γ).

When γ > 0, the distribution corresponds to the Fréchet family, denoted as Fréchet

(µ, σ, γ).
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The different types of the extreme value distribution could be transformed into

each other, like if X ∼ GEV(µ, σ, γ), γ 6= 0, then

1

γ
log
(

1 +
γ

σ
(X − µ)

)

∼ Gumbel(0, 1)

and if X ∼ Gumbel(µ, σ), then X−µ
σ

∼ Gumbel(0, 1), and for γ 6= 0,

1

γ

(

eγ
X−µ
σ − 1

)

∼ GEV(0, 1, γ).

1.1.4 Applications

extreme events happen in the nature with some regularity. Examples of these are

floods, tornadoes, earthquakes, stock market crashes and soaring and so on. extreme

events have the potential of a great impact to human society. Because of that, the

study of GEV distributions and their prediction is important.

There are models to deal with events of small probability related to the GEV

distribution. These models are widely used in risk management, finance, insurance,

economics, hydrology, material sciences, telecommunications, and many other areas

of application.

1.1.5 Stability postulate

If a random variable has distribution G(x),

Gn(x) = G(anx+ bn),

and the limiting distribution exists and non-degenerate for some constant sequences

{an},{bn} depend on n, not on x, we say that the distribution G satisfies the maximum

stability postulate.

This result was obtained by R. Fréchet and also by R. Fisher. B. Gnedenko showed

that there are no distribution satisfying this postulate outside of the extreme value

distribution family.
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For an i.i.d. sequence {Xi, 1 ≤ i ≤ n} where Xi ∼ GEV(µ, σ, γ), γ 6= 0,

P (max
1≤i≤n

{Xi} ≤ x) = exp

(

−n
(

1 + γ
x− µ

σ

)− 1
γ

)

= exp



−
(

1 + γ
x− µ+ σ

γ
(1− nγ)

σnγ

)− 1
γ



 ,

so max{Xi} ∼ GEV(µ− σ
γ
(1− nγ), σnγ, γ).

When γ = 0, i.e., Gumbel case,

P (max
1≤i≤n

{Xi} ≤ x) = exp(−ne−x−µ
σ ) = exp(−e−x−µ−σ logn

σ )

so max{Xi} ∼ Gumbel(µ+ σ log n, σ).

1.2 Stable distribution

Stability postulate describes the limiting distribution of extremes of i.i.d. random

variables following the same distribution as the random variables come from. What

about the linear combination of i.i.d. random variables follow the same distribution

as the random variables come from? The distributions having this property are said

to be stable.

1.2.1 Stable random variables

Normal distribution has the property that the linear combination of normal random

variables is still normally distributed. Whether there are other distributions having

this same property?

In 1920’s, Paul Lévy studied the sums of independent identically distributed terms.

The normal, Cauchy and Lévy distributions are the special cases of distributions

having such a property.

Definition. We call a random variable stable if it has the property that a linear

combination of two independent identically distributed random variables has the same

distribution, up to location and scale parameters.
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When talking about stable distribution, we can distinguish between stable in a

broad sense and strictly stable random variable.

A random variable X is stable or stable in the broad sense if for X1 and X2, which

are two independent copies of X, and any positive constants a and b,

aX1 + bX2
d
= cX + d

holds for some positive c and some d ∈ R.

The random variable is called strictly stable if the equation holds with d = 0 for

all admissible choices of a and b. There are equivalent definitions of stable random

variables, such as the following

Definition. A non-degenerate X is stable if and only if for all n > 1, there exist

constants cn > 0 and dn ∈ R such that

X1 + · · ·+Xn
d
= cnX + dn,

where X1, . . . , Xn are independent copies of X. The random variable X is strictly

stable if and only if dn = 0 for all n.

A random variable is symmetrically stable if it is stable and symmetrically dis-

tributed around 0, i.e. X
d
= −X. For the present work, we are mostly interested in

the positive stable random variables.

1.2.2 The α-stable random variable

For reasons that will be clear later, we are particularly interested in a positive stable

random variable S, whose Laplace transform can be written as

E(e−tS) = e−t
α

for Re(t) > 0, α ∈ (0, 1). (1.2)

The distribution of this random variable is known as the α-stable distribution (also

called the Lévy stable distribution). We use S ∼ S(ψ) to denote that S follows the

α-stable distribution with parameter ψ.
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If S ∼ S(α), from its Laplace transform, the corresponding characteristic function

can be found,

φ(t) = E(eitS) = e−(−it)α

= exp
(

−|t|α
(

cos
(απ

2

)

− i sign(t) sin
(απ

2

)))

,

where i =
√
−1.

Once that either the Laplace transform or the characteristic function of S is given,

the density can be obtained using the approximate inversion formula, e.g.,

fα(x) =
1

2π

∫

R

Re{e−itxφ(t)}dt

=
1

2π

∫

R

Re{e−|t|α cos(απ2 )−i[tx−sign(t)|t|α sin(απ2 )]}dt

=
1

2π

∫

R

cos
(

tx− sign(t)|t|α sin
(απ

2

))

e−|t|α cos(απ2 )dt

=
1

π

∫ ∞

0

cos
(

tx− tα sin
(απ

2

))

e−t
α cos(απ2 )dt (1.3)

for positive x, and the Gil-Peláez formula (see [35]) can be used to find the distribution

of S, i.e.,

Fα(x) = P (S ≤ x) =
1

2
+

1

2π

∫ ∞

0

Re{e
itxφ(−t)− eitxφ(t)

it
}dt

=
1

2
+

1

2π

∫ ∞

0

Re{e
itx−tα cos(απ2 )−itα sin(απ2 ) − e−itx−t

α cos(απ2 )+itα sin(απ2 )

it
}dt

=
1

2
+

1

2π

∫ ∞

0

2 sin(tx− tα sin
(

απ
2

)

)

t
e−t

α cos(απ2 )dt

=
1

2
+

1

π

∫ ∞

0

sin(tx− tα sin
(

απ
2

)

)

t
e−t

α cos(απ2 )dt

when x > 0.

In 1959, Mikusinski [69] gave an alternative formula for the density of the α-stable

distribution. For x > 0, if S ∼ S(α),

fα(x) =
α

1− α

1

πx

∫ π

0

bα,x(θ) exp (−bα,x(θ)) dθ,
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where

bα,x(θ) =
sin((1− α)θ)

sin θ

(

sin(αθ)

x sin θ

)α/(1−α)
, 0 < θ < π

and the distribution formula can be derived from the density,

Fα(x) =
1

π

∫ π

0

exp (−bα,x(θ)) dθ, 0 < α < 1. (1.4)

This representation of the density of a S(α) random variable unveils a link between

the exponential, uniform and the α-stable distributions.

Theorem 1. Let U ∼ Exponential(1) and Θ ∼ Uniform(0, π) be two independent

random variables, define

X =

(

sin((1− α)Θ)

U sinΘ

)(1−α)/α
sin(αΘ)

sin(Θ)
,

where α ∈ (0, 1), then X ∼ S(α). (Chambers, Mallows and Stuck [11])

This result provides an efficient way to simulate the α-stable random variables.

We can think of S(α) as the kernel distribution in a scale family. An α-stable random

variable with scale parameter σ 6= 1, and σ > 0 will be denoted as S ∼ S(α, σ), i.e.
S
σ
∼ S(α). For this scale family, the Laplace transform and characteristic function can

be written as

E(e−tS) = e−σ
αtα , σ > 0,

E(eitS) = exp
(

−σα|t|α
(

cos
(απ

2

)

− i sign(t) sin(
απ

2
)
))

.

If S1 ∼ S(α, σ1) and S2 ∼ S(α, σ2) are independent, for constants c > 0, d > 0 we

have

cS1 + dS2 ∼ S(α, (cασα1 + dασα2 )
1/α). (1.5)

To see this, notice that the Laplace transform of cS1 + dS2 can be written as

E
(

e−t(cS1+dS2)
)

= e−σ
α
1 c
αtα−σα2 dαtα = e−σ

αtα ,

where σ = (cασα1 + dασα2 )
1/α . Consequently, S ∼ S(α, σ) is a strictly stable distribu-

tion.
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Denote the density function and distribution of S(α, σ) as fα,σ(x), Fα,σ(x) respec-
tively. They can be obtained by using the linear transformation of S(α), i.e.

fα,σ(x) =
1

σ
fα

(x

σ

)

, Fα,σ(x) = Fα

(x

σ

)

.

Although, S ∼ S(α) is a positive random variable whose mean and variance do

not exist, its logarithmic moments exist, in particular,

E(log(S)) = γe

(

1

α
− 1

)

,

Var(log(S)) =
π2

6

(

1

α2
− 1

)

,

where γe ≈ 0.57721566 is the Euler’s constant. This result can be deduced by the

following theorem.

Theorem 2. For the α-stable distributed random variable S ∼ S(α), α ∈ (0, 1), we

have

E
(

e−t logS
)

=
Γ(1 + t/α)

Γ(1 + t)

when Re(t) > −α.

Proof of Theorem 2.

E
(

e−t logS
)

=

∫ ∞

0

s−tfα(s)ds

=
1

π

∫ ∞

0

∫ ∞

0

s−t cos
(

us− uα sin
απ

2

)

ds · e−uα cos απ
2 du

=
Γ(1− t)

π

∫ ∞

0

1

u1−t
sin
(απ

2
+ uα sin

απ

2

)

e−u
α cos απ

2 du

=
Γ(1− t)

απ

∫ ∞

0

u
t
α
−1 sin

(απ

2
+ u sin

απ

2

)

e−u cos
απ
2 du

=
Γ(1− t)

π

Γ
(

t
α

)

α
sin(πt)

=
Γ(1 + t/α)

Γ(1 + t)
.

Using this theorem, we have the following corollary.
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Corollary 1. If S ∼ S(α), α ∈ (0, 1), we have

E(eit logS) =
Γ(1− it/α)

Γ(1− it)
,

(Zolotarev [98]) and

E(S−t) =
Γ(1 + t/α)

Γ(1 + t)
for t > −α.

1.2.3 Tail behaviour

According to its tail behaviour, a distribution can be classified into different families,

e.g., heavy tailed, long tailed, sub-exponential.

The tail behaviour of an α-stable distribution is described in the following theorem.

Theorem 3 (Feller [29], p. 448). Let S ∼ S(α). For a large enough value x, the

asymptotic behaviour of the α-stable distribution is described by

P (S > x) ≈ 1

Γ(1− α)
x−α. (1.6)

Based on this approximation, we have that

fα(x) ≈
α

Γ(1− α)
x−α−1 I(xα,∞)(x),

where I(·) is the indicator function and xα = Γ−1/α(1 − α). This density was first

presented in Mikusinski [69], Titchmarch [91]. Notice that x must be greater than xα

to use these approximations.

This means that the upper tail of an α-stable distribution behaves asymptotically

as the Pareto law with parameters α and xα.

Feller’s proof of Theorem 3 is a generalization of the Hardy-Littlewood Tauberian

theorem (Hardy [43]). The core of the argument is the fact that the Laplace transform
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of P(S > x) can be developed as

∫ ∞

0

e−tx P(S > x)dx =
1

t
− 1

t

∫ ∞

0

e−txfα(x)dx (1.7)

=
1

t

(

tα − 1

2
t2α +Op(t

3α)

)

=
1

t1−α
− 1

2

1

t1−2α
+Op

(

1

t1−3α

)

for t > 0. Thus when 0 < α < 1 and t is small enough,

P(S > x) =
x−α

Γ(1− α)
+Op

(

x−2α
)

.

In fact, from the Feller’s Tauberian theorem we have that Equation (1.7) and

P(S > x) = x−α

Γ(1−α)L(x) imply each other, where

L(x) = 1− 1

2
x−α +

1

6
x−2α +Op(x

−3α).

Furthermore, this Tauberian theorem also implies that ex
−α

P(S ≤ x) → 0 when

x → 0 (Feller [29]). In general, the Tauberian theorems relate the asymptotic be-

haviour of P(S > x) when x → ∞ with the asymptotics of its Laplace transform,

E(e−tS), when t→ 0 and, when dealing with extreme values, this relationship can be

used as the foundation for an estimation procedure.

Heavy tail

A random variable X is said to have a (right) heavy tail, if for any positive λ,

lim
x→∞

eλx P(X > x) = ∞,

which means that heavy-tailed distributions are those whose tails decay to zero at a

rate slower than the exponential.

Some commonly heavy-tailed distributions are Weibull distribution, t-distribution,

Pareto distribution and Cauchy distribution. More information about heavy-tailed

distributions would be found in Teugels [90], Crovella [18], Pickands [78]. There

are many ways to test whether a distribution function is heavy tailed, such as the

Kolmogorov test, Berk-Jones test, score test and their integrated version (see Koning
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and Liang [59], Kolmogorov [56], Berk and Jones [5]). The most widely used way to

explore the data is graphical methods, i.e. quantile-quantile plot (Q-Q plots, see Wilk

and Gnanadesikan [97]), Hill plots and the distribution of mean excess.

From the Equation (1.6) we can see that the random variable S ∼ S(α) has a

heavy tail.

Long tail

A random variable X is said to have long tail (Asmussen [3]) if for all c > 0,

lim
x→∞

P(X > x+ c|X > x) = 1.

The long-tailed distribution like Pareto distribution and Lévy distribution have

been widely used in business and marketing area.

The linear transformation, product function, maximum and minimum of indepen-

dent long-tailed random variables still have long tails.

The α-stable distribution S(α) also has a long tail. To see this, consider

P(S > x+ c)

P(S > x)
≈
(

x

x+ c

)α

→ 1, as x→ ∞.

Any distribution with long tail is in the heavy-tailed family, but a heavy-tailed

distribution may not have a long tail.

Sub-exponential distribution

For a positive, independent, identically distributed random variable sequence Xi, 1 ≤
i ≤ n with n ≥ 2, if

lim
x→∞

P(X1 + · · ·+Xn > x)

P(X1 > x)
= n, or lim

x→∞

P(X1 + · · ·+Xn > x)

P(max(X1, . . . , Xn) > x)
= 1,

the sampling distribution is said to belong to sub-exponential family (Teugels [90]).

Using the Equations (1.5) and (1.6), the α-stable distribution S(α) is also sub-

exponential, since
∑n

i=1 Si ∼ S(α, n1/α) for an i.i.d. α−stable sequence {Si, 1 ≤ i ≤
n},

lim
x→∞

P(S1 + · · ·+ Sn > x)

P(S1 > x)
= lim

x→∞

P(S1 > n−1/αx)

P(S1 > x)
= n.
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Sub-exponential distributions all have long tails, but long tailed distributions may

not all be sub-exponential.

1.2.4 General stable distributions

The α-stable distribution also belongs to a more general family, called the stable

distribution, defined by the characteristic function (Kanter [53], Zolotarev [98], Nolan

[74])

log E(eitX) =

{

iµt− σα|t|α
(

1− iβ tan
(

πα
2

)

sign(t)
)

, α 6= 1,

iµt− σ|t|
(

1 + iβ 2
π
sign(t) log |t|

)

, α = 1.
(1.8)

The distribution of a stable random variable X is denoted as X ∼ S(α, β, µ, σ),
where α ∈ (0, 2], β ∈ [−1, 1], σ > 0, µ ∈ R.

The followings are special cases of stable random variables:

• when α = 2, β = 0, the stable distribution is a normal distribution;

• when α < 2, the variance of a stable random variable does not exist; when

2 > α ≥ 1, its mean does not exist as well;

• when α = 1, β = 0, it is the Cauchy distribution, a special case of both the

stable distribution and the t-distribution;

• when α = 1, β = 1, it is the Landau distribution;

• when α = 3
2
, β = 0, it is the Holtsmark distribution;

• when α = 1
2
, β = 1, it is the Lévy distribution;

• when α = 0, it is the Dirac delta function.

Stable distributions have the following property.

Theorem 4 (Theorem in Feller [29]). All (non-degenerate) stable distributions are

continuous distributions with an infinitely differentiable density.

The continuity of non-degenerate stable distributions can be deduced by its in-

finitely divisible property. For example, the density Equation (1.3) ensures its in-

finitely differentiable.
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Although this theorem guarantees the existence of stable random variable’s density,

except in a few special cases, there is no closed expression form of the density for a

stable distribution that can be used to evaluate the distribution function, even we

know that the density function could be deduced from its characteristic function or

equivalently, from its Laplace transform, for computational propose.

There are other parameterizations that differently expose the density and distribu-

tion of an α-stable random variable. For example Nolan [73] described the distribution

of a random variable S(α, δα) with δα = cos1/α
(

απ
2

)

and called it the α-stable distri-

bution, with density fNα (y) given by

fNα (y) =
α

π(1− α)
y

1
α−1

∫ π
2

−π
2

V (η)e−V (η)y
α
α−1

dη,

V (η) =
(

cos
(πα

2

)) 1
α−1

(

cos(η)

sin(απ
2
+ αη)

) α
α−1 cos(απ

2
+ (α− 1)η)

cos(η)
.

However letting x = δαy and θ = η + π
2
to the density of x is the same as the

expression presented in Equation (1.4).

1.2.5 Computer programs concerned with stable distribution

Many R packages are built to deal with the stable family. John Nolan has a personal

website about stable distribution, from where many packages and papers can be found.

In 1999, Nolan [75] developed a computer program to obtain the densities of stable

distribution. This program splits the region of integration up into intervals where the

cosine term changes sign and does the calculation. It works well when |x| is not large
and α > 0.9. When |x| is large, the number of oscillations is large and when α is

small, the intervals where the cosine term changes sign grows, under which conditions

the integral is difficult to evaluate precisely.

An improved program STABLE was given in Nolan [73] to deal with the condition

when α > 0.1. It changes the integration interval. This program is said to be im-

proved to give more accurate density calculations on the tails, which is necessary for

accurate likelihood calculations. The program gives the approximation of the densi-

ties when α > 0.4 using splines, does maximum likelihood estimation and diagnostics

for assessing the stability of a data set.

In 2001, Nolan [76] presents some details about the program, including the Fisher
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information matrix of a sample. When the parameters are on the interior of the pa-

rameter space, the maximum likelihood estimator follows the standard theory, i.e.,

the estimators are consistent and asymptotically normal distributed. When the pa-

rameter β is on the boundary, like when β = 0, the stable densities are symmetric and

all the correlation coefficients involving β are 0. If β = 1, the variance of estimator of

β is 0 and all the correlation coefficients involving β are undefined.

R package “stabledist” can be used to generate random variables from the stable

distribution and compute their densities, distribution functions.

1.3 Time series

Time series is a stochastic process where a data sequence is collected in time order.

Time series are commonly used in many applications like econometric, financial field

(stock market like Dow Jones index sequence), engineering area (signal processing,

control engineering) and weather forecasting.

The main statistical problems regarding a time series are estimation, prediction

and there is plenty of literature addressing this problems, e.g., Box et al. [7], Cow-

pertwait [16], Durbin [25], Gershenfeld [72], Hamilton [42]. Nevertheless, the body

of work addressing time series of extreme events is limited. Here, I will address the

modeling of discrete time series of extreme events with the generating mechanism for

error terms coming from the α-stable distributions.

1.3.1 Stationary and non-stationary time series

A time series is said to be strictly stationary if the jointly density distribution of the

random variables in the series is independent of time. Formally,

Definition. Let {Xt, t ≥ 1} be a time series, if for any s, t1, . . . , tk ∈ Z,

P(Xt1 ≤ x1, . . . , Xtk ≤ xk) = P(Xt1+s ≤ x1, . . . , Xtk+s ≤ xk),

the series is said to be strictly stationary.

A related concept is weak stationary, or simply, stationary.
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Definition. For any s, t, k ∈ Z, a weak stationary time series {Xt} is a sequence

satisfies

E(Xs) = E(Xt), Var(Xs) = Var(Xt),

Cov(Xt, Xs) = Cov(Xt+k, Xs+k).

For a normal process, the strict stationary is equivalent to the weak stationary.

The innovations in a Wiener process measured in regular intervals in time is a simple

example of the stationary time series.

For the analysis and the prediction of the stationary time series, there are some

commonly used models like regression model, auto-regressive (AR) model, moving

average (MA) model, auto-regressive moving average (ARMA) model. More details

would be found in Box et al. [7], Gouriéroux and Monfort[37], Brockwell [9], Benjamin

[54]. All these models are linear. The non-linear and non-stationary processes are

usually more challenging to analyze and predict.

1.3.2 Time series with Fréchet distributed marginals and α-

stable distributed errors

We are interested in non-linear stationary time series of extreme events, particularly,

values whose marginals have GEV distributions. For this purpose, we explore the

relationship between the GEV and α-stable family of distributions.

Let X ∼ Fréchet(0, 1, γ) and S ∼ S(α) be independent random variables and

define

Y = XS
1
γ ,

then, Y ∼ Fréchet(0, 1, αγ), since

P(Y ≤ y) = E
(

P(X ≤ yS− 1
γ |S)

)

= E

(

exp

(

−
(

yS− 1
γ

)−γ
))

= exp(−y−αγ).

Use this property we have the following result,

Theorem 5. Let X0 ∼ Fréchet(0, 1, γ) be independent with the sequence {St}, where
St ∼ S(α), 1 ≤ t ≤ n, is a set of independent random variables. Define the variable
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Xt as

Xt = Xα
t−1S

α
γ

t , 1 ≤ t ≤ n, (1.9)

then Xt has a marginal Fréchet(0, 1, γ) distribution for 1 ≤ t ≤ n.

We know that the Fréchet, Gumbel, Weibull distribution can transformed to each

other, thus, based on Equation (1.9), we can generate time series with GEV distributed

marginals using independent α-stable random variables. The alternatives are given

in the following corollaries.

Corollary 2. Let X0 ∼ Gumbel(0, 1) and {St}, where St ∼ S(α), 1 ≤ t ≤ n, is a set

of independent random variables. Then the series

Xt = αXt−1 + α log(St), 1 ≤ t ≤ n, (1.10)

has marginal Gumbel(0, 1) distribution for 1 ≤ t ≤ n, i.e. Xt ∼ Gumbel(0, 1).

Corollary 3. Let X0 ∼ Gumbel(0, 1), {Xt} and {St} are as in Corollary 2. {ξt} is

an independent S(ψ) random variable sequence with ψ ∈ (0, 1), then the series

Yt = µ− σ

γ
+
σ

γ
eψγXtξψγt , 1 ≤ t ≤ n, (1.11)

Yt has marginal GEV(µ, σ, γ) distribution for 1 ≤ t ≤ n, i.e. Yt ∼ GEV(µ, σ, γ).

Corollary 4. Let {Xt} and {St} are as in Theorem 5. {ξt} is an independent S(ψ)
random variable sequence with ψ ∈ (0, 1), then the series

Yt = µ− σ

γ′
+
σ

γ′
Xψγγ′

t ξψγ
′

t , 1 ≤ t ≤ n, (1.12)

Yt has marginal GEV(µ, σ, γ′) distribution for 1 ≤ t ≤ n, i.e. Yt ∼ GEV(µ, σ, γ′).

The time series in Equation (1.9), (1.10) and the state space series in (1.11) (1.12)

are Markovian.

1.4 State space model

The origin of state space models could be traced to dynamic systems in engineer-

ing including automatic control, communications, robotics, and aerospace systems.

Merwe et al. [94] defined the state space model as follows
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Definition. A state space model is such that the measurement Yt recorded at time

t is described by two equations, the observation and the state ones. The observation

equation depicts the link between Yt and Xt, where Xt represents an unobserved state

variable. The state equation, also called the system equation, models the temporal

dynamical structure. Many state space models can be represented as

Yt = Ft(Xt, ξt), (observation equation)

Xt = Gt(Xt−1, ηt), (state equation).

where Ft, Gt are functions and ξt, ηt are noises.

The state variables Xt, though unobserved, are important to the model because

they provide a data generating mechanism. The conditional density f(Xt|Y1, Y2, . . . , Yt)
is one of our primary interests in the state space modeling, which is called the filtering

density.

1.4.1 Literature review

Because of its simplicity, linear state space models with Gaussian errors are most

common in the literature.

Linear state space model. Let {ut, t ≥ 1}, {vt, t ≥ 1} be independent nor-

mal sequences with zero means and variances σ2
u, σ

2
v respectively. For some non-zero

constants φ1, φ2, the state space model is

Yt = φ1Xt + vt,

Xt = φ2Xt−1 + ut.

For this kind of model, maximum likelihood estimation is a plausible option be-

cause of the linearity and the Gaussian noise. Covariance structure of the observation

sequence {Yt} is also commonly used in estimation. When the hidden state Xt is of

interest, Kalman filter is the preferred framework to address this kind models (see

Kalman [52]).

In many practical situations under a state space model, the assumption of Gaussian

noise can be relaxed to the requirement of white noise, without further complications.

Whenever the model is not linear, the analysis becomes more complex, which is our
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case.

Now, we review the relation of the Gumbel and α-stable distributions.

Let S ∼ S(α, σ) be an α-stable random variable with the scale parameter σ,

(i) Gumbel random variable can be represented as the linear combination of a

Gumbel random variable and the logarithm of an independent α-stable random vari-

able (see Corollary 1 and also Crowder [19], Hougaard [45], Fougéres, Nolan and

Rootzén [31]), i.e. if G ∼ Gumbel(µ, σ) is independent of S, then G + log S ∼
Gumbel(µ, σ/α).

