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Abstract 

The silicon dioxide nanoparticles for enhanced oil recovery as a water additive is a 

growing research field. The challenge of using silicon dioxide nanoparticles offshore, 

such as Hebron Field, is an instability of the nanoparticles in the seawater. The use of 

hydrochloric acid is proposed as a silicon dioxide nanoparticle stabilizer in seawater, and 

its effectiveness was investigated at room temperature, and at Hebron Field temperature 

(62 °C) over a 14-day period, via visual examination and particle size measurements. The 

nanofluids were then prepared by adding hydrochloric acid to the nanoparticles, then 

dispersing the resulting mixture in seawater for the coreflood experiments. The coreflood 

experiments conducted at Hebron Field conditions on the Berea sandstone cores, in which 

0.01, 0.03 and 0.05 wt% silicon dioxide nanofluids were injected as a tertiary method, 

showed increasing oil recovery (3.3, 9.3, and 14.9% increments, respectively) with 

increasing nanoparticle concentration. The coreflood experiment on the Hebron Field 

core with 0.05 wt% nanofluid also exhibited 11.9% incremental oil recovery. The 

hydrochloric acid added in the nanofluid was found to have minimal effect on the 

recovery factor.     
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Chapter 1.  Introduction 

1.1. Overview 

The application of any enhanced oil recovery methods in offshore fields such as Hebron 

Field pose difficulties in transportation and quality control of the injectants (Kang, Lim, 

& Huh, 2016). The remote offshore location of Hebron Field, and the harsh surrounding 

environmental conditions makes it even more imperative that the enhanced oil recovery to 

be applied has a small footprint. The nanoparticles exhibit heightened properties because 

of their small sizes, and therefore, small quantity can have a significant impact, easing the 

burden of transportation offshore. The use of nanoparticles in Hebron Field, however 

presents an unique challenge: high salinity of seawater used for the waterflood. The 

seawater is used for the waterfloods in Hebron Field, since it is the most abundant water 

source offshore. Nanoparticle enhanced oil recovery offshore would also involve 

dispersing nanoparticle in the seawater. The seawater unfortunately compromises the 

stability of the silicon dioxide (SiO2) nanoparticles (Metin, Lake, Miranda, & Nguyen, 

2011). The nanoparticles are dispersed in the liquid medium uniformly in stable nanofluid, 

whereas the nanoparticles agglomerate to form gelatinous solid in unstable nanofluids. 

The unstable nanofluids are undesirable, as the surface-active properties of the 

nanoparticles are reduced. 

A cost-effective hydrochloric acid is introduced to stabilize the nanoparticles in seawater 

to prevent nanoparticles from agglomeration. The optimal concentration of hydrochloric 

acid as a stabilizing agent was investigated via nanoparticle size measurements on 
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Malvern™ Zetasizer® Nano ZS. The agglomeration of the nanoparticles as the 

nanofluids become unstable translates to larger particle size measurements compared to 

the particle size measurements of the stable nanofluids. The optimal concentration was 

defined as a minimum concentration ratio between the hydrochloric acid to nanoparticles 

required for nanoparticle size measurements to remain constant over time, while 

contributing to the ease of transportation. 

The coreflood experiments were performed to examine the effectiveness of the 

nanoparticles on the incremental oil recovery. The degree of the incremental oil recovery 

from nanoparticle enhanced oil recovery is important in determining the economic 

feasibility of implementing nanoparticle enhanced oil recovery technique in the Hebron 

Field. The preliminary coreflood experiments were conducted on the Berea sandstone 

standard cores to determine the nanoparticle concentration that gives the highest 

incremental oil recovery. A final coreflood experiment was conducted on the Hebron core. 

 

1.2. Hebron Field Overview 

The Hebron Field was discovered in 1980, 350 km offshore St. John’s, Newfoundland 

and Labrador, Canada in the Jeanne d’Arc Basin (Figure 1.1). The gravity based 

structured platform was towed out to the field in April 2017, and the first oil was 

produced in November 2017. 
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Figure 1.1 Hebron field location 

The Hebron asset consists of Hebron Field, West Ben Nevis Field, and Ben Nevis Field 

(Figure 1.2). The development is focused on the Hebron Field, especially the Ben Nevis 

formation because it hosts the largest reservoir, Pool 1, and is anticipated to produce 70% 

of the Hebron Project’s crude oil.  

The average depth of the reservoir (Pool 1) is 1900 m, with pressure of 19.0 MPa (2755 

psia), and temperature of 62 °C. The oil gravity is 20.1°API, which is 10 to 20 times 

higher than water. The Ben Nevis Formation in Hebron Field is a “fine-grained sandstone 

with few shales that were deposited in a marine shoreface depositional environment”. The 

average permeability of Hebron Field at the Ben Nevis ranges from 50 to 400 mD, and 

average gross porosities range from 0.10 to 0.28 (CNLOPB, 2011).  



4 

 
Figure 1.2 Cross-section of Hebron asset (CNLOPB, 2011) 

 

1.3. Enhanced Oil Recovery 

The primary recovery takes place in the early stage of production life, and relies on the 

natural drive energy. The natural drive energy sources include rock and fluid expansion, 

solution gas, water influx, gas cap, and gravity drainage (Stosur, Hite, Carnahan, & Miller, 

2003). When the natural drive energy is depleted, an additional energy is applied to the 

reservoir, which is referred to as secondary recovery. The water and/or gas are commonly 

injected as an additional energy (Sheng, 2010). They mimic the natural process of water 

influx or gas expansion to maintain the reservoir pressure, and to increase volumetric 

sweep efficiency (Stosur et al., 2003). Enhanced Oil Recovery (EOR) is often applied as 



5 

tertiary recovery method, to recover oil that has not been produced by secondary recovery 

(Stosur et al., 2003). The enhanced oil recovery processes are characterized by injection 

of chemicals, miscible gases, and/or thermal energy (Sheng, 2010) to promote reservoir 

rock and oil system interaction (Green, 1998). These processes typically change the 

fundamental physics or chemistry to improve the oil recovery (N.R. Morrow & Heller, 

1985), resulting in favourable conditions for oil recovery, such as interfacial tension 

reduction; oil swelling; oil viscosity reduction; wettability modification; or favourable 

phase behaviour (Green, 1998).  

 

1.4. Nanoparticle Enhanced Oil Recovery 

1.4.1. Advantages 

The use of nanoparticles as a water additive is relatively new, and it is hoped to give 

alternative solutions for the challenges of traditional enhanced oil recovery processes 

(Ayatollahi, 2012). For example, the injection of carbon dioxide gas can be inefficient 

since injected gas can bypass large sections of the reservoir due to high mobility ratio. 

The chemical methods such as polymer flooding can damage the formation, and alkaline 

flooding can be expensive since excess amount has to be injected (Sun, Zhang, Chen, & 

Gai, 2017).  

The nanoparticles are between 1 to 100 nanometers, which are much smaller than the 

typical diameters of the pores in reservoirs, 1 micrometer (equivalent to 1000 nanometers) 

(Ayatollahi, 2012). The nanoparticles can therefore easily move through the porous rocks, 
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without affecting the permeability (Ahmadi, Habibi, Pourafshry, & Ayatollahi, 2011). 

They are also believed to penetrate the pore spaces, due to their small sizes, that 

conventional recovery techniques cannot reach (Engeset, 2012). Another advantage of the 

small size is the high surface to the volume ratio. The increased surface area leads to 

increased number of reactions at its surface (El-diasty & Aly, 2015).  

The nanoparticle is also cost effective, and environmentally friendly, especially the 

silicon dioxide nanoparticles (Sun et al., 2017). The starting material for silicon dioxide 

nanoparticle synthesis is widely available, since the silicon dioxide is one of the most 

common components on earth (Society for Mining, Metallurgy, 1998), contributing to the 

low cost. The silicon dioxide nanoparticles are also environmentally friendly because 

silicon dioxide is major components of the sand and sandstone.  

1.4.2. Nanofluid Coreflood Experiments  

Coreflood experiments are conducted to evaluate the effectiveness of the injecting fluid 

on enhancing the oil recovery in the laboratory scale. The nanofluid flooding experiments 

found in the literature mostly studied the effectiveness as a tertiary recovery method (Sun 

et al., 2017). That is, the nanoparticles added to water is injected after the core has been 

flooded with water until no more oil is produced. The selected coreflood experiments 

using silicon dioxide nanofluid (Table 1.1) all showed positive impact of nanofluids on 

the incremental oil recovery.  

Despite the successes of the nanoparticle flooding experiments in the literature, further 

nanoparticle flooding studies are needed to apply the nanoparticle enhanced oil recovery 
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in the offshore fields.  The coreflood experiments shown in Table 1.1 dispersed the 

nanoparticles in fluids with 0% salinity, or in a simple salt solution prepared from sodium 

chloride. The dispersing medium for nanoparticles in the offshore will likely be the 

surrounding seawater, which contains sodium and chloride ions, but also other ions such 

as magnesium, calcium, selenium, sulfate, and bicarbonate. The effect of salinity and the 

composition of seawater on the nanoparticle flooding must be investigated, as divalent 

cations in the seawater, such as magnesium and calcium ions are found to destabilize the 

nanoparticles (Metin et al., 2011).   

The incremental oil recovery obtained from the coreflood experiments are also dependant 

on the reservoir conditions (namely pressure and temperature), reservoir properties 

(permeabilities and porosity), reservoir minerology, as well as properties of oil. The effect 

of nanofluid on the oil recovery specifically for the Hebron Field must then be evaluated 

with coreflood experiment set-up that emulates the Hebron Field conditions.  
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Table 1.1 Selected coreflood experiments using silicon dioxide nanofluid  

*Φ: Porosity, **K: Permeability, §NWP: Naturally Wet Polysilicon §§HLP: Hydrophobic and Lipophilic Polysilicon

References 
SiO2 

concentration 
Dispersion medium Porous media 

Pore volume 

injected 

Incremental 

recovery 

Nazari Moghaddam, 

Bahramian, 

Fakhroueian, Karimi, 

& Arya, 2015 

5 wt% 

Paraffin/heptane, mixture of 

ethylene glycol, and lauryl 

alcohol 

Type: Carbonate 

Φ*: 13.2% 

K**: 0.24 mD 

1. Brine, 5 PV 

2. Nanofluid, 2 PV 

3. Brine 

7.7% 

Hendraningrat & 

Torsæ ter, 2014 
0.05 wt% 

3 wt% NaCl brine with PVP 

(Polyvinylpyrrolidone) 

Type: Water-

wet Berea 

Φ: 14.99% 

K: 119 mD 

1. Brine, 5 PV 

2. Nanofluid, 5 PV 

3. Brine, 5 PV 

21.4% 

Aurand, Dahle, & 

Torsæ ter, 2014 
0.05 wt% 

Diluted to 2 wt% nanofluid with 

deionized water, then diluted 

further to 0.05 wt% with 3.53% 

salinity synthetic brine 

Type: Water-

wet Berea 

Φ: 18.1% 

K: 394 mD 

1. Brine, 2 PV 

2. Nanofluid, 2 PV 

20.0% 

(Large fumed 

nanofluid) 

Joonaki & Ghanaatian, 

2014 
Not given Propanol 

Type: Sandstone 

Φ: 17.34% 

K: 108.21 mD 

1. Brine, 3 PV 

2. Nanofluid, 3 PV 
22.5% 

Hendraningrat, Li, & 

Torsæ ter, 2013 

0.01 wt% 3 wt% NaCl brine 

Type: Berea 

Φ: 23.20% 

K: 392 mD 

1. Brine, 3.7 PV 

2. Nanofluid, 2.8 PV 
9.6% 

0.05 wt% 3 wt% NaCl brine 

Type: Berea 

Φ: 23.04% 

K: 302 mD 

1. Brine, 3.2 PV 

2. Nanofluid, 3.1 PV 
13.0% 

0.1 wt% 3 wt% NaCl brine 

Type: Berea 

Φ: 22.93% 

K: 354 mD 

1. Brine, 3.1 PV 

2. Nanofluid, 3.5 PV 
8.6% 

Roustaei, Moghadasi, 

Jamshid Bagherzadeh, 

& Shahrabadi, 2012 
5 g/L Weak or non-polar solvent 

Type: Sandstone 

Φ: 17% 

K: 186 mD 

1. Brine, 2 PV 

2. Nanofluid, 3 PV 

3. Brine, 2 PV 

28.6% (NWP)§ 

32.2% (HLP)§§ 
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1.5. Silicon Dioxide Nanoparticle  

1.5.1. Structure and Surface Chemistry 

Silicon dioxide exists as [SiO4] with four oxygens attached the central atom, silicon. It 

bears a tetrahedral structure (Bergna, 2005), contradictory to its name, which suggests 

linear structure (Figure 1.3).  

 

 

Figure 1.3 Tetrahedral geometry (left) and linear geometry (right) 

 

The double bond between the silicon and oxygen does not form because the size of the 

silicon atom does not allow sufficient overlap between the p-orbitals (P. W. Atkins & 

Atkins, 2006). The [SiO4] tetrahedral structure can form pairs, rings, one-dimensional 

chains, two-dimensional sheets, or three-dimensional networks through Silicon-Oxygen-

Silicon linkage (Salh, 2011). The amorphous silicon dioxide nanoparticles have a three-

dimensional arrangement as shown in Figure 1.4.  
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Figure 1.4 Three-dimensional arrangement of amorphous silicon dioxide nanoparticles (Bergna, 2005) 

 

 

Figure 1.5 Formation of silanol group via rehydroxylation process (Modified after Comas-Vives, 2016) 

 

The pure silicon dioxide nanoparticle surface is most commonly characterized by the 

siloxane links (Si‒O‒Si) and the silanol groups (Si‒OH) (Rimola, Costa, Sodupe, & 

Ugliengo, 2013). Further formation of silanol group can occur via rehydroxylation 
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process when silicon dioxide is treated with water or aqueous solution, as free valence 

from the oxygen in the siloxane gains hydrogen (Zhuravlev, 2000), as shown in Figure 

1.5. 

The different types of silanol groups on the surface of amorphous silicon dioxide: isolated, 

germinal, vicinal, interacting, and internal (Comas-Vives, 2016; Zhuravlev, 2000) are 

depicted in Figure 1.6. The silanol groups can interact with other molecules via hydrogen 

bonding (electrostatic attraction between the molecules when hydrogen atom is bonded to 

strongly electronegative atom such as oxygen), thereby giving hydrophilic character of 

the silicon dioxide (Papirer, 2000).   

 

Figure 1.6 The surface of amorphous silicon dioxide (Modified after Comas-Vives, 2016) 
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These hydroxylated silanol groups can further be protonated by gaining a hydrogen, or 

lose a hydrogen to become deprotonated, and expose O- on the nanoparticle surface 

(Hunter, 1981). The surface charge of silicon dioxide nanoparticles dispersed in water is 

dependant on the degree of protonation and deprotonation (Agzamkhodzhaev, Zhuravlev, 

Kiselev, & Shengeliya, 1969). At high pH, the surface is negatively charged because it 

becomes deprotonated. At low pH, the surface is mostly protonated, and is neutral 

(Sulpizi, Gaigeot, & Sprik, 2012).  

