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Abstract 

The American lobster (Homarus americanus) is the most commercially important 

decapod species in Newfoundland. Since the 1990s, fishery landings in Placentia Bay, 

Newfoundland have been steadily decreasing. The invasive green crab (Carcinus maenas) 

was first recorded in North Harbour (Placentia Bay) most likely in 2002, and shortly after 

this, lobster landings decreased by 34% compared to previous years. Analyses of the 

behavioural interactions between the two species around a food source and a baited trap 

were used to better understand the potential impacts of green crabs on lobsters in the 

natural environment. The presence of green crabs (1-25 animals) had no significant effect 

on the ability of lobsters to acquire food, but they did negatively impact lobster food 

consumption when present in high numbers (150 crabs). Agonistic interactions between 

the two species increased with green crab density. Green crabs also significantly affected 

lobster behaviour around a baited trap; when green crabs were present and could freely 

move around the trap, a lobster approached, attempted to enter and successfully entered 

less frequently compared to trials when no crabs were present. Analyses of predator-prey 

interactions between adult lobsters and green crabs were also used to determine if lobsters 

from Newfoundland would recognise green crabs as a potential prey item. Lobsters 

originating from Nova Scotia and Newfoundland actively consumed green crabs of all 

sizes and the size of the green crab determined the likelihood of being damaged and 

consumed by a lobster. The longer a green crab remained in the presence of a lobster, the 

more likely it would be captured and eaten. This research provides information on the 

potential impact of green crab on the lobster fishery in Newfoundland and Labrador and 

may be used by stakeholders in the management this fishery. 
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1. General Introduction 2 

The fishing industry is a highly important business to the island of Newfoundland, 3 

both historically and economically (Schrank, 2005) and the American lobster (Homarus 4 

americanus, H. Milne Edwards, 1837) fishery is currently one of the most profitable 5 

(Boudreau & Worm, 2010). In recent years the overall value of the lobster fishery in 6 

Placentia Bay, Newfoundland, has, in part, been decreasing due to a decrease in total 7 

annual landings (DFO; Department of Fisheries and Oceans -raw data, pers. comm. 8 

Elizabeth Coughlan, 2016).  Lobster harvesters (Roy Murphy; Hayward Eddy, lobster 9 

harvesters, pers. comm. 2016) and industry members are very concerned that the 10 

introduction and spread of the invasive green crab is having a negative impact on the 11 

lobster population and may be a factor in the decline in lobster landings. Additionally, the 12 

Fish, Food and Allied Workers’ Union (FFAW), a labour union that represents 12,000 13 

employees in the fishing industry in Newfoundland, has also expressed concern over the 14 

reduction in landings in Placentia Bay which has coincided with the presence of the green 15 

crab (FFAW, Jackie Baker, Dwan Street, pers. comm., 2015). Due to the concerns over 16 

the potential negative impacts that the green crabs may have on the local lobster 17 

populations, this study hopes to identify behavioural interactions between the two species 18 

and implications therein. 19 

American lobster biology and life history 20 

The American lobster is found along the east coast of North America ranging 21 

from Labrador to South Carolina and occurs from shallow intertidal zones down to depths 22 
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of 700 m (Aiken & Waddy, 1986). Homarus americanus engages in temperature-23 

dependent migrations, often moving offshore into warmer water in the winter months to 24 

enhance their rate of growth and reproduction (Aiken & Waddy, 1986; Factor, 2005). 25 

They can be found in temperatures ranging from 0-25⁰C depending on the season and 26 

water depth (Camacho et al., 2006). At temperatures below 5⁰C, metabolism slows down 27 

and can inhibit moulting, and temperatures above 25⁰C are stressful or lethal (Waddy et 28 

al., 1995). American lobsters can live for more than 30 years (Lawton & Lavalli, 1995) 29 

and growth is achieved through moulting, or ecdysis, which is the loss and removal of an 30 

old shell to accommodate a new, larger shell. Moulting usually occurs from late July to 31 

early September, or when water temperatures are above 5°C. Lobsters can grow by 10-32 

17% in carapace length and by 30-60% in weight at each subsequent moult (Ennis, 1972).  33 

Importance to the fishing industry 34 

Homarus americanus is very important to the fishing industry in North America; 35 

The fishery is one of the most economically viable fisheries due to the relatively low cost 36 

of fishing vs. the return of the product (Boudreau & Worm, 2010), with annual landings 37 

in Atlantic Canada reaching 74,686 tonnes in 2013 (CAN $680.5 million) (DFO, 2016). 38 

In Canada, the fishery has substantial socioeconomic value in rural communities and 39 

annual landings had increased in 2013 by more than 11, 000 tonnes since 2011 (DFO, 40 

2013). Fishing zones in Canada are divided into lobster fishing areas (LFAs, Figure 1.1) 41 

that vary in opening times, but generally can be categorized into the following; 42 

Newfoundland: April-July, Quebec: June-August, Prince Edward Island: April-October, 43 

New Brunswick: April-December and Nova Scotia: April-December. In addition to 44 

fishing areas, there are also limitations on the number of licenses available, the capture of 45 
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berried females (egg-carrying), the presence of a v-notch of the telson of a female (large 46 

females are v-notched to prevent them being landed by harvesters due to their importance 47 

in re-stocking the fishery with larvae), the minimum and maximum landing sizes, the 48 

fishing season length and the number of traps permitted (Ennis, 1982; Davis et al., 2006). 49 

The minimum landing size of lobsters in Newfoundland is a carapace length (CL) of 82.5 50 

mm, which takes an individual approximately 8-10 years to reach (DFO, 2016).  In the 51 

USA, the lobster fishery is open all year, but also has restrictions on minimum/ maximum 52 

landing size (82.5-171.5mm CL respectively), v-notch possession, the landing of 53 

ovigerous females and trap requirements depend on state law (National Oceanic and 54 

Atmospheric Administration - NOAA, 2016).  55 

History of the lobster fishery in Newfoundland 56 

In North America lobsters are caught using a baited trap which sits, unattended, 57 

for 12-48 hours (Miller, 1990), generally at depths less than 20 m (DFO, 2016). There is 58 

great diversity in the types of traps that can be used (Fig. 1.2) and the trap used in the 59 

Newfoundland fishery is typically of the “D- shape wooden slat” design. These traps have 60 

a twine entry funnel that leads to the colloquially named “kitchen” part of the trap and an 61 

additional entrance that leads to the “parlour”. The parlour is the area where bait is stored 62 

and where the animals are unable to escape once they have entered (Slack-Smith, 2001). 63 

In the 1970s and 1980s the lobster fishery was not heavily utilised in Newfoundland. 64 

Landings in 1975 in all LFAs were 1,381 metric tonnes, increasing to 2,921 in 1985 (Fig. 65 

1.3). However, after the cod moratorium in 1992, the lobster fishery was heavily targeted 66 

by harvesters (Roy Murphy; Hayward Eddy, lobster harvesters, pers. comm.). Lobster 67 
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landings in 1992 increased by 50% to total 3,232 tonnes, equal to CAD $21,356,634 68 

landing value (DFO, 2016).  69 

The lobster fishery is now Newfoundland’s most profitable decapod fishery and 70 

was the landed value generating between $20-30 million per year throughout the 2000s.  71 

The fishery across Newfoundland started to show signs of a decline in 2004 as harvests 72 

across the island total were only 1,913 tonnes, but followed an increase to 2,613 tonnes in 73 

2005  have generally remained stable over the past decade (DFO, 2016). Although lobster 74 

landings in LFA 10 (Placentia Bay) began to decrease in the late 1990’s and early to mid 75 

2000’s when green crabs were first thought to have invaded Newfoundland (Blakeslee et 76 

al., 2010; McKenzie et al., 2010; Matheson et al., 2016), landings dramatically decreased 77 

by over 30% from 2006 to 2007, the same year as the first report of European green crab, 78 

Carcinus maenas, in Newfoundland waters (Klassen & Locke, 2007). Also, during this 79 

time scallop dredges became more widespread in the area after the cod moratorium, and 80 

the dredges may have destroyed juvenile lobster habitat (Hayward Eddy, lobster 81 

harvester, pers. comm.). 82 

Green crab biology and life history 83 

The European green crab (Carcinus maenas, Linnaeus, 1758) is a benthic 84 

intertidal species native to the Eastern Atlantic, ranging from Norway to Morocco 85 

(Williams, 1984).  Green crabs are not confined to the intertidal zone and many 86 

individuals move up and down the shore, from shallow to deeper depths, with the flood 87 

and ebb of the tide. The species migrates annually to warmer, deeper waters (up to 40 m) 88 

during the autumn and winter months in their native range (Crothers, 1968).  89 
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Green crabs can reach a maximum carapace width of 90-100 mm in their home 90 

range, but are generally smaller in Newfoundland, and probably live for 4-7 years 91 

(Klassen & Locke, 2007). Body size, however, has been negatively correlated with water 92 

temperature, as body size decreases to around 60mm CW at 16⁰C compared to 80mm+ 93 

CW at 9⁰C in their native and Northwestern Pacific ranges (Kelley et al., 2015).  94 

The green crab is classified as an “invasive species” in North America, and has 95 

since been named one of the “top 100 worst invasive alien species” (Lowe et al., 2000). 96 

An invasive species is an organism that is introduced into a non-native area through 97 

human activity and may alter the community structure through competition, predation, 98 

parasitism, habitat alteration and trophic cascades (Mack et al., 2000; Kurle et al., 2008). 99 

It was first recorded in the Northern Atlantic in Massachusetts, USA in 1817 (Grosholz & 100 

Ruiz, 1996) and in the Bay of Fundy, Canada in 1951 (Audet et al., 2003; Klassen & 101 

Locke, 2007). It has also been recorded on the west coast of North America in Oregon 102 

and Washington, USA, and in British Columbia, Canada where it has most recently been 103 

recorded in the Salish Sea (Behrens Yamada et al., 2017).  104 

Green crabs have proven to be such competent invaders due to their ability to 105 

tolerate a range of different environmental conditions such as wide temperature ranges, 106 

low salinity and aerial exposure (Simonik & Henry, 2014). Adult green crabs can survive 107 

between temperatures of <0⁰C to >35⁰C, but prefer temperatures between 3-26⁰C 108 

(Eriksson & Edlund, 1977; Hidalgo et al., 2005). The requirements for successful egg 109 

hatching and larval metamorphosis is limited to temperatures between 9-22.5⁰C 110 

(Broekhuysen, 1936; Dawirs et al., 1986; DeRivera et al., 2006) but in Newfoundland 111 

females can begin brooding between 3-18⁰C (Best et al., 2017).  112 
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History and effects of crab invasion to Newfoundland 113 

Green crabs were first recorded in North Harbour, Placentia Bay in 2007, 114 

however, the first introduction likely occurred in 2001 or 2002 (Blakeslee et al., 2010; 115 

McKenzie et al., 2010; Matheson et al., 2016). Since 2007 the crabs have moved 116 

southwards throughout Placentia Bay and been found in Fortune Bay, and on the west 117 

coast of Newfoundland (Fig. 1.3). It is widely regarded that the initial mode of transport 118 

for green cab invasion to Newfoundland was through domestic ballast water (Grosholz & 119 

Ruiz, 2002; Blakeslee et al., 2010). Once introduced into an area, the speed of the 120 

invasion has been closely linked to larval dispersal, followed by recruitment rate and 121 

adult survival in Atlantic Canada (Gharouni et al., 2015). 122 

Analysis of nuclear and mitochondrial DNA (mtDNA) show that green crab 123 

populations in Atlantic Canada (Gulf of St. Lawrence) show little genetic similarity to 124 

those in the USA (Gulf of Maine) and most likely represent a separate introduction event 125 

(Roman, 2006; Williams et al., 2009; Jeffery et al., 2017). Previous studies initially 126 

concluded that green crab populations in the north-eastern region of North America (Gulf 127 

of Maine, USA, Nova Scotia, Canada) resulted from range expansion from the south 128 

(Audet et al., 2003), however, it was since discovered that these populations originated 129 

from two separate invasions from Europe; the first from a very limited number of 130 

individuals from Southern Europe, and the second invasion consisted of individuals from 131 

a Norwegian population (Roman, 2006). Further, green crab populations in Placentia Bay, 132 

Newfoundland, appear intermediate between the northern and southern regions and may 133 

originate from two independent invasions (Roman, 2006; Blakeslee et al., 2010; 134 

McKenzie et al., 2010; Jeffery et al., 2017). These green crabs show different thermal 135 
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tolerances between lineages (Tepolt & Somera, 2014) compared to those found in their 136 

native range which has likely contributed to their invasion and range expansion success in 137 

North America (Roman, 2006). These thermal tolerances may mean that the crabs will 138 

tolerate cold water temperatures as they can survive in winter conditions in 139 

Newfoundland (Audet et al., 2003).  140 

Green crabs can prey on a large variety of marine organisms from at least 14 141 

phyla (Cohen et al., 1995), including, but not limited to bivalves (Mytilus edulis), 142 

gastropods (Littorina sp.), crustaceans (Cancer irroratus), algae and several echinoderm 143 

and fish species (League-Pike & Shulman, 2009). Green crabs therefore potentially 144 

overlap in diet with that of other taxa and may pose a threat to commercial shellfish 145 

fisheries (Mach & Chan, 2013; McClenachan et al., 2015; Pickering et al., 2017). They 146 

may also be responsible for regional reductions of eelgrass beds (Matheson et al., 2016), 147 

with reports of loss of eelgrass up to 75% in Nova Scotia (Garbary et al., 2014) and up to 148 

80% in Maine, USA in areas with abundant green crab (Neckles, 2015). 149 

In the native range of the green crab there are many natural predators including; 150 

molluscs (Octopus vularis, Eledone cirrhosa, Sepia officinalis), fish (Labrus bergylta, 151 

Gadus callarias, Limanda limanda, Pleuronectes platessa etc.), birds (Actitis hypoleucos, 152 

Alle alle, Larus sp., Phalacrocorax sp. etc), and mammals (Halichoerus grybus, Lutra 153 

lutra, Phoca vitulina) making them a very important species in the ecosystem (Crothers, 154 

1968). In Newfoundland, there are potentially fewer predators that can recognise them as 155 

prey, or consume the green crabs, which may explain the dramatic increase in 156 

populations. 157 

Behavioral interactions between Homarus sp. and Carcinus maenas 158 
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Previous experiments have shown agonistic behaviours between the American 159 

lobster and green crabs. Wahle and Steneck (1992) found that green crabs in Maine, 160 

USA, would prey on small juvenile lobsters (5-7 mm CL) when lobsters were tethered to 161 

the benthos in the field, but also stated that if the lobster was not tethered, there could be 162 

potential for them to escape and hide in cobble substrate. Adult green crabs will actively 163 

consume juvenile lobsters (28-57 mm CL) in situ when they are not in a shelter (Rossong 164 

et al., 2006). Interestingly, the larger juvenile lobsters in this study were more frequently 165 

consumed by green crabs than the smallest lobsters, which were attributed to the fact that 166 

the smaller individuals used the shelters more frequently. Green crabs (14-26 mm CW) 167 

will actively consume stage IV lobster larvae in the laboratory (Sigurdson & Rochette, 168 

2013). Lobster larvae survival decreased to 0-20% within 18 hours when exposed to 169 

green crabs, compared to 80% survival in the control. After 18 hours, it was noted that no 170 

further mortality occurred; this change was attributed to the larvae finding suitable shelter 171 

after settling or due to green crab satiation (Sigurdson & Rochette, 2013).   172 

In a follow-up study using small (28-57 mm CL), medium (55-70 mm CL) and 173 

large (72-80 mm CL) lobsters in the presence of individual adult male green crabs around 174 

a food source, the highest number of agonistic interactions (described here as one animal 175 

approaching the other that was in possession of the food, and initiating contact) occurred 176 

when initiated by small lobsters on adult green crabs (Williams et al., 2011).  These 177 

initiations however, had a success rate of only 3% in taking over the bait, in contrast to a 178 

50% chance in large lobsters. They concluded that the first species to possess the food 179 

gains a competitive advantage over the other, and green crabs reached the food first more 180 

frequently than lobster.  181 
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A study on the impact of crab-origin on the outcome of interactions between adult 182 

crabs and juvenile lobsters in Nova Scotia (NS) and New Brunswick (NB), Eastern 183 

Canada, found that green crabs (50-80 mm CW) were effective predators of lobsters (18-184 

43 mm CL) in a tank environment and that crab origin did influence predation levels 185 

(Harr & Rochette, 2012). Crabs from Chedabucto Bay, NS and St. Georges Bay, NS 186 

killed more lobsters (67% and 65% survival rate, respectively) than crabs from 187 

Passamaquoddy Bay, NB (89% survival). Differences in crab predation on juvenile 188 

lobsters associated with geographic origin may reflect the crab’s genotype and invasive 189 

history, because crabs from different areas may reflect different invasion events (Roman, 190 

2006; Jeffery et al., 2017). For example, Chedabucto Bay and St. George’s Bay crabs 191 

appear to be more closely related than crabs from Passamaquoddy Bay. This study also 192 

quantified agonistic interactions between adult crabs and juvenile lobsters including a) 193 

initiation b) threat displays c) physical contact without chelae d) physical contact with 194 

chelae e) physical contact with chelae, grasping and f) rapid pursuit of opponent. 195 