(ii) Gumbel random variable can be expressed as the maximum over an α-stable

distributed number of independent blocks (see Fougéres, Nolan and Rootzén [31]) , i.e.

if the maximum over an unit block is Gumbel(µ, σ) distributed, then the maximum

over S blocks is Gumbel distributed with the location parameter µ, the scale parameter

σ/α.

(iii) Gumbel random variable can be thought as a conditionally Poisson point pro-

cess. If X is the maximum y-coordinate of a point process in (0, 1]×R, with intensity

Se−(x−µ)/σ, conditionally on stable variable S, then the unconditional distribution X

is Gumbel with location µ, scale σ/α (see Tawn [89], Fougéres, Nolan and Rootzén

[31]).

Using property (i), Toulemonde et al. [93] proposed the following linear Gumbel

time series and a Gumbel state space model related to the logarithm of α-stable vari-

ables.

Linear Gumbel model. For t ∈ Z, let

Xt = αXt−1 + ασ log St,

where {St} is α-stable noise with parameter α ∈ (0, 1) and parameter σ > 0, then

{Xt} is a linear Gumbel AR series.

This model has been applied to the daily maximum of methane CH4 and daily

maximum of nitrous oxide (N2O) measured in Gif-sur-Yvette, France (Toulemonde et

al. [93]).

Later, Toulemonde et al. extended this AR series to a Gumbel state space model
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in [92].

Yt = vt −Htσγe(
1

α2

− 1) +HtXt +Htσ log ηt,

Xt = α1Xt−1 + α1σ log ξt − σγe(1− α1), t ∈ Z

where {ξt} and {ηt} are i.i.d. α-stable random variables, ξt ∼ S(α1), ηt ∼ S(α2),

parameters Ht > 0, α1, α2 ∈ (0, 1) and γe is the Euler’s constant.

In this model, Yt andXt are both Gumbel variables, with parameters
(

vt − Htγeσ
α2

, Ht
σ
α2

)

and (−γeσ, σ), respectively. The parameter estimation was not presented in this pa-

per. As to the approximation of the filtering density, the auxiliary particle filter

proposed by Pitt and Sherphard [79] was applied to this model. Their results show

some advantages when comparing with Kalman filter and bootstrap filter.

Max-stable Model. For independent Fréchet noise {ξt} and {ηt}, with parameters

Ft > 0, Gt > 0, using the stable postulate of GEV distributions, Naveau and Poncet

[71] proposed a max-stable state space model with GEV distributed marginals.

Yt = max(FtXt, ξt),

Xt = max(GtXt−1, ηt), t ∈ Z.

To see this, for simplicity, we let Ft = F and Gt = G. From the state equation,

we have

Xt = max
(

. . . , Gtη0, G
t−1η1, . . . , Gηt−1, ηt

)

. (1.13)

Without loss of generality, assume that the state variable follows Fréchet distribution

with location parameter 0, scale parameter 1, since if ηt ∼ Fréchet(µ, δ, γ), then

Xt = µ+ δmax
(

. . . , Gtη′0, G
t−1η′1, . . . , Gη

′
t−1, η

′
t

)

,

where η′t ∼ Fréchet(0, 1, γ).

Use Equation (1.13),

P(Xt ≤ x) =
t
∏

i=−∞
P
(

ηi ≤
x

Gt−i

)

=
t
∏

i=−∞
e−(

x

Gt−i )
−γ

= exp

(

− x−γ

1−Gγ

)

,
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which indicatesXt ∼ Fréchet
(

0, (1−Gγ)−1/γ, γ
)

, thus Yt ∼ Fréchet
(

0, (F
γ+1−Gγ
1−Gγ )1/γ, γ

)

if ξt ∼ Fréchet(0, 1, γ).

In their paper, this model is used to fit the daily maximum of precipitation amounts

recorded every three hours in Nı̂mes, France with some given value of Ft, Gt.

Gumbel state space model. Naveau and Poncet [71] also proposed the following

state space model to include the heavy tailed distributions in climate studies,

Yt = Ft logXt + ξt,

Xt = GtXt−1 + ηt, t ∈ Z,

where {ξt} is an i.i.d. Gumbel noise, {ηt} is an i.i.d. α-stable noise, parameters

Ft, Gt > 0.

Xt here is an α-stable variable by the definition of stable distribution while Yt is

a Gumbel variable using Corollary 1.

This model is based on the results given by Fougéres, Nolan and Rootzén [31],

where models with GEV distributed marginals constructed by α-stable variables, us-

ing the properties (i)-(iii) between the Gumbel distribution and the α-stable distri-

bution. Unfortunately, the estimation and the filtering density of hidden state are

unsolved in Naveau and Poncet [71], Fougéres, Nolan and Rootzén [31].

GEV-M3 Model. In 2010, Kunihama et al. [60] studied the model

Yt = µ+ ψ
Xγ
t − 1

γ
+ ηt,

Xt = max
0≤k≤K

αkZt−k, t ∈ Z

where {Zt} is a sequence of independent unit Fréchet random variables and ηt ∼
N(0, σ2). The αk’s are constants satisfy

∑

k αk = 1, and µ, ψ, γ are the main param-

eters of the model.

The state equation ensures the state is unit Fréchet distributed since

P(Xt ≤ x) =
∏

0≤k≤K
P

(

Zt−k ≤
x

αk

)

= e−x
−1

∑

k αk = e−x
−1

.
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Thus the observation Yt follows GEV(µ, ψ, γ) only when there is no observation noise,

i.e. σ2 = 0.

This model was applied to the daily minimum of in-trade stock returns. This state

equation shows a max-stable process, called the maxima of moving maxima (M3)

process. Kunihama et al. [60] transformed the Fréchet sequence {Zt} to Gumbel se-

quence, then used normal structure to approximate the Gumbel sequence. They tried

Monte Carlo method, bootstrap filter, particle filter to obtain the filtering density.

A similar model was considered by Peter Hall, Liang Peng and Qiwei Yao [41],

Chamú Morales [12], called the moving-maximum model for extremes of time series.

Notice that, if the observation equation is defined as

Yt = µ− δ

γ
+
δ

γ
Xψγ
t ηψγt ,

where ηt is the α-stable distributed errors with parameter ψ ∈ (0, 1), then the obser-

vation is GEV(µ, ψ, γ) distributed.

GEV-AR and GEV-MA Model. Fitted to a monthly series of minimum returns

of Tokyo daily stock data, Nakajima et al. [70] considered the model

Yt = µ+ ψ
exp(σXt)− 1

σ
+ ξt,

Xt = αXt−1 + ηt, t = 1, . . . , n

where ξt is normally distributed with variance σ2, |α| < 1.

In their paper, Nakajima et al. assumed that the hidden state Xt is given by a

stationary AR process driven by the Gumbel distributed noise ηt, ignored the fact

that Gumbel is not in the stable family. Obviously, should that were the case, the

marginal sequence {Yt} would be GEV distributed whenever there is no observation

noise, i.e. σ2 = 0.

Instead of the AR process in the GEV-AR model, the MA process

Xt = ηt + θηt−1, t ∈ Z

where |θ| < 1 and ηt is Gumbel distributed, is used as the state equation in a GEV-

MA model in Nakajima et al. [70]. Only when both θ and σ are zero, this model
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produces Gumbel observations Yt, with simple linear structure.

1.5 Objective of the thesis

Our interest is the state space model with GEV distributed marginals and α-stable or

exponential α-stable distributed errors, improved from the GEV-AR model and the

Gumbel state space model.

For the state space model

{

Yj = µ− σ
γ
+ σ

γ
eψγXjξψγj ,

Xj+1 = αXj + α log Sj+1,
(1.14)

let γ 6= 0, {Sj ∼ S(α), 1 ≤ j} and {ξj ∼ S(ψ), 1 ≤ j} be two independent α-stable

random variable sequences with α, ψ ∈ (0, 1).

If X0 ∼ Gumbel(0, 1) then Xj ∼ Gumbel(0, 1) and Yj ∼ GEV(µ, σ, γ).

The unsolved estimation problem in Naveau and Poncet [71] and Fougéres, Nolan

and Rootzén [31]) is a special case of this model.

This thesis mainly focuses on the estimation and model filter for the model (1.14).

Chapter 2 is concerned on the estimation of a time series with Fréchet distributed

marginals and α-stable distributed errors. Yule-Walker estimation, AR model and

recursive Hill estimation and recursive moment estimation are used.

Chapter 3 is about the state space model with GEV distributed marginals and

α-stable distributed errors. ARMA model, Yule-Walker estimation and adjusted re-

gression estimation are considered.

The model filter and prediction are discussed in the Chapter 4. Different methods

like Kalman filter, particle filer and auxiliary particle filter, plain linearization are

compared.



Chapter 2

Time series with Fréchet

distributed marginals and α-stable

distributed errors

Before describing the inferences for state space models, we will consider the time series

with GEV distributed marginals and α-stable distributed errors.

In this chapter, we mainly discuss a time series {Xt} with Fréchet distributed

marginals, as stated in Equation (1.9), Theorem 5. As a corollary to Theorem 5, we

have that if St
i.i.d.∼ S(α) with α ∈ (0, 1), γ > 0,

Xt = Xα
t−1S

α
γ

t

= Xαk

t−k

k
∏

i=1

S
αi/γ
t+1−i

=
t
∏

i=−∞
S
αt+1−i/γ
i ,

where each Xt has a marginal Fréchet(0, 1, γ) distribution for t ∈ Z.

Our aim is to estimate the stability parameter α and the Fréchet tail parameter

γ in Equation (2.1) using the observation sequence {Xt}.
The sequence {Xt} is strictly stationary, since

P(Xt1 ≤ xt1 , Xt2 ≤ xt2 , . . . , Xts ≤ xts) = P(Xt1+k ≤ xt1 , Xt2+k ≤ xt2 , . . . , Xts+k ≤ xts)
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for any t1, t2, . . . , ts.

Knowing the density of α-stable variable St, we can write the likelihood function

of {Xt, 0 ≤ t ≤ n} as

f(x0, . . . , xn;α, γ) = f(x0)
(γ

α

)n
n
∏

i=1

x−γi−1X
γ
α
−1

i fα

(

x−γi−1x
γ
α
i

)

where fα denotes the density of S(α).
Usually the maximum likelihood function is used to do the estimation, however it

cannot be used here, since when the stability parameter α is small, in a neighbourhood

of zero, the density around point zero is too large. For any xi which is less than 1,

fα

(

x−γi−1x
γ
α
i

)

increases as α goes to 0.

As an alternative to maximum likelihood estimation, moment estimation and Yule-

Walker estimation can be considered. The mean and variance of the stationary se-

quence {Xt} are finite under some constrains.

E(Xt) = Γ(1− 1
γ
), when γ > 1,

Var(Xt) = Γ(1− 2
γ
)− Γ2(1− 1

γ
), when γ > 2.

However, all the moments of the logarithm of Fréchet variables exist. It would be

natural to consider the time series of logarithm of Xt. From Equation (2.1) we have

logXt = α logXt−1 +
α

γ
log St. (2.1)

We already know that logXt ∼ Gumbel(0, 1
γ
) for all t ∈ Z, thus {logXt} is a linear

stationary sequence and

E(logXt) =
γe
γ
, Var(logXt) =

π2

6

1

γ2
,

Cov(logXt, logXt−k) = αk Var(logXt−k) = αk
π2

6

1

γ2
,

where γe denotes the Euler’s constant.
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2.1 Yule-Walker estimation for α

The sequence {logXt} in Equation (2.1) is stationary. The estimator of α could be

obtained by using Yule-Walker equation, while the estimator of γ could be obtained

by the moment estimation.

α̂ =

∑n
i=2(logXi − logX)(logXi−1 − logX)

∑n
i=1(logXi − logX)2

,

γ̂ =

√

π2(n− 1)

6
∑n

i=1(logXi − logX)2
,

where logX represents the mean of the sequence {logXi, 1 ≤ i ≤ n}.
The asymptotic properties of the Yule-Walker estimator α̂ and the moment esti-

mator γ̂ can be summarized using the result in Toulemonde et al. [93].

Theorem 6. (Toulemonde et al. [93]) The Yule-Walker estimator α̂ and the moment

estimator γ̂ are almost surely consistent and
√
n(γ̂−γ, α̂−α)′ converges in distribution

to a Gaussian vector with zero mean and covariance matrix

(

11
10
γ2 1+α

2

1−α2 −αγ
−αγ 1− α2

)

as n→ ∞.

The Ergodic theorem is used to make sure that the estimates converge almost

surely, while the finite fourth moments of the logarithm of α-stable random variable,

the classical result of Bartlett in Brockwell and Davis [9] together with the delta

method guarantee the asymptotic normality of the estimate.

In Figure 2.1, simulation results of α̂ and γ̂ with different chain size (n = 50, 100)

are displayed. The first column is the plots of α estimate using Yule-Walker estima-

tion, the second column is the plots of the estimate of Fréchet tail parameter γ, which

takes the value 1.2 (black lines). The red curves are plotted by means of estimators

in 500 repeated simulations and the green curves give their respective 95% confidence

intervals.

Yule-Walker estimation works satisfactorily and efficiently for many models, but in

our case, it produces non-null probability of estimators locating outside the parameter

space. In our simulations (Figure 2.1), the Yule-Walker estimates are negative in about
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Figure 2.1: Yule-Walker estimate of α in the first column and moment estimate of γ
in the second column, with means in red and 95% confidence interval in green.
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Figure 2.2: Adjusted Yule-Walker estimate of α with means in red and 95% confidence
interval in green.

half the cases whenever α is close to 0 (e.g., with α = 0.06, 42% of the estimates are

negative). When α takes a value close to 1, some estimates exceed 1.

A way to avoid the estimates from being outside the parameter space is to use

α̂k =
n− 1

n− k + 1

∑n
i=k(logXi − logX)(logXi−1 − logX)

∑n
i=1(logXi − logX)2

for k = 2, 3, . . . , choose the estimate α̂ = α̂k, where k = arg min{k : α̂k ∈ (0, 1)}.
The simulation result of this adjusted Yule-Walker estimation are shown in Fig-

ure 2.2. Compared with the original Yule-Walker estimators, the simulation result

improves a little. However when the chain size is small (n = 50), this method overes-

timates α when α is close to 0.

Usually a larger chain size produces better estimates. In Figure 2.2, the estimates
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around 0 show no improvement as chain size increases. One of the reasons is that

it is hard to get a large chain sized non-zero observation {Xt} when α is close to

0. Notice that the density of α-stable distributed errors around zero is large, which

means at some time k, α-stable variable Sk would be nearly 0, which makes Xt ≈ 0

for all t ≥ k. Thus even the chain size n increases to a large number, the observation

sequence provides little information about α, as long as α → 0.

2.2 Autoregressive model and conditional linear

programming

Besides the Yule-Walker estimation, the AR model can be used for the estimation

purposes. The sequence {logXt} can be written as an AR(1) sequence, for t =

1, 2, . . . , n,

logXt = α logXt−1 +
α

γ
log St

=
γe
γ
(1− α) + α logXt−1 + ut, (2.2)

where ut =
α
γ
log St − γe

γ
(1− α) is a zero mean noise.

The parameters α and γ could be estimated by obtaining the AR(1) coefficient

and the constant value γe
γ
(1− α).

Figure 2.3 shows the simulation result of α ∈ (0, 1), γ = 1.2(black horizontal line

in the second column) using AR model with n=50 and 100 respectively, in 500 repe-

titions. Since the least square estimation is used in the AR(1) model, the simulation

results are equivalent to the Yule-Walker estimates (see the first column in Figure

2.1). However, the estimates of γ are erratic, may be caused by the asymmetry and

the skewness of ut.

A method which can yield an α̂ within the parameter space (0,1) is needed. The

constrained linear programming is considered.

The AR(1) model (2.2) can be thought as a simple linear regression equation,

where {ut} is an i.i.d. sequence with zero mean.

To obtain estimator α̂ ∈ (0, 1), we use constrained linear programming. Let

(α̂, γ̂)′ = arg min
0<α<1,γ>0

n
∑

i=2

∣

∣

∣

∣

logXi − α logXi−1 −
γe(1− α)

γ

∣

∣

∣

∣

.
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Figure 2.3: Estimation results obtained using the AR(1) model. Estimate of α in
the first column and estimate of γ in the second column, with means in red and 95%
confidence interval in green.
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Figure 2.4: Comparison of α estimates obtained by simple linear regression and the
constrained linear programming.

Figure 2.4 shows the comparison of α estimates obtained by the simple linear

regression (also the original Yule-Walker estimation and the AR(1) model) and the

constrained linear programming. Overall, the constrained linear programming per-

forms better than the simple linear regression. Especially when α > 0.8, where it can

happen that some simple linear regression estimators exceed 1, while the constrained

linear programming estimators are closer to the true value.

However, the constrained linear programming does not improve the estimation of

γ. The constrained linear programming estimator of γ is still erratic. Furthermore,

when α̂, using the constrained linear programming, hits the constrain bounds, we

have trouble estimating the parameter γ.
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2.3 Weak mixing condition

Lacking of the effective estimation for γ (the maximum likelihood estimation does not

work for our observations and the AR model gives erratic estimates), the estimation

ignoring the dependence structure of the observations seems to be unavoidable. Before

doing this, the dependence structure of our observations should be studied.

In 1983, Leadbetter and Rootzén [62] proposed a weak mixing condition D(un),

which focused on the asymptotic independence of a stationary sequence. Later, Hüsler

showed that the extreme values of non-stationary sequences satisfied the asymptotic

independence condition in his papers [47], [46], [48] and the book of Falk, Hüsler and

Reiss [27]. The weak mixing condition was extend to non-stationary random fields by

Pereira and Ferreira in 2006 (see [77]).

Besides the weak mixing condition, there are other mixing conditions like the

strong mixing assumption (Rootzén, Leadbetter and de Haan[86]), coordinate-wise

mixing (Leadbetter and Rootzén [61]), ρ-mixing condition (Kolmogorov and Rozanov

[57]) and so on. In Brandley [8], eight mixing conditions are connected and compared.

More information about mixing conditions can be found in Brandley [8], Chen et al.

[13].

Under certain mixing condition, the good properties, like the Central Limit The-

orem, the weak invariance principles and rates of convergence hold for independent

sequence still hold for stationary sequence.

The weak mixing condition D(un) is defined as below.

Definition. Write

Fi1,...,in(x1, . . . , xn) = P(Xi1 ≤ x1, . . . , Xin ≤ xn)

for the jointly distribution ofXi1 , . . . , Xin , and for brevity, Fi1,...,in(u) = Fi1,...,in(u, . . . , u)

for each n, i1, . . . , in, u.

Let {un} be a sequence of constants. Then the sequence {Xn} is said to satisfy

D(un) if for each n, kn and each choice of integers i1, . . . , ip, j1, . . . , jp′ such that

1 ≤ i1 < i2 < · · · < ip < j1 < · · · < jp′ ≤ n, j1 − ip ≥ kn, (2.3)

we have

|Fi1,...,ip,j1,...,jp′ (un)− Fi1,...,ip(un)Fj1,...,jp′ (un)| < cn,kn (2.4)



33

where cn,kn → 0 as n→ ∞ for some sequence kn → ∞, kn = n).

The sequence {un} in the weak mixing condition D(un) is a sequence of thresholds

satisfying

lim
n→∞

n(1− F (un)) = τ

for some given τ > 0.

If the sequence {Xt} satisfies the weak mixing condition, under which the Central

Limit Theorem holds, then the moment estimation of γ is unbiased and consistent,

which is the same as the result in Theorem 6.

Theorem 7. For the time series {Xt, t ∈ Z}, if Xt = Xα
t−1S

α
γ

t , St
i.i.d.∼ S(α), then

Xt ∼Fréchet(0, 1, γ) and the sequence {Xt} satisfies the weak mixing condition D(un).

To show the inequality (2.4) holds, first we have

|Fi1,...,ip,j1,...,jp′ (un)− Fi1,...,ip(un)Fj1,...,jp′ (un)|
= Fi1(un)Fi2|i1(un) · · ·Fip|ip−1(un) ·

∣

∣Fj1|ip(un)− Fj1(un)
∣

∣ · Fjp′ |jp′−1
(un) · · ·Fj2|j1(un)

≤
∣

∣Fj1|ip(un)− Fj1(un)
∣

∣ ,

where Fi2|i1(·) is the conditional probability of Xi2 given Xi1 and i1, . . . , ip, j1, . . . , jp′

are defined as in (2.3). For simplicity, we let j1 − ip = k and denote j1 = t in the

proof of Theorem 7.

Now the proof is simplified to find out the effect of Xt−k on Xt, i.e., compare the

conditional probability P(Xt ≤ un|Xt−k ≤ un) with P(Xt ≤ un). Define the threshold

un as

un =
(

− log
(

1− τ

n

))− 1
γ
, (2.5)

for some given τ > 0.

The following lemma is needed in the proof of Theorem 7.

Lemma 8. (See Feller [29] p.336) For independent Lévy stable distributions S1 ∼
S(α), S2 ∼ S(ψ),

S1S
1/α
2 ∼ S(αψ).
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Proof. For t > 0,

E
(

e−tS1S
1/α
2

)

= E
(

E
(

e−tS1S
1/α
2 |S1

))

= E
(

e−t
αS2
)

= e−t
αψ

,

which is the Laplace transform of a S(αψ) random variable by the definition.

Proof of Theorem 7. Use Lemma 8 we have St−k+1S
1
α
t−k+2 · · ·S

1

αk−1

t ∼ S(αk).
Applying the stable tail behaviour in Equation (1.6), we have that

P(St−k+1S
1
α
t−k+2 · · ·S

1

αk−1

t ≤ y) ≈ 1− 1

Γ(1− αk)
y−α

k

for large y, so that the joint distribution of Xt−k and Xt can be approximated as

P(Xt ≤ un, Xt−k ≤ un)

=

∫ un

0

P(Xt ≤ un|Xt−k = x)fXt−k(x)dx

=

∫ un

0

P



xα
k

(

St−k+1S
1
α
t−k+2 · · ·S

1

αk−1

t

)αk

γ

≤ un|Xt−k = x



 d exp(−x−γ)

=

∫ un

0

Fαk
(

x−γuγ/α
k

n

)

d exp(−x−γ)

≈
∫ un

0

(

1− 1

Γ(1− αk)
u−γn xγα

k

)

d exp(−x−γ)

= e−u
−γ
n − 1

Γ(1− αk)
u−γn

∫ un

0

xγα
k

d exp(−x−γ)

= e−u
−γ
n − 1

Γ(1− αk)
u−γn

∫ ∞

u−γn

u−α
k

e−udu

= e−u
−γ
n − u−γn P(U > u−γn )

where U is a Gamma(1− αk, 1) random variable.
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Combined with the Equation (2.5), we have

P(Xt ≤ un|Xt−k ≤ un)

= 1− u−γn

e−u
−γ
n

P(U > u−γn ) (2.6)

= 1 +
log(1− τ

n
)

1− τ
n

P(U > u−γn )

= 1− τ

n
P(U > u−γn ) +Op

(

1

n2

)

,

which means for α ∈ (0, 1),

|Fi1,...,ip,j1,...,jp′ (un)− Fi1,...,ip(un)Fj1,...,jp′ (un)| → 0.

Thus {Xt} satisfies condition D(un).

Furthermore, notice that when αkn → 0 with kn = |j1 − ip| → ∞, U converges in

distribution to Exponential(1), thus P(U > u−γn ) → e−u
−γ
n ,

|P(Xt ≤ un|Xt−k ≤ un)− P (Xt ≤ un)| = Op

(

1

n2

)

.

When α → 1, αkn either goes to 0 or 1 and if αkn → 1, U converges in distribution

to Dirac(0). P(U ≤ u−γn ) → 1, which makes

|P(Xt ≤ un|Xt−k ≤ un)− P (Xt ≤ un)| = τ/n.

When α → 1, the dependence structure of {Xt} is stronger than that of α → 0.

This suggests that using the dependence structure to estimate the stability parameter

when α is very small may be useless. On the other hand, when α is large, the

estimation of Fréchet tail parameter obtained by the method of moments is okay since

the observation sequence has stronger dependency, compared with the observation

sequence generated by small α. However, in this case, be aware that the effective

sample size would be much smaller that the chain size.

Figure 2.5 shows the estimators of γ using the maximum likelihood estimation

ignoring the dependence structure. When α → 0, the MLE estimate is better than

AR(1) estimate. When α is large, ignoring the dependence structure ends up with

the increasing bias of the estimates due to the stronger dependency.
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Figure 2.5: MLE of γ when ignoring the dependence structure (means in red and 95%
in green).
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2.4 Strong mixing condition

In 1956, Rosenblatt introduced the strong mixing condition, which is also called α-

mixing condition in his paper [87].

Definition. (Strong mixing condition) Suppose {Xt} is a sequence of random vari-

ables on a given probability space (Ω,F , P ). Let F l
j denote the σ−field of events

generated by the random variable Xk, j ≤ k ≤ l. For any two σ-fields A and B ⊂ F ,

define the measure of dependence as

̺(A ,B) = sup
A∈A ,B∈B

|P(A ∩ B)− P(A) P(B)|.