 

1.5.2. Stability  

The nanoparticles dispersed in water or aqueous solution, often called nanofluid, is a 

colloidal system. Colloidal system is a multi-phase system, consisting of the solid phase 

(i.e. nanoparticles), and a dispersing, continuous medium (i.e. water or aqueous solution) 

(Birdi, 2008).  It is also an energetically high system because the surface free energy is 

high, resulting from the high surface area. As a result, the nanoparticles tend to aggregate 

to reduce the surface energy (Mehta, Somasundaran, Yu, & Krishnakumar, 2008), unless 

there are other energetic barriers (Birdi, 2008). The aggregation of nanoparticle is a sign 

of unstable colloidal system, as a stable colloidal system would exhibit constant number 

of particles in a unit volume of dispersing medium over time (Kissa, 1999).  The unstable 

nanofluid in the context of enhanced oil recovery is highly undesirable, since the 

aggregation of nanoparticles to larger sizes may prevent nanoparticles from flowing 

through the pores, which are measured in microns. The aggregated nanoparticles may also 
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block the pores, decreasing the permeability of the rocks (Miranda, Lara, & Tonetto, 

2012).  

The colloidal stability is often described in terms of DLVO (Derjaguin-Verway-Landau 

and Overbeek) theory, which states that the colloidal system stability depends on the sum 

of van der Waals and electrical double layer interactions (Derjaguin & Landau, 1941; 

Verwey, 1947). The nature of van der Waals interaction is an attractive force, which exist 

between all atoms, ions, and molecules. The electrical double layer interaction arises from 

the structure of surfaces and adsorption of ions, and is repulsive. When attractive forces 

dominate, the particles will aggregate, and the dispersion destabilizes. When repulsive 

forces dominate, the system will remain in dispersed state (Kralchevsky, Danov, & 

Denkov, 2008). The silicon dioxides, however, is found not to conform to the DLVO 

theory (Bergna, 2005). Other surface forces, such as steric interaction, and 

hydration/solvation interaction must be taken into an account to correctly predict the 

silicon dioxide dispersions (Mehta et al., 2008).  

The nanoparticles are constantly in motion in the dispersing medium. The rate of 

aggregation consequently depends on the nature of the surface interactions between the 

particles during these collisions; probability of collision between the particles; and the 

total number of particles in the system (Mehta et al., 2008). Other factors that affect the 

stability of nanofluids include pH, particle morphology, chemical structure of the 

particles, dispersing medium, and nanofluid preparation methods (Devendiran & 

Amirtham, 2016; Hwang et al., 2007).   
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1.6. Stability Evaluation Method 

The nanofluid stability can be evaluated via visual examination paired with particle size 

measurement. In a stable colloidal system, the silicon dioxide (SiO2) nanoparticles are 

uniformly dispersed in a liquid medium, characterized by the transparent and colourless 

appearance. In an unstable system, SiO2 nanoparticles agglomerates, forming white 

gelatinous solid. The size of the nanoparticles in an unstable system grows because of the 

agglomeration. The instability of the system can then be spotted by the increasing 

nanoparticle size monitored over time, as illustrated in Figure 1.7. 

 

Figure 1.7 Stability of Colloidal System Evaluation via Particle Size Measurements  

The particle sizes are measured by the Dynamic Light Scattering (DLS) method. The 

particles in suspension is in constant and random thermal motion by Brownian motion. 

The dynamic light scattering measures the speed of these particles. The smaller particles 

move fast, causing the scattered light intensity to fluctuate more rapidly compared to the 

larger particles that move slower. The translational diffusion coefficient is determined 
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from the velocity of the Brownian motion, which is in turn used to calculate the particle 

size by the Stokes-Einstein relationship (Shang & Gao, 2014):  

 

dH=
kT

3πηD
     (2) 

 

Where:  

   

dH = Hydrodynamic diameter 

k = Boltzmann’s constant 

T = Temperature in Kelvin 

η = Viscosity 

D = Diffusion coefficient 
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1.7. Thesis Organization 

This thesis is part of the bigger nanoparticle enhanced oil recovery project at the Hibernia 

EOR Laboratory; and fulfills the objectives of: identifying and tackling the challenges of 

implementing nanoparticle enhanced oil recovery in the Hebron Field; and evaluating the 

effectiveness of the nanoparticles on the incremental oil recovery as a tertiary recovery 

method at Hebron Field conditions.  

The thesis is written in a manuscript format. In Chapter 1, the scope of the experimental 

work completed for the thesis is presented, as well as Hebron Field information. The 

literature review on the definition of the enhanced oil recovery; nanoparticles enhanced 

oil recovery technique; silicon dioxide nanoparticles; and the nanoparticle stability 

evaluation methods can also be found.  

Chapter 2 is titled “Stability of Hydrophilic Silicon Dioxide Nanoparticles Dispersed in 

Seawater for the Enhanced Oil Recovery Application in the Offshore Reservoirs”. It 

examines why the silicon dioxide nanoparticles become unstable in seawater, and how the 

hydrochloric acid can be used to stabilize the nanoparticles in seawater. The optimal 

hydrochloric acid to silicon dioxide nanoparticle ratios to maintain nanoparticle stability 

to carry out coreflood experiments in Chapter 3 and 4 are also established. The content in 

Chapter 2 has not been published. 

Chapter 3 was prepared for the EAGE 19th European Symposium on Improved Oil 

Recovery held in Stavanger, Norway, April 24-27, 2017. It is published as a conference 

proceeding, with the title: “Experimental Investigation of Enhanced Oil Recovery by 
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Injecting SiO2 Nanoparticles as Water Additive with Application to the Hebron Field”. 

The coreflood experimental results on Berea standard cores using 0.01 wt% and 0.03 wt% 

nanofluids are presented. 

Chapter 4 is “A Coreflood Study of Injecting Silicon Dioxide (SiO2) Nanoparticles as a 

Water Additive for the Enhanced Oil Recovery on the Hebron field Cores”. It presents 

coreflood experiments conducted post-EAGE conference paper presented in Chapter 3. 

The coreflood experimental results on Berea standard core using 0.05 wt% nanofluid and 

coreflood results on Hebron core using 0.05 wt% nanofluid are included. The effect of the 

stabilizer, hydrochloric acid, on the incremental oil recovery on Berea standard core is 

also examined. The content in Chapter 4 has not been published.  

Chapter 5 provides summary of all the experimental work. The recommendations for 

future work based on lessons learned can also be found.  
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2.1. Abstract 

The use of silicon dioxide nanoparticles is a novel enhanced oil recovery (EOR) 

technique. A major challenge to its use in EOR processes in offshore reservoirs is the 

nanoparticles stability in a high salinity environment. Though previous researches have 

proven the silicon dioxide nanoparticles performance as a water additive for EOR in 

either deionized water or sodium chloride solutions, they fail to emulate the offshore 

reservoir conditions since seawater is used for the nanoparticle injection. In this study, 

silicon dioxide nanoparticle stability in seawater is investigated via visual examination, 

followed by the particle size measurements. The effectiveness of the hydrochloric (HCl) 

acid as a silicon dioxide nanoparticle stabilizer in seawater is also examined by 

monitoring the appearance and the particle size over time. The experimental results show 

that the divalent cation, Mg2+, in seawater compromises the silicon dioxide nanoparticles 

stability, causing them to agglomerate. It is also found that hydrochloric acid effectively 

stabilizes silicon dioxide nanoparticles possibly by shielding the nanoparticle surface 

from Mg2+. The best way to prepare nanoparticle suspension in seawater is to mix the 

nanoparticle and the HCl first, then to add seawater last for the HCl to effectively protect 
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nanoparticle surface from cations in seawater. The amount of the HCl required to stabilize 

silicon dioxide nanoparticles in seawater is dependant on the nanoparticle concentration. 

This is because with increasing nanoparticle concentration, there is a larger nanoparticle 

surface area, and therefore more hydrochloric acid is required to protect their surfaces 

from the cations. A higher hydrochloric acid concentration is also required to stabilize the 

nanoparticles in seawater at 62 °C, compared to the room temperature.  

 

2.2. Introduction 

Enhanced Oil Recovery (EOR) entails an extraction of post-production oil residing in a 

reservoir after water or gas has been injected (Stosur et al., 2003). The use of 

nanoparticles is a novel method of chemically enhancing the oil recovery, though 

nanotechnology is not new in the oil and gas industry. For example, the application of the 

nanotechnology has allowed the development of more durable drilling equipment and 

construction of improved corrosion resistant offshore platforms (Mokhatab, Fresky, & 

Islam, 2006). In the recent years, there has been a growing research interest in using 

silicon dioxide (SiO2) nanoparticles for EOR applications, and they have proven to be a 

promising water additive for EOR. The coreflooding experiments using hydrophilic SiO2 

nanoparticles are found to increase the oil recovery (Hendraningrat et al., 2012). The 

exact mechanisms of how SiO2 nanoparticles improves the oil recovery is not very well 

understood. It has been proposed that it could be a result of the reduction in the interfacial 
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tension, and the oil-water-rock contact angle (Hendraningrat & Shidong, 2012; D. Wasan, 

Nikolov, & Kondiparty, 2011).  

The challenges of introducing the SiO2 nanoparticle EOR offshore is their instability in a 

high salinity and high temperature (62 °C) environment. The nanoparticles are well 

dispersed in the continuous medium (i.e. liquids, such as water) when stable, however, 

unstable nanoparticles will agglomerate, and form white gel-like solid in severe cases. 

The agglomeration of the nanoparticles is undesirable because their ability to decrease the 

interfacial tension is reduced, and could potentially block the pores of the rock. The 

previous laboratory studies (Hendraningrat et al., 2012; Hendraningrat & Shidong, 2012; 

D. Wasan et al., 2011), disperse the SiO2 nanoparticles in either deionized water or 

sodium chloride solution, and lacks to address the challenges of nanoparticle instability in 

seawater. It is crucial to obtain stable nanoparticles in seawater for offshore production 

since seawater is the water source to disperse the nanoparticles.  

This study investigates and identifies the ions in the seawater that successfully 

destabilizes the nanoparticles. Then, hydrochloric acid (HCl) is proposed as the 

nanoparticle stabilizer in seawater, which can counteract the ions in the seawater. The 

mechanism for SiO2 stabilization in seawater using HCl is proposed, as well as the effect 

of HCl concentration on the SiO2 stability. The effectiveness of HCl on stabilizing SiO2 

nanoparticles at 62 °C over 14-day period is also investigated. The SiO2 stability is 

assessed with visual examination and particle size measurements in all the experiments.  
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2.3. Experimental Methodology  

2.3.1. Experiment Overview 

This paper presents four sets of experiments, and are organized in Figure 2.1 for the ease 

of conceptualization.  

 

 

Figure 2.1 The experimental design 
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The experiments were designed to identify the ions in the seawater that affects the 

stability of the silicon dioxide (SiO2) nanoparticles; then understand the effect of 

hydrochloric acid (HCl) on stabilizing SiO2 nanoparticles in seawater. The nanoparticles 

dispersed in seawater were prepared in three different ways, to study whether the order of 

components added affects the SiO2 stability. The HCl to SiO2 ratio on the SiO2 stability 

was also studied to find the optimal amount of HCl required to stabilize SiO2 

nanoparticles. Finally, the SiO2 stability over time at room temperature as well as at 62 °C 

was monitored to examine the effectiveness of HCl as a stabilizer at higher temperatures. 

62 °C was chosen because it is the temperature of the reservoir of interest for further SiO2 

nanoparticle enhanced oil recovery studies.  

The analysis of SiO2 nanoparticle stability was based upon the nanoparticle size 

measurements. The nanoparticles do not dissolve in a liquid or solution (such as seawater), 

rather, it  becomes a colloidal system, in which nanoparticle (solid phase) suspends 

uniformly in the dispersing medium (continuous phase) (Birdi, 2008). The colloidal 

system is deemed “stable” when the number of particles in a unit volume of liquid or 

solution is constant over time (Kissa, 1999). This means that the nanoparticles are well 

dispersed in the continuous medium in a stable system, and therefore the nanoparticle size 

remains constant over time. In contrast, unstable system gives high nanoparticle size 

measurements compared to its original size, because of the agglomeration (Figure 2.2).  
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Figure 2.2 The relationship between the stability of colloidal system and the particle size 

measurements 

The average SiO2 nanoparticle size dispersed in deionized water from three 

measurements was 19.02 ± 0.22 nm, which falls in the manufacturer’s particle size 

measurements of 5-35 nm. 19.02 nm was used as a reference particle size, and particle 

sizes ±15 nm is considered “stable”. In some cases, instability of nanoparticles was 

obvious via visual examination, as agglomerated nanoparticles produced white gelatinous 

solids. Not all the agglomeration of nanoparticles was observable via visual examinations, 

however, could be verified upon particle size measurements. The nanoparticles sized 

above 15 nm from the reference particle size falls outside of the manufactured particle 

size, which would mean the nanoparticles have started agglomerating, and therefore, were 

considered “unstable”. The particle size measurement software also generates a quality 

report for every measurement (Malvern instruments, 2004). If the data did not meet the 

built-in quality criteria test, the nanoparticles were also deemed “unstable”.  
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2.3.2. Materials 

Silicon dioxide (SiO2) nanoparticles (99.99%, amorphous, 5-35 nm diameter, from US 

Research Nanomaterials, Inc.) were purchased in a 25 wt% suspension in water. There 

was no further modification to the nanoparticles other than dilution. The ionic salts used 

to study SiO2 nanoparticle stability in salt solutions are: sodium chloride (≥99%, Sigma-

Aldrich), magnesium chloride hexahydrate (≥99%, Fisher), sodium sulfate (≥99.0, Sigma-

Aldrich), and magnesium sulfate (97%, Acros). These salts were dissolved in deionized 

water to prepare the salt solutions. The seawater collected from Grand Banks, offshore of 

Newfoundland, Canada was used for SiO2 stability study in seawater. The density of the 

seawater is 1.04 ± 0.01 g/cm3 and its pH was 7.84 ± 0.12 at 25 °C. The composition of 

seawater is given in Table 2.1. Lastly, hydrochloric acid (HCl) (ACS reagent grade, 37%, 

Sigma-Aldrich) was used as a nanoparticle stabilizer.  

Table 2.1 The composition of Grand Banks seawater (Valencia, James, & Azmy, 2017) 

Ions 
Concentration  

(ppm) 

Na+ 10,887 

Ca2+ 379 

Mg2+ 1,323 

SO4
2- 3,248 

Cl- 20,186 

HCO3- 132 

Total 35,987 
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2.3.3. Instruments for the Particle Size and pH Measurements 

The particle sizes were measured with Malvern™ Zetasizer®  Nano ZS, equipped with  

633 nm He-Ne laser. Zetasizer®  uses dynamic light scattering technique to report average 

hydrodynamic diameter, dh, as particle sizes. All samples were measured at 25 °C and a 

scattering angle of 173°. For each sample, three measurements were made, each 

measurement consisting of 15 runs. The reported particle sizes are average of three 

measurements. The standard deviations of these measurements were miniscule, and could 

not be displayed properly in the plots of particle size measurements, and therefore are 

tabulated in Appendix A. The manufacturer claims ± 2% accuracy and precision of the 

instrument based on the NIST Traceable Latex Standards. 