Agonistic interactions between the species was higher when a food source was present 196 

because the intensity of interactions was higher with crabs from Chedabucto Bay and St. 197 

George’s Bay (physical contact with chelae and grasping) than in Passamaquoddy Bay 198 

where the intensity of interactions was lower (approaching, physical contact without 199 

chelae) which may reflect a different population response.  200 

Studies conducted by Rossong et al. have also shown that there genetic 201 

differences in green crab foraging behaviour based on their origin, as green crabs from 202 

Newfoundland dominated a food source over crabs from New Brunswick and Nova 203 
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Scotia, whereas there was no difference in foraging between Newfoundland crabs and 204 

those from Prince Edward Island (Rossong et al., 2011b).  205 

A study into the behavioural responses of the American lobster to invasive crabs, 206 

green crabs and Asian shore crabs (Hemigrapsus sanguineus), showed that both species 207 

may display aggressive behaviour towards lobsters but green crabs pose more of 208 

predation threat than Asian crab, because they consumed over 80% of juvenile lobsters 209 

within a 24-hr period (Lord & Dalvano, 2015).   210 

Several experiments have investigated the possible effects of green crab food 211 

competition on other crab species, Hemigrapsus sp., (Jensen et al., 2002) and Cancer sp. 212 

(Elner, 1981; Matheson & Gagnon, 2012a; 2012b), and concluded that green crabs can 213 

out-compete other crabs for shelters and limited food sources. Experiments on juvenile 214 

and sub-adult (28-75 mm carapace length) Homarus americanus (Rossong et al., 2006; 215 

Williams et al., 2006) showed that green crabs out-competed lobsters to a food source, 216 

but were displaced if a sub-adult initiated feeding first.  217 

Lobster and crab interactions around baited traps 218 

Lobsters and crabs can accurately track an odour trail of bait, and catchability 219 

therefore generally increases with temperature as activity, appetite, and the rate at which 220 

bait molecules diffuse in water increases at warmer temperatures (Morrissy, 1975; Miller, 221 

1990). In addition to the effect of temperature on catch rates, the presence and density of 222 

catch in the trap reduces the potential for additional catch in what is known as the 223 

“saturation effect” (Miller, 1990), and can be seen when traps have been pre-stocked 224 

(Watson & Jury, 2013). In situ video analysis on the saturation effect and the behaviour 225 
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of American lobsters in and around traps showed that baited traps catch only 6% of the 226 

lobsters that entered the trap; allowing 94% to escape (Jury et al., 2001). Of the escapees, 227 

72% of them left the trap via the entrance funnel and 28% via the escape gap. One 228 

explanation for the low catch rate is aggressive interactions between lobsters in and 229 

around the trap. Jury et al. (2001) noted additional competition outside the trap for the 230 

opportunity to be the next individual to enter, a pattern reported in other studies; Richards 231 

et al. (1983) found that stocking traps with lobsters reduced the catch of lobster by 43-232 

65%, and Addison (1995) reported a 54% reduction.  This behaviour has also been noted 233 

in crabs, where the presence of large green crabs reduced the catch of small green crabs 234 

as smaller conspecifics actively avoided large individuals (Miller & Addison, 1995).  235 

Experiments conducted in the field using stocked baited lobster traps with either 236 

Cancer irroratus, Cancer borealis, or Homarus americanus showed significant reduction 237 

in the catch of both Cancer species when the trap was stocked with lobsters (Richards, 238 

1983), but no significant effect on the catch of lobsters when stocked with crabs. Lobsters 239 

also influence green crab catch rates, as shown in a study on the trapping interactions 240 

between crabs and lobsters, which concluded that the presence of a lobster in the tank 241 

may deter crabs from entering (Miller & Addison, 1995). When lobsters were present, 242 

33% of the total number of green crabs in the experiment entered  the parlour-end of the 243 

trap, whereas 87% of crabs entered when lobsters were absent.  244 

This study was one of the first to report decreased catchability of green crabs in 245 

the presence of lobsters. However, Newfoundland lobster harvesters report a decrease in 246 

the presence of lobsters in traps since the arrival of the green crab circa. 2002-2007 247 
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(DFO, 2016). The goal of my thesis was to investigate interactions between adult green 248 

crabs and adult lobsters. 249 

Thesis objectives 250 

This thesis provides new insight into how the presence of green crabs may affect 251 

the behaviour of American lobsters in Newfoundland waters. The objectives are to 252 

investigate specifically the effects of green crabs on: (1) behavioural interactions between 253 

lobsters and green crabs in laboratory conditions and how this interaction, in turn, affects 254 

food acquisition and the catchability of lobsters and (2) whether lobsters prey on green 255 

crabs, and whether  interactions depend on size of both species.  256 

I formulated the following hypotheses and predications: 257 

H1. The presence of green crabs affects the behaviour of lobsters in and around a 258 

food source and baited traps. 259 

First, I predict that interactions between lobster and green crabs will increase with 260 

temperature and crab density, because the animals become more active at higher 261 

temperatures and competition for food increases at higher crab densities.  262 

Second, I predict that the presence of freely moving green crabs actively deters lobsters 263 

from entering a trap more than when crabs are trapped inside, and that animals will 264 

exhibit higher activity at the higher water temperature.  In order to test how the position 265 

of green crabs in or around a baited trap affects how a lobster behaves around the trap, I 266 

investigate the specific behaviours of approaching, attempting to enter, and escaping the 267 

trap in a tank environment at different water temperatures (4⁰C, 12⁰C). To this end, I 268 

positioned crabs: 1)  in the trap and unable to escape, 2) outside the trap and able to move 269 
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freely around the tank and in and out of the trap, or 3) with no crabs in the trial 270 

whatsoever.  271 

H2. Green crab density and water temperature affects the amount of food a 272 

lobster can obtain. 273 

I predict decreased food consumption as crab density increases as a result of increased 274 

interspecific competition around a food source, and increased food consumption at a 275 

higher temperature, assuming that animals will be more physically active and digest  food 276 

faster at warmer temperatures. In order to test my hypotheses, I quantified the amount of 277 

food consumed (or, acquired) by an individual lobster in the presence of green crabs, 278 

using four different densities of green crabs (0, 1,5, 25) and two water temperatures (4⁰C, 279 

12⁰C) in a tank environment.  280 

H3. Lobster capture location and size of individual crabs and lobsters influence 281 

predation behaviour and impact predation rates on green crabs 282 

I predict that lobsters from Newfoundland (NL) may not recognize or prey less on green 283 

crabs, compared with lobsters from Nova Scotia (NS), given the novelty of green crabs as 284 

a prey item in NL lobsters  and longer exposure in lobster populations originating from 285 

NS. I predict reduced damage and consumption of lobster as the size of crabs increases. 286 

Through this work I will determine whether green lobsters eat crabs and whether there is 287 

a size refuge for green crabs to evade or reduce damage and predation.  288 

H4. Lobster state and habitat complexity alter lobster predation on green crabs 289 

In  experiments with lobsters either fed prior to experimental trials or provided with an 290 

alternative food source in addition to a potential refuge for crabs to escape predation, I 291 
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predict that lobsters consume more crabs when starved and when shelter is unavailable 292 

for the green crabs. If lobsters have been fed beforehand, or provided with a shelter or 293 

alternative food source, I predict low crab mortality. 294 

Benefits to Newfoundland and Communications 295 

The results from the thesis will offer insight on lobster and green crab interactions 296 

that may be of interest to the lobster fishing industry, and to federal and provincial 297 

governments managing the lobster fishery or undertaking future green crab mitigation 298 

projects.  299 

 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 
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Figures 312 

 313 

Figure 1.1. Lobster fishing areas in Canada (DFO, 2015).  314 

 315 

Figure 1.2. Lobster trap design used in the fishery in eastern Canada (reproduced 316 
from Slack-Smith, 2001). 317 
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 318 

 319 

Figure 1.3. Lobster landings in LFA 10 (Placentia Bay) from 1965-2015 showing the 320 
general decrease in lobster landings after 1990 cod moratorium, the estimated first 321 

invasion of the green crab circa. 2002 and the first recorded sight in 2007 (DFO raw 322 
data, pers. comm. Elizabeth Coughlan, 2016). 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 
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2. Quantifying behavioural interactions between lobsters and green crabs around a 335 

food source and baited trap 336 

2.1 Abstract 337 

The American lobster (Homarus americanus) is the most commercially important 338 

crustacean species in Canada, however, fishery landings in Placentia Bay, Newfoundland, 339 

have decreased steadily since the 1990s, with another noticeable drop in 2002, when the 340 

first invasion of the European green crab (Carcinus maenas) was likely to have happened. 341 

The effect of green crabs on the food consumption and catchability of lobsters was 342 

quantified in relation to crab density (n= 0, 1, 5, 25) and water temperature (4⁰C, 12⁰C). 343 

Green crabs consumed more food at the higher temperature because they were more 344 

active and out-competed the lobsters for food. Behavioural interactions around the food 345 

source were also quantified: as crab density increased the number of agnostic interactions 346 

increased at both temperatures. I also investigated the effects of green crabs on the 347 

catchability of lobsters around a baited trap, with crabs freely mobile outside the trap or 348 

contained within the trap. Lobsters were more likely to approach and enter the trap at 349 

12⁰C than at 4⁰C, however, they were also more likely to escape. Lobsters were less 350 

likely to enter or approach a trap if they interacted with crabs outside the trap. The present 351 

results suggest that interactions between green crabs and adult lobsters may influence 352 

lobster catch rates in Newfoundland. 353 

 354 

 355 

 356 
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2.2 Introduction 357 

The American lobster, Homarus americanus, (H. Milne Edwards, 1837) is of high 358 

commercial importance (Boudreau & Worm, 2010), and is distributed along the Atlantic 359 

coast from Labrador to South Carolina (Aiken & Waddy, 1986). American lobsters can 360 

live up to 30 years (Lawton & Lavalli, 1995) and reach weights in excess of 10 kg. They 361 

grow through a process called ecdysis, or moulting, where the lobster sheds its old shell 362 

and a new, larger shell hardens over the next few weeks (Ennis, 1972). Lobsters are 363 

classified as opportunistic omnivores that primarily feed on bottom invertebrates such as 364 

crabs, polychaetes, bivalves, echinoderms, as well as seaweeds, but also scavenge on 365 

dead fishes (Ennis, 1972). 366 

The lobster fishery represents a multi-billion dollar industry in New England and 367 

Canada. In 2013 the fishery landings in Canada exceeded 70,000 tonnes (DFO raw data, 368 

pers. comm. Elizabeth Coughlan, 2016). Canada divides the  lobster fishery into zones 369 

(LFAs) that vary in opening and closure times, and further regulates the fishery through 370 

the number of fishing licences issued, the release of ovigerous females, minimum landing 371 

sizes, and numbers of traps permitted (Ennis, 1982; Davis et al., 2006).   372 

In the province of Newfoundland and Labrador (NL), Canada, American lobsters 373 

are the most commercially important decapod species,  generating 2,280 tonnes of lobster 374 

worth ~CAD $34 million in 2016 (DFO, 2016). On average, the fishery generates 2,000 375 

tonnes of catch across the island each year, with catches remaining stable between 1,913-376 

2,613 tonnes. However, local harvesters in Placentia Bay (the island of Newfoundland) 377 

report a gradual decrease in lobster landings since the cod moratorium in the early 1990s. 378 

During this time, lobster stocks in Newfoundland likely came under more pressure as 379 
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harvesters began to devote more time to the fishery once cod was no longer fished (Davis 380 

et al., 2006). In addition, increased scallop trawling in the area may have had significant 381 

negative effects on lobsters and the macrofaunal benthic community (Hinz et al., 2009). 382 

Harvesters report potential damage or destruction of important nursery habitats for 383 

juvenile lobsters by the trawlers (Hayward Eddy, lobster harvester pers. comm.).  384 

Lobster landings in Placentia Bay had been decreasing steadily since 1992, 385 

however there was another smaller drop in landings between 2001-2002, which coincide 386 

with the likely first invasion of the green crab ((Blakeslee et al., 2010; McKenzie et al., 387 

2010; Matheson et al., 2016: Fig. 1.3). Also, in 2007, lobster landings in Placentia Bay 388 

dropped by 34.2% in just one year. This year (2007) notably coincided with the first 389 

record of the invasive European green crab (Carcinus maenas Linnaeus, 1758) in 390 

northern areas of Placentia Bay, Newfoundland (Blakeslee et al., 2010; McKenzie et al., 391 

2010). Within a few years of this first sighting, harvesters in Placentia Bay reported high 392 

densities of green crab and that crabs were rapidly filling lobster traps  and consuming the 393 

bait (Roy Murphy, lobster harvester, pers. comm.).  The European green crab has been 394 

classified as one of the worlds “top 100 worst invasive species” because it can tolerate a 395 

wide range of environmental conditions (Lowe et al., 2000). In their natural range, green 396 

crabs occur in the shallow subtidal and intertidal zones, migrating shallower and deeper 397 

with the tide (Crothers, 1968). Green crabs are opportunistic omnivores and consume a 398 

large variety of marine organisms including bivalves, gastropods, echinoderms, other 399 

crustaceans, and dead fishes (League-Pike & Shulman, 2009). Green crabs can affect 400 

many ecosystems directly and indirectly through increased competition, predation, and 401 

through habitat modification (Grozholz & Ruiz, 1996; Matheson et al., 2016) and have 402 
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been described as ecosystem engineers because of this ability (Crooks, 2002). Green 403 

crabs can potentially decimate entire bivalve communities through their predation, and 404 

the potential economic loss on bivalve (McClenachan et al., 2015) and crustacean 405 

fisheries has been estimated  at between $42-109 million in the Gulf of St. Lawrence 406 

(Colautti et al., 2006).  407 

Since the first reported sightings in North Harbour, Placentia Bay, green crabs 408 

have spread throughout Placentia Bay, and into the neighboring south coast Fortune Bay. 409 

They were also reported on the west coast in St. George’s Bay (2008) and Bonne Bay by 410 

2010 (DFO, 2016). Although the first record of green crabs in Newfoundland was in 411 

2007, their actual arrival in Newfoundland may have been as early as 2002, (Blakeslee et 412 

al., 2010; McKenzie et al., 2010).    413 

Green crabs may pose a threat to native American lobsters because of increased 414 

competition for food, noting overlap in diet between the species (Ennis, 1973; Bélair & 415 

Miron, 2009). Adult green crabs typically range in size from 50-90 mm carapace width 416 

(Grosholz & Ruiz, 1996) and 28-112g (�̅� = 61.31g, Gemma Rayner, personal data) and 417 

are thus much smaller than adult lobsters, which typically range from 80-90mm carapace 418 

length and 445-682g (�̅� = 578.25g, Gemma Rayner, personal data). However, despite the 419 

size disparity, green crabs (55-75mm CW) dominated the food source 38% of the time in 420 

the presence of an adult lobster (72-80mm CL) and consumed the food an equal number 421 

of times as the lobsters (Williams et al., 2009). This success suggests that a significant 422 

capacity for green crabs to compete with lobsters for a food source. In addition, green 423 

crabs enter physical conflicts with conspecifics and other crustacean species (Williams et 424 
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al., 2006; Rossong et al., 2011a), potentially resulting in  aggressive fighting (Sneddon et 425 

al., 1997a,b).  426 

Previous studies have also noted the importance of quantifying interspecific 427 

crustacean behaviour in and around a trap (Bennett, 1974; Miller, 1990; Addison, 1995; 428 

Jury et al., 2001; Watson & Jury, 2013) because behaviour significantly influences catch 429 

rates. For example, the presence of adult H. americanus inside of a trap reduces the 430 

number of Cancer borealis individuals entering the kitchen area, and the proportion of 431 

individual Cancer irroratus that moved from the kitchen to the parlour of a trap was also 432 

significantly lower in traps stocked with a lobster (Richards et al., 1983). The presence of 433 

large green crabs reduces the catch of smaller green crabs, and traps pre-stocked with H. 434 

americanus result in markedly reduced green and rock crab catches (Miller & Addison, 435 

1995).  436 

Green crabs in Newfoundland can change fish community structure through 437 

foraging effects on eelgrass (Zostera) beds. Green crabs can decimate eelgrass beds by 438 

damaging rhizomes and plant shoots when burrowing for prey and shelter (Matheson et 439 

al., 2016). Eelgrass is an important of nursery and foraging habitat for commercial species 440 

such as juvenile Atlantic cod (Gadus morhua) (Robichaud & Rose, 2006) and adolescent 441 

American lobsters (Short et al., 2001). Other studies attribute the decline in lobster 442 

landings to predation on juvenile lobsters (25-51mm CL) by adult green crabs (Rossong 443 

et al., 2011a). Nevertheless, to date, links between the appearance of the green crab and 444 

the decline of the lobsters remain anecdotal. Most studies pit a single crab against a 445 

lobster (Rossong et al., 2006; 2011; Williams et al., 2006; 2009), which is not reflective 446 

of their density in the wild. Other studies document interactions between green crabs and 447 
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juvenile lobsters only (Haarr & Rochette, 2012; Lord & Dalvano, 2015). In addition, 448 

temperature strongly influences crustacean behaviour and feeding (Morrissy, 1975; 449 