For the given random sequence {Xt}, for any positive integer n, define the dependence

coefficient

̺(n) = sup
j
̺(F j

−∞,F
∞
j+n).

The random sequence {Xt} is said to be strongly mixing or α-mixing if ̺(n) → 0 as

n→ ∞.

Rosenblatt [87] proved the Central Limit Theorem holds under the strong mixing

condition. Besides Central Limit Theorem, weak invariance principles, laws of the

iterated logarithm, almost sure invariance principles, and rates of convergence in the

strong law of large numbers hold under the strong mixing condition (see McLeish

[68], Reznik [84], Dehling and Philipp [21], Stoica [88], Brandley [8]). When these

properties hold, they can be used to estimate the tail parameter in a weakly dependent

process with Fréchet distributed marginals.

For the stationary sequence {logXt},

̺(n) = sup
j
̺(F j

−∞,F
∞
j+n) = sup

A∈F
j
−∞,B∈F∞

j+n

|P(A ∩ B)− P(A) P(B)|.

Theorem 9. The time series {Xt} stated in Theorem 5 satisfies the strong mixing

condition.

The following lemma is needed to prove Theorem 9.
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Lemma 10. If S ∼ S(α), α ∈ (0, 1), α log(S) converges in distribution to Gumbel(0, 1)

when α → 0 and

P(α log(S) ≤ x) = exp(−e−x) + exp(−x− e−x)εα +Op(α),

where εα = α(1 + x− logα).

This Lemma ensures that when t ∈ Z, the observation Xt is Fréchet distributed.

Proof. Use the probability function of stable random variable S as shown in Equation

(1.4), the distribution of α log(S) is

P(α log(S) ≤ x) = P(S ≤ ex/α) =
1

π

∫ π

0

exp
(

−bα(θ)e
−x
1−α

)

dθ, (2.7)

with

bα(θ) =
sin((1− α)θ)

sin θ

(

sin(αθ)

sin θ

)α/(1−α)
.

First, we show the general statement of the Lemma. For any θ ∈ (0, π)

lim
α→0

α log sin(αθ) = lim
α→0

log sin(αθ)

1/α

= lim
α→0

θ cot(αθ)

− 1
α

2

= −θ lim
α→0

2α cos(αθ)− θα2 sin(αθ)

θ cos(αθ)
= 0,

which means

lim
α→0

[sin(αθ)]α/(1−α) = lim
α→0

exp

(

α

1− α
log sin(αθ)

)

= 1.

Thus we have

lim
α→0

bα(θ) = lim
α→0

sin((1− α)θ)

sin θ

(

sin(αθ)

sin θ

)α/(1−α)
= 1
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Because of Equation (2.7), this result shows that the distribution of α log(S) goes

to e−e
−x

as α → 0.

To see the second part of the Lemma, for 0 ≤ t ≤ 1,

exp
(

−bα(θ)e−
x

1−α

)

= exp(−e−x) + α (1 + x− logα) exp(−x− e−x)

−1

2

(

ex (x− logα)2 − (1 + x− logα)2
)

exp(−2x− e−x)α2 +Op(αθ
2).

From Equation (2.7),we have that

P(α log(S) ≤ x)

= exp(−e−x) + e−x−e
−x

(1 + x− logα)α

−1

2
e−2x−e−x (ex (x− logα)2 − (1 + x− logα)2

)

α2 +Op(α)

= exp(−e−x) + exp(−x− e−x)εα +Op(α)

with εα = (1 + x− logα)α.

Now we show the sequence {Xt} satisfies the strong mixing condition.

Proof of Theorem 9. For any x, y > 0, integer j,

̺(n) ≤ |P(Xj ≤ x,Xj+n ≤ y)− P(Xj ≤ x) P(Xj+n ≤ y)|
= |P(Xj ≤ x,Xj+n ≤ y)− e−x

−γ−y−γ |.

With Lemma 8 and Lemma 10, when n→ ∞,

P(Xj ≤ x,Xj+n ≤ y)

= P
(

Xj ≤ x,Xαn

j (Sj+1 · · ·Sα
1−n

j+n )α
n/γ ≤ y

)

=

∫ x

0

P
(

αn log(Sj+1 · · ·Sα
1−n

j+n ) ≤ γ(log y − αn logXj)
)

de−X
−γ
j

=

∫ x

0

e−e
−γ(log y−αn logXj)

de−X
−γ
j +Op(nα

n)

=

∫ x

0

e−y
−γ (

1− γαny−γ logXj +Op(α
2n)
)

de−X
−γ
j +Op(nα

n)

= e−x
−γ−y−γ +Op(nα

n).
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Figure 2.6: Moment estimation of γ, n=100.

The last step holds because

∫ x

0

(logXj)
kde−X

−γ
j = γ−k

∫ γx

−∞
ykde−e

−y
,

which is less than the k-th moment of a Gumbel random variable, which is finite.

Thus

̺(n) = Op(nα
n),

which means {Xt} satisfies the strong mixing condition.

The observation sequence in the model (1.9) satisfies the weak mixing condition

and the strong mixing condition. Thus the average of the observation logX goes to a

normal distribution with mean γe
γ

and variance π2

6
1
γ2

n−2α−nα2+2αn+1

n2(1−α)2 , as our previous

calculation for the covariance shows. Moment estimation can be used to obtain γ̂.

Figure 2.6 is the simulation results of γ estimates by the method of moments from
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the observation {logXt} when n = 100. The first column is the estimates of γ̂1 using

the first order moments, the second column pictures the plots of estimates γ̂2 using

the second order moments,

γ̂1 =
nγe

∑

1≤i≤n logXi

, γ̂2 =

√

π2(n− 1)

6
∑n

i=1(logXi − logX)2
.

γ̂2 is as same as the γ estimator stated in Section 2.1.

We can see that γ̂2 works much better than γ̂1 from Figure 2.6.

As discussed before, when α is small, takes α value close to 0, it is difficult to

obtain an efficient estimate, because of the small non-zero chain size and the weak

dependence structure.

When α goes to 1, αn does not converge to 0. The condition of Lemma 10 is no

longer satisfied, thus the strong mixing condition does not hold. In fact, with α → 1,

the model (1.9) Xt = Xα
t−1S

α/γ
t reduces to Xt ≈ Xt−1 because St ∼ S(α) becomes

degenerate ( the Laplace transform goes to e−t), which makes the effective sample size

close to 1, regardless of n.

2.5 Extremal index

In 1988, Leadbetter and Rootzén [63] studied the asymptotic distribution of extreme

values for a wide class of dependent stochastic sequences. The extreme values are

considered as an over exceedance point process and the definition of extremal index,

used to describe the dependence structure of a sequence, is defined as

Definition. For a stationary sequence {Xn} with distribution F, and a constant

sequence un satisfying n(1− F (un)) → τ with some τ > 0, if

P

(

max
1≤i≤n

Xi ≤ un

)

→ e−θτ ,

we say that the stationary sequence {Xn} has extremal index θ, 0 ≤ θ ≤ 1.

Extremal index is not only used to define the asymptotic distribution of maximum,

but also to find the asymptotic distribution of the other order statistics.

For an independent sequence, the extremal index, θ, is one.
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If a dependent sequence has extremal index one, the asymptotic distributions of

its order statistics are the same as the asymptotic distributions of the order statistics

of an independent sequence from the same distribution.

Using the result in Equation (2.6), we have

P (Xt ≤ un|Xt−1 ≤ un) = 1− u−γn θn,

where

θn =
P(U > u−γn )

e−u
−γ
n

,

with U ∼ Gamma(1 − α, 1) and the sequence {un} is defined as in Equation (2.5).

Thus

P(max
1≤t≤n

{Xt} ≤ un) = P(X1 ≤ un)
n
∏

t=2

P (Xt ≤ un|Xt−1 ≤ un)

≈ (1− τ

n
)

(

1− τ

n
θn +Op(

1

n2
)

)n−1

≈ e−θnτ ,

when 0 < α < 1.

The extremal index of sequence {Xt} is limn→∞ θn. θn is a decreasing function

of α. θn → 1 as α → 0 because U converges in distribution to Exponential(1) and

θn → 0 as α → 1 since U converges in distribution to the Dirac delta distribution.

For any given α ∈ (0, 1), θn → 1 when n → ∞. A plot of θn as a function of α

is shown in graph 2.7. Although, when α is large, the rate on which θn goes to 1 is

much slower than that of when α is small.

Before considering the order statistics, notice that the tail of Fréchet(0, 1, γ) dis-

tribution has the property

P(Xt > x) = 1− e−x
−γ

= x−γ +Op(x
−2γ)

as x→ ∞, which indicates that it is a heavy tail distribution. In fact,

P(Xt > x+ c)

P(Xt > x)
=

(

x

x+ c

)γ (1− 1
2
(x+ c)−γ + 1

6
(x+ c)−2γ +Op((x+ c)−3γ)

1− 1
2
x−γ + 1

6
x−2γ +Op(x−3γ)

)

→ 1
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Figure 2.7: Extreme index of {Xt} as α increases.
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Figure 2.8: Comparison of γ estimates using Hill estimates and the moments esti-
mates.

as x→ ∞, which means that Fréchet(0, 1, γ) is long-tailed.

Hill estimation is commonly used for the heavy-tailed distributions. The asymp-

totic normality of Hill estimator is studied by researchers under the strong mixing

condition, like in Ling and Peng [64]. Resnick and Stărică ([81], [82]) studied the

behaviour of Hill estimator for the stationary sequence and in the AR model. Thus

we can try to estimate γ using the Hill estimation.

Figure 2.8 are the comparison of Hill estimator and the moment estimator of γ.

Hill estimator works, but behaves not as good as the moment estimator.

2.6 Recursive Hill estimation

For the independent error sequence, we already know that St ∼ S(α), t = 1, 2, . . . , is

a sequence from a heavy tailed distribution.
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Hill estimation, which depends on the order statistics, can be used here, at least

when α is away from 1. It works efficiently for the heavy-tailed distributions. Since

the stable distribution S(α) has a heavy tail and in our model the errors are an

independent sequence, it is natural to think of Hill estimation as a plausible option.

Before applying the Hill estimation, we compare the tail behaviour of stable dis-

tributions with a small parameter (α goes to zero) and a large parameter (1−α with

α goes to 0). Denote S ′ ∼ S(α), S ′′ ∼ S(1− α), then

P(S ′ > x)

P(S ′′ > x)
≈ Γ(α)

Γ(1− α)
x for large x. (2.8)

This ratio goes to infinity as α → 0, which indicates that the tail of a stable

distribution with the stability parameter goes to 1 is much thinner than the stable

parameter goes to 0. If the Hill estimation is applied to the stable distribution, the

results of observations generated by small stability parameter should be better than

the results with large stability parameter. We reached a similar conclusion, when

looking into θn, the extremal index as a function of α.

The problem here is that the Hill estimation is not applied to the error sequence,

since the error sequence cannot be observed.

To obtain a satisfactory estimator of α and improve the estimator of γ, I proposed

a recursive Hill estimation.

We write St(α, γ) as the unobserved sequence X
γ
α
t X

−γ
t−1, i.e. St(α, γ) = X

γ
α
t X

−γ
t−1.

Denote γ̂[i] as the estimate of γ at the i-th stage and by γ̂[1], its initial value.

We begin with i = 1, apply the following steps recursively.

(a). For a given γ̂[i], obtain α[i] as

α̂[i] = arg min
0<α<1

(

1

α
− 1

k

k
∑

t=1

log Ŝ
[i]
(n−t)(α) + log Ŝ

[i]
(n−k−1)(α)

)2

, (2.9)

where {Ŝ[i]
(t)(α)} is denoted as the order statistics of the sequence {St(α, γ̂[i])} for all

the time t > 1, and Ŝ
[i]
(1)(α) is the minimum of {X γ̂[i]/α

t X
−γ̂[i]
t−1 } while Ŝ

[i]
(n−1)(α) is the

maximum.

The reason to do so is that by Hill estimation, the following approximate equation

should hold for a reasonably large k,
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1

α
≈ 1

k

k
∑

t=1

log Ŝ
[i]
(n−t)(α)− log Ŝ

[i]
(n−k−1)(α).

(b) Now we update the γ estimator using the α̂[i] obtained from Equation (2.9).

For a reasonable number k′, let

γ̂[i+1] = α̂−1
[i]

(

1

k′

k′
∑

t=1

log Û
[i]
(n−t) − log Û

[i]
(n−k′−1)

)−1

, (2.10)

where Û
[i]
(t) is the i-th order statistic from the sequence {Ut(α̂[i])} and Ut(α) = X

1/α
t X−1

t−1,

which only depends on α, and has a heavy tail with index γα.

In this step, the recursive Hill estimation is applied again to update the tail pa-

rameter, since according to the Hill estimation, if α̂[i] is close to α, we have

1

αγ
≈ 1

k′

k′
∑

t=1

log Û
[i]
(n−t) − log Û

[i]
(n−k′−1).

Repeat steps (a), (b) until little change for α, γ estimates are obtained.

Hill estimation works for sequence with heavy tail. When α is small, i.e. close

to 0, the tail of a S(α) random variable is long and easy to find. However, when α

increases, the mode of the density of S(α) moves to the right, the tail is thinner.

The simulation results of the recursive Hill estimation are shown in the Figure 2.9.

The estimation of γ when α is close to 1 seemed okay even when sample size is

small (n=50). When α is small, recursive Hill estimation returns estimates within

the parameter space, which is an improvement when comparing with the Yule-Walker

estimation, which may yield negative estimators.

In step (a), the estimator of γ is used to update the α estimate. To see the effect

of using γ̂ instead of γ, we need to compare the distributions of the order statistics

Ŝ(t)(α) generated by γ̂.

Let Ŝt(α) = X
γ̂
α
t X

−γ̂
t−1, where γ̂ is the moment estimator of γ and Ŝ(t), 1 ≤ t ≤ n−1

be the order statistics of Ŝt(α), Ŝ(1) ≤ Ŝ(2) ≤ · · · ≤ Ŝ(n−1) while S(t), 1 ≤ t ≤ n− 1 are

the order statistics of St, 2 ≤ t ≤ n.
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Figure 2.9: Recursive Hill estimates of α (left) and the estimates of γ (right) with
n=50, means in blue dots, 95% confidence interval in green.

Denote the Hill estimator α[h] and α̂[h] as

1

α[h]

=
1

k

k
∑

i=1

log
S(n−i)
S(n−k−1)

,
1

α̂[h]

=
1

k

k
∑

i=1

log
Ŝ(n−i)

Ŝ(n−k−1)

.

We know that the Hill estimator has the asymptotic property of normality

√
k(α[h] − α) → N(0, α2)

when n → ∞. Now we would like to find the property of α̂ = α̂1 in Equation (2.9),

using the moment estimator γ̂.

Since α̂ depends on the order statistics of Ŝt(α) = X
γ̂/α
t X−γ̂

t−1 for t > 1, thus we

have

log Ŝt(α)− log St =
γ̂ − γ

α
logXt − (γ̂ − γ) logXt−1 =

γ̂ − γ

γ
log St,

which means log Ŝt(α) =
γ̂
γ
log St and we know that γ̂

γ
→ N(1,Ωn) with Ωn = 11

10n
1+α2

1−α2

(Theorem 6).

We need to consider the distribution of log Ŝt(α) and the distribution of its order

statistic. Since the Hill estimator uses the extremes beyond the threshold, when x is
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large,

P(log Ŝt(α) ≤ x)

=

∫

R

P
((

1 + Ω1/2
n w

)

log St ≤ x
)

dFw(w)

≈
∫

R

(

1− 1

Γ(1− α)
exp

− αx

1+Ω
1/2
n w

)

dFw(w)

= 1− e−αx

Γ(1− α)

∫

R

(

1 + αx
√

Ωnw +

(

α2x2

2
− αx

)

Ωnw
2 +Op(Ω

3/2
n w3)

)

dFw(w)

= 1− e−αx

Γ(1− α)

(

1 + αx
(αx

2
− 1
)

Ωn + αx
√

Ωn

(

2− αx

2

) φ( 1√
Ωn

)

Φ( 1√
Ωn

)
+Op

(

Ω3/2
n

)

)

=

(

1− e−αx

Γ(1− α)

)






1−

αx
(

αx
2
− 1
)

Ωn + αx
√
Ωn

(

2− αx
2

) φ( 1√
Ωn

)

Φ( 1√
Ωn

)

Γ(1− α)eαx − 1
+Op

(

Ω3/2
n

)







→ 1− e−αx

Γ(1− α)
,

where Fw(w) = Φ(w)−Φ(−1/
√
Ωn)

1−Φ(−1/
√
Ωn)

is the truncated standard normal distribution, since

the first integral in this calculation is convergent only in the region w > − 1√
Ωn
. Φ

and φ is the distribution function and density function of a standard normal random

variable.

This conclusion shows that the tail of Ŝt(α) behaves the same as the tail of S(α).

Lemma 11. The tail of Ŝt(α) converges in distribution to the tail of St for 1 ≤ t ≤ n.

To obtain the asymptotic density of the order statistic, we have

lim
n→∞

Pn(log Ŝt(α) ≤ x)

Pn(log St ≤ x)
(2.11)

≈ lim
n→∞






1−

αx
(

αx
2
− 1
)

Ωn + αx
√
Ωn

(

2− αx
2

) φ( 1√
Ωn

)

Φ( 1√
Ωn

)

Γ(1− α)eαx − 1
+Op

(

Ω3/2
n

)







n

= exp

(

−11

20

1 + α2

1− α2

αx(αx− 2)

eαxΓ(1− α)− 1

)

,

which is close to 1 when x is the 70% quantile of S(α) (see Table 2.1) or larger (the
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α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
Eq (2.11) 1.0000000 0.9999994 0.9415507 0.9472035 1.0693781

α = 0.6 α = 0.7 α = 0.8 α = 0.9
Eq (2.11) 1.1473225 1.1369867 1.0556348 1.0012682

Table 2.1: The ratio in Equation (2.11) with x be the 70% quantile of S(α).

ratio has maximum error 10−5 from 1 when x takes the value of 90% quantile of S(α)).

We only use the extremes beyond the threshold to get α, thus if we define the tail

reasonable, we could obtain good estimator of α.

Using P(log Ŝt(α) ≤ x), we can also obtain the ratio of the other order statistics

of Ŝt(α) and St, which is close to 1 when x is reasonably large.

2.7 Recursive Fan’s estimation

So far, all the estimations are based on the logarithm of the observations, even the

Hill estimation. After logarithm, some properties would be changed or lost. In this

section, we do estimation with {Xi} use the estimation proposed by Fan [28].

In Fan [28], the stability parameter is estimated using the property of strictly

stable, i.e.

S1 + S2
d
= 21/αS1,

where the independent stable random variables S1, S2 ∼ S(α). Thus

α̂ =
log 2

E (log(S1 + S2))− E(log S1)
.

The estimator obtained by Fan’s method has been proved to be unbiased, consistent

and approximate normal. Denote Fan’s estimate as

α̂F =
n(n− 1)

2
log 2

(

∑

1≤i<j≤n

(

log(Si + Sj)−
log Si + log Sj

2

)

)−1

.

and
√
n
(

1
α̂F

− 1
α

)

converges in distribution to a normal distribution with zero mean

and variance, which is the sample variance of the sequence

{

1

n log 2

∑

j 6=i

(

log(Si + Sj)−
log Si + log Sj

2

)

, 1 ≤ i ≤ n

}

.
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Figure 2.10: Estimators of α using Fan’s estimation, with means in red, 95% confi-
dence interval in green.

For our time series, the error sequence {St} is unobserved. A modified recursive

Fan’s estimation can be applied to obtain the α estimate.

With initial estimators α̂s, γ̂s, s = 1, obtain

Ŝt = X
γ̂s/α̂s
t X−γ̂s

t−1

for 2 ≤ t ≤ n. This dependent sequence can be used to update the stability parameter

α, by applying the strictly stable property to Ŝi, Ŝj which are not located next to each

other. Let

α̂s+1 = arg min
0<α<1

∣

∣

∣

∣

∣

(n− 2)(n− 3)

2

log 2

α
−

∑

2≤i<j≤n,j−i>1

(

log(Ŝi + Ŝj)−
log Ŝi + log Ŝj

2

)∣

∣

∣

∣

∣

.

And denote

Ŝ
1/γ
t = X

1/α̂s+1

t X−1
t−1,

update the estimator of γ using α̂s+1.

The simulation results of chain size 100 and 500 are shown in Figure 2.10.
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Use the moment estimator γ̂ from {logXt}, as the initial estimator, in the recursive

Fan’s estimation, we have Ŝt = S
γ̂/γ
t . Denote γ̂/γ → 1 +

√
ΩnZ, where Z ∼ N(0, 1),

Ωn = 11
10n

1+α2

1−α2 as before (in Theorem 6).

Notice that

Ŝt = St

(

1 +
√

ΩnZ log St +Op(Ωn)
)

,

thus

log
(

Ŝi + Ŝj

)

− log Ŝi + log Ŝj
2

= log
(

Ŝi + Ŝj

)

− log (Si + Sj) + log (Si + Sj)−
log Si + log Sj

2

+
log Si + log Sj

2
− log Ŝi + log Ŝj

2

= log

(

1 +
Si log Si + Sj log Sj

Si + Sj

√

ΩnZ +Op(
√

Ωn)

)

+ log (Si + Sj)−
log Si + log Sj

2

−1

2
log
(

1 +
√

ΩnZ log Si +Op(Ωn)
)

− 1

2
log
(

1 +
√

ΩnZ log Sj +Op(Ωn)
)

=
Si log Si + Sj log Sj

Si + Sj

√

ΩnZ + log (Si + Sj)−
log Si + log Sj

2

− log Si + log Sj
2

√

ΩnZ +Op(Ωn)

=
(Si − Sj)(log Si − log Sj)

2(Si + Sj)

√

ΩnZ + log (Si + Sj)−
log Si + log Sj

2
+Op(Ωn),

where Ωn → 0 as n→ ∞.

E

(

log(Ŝi + Ŝj)−
log Ŝi + log Ŝj

2

)

= E

(

log (Si + Sj)−
log Si + log Sj

2

)

+Op(Ωn)

=
log 2

α
+Op(Ωn).

Thus the convergence rate of recursive Fan’s estimate is Op(1/n).
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2.8 Estimation using Kantorovich-Wasserstein Met-

ric

We know that the Laplace transform is an alternative way to characterize the dis-

tribution of a random variable. Also as mentioned before, by the Feller’s Tauberian

theorem we know of an important relationship between the behaviour of large val-

ues from α-stable distribution and its Laplace transform near the origin. With this

in mind, here we propose the Laplace transform of S
α/γ
t to estimate the unknown

parameters.

Since

XtX
−α
t−1 = S

α/γ
t (2.12)

and E
(

e−uS
α/γ
t

)

≤ ∞, we have

ω(u) = E
(

e−uXtX
−α
t−1

)

= E
(

e−uS
α/γ
t

)

(2.13)

for all time t and u > 0. The Laplace transform of S
α/γ
t , ω(u), depends on the integral

∫ ∞

0

cos(s)e−us
α/γ

ds,

which needs to be calculated numerically.

The idea of the estimation is to minimize the distance between the empirical

estimator of ω(u) and ω(u) itself, i.e.,

α̂ = arg min
α∈(0,1)

∫

|ω̂(u)− ω(u)|du,

where ω̂(u) = 1
n

∑n
t=2 e

−uXtX−α
t−1 .

To test how the Laplace transform works on estimating α, we simulated the time

series with a known γ = 2 and a small chain size (n = 50), with the result shown in

Figure 2.11. From the figure we can see this method has smaller bias when α is large

(close to 1). As α increases, the dependence structure of observations is stronger and

easier to be captured by the Equation (2.13).

To estimate α using the Laplace transform, we need a good estimator of γ first. We

use the same idea, the Kantorovich-Wasserstein metric, to obtain the Fréchet shape

parameter, knowing that because of the mixing conditions, the empirical distribution
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Figure 2.11: Averages of α estimates using Laplace transformation, n = 50.

of a sequence from the model (1.9) is asymptotically normal, i.e.,

√
n

(∑n
i=1 I(Xi ≤ x)

n
− exp(−x−γ)

)

→ N
(

0, e−x
−γ
(

1− e−x
−γ
))

,

P

(√
n

∣

∣

∣

∣

∑n
i=1 I(Xi ≤ x)

n
− exp(−x−γ)

∣

∣

∣

∣

> x

)

< 2e−2x2 ,

where I() is the indicator function. Let

γ̂ = arg min
γ>0

∫ ∞

0

∣

∣

∣

∣

∑n
i=1 I(Xi ≤ x)

n
− exp(−x−γ)

∣

∣

∣

∣

dx,

which ignores the dependence structure of the observation sequence, and use γ̂ to

obtain

α̂ = arg min
α∈(0,1)

∫ ∞

0

∣

∣

∣ω̂(u)− E(e−uS
α/γ̂
t )
∣

∣

∣ du.