The pH was measured with Corning Pinnacle 540 pH meter at room temperature. The pH 

meter was calibrated with buffer solutions with pH’s of 4.00, 7.00, and 10.05 (Certified 

Grade, Fisher Chemical). This pH meter is accurate to ±0.01 pH unit.  

2.3.4. Experimental Procedures 

2.3.4.1. Effect of Salt Ions on the Stability of Silicon Dioxide Nanoparticles 

The most abundant ions in Grand Banks seawater are Na+, Mg2+, Cl-, and SO4
2-, with 

concentrations of 10887, 1323, 20186, and 3248 ppm, respectively (Valencia et al., 2017). 

The SiO2 nanoparticles were added to the ionic salt solutions containing permutations of 

the cation and anion pairs of the notably abundant ions in Grand Banks seawater, to 

identify the utmost ion affecting the stability of the silicon nanoparticles. The resulting 

mixture was stirred with a magnetic stirrer for 15 minutes to ensure the homogeneity. The 
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ionic salts used to prepare the solutions, and the concentration range of the resulting salt 

solutions are summarized in Table 2.2.  

Table 2.2 Ionic salt solution compositions and concentrations used to identify the ion affecting the 

stability of SiO2 nanoparticles the most 

Ionic Salt Solution Component 
Cation Concentration 

Range (ppm) 

Anion Concentration  

Range (ppm) 

Sodium chloride (NaCl) 2500 - 50000 3855 - 77106 

Sodium sulfate (Na2SO4) 2500 - 50000 5223 - 104462 

Magnesium sulfate (MgSO4) 500 - 5000 1459 - 3048 

Magnesium chloride hexahydrate 

(MgCl2∙6H2O) 
500 - 5000 1976 - 7905 

 

Note that only the cation concentrations were controlled. The anion concentrations shown 

in Table 2.2 are resulting anion concentrations at a given cation concentrations. The 

reasons for the inconsistent cation concentration ranges across the selected ionic salts will 

be revealed in the results section. The final concentrations of SiO2 nanoparticle were 0.05 

wt% in all cases.  

2.3.4.2. Silicon Dioxide Nanofluid Preparation Method 

There are three potential ways of preparing the SiO2 silicon dioxide nanofluid – 

nanoparticle suspension in seawater stabilized with HCl –  as depicted in Figure 2.3. 

Method 1 is to mix SiO2 and HCl, then adding seawater. Method 2 is to mix seawater and 

HCl, then adding SiO2. Last method involves mixing SiO2 and seawater first, then HCl 

the HCl. The 0.05 wt% SiO2 nanoparticle suspension in seawater with hydrochloric acid 
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(HCl) was prepared in three different methods as outlined above, to investigate whether 

the order of components added affects the SiO2 stability. The mixture was stirred with a 

stir bar for 5 minutes after the first and second components were combined, and the final 

mixture was mixed for 15 minutes with a stir bar.  

 

Figure 2.3 Three method of preparing silicon dioxide nanofluid 

For each method, a range of HCl concentrations from 0.001 wt% to 0.03 wt% were used 

to determine the effect of HCl to SiO2 ratio (Table 2.3) on the SiO2 stability upon 

preparation. The final concentration of SiO2 nanoparticles was 0.05 wt% in all the 

nanofluid prepared, regardless of the method and HCl concentration. The particle size and 

pH measurements were made within the first hour of the sample preparation.  
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Table 2.3 The HCl to SiO2 ratio ranges prepared to study the effect of HCl 

HCl Concentration 

(wt%) 

SiO2 Concentration 

(wt%) 
HCl to SiO2 Ratio 

0.001 0.05 0.02 

0.003 0.05 0.06 

0.006 0.05 0.12 

0.018 0.05 0.36 

0.023 0.05 0.46 

0.03 0.05 0.60 

 

2.3.4.3. Hydrochloric Acid to Silicon Dioxide Nanoparticle Ratio on the Nanoparticle 

Stability 

The stability of 0.001 wt% HCl mixed with 0.05 wt%, 0.15 wt%, and 0.30 wt% SiO2 

nanoparticles dispersed in seawater, and 0.003 wt% HCl mixed with the same three 

concentrations of SiO2 dispersed in seawater were studied in this set of experiment. These 

six mixtures generate a range of HCl to SiO2 ratio, enabling examination of the effect of 

the amount of HCl present compared to the amount of nanoparticles in seawater. The 

SiO2 nanoparticles and HCl were mixed together first, then stirred for 5 minutes on the 

stir plate. Seawater was then added to the mixture, and stirred for another 15 minutes. The 

particle size and pH measurements were made within the first hour of the sample 

preparation.  

2.3.4.4. Silicon Dioxide Nanoparticle Stability at Room Temperature and at 62 °C Over 

Time  

This experiment was designed to investigate the effect of HCl on the SiO2 nanoparticle 

stability over time and at temperature. The method for preparing nanofluid was identical 
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to experiment 3, in which SiO2 nanoparticles and HCl were stirred together for 5 minutes 

on the stir plate, then another 15 minutes of stirring after seawater was added to the 

mixture. The stability analysis of 0.05 wt% SiO2 nanoparticles in seawater were 

conducted at 1 hour, 1 day, 2, 3, 4, 6, 8, 10, 14, and 21 days that has been kept at room 

temperature. The concentrations of HCl was varied to have the following HCl to SiO2 

ratios: 0.12, 0.18, 0.24, 0.46 and 0.60.  The same set of experiments were conducted for 

samples kept in the oven at 62 °C for comparison.   

 

2.4. Experimental Results and Discussion 

2.4.1. Aggregation Behaviour of Silicon Dioxide Nanoparticles in Ionic 

Salt Solutions  

The 0.05 wt% SiO2 particle sizes were measured in sodium chloride (NaCl) and sodium 

sulfate (Na2SO4) solutions at sodium (Na+) concentrations of 2500, 5000, 20000, 30000, 

and 50000 ppm (Figure 2.4). The particle size measurement at 0 ppm refers to the particle 

size of the 0.05 wt% SiO2 nanoparticle suspension in deionized water. As can be seen in 

Figure 2.4, SiO2 particle sizes are all within 19.02 ± 15 nm in NaCl(aq) and Na2SO4(aq) 

up to 50000 ppm Na+ concentrations. Therefore, it can be concluded that the SiO2 

nanoparticles do not present instability in the presence of Na+ even at high concentrations. 

The SiO2 stability in solutions containing Na+ concentrations higher than 50000 ppm 

were not tested, because Na+ concentrations in Grand Banks seawater is 10669 ppm, and 
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the concentration up to 50000 ppm was sufficient to understand the effect of Na+ in 

seawater on the SiO2 stability.  

 

Figure 2.4 The particle size measurement at Na+ concentrations of 0 ppm to 50000 ppm from two 

ionic salts: sodium chloride and sodium sulfate 

Figure 2.5 shows the particle sizes of 0.05 wt% silicon dioxide nanoparticles in 

magnesium sulfate (MgSO4) and magnesium chloride (MgCl2) at magnesium (Mg2+) 

concentration of 500 and 1000 ppm. In 500 ppm Mg2+ solutions, SiO2 nanoparticle size 

slightly increased compared to the SiO2 size in deionized water, but is still within 19.02 ± 

15 nm, and therefore stable. There is a significant increase in the particle size from 500 

ppm to 1000 ppm. In 1000 ppm Mg2+ solution from MgSO4(aq), SiO2 nanoparticle size is 

120.60 nm, and in 1000 ppm Mg2+ solution from MgCl2(aq), the particle size is 151.17 
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nm. They are unstable, since both measurements are significantly outside the 19.02 ± 15 

nm range. The particle size at 2000 ppm Mg2+ and onwards in MgSO4(aq) and MgCl2(aq) 

could not be measured because severe SiO2 agglomeration occurred immediately when 

SiO2 nanoparticle was added to the 2000 ppm solutions, and are concluded unstable at 

Mg2+ concentrations higher than 2000 ppm. 

 

Figure 2.5 The particle size measurement at Mg2+ concentrations of 0 ppm to 2000 ppm from two 

ionic salts: magnesium chloride and magnesium sulfate 

These results show that Na+ does not affect the 0.05 wt% SiO2 nanoparticle stability even 

at high concentrations, but the stability is highly compromised by Mg2+ ions even at 

lower concentrations. The effect of counter anions such as chloride (Cl-) and sulfate 

(SO4
2-) in the salt solutions seems to be minimal. The Cl- concentration in 2500 ppm Na+ 
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solution prepared from NaCl is 3855 ppm, and the Cl- concentration in 2000 ppm Mg2+ 

solution prepared from MgCl2 is 3048 ppm. The Cl- concentration prepared from MgCl2 

is lower than that of NaCl, however, the particle size could not be measured due to severe 

agglomeration. Similarly, the nanoparticle size was unmeasurable for 7905 ppm SO4
2- 

solution prepared from MgSO4, but 10446 ppm and higher SO4
2- solutions prepared from 

Na2SO4 were stable.  

The effect of cations on the SiO2 stability can be explained upon examining the SiO2 

structure, and its surface chemistry in the presence of water molecules and other ions. 

SiO2 has a tetrahedral geometry (Figure 2.6 (a)), unlike carbon dioxide which is a linear 

molecule. This is because silicon atom is larger than carbon, which does not allow 

substantial overlap between the p-orbitals to form double bonds with oxygen (P. W. 

Atkins & Atkins, 2006). As a result, silicon only forms single bonds with oxygen, giving 

[SiO4]
4- arrangement. The amorphous SiO2 is in fact a 3D structure, which is a result of 

random packing of [SiO4]
4- units (Bergna, 2005) (Figure 2.6 (b)). The SiO2 nanoparticles 

therefore bears overall negative surface charge (Figure 2.6 (c)).   

 

Figure 2.6 (a) Tetrahedral geometry of silicon dioxide (b) 3D Arrangement of amorphous silicon 

dioxide nanoparticles (c) The negative surface of silicon dioxide nanoparticles 
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Figure 2.7 The electrical double layer formed around the negative surface charged particle, such as 

silicon dioxide nanoparticles, in a continuous medium (Mehta et al., 2008) 

The electrical double layer is formed at the SiO2 nanoparticle surface and liquid interface 

when nanoparticles are suspended in water, due to adsorption of ions (Figure 2.7). The 

electrical double layer consists of a stern plane and a diffuse layer, and affects the 

distribution of the ions around the nanoparticles (Williams, 1992). In case of SiO2 

nanoparticles, the negative surface charge attracts cations firmly to the surface while 

repelling anions away from the surface, forming a stern plane. At a short distance from 

the stern plane, a boundary between the diffuse layer exists, called a shear plane. Any 

remaining negative surface charges are compensated by the freely moving cations in the 
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diffused layer. The distribution of the cations and anions are balanced beyond the diffused 

layer. The thickness of the electrical double layer is reciprocal to the Debye length, and 

the nanoparticle stability increases in liquid phase as the thickness of the electrical double 

layer increases (Metin et al., 2011). It must be noted that the colloidal system is 

thermodynamically unstable (Birdi, 2008) because surface energy is high from the 

increased surface area of the suspended particles (Mehta et al., 2008). In attempts to 

lower the energy state, the particles tend to aggregate, unless other energy barriers are 

present such as electrostatic charge repulsions; steric; and hydration forces (Birdi, 2008). 

The thicker the electrical double layer, the higher the energy barrier, allowing 

nanoparticles to be stable.  

When ions such as Na+ and Mg2+ are present, the double layer is compressed, and the 

energy barrier decreases, leading to nanoparticle agglomeration (Brown, Goel, & Abbas, 

2016; Mehta et al., 2008). Mg2+ ions attract stronger than Na+ ions because it has a larger 

magnitude of positive charges, and is more effective in destabilizing the SiO2 

nanoparticles, as evident in the experimental results. The difference in the Na+ and Mg2+ 

ion sizes are also a contributing factor. The ion size of Na+ is 0.099 nm, and the ion size 

of Mg2+ is 0.049 nm (Shannon, 1976). The water molecules around the SiO2 surface is 

known to favour small ions, allowing the ions to penetrate water layer easily (Torrie, 

Kusalik, & Patey, 1989). Mg2+ is a smaller ion compared to Na+, and therefore Mg2+ 

penetrates the water layer easier than Na+, and is consequently adsorbed onto the 

nanoparticle surface better than Na+. 
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The findings from this experiment prove that it is unrealistic to use NaCl solutions to 

investigate the effectiveness of SiO2 nanoparticle as a water additive for enhanced oil 

recovery purposes. The use of stabilizer to produce stable SiO2 suspension in seawater is 

unavoidable. Hydrochloric acid is proposed as such stabilizer in this paper, and its 

mechanisms and effectiveness is investigated in the following sections.  

2.4.2. Optimization of Silicon Dioxide Nanofluid Preparation Method 

The 0.05 wt% SiO2 nanoparticle suspension in seawater with hydrochloric acid (nanofluid) 

was prepared using three different methods. The particle size measurements from each 

method are plotted against HCl to SiO2 ratio (Figure 2.8). As can be seen in the figure, 

0.05 wt% SiO2 nanoparticle sizes vary significantly depending on how the nanofluid was 

prepared, even though they have the same HCl to SiO2 ratio, and similar pH 

measurements. This is consistent across HCl to SiO2 ratios from 0.02 to 0.60 tested in this 

study. The best way to prepare the nanofluid was Method 1 (SiO2 nanoparticles and HCl 

are mixed first, and then the seawater is added) based on the particle size measurements, 

as nanoparticle sizes remained closest to the reference particle size, 19.02 nm. The 

nanoparticle sizes prepared as per Method 2 – seawater and HCl is mixed first, then SiO2 

last – increased up to 31.81 and 32.90 nm respectively, at the HCl to SiO2 ratios of 0.02 

and 0.06. As the HCl to SiO2 ratio increases, the particle size tends to decrease to 23.57 

nm, indicative of more stable dispersions. The worst way to prepare the nanofluid was 

Method 3 because the nanoparticle size increased up to approximately 30 nm at all HCl to 

SiO2 ratios, indicating the nanofluids are not as stable as nanofluids prepared as per 

Method 1 or 2.  
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Figure 2.8 The particle size measurements and pH ( taken within one hour of sample preparation) of 

nanofluids prepared in three different methods at hydrochloric acid to silicon dioxide nanoparticle 

ratios ranging from 0.02 to 0.60  

The differences in the particle sizes at the same HCl to SiO2 ratio and similar pH across 

the method is thought to be related to the mechanism HCl enables the SiO2 nanoparticles 

to stay dispersed uniformly in seawater. The H+ ions from HCl seems to further 

encourage formation of the electrical double layer around the nanoparticle surface, when 

the nanoparticles are mixed with HCl first. Therefore, when seawater is added, the cations 

in the seawater would be repelled effectively from the nanoparticle surface, and the 

nanoparticles remain stable. Method 2 mixes seawater and HCl first, and the nanoparticle 

is added last. In seawater and HCl mixture, Na+, Mg2+ and H+ ions are all present. These 

ions would likely to compete to adsorb on the nanoparticle surface. There must be 

adsorption of all three cations on the nanoparticle surface, since the nanofluid from the 
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second method is not as stable as nanofluid prepared as per first method. H+ ions must 

preferentially adsorb onto SiO2 surface over Na+ and Mg2+, possibly because the ionic 

mobility of H+ ion is 36.23∙10-8 m2s-1V-1 in water at 25 °C, which is approximately 6.5 – 7 

times higher than that of Na+ (5.19∙10-8 m2s-1V-1) and Mg2+ (5.50∙10-8 m2s-1V-1) (P. Atkins 

& Paula, 1907). The nanoparticles added to seawater first (Method 3) becomes unstable 

instantly, as it would experience shortened diffused layer immediately from the Mg2+ ions 

in the seawater. The addition of HCl after fact does not improve the stability, perhaps 

because Mg2+ ions have adsorbed onto the nanoparticle surface, and there is no room for 

H+ ions to be adsorbed onto the nanoparticle surface to successfully restore the electrical 

double layer.  