Thomas et al., 2000; Lagerspetz & Vainio, 2006) and previous studies have not addressed 450 

this important factor (Rossong et al., 2006; 2011; Willams et al., 2006; 2009). Therefore, 451 

the present study aimed to quantify the effects of green crab density and temperature on 452 

adult American lobster behaviour around a food source and baited trap (Hypothesis 1) 453 

and to determine any potential effects of green crabs on lobster food acquisition 454 

(Hypothesis 2) and catchability. 455 

 456 

2.3 Materials and methods 457 

Animal collection and housing 458 

Adult male green crabs ranging in size from 50–78mm (carapace width (CW) 459 

were collected using baited net traps in Long Harbour, Placentia Bay, Newfoundland (45⁰ 460 

25’46”N 53⁰51’30”W). Crabs were transported to the Ocean Sciences Centre, Logy Bay, 461 

St. John’s, Newfoundland via road in secure fish boxes and covered with wet towels to 462 

prevent desiccation and escape. Only male crabs were kept and females were either 463 

destroyed or returned to the same site. Adult lobsters (82-97mm) carapace length (CL) 464 

were purchased from Clearwater Ltd (Nova Scotia). The animals were maintained in 465 

seawater tanks (31-32ppt) at the Department of Ocean Sciences at Memorial University 466 

of Newfoundland.  The green crabs were held in a flow-through seawater system and 467 

acclimated to temperatures of either 4⁰C ± 2⁰C or 12⁰C ± 2⁰C. No female crabs were 468 

housed, thus preventing reproduction and potential further spread of gametes via the 469 
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flow-through system. Perforated PVC pipes placed in the tanks acted as shelters and 470 

reduced aggressive interactions between conspecifics 471 

Because of space limitations, the lobsters were held in a recirculating seawater 472 

system and also acclimated to temperatures of either 4⁰C ± 2⁰C or 12⁰C ± 2⁰C. Perforated 473 

PVC pipes were also placed in lobster tanks as shelters to reduce aggressive interactions 474 

between conspecifics. The lobster tanks were covered with black plastic to reduce 475 

horizontal gradients in light levels (Miller & Addison, 1995) and to minimize disturbance 476 

to the animals. Both species were acclimated to experimental temperatures for at least 477 

three weeks (Camacho et al., 2006) and fed ad libitum once per week with mackerel 478 

(Scomber scombrus). Fasting for 4-8 days prior to experiments allowed the evacuation of 479 

all food from the digestive system without inducing a physiological starvation response 480 

(Wallace, 1973; McGaw & Whiteley, 2012; Wang et al., 2016a). Individual lobsters were 481 

re-used for different treatments and were acclimated for two weeks at the experimental 482 

temperature before use.  483 

Experimental protocol 484 

The first series of experiments examined the behavioural interactions between an 485 

individual lobster and crabs around a food source as a function of crab density (n= 0, 1, 5, 486 

25) and temperature (4⁰C, 12⁰C). A total of 15 replicates were conducted at each density-487 

temperature combination. Green crab densities were chosen to reflect densities observed  488 

in the field (pers. obs.) and given the experimental tank size. An additional experiment 489 

used a density of 150 green crabs at 12⁰C (n=10 replicates), a density similar to the 490 

average number of green crabs caught in Fukui traps in Placentia Bay over a typical soak 491 

time of 12-24 hours (pers. comm. Jonathan Bergshoeff, Memorial University). The 492 
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temperatures used reflected typical spring (or fall) and summer mean temperatures in 493 

shallow coastal areas in southern Newfoundland (Methven & Piatt, 1991; Matheson & 494 

Gagnon, 2012b; Colbourne et al., 2016). Each experimental trial was conducted in 3,000 495 

L tanks (1.8m diameter, 40cm water depth) with a seawater flow rate of 6 L/min (Figure 496 

2.1a,b). A video-camera (AXIS, 221 Day and Night Network Camera) mounted above the 497 

tank recorded interactions between crabs and a lobster around a food source. All trials 498 

were conducted under red light because these wavelengths do not significantly affect 499 

crustacean behaviour (Cronin, 1986; Weissburg & Zimmer-Faust, 1994). A black 500 

tarpaulin surrounded the entire tank, excluding any other light and minimizing 501 

disturbance to the animals (Lawton, 1987).  502 

The animals were offered a prepared meal during each trial: mackerel (Scomber 503 

scombrus.) fillets were added to seawater and reduced to a puree in a commercial blender.  504 

The resultant liquid (75g) was combined with 5g of liquid gelatin and 0.45g of lead glass 505 

ballotini beads (125-180µm diameter) (Wang et al., 2016a) and stirred until thoroughly 506 

mixed. These radio-opaque inert beads allowed us to X-ray the animals at the end of the 507 

experiment to determine whether they fed and to estimate food consumption rate of each 508 

animal. A low-intensity fluoroscope (LIXI, WS50 Huntley, IL, USA) provided images of 509 

the radio-opaque glass beads in the food. Technical specifications for the LIXI scope 510 

were: 22-50kV tube voltage, 10Watt with a 25mm FOV. Five 1g subsamples were taken 511 

from the mixture to determine the average number of beads per gram of food. Mean 512 

number of beads per 1g sample were calculated from images taken of each subsample. 513 

Counts of ballotini beads in the foregut and midgut of each animal were then used to 514 

determine the total mass of food consumed in grams (Figure 2.1c,d) 515 
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Before initiation of each experiment the lobster and crabs were placed in separate 516 

bottomless weighted, perforated buckets (30cm diameter x 37.5cm deep) in the 517 

experimental tank for a 15-minute period. The food dish was then added to the opposite 518 

side of the tank. The animals remained in the holding buckets for an additional 15 519 

minutes, during which time the scent of the food percolated around the tank. The two 520 

buckets were then lifted simultaneously, releasing the lobster and crabs. The behavioural 521 

interactions were video-recorded for a total time of three hours. We used a three-hour 522 

time period because preliminary trials showed that lobsters stopped feeding and moved 523 

away from the food source after this time. At the end of each three hour trial, animals 524 

were removed from the tank and X-ray images were taken of the foregut of each 525 

individual in order to quantify the amount of food consumed. Experimental tanks were 526 

drained and rinsed to ensure any remaining odour plumes were removed through the 527 

flow-through system.  528 

Due to limitations in the experimental design, lobsters were used more than once 529 

in the study. However, after use, lobsters were starved and left to acclimate to the 530 

experimental condition that they were used in. This acclimation period is used to “erase” 531 

seasonality as much as possible. Other studies on the agonistic interactions between green 532 

crabs and American lobsters have also re-used experimental lobsters (Williams et al., 533 

2009), and waited two weeks before using them again as “this period is sufficient for 534 

lobsters to lose the ability to chemically recognise an individual”. Other studies have also 535 

re-used animals in the same experiment such as Rossong et al. (2011) who re-used green 536 

crabs in behaviour experiments. 537 
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The video recordings were analysed to determine a) the time for the lobster and 538 

first crab to approach food source (touch the food dish), b) the time for the lobster and the 539 

first crab to first handle food (initiate feeding) and c) the total time a lobster spent 540 

feeding. Feeding time for lobsters was only counted if each event lasted ≥10 seconds to 541 

omit events where the lobster walked over the food source. For the trials using a density 542 

of 150 crabs, we also quantified the time taken for crabs to consume the whole food 543 

source. The behavioural interactions between lobsters and crabs were quantified by 544 

adapting a protocol from Huber & Kravitz (1995): a) number of interspecific retreats (the 545 

animal actively moves or turns away from the opponent) b) number of interspecific body 546 

raises (the body of the animal is raised high above the substratum, to fully extend the 547 

walking legs) c) number of interspecific claw raises (one or both claws above the 548 

horizontal and are extended laterally) d) number of claw grasps (animal uses one or both 549 

claws to grasp onto the appendage of the opponent). We selected these specific 550 

behaviours because they have been quantified in other studies, and document an obvious 551 

pattern of increasing intensity during confrontations, starting with an energetically 552 

inexpensive response (a retreat) and intensifying to displays at first contact, ritualised 553 

aggression and restrained claw use (body and claw raises), following by and ending with, 554 

a brief period of unrestrained combat (claw grasps) (Huber & Kravitz, 1995). Further, 555 

lobsters and other decapod crustaceans exhibit these behaviours (Scrivener, 1971), noting 556 

that decapods can “assess” an opponent via a meral spread (Huber & Kravtiz, 1995), i.e. 557 

the first individual will elevate its body and claws when in the presence of another as it 558 

recognises the second individual as a threat. 559 

Statistical analysis 560 
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We used two-way ANOVAs to determine the effects of crab density (n=0,1,5,25) 561 

and water temperature (4 & 12⁰C) on the amount of food consumed, the first approach 562 

time to the food source by lobsters and green crabs, and the total food handling time (sum 563 

of all food handling periods) in lobsters. Significance was based on a  p<0.01 level; a 564 

Bonferroni-corrected significance level (Rossong et al., 2011). Post hoc Tukey (HSD) 565 

tests compared between groups where we found significant differences between factors. 566 

We used model residuals to test for normality (chi-square goodness of fit) and 567 

homoscedasticity (Levene) of all parametric tests that were conducted. In the majority of 568 

cases the assumptions were upheld (p>0.05) however where they were violated (tests on 569 

the number of retreats, body raises, claw raises, and claw grasps in lobsters and green 570 

crabs), caution is noted when interpreting the results based on the p-value <0.01 (Haarr & 571 

Rochette, 2012). Analyses were conducted in SPSS v. 23.  572 

 573 

 574 

 575 
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 576 

Figure 2.1. Food acquisition experimental set-up. a) Diagram of top-down view of 577 

tank A, B = perforated buckets that housed a lobster and the crabs, C = food dish, 578 
black arrow = tank inflow, black circle = tank outflow, b) Photograph of tank set-579 
up, c) X-Ray photograph of 1 g subsample of food source containing ballotini glass 580 

beads, d) X-Ray photograph of lobster maxilla and stomach containing ballotini 581 
glass beads. 582 
 583 
 584 

Catchability experiments 585 

The catchability experiment examined how the presence of green crabs affected 586 

individual lobster behaviour around a baited trap. All trials were conducted in a 45,000L, 587 

6.8m diameter fibreglass tank in 90cm of water with a seawater flow rate of 25L/min 588 

(Figure 2.2a,b). A time-lapse video camera (Panasonic, WV-BP120 - Laguna, 589 
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Philippines) mounted above the middle of the tank recorded interactions around the trap. 590 

The trap was baited with a whole mackerel, as is common in the fishery. These 591 

experiments were also conducted under red light to minimize light effects on  crustacean 592 

behaviour (Weissburg & Zimmer Faust, 1994) and we again covered the entire tank set-593 

up with black tarpaulin to reduce visual disturbance (Lawton, 1987). The experiments 594 

were conducted at the same temperatures used for the behavioural assays (4⁰C, 12⁰C). A 595 

wooden slat, D-shape trap (100cm x 50cm x 35cm height, 4cm2 mesh size) with an 596 

escape gap of 4cm was placed on one side of the tank. This trap was a modified version 597 

used in the Newfoundland fishery to include two, rather than one, entry funnels so the 598 

“parlour” section of the trap could be sealed with 1cm2 mesh to prevent crab escape 599 

(Figure 2.2c,d).  600 

The control experiment was run with an individual lobster only, and then repeated 601 

with 25 crabs contained within the parlour portion of the trap (and unable to escape), or 602 

with 25 crabs outside the trap that could move freely around the tank and trap and interact 603 

with the lobster (n=20 trials per experiment). We selected a density of 25 crabs because 604 

this was the maximum number of crabs that could be contained within the modified trap 605 

and the feeding experiment showed no highly significant differences in lobsters foraging 606 

response when exposed to 1, 5 and 25 crabs. As with the previous experiment, we 607 

introduced the lobsters and crabs into the experimental tank in bottomless, perforated, 608 

weighted buckets for a 30-minute period prior to beginning the experiment. Both species 609 

were then released simultaneously by lifting the bottomless buckets, this methodology 610 

ensured that the animals were not exposed to air after the initial adjustment period. Each 611 

trial was recorded for 12 hours (average trap soaking time in fishery). In trials where 612 
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crabs were inside  the trap, we placed them in the “parlour” area, at the same time as the 613 

lobster was introduced into the tank. The experiments began at the same time each day 614 

(9am) and water temperature was maintained at either 4⁰C or 12⁰C (±1⁰C) throughout the 615 

experimental period. After each trial, both species were returned to their respective 616 

holding tanks, and the experimental tank was left for a further 12 hours to ensure any 617 

remaining odour plumes were rinsed through the flow-through system. 618 

We analyzed the videos from each trial to quantify: a) time for the lobster and the 619 

first crab to approach the baited trap (an “approach” was quantified when the animal 620 

touched the trap), b) the number of unsuccessful attempts a lobster made towards a baited 621 

trap (an “unsuccessful attempt” was quantified when the animal attempted to go in the 622 

funnel entrance but was unsuccessful in entering the trap), c) the time taken for each 623 

species to enter the baited trap d) number of times a lobster successfully attempted to 624 

enter the trap e) number of times a lobster escaped from the trap (Jury et al., 2001).  625 

 Field data (CPUE of lobsters, green crabs, and native rock crabs (Cancer 626 

irroratus), size of lobsters and green crabs, sex of lobsters) was also collected during a 627 

five day period with lobster harvesters in Garden Cove, Placentia Bay and is covered in 628 

detail in the appendix section of this thesis 629 

Statistical analysis 630 

We conducted two-way MANOVAs (Scheiner & Gurevitch, 2001) to determine 631 

the effect of crab (absent from the tank, inside the trap, outside of the trap) and water 632 

temperature (4 & 12⁰C) on the frequency of lobster behaviours towards the baited trap 633 

(number of approaches, number of attempts to enter the baited trap, number of catches). 634 

Interaction terms were incorporated into the models. Significance was based on a  p<0.01 635 
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level; a Bonferroni-corrected significance level (Rossong et al., 2011). All analyses were 636 

conducted in SPSS v. 23.   637 

 638 

 639 
Figure 2.2. Catchability experimental set-up. a) Diagram of top-down view of tank 640 
A, B = perforated buckets that housed a lobster and the crabs, C = baited trap, 641 

black arrow = tank inflow, black circle = tank outflow, b) Photograph of tank set-642 
up, c) Photograph of “D-slat” trap used in experiments pre-modification, d) 643 
Photograph of “D-slat” trap used in experiments post-modification. 644 

 645 

 646 

2.4 Results 647 

Behavioural interactions around a food source 648 

There were no statistically significant effects of temperature (two-way ANOVA; 649 

F(1,67)=2.92, p=0.093, Table 2.1) or crab density (F(3,67)=0.296, p=0.828) on the amount of 650 
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time it took the lobster to first approach the food source, but lobsters generally 651 

approached the food source in less time at 12⁰C (32 minutes) compared to 4⁰C (49 652 

minutes, Figure 2.3a). Crab density (two-way ANOVA; F(1,59)=2.393, p=0.079) and water 653 

temperature (F(3,59)=1.475, p=0.232, Table A.1 - appendix, Fig. 2.3b) did not significantly 654 

affect the amount of time a lobster spent feeding (physically handling the food source) . 655 

In contrast, temperature (two-way ANOVA; F(1,72)=31.141, p<0.01) and crab density 656 

(F(2,72)=14.404, p<0.01) significantly affected the amount of time it took the first crab to 657 

approach the food source (Table A.2, Fig. 2.3c), and crabs approached the food source in 658 

significantly less time at 12⁰C than at 4⁰C. At both temperatures at a density of 25 crabs, 659 

an individual crab approached the food source at a significantly faster rate compared to 660 

densities of 5 crabs (p<0.01) or an individual crab (Tukey test, p<0.01). 661 

Crab density significantly affected the number of times a lobster retreated away 662 

from a crab (two-way ANOVA; F(2, 89)=21.516, p<0.01) because lobsters  increased in 663 

frequency of retreats as crab density increased (Table A.3, Fig. 2.4a), but temperature had 664 

no effect on this behaviour (F(1, 89)=0.769, p=0.383). The number of lobster body raises 665 

was not significantly affected by temperature (two-way ANOVA; F(1,89)=2.525, p=0.116, 666 

Table A.4, Fig. 2.4b), or crab density (F(2,89)=0.681, p=0.509). However, the number of 667 

crabs in the trial significantly affected the number of lobster claw raises and claw grasps, 668 

with more lobster claw raises (two-way ANOVA; F(2,89)=10.830, p<0.01) at a density of 669 

25 crabs (p=0.01) compared to densities of 1 and 5 crabs (Table A.5, Fig. 2.4c). Similarly, 670 

lobsters displayed more claw grasps (F(2,89)=11.365, p<0.01, Table A.6) when in the 671 

presence of more crabs. However, water temperature had no statistically significant effect 672 

on the number of lobster claw raises (F(1,89)=0.099, p=0.754), nor did it affect the number 673 
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of claw grasps (two-way ANOVA; F(1,89)=3.812, p=0.054, Table A.6, Fig. 2.4d). To 674 

further investigate the noticeable variation in the pattern of interactions as a function of 675 

water temperature and crab density, we pooled the “approach” behaviours displayed by 676 

lobsters to test for any “general” patterns of behaviour (Table A.7, Fig. 2.5). Water 677 

temperature (two-way ANOVA; F(1,90)=4.836, p=0.031) and crab density (F(2,90)=4.143, 678 

p=0.019) significantly affected the frequency of occurrence of pooled approach 679 

behaviours, because significantly more lobster interactions occurred when comparing 680 

densities of one and 25 crabs to the treatment with no crab (p=0.019) and more 681 

interactions were observed at 12⁰C compared to 4⁰C. 682 

We also detected several significant behavioural responses in green crabs to 683 

lobster. Crab density significantly affected the number of times a crab retreated away 684 

from, and displayed a body raise towards a lobster because crabs retreated from the 685 

lobster more frequently (two-way ANOVA; F(2,89)=122.450, p=<0.01, Table A.8, Fig. 686 