The simulation result of using Kantorovich-Wasserstein distance in estimation is

shown in the Figure 2.12. The behaviour of γ estimates is better than what we had

before. Surprisingly, even when α is large, which brings the stronger dependence

between the observations, minimizing the distance between the empirical distribution

and the marginal distribution gives the estimators with small bias compared with the

other methods we tried. Besides this, when α is large, α̂ behaves good and it seems

not to be affected by the differences between γ̂ and γ.
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Figure 2.12: Means and 95% confidence interval of α estimates (first column) and the
γ estimates using Kantorovich-Wasserstein distance (second column).

As the chain size increases, the behaviour of estimators obtained by Kantorovich-

Wasserstein distance shows consistency (in Figure 2.13). With a large stability pa-

rameter (like α = 0.8 in the third row), to obtain a good estimator of γ, larger sample

size is needed when comparing with the estimation in the time series with a small

stability parameter. When α is large, the dependence structure should be considered

to estimated γ.

To get better estimates, expressed in another way, to update the estimates, a

similar method is applied repeatedly with the new estimators, either to update the

γ estimator by applying the Kantorovich-Wasserstein distance to both sides of the

Equation (2.12), i.e.,

γ̂u1 = arg min
γ>0

∫ ∞

0

∣

∣

∣

∣

∣

∑n
i=2 I(XiX

−α̂
i−1 ≤ x)

n− 1
− Fα̂(x

γ/α̂)

∣

∣

∣

∣

∣

dx,
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Figure 2.13: Means and 95% confidence interval of γ estimates (first column), α
estimates (second column) using the Kantorovich-Wasserstein distance.
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Figure 2.14: Means and 95% confidence interval of γ̂(first column) and γ̂u1(second
column).

or use the maximum likelihood estimation with the new α̂, which is

γ̂u2 = arg max
γ>0

n
∏

i=2

f
S
1/γ
i

(

X
1/α̂
i X−1

i−1

)

= arg max
γ>0

(

(n− 1) log(γ) + (r − 1)
n
∑

i=2

log(XiX
−α̂
i−1) +

n
∑

i=2

log fα̂(X
γ
i X

−α̂γ
i−1 )

)

.

Figure 2.14 shows the comparison of γ̂ and γ̂u1 when n = 50, 100. As α increases,

some improvement of γ̂u1 can be seen, since γ̂u1 depends on α̂, considers the depen-

dence structure.

To obtain the convergence rate of γ̂
γ
− 1, the convergence rate of

∑n
i=1 I(Xi≤x)

n
−

exp(−x−γ) is considered first. Use the Law of the iterated logarithm, Hartman and

Wintner [44] showed that for an i.i.d. sequence, if Sn−Sn−1 has zero mean and finite
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variance δ2, Sn denote the partial sum of the sequence, then

lim sup
n→∞

Sn
√

2nδ2 log log n
= 1 a.s.

R. Davis [20] extended the result to the stationary sequence under some conditions.

When 0 < γ < 2 and for some k = op(n), k → ∞, if

lim sup
n→∞

n

[n/k]−1
∑

t=1

P (X1 > un, X1+t > un) = op(1),

then the convergence rate of the dependent sequence partial sum is the same as that

of an dependent sequence. Since

P (X1 > un, X1+t > un) ≈
u−γn

Γ(1− αt)

∫ u−γn

0

x−α
t

de−x,

n

[n/k]−1
∑

t=1

P (X1 > un, X1+t > un) ≈ nu−γn

[n/k]−1
∑

t=1

1

Γ(1− αt)

∫ u−γn

0

x−α
t

de−x

≈ τ

[n/k]−1
∑

t=1

u
−γ(1−αt)
n

Γ(2− αt)

<
τ 2

n

[n/k]−1
∑

t=1

(τ

n

)−αt

→ 0.

Applying this result we have that

∣

∣

∣

∣

∑n
i=1 I(Xi ≤ x)

n
− exp(−x−γ)

∣

∣

∣

∣

=

√

2e−x−γ (1− e−x−γ ) log log n

n

= Op

(
√

log log n

n

)

a.s.

Thus, we can expect that

lim sup
n→∞

∣

∣exp(−x−γ̂)− exp(−x−γ)
∣

∣ = Op

(
√

log log n

n

)

a.s.
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On the other hand, by Taylor expansion, we have

exp(−x−γ̂)− exp(−x−γ) = −x−γ exp(−x−γ)(γ − γ̂) log x+Op((γ − γ̂)2)

= Op (|γ − γ̂|) ,

i.e., |γ − γ̂| = Op

(

√

log logn
n

)

a.s.

Thus we can write

1

γ̂
=

1

γ
− 1

γ2
(γ̂ − γ) +Op

(

γ̂ − γ)2
)

,

which implies

S
α/γ̂
t = S

α/γ− α
γ2

(γ̂−γ)+Op((γ̂−γ)2)
t

= S
α/γ
t

(

1 + (γ̂ − γ) logS
− α
γ2

t +Op

(

(γ̂ − γ)2
)

)

,

e−uS
α/γ̂
t = e−uS

α/γ
t

(

1− u(γ̂ − γ)S
α/γ
t log S

− α
γ2

t +Op

(

(γ̂ − γ)2
)

)

.

So

E
(

e−uXtX
−α
t−1

)

−E
(

e−uS
α/γ̂
t

)

= uE

(

(γ̂ − γ)S
α/γ
t e−uS

α/γ
t log S

− α
γ2

t

)

+Op

(

E(γ̂ − γ)2
)

.



Chapter 3

State space model with GEV

distributed marginals and α-stable

distributed errors

In this chapter, we consider the state space model with GEV distributed marginals

and α-stable distributed errors

{

Yt = µ− σ
γ
+ σ

γ
eψγXtξψγt , (observation equation)

Xt+1 = αXt + α log St+1, (state equation)
(3.1)

where {St} and {ξt} are independent error sequences following α-stable distributions,

St ∼ S(α) and ξt ∼ S(ψ) with α, ψ ∈ (0, 1), for t ≥ 1, γ 6= 0.

If X0 follows standard Gumbel distribution, i.e. Gumbel(0,1), then the marginal

distribution of Xt is the standard Gumbel distribution, and the marginal distribution

of Yt follows GEV(µ, σ, γ) for all t ≥ 1.

The state space model with Gumbel distributed marginals and exponential α-

stable distributed errors is

{

Y ′
t = µ+ σψXt + σψ log ξt, (observation equation)

Xt+1 = αXt + α log St+1, (state equation)

where St ∼ S(α), ξt ∼ S(ψ), are independent α-stable distributed errors. The obser-

vation Y ′
t ∼ Gumbel(µ, σ) for t ∈ Z.
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3.1 Dependence of transformed observation sequence

First, we have a look into the dependence of observation sequence {Yt, t ≥ 1} in model

(3.1). For simplicity, denote

{

Zt =
1
γ
log Yt−µ+σ/γ

σ/γ
, when γ 6= 0

Zt =
Yt−µ
σ
, when γ = 0

so that we have Zt ∼Gumbel(0,1).

Our main estimation interests are the GEV shape parameter γ, and the stability

parameters α and ψ. In this chapter we will discuss the state space model with µ = 0,

σ = 1, i.e.

P(Yt ≤ y) = e−(1+γy)−1/γ

, 1 + γy > 0.

We check the dependent structure of {Zt} instead of {Yt}. If {Zt} satisfies the

strong mixing condition, then {Yt} satisfies the weak or strong mixing conditions.

Now we have the state space model with standard Gumbel distributed marginals

{

Zt = ψXt + ψ log ξt, (observation equation)

Xt+1 = αXt + α log St+1. (state equation)
(3.2)

This state space model can be rewritten as

Zt = αψXt−1 + αψ log St + ψ log ξt

= αZt−1 + ψ log ξt − αψ log ξt−1 + αψ log St (3.3)

= αkψXt−k + ψ log ξt +
k
∑

i=1

αiψ log St+1−i.

= αkZt−k + ψ log ξt − αkψ log ξt−k +
k
∑

i=1

αiψ log St+1−i. (3.4)

The sequence {Zt, t ≥ 1} is a stationary sequence with covariance

Cov(Zt, Zt−k) =
π2

6
αkψ2, 1 ≤ k. (3.5)

To check whether {Zt} satisfies the strong mixing condition, we calculate the

difference between P(Zt ≤ x0, Zt+n ≤ x1) and P(Zt ≤ x0) P(Zt+n ≤ x1).
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Lemma 12. For any x0, x1 ∈ R, when n→ ∞,

|P(Zt ≤ x0, Zt+n ≤ x1)− P(Zt ≤ x0) P(Zt+n ≤ x1)| = Op(nα
n).

Proof. Use the Equation (3.4), we have

Zt+n = αnZt + ψ log ξt+n − αnψ log ξt +
n
∑

i=1

αiψ log St+n+1−i,

where ψ log ξt+n +
∑n

i=1 α
iψ log St+n+1−i = αnψ log S∗

n with S∗
n ∼ S(αnψ). Thus

P(Zt ≤ x0, Zt+n ≤ x1)

=

∫ x0

−∞
P(Zt+n ≤ x1|Zt)de−e

−Zt

=

∫ x0

−∞
P(αnψ log S∗

n − αnψ log ξt ≤ x1 − αnZt|Zt)de−e
−Zt

=

∫ x0

−∞

∫ ∞

0

P(αnψ log S∗
n ≤ x1 − αnZt + αnψ log ξt|Zt, ξt)dFψ(ξt)de−e

−Zt
.

Denote CZt = e−x1+α
nZt , use Lemma 10 in Chapter 2.4, we have

P(Zt ≤ x0, Zt+n ≤ x1)

=

∫ x0

−∞

∫ ∞

0

exp(−CZte−α
nψ log ξt)dFψ(ξt)de

−e−Zt

+αnψ

∫ x0

−∞

∫ ∞

0

CZtξ
−αnψ
t e−CZtξ

−αnψ
t

× (1 + x1 − αnZt + αnψ log ξt − log(αnψ)) dFψ(ξt)de
−e−Zt

+Op(nα
n)

= An + αnψBn +Op(nα
n).
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Using Taylor’s expansion,

An =

∫ x0

−∞

∫ ∞

0

exp
(

−CZte−α
nψ log ξt

)

dFψ(ξt)de
−e−Zt

=

∫ x0

−∞

∫ ∞

0

e−CZt
(

1 + αnψCZt log ξt +Op(α
2nψ2 log2 ξt(CZt + C2

Zt)
)

dFψ(ξt)de
−e−Zt

=

∫ x0

−∞
e−CZt

(

1 + αnψCZt E(log ξt) +Op

(

α2nψ2(C2
Zt + CZt) E(log

2 ξt)
))

de−e
−Zt
.

Since

∫ x0

−∞
e−CZtde−e

−Zt

= e−e
−x1

∫ x0

−∞

(

1− αne−x1Zt +Op(α
2ne−2x1Z2

t )
)

de−e
−Zt

= e−e
−x1

(

e−e
−x0 − αne−x1

∫ x0

−∞
Ztde

−e−Zt +Op

(

α2n

∫ x0

−∞
Z2
t de

−e−Zt
))

= e−e
−x1−e−x0 +Op(α

n),

for 0 <
∫ x0
−∞ Ztde

−e−Zt < ∞, and
∫ x0
−∞CZte

−CZtde−e
−Zt = e−x1−e

−x1 [e−e
−x0 + Op(α

n)]

is also finite, together with the fact that the moments of log α-stable distribution are

finite, we have

An = e−e
−x1−e−x0 +Op(α

n).

Similarly, we can obtain that

Bn = (1 + x1)

∫ x0

−∞
CZte

−CZtde−e
Zt

+Op(n),

thus

|P(Zt ≤ x, Zt+n ≤ y)− P(Zt ≤ x) P(Zt+n ≤ y)| = Op(nα
n).

When 0 < α < 1, the sequence {Zt} satisfies the strong mixing condition since

nαn → 0 as n → ∞. However this mixing condition no longer holds when α → 1.

Furthermore, when α is large, say close to 1, the large value of n makes Op(nα
n)

non-negligible. This is something that needs to be considered when using the result.
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3.2 Estimation of γ

In the estimation of the time series discussed in Chapter 2, γ can be estimated using

moment estimation. While in the estimation of the state space model with GEV dis-

tributed marginals, moment estimation is not applicable since the mean and variance

of GEV random variable are finite only under certain conditions (γ < 0.5).

Instead of moment estimation, maximum likelihood estimation, Hill estimation

(when a heavy tail is detected) and the Kantorovich-Wasserstein distance can be used

to estimate γ, since the strong mixing condition is satisfied.

Figure 3.1 compares the results of three estimations, maximum likelihood estima-

tion, Hill estimation and Kantorovich-Wasserstein distance, to obtain γ estimates,

ignoring the dependence structure of the observations which are from the state space

model with GEV(0, 1, γ = 1.2) marginals. The first two rows show γ estimates when

α takes the value of 0.2, 0.4, 0.6, 0.8, respectively. The last two rows show the results

of γ estimates when ψ takes the value of 0.2, 0.4, 0.6, 0.8, respectively. The chain size

here is 100. From Figure 3.1 we can see that when both of the stability parameters are

large, the estimation ignoring the dependence is not good. If the stability parameters

are not large (not close to 1) and not in the neighbourhood of 0, the γ estimates

ignoring the dependence works because in such a case the dependence is very weak to

be captured by a small sized observation sequence.

3.2.1 Regression estimation of GEV parameters

Here we will consider the estimation of the GEV parameters in the state space model

with observations {Yt, 1 ≤ t ≤ n}, which have marginal distribution GEV(µ, σ, γ).

Since

Zt =
1

γ
log

Yt − µ+ σ/γ

σ/γ

and {Zt} satisfies the strong mixing condition, thus {Yt} satisfies the strong mixing

condition.

To find a good estimation method, the tail behaviour should be studied first. If

{Yt} does not have a heavy tail, casual estimation technique can be used; otherwise

alternative estimation procedures for heavy tailed distributions like the method us-

ing Kantorovich-Wasserstein metric and a regression method presented in the next

section.
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Figure 3.1: Estimates of γ ignoring the dependence, with the chain size n=100, γ =
1.2.
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3.2.2 Estimation of γ for independent GEV distributed ob-

servations

As we mentioned before, the strong mixing condition assumes many properties for

a stationary sequence, like the usual limit theories and principles like the Central

Limit Theorem, weak invariance principle, laws of the iterated logarithm and almost

sure invariance principles, as well as the rates of convergence in the strong law of

large numbers. In this part, we consider the estimation of γ for independent GEV

observations first.

For an independent sequence {Yt}, with marginal GEV(µ, σ, γ) distribution and

γ < −1 (heavy-tailed), we could use the order statistics in a regression model to

estimate all the GEV parameters. This procedure goes as follows. Let Y(1) ≤ Y(2) ≤
. . . Y(n) be the order statistics of this independent GEV(µ, σ, γ) sequence.

Theorem 13. For an independent sequence {Yt, 1 ≤ t ≤ n}, with marginal distribu-

tion GEV(µ, σ, γ) and a heavy tail, the points

(xi, yi) =

(

log

(

− log

(

i

n+ 1

))

, log
(

Y(n) − Y(i)
)

)

, 1 ≤ i ≤ n− 1,

are located on the line

yi = −γxi − log

(−γ
σ

)

+ ηn,i, 1 ≤ i ≤ n− 1 (3.6)

with

E(ηn,i) = −En
Ei

+
∂F−1

(

i
n+1

)

∂F−1( n
n+1

)

2E2
i

i

(n+ 1)2(n+ 2)

−
En(∂F

−1( n
n+1

))2

E3
i

in+ i− i2

(n+ 1)2(n+ 2)
+ op

(

1

n+ 2

)

,
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Var(ηn,i) =
(∂F−1( n

n+1
))2

E2
i

n

(n+ 1)2(n+ 2)

+

(

γ
i

n+1
log i

n+1

−
En∂F

−1
(

i
n+1

)

Ei

)2
in+ i− i2

(n+ 1)2(n+ 2)

+2
∂F−1( n

n+1
)

Ei

(

γ
i

n+1
log i

n+1

−
En∂F

−1
(

i
n+1

)

Ei

)

i

(n+ 1)2(n+ 2)

+op

(

1

n+ 2

)

,

Cov(ηn,i, ηn,j) =
(

γ
i

n+1
log i

n+1

−
En∂F

−1( j
n+1

)

Ei

)(

γ
j

n+1
log j

n+1

−
En∂F

−1
(

i
n+1

)

Ej

)

in+ i− ij

(n+ 1)2(n+ 2)

+
∂F−1( n

n+1
)

Ej

(

γ
i

n+1
log i

n+1

−
En∂F

−1
(

i
n+1

)

Ei

)

in+ i− i2

(n+ 1)2(n+ 2)
+

∂F−1( n
n+1

)

Ei

(

γ
j

n+1
log j

n+1

−
En∂F

−1( j
n+1

)

Ej

)

jn+ j − j2

(n+ 1)2(n+ 2)

+
∂F−1( n

n+1
)

Ei

∂F−1( n
n+1

)

Ej

n

(n+ 1)2(n+ 2)
+ op

(

1

n+ 2

)

,

for i < j and 1 ≤ i, j ≤ n, where F is the distribution function of GEV(µ, σ, γ) and

Ei = E

(

µ− σ

γ
− Y(i)

)

= −σ
γ

(

log
n+ 1

i

)−γ
− σ

2

(r + 1)(log n+1
i
)−γ−2 − log(n+1

i
)−γ−1

i

n+ 1− i

n+ 2

+op

(

in+ i− i2

(n+ 1)2(n+ 2)

)

.

.

For the regular linear regression, error term has constant mean and variance.

Strictly speaking, ηn,i here is not an error term. The mean and variance of ηn,i depend

on not only the GEV parameters, but also the order i. Under this circumstance,

recursive regression, instead of the general linear regression, is used to obtain the

estimators.

The derivation of Theorem 13 is presented in Appendix A.
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n=100 mean of γ̂ variance of γ̂
γ = −1.5 -1.499622 0.02049879
γ = −2 -1.967157 0.03893676
γ = −2.5 -2.458674 0.05371618
γ = −3 -2.936059 0.08363773
n=30 mean of γ̂ variance of γ̂

γ = −1.5 -1.499851 0.06325039
γ = −2 -1.967599 0.111452
γ = −2.5 -2.416473 0.1700445
γ = −3 -2.864989 0.2330282
n=10 mean of γ̂ variance of γ̂

γ = −1.5 -1.572666 0.2224078
γ = −2 -1.991599 0.3382196
γ = −2.5 -2.413584 0.4942586
γ = −3 -2.812775 0.6781313

Table 3.1: Simulation result of γ with different sample sizes.

3.2.3 Simulation results for the state space model

Table 3.1 shows the means and variances of 1000 repeated estimates of γ with the

chain size n = 100, 30, 10 separately. Recursive regression estimation works well even

when n is small. Its γ estimates are close to the true value under the condition that

the chain size downs to 10.

Remark 1. When n is small, like n ≤ 30, i
n

is a better estimator for empirical

distribution function of the i-th order statistic than i
n+1

.

Remark 2. For an independent Fréchet(µ, σ, γ) sequence, which is GEV(µ+ σ, σ
γ
, 1
γ
)

distributed, the points

(xi, yi) =

(

log

(

− log

(

i

n+ 1

))

, log
(

Y(i) − Y(1)
)

)

, 2 ≤ i ≤ n,

are located on the line

yi = −1

γ
xi + log σ.

The location parameter µ can be estimated by the extreme Y(1).

In the estimation described in Theorem 13, µ and σ are estimated recursive. The

estimator of µ is affected by γ̂, since the tail of the distribution affects the efficiency
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of the estimator of µ. Simulation result for estimates of σ, µ are presented in Table

3.2, 3.3 respectively.

n = 100 mean of σ̂ variance of σ̂
σ = 1 1.04072 0.05266952
σ = 2 2.085132 0.2130584
σ = 3 3.0128904 0.5176407
n=30 mean of σ̂ variance of σ̂
σ = 1 1.16218 0.1923123
σ = 2 2.307019 0.7524202
σ = 3 3.435808 1.889715

Table 3.2: Estimates of the scale parameter σ with different sample sizes.

n=100 mean of µ̂ variance of µ̂
GEV(0,1,-1.5) -0.09072988 0.04996528
GEV(2,3,-2) 2.008903 0.2102406
GEV(5,4,-1) 4.949279 0.1819464

n=30 mean of µ̂ variance of µ̂
GEV(0,1,-1.5) -0.02423031 0.01314015
GEV(2,3,-2) 1.6987 0.617337
GEV(5,4,-1) 4.760389 0.6830012

Table 3.3: Estimates of the location parameter µ with different sample sizes.

3.3 Estimation of stability parameters

Compared with the estimation of GEV parameters, the estimation of the stability

parameter is more difficult. From Figure 3.1, we can see that the change of the stability

parameters rarely affects the model, unless both stability parameters are large, close to

1. All the estimation methods related to the likelihood (maximum likelihood, iterated

filtering, et al.) are not applicable here, due to the same argument discussed in

Chapter 2. Besides, we only have the information of one observed sequence, but need

to estimate two stability parameters. Here, we assume that one stability parameter

is known and estimate the other unknown stability parameter first. For simplicity,

we consider the state space model with Gumbel distributed marginals {Zt} in this

section, since the GEV distributed observations can be transformed to Gumbel using

the estimators of the GEV parameters.
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3.3.1 One stability parameter is known

Estimation of ψ

Suppose that α is known. The covariance structure of the observations can be used to

estimate ψ. Figure 3.2 contains the results of using the first order sample covariance

of {Zt},

r(1) = Cov(Zt, Zt−1) = αψ2π
2

6
, (“covariance1” in Figure 3.2)

and the first order covariance of sequence {Zt − αZt−1},

Cov(Zt − αZt−1, Zt−1 − αZt−2) = −α(1− ψ2)
π2

6
, (“covariance2” in Figure 3.2)

to estimate ψ.

From these plots, we can see that the estimations are not good when α is small.

The plausible explanation is that when α is small, the information of {Zt} regarding

the dependence structure is weak.

A numerical method, performing like filtering, is applied here to estimate ψ and

the hidden states when α is known.

First, particles at time t are generated by the equation

X̂t,i = αX̂t−1,i + α log Ŝt,i, 1 ≤ i ≤ m,

with the corresponding weight fψ0(Zt|X̂t,i), where ψ0 is the Yule-Walker estimator of

ψ. If the moment estimator of ψ is less than 0 or greater than 1, let ψ0 = 0.01 or 0.99

respectively. The mode of the particles at time t is used to estimate the hidden state

Xt. The estimator of ψ can be obtained by applying the linear regression between

the observation Zt and the estimator of Xt. Of Course, this two stage estimation

procedure may have reliability issues that we do not discuss in this document.

The simulation results of this numerical method is shown in Figure 3.3.

Estimation of α

On the other hand, if ψ is known, there are other ways, besides using the moments,

to estimate α. Here, we applied regression and ARMA model to the sequence
{

Zt
ψ

}
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Figure 3.2: The ψ estimates obtained using the first order covariance when α is known.

(see Figure 3.4) since

Zt
ψ

− α
Zt−1

ψ
= α log St + log ξt − α log ξt−1.

When ψ is large, α estimates obtained by using the moments (denoted as the “covari-

ance” in the plots) behave better than using ARMA and regression model. When ψ

is small, none of those methods works. An interesting observation is that when α is

close to 1, all these estimation methods underestimate α.

The estimation of α is not straightforward, even when ψ is known. Notice that

the covariance of the observations in equation (3.5) and E(Zt − αZt−1) = γe(1 − α)

only depend on α, thus the estimation of α is important to the study of our state

space model.

Usually, likelihood estimation and the generalized linear regression can be used to

estimate the unknown parameter. Here the maximum likelihood estimation does not

work for our model, due to the same reason we discussed in Chapter 2. Numerical

results are used to approximate the likelihood to avoid the propensity. However, the
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Figure 3.3: The ψ estimates obtained by filtering when α is known.

simulation result of the approximated likelihood estimation is erratic. Thus we tried

to estimate α in a numerical way.

When ψ is known, we can generate a random sample from S(ψ), assuming it is

the error sequence used in the model. Now the challenge is to decide which one in the

generated S(ψ) sequence, denoted as {ξ̃s, 1 ≤ s ≤ n}, is the closest to ξt for all the

time points t, 1 ≤ t ≤ n.

This idea is similar to the particle filter. For a given time t, assign a reasonable

weight ws to this generated sequence, let ξ̂t = ξ̃k, where wk is the maximum of the

weight sequence.

The differences between this method and the particle filter is that once a generated

random variable ξ̃k is picked to be the “estimator” of ξt, it should be removed from

the generated error sequence. The rest random variables ξ̃s are used to estimate the

other states to make sure the sequence of {ξt} estimates does fairly represent a sample

generated from S(ψ).
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Figure 3.4: The α estimates when ψ is known.

The weight function ws is important here. The conditional density

f(ξt|Zt) ∝ fψ(ξt)f(Zt|ξt) ∝ ξtfψ(ξt)e
−ξte−Zt/ψ

is a reasonable choice for the weight function.