The trend in the three methods is that at lower HCl to SiO2 ratio, the nanoparticle sizes 

are larger compared to the sizes at higher ratio, and thus less stable within the same 

methods. This observation indicates that there is a relationship between the amount of 

HCl relative to SiO2, in terms of determining the stability of SiO2 nanoparticles. Hence 

the effect of HCl to SiO2 is further investigated in the next section.  

2.4.3. The Effect of Hydrochloric Acid Concentration on the Stability of 

Silicon Dioxide Nanofluid 

Three SiO2 nanofluids were prepared with varying nanoparticle concentrations at fixed 

hydrochloric acid (HCl) concentration of 0.001 wt%. Another three SiO2 nanofluids were 

prepared with varying nanoparticle concentrations at fixed HCl concentration of 0.003 

wt%, to investigate the effect of HCl concentrations on the SiO2 stability in seawater. 
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Table 2.4 shows the final concentrations of HCl and SiO2 of the nanofluids, 

corresponding HCl to SiO2 ratio, as well as pH measurements. The nanofluids with HCl 

to SiO2 ratio of 0.02 were prepared in both 0.001 and 0.003 wt% HCl, as bolded in Table 

2.4 to confirm certain amount of HCl is required per SiO2 for nanoparticles to be stable in 

seawater. 

Table 2.4 The concentrations of hydrochloric acid and silicon dioxide to generate range of ratios 

between the two, and the pH measurements of resulting fluids 

HCl Concentration 

(wt%) 

SiO2 Concentration 

(wt%) 
HCl to SiO2 Ratio pH 

0.001 0.05 0.02 7.25 

0.001 0.15 0.007 7.85 

0.001 0.30 0.003 7.99 

0.003 0.05 0.06 6.71 

0.003 0.15 0.02 7.28 

0.003 0.30 0.01 7.53 

 

Figure 2.9 shows the particle size measurements plotted against HCl to SiO2 ratios. The 

particle size decreases with increasing HCl to SiO2 ratio, indicating that increasing HCl 

concentration increases the stability of the nanoparticles in seawater.  Only two points are 

plotted on Figure 2.9 for 0.001 wt% HCl because the concentration of HCl was 

insufficient to stabilize 0.30 wt% SiO2 in seawater (equivalent to 0.003 HCl to SiO2 ratio), 

and the particle size was unmeasurable due to visible agglomeration. 0.003 wt% HCl on 

the other hand could stabilize the 0.30 wt% SiO2 (equivalent to 0.01 HCl to SiO2 ratio), 

confirming that the higher concentration of HCl is required to stabilize higher 
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concentrations of SiO2. The particle sizes and pH at HCl to SiO2 ratio of 0.02, prepared 

from 0.001 and 0.003 wt% are essentially the same, as expected.  

 

Figure 2.9 The particle size measurements silicon dioxide nanofluid across a range of hydrochloric 

acid and silicon dioxide ratio in the presence of 0.001 wt% and 0.003 wt% hydrochloric acid 

The experimental results in this section shows that a certain amount of HCl must be 

present for a given number of nanoparticle suspension in seawater, to maintain the SiO2 

nanoparticle stability in seawater. This is because with increasing nanoparticle 

concentration, the more nanoparticles are present, meaning that there are increased 

nanoparticle surfaces that need to be protected from the cations in seawater. As a result, 

more HCl is needed at the higher nanoparticle concentrations.  
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2.4.4. The Effect of Hydrochloric Acid Concentration on the Stability of 

Silicon Dioxide Nanofluid over Time and Temperature 

A set of 0.05 wt% SiO2 nanoparticle in seawater was prepared at HCl to SiO2 ratios of 

0.12, 0.18, 0.24, 0.46 and 0.60. The ratios of 0.02 and 0.06 were also prepared, however, 

the results are not reported, since nanoparticle stability was compromised within an hour 

of sample preparation at 62 °C. As a result, accurate particle size measurements could not 

be carried out, and the meaningful comparison for temperature dependency could not be 

observed at 0.02 and 0.06 ratios. 

 The samples were kept at room temperature, and the particle sizes were measured at 1 

hour, 1 day, 2, 3, 4, 6, 8, 10, and 14 days, as shown in Figure 2.10. The samples at 62 °C 

were also measured to observe the effect of temperature (Figure 2.11). The pictures taken 

for the visual examination for this set of experiment are presented in Appendix B. The 

same experiments were conducted on a set of 0.01 and 0.03 wt% SiO2 nanofluids for the 

future SiO2 nanoparticle enhanced oil recovery studies. Their results are presented in 

Appendix C to E, to keep the focus of discussion to 0.05 wt% SiO2 nanofluids.   

The particle size of nanofluid with 0.12 HCl to SiO2 ratio at room temperature grows the 

quickest at room temperature. The agglomeration behaviour is clearly seen from 2 days, 

and severe agglomeration is continually observed from 3 days to 14 days. At the ratios 

higher than 0.12, there is not much difference in the particle sizes over the 14-day period, 

though the particle sizes at 0.18 and 0.24 HCl to SiO2 ratio are slightly higher compared 

to the particle sizes at 0.46 and 0.60 HCl to SiO2 ratio. 
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Figure 2.10 The 0.05 wt% silicon dioxide nanoparticle size measurements at room temperature, at 

HCl to SiO2 ratio ranging from 0.12 to 0.60 

 

Figure 2.11 The 0.05 wt% silicon dioxide nanoparticle size measurements at 62°C, at HCl to SiO2 

ratio ranging from 0.12 to 0.60 
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The particle size of the nanoparticle grows rapidly after 1 day for the nanofluid with 0.12 

HCl to SiO2 ratio at 62 °C, which is also observed at room temperature. The difference is 

that the agglomeration is evident earlier on, and is more severe. The particle size grows to 

294.40 nm only after the second day, and the particle size measurement after 2 days were 

not conducted because of visual agglomeration. With increasing HCl to SiO2 ratio to 0.18 

and 0.24, the nanoparticle size is relatively constant until 3 days, and remains stable. 

After 6 days, however, the particle size grows outside of the reference size range (19.02 ± 

15 nm), indicating that they are no longer stable. The further increment of HCl to SiO2 

ratio to 0.46 and 0.60 successfully keeps the nanoparticle size constant up to 14 days. 

There is only a slight difference in the particle sizes between 0.46 and 0.60 HCl to SiO2 

ratio. There may be a critical HCl concentration, at which further addition of HCl no 

longer improves stability. If the measurements were continued for a longer period, there 

may be sign of instability, which is another possibility.  

The comparison of the nanoparticle sizes of samples at room temperature and at 62 °C 

monitored over 14 days reveal that the stability of nanoparticles in seawater with same 

HCl to SiO2 ratio is compromised earlier on at 62 °C. This is because the nanoparticles in 

a colloidal system moves constantly and randomly in the liquid phase (Birdi, 2008). The 

rate of aggregation increases with increasing probability of collision between particles 

(Mehta et al., 2008). With increasing temperature, the kinetic energy of the particles 

increases, and therefore the frequency of collisions between the particles increases 

(Petrucci, Harwood, Herring, & Madura, 2006), accelerating the agglomeration process. 

The interaction during the collisions between the particles also determine the rate of 
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aggregation. With increasing HCl concentration, the nanoparticle surfaces would form 

thicker protective layers. If the protective H+ layer is not thick enough due to insufficient 

HCl, the nanoparticles will aggregate upon collisions, and destabilizes more readily.  

 

2.5. Conclusions 

The SiO2 nanoparticle EOR is challenging in the offshore reservoir, since nanoparticles 

are unstable in high salinity. In this study, the stability of SiO2 nanoparticles in seawater 

is examined through particle size measurements. The divalent cation, Mg2+, in seawater is 

identified to highly compromise the stability of the 0.05 wt% SiO2 nanoparticles, more so 

than a monovalent cation, Na+. The hydrochloric acid (HCl) is proposed as a SiO2 

stabilizer in seawater, and its effectiveness is evaluated. The best way to prepare the SiO2 

nanofluid in seawater using HCl is to mix nanoparticles and the stabilizer (HCl) first, then 

add the seawater last. The addition of H+ to SiO2 nanoparticles allows a protective layer 

to be formed on the nanoparticle surface, to prevent Mg2+ ions from affecting the stability. 

The HCl to SiO2 ratio is crucial in preparing the stable SiO2 nanoparticle in seawater 

because higher nanoparticle concentration requires higher concentration of HCl for SiO2 

nanoparticles to be stable in seawater. When there is insufficient HCl, the nanoparticles 

agglomerate quickly over time. A higher agglomeration rate is observed with nanofluids 

at 62°C compared to the nanofluids at room temperature. These two sets had the same 

HCl to SiO2 ratio, the only varying factor was the temperature. With increasing 

temperature, higher HCl to SiO2 is required to maintain the stability of the nanoparticles, 
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to offset the increased kinetic energy of the nanoparticles, which leads to increased 

probability of successful collisions, and increased agglomeration rate.  
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3.1. Abstract 

The use of silicon dioxide (SiO2) nanoparticles for enhanced oil recovery is novel, and is 

attractive because of the cost effectiveness, considering low concentrations required for 

enhanced oil recovery technique, and its surface-active properties for both interfacial 

tension reduction, and possible wettability alterations. Previous laboratory scale 

investigations have demonstrated a potential of SiO2 nanoparticles as water additive for 

enhanced oil recovery (EOR). In this study, the potential of injecting SiO2 nanoparticles 

as water additive is experimentally investigated for EOR application in Ben Nevis 

Formation from Hebron Field, offshore Newfoundland and Labrador, Canada. Only 30% 

of its crude oil in Ben Nevis Formation from Hebron Field is projected to be recoverable. 

Therefore, the investigation of EOR method requires attention now, since first oil is 

expected in 2017. The experiments for this study are designed to be as realistic as 

possible. Unique from the previous laboratory investigations that used deionized water or 

simple synthetic brine as a medium to disperse nanoparticles, the SiO2 nanoparticles are 

dispersed in seawater obtained from Grand Banks, offshore Newfoundland, of which 
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nanoparticles will be added to in the Hebron Field. Interfacial tension, contact angle, and 

coreflooding experiments are conducted at Hebron Field temperature and pressure (62 °C 

and 19.00 MPa). The results showed that the SiO2 nanofluids decrease interfacial tension 

and contact angle, indicating positive impact on the oil recovery. Preliminary 

coreflooding experiments are conducted using 0.01 and 0.03 wt% SiO2 nanofluid, with 

Berea standard cores, consisting of similar mineralogical composition as the lower facies 

of Ben Nevis Formation. The results show that 0.01 and 0.03 wt% SiO2 nanoparticle 

flooding both increased additional recovery by 3.3% and 9.3%, respectively.  

 

3.2. Introduction 

The use of nanoparticles has broad applications because of their unique active surface 

properties. Nanoparticles have large surface areas, leading more reactions to occur at its 

surface (El-diasty and Aly 2015). They also have high surface energy, which allows them 

to defy gravity, and stay well dispersed in an aqueous medium (Miranda et al. 2012). 

Nanotechnology was introduced to the oil and gas industry more than 50 years ago 

(Matteo et al. 2012), and it has contributed to the development of more durable drilling 

equipment and the construction of improved corrosion resistant offshore platforms 

(Mokhatab et al. 2006). There are ongoing laboratory investigations to apply 

nanotechnology to enhance oil recovery of residual immobile oil post water or gas 

injection. Nanoparticles that alter the injected phase viscosity, interfacial tension of the 
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injected phase and oil, and possibly the wettability of the reservoir rock are ways in which 

nanoparticles may help address the challenge of increasing oil recovery. 

Silicon dioxide (SiO2) nanoparticles are the most popular nanoparticle studied as a water 

additive in enhanced oil recovery (EOR). Attractive features of silicon dioxide 

nanoparticles include low cost, and well understood physical-chemical properties at their 

surfaces (Miranda et al. 2012). They have been proven to reduce the interfacial tension 

and change the wettability of the rock surfaces to more water-wet (Sivira et al. 2016; Al-

Anssari et al. 2016;  Li et al. 2013; Maghzi et al. 2012). Incremental oil recovery has also 

been observed from coreflooding experiments (Nazari Moghaddam et al. 2015; 

Hendraningrat et al. 2014; Aurand et al. 2014; Joonaki and Ghanaatian, 2014; 

Hendraningrat et al. 2013; Roustaei et al. 2012) The summary of these coreflood studies 

in the literature are given in Table 3.1.  
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Table 3.1 Coreflood Experiments Using Silicon Dioxide Nanoparticles 

References 
SiO2 

concentration 
Dispersion medium Porous media 

Pore volume 

injected 

Incremental 

recovery 

Nazari Moghaddam, 

Bahramian, 

Fakhroueian, Karimi, 

& Arya, 2015 

5 wt% 

Paraffin/heptane, mixture of 

ethylene glycol, and lauryl 

alcohol 

Type: Carbonate 

Φ*: 13.2% 

K**: 0.24 mD 

1. Brine, 5 PV 

2. Nanofluid, 2 PV 

3. Brine 

7.7% 

Hendraningrat & 

Torsæ ter, 2014 
0.05 wt% 

3 wt% NaCl brine with PVP 

(Polyvinylpyrrolidone) 

Type: Water-

wet Berea 

Φ: 14.99% 

K: 119 mD 

1. Brine, 5 PV 

2. Nanofluid, 5 PV 

3. Brine, 5 PV 

21.4% 

Aurand, Dahle, & 

Torsæ ter, 2014 
0.05 wt% 

Diluted to 2 wt% nanofluid with 

deionized water, then diluted 

further to 0.05 wt% with 3.53% 

salinity synthetic brine 

Type: Water-

wet Berea 

Φ: 18.1% 

K: 394 mD 

1. Brine, 2 PV 

2. Nanofluid, 2 PV 

20.0% 

(Large fumed 

nanofluid) 

Joonaki & Ghanaatian, 

2014 
Not given Propanol 

Type: Sandstone 

Φ: 17.34% 

K: 108.21 mD 

1. Brine, 3 PV 

2. Nanofluid, 3 PV 
22.5% 

Hendraningrat, Li, & 

Torsæ ter, 2013 

0.01 wt% 3 wt% NaCl brine 

Type: Berea 

Φ: 23.20% 

K: 392 mD 

1. Brine, 3.7 PV 

2. Nanofluid, 2.8 PV 
9.6% 

0.05 wt% 3 wt% NaCl brine 

Type: Berea 

Φ: 23.04% 

K: 302 mD 

1. Brine, 3.2 PV 

2. Nanofluid, 3.1 PV 
13.0% 

0.1 wt% 3 wt% NaCl brine 

Type: Berea 

Φ: 22.93% 

K: 354 mD 

1. Brine, 3.1 PV 

2. Nanofluid, 3.5 PV 
8.6% 

Roustaei, Moghadasi, 

Jamshid Bagherzadeh, 

& Shahrabadi, 2012 
5 g/L Weak or non-polar solvent 

Type: Sandstone 

Φ: 17% 

K: 186 mD 

1. Brine, 2 PV 

2. Nanofluid, 3 PV 

3. Brine, 2 PV 

28.6% (NWP)§ 

32.2% (HLP)§§ 

* Φ: Porosity, **K: Permeability, § NWP: Naturally Wet Polysilicon §§: HLP: Hydrophobic and Lipophilic Polysilicon 
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This research focuses on the potential use of SiO2 nanoparticles as a water additive for 

EOR in the Hebron Field. The Hebron Field is located about 350 km southeast of St. 