2.6a) and displayed more body raises (F(2,89)=42.891, p<0.01, Table A.9, Fig. 2.6b) at a 687 

density 25 crabs compared to that at the lower crab densities. Water temperature also 688 

significantly affected the number of crab retreats (F(1,89)=7.730, p<0.01), but not the 689 

number of crab body raises (F(1,89)=0.006, p=0.938). Crab density significantly affected 690 

the number of crab claw raises (two-way ANOVA; F(2,89)=45.778, p<0.01, Table A.10,  691 

Fig. 2.6c) and claw grasps (F(2,89)=18.429, p<0.01, Table A.11, Fig. 2.6d) initiated 692 

towards a lobster, with significantly more claw raises at the highest crab density and more 693 

claw grasps with increased crab density. In addition, water temperature affected the 694 

number of claw raises (two-way ANOVA; F(1,89)=34.442, p<0.01) with more raises at 695 

12⁰C compared to 4⁰C. Temperature had no significant effect on the number of claw 696 
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grasps (F(1,89)=0.343, p=0.560). The total number of approach interactions displayed by 697 

crabs towards a lobster significantly increased with increasing water temperature (two-698 

way ANOVA; F(1,90)=21.97, p<0.01) and increasing crab density (F(2,90)=87.588, p<0.01) 699 

because more interactions were observed at higher crab densities, and at 12⁰C compared 700 

to 4⁰C (Table A.12, Fig. 2.7).  701 

X-ray analysis of the lobsters showed that they fed in 44% of the cold-water trials 702 

and 54% in the warm water trials (Fig. 2.8a), whereas green crabs fed in 33% of the trials 703 

at 4⁰C and 77% of trials at 12⁰C (Fig 2.8c). Food consumption rates were routinely low 704 

with no significant differences in the amount of food a lobster consumed as a function of 705 

crab density (two-way ANOVA; F(3,131)=0.07, p=0.178) or water temperature 706 

(F(3,131)=0.011, p=0.915, Table A.13, Fig. 2.8b). However, at densities of 150 crabs 707 

(n=10), the lobsters did not consume any food in any of the trials and the crabs consumed 708 

the entire food source in 7.42 ± 0.71 minutes. The amount of food a crab consumed 709 

depended on water temperature (two-way ANOVA; F(2,928)=84.410, p<0.01) in that crabs 710 

consumed more food at the warmer water temperature.  The number of crabs in the tank 711 

the amount of food an individual crab consumed (F(2, 928)=1.039, p=0.354, Table A.14, 712 

Fig. 2.8d). 713 

Catchability 714 

Crab position significantly influenced some lobster behavioural responses in and 715 

around the trap. Lobsters approached the trap less often when crabs were positioned 716 

outside of the trap (MANOVA; F(2,58)=4.283, p=0.01, Table 2.2, Fig. 2.9a, ANOVA, 717 

Table 2.3), compared to when crabs were positioned inside of the trap (Tukey test; 718 

p=0.031) or when no crabs were present (Tukey test; p=0.045). Although crab position 719 
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significantly affected the approach behaviour of lobsters, temperature had no effect 720 

(MANOVA; F(1,59)=0.066, p=0.799) on how many times a lobster approached the trap.  721 

Similarly, crab position significantly affected the number of lobster attempts to 722 

enter the trap (MANOVA; F(2,58)=5.591, p<0.01, Table A.15, ANOVA, Table A.16 - 723 

appendix, Fig. 2.9b). Fewer attempts were made when crabs were positioned outside of 724 

the trap compared to when crabs were absent from the trial (p=0.005), but this behaviour 725 

was unaffected by water temperature (MANOVA; F(1,58)=1.273, p=0.264). Neither 726 

temperature (two-way ANOVA; F(2, 27)=0.047, p=0.955, Table 2.3, Fig. 2.10a) nor 727 

treatment (F(2,27)=0.572, p=0.073) significantly affected on the time to first entry by a 728 

lobster . In contrast, water temperature affected the time of first green crab entry (one-729 

way ANOVA; F(1, 19)=5.445, p=0.031, Table 2.4), in that green crabs entered the trap 730 

faster in warmer water.  731 

 Lobsters successfully entered the trap significantly more times at 12⁰C than at 732 

4⁰C (MANOVA; F(1, 58)=8.354, p<0.01, Table A.17, ANOVA, Table A.18, Fig. 2.9c). 733 

The same pattern was observed regarding number of lobster escapes  from a trap, in that 734 

lobsters escaped significantly more at the warmer temperature (F(1,58)=9.221, p<0.01, Fig. 735 

2.9d) but were not significantly affected by the position of green crabs (p>0.01). At 4⁰C  736 

lobsters were never successfully entered when crabs were positioned outside.  The first 737 

entry time of green crabs was significantly earlier at 12⁰C than at 4⁰C (F(1, 18)=5.445, 738 

p=0.031, Fig. 2.10b). 739 

 740 

2.5 Discussion 741 
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The results from this study show that the presence of green crabs in the tank 742 

environment could affect negatively influence lobster feeding and trapping behaviour as 743 

the presence of crabs decreased the lobster food consumption and prevented a lobster 744 

from entering a baited trap, however as some of the data did violate the assumptions of 745 

ANOVAs to deliver unbiased parameter estimates in all cases. Crustacean behaviour is 746 

important (e.g. Bell et al., 2001; Chiasson et al., 2015; Haarr et al., 2012; Hanson 2010; 747 

Jury et al., 2001; League-Pike et al., 2009; Mehrtens et al., 2005; Rossong et al., 2006; 748 

2011; Ryan et al., 2014; Watson et al., 2009; 2013; Williams et al., 2006; 2009) and 749 

previous literature highlight the importance of this branch of research, our findings build 750 

on previous studies and presents new findings on how lobsters and green crabs interact 751 

with each other when in the presence of food and baited traps. 752 

Behavioural interactions 753 

Crab density had no significant effect on the time it took lobsters to approach the 754 

food source and the subsequent handling of food, perhaps reflecting the larger adult 755 

lobsters and smaller green crabs in our study. Adult green crabs can outcompete smaller 756 

juvenile lobsters for food items smaller than the crabs themselves (Rossong et al., 2006; 757 

Williams et al., 2006). However, lobster behaviour in our study was unaffected by green 758 

crabs at any of the densities tested, likely reflecting the size disparity between the smaller 759 

adult green crabs and the much larger lobster.  760 

Although the presence of between 1 and 25 green crabs did not affect food 761 

acquisition of lobsters, at a density of 150 crabs, the lobsters were unable to acquire any 762 

food because the crabs consumed it all before the lobster reached it. Typically, green 763 

crabs are more active in the presence of food than lobsters, consistent with  their rapid 764 
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detection and feeding on food (Haarr & Rochette, 2012). The 150 crabs consumed the 765 

entire food source (75g) in approximately eight minutes. In the wild, the lobster diet 766 

typically consists of molluscs, echinoderms, other crustaceans and, occasionally, fish 767 

carcasses (Ennis, 1973). Given the comparatively small size of most of these items and 768 

the capacity of green crabs to detect food quickly, 150 crabs could congregate over and 769 

consume many prey items before a lobster could feed on those items. 770 

The behaviour of lobsters was also unaffected by the water temperature, with 771 

similar approach times at both 4 and 12⁰C. In contrast, the approach time of the green 772 

crabs was faster when more conspecifics were present and also at the higher temperature. 773 

This difference between the two species as a function of temperature may reflect optimal 774 

functionality, where biological processes can be carried out most efficiently, in 775 

crustaceans at temperatures typical of their natural habitat (Wieser, 1972). The optimum 776 

temperature range for the American lobster is between 8-18⁰C (Ennis, 1984; Aiken & 777 

Waddy, 1986; Ugarte, 1994; Watson & Jury, 2013; Nielsen & McGaw, 2016). Green 778 

crabs have an optimal range of 10-18⁰C, but feed most efficiently at 17-24⁰C (Crothers, 779 

1969; Wallace, 1973; Elner, 1980; Behrens-Yamada, 2001; Miron et al., 2002). Unlike 780 

lobsters, green crabs are less tolerant of colder temperatures in their natural range, and 781 

below ≤7⁰C they decrease activity and enter into a torpor-like state  (Berrill, 1982; 782 

Behrens-Yamada, 2001). Adult green crab migrate to deeper waters when temperatures 783 

fall below 8⁰C (Sanchez-Salazar et al., 1987) and at 6⁰C, slow and intermittent feeding 784 

activity occurs. This response explains significantly longer crab approach time to the food 785 

source at 4⁰C. In contrast, lobsters remain active at low temperatures of 2-5⁰C (McLeese 786 

& Wilder, 1958), and we would expect a reduced temperature effect on approach and 787 
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handling time in lobster. However, green crabs in Newfoundland actively feed even 788 

during winter, suggesting greater thermal adaptation than their native counterparts (Tepolt 789 

& Semero 2012; Jeffery et al., 2017); thus they continued to feed in our experiments, 790 

even at the lower temperature. 791 

Agonistic behaviour 792 

In general, any conflict between individuals can be resolved by agonistic 793 

behaviour, defined here as “the set of patterns that share a common function; to adjust to 794 

a situation of conflict” (Huber & Kravitz, 1995). Agonistic behaviour can be subdivided 795 

into approach behaviour: the act of an animal directly approaching the opponent, and 796 

avoidance behaviour: the animal moves away from the opponent (Huber & Kravitz, 797 

1995). Agonistic behaviour in crustaceans includes displays such as raising the body high 798 

above the substratum and presenting the chelae to the opponent (Sneddon et al., 1997b). 799 

Our study quantified four types of agonistic behaviours between lobsters and green crabs, 800 

based upon categories defined by Huber & Kravitz (1995). These behaviours included 801 

retreating away from another animal (avoidance), and three agonistic interactions: body 802 

raises, claw raises, and claw grasps. As defined by (Huber & Kravitz (1995) these three 803 

different agonistic displays are clearly and reliably distinguishable through the separation 804 

of each behaviour into bouts. Here, we define bouts as “periods of no contact or of 805 

avoidance behaviour by one or the other of the combatants” (Scrivener, 1971; Atema & 806 

Cobb, 1980). Other studies also distinguish similar behavioural interactions between 807 

individuals through agonistic levels, where each interaction (level) increases with 808 

physical intensity (Karavanich & Atema, 1998; Haarr & Rochette, 2012). Division of 809 

behaviours here into similar categories enabled comparison of our results with previous 810 
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work on this and other species. The frequency by which these behaviours were displayed 811 

varied considerably, especially when comparing lobster interactions with green crabs. The 812 

lobsters in our study displayed, on average, twice as many agonistic behaviours (body and 813 

claw raises) and seven times more agonistic interactions with physical contact (claw 814 

grasps) compared to those observed by Haarr & Rochette (2012). We used large adult 815 

lobsters interacting with numerous adult green crabs as opposed to a single juvenile 816 

lobster interacting with one similar sized green crab (Haarr & Rochette, 2012), which 817 

presumably contributed  to the higher number of incidents observed. As categorised by 818 

Haarr and Rochette (2012), lobsters displayed the least threatening approaches (body 819 

raises) most frequently and were less likely to display highly threatening approaches 820 

(claw grasp) towards the crabs. In contrast, green crabs were more likely to display more 821 

aggressive behaviours to the lobsters (claw raises and grasps) and were 10-25 times more 822 

likely to retreat from a lobster in our study. Given the size discrepancy, the crabs would 823 

perceive a lobster as a greater threat rather than vice versa.  In addition, within 824 

conspecifics, lobster relationships quickly dichotomise into dominant and subordinate 825 

roles, and conflicts can be resolved with threatening displays. Lobsters use chemical cues 826 

to remember familiar opponents when kept in situ (Karavanich & Atema, 1998). In 827 

contrast, green crabs go directly into physical fighting rather than using displays to avoid 828 

a fight (Sneddon et al., 1997a) which is consistent with the large number of aggressive 829 

agonistic interactions observed in our study. 830 

Despite some underlying patterns, agonistic interactions varied considerably. It is 831 

also unclear whether the lobsters and crabs actually respond differently or could 832 

differentiate between a body raise and a claw raise, for example, or a claw raise and a 833 
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claw grasp. To investigate some of the common patterns we observed further, we grouped 834 

interactions into retreating behaviour and approach behaviours. This approach clarified 835 

patterns somewhat; lobster retreat behaviour generally increased at the higher temperature 836 

and also at higher crab density. This underlying pattern was more variable but also 837 

evident for the approach behaviour between lobsters and green crabs. Both retreat and 838 

approach behavioural patterns were much clearer when investigating the interactions of 839 

green crabs towards the lobster, with more defined increases in behavioural interactions 840 

as a function of temperature and crab density. Presumably when temperature increases, 841 

crabs become more active and continue to act aggressively towards the lobster and to one 842 

another.  843 

The increase in interactions with increasing crab density can be explained by the  844 

greater number of animals to interact with, and as such, these behaviours should increase. 845 

However, dividing the total amount of interactions by the number of individuals did not 846 

yield a stable number of interactions. In order to account for density in this experiment, 847 

the experiment would have to be redesigned specifically to address the number of 848 

interactions and types of interactions between the two species within a set time frame, 849 

however, the actual behavioural interactions were not the main focus of this study. 850 

Instead the number of individual interactions decreased as crab density increased, perhaps 851 

because green crabs tended to mass together in clumps and the effect of an individual was 852 

lowered as the lobster only potentially recognised and interacted with the mass as one 853 

individual. This has also been observed in other studies as they report increased agonistic 854 

interactions with increased number of encounters (Williams et al., 2006; Williams et al., 855 

2009). Furthermore, animals are more likely to encounter one another at higher densities, 856 
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potentially leading to adaptation whereby an individual no longer responds to another as a 857 

threat. This type of behaviour has been noted in several other taxa whereby potential 858 

threats, once encountered, are ignored more often as the individual becomes habituated to 859 

the threatening display with repeated exposure (e.g., male threat displays in Siamese 860 

fighting fish (Meliska & Meliska, 1976) and in the claw display response of fiddler crabs 861 

to repeatedly approaching dummy predators (Hemmi & Merkle, 2009)).  862 

Food acquisition 863 

Even though all the lobsters were observed around the food source at some time 864 

during the experiment and appeared to handle the food, a subsequent X-ray of the gut 865 

showed that on average only 45-55% of lobsters actually ingested the food. This pattern is 866 

interesting because they were starved for 8-10d prior to experimentation, an ample time 867 

for them to empty their gut system (McGaw & Curtis, 2013a; Wang et al., 2016a). In 868 

contrast to the low number of lobsters that fed, temperature produced a more pronounced 869 

effect on green crabs: 33% crabs fed at 4⁰C, whereas 77% ingested food at 12⁰C. Once 870 

released from the buckets the crabs tended to head straight for the food and started 871 

feeding, whereas the lobsters circled the tank and remained active. This exploration of a 872 

novel environment has been reported before for lobsters; the acquisition of shelter is 873 

highly important for lobster (Cobb, 1971; Nielsen & McGaw, 2016) and they will often 874 

spend time seeking out shelter; this behaviour could explain why not all the lobsters fed.  875 

We observed no significant change in the amount of food a lobster consumed as a 876 

function of crab density, or water temperature, however many previous studies on lobsters 877 

and other crustaceans report increased consumption rates with increasing temperature 878 

(Jury & Watson, 2013; Watson & Jury 2013; Nielsen & McGaw, 2016; Wang et al. 879 
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2016a). Bait diffusion rates increase at warmer temperatures and activity and appetite also 880 

increases in decapods (Morrissy, 1975; Worden et al. 2006), because increased metabolic 881 

rates presumably increase hunger (Lagerspetz & Vainio, 2006).  However, lobsters ate a 882 

similar amount of food at both temperatures in our study. A general increase in activity 883 

observed for the lobsters at 12⁰C associated with exploring the novel environment may 884 

have negated any potential differences in foraging associated with temperature. Crabs 885 

exhibited the expected increase in food ingestion at warmer temperatures, again reflecting  886 

a sharp decrease in activity and feeding at approximately 7⁰C (Berrill, 1982; Behrens-887 

Yamada, 2001). 888 

For lobsters that fed, the actual amount of food ingested was routinely low, at 0.2-889 

0.5% of their body mass. Lobsters and other crustaceans typically ingest between 2-4% of 890 

their body mass at any one time (McGaw & Curtis, 2013a; Wang et al., 2016a), so it is 891 

unusual that intake was so low, especially considering that they had been starved for 8-892 

10d beforehand. Food intake levels were also low in the green crabs at both temperatures. 893 