In addition to this conditional density, we also consider ordering stable sample due

to the order of {Zt}, since the value of the conditional probability P(εt > εt−1|Zt >
Zt−1), which is

∫∞
0

∫∞
εt−1

(

1− Fα

(

εt−1ε
−1/α
t e

1−α
αψ

Zt−1

)

fψ(εt)fψ(εt−1)
)

dεtdεt−1

∫∞
0

∫∞
0

(

1− Fα

(

εt−1ε
−1/α
t e

1−α
αψ

Zt−1

)

fψ(εt)fψ(εt−1)
)

dεtdεt−1

,

is almost 1 when α, ψ are greater than 0.5, and close to 1 for small α, ψ ∈ (0, 1) in

numerical calculation.

Thus the ordered stable sample is assigned to the time t according to the order of

{Zt}, which is, if for a given time t, Zt = Z(s), then ξ̂t = ξ̃(s) where ξ̃(s) is the order

statistics of the generated S(ψ) random sample.
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Figure 3.5: Estimates of {Xt} when ψ is known using different weight functions (red
curve is the estimators using f(ξt|Zt) while the green is using the order of observa-
tions).

The simulation results of the hidden state estimates are shown in Figure 3.5. The

true values of the state variables are lined in black, while their estimators, obtained

by using the weight f(ξt|Zt), are in red and the estimators, obtained by using the

order of observations, are in green.

With the estimators of the hidden states, estimator of α can be obtained by the

methods discussed in Chapter 2.

This numerical method is based on the supposition that the set of generated α-

stable random variables is close enough to the set composed by the errors in the

model. This is a reasonable presumption except when ψ is small, in which case {ξ̃t}
may differ from {ξt} due to the heavy tail of S(ψ). So in such a case, this procedure

could return the state estimates with large, unreasonable errors.

When the stability parameter is large, this numerical method works well (in Figure

3.5), for the tail is thinner than the tail of a stable distribution with a small stability

parameter.

The stability estimates here are not as good as the results showed in Chapter 2,
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since the model depends on more unknown parameters but contains the same amount

of information (only the observations).

If both of the stability parameters are unknown, commonly used estimations like

the moment estimation, the regression model are applied. Besides these methods,

some numerical methods like the approximate Bayesian computation, forward back-

ward algorithm were used. However these methods take long computation time and

produce unstable results, thus their simulation results are not presented here.

3.3.2 Moment estimation

Here we focus on the state space model with the standardized Gumbel distributed

marginals Zt, 1 ≤ t ≤ n.

{

Zt = ψXt + ψ log ξt,

Xt+1 = αXt + α log St+1.

Equation (3.5) shows the relation between covariance and the stability parameters.

To distinguish the variance, covariance and the sample variance, sample covariance,

we use var(·), cov(·, ·) to denote the sample variance and covariance.

Estimators of α, ψ can be obtained by

α̂ =
cov(Zt, Zt−2)

cov(Zt, Zt−1)
, ψ̂2 =

cov(Zt, Zt−1)
π2

6
α

=
6

π2

cov2(Zt, Zt−1)

cov(Zt, Zt−2)
.

The asymptotic normality holds for the covariance (shown in Section 3.3.4), but

no longer holds for α̂, ψ̂. The distribution of α̂, ψ̂ can be derived from the asymptotic

distribution of these covariance.

The problem here is that the value of covariance Cov(Zt, Zt−k) depends on the

power of stability parameters αkψ, which is smaller than 1. However the sample

covariance cov(Zt, Zt−k) could be close to 0 or even negative. In the simulation, it is

difficult to obtain acceptable estimators by using the covariance, especially when the

chain size n is small.

Figure 3.6 shows the estimates of stability parameters obtained by using covariance

when chain size increases, with 300 repetitions.

The mean of α estimates shows the bias towards 0.5 when the chain size is not

large, regardless its true value. Besides, the variance of ψ estimates is large, for the
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Figure 3.6: Moments estimates of α, ψ with their values shown by the black horizontal
lines.

reason that ψ̂ depends on the estimator of α. If we cannot estimate α properly, the

behaviour of ψ̂ will be also affected.

The α estimates stays around 0.5 may be because of the estimators outside (0,1),

since

α̂ =
cov(Z1:n−2, Z3:n)

cov(Z1:n−1, Z2:n)
, ψ̂2 =

cov(Z1:n−1, Z2:n)
π2

6
α̂

(3.7)

are used in the simulation of Figure 3.6, where Z1:n−2 is denoted as the sequence of

{Z1, Z2 . . . , Zn−2}.
To avoid the estimators outside the parameter space (0,1), if either α̂ or ψ̂2 in

Equation (3.7) is out of (0,1), we let

α̂s =
cov(Zs:n−2, Zs+2:n)

cov(Zs:n−1, Zs+1:n)
,

ψ̂2
s =

cov(Zs:n−1, Zs+1:n)
π2

6
α̂

,

where 1 ≤ s ≤ n− k for some reasonable integer k.

Denote the stability estimator α̂ = α̂t where t = arg min1≤s≤n−k{s : α̂s ∈ (0, 1)}.
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ψ̂ = ψ̂t when t = arg min1≤s≤n−k{s : ψ̂s ∈ (0, 1)}.
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Figure 3.7: Moment estimates of the stability parameters when GEV parameters are
unknown. Black dots are the means of α estimates, red curves represent the means
of ψ estimates.

Figure 3.7 shows the simulation results of the moment estimator of α (black dots)

and ψ (red curve) in the state space model with GEV distributed marginals with

unknown parameters (µ = 0, σ = 1, γ = −2, n = 100).

The GEV parameters are estimated first, using the regression procedure stated

in Section 3.2.1, ignoring the dependence. After obtaining the GEV parameters,

the observations are transformed to Gumbel distributed marginals and the stability

parameters are estimated.

When the chain size increases to 300 and 1000 and ψ is large (ψ = 0.7, 0.9)(Figure

3.8 and 3.9 respectively), the means of the α estimates are close to α. When ψ value is

small, like ψ = 0.3, the up left plot in Figure 3.8 and 3.9), the averages of α estimators
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were located at around 0.5. When ψ = 0.5 (the upright plot), α estimates improve

a little for large value of α, but still have large variance. When ψ = 0.7, α > 0.42

(bottom left plot) and ψ = 0.9, α > 0.11 (bottom right plot), this estimation works

okay.
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Figure 3.8: Means and 95% confidence interval of α estimators, n=300.

3.3.3 Covariance of the sum and the differences of consecu-

tive two variables

To fully use the information of the observation sequence Zt, to improve the stability

estimation, we consider the sum and the differences of the consecutive observations

like Zt + Zt−1, Zt − Zt−1.
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Figure 3.9: Means and 95% confidence interval of α estimators, n=1000.

Notice that

Var(Zt + Zt−1) = 2
π2

6
(1 + αψ2),

Cov(Zt + Zt−1, Zt−1 + Zt−2) =
π2

6

(

1 + α2ψ2 + 2αψ2
)

,

Var(Zt − Zt−1) = 2
π2

6
(1− αψ2),

Cov(Zt − Zt−1, Zt−1 − Zt−2) =
π2

6

(

−1− α2ψ2 + 2αψ2
)

,



79

we have

αψ2 =
Var(Zt + Zt−1)− Var(Zt − Zt−1)

4π2/6
(3.8)

=
Cov(Zt − Zt−1, Zt−1 − Zt−2) + Cov(Zt + Zt−1, Zt−1 + Zt−2)

4π2/6
(3.9)

α2ψ2 = 2αψ2 − 1− Cov(Zt − Zt−1, Zt−1 − Zt−2)

π2/6
(3.10)

=
Cov(Zt + Zt−1, Zt−1 + Zt−2)

π2/6
− 2αψ2 − 1. (3.11)

The covariance of the sum and the difference of the observations share some prop-

erties of the covariance of the observations.

The estimators of αψ2, α2ψ2 obtained by using sample variance and sample covari-

ance in Equations (3.8), (3.9), (3.10), (3.11) are consistent and normally distributed

(shown in Section 3.3.4). In the left plot of Figure 3.10, the simulation results are

obtained by the average of Equation (3.8), (3.9) (α̂ψ̂2) and the average of Equation

(3.10), (3.11) (α̂2ψ̂2).

Use the same idea, the covariance structure of the linear combination of three

consecutive observations are also used to estimate the stability parameters (right plot

in Figure 3.10).

The estimation using the covariance of the linear combination of the consecu-

tive observations is a plausible method when the covariance of observations produces

unacceptable estimators.

3.3.4 Asymptotic distribution of the sample covariance

In this part, our aim is to find the asymptotic distribution of

r̂(h) = cov(Zi, Zi+h) =
1

n− h

n−h
∑

i=1

(Zi − Z̄n)(Zi+h − Z̄n),

where Z̄n is the mean of Z1, . . . , Zn.

To obtain the asymptotic distribution of r̂(h), first consider

r∗(h) =
1

n− h

n−h
∑

i=1

(Zi − γe)(Zi+h − γe). (3.12)
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Figure 3.10: Estimates of α, ψ using the covariance structure of the sum and the
difference of two (left plot) and three (right plot) consecutive observations.

If the asymptotic distribution of r∗(h) is known, then the asymptotic distribution

of r̂(h) can be obtained if
√
n(r̂(h)− r∗(h)) = op(1) as n→ ∞.

To simplify the problem, in the following part of this section, the sequence {Zn}
is centred without loss of generality, which means {Zn} has mean zero. Once {Zn} is

centred, since

Zn = αnψX0 + αnψ log S1 + · · ·+ αψ log Sn + ψ log ξn,

we assume that X0, {log Si}, {log ξi} are all centred.

The following theorems hold for our series.

Theorem 14 (Central Limit Theorem). For stationary and centred series {Zi, 1 ≤
i ≤ n},

Zi − αZi−1 = ψ log ξi − αψ log ξi−1 + αψ log Si,

where independent errors log ξi and log Si are centred exponential S(ψ),S(α) random
variables, respectively, with α, ψ ∈ (0, 1), the mean of this series Z̄n = n−1(Z1 + · · ·+
Zn) is asymptotically normal.

√
nZ̄n

D→ N

(

0,
π2

6

(

1 + 2ψ2 α

1− α

))

.
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Using Theorem 14, we could find the asymptotic distribution of r∗(h) defined from

Equation (3.12).

Theorem 15. For the series {Zi, 1 ≤ i ≤ n} under the same conditions of Theorem

14, r∗(h) is asymptotically normal with mean r(h) and variance Varh (in Equation

(B.12)) and

Varh = α2hψ4

(

π2

6

)2

.

We will show that under the same conditions, r∗(h) and r̂(h) have the same asymp-

totic distribution.

Theorem 16. For the series {Zi} under the same conditions of Theorem 14, r̂(h) is

asymptotically normal.

r̂(h)− r(h)
D→ N

(

0, α2hψ4

(

π2

6

)2
)

.

In Theorem 27.4 of book [6], Billingsley considered the zero-mean sequence, if

d(n) = Op(n
−5) and the random variable has finite 12th moments, the Central Limit

Theorem holds for Z̄n, the mean of sequence. Billlingsley pointed out that d(n) =

Op(n
−5) and E(Z12

t ) <∞ are stronger than necessary. Usually E(Z4
t ) <∞ or E(Z̄4

n) <

∞ suffice instead of the condition E(Z12
t ) <∞.

The proof of Theorem 14, 15, 16 are shown in Appendix B.

As for the mean of {Z2
i }, Central Limit Theorem holds.

E( 1
n

∑n
i=1 Z

2
i ) =

π2

6
,

Var( 1
n

∑n
i=1 Z

2
i ) =

1

n
Var(Z2

1) +
2

n2

n−1
∑

h=1

(n− h) Cov(Z2
1 , Z

2
1+h)

=
1

n

(

(

π2

6

)2(
12

5
+

2

n

(

5ψ4 − 5ψ2 +
12

5

)

α2

1− α2

(

n− 1− α2n

1− α2

))

)

− 2

n2

α2

1− α2
ψ4 E(log4 ξi)

(

n− 1− α2n

1− α2

)

. (3.13)

We have
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Theorem 17. With the same time series {Zt} as in Theorem 14, as n→ ∞,

1√
n

n
∑

i=1

(

Z2
i −

π2

6

)

D→ N

(

0,

(

π2

6

)2(
12

5
+

2α2

1− α2
(5ψ4 − 5ψ2 +

12

5
)

)

)

.

To obtain the mean and variance of α estimator, the following theorem is needed.

Theorem 18. With the same time series {Zt} as in Theorem 14, the covariance of

r(s) and r(h), s < h goes to
(

π2

6

)2

ψ4αs+h as n→ ∞.

Proof of Theorem 18. Using Equations (B.10), (B.11) in Appendix B, we have that

Cov(r∗(s), r∗(h)) =
1

n2

n
∑

i=1

n
∑

j=1

Cov(ZiZi+s, ZjZj+h)

=
2

n2

n−1
∑

i=1

min(i+s−1,n)
∑

j=i+1

E(ZiZjZi+sZj+h)

+
2

n2

n−s−1
∑

i=1

n
∑

j=i+s+1

E(ZiZi+sZjZj+h)

+
1

n
E(Z2

i Zi+sZi+h) +
n− s

n
E(ZiZ

2
i+sZi+s+h)−

(

π2

6

)2

ψ4αs+h

→
(

π2

6

)2

ψ4αs+h.

In our simulation, Zt is transformed from GEV distributed observation Yt. GEV

parameters are estimated first. We use Ẑt =
1
γ̂
log(1 + γ̂Yt) to obtain the Gumbel

distributed marginals to estimate the stability parameters. If γ̂ is obtained by ignoring

the dependence of {Yt}, from the weak dependence structure, we have γ̂ − γ goes to

0 as n→ ∞ and γ̂ has asymptotic normality.



83

Denote wn = γ̂ − γ, which is Op

(√
log logn
n

)

, we have

Ẑt =
1

γ

1

1 + wn
γ

(

log(1 + γYt) + log

(

1 +
wny

1 + γYt

))

= Zt(1−
wn
γ
) +

1

γ

wnYt
1 + γYt

+ op(wn).

Cov(Ẑt, Ẑt−k) = Cov(Zt, Zt−k)(1−
wn
γ
)2 +Op(wn)

= Cov(Zt, Zt−k) +Op(wn)

= Cov(Zt, Zt−k) +Op

(√
log log n

n

)

.

3.3.5 Regression model

If we write model (3.2) as

Zt − γe − α(Zt−1 − γe) = qt, (3.14)

where qt = ψ log ξt−αψ log ξt−1+αψ log St− (1−α)γe, which is a zero-mean sequence

and

Cov(qt, qt−k) =











π2

6
(1 + α2 − 2α2ψ2) if |k| = 0,

−π2

6
α(1− ψ2) if |k| = 1,

0 if |k| > 1.

We can estimate the stability parameters by

(α̂, ψ̂) = arg min
0<α,ψ<1

q′2:n cov
−1(q2:n)q2:n,

where q2:n = (q2, . . . , qn)
′ and qt is defined as in Equation (3.14).

The simulation result of using regression is shown in the Figure 3.11, when the

chain size n = 100. The regression estimation gives estimator in the parameter space

(0, 1), but the simulation results are not very satisfying.
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Figure 3.11: The α estimates (black dots) and ψ estimates (red curve) obtained by
the regression model.



Chapter 4

Model filtering

In this chapter, we use Zt to represent the Gumbel distributed observation and Yt to

represent the GEV distributed observation at time t in the state space model











Yt = µ− σ
γ
+ σ

γ
eψγXtξψγt , (GEV observation equation)

Zt = ψXt + ψ log ξt, (Gumbel observation equation)

Xt+1 = αXt + α log St+1. (state equation)

Our interest is to estimate the stateXt and the empirical filtering density f(Xt|Y1:t),
or f(Xt|Z1:t).

4.1 Kalman filter

In 1960, Kalman [52] presented an algorithm (Kalman filter), working on linear and

discrete time system, for the purpose of estimation and prediction. Kalman filter

obtains the minimum mean square state error estimated by orthogonal projection.

Kalman filter returns the predictor of the state, its conditional mean and covari-

ance, which is enough to find the conditional density, since the mean and variance

characterize the Gaussian distribution.

Let the hidden state {Xt} and the observation state {Yt} be random processes

with zero mean. If either

(i) the random processes {Xt} and {Yt} are Gaussian, or

(ii) the optimal estimator is restricted to be a linear function of the observed random

variables and the loss function is the mean square error of hidden state,
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then the optimal estimator of Xt1 given Yt0:t is the orthogonal projection of Xt1

on a vector space of Yt0:t (Theorem 2 in [52]).

Kalman filter only needs the estimated state from the previous time and the current

observation to estimate the current state. No history of observations and estimated

state are required.

In real life, the system is more complicated than linear model, thus Kalman filter

was extended to non-linear systems. The extended Kalman filter, one of the most

commonly used method for non-linear models, uses either Taylor expansion or Monte

Carlo method to linearize the model for filtering purposes.

If extended Kalman filter does not produce good estimates for the non-linear

system, an alternative option is unscented Kalman filter, which uses a subset of sample

points located around the mean. Unscented transform is applied in the subset choosing

step. More details about unscented Kalman filter can be found in Einicke and White

[26], Julier and Uhlmann [50], Gustafsson and Hendeby [40].

There are many other non-linear filter methods like the second-order non-linear

filter; Monte-Carlo simulation filter; single stage iteration filter; Gaussian sum filter;

numerical integration filter; density based Monte-Carlo filter; rejection sampling filter;

importance sampling filter and so on.

Figure 4.1 shows the estimation of the states using Kalman filter with the chain size

n = 100, α = ψ = 0.8 in a state space model with Gumbel distributed observations.

The upper plot in Figure 4.1 shows the comparison of state values (solid line) and

estimated states obtained by Kalman filter (broken line). To see the comparison in a

clearer view, the states are ordered (the bottom plot in Figure 4.1).

In the plot with the ordered states, if the state locates in (1, 3), Kalman filter works

well and captures the increasing trend. However, when the state value is smaller than

3, which happens for most of the time since the state marginal distribution is Gumbel,

Kalman filter returns no efficient estimators. All the large valued states, greater than

4, are under estimated. In this simulation we only have one estimate exceeding 3,

which is used to estimate the state with true value around 1.

Besides, Kalman filter estimators have the unnecessary turbulence wave and it

cannot estimate the trend of the time series.
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Figure 4.1: Kalman filter estimates (broken line) of the states followed Gumbel dis-
tribution.



88

4.2 Estimation of the hidden state

A schematic representation of a state space model would be

X1
S2→ X2

S3→ X3
S4→ X4 → · · · Sn→ Xn

↓ ξ1 ↓ ξ2 ↓ ξ3 ↓ ξ4 ↓ ξn
Z1 Z2 Z3 Z4 Zn

When α, ψ are known, the observation sequence {Zt, 1 ≤ t ≤ n} can be used to

predict the state {Xt, 1 ≤ t ≤ n} by estimating the errors at each time point using

the error densities.

The estimation of errors is done for one pair of observations at a time. Before

estimating the errors, an independent stable random sequence {S̃t, 1 ≤ t ≤ n − 1},
which follows S(α), and an independent stable random variable sequence, {ξ̃t, 1 ≤ t ≤
n} which follows S(ψ) are generated.

At time 1 and 2, let

X̃1,1 =
Z1

ψ
− log ξ̃1, · · · , X̃1,n =

Z1

ψ
− log ξ̃n,

X̃2,1 =
Z2

ψ
− log ξ̃1, · · · , X̃2,n =

Z2

ψ
− log ξ̃n.

Denote S̃2,i,j = exp(X̃2,i/α − X̃1,j), where i 6= j, 1 ≤ i, j ≤ n. Compare S̃2,i,j with

the generated error sequence {S̃t, 1 ≤ t ≤ n − 1}, estimate the errors by letting

Ŝ2 = S̃k, ξ̂1 = ξ̃kj , ξ̂2 = ξ̃ki where

k = arg min
1≤t≤n−1

{

|S̃t − S̃2,i,j|, i 6= j, 1 ≤ i, j ≤ n
}

,

ki = arg min
1≤i≤n

{

|S̃t − S̃2,i,j|, i 6= j, 1 ≤ i, j ≤ n, 1 ≤ t ≤ n− 1
}

,

kj = arg min
1≤j≤n

{

|S̃t − S̃2,i,j|, i 6= j, 1 ≤ i, j ≤ n, 1 ≤ t ≤ n− 1
}

.

The state X1, X2 can be estimated by using ξ̂1, ξ̂2.

X̂t =
Zt
ψ

− log ξ̂t.

Before estimating the next pair of states, remove ξ̃ki , ξ̃kj from the sequence {ξ̃t},
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denote the remaining sequence as {ξ̃t, 1 ≤ t ≤ n−2}. Also, delete S̃k from the sequence

{S̃t}, denote the remaining as {S̃t, 1 ≤ t ≤ n− 2}.
At time 3 and 4, repeat the steps at time 1 and 2, let

X̃3,1 =
Z3

ψ
− log ξ̃1, · · · , X̃3,n−2 =

Z3

ψ
− log ξ̃n−2,

X̃4,1 =
Z4

ψ
− log ξ̃1, · · · , X̃4,n−2 =

Z4

ψ
− log ξ̃n−2.

Denote S̃4,i,j = exp(X̃4,i/α− X̃3,j), where i 6= j, 1 ≤ i, j ≤ n− 2. Compare S̃4,i,j with

the sequence {S̃t, 1 ≤ t ≤ n− 2}, let Ŝ4 = S̃k, ξ̂3 = ξ̃kj , ξ̂4 = ξ̃ki where

k = arg min
1≤t≤n−2

{

|S̃t − S̃4,i,j|, i 6= j, 1 ≤ i, j ≤ n− 2
}

,

ki = arg min
1≤i≤n−2

{

|S̃t − S̃4,i,j|, i 6= j, 1 ≤ i, j ≤ n− 2, 1 ≤ t ≤ n− 2
}

,

kj = arg min
1≤j≤n−2

{

|S̃t − S̃4,i,j|, i 6= j, 1 ≤ i, j ≤ n− 2, 1 ≤ t ≤ n− 2
}

.

Remove ξ̃ki , ξ̃kj from the sequence {ξ̃t} and remove S̃k from the sequence {S̃t}
again, denote the rest stable sequence as {ξ̃t, 1 ≤ t ≤ n− 4}, {S̃t, 1 ≤ t ≤ n− 3}.

The estimates X̂3, X̂4 can be obtained by Z3, Z4 and ξ̂3, ξ̂4. Using X̂3, X̂2, S3 can

be estimated by comparing exp(X̂3/α − X̂2) with {S̃t, 1 ≤ t ≤ n − 3}. Let Ŝ3 = S̃k3

where

k3 = arg min
1≤t≤n−3

{∣

∣

∣
exp(X̂3/α− X̂2)− S̃t

∣

∣

∣

}

.

Remove S̃k3 from the sequence {S̃t} again. Denote the rest elements in the sets as

{S̃t, 1 ≤ t ≤ n− 4}. Continue the same steps until all the states are estimated.

This method does not grantee that the estimated α-stable distributed errors, {Ŝt},
satisfy our state equation, but the difference between X̂t+1 and αX̂t+α log Ŝt+1 should

decrease as n increases.

Another problem with this method is that when either of the stability parameters

is small, the estimators could be far away from the “true” states. The set of the

generated stable distributed errors should be close to the set of the errors in the model

to make this numerical method work. When any of the two stability parameters is

small, the set of generated stable distributed errors can have huge differences from

the set of the errors in the model due to the heavy-tail property of α-stable variable.

If this is the case, the states will not be well estimated. Take S(0.1) as an example,
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the 90-th percentile of S(0.1) is 3.09 × 109, while the 98th-percentile of S(0.1) is

4.56× 1016, which makes the difference of the maximum of two independent random

samples from S(0.1) to reach values of 1016 when the sample size is 50.
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Figure 4.2: Estimates (red curve) of the hidden states (black) with n=50.

Figure 4.2, 4.3 and 4.4 show the estimation results using this method when the

chain size n is 50, 100, 200 respectively. If the stability parameter ψ takes a small value

(the first column in these figures, ψ = 0.1), the prediction of the state sequence is

very poor, due to the reason we explained before, related with the long-and heavy-tail

of the stable distribution.

For large stability parameters, the simulation results in Figure 4.2, 4.3 and 4.4

show some advantages when comparing with the result of Kalman filter in Figure 4.1.
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Figure 4.3: Estimates (red curve) of the hidden states (black) with n=100.

When both α and ψ are large, like the plots in the right corner of Figure 4.2, 4.3 and

4.4, α = ψ = 0.9, the estimated states (red) are close to the true states (black). The

maxima of the series, which reaches 8 in Figure 4.3 , are successfully estimated.

4.3 Particle filter

After estimating the states, now we will focus on estimating the empirical filtering

density.

Particle filter is a sequential Monte Carlo technique that uses a set of particles to

represent the posterior density of the state space model. It can deal with both linear
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Figure 4.4: Estimates (red curve) of the hidden states (black) with n=200.

and non-linear models and any distributions for the errors.

The original particle filter method was introduced by Gordon, Salmond and Smith

in their paper [36], named as Bayesian bootstrap filter. In this paper, the particles

were generated by random sampling from the error distribution, weighted by the

likelihood of each prior sample.