John’s, Newfoundland and Labrador, Canada, and is Canada’s fourth major offshore 

development Figure 3.1.   

  

 Figure 3.1 Offshore Canada oil & gas developments, including Hebron Field (Sivira et al. 2016) 

Recoverable oil is expected to be 800 MMbbl out of 2620 MMbbl estimated original oil 

in place, with first oil expected in 2017 (CNLOPB 2011). Screening EOR methods 

requires attention now to maximize the production. The Hebron Field includes the 

Hibernia, Avalon, Jeanne d’Arc, and Ben Nevis formations where 70% of the recoverable 

oil is expected from the Ben Nevis Formation (CNLOPB 2011). Experiments were 

designed to mimic the Ben Nevis Formation including rock properties, temperature, and 

pressure. Seawater is the source for waterflooding offshore, and seawater will be the 

dispersant for chemical additives such as SiO2 nanoparticles. 
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The literature summarized in Table 3.1 shows that brine used in laboratory tests consisted 

sodium chloride (NaCl) only, whereas SiO2 nanoparticles are dispersed in seawater 

(collected from Grand Banks, the offshore development area) in this research, which 

includes magnesium and calcium divalent ions to best emulate the actual production 

conditions. Divalent ions such as magnesium and calcium ions are known to interact more 

with SiO2 nanoparticles to cause agglomeration (Metin et al. 2011).  

Applying EOR at approximately 350 km offshore requires overcoming logistical 

challenges: transportation and quality control of injectants to remote locations, water 

treatment and disposal, and installation of storage and processing facilities for the 

injectants on the platform (Kang et al. 2016). A fundamental understanding of the 

chemical additives used for enhanced oil recovery is vital to tackle these challenges. This 

includes but not limited to understanding the fluid-fluid interactions as well as fluid-rock 

interactions generated by the chemical additive being used, and also optimizing amount 

of chemical additives required to maximize the production at the lowest cost possible. 

The work presented in this paper explores recovery mechanism via SiO2 nanoparticles 

through interfacial measurements and contact angle measurements. Coreflooding is 

performed at two different SiO2 nanoparticle concentrations dispersed in seawater, all at 

Hebron reservoir temperature and pressure, to investigate effectiveness of SiO2 

nanoparticles on the incremental oil recovery.  
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3.3. Method 

Amorphous hydrophilic silicon dioxide nanoparticles (99.99% purity, from US Research 

Nanomaterials, Inc.) are used for the coreflooding experiments. The nanoparticles were 

purchased as a 25 wt% aqueous dispersion, and no other modifications were made other 

than dilution.  

Nanofluid is prepared by mixing silicon dioxide nanoparticles and hydrochloric acid 

solution (ACS Reagent, 37%, Sigma-Aldrich) with magnetic stir bar for 10 minutes, then 

the seawater (collected from Grand Banks, offshore Newfoundland and Labrador, Canada) 

was added to desired concentrations of silicon dioxide and hydrochloric acid (Table 3.2).  

The addition of hydrochloric acid (HCl) to the nanofluid was to prevent nanoparticle 

agglomeration in the seawater. The Grand Banks seawater has a total dissolved solids 

(TDS) count of 35,987 ppm, as shown in Table 3.3 along with composition.  

The standard Berea cores (From Berea Sandstone Petroleum Cores) were selected for 

contact angle measurements and coreflood experiments, since the Ben Nevis Formation is 

primarily composed of sandstones in the lower sections of the reservoir (CNLOPB 2011). 

The similarity in their mineralogical composition obtained from mineral liberation 

analysis (MLA 650 FEG by FEI) is shown in Figure 3.2. The upper facies of the Ben 

Nevis Formation increases to almost 20% carbonate and is currently under investigation. 
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Table 3.2 Nanofluid properties in seawater 

 SiO2 

concentration 

(wt%) 

HCl 

concentration  

(mol/L) 

pH 

Density at 

26 °C 

(g/cm3) 

Nanofluid 1 0.01 0.002 2.84 1.0227 

Nanofluid 2 0.03 0.006 2.45 1.0233 

Seawater - - 7.84 1.0230 

 

 

Table 3.3 Grand Banks seawater composition (Valencia et al. 2017) 

Ions 
Concentration 

(ppm) 

Na+ 10,887 

Ca2+ 379 

Mg2+ 1,323 

SO4
2- 3,248 

Cl- 20,186 

HCO3- 132 

Total 35,987 

 

 

Figure 3.2 Mineralogical composition of Lower Ben Nevis Formation and Berea sandstone 
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The interfacial tension measurements between oil and each nanofluid were carried out 

using a pendant drop meter (IFT 700 by Vinci Technologies), at 62 °C and 19.00 MPa. 

The contact angles of the oil droplet on the Standard Berea core, surrounded by each 

nanofluid were also measured using the same equipment at the identical conditions. The 

measurements were collected by the drop shape method, for 15 minutes at 5 second 

intervals. The instrument was calibrated by measuring interfacial tension between 

deionized water and air; acetone and air; toluene and air, then comparing to the literature 

value, to ensure accuracy of the measurements. 20% of the measurements were replicated 

to ensure the accuracy of the results (Sivira et al., 2016).  

The standard Berea cores were restored to reservoir conditions using the method as 

outlined by Sripal and James (2016) for the coreflood experiments. The specifications of 

standard Berea cores, and the synthetic brine used to produce connate water in the cores 

are organized in Table 3.4 and Table 3.5, respectively. Hebron crude oil was not available 

yet to run coreflood experiments, and therefore, oil was simulated by mixing crude oil 

from Hibernia (another offshore Newfoundland and Labrador field) with Athabasca 

bitumen, in a 14:1 proportion, to reach the Hebron crude oil viscosity of 10.9 mPa∙s at 

62 °C and 19.0 MPa, verified using a Cambridge PVT viscometer (Valencia et al. 2017).  

Table 3.4 Standard Berea cores specifications for coreflood experiments 

Run 
SiO2 Concentration 

(wt%) 

Length 

(cm) 
Pore Volume (mL) Porosity 

1 0.01 10.18 19.92 0.17 

2 0.03 10.10 20.84 0.18 
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Table 3.5 Composition of synthetic formation water used to generate connate water 

Composition 
Concentration 

(ppm) 

Concentration 

(mol/L) 

NaCl  (≥99%, Sigma-Aldrich) 96,959 1.6590 

CaCl2∙2H2O  (≥99%, Sigma-Aldrich) 14,158 0.096303 

MgCl2∙6H2O  (≥99%, Fisher) 2966 0.01459 

KCl  (99.2%, Fisher) 461 0.00618 

Na2SO4  (≥99.0, Sigma-Aldrich) 373 0.00263 

Total 114,917 1.7787 

 

The coreflood was setup as shown in Figure 3.3. Two accumulators were used, one filled 

with seawater, and the other with nanofluid. These fluids were injected into the core with 

Quizix pumps to allow injection at a constant flow rate. 20k Quizix pump injects 

deionized water at the bottom of the floating piston accumulator to allow 5000 Quizix 

pump to deliver fluids from the accumulator to the core. The second 20k Quizix pump 

injected silicon oil into the core holder to generate overburden pressure of 3500 psi.  

To mimic the Hebron field conditions, the coreflood experiments were conducted at a 

temperature of 62 °C (335.15 K) and a pressure of 19.0 MPa. The seawater from Grand 

Banks was injected at a constant rate of 0.2 mL/min (0.0033 cm3/s) for 4 PV, followed by 

2 PV of nanofluid at a constant flow rate of 0.2 mL/min (0.0033 cm3/s). This rate is 

equivalent to 1 ft/day. The set-up was then shut in for 6 hours to allow time for nanofluid 

to further interact with the minerals of the rock. Finally, the cores were flushed with 

seawater once again, at a constant flow rate of 0.2 mL/min (0.0033 cm3/s) for 4 PV.  
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Figure 3.3 Schematic diagram of coreflood set-up 

There are variations of coreflood experimental procedures in the literature. Joonaki and 

Ghanaatian (2014), Aurand et al. (2014), and Hendraningrat et al. (2013) injected brine, 

followed by nanofluid. Roustaei et al. (2012), Hendraningrat et al. 2014, and Nazari 

Moghaddam et al. (2015) injected brine, followed by nanofluid, then finished with second 

brine injection. Only Nazari Moghaddam et al. (2015) introduced shut-in period. They 

left the core plugs for 24 hours after injecting nanofluid to ensure adequate nanofluid 

treatement on the rock surface. This paper followed this approach, but with shut-in period 

of 6 hours. It was found that the maximum decrease in the contact angle, thereby 

indicating the greatest wettability alteration of the rock occurs when the cores were aged 

in nanofluid for 6 hours (Sivira et al. 2017). The core was injected with seawater after the 
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shut-in period, since the rock was considered to have become more water-wet during the 

6-hour shut-in period, and additional oil recovery was deemed possible via sweeping with 

seawater. 

 

3.4. Results and Discussion 

The hydrophilic SiO2 nanofluid at concentrations of 0.01 and 0.03 wt% decreases the 

interfacial tension, as well as the contact angle (Figure 3.4 and Figure 3.5). The decrease 

in interfacial tension and more water-wet condition evident from decreased contact angle 

values indicate that the SiO2 nanofluids stabilized in hydrochloric acid solution should 

have positive impact on the incremental oil recovery. The coreflood experimental results 

with 0.01 as well as 0.03 wt % silicon dioxide nanofluids both confirm this prediction as 

shown in Figure 3.6.  

 

Figure 3.4 SiO2 nanoparticle contribution on interfacial tension alteration (After Sivira et al. 2016) 
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Figure 3.5 Contact angle measurements on Berea with SiO2 nanofluids (After Sivira et al. 2016) 

 

Figure 3.6 Oil recovery using 0.01 wt% and 0.03 wt% SiO2 nanofluid  
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The oil recovery from the initial waterflood for 0.01 wt% SiO2 coreflood experiment was 

55.6%. The nanoparticle flooding increased oil recovery by 3.3%, thus resulting in 58.9% 

of total oil recovery, as shown in Figure 3.6. For 0.03 wt% SiO2 coreflood experiment, 

the initial waterflood gave oil recovery of 56.3%, and nanoparticle flooding increased the 

oil recovery by 9.3%. 0.03 wt% SiO2 nanoparticle flooding gave total oil recovery of 

65.6%. These results show that the increasing nanoparticle concentrations improves oil 

displacement efficiency. Maghzi et al. (2012) suggests this is because increasing 

nanoparticle concentration increases the spreading of nanofluids on the rock surface. The 

spreading of nanoparticles on the rock surface are believed to form a wedge film between 

the oil and rock, and eventually detaching the oil drop (D. T. Wasan & Nikolov, 2003) to 

improve the oil recovery.  

The purpose of the shut-in period after the nanoparticle flooding was to give the nanofluid 

more time to interact with the rock surface and alter the wettability. Previous wettability 

studies conducted at the Hebron field conditions showed that nanofluid stabilized with 

HCl decreases the contact angle between the rock and oil, making the rock more water 

wet (Sivira et al. 2016). It was also observed that the nanofluid decreases contact angle 

the most after 6 hours of aging, then the contact angle starts to increase again after 6 

hours (Sivira et al. 2017). Since the rock surface reaches the most water-wet condition 

after 6 hours, it was hypothesized that the waterflooding after the 6 hours shut-in period 

would mobilize more residual oil. However, there was no further oil recovery upon 

second waterflooding in both coreflood experiments conducted in this study. The reason 

for this is to be further investigated, which would involve understanding of forces such as 
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Van der Waals, acid-base interaction, attractive and repulsive forces from electrical 

double layers, and hydrodynamics that affect adsorption and desorption of nanoparticles 

as well as the interactions of oil, nanofluid and rock in a complex system (Khilar & 

Fogler, 1998). Skauge, Hetland, Spildo, Skauge, & Cipr (2010) identified a production 

challenge with nanoparticles as nanoparticles adhering to the rock surface excessively, 

blocking the pore throats, and preventing further oil production. However, the blockage 

of nanoparticles is thought to be minimal in this study because nanofluid contains HCl, 

which would dissolute mineral content in the rock (Sivira et al. 2017), thereby increasing 

the pore space. The nanoparticle agglomeration has also been identified to block the pores 

of the rock in the literature. Hendraningrat et al. (2013b) have reported the problems of 

nanoparticle agglomeration which was visible at the inlet after coreflooding process with 

0.03 wt% SiO2 nanoparticles. There was no visible agglomeration at the inlet after 

coreflood experiment with both 0.01 and 0.03 wt% SiO2 nanoparticles in this study, 

suggesting there was no agglomeration during the coreflooding. This shows that the 

hydrochloric acid successfully prevented nanoparticles agglomeration at reservoir 

temperature and pressure, even though some of HCl would have been used up from the 

reaction with the rock. Further study involving permeability measurements, pH 

measurements, SEM (Scanning Electron Microscopy), MLA (Mineral Liberation 

Analyzer), and ICP (Inductively Coupled Plasma Mass Spectrometry) are required to 

investigate the permeability, relative permeabilities, and material balances of the SiO2 

nanoparticles, salt ions, and HCl.  
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The dissolution of rock due to HCl raises a question whether it is HCl in the nanofluid 

that is responsible for the oil recovery, rather than the nanoparticle itself. Though it is 

possible that HCl contributes to higher recovery during the nanofluid flooding, two 

observations from the experiments suggest that the improved oil recovery is mainly 

because of the nanoparticles. Previous experiments showed that nanofluid without 

nanoparticles (i.e. HCl with seawater only) increases the interfacial tension between water 

and oil, and it is only when nanoparticles are present that interfacial tension decreases 

(Sivira et al. 2016). Secondly, if HCl increases oil recovery via dissolution of the minerals, 

more recovery should have been seen after the 6 hours shut-in period, as more dissolution 

would occur during that time. A coreflood experiment with HCl and seawater only is on 

the way to confirm that improved oil recovery is attributed to the nanoparticles.  