When offered whole mackerel, both species apparently consumed a significant amount of 894 

the flesh. The low amount of prepared food ingested by both species could be because the 895 

gelatin and radio-opaque markers contained in the food reduced its palatability and 896 

lobsters have even been seen to prefer fresh bait as opposed to frozen bait both in the 897 

fishery (Roy Murphy; Hayward Eddy, lobster harvesters, pers. comm. 2016) and in this 898 

study during preliminary trials. In the aquaculture industry, few promising artificial diets 899 

have been developed for culturing H. americanus (Conklin et al., 1975). Some studies 900 

report that spiny lobsters (Jasus edwardsii) reared in cages are less likely to consume 901 

artificial foods (Sheppard et al., 2002) and virtually no feeding behavior has been 902 
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detected in freshwater prawn (Macrobrachium rosenbergii) offered an artificial food 903 

source (Harpaz, 1997). Thus, the novel approach used here to try to quantify the amount 904 

of food ingested may have impacted overall ingestion rates. However, this method did 905 

show a discrepancy between the appearance of food handling (video analysis) and actual 906 

food ingestion (X-Ray analysis). This difference suggests a need for caution when 907 

interpreting behavioural assays, because food handling might not necessarily equate to 908 

food ingestion. Indeed, previous studies noted the difficultly in accurately assessing 909 

whether a crab is feeding when it is on the food source (Ramsay et al., 1997; Steen & Ski, 910 

2014; Hold et al., 2015). 911 

Catchability 912 

Attracting a lobster to a trap typically required bait. The area of bait influence 913 

(ABI) is the area within which the target can detect the bait and where the bait 914 

measurably influences the orientation and movement of the target species;  investigations 915 

on the catchability of crustaceans must consider this key component (Bell et al., 2001). 916 

The ABI for H. americanus in the field is between 9-17m (Smith & Tremblay, 2003) with 917 

an area of 382cm2 (Watson et al., 2009). The release of attractants from the bait during 918 

feeding activity of other crustaceans may also contribute to a higher frequency of trap 919 

entry, and hence, catchability (McLeese & Wilder, 1958; Watson & Jury, 2013).  In 920 

general, only 2-6% of approaches lead to capture within a traditional wood-lath parlour 921 

trap (Richards et al., 1983; Karnofsky & Price, 1989; Watson & Jury, 2013).  In our 922 

study, lobsters also often approached the trap without attempting to enter.   923 

Water temperature significantly affected lobster behaviour and catchability in and 924 

around the baited trap. In the wild, crustacean catchability generally increases with 925 
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temperature as a result of increased activity, appetite, and the rate at which bait molecules 926 

diffuse in water (Morrissy, 1975; Watson & Jury, 2013). Lobsters and crabs were both 927 

more active at the warmer temperature (12⁰C) and were thus successfully entered more 928 

rapidly and more often, but also escaped from the trap more often at 12⁰C compared to 929 

4⁰C. 930 

Behaviour around a trap 931 

Crab position significantly affected lobster behaviour and they also significantly 932 

reduced lobsters attempts to enter the trap when crabs could move freely around the tank. 933 

We observed this lobster response at an experimental crab density of 25 individuals. In 934 

the field,  small Fukui traps often catch up to 150 crabs in Placentia Bay, NL (Bergshoeff, 935 

MSc Thesis, in prep), suggesting crab abundances near traps may often exceed 25 936 

individuals. The presence of such high numbers of green crabs could reduce the 937 

frequency at which target species enter traps. Miller (1990) linked the frequency of crabs 938 

entering a trap with the presence of crabs already in a trap, and  suggested that the 939 

presence of crabs in a trap may intimidate other crabs from entering, either via odour, 940 

sound, or threatening posture. The presence of lobsters already in a trap also inhibits the 941 

entry of other lobsters because of a saturation effect (Addison, 1995; Watson & Jury 942 

2013) and the same may apply to green crabs, however no study has examined how many 943 

green crabs would be needed to induce this effect. 944 

 In addition to a possible intimidation factor, green crabs may physically block the 945 

entry funnel in the trap, especially at high crab densities (Bennett, 1974). Crabs appear to 946 

aggressively compete for the opportunity to enter the trap next (Jury et al., 2001). We 947 

observed crabs entering the trap and wrapping their legs and claws around the twine of 948 
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the kitchen and parlour sections, potentially reducing the ability of lobsters to enter the 949 

trap. Previous studies showed that the presence of lobsters inside a trap reduces catches of 950 

green and rock crabs (Richards et al., 1983; Miller & Addison, 1995) and other lobsters 951 

(Watson & Jury, 2013), and green crabs attempt to hide or seek shelter in the presence of 952 

lobsters (League-Pike and Shulman, 2009). In our study, green crabs instead entered the 953 

trap in every trial, with many individuals remaining in the trap at the end of the 954 

experiment. The green crabs and lobsters were both starved for 8-10 d before experiments 955 

to ensure they would feed. Classic predator-prey experiments show that prey take more 956 

risks and enter areas with predators with increasing hunger because they behave so as to 957 

maximise their net rate of energy intake (Abrahams & Dill, 1989; Brown & Kotler, 958 

2004).  959 

The saturation effect of green crabs  reduced the frequency at which lobsters 960 

approached and  attempted to enter a trap. Trap saturation may also be considered as a 961 

form of competition given that crabs always approached and entered the trap first. 962 

However, we found no difference in the amount of times a lobster successfully entered 963 

the trap based on crab position, given that lobsters were presumably attracted to the trap, 964 

the same number of times. The presence of crabs may enhance lobster movement towards 965 

a trap in the field as bait odor is released and crabs tear apart and feed on the bait 966 

(Karnofsky & Price, 1989). In our trials, the crabs were contained within the parlour 967 

section of the trap to prevent their escape, so crab feeding did not  enhance the attraction 968 

of the traps. 969 

Our preliminary field sampling rarely caught green crabs and lobsters together 970 

(Fig. A.3  appendix), which is in contrast to our laboratory results. The lobster harvesters 971 
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left the baited traps to soak for 1-2 days. Video data from the lab study showed that crabs 972 

frequently moved in and out of the trap, eating the bait, leaving and returning, which 973 

suggests they may behave similarly in the field. The laboratory studies showed that crabs 974 

may enter a trap within a few minutes; we have found while collecting green crabs in the 975 

field, traps fill with 50-100 individuals in under an hour. In contrast, lobsters did not enter 976 

the traps for over 100 minutes. Given even a conservative estimate of a trap attracting 150 977 

crabs in the field (Bergshoeff, MSc thesis, in prep.), these animals could consume typical 978 

lobster bait (two mackerel/pot) within 45 mins. Thus, green crabs in Placentia Bay likely 979 

deplete the bait source within the trap rapidly and exit before lobsters even approach a 980 

trap.  This pattern could potentially reduce capture rates because lobsters virtually ignore 981 

un-baited traps (Karnofsky & Price, 1989). In addition, Placentia Bay lobster harvesters 982 

use whole bait in the trap secured with bait ties. Our results suggest that using a bait 983 

cup/pot that limit green crab consumption will increase trap effectiveness over longer 984 

time periods; bait pots are already in use in the field to prevent this depletion (Zargarpour, 985 

MSc thesis, In prep).  986 

Green crabs have likely been in Newfoundland for a maximum of 15 years 987 

(Blakeslee et al., 2010; McKenzie et al., 2010; Matheson et al., 2016), and we may not 988 

yet see their full effect on the lobster fishery. In addition, nearly all previous studies on 989 

interactions between lobsters and green crabs were carried out in New England and the 990 

Canadian Maritimes where green crabs and lobsters have interacted for 60-160 years. 991 

With any new invasion into an area, several changes occur with both the native and 992 

invading populations (Edgell & Neufeld, 2008; McGaw et al., 2011). Because predator-993 

prey interactions may not be fully developed, predators may not recognize potential prey 994 
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and vice versa (Agrawal 2001; Edgell & Neufeld, 2008; McGaw et al., 2011; Kuehne & 995 

Olden, 2012). This possibility leads into the next chapter which investigates whether 996 

Newfoundland lobsters attack and eat green crabs, and if so, whether they so do to feed  997 

or to defend a territory, and whether size and feeding status modulates such interactions. 998 

Conclusion 999 

Water temperature was the primary factor in crab foraging behaviour in that crabs 1000 

consumed less food at the colder temperature but water temperature had no effect on 1001 

lobster food consumption or behaviour whilst foraging. This temperature-dependent crab 1002 

behaviour will likely affect the Placentia Bay fishery because water temperature during 1003 

the fishing season typically varies between 7-14⁰C (see Appendix), which exceeds the 1004 

critical temperature where green crab feeding and metabolism is depressed; green crabs 1005 

will therefore enter traps more often and consume more food during the fishing season 1006 

than at other times of the year. Green crabs rapidly consume the bait within traps before a 1007 

lobster can enter, thereby reducing lobster catch rate.  1008 

Although the presence of green crabs did increase agonistic behaviour by lobsters 1009 

around a food source, this may only reflect that interactions are increased only due to the 1010 

fact that the organism was exposed to an increased number of additional organisms. This 1011 

could suggest that in an environment where there are more organisms overall, a lobster 1012 

may spend more time interacting with another individual. In addition, for a lobster to be 1013 

prevented from feeding completely, crab density in the tank environment must be high 1014 

enough.  1015 

 1016 
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Tables 1017 

Table 2.1 Summary of the two-way ANOVA examining the effects of temperature (4 1018 

& 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on the amount of time 1019 

taken for an adult lobster (H. americanus) to approach the food source in the food 1020 
acquisition trials. 1021 

Source of variation Df F MS p 

Temperature 1 2.92 4650.987 0.093 

Crab Density 3 0.296 471.028 0.828 

Temperature *Crab 

Density 3 0.805 1282.79 0.496 

Error 60  1592.764  
Corrected Total 67       

 1022 

Table 2.2 Summary of the MANOVA examining the effects of temperature (4 & 1023 

12⁰C) and green crab (C. maenas) position (absent/in/out) on the number of times an 1024 

adult lobster (H. americanus) would approach the baited trap in the catchability 1025 
trials. 1026 

Source of variation df F MS p 

Temperature 1 0.066 50.102 0.799 

Treatment 2 4.283 3267.474 0.01 

Temperature *Treatment 2 0.194 148.063 0.824 

Error 53    
Corrected Total 58       

 1027 

Table 2.3 Summary of the subsequent one-way ANOVA to confirm the above 1028 

MANOVA examining the effects of temperature (4 & 12⁰C) and green crab (C. 1029 
maenas) position (absent/in/out) on the number of times an adult lobster (H. 1030 
americanus) would approach the baited trap. 1031 

Source of variation df F MS p 

Temperature 1 0.07 57.836 0.793 

Treatment 2 4.524 3294.428 0.015 

 1032 
 1033 

 1034 

 1035 

 1036 
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Table 2.4 Summary of the two-way ANOVA examining the effects of temperature (4 1037 

& 12⁰C) and treatment of green crab (C. maenas) position (absent/in/out) on the 1038 
amount of time taken for an adult lobster (H. americanus) to first enter the baited 1039 
trap in the catchability trials. 1040 

Source of variation Df F MS p 

Temperature 1 0.047 0.007 0.955 

Treatment 2 3.559 0.572 0.073 

Temperature *Treatment 2 0.842 0.135 0.444 

Error 22  0.161  
Corrected Total 27       

 1041 
Table 2.5 Summary of the one-way ANOVA examining the effects of temperature (4 1042 

& 12⁰C) on the amount of time taken for a green crab (C.maenas)to first enter the 1043 
baited trap in the catchability trials. 1044 

Source of variation Df F MS p 

Between Groups 1 5.445 3.362 0.031 

Within Groups 18  11.115  
Total 19   14.477   

 1045 

 1046 

 1047 

 1048 

 1049 

 1050 

 1051 

 1052 

 1053 

 1054 

 1055 
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Figures 1056 

 1057 

Figure 2.3. a) Amount of time (min) for an adult lobster, H. americanus, to approach 1058 
the food source at different densities of adult green crabs, C. maenas and water 1059 

temperatures, b) amount of time an adult lobster handled the food at different 1060 
densities of adult green crabs and water temperatures, c) amount of time for adult 1061 

green crabs to approach the food source at different crab densities and water 1062 
temperatures. Black squares represent the mean. 1063 

 1064 
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 1065 

Figure 2.4. a) Amount of times an adult lobster, H. americanus, retreated from an 1066 
adult green crab, C. maenas at different crab densities, b) number of times an adult 1067 

lobster displayed body raises around adult green crabs, at different crab densities, c) 1068 
number of times an adult lobster displayed claw raises around adult green crabs, at 1069 
different crab densities, d) number of times an adult lobster displayed claw grasps 1070 

around adult green crabs, at different crab densities. Black squares represent the 1071 
mean. 1072 

 1073 
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 1074 
Figure 2.5. The total number of behavioural interactions displayed by an adult 1075 
lobster, H. americanus, towards adult green crabs, C. maenas, at different crab 1076 
densities. Black squares represent the mean. 1077 

 1078 

 1079 
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 1080 

Figure 2.6. a) Amount of times adult green crabs, C. maenas, retreated away from 1081 

an adult lobster H. americanus, at different crab densities, b) amount of times adult 1082 
green crabs displayed body raises around an adult lobster at different crab densities, 1083 

c) amount of times adult green crabs displayed claw raises around an adult lobster, 1084 
at different crab densities, d) amount of times adult green crabs displayed claw 1085 
grasps around an adult lobster, at different crab densities. Black squares represent 1086 

the mean. 1087 

 1088 

 1089 
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 1090 

Figure 2.7. The total number of behavioural interactions displayed by green crabs, 1091 
C. maenas, towards an adult lobster, Homarus americanus, at different crab 1092 

densities. Black squares represent the mean. 1093 

 1094 
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 1095 

Figure 2.8. a) Percentage of trials in which adult Homarus americanus consumed the 1096 
food source, at different densities of Carcinus maenas and water temperatures, b) 1097 

amount of food consumed by an adult lobster in relation to body mass at different 1098 
densities of adult green crabs and water temperatures, c) percentage of trials in 1099 

which adult green crabs consumed the food source, at different densities of green 1100 
crabs and water temperatures, d) amount of food consumed by adult green crabs in 1101 
relation to body mass at different crab densities and water temperatures. Black 1102 

squares represent the mean. 1103 

 1104 
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 1105 

Figure 2.9. a) Number of approaches Homarus americanus made to a baited trap at 1106 

4⁰C and 12⁰C dependent on crab position, b) number of unsuccessful attempts a 1107 

lobster made to enter a baited trap at 4⁰C and 12⁰C dependent on crab position, c) 1108 

number of times an adult lobster successfully entered a baited trap at 4⁰C and 12⁰C 1109 

dependent on crab position, d) number of times a lobster escaped from a trap at 4⁰C 1110 

and 12⁰C dependent on crab position. Black squares represent the mean. 1111 

 1112 

 1113 



 

57 

 

 1114 

Figure 2.10. a) Time (min) for Homarus americanus to first enter the baited trap at 1115 

4⁰C and 12⁰C dependent on crab position, b) Time (min) for the first Carcinus 1116 

maenas to enter the baited trap at 4⁰C and 12⁰C dependent on crab position. Black 1117 

squares represent the mean.  1118 

 1119 

 1120 

 1121 

 1122 

 1123 

 1124 

 1125 

 1126 

 1127 

 1128 

 1129 
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3. Quantifying lobster predation on green crabs 1130 

3.1 Abstract 1131 

The European green crab (Carcinus maenas) first invaded the east coast of North 1132 

America in the 1800s and comprises part of the diet of American lobster (Homarus 1133 

americanus) in some locations. Green crabs are used as bait in lobster fisheries in Nova 1134 

Scotia, Canada but predation has not yet been quantified in Newfoundland, where crabs 1135 

were first reported 10-15 years ago. This study aims to determine whether lobsters from 1136 

Newfoundland recognise and prey upon this new species and, if so, do green crabs reach 1137 

a size refuge where they became too big for lobster to handle. Lobsters from 1138 

Newfoundland were compared with lobsters from Nova Scotia that have coexisted with 1139 

green crabs for over 60 years. Individual juvenile (≤40 mm), sub-adult (40-65 mm) or 1140 

adult (≥65 mm) carapace width (CW) green crabs were introduced into a tank with single 1141 

lobsters. Lobster origin had no significant effect on crab predation. Although the lobsters 1142 

consumed some adult crabs, larger crabs (>72 mm CW) were less likely to be injured and 1143 

eaten. The experiments were repeated with lobsters fed prior to experimentation, adding a 1144 

shelter as a potential refuge for green crabs, and adding an alternative food source (fish 1145 

flesh). Predation on green crab did significantly among the treatments, as crabs were less 1146 

likely to be attacked or eaten when an alternative bait and a shelter were provided in the 1147 

tank and larger crabs were less likely to be attacked or eaten than smaller crabs. Our 1148 

results suggest that green crabs may be an important prey item for lobsters and could 1149 

potentially be used as bait in the Newfoundland lobster fishery. 1150 

 1151 
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3.2 Introduction 1152 

The European green crab (Carcinus maenas, Linnaeus, 1758) is a benthic 1153 

intertidal species native to the Eastern Atlantic, ranging from Norway to Morocco 1154 

(Williams, 1984). It primarily inhabits sheltered bays and estuaries and grows to about 10 1155 

cm carapace width (Crothers, 1967). C. maenas has been described as one of the “100 1156 

worst invasive alien species” (Lowe et al., 2000) because adults are aggressive 1157 

competitors and consume a variety of marine organisms (Ameyaw-Akumfi & Hughes, 1158 