Later, Kong, Liu and Wong [58] extended this procedure to the estimation of miss-

ing data and the hidden state. Particles of the missing data or hidden states were

generated by the conditional distribution, f(Xt|Yt−1, Xt−1), given the past observa-

tions and the past particles. Weights of the particles were calculated by the weights

of the past particles and the likelihood of each prior sample. Kong, Liu and Wong
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also compared particle filter with Gibbs sampler (see [33]) and concluded that Gibbs

sampler is less effective.

In Liu and Chen’s paper [65], an improved sequential imputation was introduced

and theoretically justified, which ensures the effectiveness of the filtering method.

There are many ways to perform particle filter, like using the sequential importance

sampling filter (SIS) (see Maceachern, Clyde and Liu [67], Liu, Chen and Logvinenko

[51]), bootstrap filter (see Gordon, Salmond and Smith [36], Green [38], Liu, Chen

and Wong [66]), the MCMC particle filter (see Khan, Balch and Dellaert [4]), Monte

Carlo filter (see Bølviken et al. [10], Kitagawa [55]) and the unscented particle filter

(see Merwe and Freitas [94], Wan and Merwe[95]).

Particle filter cannot only estimate the empirical filtering density, but it is also good

for the estimation of E(g(X1:n)) for any function g. For every time point, M particles

X
(i)
1:n = {X(i)

1 , . . . , X
(i)
n }, 1 ≤ i ≤M are generated from the density f(X1:n|Z1:n), then

the estimator of E(g) is

Ê(g) =
M
∑

i=1

1

M
g
(

X
(i)
1:n

)

.

In the absence of information for the hidden states, a prior probability π(X1:n|Z1:n),

depending upon the observations, can be used to generate the i-th particlesX
(i)
1:n. Such

a distribution π(·) is called the importance sampling distribution.

E(g) =

∫

g(X1:n)f(X1:n|Z1:n)dX1:n

=

∫

g(X1:n) ·
f(X1:n|Z1:n)

π(X1:n|Z1:n)
· π(X1:n|Z1:n)dX1:n

=

∫

g(X1:n) ·W ∗(X1:n) · π(X1:n|Z1:n)dX1:n

= Eπ(X1:n|Z1:n)

(

g(X1:n)W
∗(X1:n)

)

.

W ∗(X1:n) is called the importance weight.

Ê(g) =
M
∑

i=1

1

M
g
(

X
(i)
1:n

)

W ∗
n(X

(i)
0:n)

converges almost surely to E(g) and is unbiased (Andrieu, Doucet and Holenstein [2]).
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The importance weight of X
(i)
1:n is

W ∗(X
(i)
1:n) =

f(X
(i)
1:n|Z1:n)

π(X
(i)
1:n|Z1:n)

=
f(Z1:n|X(i)

1:n)f(X
(i)
1:n)

f(Z1:n)π(X
(i)
1:n|Z1:n)

.

Notice that

E(g) =

∫

g(X1:n)f(X1:n|Z1:n)dX1:n

=

∫

g(X1:n)f(Z1:n|X1:n)f(X1:n)dX1:n

f(Z1:n)

=
1

f(Z1:n)

∫

g(X1:n)
f(Z1:n|X1:n)f(X1:n)

π(X1:n|Z1:n)
π(X1:n|Z1:n)dX1:n

=
Eπ(X1:n|Z1:n) (g(X1:n)W (X1:n))
∫

W (X1:n)π(X1:n|Z1:n)dX1:n

=
Eπ(X1:n|Z1:n) (g(X1:n)W (X1:n))

Eπ(X1:n|Z1:n) (W (X1:n))

where

W (X1:n) =
f(Z1:n|X1:n)f(X1:n)

π(X1:n|Z1:n)
,

once the independent estimators of the hidden states are generated, we have

Ê(g) =
1
M

∑M
i=1 g(X

(i)
1:n)W (X

(i)
1:n)

1
M

∑M
i=1W (X

(i)
1:n)

=
M
∑

i=1

g(X
(i)
1:n)

W (X
(i)
1:n)

∑M
i=1W (X

(i)
1:n)

=
M
∑

i=1

g(X
(i)
1:n)W̃ (X

(i)
1:n),

which is a biased but almost surely converges to E(g) under some regular conditions

(Andrieu, Doucet and Holenstein [2]).

For any t, 1 ≤ t ≤ n, the normalized importance weight of the i-th particle is

denoted as

W̃ (X
(i)
1:t) =

W (X
(i)
1:t)

∑M
i=1W (X

(i)
1:t)

.

On the other hand, for a fixed time t, f(Z1:t) is fixed regardless of the particle
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X
(i)
1:t , 1 ≤ i ≤M . The importance weight W ∗

(

X
(i)
1:t

)

is proportional to W
(

X
(i)
1:t

)

,

W ∗
(

X
(i)
1:t

)

=
f(Z1:t|X(i)

1:t)f(X
(i)
1:t)

f(Z1:t)π(X
(i)
1:t |Z1:t)

∝ f(Z1:t|X(i)
1:t)f(X

(i)
1:t)

π(X
(i)
1:t |Z1:t)

= W
(

X
(i)
1:t

)

,

it would be natural to use the normalized weight of W
(

X
(i)
1:t

)

, i.e. W̃
(

X
(i)
1:t

)

as the

importance weight function.

Notice that

f(Z1:t|X1:t) = f(Z1:t|X1:t−1)f(Zt|Xt),

f(X1:t) = f(X1:t−1)f(Xt|Xt−1),

π(X1:t|Z1:t) = π(X1:t−1|Z1:t−1)π(Xt|X1:t−1, Z1:t),

thus W
(

X
(i)
1:t

)

can be represented recursive as

W (X
(i)
1:t) =

f(Z1:t|X(i)
1:t)f(X

(i)
1:t)

π(X
(i)
1:t |Z1:t)

=
f(Z1:t−1|X(i)

1:t−1)f(X
(i)
1:t−1)

π(X
(i)
1:t−1|Z1:t−1)

· f(Zt|X
(i)
t )f(X

(i)
t |X(i)

t−1)

π(X
(i)
t |X(i)

1:t−1, Z1:t)

= W (X
(i)
1:t−1)

f(Zt|X(i)
t )f(X

(i)
t |X(i)

t−1)

π(X
(i)
t |X(i)

1:t−1, Z1:t)
.

For simplicity, the importance weight function at time t for the i-th particle W (X
(i)
1:t)

is denoted as W
(i)
t , so the relation between W

(i)
t and W

(i)
t−1, 2 ≤ t can be written as

W
(i)
t = W

(i)
t−1

f(Zt|X(i)
t )f(X

(i)
t |X(i)

t−1)

π(X
(i)
t |X(i)

1:t−1, Z1:t)
.

After obtaining a reasonable importance weight function, we can perform the

filtering. Here, we have used the sequential importance sampling (SIS) to estimate

the empirical filtering density.
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4.3.1 Sequential importance sampling

To generate X
(i)
1 , 1 ≤ i ≤ M from X0 through sequential importance sampling, we

first use the importance function and obtain the importance weight of X
(i)
1 , then

generate X
(i)
t , 1 ≤ i ≤ M for time t ≥ 2, from the particles X

(i)
t−1 and the observation

Zt and obtain the importance weight of X
(i)
t , 1 ≤ i ≤M . The generated particles and

the standardized weights are used to estimate the conditional densities of the hidden

states.

The main idea is to generate particles at time (t+ 1) using all the information at

time t, balancing the distribution of particles with different weights.

Notice that the conditional mean and the variance of the weight W (X
(i)
1:t) are

E(W (X
(i)
1:t)|X

(i)
1:t) = W (X

(i)
1:t−1)

∫

f(Zt|X(i)
t )f(X

(i)
t |X(i)

t−1)dX
(i)
t

= W (X
(i)
1:t−1)

∫

f(Zt, X
(i)
t |X(i)

t−1)dX
(i)
t

= W (X
(i)
1:t−1)f(Zt|X

(i)
t−1),

Var(W (X
(i)
1:t)|X

(i)
1:t) =

(

W (X
(i)
1:t−1)

)2
(

∫

f 2(Zt|X(i)
t )f 2(X

(i)
t |X(i)

t−1)

π(X
(i)
t |X(i)

1:t−1, Z1:t)
dX

(i)
t − f 2(Zt|X(i)

t−1)

)

,

whenever we choose the importance sampling distribution to be

π(X
(i)
t |X(i)

1:t−1, Z1:t) = f(X
(i)
t |X(i)

t−1, Zt).

Notice that with this choice, we have

∫

f 2(Zt|X(i)
t )f 2(X

(i)
t |X(i)

t−1)

π(X
(i)
t |X(i)

1:t−1, Z1:t)
dX

(i)
t

=

∫

f 2(X
(i)
t |Zt, X(i)

t−1)f
2(Zt|X(i)

t−1)

f(X
(i)
t |X(i)

1:t−1, Z1:t)
dX

(i)
t

= f 2(Zt|X(i)
t−1),

which leads to Var(W (X
(i)
1:t)) = 0, i.e., only one particle has non-zero weight.

This phenomenon is called weight degeneracy. It does not only happen for the SIS

filter procedure, but also for the other filtering processes, such as Bayesian filter (see
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Doucet, Godsill and Andrieu [23], Kong, Liu and Wong [58]).

To address the degeneracy problem, we can use resampling.

4.3.2 Resampling

Before doing resample, we need to define the criterion of degeneracy. The effective

sample size Neff is defined as

Neff (n) =
1

E[(W̃ (X
(i)
1:t))

2]
.

and a threshold Cthr is set, such that if Neff (n) ≤ Cthr, we assume that weight

degeneracy has happened at time t.

In Liu and Chen [65], an estimator of Neff is given by

N̂eff (n) =
M

∑M
i=1 W̃ (X

(i)
t )2

.

If N̂eff (n) ≤ Cthr at time t, resampling should be performed. To perform resam-

pling, some particles with large weights are repeated. Denote n
(i)
t as the repeated

times of the unique particle X
(i)
t after resampling,

F̂ (X0:t|Z0:t) =
∑

i

n
(i)
t

M
I
X

(i)
0:t
(X0:t)

is an unbiased estimator of the empirical filter distribution.

Some commonly used resampling methods are stated below.

Systematic Resampling. (Kitagawa [55])

Calculate h
(i)
t , the likelihood of each particle X

(i)
t given the observations.

Let

n
(i)
t ∼

∑M
i=1 h

(i)
t IX(i)

0:t
(X0:t)

∑M
i=1 h

(i)
t

.

Residual Resampling. (Doucet and Johansen [24])

Let n
(i)
t1 = ⌊MW̃

(i)
t ⌋, the integer part of MW̃

(i)
t .

Make n
(i)
t2 follow the multinomial distribution with parameterM and standardized

probabilities W̃
(i)
t − n

(i)
t1

M
, 1 ≤ i ≤M.

Let n
(i)
t = n

(i)
t1 + n

(i)
t2 .
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Multinomial Resampling. (Doucet and Johansen [24])

Let n
(i)
t be a multinomial random variable with parameters (M, W̃

(1)
t , W̃

(2)
t , . . . , W̃

(M)
t ).

4.3.3 Simulation

For simplicity, here we use the state space model with the Gumbel distributed marginals

{Z1, . . . , Zn}.
We tried several different importance functions and different importance weight

functions.

• At time t, 1 ≤ t ≤ n, generate M particles X
(l)
t , 1 ≤ l ≤ M, from the past

particles and the present observation, like

X
(l)
t = αX

(l)
t−1 + α log S

(l)
t , (4.1)

X
(l)
t =

Zt
ψ

− log ξ
(l)
t , (4.2)

X
(l)
t =

1

2

(

αX
(l)
i−1 + α log S

(l)
t +

Zt
ψ

− log ξ
(l)
t

)

, (4.3)

where S
(l)
t and ξ

(l)
t , 1 ≤ l ≤ M, are generated independently from stable distri-

butions, S(α),S(ψ) separately.

• Define the importance weight of X
(l)
t as the normalized weight of Ŵ

(l)
t , which is

W
(l)
t =

Ŵ
(l)
t

∑m
l=1 Ŵ

(l)
t

,

where Ŵ
(l)
t takes one of the following three valuesW

(l)
t−1f(Zt|X

(l)
t ),W

(l)
t−1f(X

(l)
t |X(l)

t−1)

and

W
(l)
t−1

f(Zt|X(l)
t )f(X

(l)
t |X(l)

t−1)

1
2

(

f(Zt|X(l)
t ) + f(X

(l)
t |X(l)

t−1)
)

according to the particle generating function as stated in equation (4.1), (4.2)

and (4.3).

• After obtaining the particles and their corresponding weights at each time point

t, check if
M

∑M
l=1

(

W
(l)
t

)2 ≤ Cthr =
M

∑M
l=1

(

W
(l)
1

)2 ,
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where Cthr is a given constant and see if weight degeneracy has occurred and

resampling is required.

In our simulation, we let Cthr =
M

∑M
l=1

(

W
(l)
1

)2 . If the weight degeneracy happens, we

resample the particles using the cumulative distribution function of (X
(l)
t ,W

(l)
t ), 1 ≤

l ≤M at time t.

If weight degeneracy has appeared at time t,

(i). generateM independent uniformly (0,1) distributed random variables u1, . . . , uM .

(ii). Define the uj-quantile of the distribution of (X
(l)
t ,W

(l)
t ), 1 ≤ l ≤ M, for all j

from 1 to M be the particles at time t with the weight 1/M .

With the particles and their corresponding weights, the expectation of the state at

time i can be estimated by Ê(Xt) =
∑M

l=1X
(l)
t W

(l)
t if there is no weight degeneracy,

or by the average of the particles generated after resampling.

Crisan and Doucet [17] obtained the convergence rate of the average mean square

error, which is 1/M under certain conditions (bounded transition kernel and bounded

importance function, etc...), and the almost sure convergences of the empirical distri-

bution of the generated particles.

The simulation results of means, modes and 95% confidence intervals of the parti-

cles generated by SIS when (α, ψ) = (0.8, 0.8), (0.5, 0.8), (0.8, 0.5), n = 50 are shown

in Figure 4.5, 4.6, 4.7 respectively. In these figures, each row represent the simulation

result of particles generated by a different importance function (Equation (4.1), (4.2),

(4.3) respectively). The first column shows the comparison of the true state (black

curve) and the 90% confidence interval (grey curve). The stars are the modes of the

generated particles while the circles are the means. To see the comparison in a clearer

view, the states are ordered and shown in a increasing trend in the second column,

aiming to find out whether the particle filter can estimate the trend.

When α = ψ and both stability parameters are large, both importance func-

tion work well (Figure 4.5). When α < ψ, the tail of f(Xt|Xt−1;α) is heavier than

f(Xt|Zt;ψ), thus the particles generated by f(Xt|Xt−1;α) have a wider range, which

reduce the chance of degeneracy. This difference can be seen in Figure 4.6, with

the observation that using either f(Xt|Xt−1;α) or
1
2
(f(Xt|Zt) + f(Xt|Xt−1)) to gen-

erate particles would result in means and modes closer to the true state than using

f(Xt|Zt), especially for the large valued states. When α > ψ, the simulation shows
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Figure 4.5: Particle filter with (α, ψ) = (0.8, 0.8).
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Figure 4.6: Particle filter with (α, ψ) = (0.5, 0.8).
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Figure 4.7: Particle filter with (α, ψ) = (0.8, 0.5).
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Figure 4.8: Empirical filtering density plots using different importance functions,
f(Xt|Xt−1;α), f(Xt|Zt;ψ), 1

2
(f(Xt|Zt) + f(Xt|Xt−1)) from left to right.

(Figure 4.7) that using f(Xt|Zt;ψ) as the importance function performs better than

using f(Xt|Xt−1;α).

To see the empirical filtering density at a given time, the plots of the particles at

time t=47, 48 in a state model with α = 0.8, ψ = 0.5, n = 50 are shown in Figure 4.8.

The red vertical line is the true value of the state. If weight degeneracy happens and

the particles are obtained by resampling, the histogram plots are used, instead of the

dot plots, to show the empirical filtering density. Each column represents the result

with a different importance function.
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4.3.4 Particles generated from a discrete sample space

From the simulation results of SIS particle filter, we can see that the way of generating

particles affects the filtering results. Our aim is to estimate the empirical filtering

density. For the given observations X1:t−1, the joint density

f(Z1:t, X1:t) = f(Xt|X1:t−1, Z1:t)f(X1:t−1, Z1:t)

∝ f(Xt|X1:t−1, Z1:t) = f(Xt|Xt−1, Zt).

This makes f(Xt|Xt−1, Zt) an ideal importance function in particle filter.

f(Xt|Xt−1, Zt) =
f(Zt|Xt)f(Xt|Xt−1)

f(Zt|Xt−1)
,

= e(
1
α
−1)(Xt−Zt

ψ
)fα(e

Xt/α−Xt−1)fψ(e
Zt/ψ−Xt)

fαψ(eZt/αψ−Xt−1)
, (4.4)

since

f(Xt|Xt−1) =
1

α
eXt/α−Xt−1fα(e

Xt/α−Xt−1),

f(Zt|Xt) =
1

ψ
eZt/ψ−Xtfψ(e

Zt/ψ−Xt),

f(Zt|Xt−1) =
1

αψ
eZt/αψ−Xt−1fαψ(e

Zt/αψ−Xt−1).

To carry out the simulation of Xt ≤ x|Zt, Xt−1, observe that

P(Xt ≤ x|Zt, Xt−1) = P

(

Zt
ψ

− log ξt ≤ x, αXt−1 + α logXt ≤ x

)

= P

(

log ξt ≥
Zt
ψ

− x, log St ≤
x

α
−Xt−1

)

= Fα(e
x
α
−Xt−1)

(

1− Fψ(e
Zt
ψ
−x)
)

.

The marginal distribution of the state variable is Gumbel, whose 99.95% confidence

interval is (−2, 10). Thus a discrete sample space, {di}, which contains Md values

evenly distributed in the interval (−2, 10), can be treated as our particle sample
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space. Let

{dj, 1 ≤ j ≤Md} = {−2 +
12

Md

× j, 1 ≤ j ≤Md}. (4.5)

For the given pair (Zt, Xt−1), the value of P(Xt ≤ di|Zt, Xt−1), 1 ≤ i ≤ Md can

be calculated. Compare these probabilities with an uniform (0, 1) distributed ran-

dom variable, let the di, which minimizes the difference between P(Xt ≤ di|Zt, Xt−1)

and the uniform random variable, be the i-th particle at time t. This method gener-

ates independent and identically distributed particles from the importance function

f(Xt|Xt−1, Zt).

In this way, the continuous sample space is transformed to a discrete sample space.

When Md → ∞, the discrete sample space is closed and dense, the difference between

the distribution function of the sample on the continuous sample space and on the

discrete sample space goes to zero, which means the samples generated from the dis-

crete sample space have density f(Xt|Xt−1, Zt). WhenMd = 1000, particles generated

from the discrete sample space are almost the particles generate from f(Xt|Xt−1, Zt)

rounded by two digits after decimal.

Notice that when Md is large, the particle number M should also be large, M >>

Md.

The steps of particle filter with the particles generated from discrete sample space

are stated below.

1. At time t = 1, denote

p1,j = P(X1 ≤ dj|Z1, X0), 1 ≤ j ≤Md

where {dj} is defined in (4.5).

Generate M independent uniform (0,1) random variables ui, 1 ≤ i ≤ M. For

1 ≤ i ≤M , define particle X
(i)
1 = ds where

s = arg min
j

|ui − pt,j|,

and the importance weight W
(i)
1 = 1

M
, 1 ≤ i ≤ M. Denote (X̂

(i)
1 , Ŵ

(i)
i ) =

(X
(i)
1 ,W

(i)
i ).

2. Recursive step
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At time t, 2 ≤ t ≤ n, for each i, 1 ≤ i ≤ M, generate M particles from

f(Xt|X̂(i)
t−1, Zt) by the same way as at time t = 1. For a given particle X̂

(i)
t−1

at time t − 1, generate M independent random numbers, uj, 1 ≤ j ≤ M, from

uniform(0,1). Denote

p
(i)
t,a = P(Xt ≤ da|Zt, X̂(i)

t−1), 1 ≤ a ≤Md.

Let particle X
(i,j)
t = ds where

s = arg min
a

|uj − p
(i)
t,a|,

and define the corresponding weight as

w
(i,j)
t = Ŵ

(i)
t−1

f(X
(i,j)
t |Zt, X̂(i)

t−1)
∑M

i=1 Ŵ
(i)
t−1f(X

(i,j)
t |Zt, X̂(i)

t−1)
.

Standardize the weight to obtain the importance weight W
(i,j)
t =

w
(i,j)
t

∑

i,j w
(i,j)
t

.

3. Now, we have particles (X
(i,j)
t ,W

(i,j)
t ), 1 ≤ i ≤M, 1 ≤ j ≤M. Let {X̂(i)

t } be the

unique values of X
(i,j)
t , 1 ≤ i ≤ M, 1 ≤ j ≤ M and Ŵ

(s)
t =

∑

X
(i,j)
t =X̂

(s)
t
W

(i,j)
t .

For the set threshold Cthr, if
M

∑

i(Ŵ
(i)
t )2

< Cthr, resample the particles at time t,

otherwise repeat the recursive step at time t+ 1.

4. Resample

Denote the empirical distribution function of (X̂
(i)
t , Ŵ

(i)
t ) as F̂t. Let particle

X̂
(i)
t = X

(s)
t where

s = arg min
j

|ui − F̂
(j)
t |, 1 ≤ i ≤M

for a sequence of random numbers from (0, 1). The corresponding weight Ŵ
(i)
t

of particle X̂
(i)
t is 1/M.

The thresholdM/
(

3
∑M

i=1(W
(i)
2 )2

)

is used as the criterion to judge whether weight

degeneracy has happened in the simulation.

Figures 4.9 and 4.10 show the simulation results with α = ψ = 0.6 and the chain

size n = 30, α = ψ = 0.9 and the chain size n = 60 respectively. Here the plots
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are displayed in a different way. To reveal how the modes and means of the particles

behave, the true values of hidden states are ordered and set as the line y = x. All the

figures in the rest part of this section are displayed in this way.

The change from the continuous sample space to the discrete sample space provides

an easier way to directly generate particles from the conditional density function (4.4).

A large particle number M is needed when comparing with Md. If M is not large

compared with Md, for example, let Md = 1000, i.e., the discrete particle sample

points di, 1 ≤ i ≤ 1000, locate evenly on [−2, 10] and let the particle number M be

1000 in simulation, we may have only few unique particles at some time point. Notice

that for the next time point, particles are generated by the particles generated at

this time and their corresponding weights are assigned proportional to the weight of

particle generated at this time. This means that the number of particles generated at

the next time depends on the current particles and their weights. If the unique particle

number at current time is small, together with the situation that some particles have

small weights, we would have the consequence that the particles generated at next

time may lose information about the tail. Also the resampling step may not prevent

weight degeneracy. To avoid these cases, a large number of particles are needed, which

should be much larger than Md, to better capture the tail behaviour of the hidden

states.

Figure 4.11 shows the comparison of the simulation results using M = 1000, 5000

respectively, when Md = 1000 for the same observation sequence. The modes and

means of the particles are compared with the true state values, which is the line

y = x in the plots. We can see that most modes (crosses) and means (circles) of the

generated particles are over estimated the states, i.e. on the upper side of the line,

when the particle number is not large (left plot). As the particle numberM increases,

the modes and means are closer to the true state values.

On the other hand, we can decrease the value of Md, instead of increasing M , to

reduce the computing time without losing the advantage of generating particles from

the discrete sample space. Figure 4.12 are the comparison of the simulation results

whenMd = 1000,M = 5000, (left plot), andMd = 100, i.e. di = −2+ 12
100
, 1 ≤ i ≤ 100,

which is almost rounding the particles with one digit after decimal, M = 5000 (right

plot) in the state space model with α = ψ = 0.7 . The left plot in Figure 4.12 is the

same as the right plot in Figure 4.11, with the average absolute difference between

means of the particles and true state values 0.8572, the average absolute difference
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Figure 4.9: Particle filter with particles from the discrete sample space with chain size
n=30. The true value of states are displayed as the line y = x.
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Figure 4.10: Particle filter with particles from the discrete sample space with chain
size n=60. The true value of states are displayed as the line y = x.
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Figure 4.11: Comparison of means, modes of the states, with different discrete sample
space size, M=1000(left), M=5000(right).
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Figure 4.12: Particles generated from the discrete sample space with M = 5000,
Md = 1000 (left), Md = 100(right).

between modes of the particles and true state values 1.1141. The right plot in Figure

4.12 has the average absolute difference between means of the particles and true state

values 0.7934666, while the average absolute distances between the modes of particles

and the real states is 0.99988.

The simulation result is also affected by the value of α, ψ. When the stability

parameters are large, like α = 0.9, and ψ = 0.9 (Figure 4.13), the estimation is better

than when the stability parameters are small.

4.4 Auxiliary particle filter

So far, we mainly discussed the linear observation equation in the state space model

with Gumbel distributed observations. For the non-linear observation equation in the
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Figure 4.13: Particle filter with Md = 100,M = 5000 for large stability parameters.

model with GEV distributed observations {Yt}, another particle filter, the auxiliary

particle filter, is a better option.