 

3.5. Conclusions 

The enhanced oil recovery efficiency of 0.01 and 0.03 wt% silicon dioxide nanofluids is 

studied through coreflood experiments, at conditions that emulated Hebron Field. The 

findings are listed as follows:  

• The preliminary interfacial tension and contact angle measurements indicated 

positive impact on the oil recovery, and is confirmed by the coreflood experiments. 

• 0.01 wt% nanofluid injection followed by waterflooding increased oil recovery by 

3.3% in Berea cores. 
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• 0.03 wt% nanofluid injection followed by waterflooding increased oil recovery by 

9.3% in Berea cores 

• Higher nanoparticle concentration is more efficient in improving oil recovery. 

• Under the employed conditions, additional time for nanofluid to interact with rock 

surface followed by waterflooding does not increase oil recovery. Explanation for 

this requires further investigation.  
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4.1. Abstract 

The first oil was pumped at the Hebron offshore platform, the fourth offshore 

development in Newfoundland and Labrador, Canada, in November 2017. The enhanced 

oil recovery methods to maximize the production at the Hebron Field must be 

investigated early on, as only 30% of the initial oil in place is recoverable. This 

experimental study focused on injecting silicon dioxide (SiO2) nanofluid as a water 

additive for the enhanced oil recovery with application to the Hebron Field. The nanofluid 

consisted of silicon dioxide nanoparticles dispersed in seawater collected from Grand 

Banks, offshore of Newfoundland and Labrador, as well as the hydrochloric acid as a 

nanoparticle stabilizer, to prevent nanoparticles from agglomerating in seawater. The 

previous coreflood study (Kim, Sivira, James, & Zhang, 2017) on Berea standard cores at 

Hebron reservoir temperature and pressure (62 °C and 19.00 MPa, respectively) showed 

injecting 0.01 wt% SiO2 contributes to 3.3% incremental oil recovery. The increase in the 

SiO2 nanoparticle concentration to 0.03 wt% yielded 9.3% incremental oil recovery. The 

coreflood experiments presented in this paper is a continuation of Kim et al. (2017)’s 

coreflood study. The effect of increasing nanoparticle concentration to 0.05 wt% on the 
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oil recovery is investigated using Berea core, as well as Hebron core. The potential 

possibility of the nanoparticle stabilizer, hydrochloric acid, contributing to the oil 

recovery is also explored. The results showed that 0.05 wt% nanofluid injection on Berea 

core yields 14.9% oil recovery, showing it is the most efficient concentration in 

improving the oil recovery compared to 0.01 and 0.03 wt%. The injection of 0.05 wt% 

nanoparticle on Hebron core also had positive impact on the incremental oil recovery of 

11.9%. The hydrochloric acid in the nanofluid was found to have minimal effect on the 

incremental oil recovery. 

 

4.2. Introduction 

The Hebron Project is the fourth offshore development in Newfoundland and Labrador 

(Eastern Canada), after Hibernia, Terra Nova, and White Rose. It is located 350 km 

offshore of St. John’s, Newfoundland and Labrador as depicted in Figure 4.1.  

The first oil was November 28, 2017, with a projected recovery of 30%. The largest 

reservoir, Pool 1 in Ben Nevis Formation (as shown in Figure 4.2), accounts for 70% of 

the recoverable oil, and this is where Hebron Field is currently producing. The secondary 

development will focus on Pool 3 in Ben Nevis Formation (CNLOPB, 2011).  



 

70 

 

 

Figure 4.1. Location of the Hebron asset 

 

Figure 4.2. Cross section of Hebron assets (Modified after CNLOPB, 2011) 
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The enhanced oil recovery (EOR) entails extraction of oil residing in a reservoir after 

water or gas has been injected for a pressure support in the reservoir (Stosur et al., 2003). 

The EOR methods for Hebron asset must be investigated early on to improve the recovery 

factor from the projected 30%. This research investigates the effectiveness of 0.05 wt% 

silicon dioxide (SiO2) nanoparticles as a water additive for EOR method with an 

application to the Hebron Field, through coreflood experiments.  

The “nanofluid” injected in the coreflood experiments consisted of SiO2 nanoparticles 

dispersed in seawater collected from Grand Banks, offshore of Newfoundland and 

Labrador, as well as the hydrochloric acid as a nanoparticle stabilizer. The nanoparticles 

were dispersed in seawater because the viable water source for Hebron offshore is the 

surrounding seawater. The SiO2 nanoparticles become highly unstable in seawater 

because of the presence of divalent cations such as Ca2+ and Mg2+ (Metin et al. 2011), 

however, Jafari Daghlian Sofla, James, & Zhang (2018) have shown that the unmodified 

SiO2 nanoparticles can be stabilized in seawater in the presence of hydrochloric acid 

(HCl). Chapter 2 of this manuscript also have shown that the SiO2 nanoparticles remain 

stable for at least 14 days at Hebron Field temperature and pressure (62 °C and 19.00 

MPa), when the ratio between wt% of HCl and wt% of SiO2 nanoparticles is 0.46. This 

ratio was used to prepare 0.05 wt% SiO2 nanofluid for the coreflood experiments in this 

paper. 

Kim, Sivira, James, & Zhang (2017)’s coreflood experiments on Berea sandstone with 

0.01 wt% and 0.03 wt% SiO2 nanoparticles dispersed in the Grand Banks seawater have 

shown incremental oil recovery at Hebron Field conditions. This paper further 
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investigates the effectiveness of SiO2 nanoparticles on oil recovery using 0.05 wt% 

nanoparticle dispersion in seawater at the same experimental conditions and set-up as 

Kim et al. (2017). A coreflood experiment on Hebron Field core is also performed, to 

further emulate Hebron reservoir conditions to study suitability of using SiO2 in the field. 

Since there is a possibility of HCl (nanoparticle stabilizer) contributing to the incremental 

oil recovery, the effect of HCl on the coreflood experiment using cores predominantly 

made up of sandstone is also studied.   

4.3. Experimental Methodology  

The nanofluids prepared for the coreflood experiments consisted of three components: 

silicon dioxide (SiO2) nanoparticles, hydrochloric acid (HCl), and seawater. The 

amorphous hydrophilic SiO2 nanoparticle was purchased in 25 wt% aqueous dispersion 

from US research Nanomaterials. The 25 wt% aqueous nanoparticle dispersion was 

mixed with 3.0 mol/L hydrochloric acid (ACS Reagent, 37%, Sigma-Aldrich) with a 

magnetic stir bar for 10 minutes. The mixture was then diluted to 0.05 wt% dispersion by 

adding seawater from Grand Banks (Offshore Newfoundland and Labrador, Canada). 

Grand Banks seawater contains monovalent cation (Na+) and divalent ions (Ca2+ and 

Mg2+), with total dissolved solid count of approximately 36,000 ppm (Table 4.1). HCl is 

added as a nanoparticle stabilizer, to allow uniform dispersion of nanoparticles in 

seawater, preventing agglomeration. The final HCl concentration in the 0.05 wt% 

nanofluid was 0.010 M. The 0.05 wt% nanofluid had a resulting pH of 2.20, and a density 

of 1.024 g/cm3 at 26 °C. 
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Table 4.1. Grand Banks seawater composition (Valencia et al. 2017) 

Ions 
Concentration 

(ppm) 

Na+ 10,887 

Ca2+ 379 

Mg2+ 1,323 

SO4
2- 3,248 

Cl- 20,186 

HCO3- 132 

Total 35,987 

 

The Berea standard core, as well as the core from the Ben Nevis Formation (Pool 3, Well 

L-55) was used for the coreflood experiments with 0.05 wt% SiO2 nanofluid. The use of 

Berea standard core was to compare results from the coreflood experiments with 0.01 and 

0.03 wt% SiO2 nanofluids by Kim, Sivira, James, & Zhang (2017), and to select the most 

effective nanofluid to perform coreflood experiment on the Hebron core. Sivira, Kim, 

James, Wilton, & Zhang (2017) have reported that the use of HCl on Berea sandstone 

cores dissolves the carbonate content, and could wash the clay minerals away. This could 

potentially increase the porosity and permeability of the rock, increasing the oil recovery. 

Therefore, Berea standard core was used to run a coreflood experiment with the fluid that 

does not contain SiO2 nanoparticles, but 0.010 M of HCl in Grand Banks seawater only, 

to verify that the significant incremental oil recovery is due to SiO2 nanoparticles, not 

HCl.  

The physical properties of the cores used are tabulated in Table 4.2. The Berea standard 

cores were chosen to be a surrogate for Hebron Field cores, because they bear similar 
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mineralogical composition as the Hebron core in the lower Ben Nevis Formation (Figure 

4.3). They are both sandstones composed of mostly Quartz. The Berea sandstones are 

homogeneous according to the information provided by the suppliers (Kocurek 

Industries). Both Hebron and Berea cores are slightly water-wet.  

Table 4.2. Physical properties of the cores used in coreflood experiments 

Run Core Type 
Length 

(cm) 

Pore Volume 

(mL) 
Porosity 

Permeability 

(mD) 

1 Berea 9.91 19.71 17.4 400 

2 Hebron 10.51 22.48 19.0 300 - 500 

3 Berea 10.12 20.62 17.9 400 

 

 

Figure 4.3. Mineralogical composition of core from Ben Nevis Formation and Berea sandstone 

The cores were restored to the reservoir conditions as per Sripal & James (2016). This 

involved sonicating the cores for 45 minutes to remove any fines; saturating the cores in 
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synthetic formation brine (Table 4.3) to produce connate water; saturating the core with 

oil using centrifuge; then aging the cores at 90 °C and 20.7 MPa for 4 weeks. 

 
Table 4.3. Composition of synthetic formation water used to generate connate water in Berea and 

Hebron Cores 

Composition 
Concentration 

(ppm) 

NaCl  (≥99%, Sigma-Aldrich) 96,959 

CaCl2∙2H2O  (≥99%, Sigma-Aldrich) 14,158 

MgCl2∙6H2O  (≥99%, Fisher) 2966 

KCl  (99.2%, Fisher) 461 

Na2SO4  (≥99.0, Sigma-Aldrich) 373 

Total 114,917 

 

Simulated oil was used to saturate the cores because sufficient Hebron crude oil to 

perform coreflood experiments was unavailable at the time of the experiment. The 

simulated oil was prepared to match the oil viscosity of Hebron field at Pool 1. The 

simulated oil prepared by mixing fourteen parts of Hibernia (another offshore 

Newfoundland and Labrador field) crude oil with one part of Athabasca bitumen, had a 

viscosity of 10.9 mPa∙s at 62 °C and 19.0 MPa (Valencia et al., 2017). The viscosity was 

measured with a Cambridge PVT viscometer, which has an accuracy of ± 1%. The 

composition of the simulated oil (Valencia et al., 2017) by Agilent Technologies 7890A 

GC System is shown in Figure 4.4.    
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Figure 4.4. Composition of simulated oil by the carbon number 

 

As can be seen in the schematic diagram of the coreflood experiment setup in Figure 4.5, 

the two accumulators were used, one filled with Grand Banks seawater for waterflooding, 

and the other with either 0.05 wt% nanofluid or seawater-HCl mixture, depending on the 

run. 20k Quizix pump injects deionized water at the bottom of the floating piston 

accumulator to allow two separates 5000 Quizix pumps to deliver seawater and injecting 

fluids from the accumulator to the core at a constant flowrate. The second 20k Quizix 

pump injected silicon oil into the core holder to generate overburden pressure of 24.1 

MPa. The coreflood experiments were conducted at Hebron Field temperature and 

pressure of 62 ℃ and 19.0 MPa, respectively. 
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Figure 4.5. Schematic diagram of coreflood experiment setup  

 

Figure 4.6 (a) shows coreflood injection scheme for three coreflood experiments 

conducted. The seawater from Grand Banks were used for both initial and secondary 

waterflooding. Though all the oil recoverable from the waterflood occurs within the 

injection of 1 to 2 pore volumes (PV) of water, 4 pore volumes of water was injected for 

initial waterfloods to ensure that there is absolutely no more recovery from the 

waterflooding, allowing effective evaluation of nanoparticle flooding as a tertiary 

recovery method.  



 

78 

 

 

Run Core Type 

SiO2 

Concentration 

(wt %) 

HCl 

Concentration 

(mol/L) 

HCl:SiO2 Ratio 

(in wt %:wt %) 

1 Berea 0.05 0.010 0.46 

2 Hebron 0.05 0.010 0.46 

3 Berea 0.00 0.010 N/A 

 

Figure 4.6 (a) Coreflood injection schemes (b) Summary of cores used and fluids injected 

The 2 PV of 0.05 wt% nanofluid flooding followed the waterflooding for Run 1 and 2, as 

labelled in Figure 4.6 (b). 0.05 wt% nanofluid was injected to the Hebron core in Run 2 

because 0.05 wt% nanoparticle flooding was the most efficient in improving the 

incremental oil recovery out of 0.01, 0.03, and 0.05 wt% nanofluids on Berea standard 

cores. Run 3 is designed to quantify the contribution of HCl on the incremental oil 

recovery in sandstones, if any. Therefore, 2 PV of seawater and HCl mixture was injected 

for Run 3. The mixture contained the same concentration of HCl as in 0.05 wt% 

nanofluid.  

The system was then shut-in for 6 hours to promote nanofluid to further interact with the 

core. Finally, the cores were injected with seawater once again for 4 PV to observe 

possibility of further oil recovery.  

Initial 
Waterflooding

•Seawater

•4 PV

•0.2 mL/min

Nanoparticle 
flooding

•Nanofluid

•2 PV

•0.2 mL/min

Shut-in

•6 hours

Secondary 
Waterflooding

•Seawater

•4 PV

•0.2 mL/min
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The fluids were always injected at a constant flowrate of 0.2 mL/min in all runs. This is 

equivalent to 1ft/day, which is the typical injection rate at the producing fields.  

The effluents were collected in graduate cylinders to measure the volume of oil produced. 

The total volume of the content in the graduated cylinder, as well as volume of clear 

effluent were read directly from the graduated cylinder every 10 minutes. The difference 

between the two volumes gave the volume of oil produced. The raw data from 

coreflooding experiments can be found in Appendix, as well as sample calculation for oil 

recovery factor.  

The effluent pH’s were measured at the end of the initial waterflooding, nanoparticle 

flooding, and secondary waterflooding, and was compared to the pH’s of the injectants. 

The pH’s were measured with Corning Pinnacle 540 pH meter at room temperature. The 

pH meter was calibrated with buffer solutions with pH’s of 4.00, 7.00, and 10.05 

(Certified Grade, Fisher Chemical). The instrument measures accurately to ± 0.01 pH.  

 

4.4. Results and Discussion  

The oil recovery from the initial waterflood for 0.05 wt% SiO2 coreflood experiment on 

Berea sandstone (Run 1) was 54.1%. The nanoparticle flooding increased the oil recovery 

by 14.9%. The second water flooding after the shut-in period did not further increase the 

oil recovery, which makes the total oil recovery to be 69.0% (Figure 4.7). It is evident 

that the higher nanoparticle concentration translates to a higher incremental oil recovery. 
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(As a reference, the incremental oil recovery using 0.01 and 0.03 wt% SiO2 coreflood 

experiments on Berea sandstone performed by Kim et al. (2017) were 3.3%, and 9.3%, 

respectively).  