1987; Klassen & Locke 2007) including annelids, molluscs, fish, and other crustaceans 1159 

(Baeta et al., 2007). They were first recorded in North America in Massachusetts in the 1160 

1800s, gradually spreading northward to Nova Scotia, Canada in the 1950s (Klassen & 1161 

Locke, 2007). Adult green crabs were first recorded in North Harbour, Newfoundland in 1162 

2007 but were likely first introduced in 2002 (Blakeslee et al., 2010; McKenzie et al., 1163 

2010) and have since spread to the south in Placentia Bay and westward into Fortune Bay 1164 

and the west coast of Newfoundland. Unlike the European lobster (Homarus gammurus), 1165 

whose distribution range does not overlap with that of the green crab in their native 1166 

environments, the natural range of American lobster overlaps with that of green crab in 1167 

the low intertidal and shallow subtidal zones (Carlson et al., 2006; Goldstein et al., 2017). 1168 

In Newfoundland, the presence of green crab is a major concern, specifically in terms of 1169 

their deleterious effects on eelgrass beds (Matheson et al., 2016), increased predation on 1170 

shellfish (Grosholz & Ruiz, 1996; McClenachan et al., 2015), and their ability to predate 1171 

upon, and negatively affect the behaviour of juvenile lobsters (Rossong et al., 2006; 2011; 1172 

Williams et al., 2006; 2009). 1173 
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Studies report varying outcomes following invasion of an exotic species. In some 1174 

cases exotic prey may be beneficial to a native predator, because predators may become 1175 

more effective at feeding on the invasive prey, via existing phenotypic plasticity or 1176 

natural selection (Carlsson et al., 2009). For example, the invasive round goby 1177 

(Neogobius melanostomus) in the Great Lakes has become an important food source to 1178 

the threatened Lake Erie water snake (Nerodia sipedon insularum) (King et al., 2006). 1179 

turtles (Graptemys geographica) (Bulte & Blouin-Demers, 2008) and numerous bird 1180 

(Petrie & Knapton, 1999) and fish species (Magoulick & Lewis, 2002) now prey on 1181 

invasive zebra mussels (Dreissena polymorpha) in the Great Lakes, and in the Hudson 1182 

river zebra mussels now form an important part of the diet of blue crab, Callinectes 1183 

sapidus (Molloy et al., 1994). Although new invaders may sometimes become prey, other 1184 

studies show that the predator may fail to recognize the new invader as a food item, and 1185 

allow populations of invaders to flourish and individuals to attain larger sizes than in their 1186 

native range (McMahon et al., 2014). Predators may not approach or consume unfamiliar 1187 

food because of “neophobia” or “dietary conservatism” (McMahon et al., 2014). 1188 

Neophobia has been reported in birds (zebra finch, Taeniopygia guttata) (Kelly & 1189 

Marples, 2004) where the hesitant approach from the predator to the prey species is brief, 1190 

sometimes lasting only a few minutes. Dietary conservatism refers to situations where the 1191 

predator refuses the novel food altogether, as reported in numerous bird (Marples et al., 1192 

2005) and fish species (Thomas et al., 2010; Richards et al., 2011; Richards et al., 2014). 1193 

American lobster predation behaviour 1194 

The American lobster (Homarus americanus, H. Milne Edwards, 1837) is native 1195 

to the east coast of North America, ranging from Labrador to South Carolina. This species 1196 
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generally occurs from shallow subtidal areas up to depths of 50m (Pringle & Burke, 1197 

1993). This commercially valuable species supports a multi-billion dollar industry in the 1198 

northeastern USA and Canada. Total annual landings in eastern Canada often exceed 1199 

70,000 tonnes (DFO, 2016) and it is the most important decapod crustacean to the fishing 1200 

industry in Newfoundland, especially in rural outports, where 2016 landings of 2,280t 1201 

were worth CAD$34,550,783 (DFO raw data, pers. comm. Elizabeth  Coughlan, 2016).  1202 

H. americanus is a predator and scavenger with a broad omnivorous diet that 1203 

includes molluscs, echinoderms, fish, algae and other crustaceans such as rock crab 1204 

(Cancer irroratus) (League-Pike & Shulman, 2009). Crabs, in particular form an 1205 

important part of lobster diets (Fogarty 1976; Scarratt, 1980; Gendron et al., 2001). 1206 

Lobsters prefer size-specific prey (Elner & Jamieson, 1979) and strongly select rock crabs 1207 

both in lab and field studies (McLeese, 1970; Reddin, 1973; Wilder, 1973; Gendron et al., 1208 

2001); they also prefer crabs when given the choice between crabs or sea urchins (Evans 1209 

& Mann, 1977). Catching and consuming crabs offers a clear bioenergetic advantage 1210 

given lobster requirements for high protein intake (Castell & Budson, 1974). Lobsters that 1211 

lack crustaceans in their diet do not develop normal colouration (Hughes & Matthiessen, 1212 

1962) and they require  calcium for successful moulting in order to strengthen the new 1213 

shell. Lobsters fed a diet without rock crab (a reference diet containing similar protein 1214 

levels) had lower glycogen and lipid levels and higher water content in their digestive 1215 

gland, as well as reduced chela growth compared to a diet containing crabs (Gendron et 1216 

al., 2001).  1217 

The natural range of the American lobster overlaps that of green crab in the low 1218 

intertidal and shallow subtidal zones (Carlson et al., 2006; Goldstein et al 2017). In areas 1219 
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where lobsters and green crabs have co-existed for long periods, lab-based studies show 1220 

that adult American lobsters inflict high mortality rates on Carcinus. In a lab study in 1221 

Maine, large lobsters (72-79mm CL) killed and consumed 27% of medium sized (40-1222 

43mm CW) green crabs within a 24-hour period (League-Pike & Shulman, 2009). 1223 

Similarly, Goldstein et al. (2017) reported that large lobsters (>80mm CL) kill and 1224 

consume a variety of different sized green crabs when held together in a small enclosure. 1225 

Although there was no significant difference in the average size of green crabs eaten by 1226 

lobsters, the lobsters that actually consumed crabs were generally larger (>470g) than 1227 

lobsters that did not feed on green crabs (<347g).  1228 

In Newfoundland (NL) green crabs have likely been present no longer than 13-15 1229 

years (Blakeslee et al., 2010; McKenzie et al., 2010; Matheson et al., 2012). Therefore, 1230 

the first aim of the present study was to determine whether Newfoundland lobsters can 1231 

recognize this newly invasive species  when compared to lobster populations from Nova 1232 

Scotia (NS) that have been exposed to green crabs many decades (Hypothesis 3). Further 1233 

experiments  determined whether lobsters attack and kill crabs for food or dispute over 1234 

territory. Finally interactions dependent on the size of both the lobster and green crab 1235 

were investigated to determine whether green crabs gain refuge from predation by 1236 

growing above a certain size threshold (Hypothesis 4). 1237 

 1238 

3.3 Materials and methods  1239 

Animal collection and housing 1240 
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Adult male green crabs, Carcinus maenas, ranging in size from 30–76 mm 1241 

(carapace width (CW) were collected using baited Fukui traps in Long Harbour, Placentia 1242 

Bay, Newfoundland (45⁰ 25’46”N 53⁰51’30”W). Crabs were transported to the Ocean 1243 

Sciences Centre, Logy Bay, St. John’s, Newfoundland via road in secure fish boxes and 1244 

covered with wet towels to prevent desiccation and escape. Only male crabs were kept 1245 

and females were either destroyed or returned to the same site. The animals were 1246 

maintained in seawater tanks (31-32ppt) at the Department of Ocean Sciences at 1247 

Memorial University of Newfoundland.  The green crabs were held in a flow-through 1248 

seawater system and  acclimated to temperatures of either 4⁰C ± 2⁰C or 12⁰C ± 2⁰C. No 1249 

female crabs were housed, thus preventing reproduction and potential further spread of 1250 

gametes via the flow-through system. 1251 

Adult lobsters (460-660g, 82.97mm carapace) were either purchased from 1252 

Clearwater Ltd (Nova Scotia) or from a local harvester in Garden Cove, Newfoundland 1253 

(47⁰51’11”N 54⁰9’29”W). Because of space restrictions, lobsters were held in a re-1254 

circulating seawater system at 12⁰C ± 2⁰C and a salinity of 30-32ppt prior to use. 1255 

Perforated PVC pipe shelters were placed in all tanks to act as shelters. Both species were 1256 

acclimated to experimental temperatures for three weeks prior to experiments (Camacho 1257 

et al., 2006). Lobsters and green crabs were fed ad libitum once per week with mackerel 1258 

(Scomber scombrus) but were starved for 8 days prior to experiments; this time period 1259 

ensured all food was cleared from the gut and that animals would feed during experiments 1260 

(Wang et al, 2016a). 1261 

Experimental protocol  1262 
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Experiments were conducted in 38L (52cm x 34cm x 22cm deep) opaque plastic 1263 

tanks containing seawater (32ppt) and an airstone maintained oxygen levels at 90-100% 1264 

saturation (Figure 3.1a,b).  The tanks were maintained at a water temperature of 12⁰C ± 1265 

1⁰C, which reflects summer averages in the shallow coastal areas of Newfoundland 1266 

(Methven & Piatt, 1991; Matheson & Gagnon, 2012a; Colbourne et al., 2016). Because 1267 

lobsters are primarily nocturnal foragers (Lipcius & Herrnkind, 1982) all experiments 1268 

were conducted in darkness. Individual lobsters were weighed, measured, and placed in 1269 

the tank and left for 15 minutes after handling; a single green crab was then added to the 1270 

tank. Green crabs were categorised into three size classes; small (≤40mm CW), medium 1271 

(40-65mm CW) and large (≥65mm CW) and each size class was replicated 10 times per 1272 

treatment. Once a green crab was added to the tank, the trial began. The tank was 1273 

examined after 1, 6 and 24 hours to quantify any damage inflicted on the green crab on a 1274 

scale of 1 to 3, where a damage rating of 1 signified an unharmed green crab with and no 1275 

damage incurred, a rating of 2 signified a crab injured by the lobster (leg/claw missing, 1276 

carapace damage) and a rating of 3 denoted the lobster had killed and partially or wholly 1277 

consumed the crab. Given the costs and logistics of holding large numbers of lobsters, we 1278 

used the same lobster up to three times in different experiments (detailed below), but they 1279 

were returned to the holding tanks and allowed to recover for at least 8 days before re-1280 

use. 1281 

We carried out four separate sets of experiments. In the first experiment, 30 1282 

lobsters from Nova Scotia (exposed to green crabs since the 1950s) and 30 lobsters from 1283 

Newfoundland (exposed to green crab since 2002- 2007) were compared to determine 1284 

whether green crab predation depended upon lobster origin.  This experiment allowed us 1285 



 

65 

 

to determine whether lobsters from NL could recognize this newly invasive crab as a prey 1286 

item.  Results from this first set of experiments suggested no obvious differences in 1287 

predation rates between lobsters from NS and NL. Therefore, we pooled lobsters in 1288 

further experiments using an equal number (n=15) from both locations, starving all 1289 

lobsters for 8 days prior to experimentation. In the second set of trials, lobsters were 1290 

offered mackerel and allowed to feed for 12 hours prior to introduction into the tank. This 1291 

experiment was designed to determine whether lobsters that are not hungry would still 1292 

attack or consume a green crab which might indicate that the interaction resulted from 1293 

something other than predation. In the third series of experiments, we introduced a piece 1294 

of mackerel (approximately 20g) to the tank at the same time as the crab to determine 1295 

whether an alternative food source would alter interactions between the lobster and crab, 1296 

and whether the lobster would prefer fish over the crab. In the final set of experiments, we 1297 

starved lobsters for 8 days and added a PVC pipe (13 cm x 9 cm diameter, one side 1298 

covered in 1mm2 mesh panel) to the tank as a potential refuge for the green crab. This 1299 

experiment was designed to determine whether lobsters would actively seek out and hunt 1300 

down a crab, rather than simply attacking them or consuming them because they were 1301 

easy to interact with or catch.  1302 

An additional series of experiments was conducted to determine whether the green 1303 

crabs could use size to gain refuge from predation. The previous series of experiments 1304 

(above) used a restricted size range of lobsters of (460-660g); we therefore added a wider 1305 

size range encompassing both smaller and larger lobsters (308-1272g). Lobsters were 1306 

starved for 8 d and large green crabs were measured and introduced into the tank and the 1307 

experiment was checked at 1, 6 and 24h. The size of lobster used was plotted against the 1308 



 

66 

 

maximum size green crab that they consumed. This approach enabled us to determine 1309 

whether  size of a lobster was related to the maximum size of green crab that they would 1310 

injure and consume.    1311 

Statistical analysis 1312 

Given three possible outcomes for each observation (crabs with no damage, crabs 1313 

being attacked and damaged, crabs being attacked and eaten), we performed an ordinal 1314 

logistic regression in R (R Core Team, 2012: package “ordinal”; Christensen, 2015) to 1315 

test for significant differences between the probability of occurrence for each of these 1316 

three outcomes given  different factors. In an ordinal regression, the assumption is that the 1317 

three possible outcomes can only occur sequentially; a crab can only been attacked and 1318 

eaten after it has been attacked and damaged. The ordinal regression is used to estimate 1319 

the probability of one outcome transitioning to another (with the assumption that all 1320 

individuals start at the initial state) and how a set of covariates influence the probability 1321 

of the transition. 1322 

In the experimental set-up, we checked for the influence of the continuous 1323 

covariates; crab width and lobster mass, and the influence of the lobsters’ origin (either 1324 

being from NL or NS). Additionally, due to the fact that crabs were checked for damage 1325 

in multiple replicates (after 1 hr, 6 hrs, and 24hrs), the sequential replicates were non-1326 

independent; thus, the random effect for the replicate was included in the model. To 1327 

account for the fact that individuals were used multiple times in separate replicates, the 1328 

models were tested to include an individual level random effect.  1329 
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To check for model fit, we estimated the amount of residual deviance explained 1330 

by the model by comparing the deviance of the fully-saturated model against that of a null 1331 

model –or a model containing only an intercept term.  1332 

 1333 
Figure 3.1. Predation experimental set-up. a) Diagram of top-down view of tank, 1334 
black circle = airstone, b) Photograph of experimental set-up showing four 1335 

individual tanks. 1336 

 1337 

 1338 

3.4 Results 1339 

 1340 

The ordinal regression model revealed several significant results from the 1341 

experiments. First, there was overall a greater likelihood of crabs being unharmed by a 1342 

lobster than being eaten or damaged, however, crabs were more likely to be eaten once 1343 

they had been damaged first (Table 3.1). It was also found that larger crabs were less 1344 

likely to be attacked and injured, or eaten, than the smaller crabs, as seen in Fig 3.2.; as 1345 

crab size increased, the probability of outcome 1 (the crab being left alone) occurring 1346 

increased, and the probability of outcome 3 (the crab being eaten) decreased. There were 1347 

no significant influences of lobster mass (Fig. 3.3) or lobster origin (NS vs NL, Figs. 3.4, 1348 

3.5) on the likelihood of a crab being attacked or eaten as lobsters from Nova Scotia and 1349 
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Newfoundland, and of all sizes, were equally likely, or unlikely, to damage and consume 1350 

a crab. Feeding the lobster shortly before the trial began, or offering an alternative bait 1351 

source to the lobster, decreased the likelihood of the lobster attacking and consuming all 1352 

sizes of green crabs, as there was high probabilities of crabs being left alone (outcome 1) 1353 

and low probabilities of crabs being attacked and eaten (outcomes 2 and 3, respectively) 1354 

(Figs. 3.6, 3.7, “Fed”, “Bait”). There was no significant difference between the presence 1355 

of a shelter to the likelihood of a crab being damaged or eaten by a lobster, compared to 1356 

when there was no shelter offered, as the probabilities of outcomes 1, 2, and 3 occurring 1357 

where the same (Figs. 3.6, 3.7, “Shelter”). The regression analysis showed no significant 1358 

effect on crab predation as a function of lobster size, and only lobsters sized between 1359 

308g - 1140g injured and consumed large green crabs,  (Fig. 3.8, injured: p =0.967, 1360 

consumed: p =0.931). 1361 

  1362 

3.5 Discussion 1363 

 1364 

Our experiments demonstrate that small and medium-sized green crabs represent a 1365 

potential prey item for Newfoundland lobsters, suggesting that lobster predation could 1366 

play a mitigating role on the impacts of green crab invasion in Newfoundland. This 1367 

predatory behaviour has reported elsewhere; adult American lobsters prey upon green 1368 

crabs in Maine, USA and in Nova Scotia, Canada (Jones & Shulman, 2008; League-Pike 1369 

& Shulman 2009; Haarr & Rochette, 2012; Goldstein et al., 2017). As no difference in the 1370 

predatory behaviour between Nova Scotian and Newfoundland lobsters was observed, 1371 

lobsters presumably recognise crabs as potential prey without necessarily requiring 1372 

exposure to the prey species for long periods of time. Haarr & Rochette (2012) also noted 1373 
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that green crabs from different regions of Atlantic Canada (St. George’s Bay, Nova Scotia 1374 