Auxiliary particle filter is an extend particle filter with an auxiliary variable, in-

troduced by Pitt and Shephard in 1999 (see [80]).

Sequential importance sampling and auxiliary particle filter share the same idea:

generate particles and assign weights to those particles to estimate the empirical

filtering density. The difference between them is that when generating particles,

auxiliary particle filter introduces an auxiliary variable to help. This auxiliary variable

is related with the generated particles from SIS. It usually is the mean or the mode

of the particles, or a quantity related with Xt+1|Xt.

Denote k as the auxiliary variable, define

f(Xt+1, k|Yt+1) ∝ f(Yt+1|Xt+1)f(Xt+1|Xk
t )W

(k)
t+1,

where Xk
t is the variable that depends on the auxiliary variable and the particles

generated at time t. The sample draw from this joint density is thought to be the

sample of f̂(Xt+1|Yt+1).

To perform an auxiliary particle filter, the following steps are done.
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1. For time t = 1, generate m independently distributed particles X
(i)
t , 1 ≤ i ≤M,

from function g(X0|Yt), denote the weight

w
(i)
t =

f(Yt|X(i)
t )f(X

(i)
t |X0)

g(X0, k|Yt)
, W

(i)
t =

w
(i)
t

∑

1≤i≤mw
(i)
t

.

2. For time 2 ≤ t ≤ n, generate m particles X
(i)
t and k(i), 1 ≤ i ≤ M from

g(Xt, k|Yt),

w
(i)
t =

f(Yt|X(i)
t )f(X

(i)
t |Xk(i)

t−1)

g(X
(i)
t , k(i)|Yt)

, W
(i)
t =

w
(i)
t

∑

1≤i≤mw
(i)
t

.

After obtaining the particles (X
(i)
t ,W

(i)
t ), 1 ≤ i ≤ m, do resampling if it is

necessary (when weight degeneracy occurs).

The choice of function g(Xt, k|Yt) is flexible, Pitt and Shephard used the function

g(Xt, k|Yt) ∝ f(Yt|µkt )f(Xt|Xk
t−1)π

k

=

∫

f(Yt|µkt )dF (Xt|Xk
t−1)π

k

= f(Yt|µkt )πk

in [80], with the particle moments µkt , and made the weight wit = f(Yt|X(i)
t )/f(Yt|µk(i)t ).

For our state space model with GEV distributed marginals, the auxiliary particle

filter includes the following steps.

1. Draw a random sample from the prior distribution ofX0 ∼Gumbel(0,1), denoted

as {X(i)
0 , 1 ≤ i ≤M}, with weight W

(i)
t = 1/M .

2. At time t ≥ 1, update the particles of previous stage by letting

X̃
(i)
t−1 = X

(i)
t−1 − θ

∂
(

Yt −G(Xt−1, ξ̃t)
)2

∂Xt−1

|
Xt−1=X

(i)
t−1

(4.6)

where Yt = G(Xt−1, ξt) and θ ∈ [0, 1/10] is a constant.
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3. Sample the new set of particles {X(i)
t } from the importance function

g(Xt|X(i)
t−1;Y1:t) = p(Xt|X̃(i)

t−1).

4. Assign the weight

wit =
(

W
(i)
t−1

)ρ f(Yt|X(i)
t )p(X

(i)
t |X(i)

t−1)

p(Xt|X̃(i)
t−1)

, (4.7)

where ρ ∈ [0, 1] is a constant. Then normalize the weight

W
(i)
t =

w
(i)
t

∑

1≤i≤M w
(i)
t

.

To find out with which value of ρ and θ we can improve the auxiliary particle, we

tried some simulations for the model with the chain size n = 100, (µ, δ, γ) = (0, 1,−2),

α = ψ = 0.8 and compared the plots of the particles and their corresponding weights

at time t = 100.

In Figure 4.14, θ = 0 for all the plots, which means the auxiliary variable was not

used. The way to simulate particles is the same as in the sequential importance sam-

pling we did before. Its difference from SIS is that the weight function (4.7) depends

on a power function of the past particle weight. The value of ρ = 0, 0.3, 0.5, 0.7, 1 have

been used in the simulation. When ρ = 1, it reduces to the sequential importance

sampling particle filter.

In Figure 4.14, the red vertical line is the true value of the hidden state Xn.

Without the auxiliary variable (ρ = 0), the modes of the empirical filtering density

at time n are not so close to the true value of X100.

If the median of model error ξt is used as the auxiliary variable ξ̃t in Equation

(4.6), let θ = 0, 0.03, 0.05, 0.07, 0.1 and ρ = α, the empirical filtering density at time

t = 100, obtained by auxiliary particle filter, is shown in Figure 4.15 for the same

observation sequence as used in Figure 4.14. When θ = 0, i.e. generating particles the

same way as the sequential importance sampling, with ρ = α in the weight function

(4.7), the simulation result shows some improvement comparing with the SIS particle

filter.

The plots showed in Figure 4.15 only have slightly differences, which means that

the parameter θ may not contribute too much in auxiliary particle filtering. Compare
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Figure 4.14: Empirical filtering density without auxiliary variable at n=100. θ = 0,
ρ = 0, 0.3, 0.5, 0.7, 1 separately (from left to right, top to bottom).
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Figure 4.15: Empirical filtering density with the auxiliary variable evolved. θ =
0, 0.03, 0.05, 0.07, 0.1 and ρ = α.

all the plots in Figure 4.14 with the first plot in Figure 4.15, when θ = 0, i.e. no

auxiliary variable was used to generate particles, the best empirical filtering density is

given by the importance weight function when ρ = α. The improvements are mainly

caused by the change of the importance weight function. Thus we consider lineariza-

tion, which shares some similarities with the auxiliary particle filter on generating

particles.
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4.5 Plain linearization

For the GEV distributed observation Yt, we have

Yt ≈ Yt−1 +
∂Yt
∂Xt

∣

∣

∣Xt=Xt−1,ξt=ξ̃t
(Xt −Xt−1) ,

= Yt−1 + σψeψγXt−1 ξ̃ψγt (Xt −Xt−1),

thus

Xt ≈ Xt−1 +
1

σψ
e−ψγXt−1 ξ̃−ψγt (Yt − Yt−1). (4.8)

This approximating equation provides another way to generate particles. To obtain

the importance function, we need to find the prior density g(Xt|Xt−1, Yt, Yt−1). By

using the Equation (4.8) with ξt, we have

P(Xt ≤ x|Xt−1, Yt, Yt−1) = P
(

ξ−ψγt (Yt − Yt−1) ≤ σψeψγXt−1(x−Xt−1)
)

= P

(

ξt ≤ (ψγ)−
1
ψγ e−Xt−1

(

x−Xt−1

Yt − Yt−1

)− 1
ψγ

)

,

if γ < 0, Yt − Yt−1 > 0,

= P

(

ξt ≥ (ψγ)−
1
ψγ e−Xt−1

(

x−Xt−1

Yt − Yt−1

)− 1
ψγ

)

,

if γ < 0, Yt − Yt−1 < 0.

The prior density when γ < 0 is

g(Xt|Xt−1, Yt, Yt−1) =

(

− 1

ψγ

)

(ψγ)−
1
ψγ e−Xt−1 |Xt −Xt−1|−

1
ψγ

−1|Yt − Yt−1|1/ψγ

×fψ
(

(ψγ)−
1
ψγ e−Xt−1

(

Xt −Xt−1

Yt − Yt−1

)− 1
ψγ

)

.

The corresponding importance weight for the generating Equation (4.8) is the nor-

malized weight of

w
(i)
t =

(

w
(i)
t−1

)α f(Yt|X(i)
t )f(X

(i)
t |X(i)

t−1)

g(X
(i)
t |X(i)

t−1, Yt, Yt−1)
.



117

As to the value of ξ̃t in Equation (4.8), median of S(ψ) is used since the α-stable

distribution has no finite expectation.

To generate particles by linearization, we proceed the particle generating steps in

the same way as in auxiliary particle filter. Particles are generated by the independent

random variables S
(i)
t ∼ S(α) and the particles at the last time,

X
(i)
t = αX

(i)
t−1 + α log S

(i)
t ,

then updated by linearization. Notice that

Yt = G(Xt, ξt),

Yt ≈ G(Xt−1, ξt) +
∂G(Xt, ξt)

∂Xt

∣

∣

Xt=Xt−1(Xt −Xt−1)

= G(Xt−1, ξt) + σψeψγXt−1ξψγt (Xt −Xt−1),

Xt ≈ Xt−1 +
1

σψ
e−ψγXt−1ξ−ψγt (Yt −G(Xt−1, ξt)), (4.9)

denote the median of S(ψ) as ξ̃t, we can obtain the updated particles by letting

X̃
(i)
t = X

(i)
t−1 +

Yt −
(

µ− σ
γ
+ σ

γ
eψγX

(i)
t−1 ξ̃ψγt

)

σψeψγX
(i)
t ξ̃ψγt

.

The corresponding importance weight function for particle X̃ i
t is the normalized

weight of

w
(i)
t = w

(i)
t−1

f(Zt|X(i)
t )f(X

(i)
t |X(i)

t−1)

f(X
(i)
t |X̃(i)

t )
.

Figure 4.16 compares the density plots of particles at time t = 39, 40 generated

by the plain linearization and the auxiliary particle filter. The left plot contains the

particles and their corresponding weights at time t = 39, with circles represent the

particles generated by plain linearization while crosses are the particles generated

by auxiliary particle filter. The right plot corresponds to the comparison at time

t = 40. The vertical line is the true state value. The simulation result shows that

linearization gives better estimation of the empirical density of the states, compared

with the auxiliary particle filter.
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Figure 4.16: Comparison of the particles generated by the auxiliary particle filter
(crosses) and the linearization (circles).

4.6 Properties of filtering

As to the qualitative properties of those discrete filters (Kalman filter, particle filter

and auxiliary filter), there are many studies aimed to prove the uniform asymptotic

stability (error goes to zero as time increases) or convergence result under some specific

conditions but not general results.

Kalman filter, under certain conditions, such as with Gaussian state error and

being uniformly completely observable and uniformly completely controllable, and

as proved by Jazwinski [49], the errors of the filter stabilize as time increases and all

eigenvalues of the error matrix have absolute value less than the unit. For the discrete

time state space model with Gaussian original state and in finite dimensional setting,

the convergence rate of the Kalman filter has been studied by Aalto [1]. The bounds

of Kalman filter for a state space model with non-singular system matrix, bounded

initial covariance and state error covariance matrix has been investigated in Rhudy

and Gu [85].

Del Moral [22] uses martingales and semi-group techniques to analyze the asymp-

totic behaviour of the particle models. The convergence rate of the particle density is
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obtained for the linear Gaussian filtering model.

Based on some assumptions of the prior distribution, Chopin [14] proved that the

Central Limit Theorem holds for the filtering estimates produced by the particle filter-

ing with residual resampling scheme. The stability and the asymptotic variance for a

given particle filter is studied in the same paper. Later, the result that the asymptotic

variance associated with some particle filters is bounded uniformly is demonstrated

for some non-compact state spaces using Feynman-Kac formulas in Whiteley [96].

The properties like the convergence rate of the filtering method mentioned in this

chapter will be discussed in the future.



Chapter 5

Real data analysis

The time series with Fréchet distributed marginals as stated in Equation (1.9) and

the state space model (3.2) are used to analyze the weekly maximum pollution level of

SO2,CO, monitored by the monitor site 360050133 in New York city from January 1,

2016 to December 31, 2017. The data is from United States Environment Protection

Agency (EPA).

The plots of the weekly maximum pollution levels are shown in the left column

of Figure 5.1. There are 104 weeks, thus we have the chain size n = 104. With

the seasonal trend removed and the dependence of the sequences ignored, the weekly

maximum of SO2 follows GEV(-0.63, 1.02, 0.04), which is a Fréchet distribution, or

we can say it is close to a Gumbel distribution. The weekly maximum of CO follows

GEV(-0.08, 0.15, -0.07), which is in Weibull family but is also close to a Gumbel

distribution.

Since the location and scale parameters are not our main interest, we standardized

the maxima of these two pollution sequences, shifted the location parameters to 0 and

standardized them to scale 1 using the estimated GEV parameters. The plots of the

standardized SO2,CO weekly maximal sequences with seasonal trend removed are

shown in the second column of Figure 5.1.

In the following analysis, all the sequences mentioned are standardized and with

the seasonal trend removed.
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Figure 5.1: Weekly maximum of SO2,CO from 2016 to 2017.
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SO2 CO
α estimate γ estimate α estimate γ estimate

Yule-Walker 0.2274209 0.9413648 0.4033022 1.0810085
AR(1) 0.2702623 0.6632850 0.4080463 0.6521737

Linear programming 0.2273278 1.0595494 0.3994137 1.2121325
Recursive Hill 0.7372432 1.0961531 0.6181514 1.2419783
Recursive Fan 0.4336363 1.2097567 0.6325037 1.4164079
K-W metric 0.3612906 1.0007979 0.2689868 1.1736196

Table 5.1: Estimates of α, γ for the transformed weekly maximum pollution levels of
SO2,CO.

5.1 Time series model

We assume the weekly maximum pollutant, SO2,CO, are Gumbel distributed. To fit

the time series model with Fréchet distributed marginals, the exponential function of

these pollution data are used. With the standardized Gumbel distributed assump-

tion, the marginal distribution of these exponential sequences follow Fréchet(0, 1, 1)

distribution.

All the estimation procedures discussed in Chapter 2 are implemented to estimate

the Fréchet tail parameter γ and the stability parameter α for the transformed weekly

maxima. The estimation results are shown in Table 5.1.

For the exponential function of the SO2 weekly maxima sequence, the recursive

method using K-W metric provides the γ estimate closest to 1, Yule-Walker estimation

and linear programming come the second, recursive Hill estimation also works okay.

The AR(1) model gives the γ estimate far away from the other estimates, which

coincides with the conclusion obtained in Chapter 2 that AR(1) estimates have large

variance for γ. For α estimates, the recursive Hill method returns a large estimator

when comparing with the other estimations. Our guess is that α is between 0.22 and

0.43.

For the time series of the exponential function of CO weekly maxima, the γ esti-

mates are around 1.2 for most of the estimations, except Yule-Walker estimation and

AR(1) model. Notice that the CO weekly maxima has Weibull marginal distribution,

with the GEV tail parameter -0.07 when ignoring the dependence structure, to fit the

time series model (1.9), we assumed it is a Gumbel distributed sequence, which may

result that the γ here does not equal to 1. Our estimation results are acceptable here.

We guess γ locates between 1.2 and 1.4. For α estimates, Yule-Walker estimation,



123

SO2 CO
α estimate ψ estimate α estimate ψ estimate

Moments 0.9470124 0.5205703 0.1207518 1.690595
Regression 0.9473785 0.5205869 0.4037104 0.99999

Table 5.2: Estimates of α, ψ in the state space model with weekly maximum pollution
levels of SO2,CO.

AR(1) model and linear regression give the result around 0.4, while the recursive Hill

and recursive Fan’s estimation have the estimator around 0.6. Only K-W metric gives

the α estimator less than 0.3.

5.2 State space model

Since the marginal distributions of the weekly maximum of SO2,CO pollution levels

are close to Gumbel, we can use the state space model with Gumbel distributed

marginals (3.2) to fit them. Moment estimation and the regression model discussed

in Chapter 3 are applied to those observations and the results are stated in Table 5.2.

For the weekly maximum of SO2, the estimates obtained by the moment estimation

and the regression model are similar, thus we believe the parameter α in this model

is close to 0.95 and the ψ parameter is close to 0.52. As discussed in Chapter 3, when

the stability parameters are large, the estimates obtained by these methods are more

reliable and have smaller biases than the estimates obtained from a model with small

stability parameters. Thus we believe the stability estimates for the weekly maximum

of SO2 in Table 5.2 are good.

To obtain the empirical filtering density, we tried SIS procedure with different

importance functions. The α parameter is close to 1, thus using the smaller stability

parameter ψ to generate particles can obtain particles in a wider range and decrease

the chance of weight degeneracy. The means and 95% confidence intervals of the

states using different importance functions are shown in the Figure 5.2. We can see

the 95% confidence intervals of the states (grey broken lines in the left plot) generated

by f(Xt−1|Xt;α) do not show too much changes as the observations change, while the

95% confidence intervals of the states generated by f(Xt|Zt;ψ) (grey broken lines in

the right plot) changes when the observations increase or decrease.

With the particles and their corresponding weights, we can also obtain the esti-

mator of the state functions.
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Figure 5.2: Means and 95% confidence intervals of the states using SIS in the model
with weekly maximum pollutant SO2.
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As to the weekly maximum of CO, we cannot obtained a meaningful estimator of

ψ, even by letting ψ̂ = ψ̂k where k = arg min1≤s≤n/2{s; 0 < ψ̂s < 1},

ψ̂2
s =

cov(Zs:n−1, Zs+1:n)
π2

6
α̂

,

with half of the observations been eliminated. To apply the regression model, we

need reasonable initial values for stability parameters. The initial value outside the

parameter space makes the estimation results obtained by the regression model not

reliable.

In the moment estimation, the α estimates are obtained first, which is in the

parameter space (0,1). We can use this α estimate to obtain ψ. Use the equation

Cov(Zt − αZt−1, Zt−1 − αZt−2) = −α(1 − ψ2)π
2

6
we have ψ̂ = 0.8843999. We used

the Monte Carlo procedure stated in Section 3.3.1 (estimate one stability parameter

when the other is known), let α = 0.1207518 to estimate ψ and the hidden states. The

ψ estimator obtained by this numerical method is 0.9972798. The simulation results

stated in 3.3.1 show that when α is small, the ψ estimates may be over estimated. Here

we assume that ψ takes the value approximate 0.95. Since the stability parameter α

is small and ψ is large, the observations are heavily depend on the hidden states. In

the estimation of the states, the states value are very close to the observations, thus

the estimation result of the states and the filtering results are skipped here.



Chapter 6

Conclusion and future work

6.1 Conclusion

The estimation of a non-linear time series with Fréchet distributed marginals and

the α-stable distributed errors, the estimation and filtering of a state space model

with GEV distributed marginals and α-stable distributed errors are considered in this

manuscript.

For the time series

Xt = Xα
t−1S

α
γ

t ,

where {St} is a α-stable distributed error sequence following S(α) with α ∈ (0, 1),

{Xt} is a Fréchet(0, 1, γ), γ > 0, distributed sequence for t ∈ Z. The sequence {Xt}
satisfies strong mixing condition. Yule-Walker estimation, autoregressive model and

linear programming can be applied to the sequence {logXt} to estimate the stability

parameter α and the Fréchet tail parameter γ. However, these estimation methods

may return estimates outside the parameter space (0, 1). Besides this, the γ estimates

obtained through the autoregressive model would have large variances. Thus, three

recursive methods are developed to improve the estimates.

Since the sequence {Xt, 1 ≤ t ≤ n} satisfies the strong mixing condition and the

extremal index goes to 1 as n → ∞, Hill estimation is considered. With an initial

estimator of γ, in a second stage, the error term St(α) = X
γ̂/α
t X−γ̂

t−1 can be treated

as a function of α. Using the heavy-tail property of the α-stable distributed error

sequence {St}, the estimator of α can be obtained by minimizing the distance between
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α and the Hill estimator of α using the sequence {St(α)} (as stated in Equation

(2.9)). The γ estimator is updated by minimizing the distance between γ and the Hill

estimator of γ from the heavy tailed sequence {X1/α̂
t X−γ

t−1}, with the tail parameter

γα̂ (in Equation (2.10)). The α estimates and γ estimates are updated recursive until

numerical convergence.

This method takes the advantage of the heavy tailed property of the α-stable

sequence, returns estimates within the parameter space. The other advantage of the

recursive Hill estimation is that the α estimates outperform Yule-Walker as well as

the regression estimators when α is small, since the tail of the α-stable distribution is

thicker when the stability parameter is smaller.

The asymptotic density of the order statistic of the sequence {X γ̂/α
t X−γ̂

t−1}, where γ̂
is the moment estimator of γ, is studied to gain insight regarding the reasonableness

of using γ̂ instead of γ in the updating step.

In addition to the heavy tailed property, the α-stable distributed error sequence

has another property, stable property. Using the similar idea as the recursive Hill

estimation, a recursive Fan’s estimation is proposed to update the estimates. In the

update step, Fan’s estimation, using the sum of two independent α-stabled distribu-

tions is still α-stable distributed to estimate the stability parameter, is applied to

the unobserved error sequence, to get the distance between α and α estimates before

optimization. With reasonable initial estimates (e.g. a moment estimate of γ and

a Yule-Walker estimate of α), the convergence rate of recursive Fan’s estimator is

Op(1/n).

Besides the moment estimator of γ, Kantorovich-Wasserstein metric provides an-

other direction of estimation procedure. Since the sequence satisfies the strong mixing

condition and the marginal distribution is known, minimizing the distance between

the empirical distribution function of the observations and the Fréchet distribution

function can provide an estimator of γ. Using this estimator, the distance function

between the Laplace transform of XtX
−α
t−1 and S

α/γ
t can be minimized to obtain the es-

timator of α. These estimates can be updated recursive. The asymptotic convergence

rate of α̂ to α depends on the convergence rate of γ̂, which is faster than
√

log logn
n

.

As for the estimation of the state space model, first, we considered the linear state

space model with Gumbel distributed marginals, for simplicity. To transform the

GEV distributed observations to Gumbel, GEV parameters are required. A recursive

regression model is proposed, stated in Theorem 13, for the heavy tailed marginals.
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This model uses the property that the density at the neighbourhood of lower bound

or upper bound of the support set goes to infinity, thus works well when the sample

size is small.

After estimating the GEV parameters, the GEV distributed observations can be

transformed to Gumbel and the state space model becomes linear. However, it is

difficult to use the observation sequence to estimate two stability parameters at the

same time. Thus, we considered the case that one stability parameter is known.

For the state space model with Gumbel distributed marginals

Zt = ψXt + ψξt,

Xt = αXt−1 + α log St,

where ξt ∼ S(ψ) and St ∼ S(α) are independent α-stable distributed errors and

α, ψ ∈ (0, 1), if α is known, in addition to the moment estimation, I proposed a Monte

Carlo procedure to estimate ψ. This procedure uses the similar idea as the particle

filter, generating particles at each time point using the known α and assigning weights

to the particles by the moment estimation of ψ. The mode of the particles at each

time point can be thought as the estimator of the state. The stability parameter can

be estimated after obtaining the state estimates. When comparing with the moment

estimation, this method gives better estimation result especially when α is small.

If ψ is know, another Monte Carlo procedure is proposed, which has a slight

difference as we performed before. A random sample is generated from S(ψ), as the

error sequence used in the model. The model structure is used to input the error to

a most plausible time point according the generated random sample. This procedure

works well for large ψ, but not effect for small ψ since the generated sample set would

be far away from the real errors due to the heavy tail of S(ψ).

For the case that both stability parameters are unknown, Yule-Walker estimation

and regression model are used. Yule-Walker estimates have the asymptotic normality,

however the bias is large when the size of the series is small. There is no procedure

that works well when the stability parameters are small, due to the weakly dependent

structure.

After estimation, we did model filtering, estimating the states and the empirical

filtering densities. For the state estimation, two random samples are generated, one

from S(α) and the other from S(ψ), treated as the errors used in the state space model.

The same idea to estimate ψ when α is known is used here. I proposed a Monte Carlo
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procedure to estimate the errors and the states based on the model structure. This

procedure works better than Kalman filter. However, the quality of the estimates is

very poor when either the stability parameters is small.

For the empirical filtering density estimation, three filtering procedures are ap-

plied. The first one is the sequential importance sampling (SIS), with three different

importance functions and importance weight functions, built on the state space model

with Gumbel distributed marginals. To generate good particles and reduce the prob-

ability of weight degeneracy, an importance function that can generate particles in

a wider range should be chosen. This depends on the value of α, ψ. Theoretically,

f(Xt|Xt−1, Zt) is an ideal importance function, however there is not practical way to

sample directly from it. We used the distribution function F (Xt|Xt−1, Zt) instead,

transforming the continuous particle sample space into a discrete one and performed

the SIS.

The second and third filtering procedures, auxiliary particle filter and linearization,

are applied to the state space model with GEV distributed marginals. The auxiliary

particle filter includes two constants and one auxiliary variable, where one constant

and the auxiliary variable are used in the particle generating step, the other constant

is used as the power in the weight function. The linearization uses SIS and Taylor’s

expansion with the median of the error term to generate particles. Linearization works

better than the auxiliary particle filter in the simulation.

The time series and the state space model with Gumbel distributed marginals

are applied to two air pollution data in New York city. All the estimation methods

and some of the filtering methods discussed in the manuscript are performed and

compared.

6.2 Future work

There are many interesting problems that need to be addressed for state space models

with GEV distributed marginals. For the linear state space model with Gumbel

distributed marginals, I think it is still worth to answer the question of whether

there are better options to estimate the stability parameters than the Yule-Walker

estimation.

For the state space model with GEV distributed marginals, the GEV parameters
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are estimated without considering the dependence structure of the observation se-

quence in this manuscript, which increases the error of stability estimates. A better

estimation should consider the effect of the stability parameters when estimating the

GEV parameters. We will consider other optimization methods in the future.