 

Figure 4.7. Coreflood run 1: oil recovery using 0.05 wt% SiO2 nanofluids on Berea sandstone core 

0.05 wt% nanofluid was used for the coreflood experiment on the Hebron Field core, 

because 0.05 wt% nanoparticle flooding gave the highest incremental oil recovery on 

Berea standard cores. As can be seen on Figure 4.8, 49.7% of oil was recovered from the 

initial waterflooding on the Hebron Field core. The nanoparticle flooding that followed 

waterflooding increased the oil recovery by 11.9%, totalling 61.6 % of oil recovery. The 

second 4 PV of waterflooding did not produce additional oil, which was the case in 
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coreflood experiments on the Berea sandstones, regardless of the concentrations of the 

nanofluids used. Therefore, the overall recovery obtained was 61.6%.  

 
 

Figure 4.8. Coreflood run 2: oil recovery using 0.05 wt% SiO2 nanofluid on Hebron core 

The incremental oil recovery with 0.05 wt% nanofluid after the waterflooding on Berea 

standard core and Hebron core is expected to be similar, due to the similar mineralogical 

composition. In fact, the incremental oil recovery difference between the two are only 

3.0%, demonstrating that the Berea standard core is a suitable surrogate for the Hebron 

core. The 3.0% difference in the incremental oil recovery between these two runs is most 

likely due to the differences in the mineral arrangements and morphology, despite the 

similarities in their compositions.  
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The purpose of adding hydrochloric acid in the nanofluid was to prevent SiO2 

nanoparticles from agglomerating in the seawater. There is a possibility that the 

hydrochloric acid could contribute to significant increase in the oil recovery, as HCl 

would dissolve carbonate content in the rocks, and wash away clay minerals (Sivira, Kim, 

James, Wilton, & Zhang, 2017), potentially increasing the porosity and permeability of 

the rocks. Berea has a minimal carbonate content (0.6%), however, the effect of HCl on 

the incremental oil recovery was examined through coreflood experiment (Figure 4.9). 

 
 
Figure 4.9. Coreflood run 3: oil recovery using seawater + HCl mixture (0.00 wt% nanofluid) on 

Berea sandstone core 
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The initial waterflooding gave 55.5% of recovery, and when seawater-HCl mixture is 

injected, a 1.0% of recovery is observed. The secondary waterflooding after the shut-in 

period did not increase the recovery, giving an overall recovery of 56.6%. The decrease in 

the carbonate and clay content from the HCl could have led to 1.0% incremental recovery 

observed during the seawater-HCl mixture flooding. Comparing the oil recovery curve 

from this run with Run 1 (0.05 wt% nanoparticle flooding on Berea standard core), which 

gave 14.9% incremental recovery during the nanoparticle flooding, it is evident that the 

nanoparticles contributes to a considerable additional oil recovery, not HCl.  

The unusual spike in the differential pressure and/or continuous build-up of the pressures 

after nanoparticle flooding means that there may have been pore blocking due to 

nanoparticle agglomeration (Li & Torsæ ter, 2015). Such abnormalities in the differential 

pressures were not observed during any of the coreflood experiments, indicating no sign 

of nanoparticle agglomeration during the experiment.  

The waterflooding 6-hour shut-in period did not improve oil recovery, as previously seen 

in Kim et al. (2017)’s results. This result is expected because SiO2 nanoparticles changed 

the wettability of the core to more water-wet conditions as Sivira et al. (2017)’s results 

suggest. Increasing the injection rate for the second waterflooding may improve the oil 

recovery, however, was not experimentally examined in this study.  
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The pH’s of the fluids initially injected, and the effluent collected at the end of each 

waterflooding, and nanoparticle flooding were measured. The measurements are tabulated 

as Table 4.4, 4.5 and 4.6 for three coreflood experiments conducted in the study.  

Table 4.4 The summary of pH measurements from coreflood run 1 

 Initial Waterflooding Nanoparticle flooding Secondary Waterflooding 

Injectant Grand Banks seawater 0.05 wt% nanofluid Grand Banks seawater 

 

Injectant 

pH 
7.84 2.20 7.84 

Effluent pH 6.84 7.04 7.04 

 

 

Table 4.5 The summary of pH measurements from coreflood run 2 

 Initial Waterflooding Nanoparticle flooding Secondary Waterflooding 

Injectant Grand Banks seawater 0.05 wt% nanofluid Grand Banks seawater 

 

Injectant 

pH 
7.84 2.20 7.84 

Effluent pH 7.82 7.96 7.97 

 

 
Table 4.6 The summary of pH measurements from coreflood run 3 

 Initial Waterflooding Nanoparticle flooding Secondary Waterflooding 

Injectant Grand Banks seawater 0.00 wt% nanofluid Grand Banks seawater 

 

Injectant 

pH 7.84 2.18 7.84 

Effluent pH 6.85 6.87 7.06 
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The pH of the seawater injected for waterflooding was 7.84. The effluent pH collected 

after the initial waterflooding on Berea core was lower than the injected pH of 6.84 and 

6.85. The pH after the first waterflood on Hebron core was 7.82, which has barely 

changed from the pH of the injected seawater. The pH of the effluent after the first 

waterflood seems to be affected by the type of the cores, since the effluent pH’s from the 

Berea cores are relatively the same, but not the Hebron core. This may be attributed to the 

release of fines in Berea sandstone when seawater is injected (Kia, Fogler, & Reed, 1987), 

which would release acidic cations in the sandstone, such as Al3+ and Fe3+. The SEM 

analysis and MLA is needed to find the exact composition of the Hebron core used, to 

explain why the pH of the effluent has not changed compared to the seawater injected.  

The pH of the 0.05 wt% SiO2 nanofluid injected for nanoparticle flooding was 2.20. The 

pH of the seawater/HCl mixture containing the same HCl concentration as 0.05 wt% 

nanofluid, but without the nanoparticles was 2.18. The pH’s of the effluents from the 

nanoparticle floodings and HCl flood were neutral, with pH ranging between 6.87 to 7.96, 

even though acidic fluids were injected. The likely reason for this is because acidic 

injectants became diluted with seawater that was previously injected. The pH’s of the 

effluents after the second waterflooding that followed nanoparticle flooding on both 

Berea and Hebron cores remained constant. The effluent pH of the second waterflooding 

after seawater/HCl mixture was 7.06. This pH is slightly higher than the effluent pH from 

seawater/HCl flooding. This may be due to the ion exchange between the free H+ ions 

with the clay minerals. The H+ is known to readily adsorb onto the sandstone surfaces 

(Austad, Rezaeidoust, & Puntervold, 2010), which would in turn increase the pH because 

there are less H+ in the solution. The effluent pH increase was not observed after 0.05 wt% 
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nanoparticle flooding, and this could be because of the presence of SiO2 nanoparticles, 

preventing free H+ from adsorbing on to the rock surface. The detailed discussion for 

these differences would require further investigation, involving instrumentation, and 

understanding of the SiO2 nanoparticle-oil-rock interaction in the nanoscale. It would also 

help to measure the pH of the effluent after every 1 PV injected, instead of measuring at 

the end of each flooding as performed here. 

The nature of the coreflooding experiment makes it difficult to repeat the experiment on 

the same core. This is because enhanced oil recovery methods aim to change the 

properties of the fluid-rock and/or fluid-fluid interactions, and therefore the rock 

properties may have been irreversibly altered after running an experiment on a given core 

sample. Though coreflood experiments presented here cannot be duplicated, the validity 

of the results can be justified by comparing the initial waterflooding. All Berea sandstone 

cores used in this experiment, as well as the coreflooding presented in Kim et al. (2017)’s 

paper, were prepared the same way. The seawater used for the waterflooding were from 

the same batch, and the injection scheme was identical as well. Therefore, given the 

homogeneity of Berea sandstone cores, the oil recovery factor from the initial 

waterflooding would be expected to be similar, if not the same. The results from the 

initial waterflooding on Berea sandstone cores are agreeable across the coreflood 

experiments (including the ones presented in this paper and Kim et al. (2017)), with the 

maximum difference of 2.2%. 
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4.5. Conclusions 

The coreflood experiments were conducted at Hebron Field pressure and temperature 

using 0.05 wt% silicon dioxide (SiO2) nanofluid on Berea sandstone core and Hebron 

core. The effect of hydrochloric acid (HCl) in the nanofluid on the oil recovery is also 

studied.  The summary of the findings is:  

• Out of 0.01, 0.03, and 0.05 wt% SiO2 nanofluid, the attained oil recovery was 58.9, 

69.0, and 65.6%, respectively upon coreflood experiments on Berea sandstone 

cores. The highest concentration (0.05 wt% nanofluid) gave the highest oil 

recovery (65.6%). 

• The coreflood experiment using 0.05 wt% nanofluid on Hebron field core gave 

total oil recovery of 61.6%, with 12.9% incremental oil recovery. This experiment 

emulated the offshore reservoir conditions as closely as possible – from the 

temperature, pressure, core, oil, injecting fluids, and nanoparticle dispersant. The 

positive impact of SiO2 nanofluid at these conditions brings a step closer to 

implementing SiO2 nanoparticles for enhanced oil recovery techniques.   

• The HCl in the nanofluid has minimal effect on the oil recovery from the cores 

with low carbonate content, and the nanoparticle is a key player in increasing the 

oil recovery on cores mostly composed of quartz.  
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Chapter 5. Concluding Remarks 

5.1. Summary 

The enhanced oil recovery research using silicon dioxide nanoparticles has been growing 

in the laboratory scale because silicon dioxide nanoparticles are environmentally friendly; 

and have positive impact on the oil recovery. The nanoparticle enhanced oil recovery 

method in the offshore Hebron Field faces a major challenge, which is stabilizing 

nanoparticles in the seawater. The silicon dioxide nanoparticles are highly susceptible to 

magnesium ions (Mg2+), and the nanoparticles agglomerate immediately when added to 

the seawater. The agglomerated nanoparticles could potentially block the pores of the 

rock, impairing permeability. There was a need to evaluate the effectiveness of silicon 

dioxide nanoparticles dispersed in seawater on the oil recovery, as previous laboratory 

coreflood studies found in the literature (Aurand et al., 2014; Hendraningrat & Li, 2013; 

Nazari Moghaddam et al., 2015) had dispersed nanoparticles in a simple sodium chloride 

solution.  

The hydrochloric acid was suggested as a silicon dioxide nanoparticle stabilizer because it 

is widely available, and is cost-effective. The best method to prepare nanoparticle 

suspension in seawater using hydrochloric acid was to mix nanoparticles and 

hydrochloric acid first, then to add seawater. The higher hydrochloric acid to nanoparticle 

ratio was required with increasing concentrations of nanoparticles to stabilize the 0.05 wt% 

nanoparticle suspension in seawater. For example, a system with 0.003 ratio between 

hydrochloric acid to nanoparticle ratio was unstable, whereas the system with ratios of 
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0.02 and 0.06 were stable. The higher hydrochloric acid to nanoparticle ratio is also 

required to keep nanoparticles stable over time with increasing temperature. The 0.05 wt% 

nanofluid with HCl to nanoparticle ratio of 0.12 became unstable within a day at 62 °C, 

whereas the nanoparticles were stable up to 14-days for nanofluids with ratios higher than 

0.46.  

The coreflood experiments were performed with nanofluids that has HCl to nanoparticle 

ratio of 0.46 because nanoparticle stability study at 62 °C showed that the nanoparticles 

would remain stable at this ratio for longer than the duration of the experiment. The 

purpose of the coreflood experiment was to investigate whether the nanoparticles can 

increase the oil recovery when injected as a tertiary recovery method. The experiments 

were conducted at Hebron Field temperature (62 °C) and pressure (19.0 MPa). Table 5.1 

below summarizes coreflood experiment results.  

Table 5.1 Summary of coreflooding experiment results 

Results 

Found 

in 

Core 

Type 

Nanofluid 

Conc. 

Oil Recovery (%) 

Initial 

Waterflooding 

Nanoparticle 

flooding 

Secondary 

Waterflooding 
Total 

Chapter 3 Berea 0.01 wt% 55.6 3.3 0.0 58.9 

Chapter 3 Berea 0.03 wt% 56.3 9.3 0.0 65.6 

Chapter 4 Berea 0.05 wt% 54.1 14.9 0.0 69.0 

Chapter 4 Hebron 0.05 wt% 49.7 11.9 0.0 56.5 

Chapter 4 Berea 0.00 wt% 55.5 1.0 0.0 61.6 

 

Berea sandstone cores were used to investigate the effect of 0.01, 0.03 and 0.05 wt% 

silicon dioxide nanofluids on the oil recovery. The incremental oil recovery increased 
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with increasing nanoparticle concentration. The increments using 0.01, 0.03 and 0.05 wt% 

nanofluids were 3.3, 9.3, and 14.9%, respectively. The coreflood experiment on the 

Hebron core was also performed, and the incremental oil recovery was 11.9%. The 0.05 

wt% nanofluid was used for Hebron core coreflood because 0.05 wt% nanofluid gave the 

highest recovery on the Berea coreflood experiments. All the coreflood experiments 

preformed in this research proved the positive impact of silicon dioxide nanoparticles on 

the oil recovery. The hydrochloric acid in the nanofluid had minimal effect on the 

incremental oil recovery because using hydrochloric acid with seawater only (without the 

nanoparticles) merely achieved 1.0% of additional oil recovery.  

 

5.2. Lessons Learned and Future Recommendations 

5.2.1. SiO2 Nanoparticle Stability  

The Mg2+ cations are found to affect SiO2 nanoparticle stability, and for the same reasons, 

Ca2+ cations in the seawater are likely to have similar effect on the stability. Although the 

Ca2+ concentration (379 ppm) in seawater is approximately 3.5 times lower than that of  

Mg2+ 
 (1323 ppm), it would be interesting to compare the effect of Ca2+ to the effect of 

Mg2+ on the SiO2 nanoparticle stability. 

The duration of the nanoparticle stability in seawater will need to be in the scale of years, 

rather than days, for the real application of the nanoparticle enhanced oil recovery in the 

offshore field. The optimal hydrochloric acid concentration may need to be adjusted to 

achieve desired stability over the years. Further investigation on the nanoparticle stability, 
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such as looking into ways of modifying the surface of the nanoparticles; and searching 

new types of stabilizer could also be helpful.  

5.2.2. Optimization of SiO2 Nanoparticle Concentration 

The nanoparticle concentration studied for the coreflood experiments were limited to 0.01, 

0.03 and 0.05 wt%. This was based on the literature review earlier on in the project. The 

nanoparticle concentrations can be increased to see if it will result in a higher incremental 

oil recovery, without blocking the pores of the rocks impairing the permeability.  

5.2.3. Coreflooding Experiments 

To better emulate the Hebron Field conditions, coreflood experiments are recommended 

using Hebron crude oil, now that is more accessible. More coreflooding experiments 

should be run on Hebron cores, as it becomes available, to further evaluate suitability of 

nanoparticle enhanced oil recovery at Hebron Field. 

The nanoparticle stabilizer, HCl had little effect on the oil recovery on the Berea 

sandstone core, however HCl may play a more significant role in the rocks with higher 

carbonate content. The effect of HCl on the standard cores with higher carbonate content 

is recommended.  