(NS) and Passamaquoddy Bay, New Brunswick (NB)) recognised juvenile lobsters as 1375 

prey items and suggested underlying biologically significant differences between crab 1376 

populations, but noting negative impacts of predation by green crabs on juvenile lobsters 1377 

in all areas.   1378 

Lobster predation behaviour  1379 

Lobsters naturally consume crabs because they are an important food source that 1380 

provide necessary energy and chemical compounds (Fogarty 1976; Scarratt, 1980; 1381 

Gendron et al., 2001). Lobsters from both NS and NL prey on native rock crabs (Cancer 1382 

irroratus), therefore they may also naturally recognise other crabs as potential food items 1383 

because of a heritable component of feeding behaviour (Pyke, 1984). Indeed, crabs may 1384 

comprise up to 80% of lobster energy intake (Evans & Man, 1977) in the wild and green 1385 

crabs offer an efficient energy source for lobsters because they contain protein amounts 1386 

(average 17.1g /100g protein; Skonberg & Perkins, 2002), similar to that that of their 1387 

primary prey Cancer sp. (17.8g/100g; King et al., 1990). 1388 

 In this study, lobsters injured and consumed green crabs of all sizes across all 1389 

experimental treatments, however, as crab size increased, predation decreased. Optimum 1390 

foraging theory (Pyke, 1984) suggests that animals prey on items within their functional 1391 

constraint, i.e. a predator can kill and consume prey species small enough to effectively 1392 

injure to result in death but large enough to supply sufficient energy to the predator. 1393 

Lobsters in our study preferred small and medium sized crabs, perhaps as a direct result 1394 

of their size, given that larger crabs may be harder to handle or kill, or alternatively 1395 

because killing and eating smaller crabs has a higher energetic pay-off  (Pyke, 1984). 1396 
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Prey selection reflects a series of decisions by the predator that balance the costs of 1397 

handling the food and the benefits of consuming the food, therefore, a predator must feed 1398 

in a way that maximises their rate of net energy intake (Emlen 1966; MacArthur & 1399 

Pinaka, 1966). For example, the amount of energy used by the lobster to catch and kill a 1400 

large crab may yield a net deficit in caloric intake because it takes more energy to kill a 1401 

larger animal. In addition, large green crabs may be fast enough to avoid attacks from a 1402 

lobster or large enough to fight off a lobster. Studies of other crustaceans report an 1403 

associated risk for the predator when choosing prey because the interaction may place the 1404 

predator at risk to physical damage (Elner & Hughes, 1978).  1405 

Although the lobsters preferred crabs <65mm CW, even the smallest lobsters 1406 

occasionally killed and consumed the largest green crabs. This observation suggests that 1407 

even when lobsters and green crabs are closely matched in size, lobsters may win in 1408 

combat. Smaller lobsters (<300g) also benefit by consuming large green crabs given their 1409 

high energetic value (King et al., 1990). In the wild, lobsters also encounter large green 1410 

crabs when the lobsters leave their burrows (Cobb, 1971; Dybern, 1973). Large green 1411 

crabs occur in high numbers in the subtidal and intertidal zones, and medium- and small-1412 

sized green crabs largely restrict their distributions to the intertidal zone in order to avoid 1413 

predation from fish and other crustaceans (Berril, 1982; Hunter & Naylor, 1993; Warman 1414 

et al., 1993; Baeta et al., 2007). Although American lobsters primarily occupy the subtidal 1415 

zone they will make excursions into the intertidal zone over nocturnal high tides to feed, 1416 

and they readily prey on native rock crab Cancer irroratus and invasive green crab C. 1417 

maenas (Jones & Shulman, 2008). 1418 
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 We found significant differences in predation on green crabs when lobsters had 1419 

been fed mackerel shortly before the start of the trial; fed lobsters were less likely to 1420 

damage and eat the crab, but this occurrence did still happen. Lobsters tend to feed 1421 

approximately every 8h and 5h when maintained at temperatures of 10⁰C and 15⁰C, 1422 

respectively (Wang et al., 2016a). As we did observe some lobsters eating crabs even 1423 

when fed, the lobsters may well have become hungry again and fed upon the green crab 1424 

due to the 24hr period of which the experiment was underway. After a lobster feeds, the 1425 

time to digest and partially expel the food can be less than 24h at temperatures of 15⁰C 1426 

(Wang et al., 2016a). Additionally, lobsters begin to feed again when approximately 20% 1427 

of the food in their foregut has cleared (Wang et al., 2016a). Therefore, although the 1428 

lobster was fully satiated at the start of the experiment, it could start to process this meal 1429 

and be ready to feed again within the 24h experimental period. 1430 

 The results showed that there was less damage and predation upon a crab when 1431 

alternative bait was added to the tank, an effect that was statistically significant. We 1432 

added approximately 20g of mackerel to the tank, which represented roughly 3-4% of the 1433 

lobster body mass, or a single meal (Wang et al., 2016). The lobster (and the green crab) 1434 

may have consumed this entire food parcel and begun to pursue the green crab when it 1435 

became hungry again. We chose not to add larger pieces of fish because the green crab 1436 

tended to use it as a shelter and hide from the lobster. Therefore, at this stage, we cannot 1437 

infer whether lobster with access to an unlimited food supply would prey upon green 1438 

crab. 1439 

Habitat complexity 1440 
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 The addition of the shelter did appear to slightly reduce the likelihood of a crab 1441 

being consumed by a lobster, however perhaps because of the nature of the shelter itself, 1442 

this was not statistically significant (portion of PVC tube with one side covered in mesh). 1443 

In nature, green crabs occupy structurally complex habitats and hide in rock crevices in 1444 

order to evade predators (McDonald et al., 2001; Jensen et al., 2002). Previous laboratory 1445 

studies have shown that juvenile green crabs structurally simple habitat (e.g. sand) 1446 

increases predation risk (Gehrels et al., 2017) compared to structurally complex habitat 1447 

(e.g. mussel/ oyster beds). In this study, the lobster could still access the one shelter 1448 

available to the green crab as a refuge using their chelae. Additional smaller shelters in 1449 

the tank, such as cobbles or rocks with crevices, may have yielded greater results given 1450 

that spatial heterogeneity can affect predation rates (Gilinsky, 1984; Holt, 1984; Fortis et 1451 

al., 2015). Other studies also report changes in green crab behaviour in the presence of a 1452 

lobster. For example, medium sized crabs (30-43 mm CW) climb and hide significantly 1453 

more, and walk around the tank significantly less in the presence of a lobster (League-1454 

Pike & Shulman, 2009). We did not observe such behaviour in our study perhaps because 1455 

we did not monitor the experimental tanks or alternatively because the shelter we 1456 

provided offered an adequate refuge.  1457 

We chose tanks in our study small enough to confine the green crab and allow an 1458 

interaction with the lobster, and primarily to determine whether lobsters from 1459 

Newfoundland would attack and prey upon a crab. However, this small tank size may 1460 

have skewed our results somewhat because it left the green crab very limited escape 1461 

options. Other experiments on lobster and green crab interactions have utilized widely 1462 

ranging tank sizes from 90cm round fibreglass tanks (Rossong et al., 2006) to larger 1463 
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rectangular 60cm x 215cm tanks (Williams et al., 2006), some with increased spatial 1464 

heterogeneity  (Haarr & Rochette, 2012). When using larger tanks where crabs could 1465 

escape (Chapter 1), we rarely observed lobsters consuming green crabs. Moreover, 1466 

preliminary experiments (Rayner & McGaw, unpublished observations) with increased 1467 

habitat complexity and space and a larger supply of food showed considerably reduced 1468 

crab predation. In the wild in Newfoundland, lobster traps represent the only instance  1469 

where these two species would be direct contact in such a small area (Carter & Steele, 1470 

1982). Lobsters in traps sometimes attack and kill green crabs, but this behaviour appears 1471 

to be indiscriminate and driven by disputes over access to food, noting that lobsters also 1472 

attack and kill rock crabs and other lobsters (Zargarpour, MSc thesis, in prep.). Whether 1473 

green crabs form part of the natural diet of lobsters in Newfoundland remains unknown, 1474 

however, studies in New England report frequent occurrence of green crabs in lobster 1475 

guts (Jones & Shulman, 2008; Donahue et al., 2009; League-Pike & Shulman, 2009).  1476 

Use of green crab in lobster fishery 1477 

As laboratory studies show that lobsters feed on green crabs and the importance of 1478 

other crab species in their diet (Evans & Man, 1977; Carter & Steele, 1982; Jones & 1479 

Shulman, 2008; Donahue et al., 2009; League-Pike & Shulman, 2009), invasive green 1480 

crab could be an effective and “free” bait source and a means of mitigating the 1481 

population. Nova Scotia lobsters in the laboratory showed no significant differences in 1482 

bait preference between traditional finfish bait and the green crab bait (Ryan et al., 2014). 1483 

In addition Hancock (1974) observed that dead decapods effectively repel live 1484 

conspecifics, which suggests that dead green crabs as bait might deter other green crabs 1485 

from entering the trap. This strategy may prove effective  if the main management 1486 
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objective is to deter green crabs from entering a baited lobster trap, while still attracting 1487 

lobster. 1488 

At present there no field studies in Newfoundland have assessed green crab as 1489 

lobster bait, this is due to licencing constraints because of a potential risk of disease 1490 

transfer between green crabs and lobsters. The parasite Polymorphus botulus 1491 

(Acanthocephala: Palacacanthocephala) reported in green crabs in Nova Scotia has the 1492 

potential to infect lobsters (Clark et al., unpub. data). However, this parasite also infects 1493 

eider ducks, scoters, and rock crabs across Atlantic Canada (Brattey & Campbell, 1985), 1494 

and rock crabs comprise an important component of lobster diets. It is likely that P. 1495 

botolus already occurs widely in local lobster populations. Nevertheless until the ban is 1496 

lifted the potential for green crab as effective bait in Newfoundland cannot be tested. 1497 

However the risk of distributing green crab to uninvaded regions must also be considered  1498 

in evaluating green crab as bait. However recent studies have used parasite transfer in 1499 

their favor by purposefully releasing the castrating barnacle parasite (Sacculina carcini) 1500 

to control the spread and abundance of the green crab invasion (Marculis & Lui, 2015; 1501 

Bateman et al., 2017) and resulted in the castrating parasite infecting commercial crab 1502 

species with associated economic consequences. 1503 

 1504 

Conclusion 1505 

It is important to assess the potential damage green crab is having on the lobster 1506 

fishery and other marine habitats in Newfoundland, and to find innovative mitigation 1507 

strategies. In addition to competing for food with adult lobsters (Chapter 2), green crabs 1508 
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may actively prey on juvenile lobsters. Previous laboratory studies showed that green 1509 

crabs kill and consume juvenile lobsters (28-57mm CL) not within a shelter (Rossong et 1510 

al., 2006) and green crabs ranging from 50-80mm CW actively predate upon juvenile 1511 

lobsters ranging from 18-43mm CL (Harr & Rochette, 2012). Even smaller green crabs of 1512 

14-26mm carapace width actively consume newly settling stage IV lobster larvae 1513 

(Sigurdson & Rochette, 2013).  1514 

As previously discussed, the natural diets of American lobster include crab, but 1515 

they may not be the favoured prey item (Carter & Steele, 1982). The fishery typically 1516 

uses mackerel and other finfish as bait; lobsters can detect their oil hundreds of metres 1517 

away (Miller, 1990). However, the results presented here and elsewhere (Ryan et al., 1518 

2014) suggest the green crab could be an effective bait for lobster fishery while 1519 

concurrently mitigating this invasive crab populations. Nonetheless, further research is 1520 

required.  1521 

 1522 

 1523 

 1524 

 1525 

 1526 

 1527 

 1528 

 1529 
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Tables 1530 

Table 3.1. Parameter estimates from the ordinal regression on whether crabs were 1531 
left alone (outcome =1), attacked (outcome=2) or eaten (outcome=3).  All coefficients 1532 
are on the logit scale. The notation ‘1|2’ indicates the likelihood of outcome 2 1533 

occurring given a non-attacked crab.  All values in bold indicate significant effects at 1534 
alpha = 0.001 1535 

  Estimate  Std. Error  z value  Pr(>|z|)  

1|2 -2.42 0.6 -4.01 0 

2|3 -1.78 0.6 -2.98 0 

CrabLength -0.05 0.01 -6.02 0 

LobsterOrigin -0.41 0.22 -1.87 0.06 

LobsterMass -6.1 2.08 -2.93 0 

TreatBait -1.26 0.3 -4.17 0 

TreatFed -0.93 0.29 -3.17 0 

TreatShelter -0.12 0.28 -0.43 0.67 

 1536 

 1537 

 1538 

 1539 

 1540 

 1541 

 1542 

 1543 

 1544 

 1545 

 1546 
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Figures 1547 

 1548 

Figure 3.2. Marginal effects for the influence of Crab Length on the probability of 1549 

its being left alone (outcome=1), attacked (outcome =2) or eaten (outcome=3). Blue 1550 

lines indicate the linear fit on a logit scale, while blue shading indicates 95% 1551 

confidence intervals. 1552 

 1553 

 1554 
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 1555 

Figure 3.3. Marginal effects for the influence of Lobster Mass on the probability of 1556 

its leaving a crab alone (outcome=1), attacking a crab (outcome =2) or eating a crab 1557 

(outcome=3). Blue lines indicate the linear fit on a logit scale, while blue shading 1558 

indicates 95% confidence intervals. 1559 
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 1560 

Figure 3.4. Marginal effects for the influence of Lobster Origin on the probability of 1561 

its being left alone (outcome=1), attacked (outcome =2) or eaten (outcome=3). Blue 1562 

lines indicate the linear fit on a logit scale, while blue shading indicates 95% 1563 

confidence intervals. 1564 

 1565 
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 1566 

Figure 3.5. Frequency of damage inflicted on small, medium and large green crabs 1567 

(Carcinus maenas) by an adult American lobster, Homarus americanus, originating 1568 

from a) Newfoundland (NL) and b) Nova Scotia (NS).  1569 
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 1570 

Figure 3.6. Marginal effects for the influence of Treatment (Starved, Bait, Fed, 1571 

Shelter) on the probability of a lobster leaving a crab alone (outcome=1), attacking a 1572 

crab (outcome =2) or eating a crab (outcome=3). Blue lines indicate the linear fit on 1573 

a logit scale, while blue shading indicates 95% confidence intervals. 1574 

 1575 
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 1576 

Figure 3.7. Frequency of damage inflicted on small, medium and large green crabs 1577 

(Carcinus maenas) by an adult American lobster, Homarus americanus, when 1578 

lobsters were a) fed with mackerel prior to the introduction of a green crab (group 1579 

2), when b) an alternative food source (mackerel) was added into the tank at the 1580 

same time as the crab (group 3) and c) when a shelter was added as a refuge for the 1581 

green crab (group 4). 1582 

 1583 

 1584 
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 1585 

Figure 3.8. The largest sized green crab, Carcinus maenas, injured or consumed by 1586 

an adult American lobster, Homarus americanus, using data from all trials. Injured: 1587 

y=0.007x + 49.979, R2=0.0104, p=0.967, Eaten: y=0.0092x + 45.791, R2=0.0159, p 1588 

=0.931.  1589 

 1590 

 1591 

 1592 

 1593 

 1594 

 1595 

 1596 

 1597 

 1598 

 1599 

 1600 
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4. General Discussion 1601 

Summary 1602 

The objective of this thesis was to determine how invasive green crab affects food 1603 

acquisition and catchability of American lobster, and to investigate if lobsters will predate 1604 

upon green crabs in the laboratory environment. In addition, I set out to evaluate effects 1605 

of crab density and water temperature on lobster and green crab behaviour, and how these 1606 

effects might influence a lobster’s actions towards a food source or a baited trap. This is 1607 

the first study on behavioural interactions between adults of the two species, and it 1608 

addresses food acquisition and competition, and quantifies green crab effects on lobster 1609 

catchability in the laboratory. My study showed a negative effect of green crabs at high 1610 

densities on lobster behaviour around a food source, in that crabs readily consumed all of 1611 

the food before a lobster could approach it. Further, I found that the number of agonistic 1612 

behaviours emitted between the species increases, via retreating and approaching 1613 

behaviours, increased with crab density. I also observed  moderate densities of green crab 1614 

deter lobsters from approaching and entering a baited trap within the laboratory, and that 1615 

water temperature affects physical activity in both lobsters and green crabs. I also 1616 

confirmed that American lobsters consume green crabs in the laboratory, and that lobster 1617 

origin had no effect on crab predation, but crab size and time of exposure influenced 1618 

predation rates. 1619 

Interactions 1620 

My study shows that the invasion of green crab in Newfoundland could have 1621 

potentially affected the food acquisition of lobsters and the behavioral interactions around 1622 

traps, which may have influenced local lobster populations or numbers of lobster caught 1623 
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in the commercial fishery. The effect of green crabs on lobster behaviour around a food 1624 

source suggests localised high green crab densities in Placentia Bay will likely have 1625 

detrimental effects on the local lobster population and these effects could be more 1626 

prominent in the future as green crabs invade adjacent bays on the south coast. Water 1627 

temperature significantly affected lobster and green crab behaviour. However, because 1628 

the lobster fishery season begins when sea temperature starts to increase in the spring, 1629 

increased emergence and activity of green crabs at that time could impact lobsters. 1630 