Some Monte Carlo procedures are used to estimate one stability parameters in

the state space mode. The asymptotically properties of the estimates should also be

addressed in the future.

There are issues with filtering that should be addressed. All the asymptotic prop-

erties are shown by simulation result in this manuscript. The result of convergence

rates, the bounded property, the asymptotic variances of the filtering in this kind of

models haven’t been found in the literature.

In addition to the state space model with GEV distributed marginals and the

α-stable distributed errors, the estimation of other models like the GEV-M3 model in

Kunihama et al. [60] and the estimation of max-stable model in Naveau and Poncet

[71] can be considered.

State space models for extreme value data are needed in many fields, like in eco-

nomics and in applied science area, including physical, biological and social, that

models with heavy tailed errors can be applied.
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Appendix A

Proof of Theorem 13

To show Theorem 13, we need the following lemmas:

Lemma 19. The maximum of the sample Y(n) from the independent GEV(µ, σ, γ)

sequence converges in probability to the upper bound µ− σ
γ
when γ < −1.

Lemma 20. In Equation (3.6),

ηn,i =
γǫn,i

i
n+1

log i
n+1

+ op(ǫn,i)−
µ− σ

γ
− Y(n)

µ− σ
γ
− Y(i)

+ op

(

µ− σ
γ
− Y(n)

µ− σ
γ
− Y(i)

)

where

ǫn,i = F (Y(i))−
i

n+ 1
.

Lemma 21. For 1 ≤ i < j ≤ n,

E(ǫn,i) = 0,

Var(ǫn,i) =
in+ i− i2

(n+ 1)2(n+ 2)
,

Cov(ǫn,i, ǫn,j) =
in+ i− ij

(n+ 1)2(n+ 2)
+

ij

(n+ 1)2
.

As ηn,i depends on the ratio of the order statistics
µ−σ

γ
−Y(n)

µ−σ
γ
−Y(i) , we have
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Lemma 22. Using Taylor expansion of two-dimensional equation,

µ− σ
γ
− Y(n)

µ− σ
γ
− Y(i)

=
En
Ei

−
∂F−1( n

n+1
)

Ei
ǫn,n +

En∂F
−1
(

i
n+1

)

Ei
ǫn,i −

∂F−1
(

i
n+1

)

∂F−1( n
n+1

)

2E2
i

ǫn,iǫn,n

+
En(∂F

−1( n
n+1

))2

E3
i

ǫ2n,i −
∂2F−1( n

n+1
)

2Ei

(

ǫ2n,n − E(ǫ2n,n)
)

+
En∂

2F−1
(

i
n+1

)

2Ei

(

ǫ2n,i − E(ǫ2n,i)
)

+ op(ǫn,i),

Now we need to prove these lemmas. The proof of lemma 19 comes first:

Proof of Lemma 19. The density function of GEV(µ, σ, γ) is

f(y) =
1

σ
(1 + γ

y − µ

σ
)−1−1/γe−(1+γ y−µ

σ
)−1/γ

.

When y → µ− σ
γ
, which is 1 + γ y−µ

σ
→ 0, we have f(y) → ∞. This means no matter

how small the sample size n is, there exists a sample closed enough to the upper bound

µ− σ
γ
, thus Y(n)

p→ µ− σ
γ
, since

P

(∣

∣

∣

∣

Y(n) − µ+
σ

γ

∣

∣

∣

∣

> ε

)

= e−nε
−1/γσ−1/γ(−γ)−1/γ → 0

when γ < 0.

Proof of Lemma 20. The empirical distribution function is an unbiased and consistent

estimator of the true distribution, and converges uniformly to the true distribution,

also has normality (see chapter 2.9 in [34]) for the independent sequence. By the

definition of empirical distribution function, Y(i), 1 ≤ i ≤ n, is seen as the i
n+1

-th

quantile of the sample sequence,

F (Y(i)) = P(Y ≤ Y(i)) = exp(−(1 + γ
Y(i) − µ

σ
)−1/γ) =

i

n+ 1
+ ǫn,i, (A.1)

Perform the same transformation to both sides of the last Equation (A.1), we have



140

−1

γ
log(1 + γ

Y(i) − µ

σ
) = log

(

− log(
i

n+ 1
+ ǫn,i)

)

,

−1

γ
log(Y(n) − Y(i))−

1

γ
log

(

1 + γ
Y(i)−µ
σ

Yn − Y(i)

)

= log

(

− log(
i

n+ 1
)

)

− ǫn,i
i

n+1
log i

n+1

+ op(ǫn,i),

log(Y(n) − Y(i)) + log

(

−γ
σ

µ− σ
γ
− Y(i)

Y(n) − Y(i)

)

= −γ log
(

− log
i

n+ 1

)

+
γǫn,i

i
n+1

log i
n+1

+ op(ǫn,i),

log(Y(n) − Y(i)) = − log
(

−γ
σ

)

− γ log

(

− log
i

n+ 1

)

+ ηn,i,

which is yi = − log(− γ
σ
)− γxi + ηn,i with (xi, yi) defined in Theorem 13 and

ηn,i =
γǫn,i

i
n+1

log i
n+1

+ op(ǫn,i)− log

(

µ− σ
γ
− Y(i)

Y(n) − Y(i)

)

=
γǫn,i

i
n+1

log i
n+1

+ op(ǫn,i)−
µ− σ

γ
− Y(n)

µ− σ
γ
− Y(i)

+ op

(

µ− σ
γ
− Y(n)

µ− σ
γ
− Y(i)

)

.

If the error term {ηn,i, 1 ≤ i ≤ n− 1} is an independent sequence, which has zero

mean and constant variance, it is an ordinary linear regression problem. Those n− 1

points

(log(− log(
i

n+ 1
)), log(Y(n) − Y(i))), 1 ≤ i ≤ n− 1

can be used to fit the line y = −γx− log(−γ
σ
). Thus the estimator of GEV parameters

could be obtained.

However, the error term here is not independent, also has mean and variance

depend on the GEV parameters and the order i. To obtain the mean and covariance

of ηn,i, we need the result of Lemma 21.

Proof of Lemma 21. To calculate the mean and variance of ǫn,i, we need to consider

the densities of the order statistics. The maximum of the independent sample, denoted

as Y(n), has the density

fY(n)(y) = nf(y)F (y)n−1.
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The density of the i-th smallest sample Y(i) is

fY(i)(y) = lim
ε→0

∂ P
(

Y(i) ∈ [y, y + ε)
)

∂ε

= nf(y)
(n− 1)!

(i− 1)!(n− i)!
F (y)i−1(1− F (y))n−i. (A.2)

With the density of Y(i), the moments of F (Y(i)) can be obtained.

E(F (Y(i))) =

∫

F (y)nf(y)
(n− 1)!

(i− 1)!(n− i)!
F (y)i−1[1− F (y)]n−idy

=

∫ 1

0

n
(n− 1)!

(i− 1)!(n− i)!
ui(1− u)n−idu (u = F (y))

=
i

n+ 1
,

E(F 2(Y(i))) =

∫

F 2(y)nf(y)
(n− 1)!

(i− 1)!(n− i)!
F (y)i−1[1− F (y)]n−idy

=

∫ 1

0

n
(n− 1)!

(i− 1)!(n− i)!
ui+1(1− u)n−idu (u = F (y))

=
i(i+ 1)

(n+ 1)(n+ 2)
,

thus we have E(ǫn,i) = 0 and

Var (ǫn,i) = E(F (Y(i))−
i

n+ 1
)2 =

in+ i− i2

(n+ 1)2(n+ 2)
.

For the jointly density of Y(i) and Y(j), let 1 ≤ i < j < n, y1 ≤ y2 < µ− σ
γ
,

fY(i),Y(j)(y1, y2) = n(n− 1)f(y1)f(y2)
(n− 2)!

(i− 1)!(n− i− 1)!
F i−1(y1)

(n− i− 1)!

(j − i− 1)!(n− j)!
(F (y2)− F (y1))

j−i−1 (1− F (y2))
n−j .
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Thus

E(F (Y(i))F (Y(j))) =
i(j + 1)

(n+ 1)(n+ 2)
,

Cov(F (Y(i)), F (Y(j))) =
in+ i− ij

(n+ 1)2(n+ 2)
.

Specifically,

E(F (Y(i))F (Y(n))) =
i

(n+ 2)
,

Cov(F (Y(i)), F (Y(n))) =
i

(n+ 1)2(n+ 2)
.

The moments of Y(i) is needed to obtain the Taylor expansion of
µ−σ

γ
−Y(n)

µ−σ
γ
−Y(i) .

Proof of Lemma 22. The order statistic Y(i) can be represented by ǫn,i. Since Y(i) =

F−1(F (Y(i))), where

F−1(y) = µ− σ

γ
+
σ

γ

(

log
1

y

)−γ
, (A.3)

thus

Y(i) = F−1

(

i

n+ 1

)

+ ∂F−1

(

i

n+ 1

)(

F (Y(i))−
i

n+ 1

)

+
∂2F−1( i

n+1
)

2

(

F (Y(i))−
i

n+ 1

)2

+ op

(

(

F (Y(i))−
i

n+ 1

)2
)

= F−1

(

i

n+ 1

)

+ ∂F−1

(

i

n+ 1

)

ǫn,i +
∂2F−1( i

n+1
)

2
ǫ2n,i + op(ǫ

2
n,i),

where ∂F−1, ∂2F−1 represent the first and second order derivative of F−1 in Equation

(A.3). Combined with lemma 21,

E(Y(i)) = F−1

(

i

n+ 1

)

+
∂2F−1( i

n+1
)

2
Var(ǫn,i) + op (Var(ǫn,i)) ,

so

Y(i) − E(Y(i)) = ∂F−1

(

i

n+ 1

)

ǫn,i +
∂2F−1( i

n+1
)

2

(

ǫ2n,i − Var(ǫn,i)
)

+ op
(

ǫ2n,i +Var(ǫn,i)
)

.
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Denote

E

(

µ− σ

γ
− Y(i)

)

= −σ
2

(r + 1)(log n+1
i
)−γ−2 − log(n+1

i
)−γ−1

i

n+ 1− i

n+ 2

−σ
γ

(

log
n+ 1

i

)−γ
+ op

(

in+ i− i2

(n+ 1)2(n+ 2)

)

= Ei.

Under the condition of γ < −1,

En = E

(

µ− σ

γ
− Y(n)

)

= −σ
2

(r + 1)(log n+1
n
)−γ−2 − log(n+1

n
)−γ−1

n(n+ 2)

−σ
γ
(log

n+ 1

n
)−γ + op

(

n

(n+ 1)2(n+ 2)

)

= op

(

(

1

n

)min(−γ,2)
)

.

Using Taylor expansion we have

µ− σ
γ
− Y(n)

µ− σ
γ
− Y(i)

=
En
Ei

+
1

Ei

(

E(Y(n))− Y(n)
)

− En
E2
i

(

E(Y(i))− Y(i)
)

+
En
E3
i

(

E(Y(i))− Y(i)
)2

− 1

2E2
i

(

E(Y(n))− Y(n)
) (

E(Y(i))− Y(i)
)

+ op(
(

E(Y(i))− Y(i)
)2

+
(

E(Y(n))− Y(n)
) (

E(Y(i))− Y(i)
)

+
(

E(Y(n))− Y(n)
)2
)

=
En
Ei

−
∂F−1( n

n+1
)

Ei
ǫn,n +

En∂F
−1
(

i
n+1

)

Ei
ǫn,i −

∂F−1
(

i
n+1

)

∂F−1( n
n+1

)

2E2
i

ǫn,iǫn,n

+
En(∂F

−1( n
n+1

))2

E3
i

ǫ2n,i −
∂2F−1( n

n+1
)

2Ei

(

ǫ2n,n − E(ǫ2n,n)
)

+
En∂

2F−1
(

i
n+1

)

2Ei

(

ǫ2n,i − E(ǫ2n,i)
)

+ op(ǫn,i).

Since
∂F−1( i

n+1)
Ei

,
∂2F−1( i

n+1)
Ei

is bounded, En → 0 and |ǫn,i| < 1 as n → ∞, thus
µ−σ

γ
−Y(n)

µ−σ
γ
−Y(i) can be simplified to En

Ei
+ op(ǫn,i) + op(ǫn,n).



Appendix B

Proof of Theorem 14, 15, 16

Since

d(n) = sup |P(A ∩B)− P(A) P(B)| ≤ sup |P(B|A)− P(B)|,

which means for any value z, Z1, we need to prove that

P(Zn+1 ≤ z|Z1)− P(Zn+1 ≤ z) = Op(n
−5).

To obtain the asymptotic normality of Z̄n, we need to show d(n) = Op(n
−5).

Proof of Theorem 14. From Lemma 12 we have

P(Zn+1 ≤ z|Z1)− P(Zn+1 ≤ z) = Op(nα
n)

and

nαn = op(n
−5),
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Cov(Zi, Zi+h) = αhψ2 π2

6
,

nVar(Z̄n) =
1

n

n
∑

i,j=1

Cov(Zi, Zj)

= Var(Zi) +
2

n

n−1
∑

i=1

(n− i)αiψ2π
2

6

=
π2

6
+ 2ψ2π

2

6

(

(n+ 1)
α(1− αn−1)

1− α
−
(

α2(1− αn−1)

1− α

)′)

=
π2

6

(

1 + 2ψ2 α

1− α
− 2ψ2α(1− αn)

n(1− α)2

)

< ∞.

Using the Theorem 27.4 in [6],

√
nZ̄n → N

(

0,
π2

6

(

1 + 2ψ2 α

1− α

))

. (B.1)

Theoretically, this conclusion is true. However for this result to be valid in practical

uses, it is worth to notice that the size of n should be in the thousands to make

P(Zn+1 ≤ z|Z1) − P(Zn+1 ≤ z) to converge to zero faster than n−5 when α is large,

say α > 0.1. When α is small, this conclusion is okay for practical purpose.

Proof of Theorem 15. For the asymptotic property of r∗(h), consider the sequence

Z1Z1+h, Z2Z2+h, Z3Z3+h, . . . .

The dependence coefficient d∗(n) of this sequence is smaller than d(n− h),

d∗(n)

= sup |P(Zn+1Zn+1+h ≤ z, Z1Z1+h ≤ z1)− P(Zn+1Zn+1+h ≤ z) P(Z1Z1+h ≤ z1)|
≤ d(n− h).
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{Zt} is a stationary sequence with mean αhψ2 π2

6
,

E(ZnZn+h) = E
(

Zn(α
hZn + Vα,ψ,n − αhψ log ξn)

)

= αh
π2

6
− αhψ2(

1

ψ2
− 1)

π2

6

= αhψ2π
2

6
.

The fourth moment of log Si is finite, so

r∗(h) =
1

n

n
∑

i=1

ZiZi+h

is asymptotically normal with mean r(h).

To obtain the variance of r∗(h),

Var(r∗(h)) =
1

n2

n
∑

i,j=1

Cov(ZiZi+h, ZjZj+h)

=
1

n
Var(ZiZi+h) +

2

n2

n−1
∑

i=1

n
∑

j=i+1

Cov(ZiZi+h, ZjZj+h)

=
1

n
Var(ZiZi+h) +

1

n2

n−h
∑

i=1

E(ZiZ
2
i+hZi+2h)

+
2

n2

n−1
∑

i=1

min(h−1,n−i)
∑

s=1

E(ZiZi+sZi+hZi+s+h)

+
2

n2

n−h−1
∑

i=1

n−i
∑

s=h+1

E(ZiZi+hZi+sZi+s+h)−
n− 1

n
ψ4α2h

(

π2

6

)2

,(B.2)

we need the value Var(ZiZi+h),E(ZiZ
2
i+hZi+2h),E(ZiZi+sZi+s+pZi+s+p+q) for positive

h, s, p, q.

If h = 1, 2
n2

∑n−1
i=1

∑min(h−1,n−i)
s=1 E(ZiZi+sZi+hZi+s+h) is zero.

Note that

Zi+h = αhZi − αhψ log ξi + αhψ log(Sαhψ),



147

where Sαhψ =: Si+1 . . . S
1/αh

i+h ξ
1/αh−1

i+h ∼ S(αhψ, 1) and independent of Zi, ξi,

Var(ZiZi+h) = Var
(

Zi(α
hZi − αhψ log ξi + αhψ log(Sαhψ)

)

= Var(αhZ2
i ) + Var(αhψZi log ξi) + V ar(αhψZi log Sαhψ)

= ψ4α2h E(log4 ξi) + α2h

(

π2

6

)2

(ψ2 +
2

5
) (B.3)

since all the variables we considered here (Zi, {ξi}, {Si}) are centred, so the covariance

part equals zero and

Var(Z2
i ) = E(Z4

i )−
(

E(Z2
i )
)2

=
7

5

(

π2

6

)2

,

Var(Zi log ξi) = Var((ψ log ξi + ψXi) log ξi)

= ψ2 Var(log2 ξi) + ψ2

(

π2

6

)2

(
1

ψ2
− 1)

= ψ2 E(log4 ξi)−
(

π2

6

)2

(
1

ψ2
− 1).

Before calculate E(ZiZ
2
i+hZi+2h) and E(ZiZi+sZi+s+pZi+s+p+q) we need

E(Zi log ξi) = ψ(
1

ψ2
− 1)

π2

6
, (B.4)

E(Zi log
3 ξi) = ψ E(log4 ξi), (B.5)

E(Z2
i log

2 ξi) = ψ2 E(log4 ξi) + ψ2(
1

ψ2
− 1)

(

π2

6

)2

, (B.6)

E(Z3
i log ξi) = ψ3 E(log4 ξi) + 3ψ3(

1

ψ2
− 1)

(

π2

6

)2

. (B.7)

Similar, decompose Zi+h, Zi+2h as:

Zi+h = αhZi − αhψ log ξi + ψ log ξi+h + αhψ log(S1,αh),

Zi+2h = α2hZi − α2hψ log ξi + ψ log ξi+2h + α2hψ log(S1α,h) + αhψ log(S2,αh),

where

S1,αh = Si+1 . . . S
1/αh−1

i+h ∼ S(αh), (B.8)

S2,αh = Si+1+h . . . S
1/αh−1

i+2h ∼ S(αh), (B.9)
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S1,αh , S2,αh are mutually independent of Zi, {ξi}.
By using Equations (B.8), (B.9) and (B.4)–(B.7), we obtain

E(ZiZ
2
i+hZi+2h)

= E
(

Zi
(

αhZi − αhψ log ξi + ψ log ξi+h + αhψ log S1,αh
)2

×
(

α2hZi − α2hψ log ξi + ψ log ξi+2h + α2hψ log S1α,h + αhψ log S2,αh
))

= E
(

Zi(α
hZi − αhψ log ξi + ψ log ξi+h + αhψ log S1,αh)

2

× (α2hZi − α2hψ log ξi + α2hψ log S1,αh)
)

= α4h E(Z4
i )− 3α4hψ E(Z3

i log ξi) + 3α4hψ2 E(Z2
i log

2 ξi)

−α4hψ3 E(Zi log
3 ξi) + 3α4hψ2 E(Z2

i log
2 S1,αh)− 3α4hψ3 E(Zi log ξi log

2 S1,αh)

+α2hψ2 E(Z2
i log

2 ξi+h)− α2hψ3 E(Zi log ξi log
2 ξi+h)

)

= −α4hψ4 E(log4 ξi) + α4h

(

π2

6

)2(
12

5
− 6ψ2 + 3ψ4

)

+ α2h

(

π2

6

)2
(

ψ2 + 2ψ4
)

.

(B.10)

E(ZiZi+sZi+s+pZi+s+p+q)

= E ( Zi(α
sZi − αsψ log ξi + ψ log ξi+s + αsψ log S1,αs)

×(αs+pZi − αs+pψ log ξi + ψ log ξi+s+p + αs+pψ log S1,αs + αpψ log S2,αp)

×(αs+p+qZi − αs+p+qψ log ξi + ψ log ξi+s+p+q + αs+p+qψ log S1,αs +

αp+qψ log S2,αp + αqψ log S3,αq) )

= E ( Zi(α
sZi − αsψ log ξi + αsψ log S1,αs)

×(αs+pZi − αs+pψ log ξi + αs+pψ log S1,αs + αpψ log S2,αp)

×(αs+p+qZi − αs+p+qψ log ξi + αs+p+qψ log S1,αs + αp+qψ log S2,αp) )

= α3s+2p+q E ( Z4
i − 3ψZ3

i log ξi + 3ψ2Z2
i log

2 ξi − ψ3Zi log
3 ξi + 3ψ2Z2

i log
2 S1,αs

−3ψ3Zi log ξi log
2 S1,αs ) + αs+2p+q E

(

ψ2Z2
i log

2 S2,αp − ψ3Zi log ξi log
2 S2,αp

)

= −α3s+2p+qψ4 E(log4 ξi) + α3s+2p+q

(

π2

6

)2(
12

5
− 6ψ2 + 3ψ4

)

+αs+2p+q

(

π2

6

)2(

ψ4(1 +
2

α2p
)

)

(B.11)

where S1,αs ∼ S(αs), S2,αp ∼ S(αp), S3,αq ∼ S(αq) and are mutually independent with
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each other and independent of Zi, {ξi}.
By combining the Equations (B.2), (B.3), (B.10) and (B.11), we obtain

Var(r∗(h))

=
1

n

(

ψ4α2h E(log4 ξi) + α2h

(

π2

6

)2

(ψ2 +
2

5
)

)

+
n− h

n2

(

−α4hψ4 E(log4 ξi) + α4h

(

π2

6

)2(
12

5
− 6ψ2 + 3ψ4

)

+ α2h

(

π2

6

)2
(

ψ2 + 2ψ4
)

)

+
2

n2

n−1
∑

i=1

min(n−i,h−1)
∑

s=1

(

−α2s+2hψ4 E(log4 ξi) + α2s+2h

(

π2

6

)2(
12

5
− 6ψ2 + 3ψ4

)

+α2h

(

π2

6

)2

ψ4 + 2α2sψ4

(

π2

6

)2
)

+
2

n2

n−h−1
∑

i=1

n−i
∑

s=1+h

(

−α2s+2hψ4 E(log4 ξi) + α2s+2h

(

π2

6

)2(
12

5
− 6ψ2 + 3ψ4

)

+α2s+h

(

π2

6

)2

ψ4 + 2α2hψ4

(

π2

6

)2
)

− n− 1

n
ψ4α2h

(

π2

6

)2

(B.12)

with

n−1
∑

i=1

min(n−i,h−1)
∑

s=1

α2s+2h =
α2h+2

1− α2

(

n− 1− (n− h+ 1)α2h−2 − α2

1− α2
(1− α2h−4)

)

,

n−1
∑

i=1

min(n−i,h−1)
∑

s=1

α2h = (h− 1)(n− h

2
)α2h,

n−1
∑

i=1

min(n−i,h−1)
∑

s=1

α2s =
α2

1− α2

(

n− 1− α2

1− α2
+

α2h−2

1− α2
+ (n− h+ 1)α2h−2

)

,

n−h−1
∑

i=1

n−i
∑

s=1+h

α2s+2h =
α4h+2

1− α2

(

n− h+ 1− α2

1− α2
(1− α2(n−h−1))

)

,

n−h−1
∑

i=1

n−i
∑

s=1+h

α2h =
(n− h)(n− h− 1)

2
α2h,

n−h−1
∑

i=1

n−i
∑

s=1+h

α2s =
α2h+2

1− α2

(

n− h+ 1− α2

1− α2
(1− α2(n−h−1))

)

.
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The variance of r∗(h) has finite boundaries,

lim
n→∞

Var(r∗(h)) = α2hψ4

(

π2

6

)2

,

so

r∗(h) → N

(

r(h), α2hψ4

(

π2

6

)2
)

.

Proof of Theorem 16.

r∗(h)− r̂(h) =
1

n

n
∑

i=1

ZiZi+h −
1

n

n−h
∑

i=1

(Zi − Z̄n)(Zi+h − Z̄n)

=
1

n

n
∑

i=n−h+1

ZiZi+h +
1

n
Z̄n

(

n−h
∑

i=1

Zi+h +
n−h
∑

i=1

Zi − (n− h)Z̄n

)

=
1

n

n
∑

i=n−h+1

ZiZi+h +
1

n
Z̄n(

n−h
∑

i=h+1

Zi + hZ̄n).

√
n(r∗(h)− r̂(h)) =

1√
n

n
∑

i=n−h+1

ZiZi+h +
√
nZ̄n(

1

n

n−h
∑

i=h+1

Zi +
h

n
Z̄n).

1√
n

∑n
i=n−h+1 ZiZi+h is op(1) since

1√
n

n
∑

i=n−h+1

E(ZiZi+h) → 0.

By Theorem 14, we have
√
nZ̄n is asymptotically normal (see Equation (B.1)), so

√
nZ̄n(

1
n

∑n−h
i=h+1 Zi +

h
n
Z̄n) is Op(n

−1/2).
√
n(r∗(h)− r̂(h)) = op(1) as n→ ∞, so r̂(h) → N

(

r(h), α2hψ4
(

π2

6

)2
)

.
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