Finally, Newfoundland lobsters will recognize the newly invasive green crab as potential 1631 

prey. Despite a lack of evidence of predation in the wild, crabs could provide a food 1632 

source for lobsters and, in turn, the lobsters may help reduce crab numbers. 1633 

Importance to Canada and the lobster fishery 1634 

This study can inform the provincial and federal governments on how to address 1635 

the problems associated with green crab invasions in Newfoundland in terms of 1636 

mitigation projects and on potential use of green crabs as a bait in the fishery. Suggestions 1637 

for the Placentia Bay fishery include: 1638 

1.  Shorter trap soak times to prevent the traps from filling with green crabs. 1639 

Hauling traps more frequently will reduce the number of green crabs in the 1640 

traps that may deter lobster from entering. 1641 

2.  The use of bait within pots to prevent green crabs from eating it before a 1642 

lobster can reach the trap. When bait is placed unprotected in the trap or in a 1643 

mesh bag/ bait cage, green crabs can still reach the bait and fully consume it 1644 

before the bait odour attracts a lobster. 1645 
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3. Fishing in deeper areas away from green crabs because green crabs occur 1646 

more commonly in the intertidal zones in contrast to subtidal areas favoured 1647 

by lobsters. 1648 

4. Using green crab as bait in the lobster fishery to attract lobsters and to deter 1649 

green crabs from entering, because traps baited with conspecifics may deter 1650 

green crab entry. 1651 

Future work 1652 

Because this study was conducted fully in the laboratory, some caution should be 1653 

taken when extrapolating results to the natural environment. However, this study provides 1654 

data on agonistic interactions between lobsters and green crabs. Future studies that 1655 

include field experiments would provide more comprehensive understanding of how the 1656 

two species interact with each other in the wild. My initial data suggest a need for further 1657 

studies on the catchability of lobsters and green crabs and the behavioural interactions 1658 

between them. I also recommend more diving surveys to estimate lobster abundance in 1659 

the field in Newfoundland in order to clarify the effects of green crabs on adult lobsters 1660 

(Rossong et al., 2006; Zargarpour, MSc thesis, In prep.). Such in situ data on how these 1661 

two species interact could help in stock assessment of green crab in Newfoundland 1662 

waters. It would also be beneficial to compare the behavioural interactions seen here 1663 

between lobsters and green crabs to those with native rock crab to evaluate 1664 

retreat/approach behaviours around food and a trap. It would also be beneficial to conduct 1665 

additional experiments using the native rock crab (Cancer irroratus) to assess the 1666 

interactions between lobsters and a crab that it is naturally exposed to determine the 1667 

effects they may have on lobster food acquisition and catchability.  1668 
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Noting the essential role of  laboratory studies in ecological research, studies in 1669 

larger tanks could offer a more complex environment and control experimental 1670 

parameters, reducing the number of necessary field studies. The use of newer camera 1671 

equipment to document behavioural interactions more precisely e.g. the use of automatic 1672 

computer vison tools to analyse lobster posture (Yan & Alfredsen, 2017) would also 1673 

enhance these studies by quantifying a greater range of interactions between species. 1674 

Additionally, studies on exploitable uses for green crab in Newfoundland are essential in 1675 

order to mitigate rising green crab population, prevent further spread, and reduce the 1676 

negative impacts of this species on native fauna.  1677 

Application to aquaculture industry 1678 

 1679 

 My study confirms that their may be negative effects of green crabs on lobsters in 1680 

Newfoundland, however, I could not determine whether they have contributed to 1681 

decreased lobster fishery landings. In recent years, a pilot study conducted in conjunction 1682 

with the Marine Institute (Memorial University, St. John’s, Newfoundland) and FFAW 1683 

(Fish, Food and Allied Workers’ Union) examined restocking  Placentia Bay lobster with 1684 

juvenile larvae. However, this pilot study only operated for one year.  I believe that 1685 

restocking Placentia Bay lobsters with juveniles or sub-adults reared in a hatchery could 1686 

prove effective. Numerous lobster hatcheries in Europe, New England (USA) and New 1687 

Brunswick (Canada) have helped to restock wild lobster populations for the commercial 1688 

fishery. The Placentia Bay fishery could benefit from such a program both economically 1689 



 

88 

 

and socially, through direct benefits to lobster harvesters and local builders constructing 1690 

the hatchery and potential indirect benefits though increased education and tourism for 1691 

the local communities through the construction of a hatchery. 1692 
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 2203 

Appendix  2204 
 2205 

Additional tables for Chapter 1 lobster and crab behaviour experiments 2206 

Tables 2207 

Table A.1 Summary of the two-way ANOVA examining the effects of temperature (4 2208 

& 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on the amount of time 2209 

taken for an adult lobster (H. americanus) to handle the food source. 2210 

Source of variation df F MS p 

Temperature 1 1.684 19.115 0.2 

Crab Density 3 2.393 27.168 0.079 

Temperature *Crab 

Density 3 1.475 16.742 0.232 

Error 52  11.353  
Corrected Total 59       

 2211 

Table A.2 Summary of the two-way ANOVA examining the effects of temperature (4 2212 

& 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on the amount of time 2213 
taken for a green crab to approach the food source. 2214 

Source of variation df F MS p 

Temperature 1 31.141 12396.417    <0.01 

Crab Density 2 14.404 5733.897    <0.01 

Temperature *Crab 

Density 2 8.432 3356.422 <0.01 

Error 67  398.075  
Corrected Total 72       

 2215 

 2216 
Table A.3 Summary of the two-way ANOVA examining the effects of temperature (4 2217 

& 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on the number of retreats 2218 

an adult lobster (H. americanus) would display. 2219 

Source of variation df F MS p 
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Temperature 1 0.769 13.828 0.383 

Crab Density 2 21.516 386.938    <0.01 

Temperature *Crab 

Density 2 1.883 33.871 0.158 

Error 84  17.984  
Corrected Total 89       

Table A.4 Summary of the two-way ANOVA examining the effects of temperature (4 2220 

& 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on the number of body 2221 

raises an adult lobster (H. americanus) would display. 2222 

Source of variation df F MS p 

Temperature 1 2.525 376.337 0.116 

Crab Density 2 0.681 101.530 0.509 

Temperature *Crab 

Density 2 2.088 311.249 0.130 

Error 84  149.053  
Corrected Total 89       

 2223 

Table A.5 Summary of the two-way ANOVA examining the effects of temperature (4 2224 

& 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on the number of claw 2225 
raises an adult lobster (H. americanus) would display. 2226 

Source of variation df F MS p 

Temperature 1 0.099 2.174 0.754 

Crab Density 2 10.830 237.230    <0.01 

Temperature *Crab 

Density 2 1.491 32.660 0.231 

Error 84  21.905  
Corrected Total 89       

 2227 

Table A.6 Summary of the two-way ANOVA examining the effects of temperature (4 2228 

& 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on the number of claw 2229 
grasps an adult lobster (H. americanus) would display. 2230 

Source of variation df F MS p 

Temperature 1 3.812 104.426 0.054 

Crab Density 2 4.753 130.190    0.011 

Temperature *Crab 

Density 2 0.879 24.079 0.419 

Error 84  27.393  
Corrected Total 89       

 2231 

 2232 
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 2233 

 2234 

 2235 

 2236 

Table A.7 Summary of the two-way ANOVA examining the effects of temperature (4 2237 

& 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on the pooled number of 2238 

interactions an adult lobster (H. americanus) would display towards a green crab. 2239 

Source of variation df F MS p 

Temperature 1 4.836 1019.004 0.031 

Crab Density 2 4.143 872.964 0.019 

Temperature *Crab 

Density 2 2.801 590.118 0.066 

Error 84  210.697  
Corrected Total 89       

 2240 

Table A.8 Summary of the two-way ANOVA examining the effects of temperature (4 2241 

& 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on the number of retreats 2242 

green crabs would display. 2243 

Source of variation df F MS p 

Temperature 1 7.730 160651.648 <0.01 

Crab Density 2 122.450 2544728.035    <0.01 

Temperature *Crab 

Density 2 2.710 56325.288 0.072 

Error 84  20781.768  
Corrected Total 89       

 2244 
 2245 
Table A.9 Summary of the two-way ANOVA examining the effects of temperature (4 2246 

& 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on the number of body 2247 
raises green crabs would display. 2248 

Source of variation df F MS p 

Temperature 1 0.006 0.334 0.938 

Crab Density 2 42.981 2370.629 <0.01 

Temperature *Crab 

Density 2 0.704 38.831 0.497 

Error 84  55.155  
Corrected Total 89       

 2249 

 2250 

 2251 
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 2252 

 2253 

Table A.10 Summary of the two-way ANOVA examining the effects of temperature 2254 

(4 & 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on the number of claw 2255 
raises green crabs would display. 2256 

Source of variation df F MS p 

Temperature 1 34.442 14338.126    <0.01 

Crab Density 2 45.778 19057.144    <0.01 

Temperature *Crab 

Density 2 13.359 5561.249 <0.01 

Error 84  416.292  
Corrected Total 89       

 2257 
 2258 

Table A.11 Summary of the two-way ANOVA examining the effects of temperature 2259 

(4 & 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on the number of claw 2260 

grasps green crabs would display. 2261 

Source of variation df F MS p 

Temperature 1 0.343 31.719 0.560 

Crab Density 2 18.429 1704.931    <0.01 

Temperature *Crab 

Density 2 2.517 232.812 0.087 

Error 84  92.514  
Corrected Total 89       

 2262 

Table A.12 Summary of the two-way ANOVA examining the effects of temperature 2263 

(4 & 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on the pooled number of 2264 
interactions green crabs will display towards an adult lobster (H. americanus)  2265 

Source of variation df F MS p 

Temperature 1 21.97 12661.512    <0.01 

Crab Density 2 87.588 50476.995    <0.01 

Temperature *Crab Density 2 5.08 576.299 <0.01 

Error 84    
Corrected Total 89       

 2266 

 2267 

 2268 

 2269 
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 2270 

Table A.13 Summary of the two-way ANOVA examining the effects of temperature 2271 

(4 & 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on adult lobster (H. 2272 

americanus) food consumption. 2273 

Source of variation df F MS p 

Temperature 1 0.011 0.001 0.915 

Crab Density 3 0.072 1.603 0.178 

Temperature *Crab 

Density 3 0.016 0.363 0.780 

Error 122  0.045  
Corrected Total 131       

 2274 

Table A.14 Summary of the two-way ANOVA examining the effects of temperature 2275 

(4 & 12⁰C) and green crab (C. maenas) density (n=0/1/5/25) on green crab) food 2276 
consumption. 2277 

Source of variation df F MS p 

Temperature 1 84.410 7.327 <0.01 

Crab Density 3 1.039 0.090 0.354 

Temperature *Crab 

Density 3 0.050 0.004 0.951 

Error 922  0.087  
Corrected Total 928       

 2278 

 2279 

 2280 

 2281 

 2282 

 2283 

 2284 

 2285 

 2286 
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 2287 

Additional tables of tests for catchability experiments 2288 

Table A.15 Summary of the MANOVA examining the effects of temperature (4 & 2289 

12⁰C) and green crab (C. maenas) position (absent/in/out) on the number of times an 2290 
adult lobster (H. americanus) unsuccessfully attempted to enter the baited trap. 2291 

Source of variation df F MS p 

Temperature 1 1.273 101.265 0.264 

Treatment 2 5.591 444.688 <0.01 

Temperature *Treatment 2 0.394 31.314 0.677 

Error 53    
Corrected Total 58       

 2292 

Table A.16 Summary of the one-way ANOVA examining the effects of temperature 2293 

(4 & 12⁰C) and green crab (C. maenas) position (absent/in/out) on the number of 2294 
times an adult lobster (H. americanus) would attempt to enter the baited trap. 2295 

Source of 

variation df F MS p 

Temperature 1 1287 116.463 0.261 

Treatment 2 5.696 445.766 0.006 

 2296 

Table A.17 Summary of the MANOVA the effects of temperature (4 & 12⁰C) and 2297 
green crab (C. maenas) position (absent/in/out) on the number of times an adult 2298 

lobster (H. americanus) successfully entered the baited trap. 2299 

Source of variation df F MS p 

Temperature 1 8.354 208.537 <0.01 

Treatment 2 0.085 2.122 0.919 

Temperature *Treatment 2 0.531 12.247 0.591 

Error 53    
Corrected Total 58       

 2300 

Table A.18 Summary of the one-way ANOVA examining the effects of temperature 2301 

(4 & 12⁰C) and green crab (C. maenas) position (absent/in/out) on the number of 2302 

times an adult lobster (H. americanus) was caught in the baited trap. 2303 

Source of 

variation df F MS p 

Temperature 1 8.746 207.807 0.005 

Treatment 2 0.112 3.134 0.894 
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 2304 

Table A.19 Frequency of undersize (<82.5 mm CL) and oversize (>82.5 mm CL) of 2305 
lobsters (Homarus americanus), green crabs (Carcinus maenas) and rock crabs 2306 
(Cancer irrotatus) being caught in Placentia Bay.  2307 

Species Number Caught 

Lobster <82.5 mm CL 34 

Lobster >82.5 mm CL 81 

Green Crab <40 mm CW 129 

Green Crab 40-65 mm CW 231 

Green Crab >65 mm CW 79 

Rock Crab 360 

 2308 

Table A.20 Frequency of American lobsters (Homarus americanus), green crabs 2309 
(Carcinus maenas) and rock crabs (Cancer irroratus) being caught in the same trap 2310 

together in Placentia Bay.  2311 

  Lobster Green Rock 

Lobster 23 1 5 

Green 1 96 61 

Rock 5 61 94 

 2312 

 2313 

 2314 

 2315 

 2316 

 2317 

 2318 

 2319 

 2320 

 2321 

 2322 

 2323 
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Field experiments 2324 

The distribution of crabs and lobsters in the field was conducted on a local lobster 2325 

fishing vessel in Garden Cove, Placentia Bay (47⁰51’11”N 54⁰9’29”W, Figure 1). The 2326 

catch per unit effort, species overlap and size ranges of lobsters and green crabs were 2327 

recorded. Catch per unit effort is here defined as the number of individuals caught as a 2328 

function of soak time (Bennett, 1974). Data was collected in June 2016 when the fishing 2329 

zone is open in the study area. In total, data collection spanned over 5 days, hauling on 2330 

average 100 traps per day (n=612) after a soak time of 12-48 hours. Each trap was of the 2331 

traditional D-shape wooden slat design (Slack-Smith, 2001) and was baited with either 2332 

herring (Clupea sp.), cod (Gadus sp.) or flatfish (Hippoglossoides sp.).  Weather, water 2333 

depth and temperature and coordinates of each hauled trap was recorded and any bycatch 2334 

species was noted, along with lobster size, sex, if the lobster was berried and crab size 2335 

and number per trap. The catchability of lobsters in the presence of the native rock crab 2336 

(Cancer irroratus) was also quantified.  2337 

Out of 615 traps hauled in the field, only on one occasion was a lobster found in the same 2338 

trap as a green crab, but overlap between rock crabs and lobster occurred five times 2339 

throughout the sampling period. As previously stated, the presence of lobsters in a trap 2340 

can actively deter crabs from entering a trap (Richards et al., 1983; Addison, 1995), so it 2341 

is important to address this question in future studies as to whether low crab presence in 2342 

the trap is due to a saturation effect of lobsters or vice versa. It can also be suggested that 2343 

the reason for low species overlap or catch rates in general observed in Placentia Bay may 2344 

be due to a number of factors. This data is presented here as preliminary data because; 2345 
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1. Bait type and soak time were not controlled for and these may have influenced 2346 

catch rates 2347 

2. The CPUE was determined at just one time point when the traps were hauled. 2348 

There was no data on entry and exit of species over time. As green crabs rapidly 2349 

detect and feed on bait it is likely they moved into the trap and then escaped once 2350 

they had fed. 2351 

3. The nature of the traps allowed green crabs and small lobsters to easily escape, but 2352 

tended to select for capture of larger lobsters, but we had no way to assess this. 2353 

4. The traps were positioned in different water depths and the overlap area of green 2354 

crabs and lobsters may be limited in some deeper locales 2355 

5. The trapping time was limited to one season and 5 days in one bay. More 2356 

comparative studies are needed to draw firmer conclusions. 2357 

 2358 

 2359 

 2360 

 2361 

 2362 

 2363 

 2364 

 2365 

 2366 

 2367 

 2368 

 2369 

 2370 

 2371 
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Figures 2372 

 2373 

Fig A.1 Map of Garden Cove, Placentia Bay, Newfoundland. Markers represent the 2374 

position of 612 traps hauled in June 2016. Map of the sampled field area were 2375 

produced using ESRI Arcmap version 10.0, ArcGIS.  2376 
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 2377 

Fig A.2 Percentage of species overlap of lobsters (Homarus americanus), green crabs 2378 

(Carcius maenas) and rock crabs (Cancer irrotus) in traps in Garden Cove, Placentia 2379 

Bay. 2380 

 2381 
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 2382 

Fig A.3 Catch per unit effort (CPUE) of lobsters, Homarus americanus, green crabs, 2383 

Carcinus maenas, and rock crabs, Cancer irrroratus, in Garden Cove, Placentia Bay, 2384 

dependent on water temperature, depth and time.  2385 