The effluent pH measurements during the coreflooding experiments are recommended to 

be taken after every pore volume injected, to better understand the fluid-rock interactions. 

This study focused on the use of nanoparticles as a tertiary recovery method. It would be 

interesting to run experiments as secondary recovery method, and compare the results.  
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5.2.4. Nanoparticle Retention due to Adsorption  

The nanoparticles adsorption on the core is possible, and the degree of adsorption should 

be investigated for the economy of nanoparticle flooding. SEM/MLA on the core, as well 

as ICP-OES analysis on the effluent were performed in attempts to measure the retention 

of nanoparticles. However, it was extremely difficult to locate nanoparticles on a 

microscope given the size of the core. In addition, ICP instrument was unable to detect 

the nanoparticles due to the equipment limitation; as well as cross-contamination of the 

sample as silicon is abundantly present in glassware, and vials used to transport samples 

and to introduce to the ICP equipment. Alternatively, the output amount of the 

nanoparticle over time could be analyzed by injecting several pore volumes of nanofluid 

into a clean core by mass balance.  

5.2.5. Nanoparticle Enhanced Oil Recovery Mechanisms 

The coreflood experiments show that the SiO2 nanofluids increase the oil recovery, 

however, it sheds very little light on “how”. The follow-up experiments that delves into 

understanding the mechanisms are needed. They can be (but not limited to) nanoparticle 

mass balance before/after coreflood; and SEM analysis to verify whether the nanoparticle 

preferentially adsorb onto the minerals in the rock. 
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Appendices 

Appendix A. Standard Deviations of Silicon Dioxide Nanoparticle 

Particle Size Measurements 

Experiment 1: Effect of Salt Ions on the Stability of Silicon Dioxide Nanoparticles 

Sodium Chloride (NaCl) 

 

Sodium Sulfate (Na2SO4) 

 

  

Na+ Concentration 

(ppm) 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

2500 20.59 0.10 

5000 23.06 0.09 

20000 19.86 0.22 

30000 21.83 0.18 

50000 23.65 0.13 

Na+ Concentration 

(ppm) 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

2500 21.82 0.08 

5000 19.58 0.21 

20000 20.78 0.21 

30000 21.46 0.09 

50000 24.86 0.03 
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Magnesium Chloride Hexahydrate (MgCl2∙6H2O) 

 

Magnesium Chloride Hexahydrate (MgCl2∙6H2O) 

 

 

Experiment 2: Silicon Dioxide Nanofluid Preparation Method 

Method 1 (SiO2 + HCl + Seawater)  

  

  

Na+ Concentration 

(ppm) 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

500 26.47 0.10 

1000 120.6 1.98 

Na+ Concentration 

(ppm) 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

500 24.48 0.15 

1000 151.17 17.48 

HCl to SiO2 Ratio Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.02 25.01 0.05 

0.06 24.09 0.19 

0.12 23.52 0.12 

0.36 21.43 0.29 

0.46 20.81 0.12 

0.60 20.48 0.14 
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Method 2 (Seawater + HCl + SiO2)  

 

Method 3 (SiO2 + Seawater + HCl)  

 

  

HCl to SiO2 Ratio Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.02 33.64 0.18 

0.06 34.86 0.18 

0.12 31.70 0.14 

0.36 28.02 0.31 

0.46 27.15 0.14 

0.60 30.72 0.17 

HCl to SiO2 Ratio Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.02 31.81 0.10 

0.06 32.90 0.09 

0.12 25.29 0.16 

0.36 24.58 0.23 

0.46 24.19 0.30 

0.60 23.57 0.08 
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Experiment 3: Hydrochloric Acid to Silicon Dioxide Nanoparticle Ratio on the 

Nanoparticle Stability 

* Unmeasurable due to severe agglomeration 

 

 

Experiment 4: Silicon Dioxide Nanoparticle Stability at Room Temperature  

Room Temperature at 1 Hour 

 

  

HCl  

Concentration 

(wt%) 

SiO2 

Concentration 

(wt%) 

HCl to SiO2 

Ratio 

Particle Size 

(nm) 

Standard 

Deviation  

(nm) 

0.001 0.05 0.02 25.41 0.05033 

0.001 0.15 0.007 36.22 0.4102 

0.001 0.30 0.003 * * 

0.003 0.05 0.06 24.09 0.1947 

0.003 0.15 0.02 25.44 0.2427 

0.003 0.30 0.01 34.50 0.4571 

HCl to SiO2 Ratio Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 23.96 0.15 

0.18 27.56 0.15 

0.24 23.44 0.27 

0.46 20.97 0.21 

0.60 27.42 0.53 
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Room Temperature at 1 Day 

 

Room Temperature at 2 Days 

 

Room Temperature at 3 Days 

 

  

HCl to SiO2 Ratio Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 27.84 0.29 

0.18 23.26 0.03 

0.24 24.65 0.44 

0.46 21.50 0.28 

0.60 26.31 0.42 

HCl to SiO2 Ratio Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 34.88 0.36 

0.18 24.53 0.12 

0.24 25.01 0.45 

0.46 22.50 0.31 

0.60 25.89 0.38 

HCl to SiO2 Ratio Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 35.90 0.50 

0.18 24.61 0.48 

0.24 27.48 0.20 

0.46 29.70 1.42 

0.60 29.02 0.59 
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Room Temperature at 6 Days 

 

Room Temperature at 8 Days 

 

Room Temperature at 10 Days 

 

  

HCl to SiO2 Ratio 

 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 53.25 0.21 

0.18 26.38 0.62 

0.24 29.28 0.11 

0.46 25.79 0.40 

0.60 25.94 0.57 

HCl to SiO2 Ratio 

 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 73.49 1.19 

0.18 26.91 0.90 

0.24 29.11 0.51 

0.46 23.31 0.41 

0.60 28.56 0.29 

HCl to SiO2 Ratio 

 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 85.84 1.18 

0.18 27.49 0.53 

0.24 30.32 0.40 

0.46 23.29 0.65 

0.60 26.88 0.26 
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Room Temperature at 14 Days 

 

 

Experiment 4: Silicon Dioxide Nanoparticle Stability at 60°C over time  

At 1 Hour, 62 °C 

 

1 Day at 62 °C 

HCl to SiO2 Ratio 

 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 116.30 1.01 

0.18 28.19 0.46 

0.24 33.17 2.40 

0.46 22.53 0.19 

0.60 24.33 0.30 

HCl to SiO2 Ratio 

 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 23.96 0.15 

0.18 27.56 0.15 

0.24 23.44 0.27 

0.46 20.97 0.21 

0.60 27.42 0.53 

HCl to SiO2 Ratio 

 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 89.31 0.83 

0.18 25.89 0.25 

0.24 24.32 0.43 

0.46 20.87 0.16 

0.60 25.50 0.42 
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2 Days at 62 °C 

 

3 Days at 62 °C 

* Unmeasurable due to severe agglomeration 

6 Days at 62 °C 

* Unmeasurable due to severe agglomeration 

 

HCl to SiO2 Ratio 

 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 294.4 1.37 

0.18 23.53 0.42 

0.24 25.28 1.12 

0.46 20.98 0.35 

0.60 22.90 0.23 

HCl to SiO2 Ratio 

 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 * * 

0.18 26.6 0.09 

0.24 27.77 0.53 

0.46 21.86 0.27 

0.60 25.43 0.33 

HCl to SiO2 Ratio 

 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 * * 

0.18 30.45 0.69 

0.24 34.05 0.62 

0.46 22.09 0.55 

0.60 25.12 0.42 
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8 Days at 62 °C 

* Unmeasurable due to severe agglomeration 

10 Days at 62 °C 

* Unmeasurable due to severe agglomeration 

14 Days at 62 °C 

* Unmeasurable due to severe agglomeration 

  

HCl to SiO2 Ratio 

 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 * * 

0.18 35.43 0.28 

0.24 39.07 1.85 

0.46 22.42 0.04 

0.60 24.01 0.99 

HCl to SiO2 Ratio 

 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 * * 

0.18 38.69 0.39 

0.24 43.66 2.03 

0.46 22.41 0.08 

0.60 24.28 1.92 

HCl to SiO2 Ratio 

 

Particle Size  

(nm) 

Standard Deviation  

(nm) 

0.12 * * 

0.18 39.21 0.55 

0.24 46.70 1.15 

0.46 26.25 0.32 

0.60 23.98 0.40 
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Appendix B. Visual Examination of 0.05 wt% Silicon Dioxide 

Nanoparticles, with Hydrochloric to Nanoparticle Ratios 0.12, 0.18, 0.24, 

0.46, and 0.60, over 14-Day Period at Room Temperature and 62 °C 

Room Temperature  
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At 62 °C  
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Appendix C. 0.03 wt% Silicon Dioxide Nanoparticle Size Measurements 

at Room Temperature and at 62 °C with Hydrochloric Acid to Silicon 

Dioxide Ratio Ranging from 0.12 to 0.60 

Room Temperature 

 

 

At 62 °C  
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Appendix D. Visual Examination of 0.03 wt% Silicon Dioxide 

Nanoparticles, with Hydrochloric to Nanoparticle Ratios 0.12, 0.18, 0.24, 

0.46, and 0.60, over 14-Day Period at Room Temperature and 62 °C 

Room Temperature 
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At 62 °C 
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Appendix E. Visual Examination of 0.01 wt% Silicon Dioxide 

Nanoparticles, with Hydrochloric to Nanoparticle Ratios 0.12, 0.18, 0.24, 

0.46, and 0.60, over 14-Day Period at Room Temperature and 62 °C 

Room Temperature 
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At 62 °C 

 

* Note: The particle size measurements of 0.01 wt% silicon dioxide nanoparticles were 

inaccurate due to the equipment detection limit, hence only the visual examination 

pictures are presented.
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Appendix F. Determination of Core Porosity 

 

Description of 

Experiment 
Type Length Diameter 

Area of 

Cross 

Section 

Dry 

Weight 

Wet 

Weight 

Pore 

Volume 

Bulk 

Volume 
Porosity 

  
(cm) (cm) (cm2) (g) (g) (cm3 or mL) (cm3

 or mL) % 

0.01 wt% 

nanoparticle 

flooding 

Berea 10.18 3.81 11.4 245.769 265.690 19.92 116.06 0.172 

0.03 wt% 

nanoparticle 

flooding 

Berea 10.10 3.81 11.4 242.7371 263.582 20.84 115.15 0.181 

0.05 wt% 

nanoparticle 

flooding 

Berea 9.91 3.81 11.4 239.1125 258.824 19.71 112.98 0.174 

HCl flooding Berea 10.12 3.81 11.4 239.2621 259.881 20.62 115.38 0.179 

0.05 wt% 

nanoparticle 

flooding 

Hebron 10.51 3.79 11.2 244.3825 266.8579 22.48 118.57 0.190 

  



 

119 

 

Appendix G. Sample Porosity Calculation using Berea core used for 

0.01 wt% nanoparticle flooding 

 

Area of Cross Section =  π ×  (
Diameter

2
)

2

=  π ×  (
3.81cm

2
)

2

 

  = 11.4  

Bulk Volume = Length ×  Area of Cross Section =  11.18 cm × 11.4 cm2

= 116.06 cm3  

Pore Volume =
Wet Weight − Dry Weight

Density of Water
=

265.690g − 245.769 g

0.9982 g/cm3
 

= 19.92 cm3  

Porosity =  
Pore Volume

Bulk Volume
=  

19.92 𝑐𝑚3

116.06 𝑐𝑚3
 

 = 0.172 
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Appendix H. Sample Calculations to Generate Oil Recovery Graphs 

from the Coreflood Experiments 

 

Calculation shown for Berea core used for 0.01 wt% nanoparticle flooding 

 

Pore Volume Injected =  
Cumulative Volume Injected

Core Pore Volume
=  

2.0 mL

19.92 mL
 

= 0.10  

 

% Oil Recovery =  
Cumulative Oil Produced

(Pore Volume ×  Oil Saturation)
 × 100%  

=  
0.7 mL

19.92 mL × 0.75 
 × 100% 

4.69 
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Appendix I. Coreflood Experiment Using 0.01 wt% Nanofluid on Berea 

Sandstone Raw Data 

 

Injection 
Type 

Volume 
Injected  

(per min) 

Cumulative 
Volume 
injected 

Pore 
Volume 
Injected 

Total Pore 
Volume 
Injected 

Cumulative 
Oil 

Produced 

% Oil 
Recovery 

∆P 

  mL mL mL   mL   psia 

seawater 0.0 0.0 0.00 0.00 0.0 0.00 10.92 

seawater 2.0 2.0 0.10 0.10 0.7 4.69 12.48 

seawater 2.0 4.0 0.20 0.20 1.7 11.38 14.02 

seawater 2.0 6.0 0.30 0.30 3.1 20.75 15.10 

seawater 2.0 8.0 0.40 0.40 4.4 29.45 15.82 

seawater 2.0 10.0 0.50 0.50 5.6 37.48 15.67 

seawater 2.0 12.0 0.60 0.60 6.7 44.84 15.67 

seawater 2.0 14.0 0.70 0.70 7.6 50.87 15.52 

seawater 2.0 16.0 0.80 0.80 7.9 52.88 15.47 

seawater 2.0 18.0 0.90 0.90 8.1 54.21 15.32 

seawater 2.0 20.0 1.00 1.00 8.2 54.88 15.08 

seawater 2.0 22.0 1.10 1.10 8.3 55.55 14.98 

seawater 2.0 24.0 1.20 1.20 8.3 55.55 14.85 

seawater 2.0 26.0 1.31 1.31 8.3 55.55 14.75 

seawater 2.0 28.0 1.41 1.41 8.3 55.55 14.05 

seawater 2.0 30.0 1.51 1.51 8.3 55.55 14.04 

seawater 2.0 32.0 1.61 1.61 8.3 55.55 14.01 

seawater 2.0 34.0 1.71 1.71 8.3 55.55 14.07 

seawater 2.0 36.0 1.81 1.81 8.3 55.55 13.93 

seawater 2.0 38.0 1.91 1.91 8.3 55.55 14.05 

seawater 2.0 40.0 2.01 2.01 8.3 55.55 13.97 

seawater 2.0 42.0 2.11 2.11 8.3 55.55 14.06 

seawater 2.0 44.0 2.21 2.21 8.3 55.55 14.02 

seawater 2.0 46.0 2.31 2.31 8.3 55.55 14.18 

seawater 2.0 48.0 2.41 2.41 8.3 55.55 13.99 

seawater 2.0 50.0 2.51 2.51 8.3 55.55 13.90 

seawater 2.0 52.0 2.61 2.61 8.3 55.55 13.96 

seawater 2.0 54.0 2.71 2.71 8.3 55.55 13.67 

seawater 2.0 56.0 2.81 2.81 8.3 55.55 13.69 

seawater 2.0 58.0 2.91 2.91 8.3 55.55 13.69 

seawater 2.0 60.0 3.01 3.01 8.3 55.55 13.67 
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seawater 2.0 62.0 3.11 3.11 8.3 55.55 13.67 

seawater 2.0 64.0 3.21 3.21 8.3 55.55 13.67 

seawater 2.0 66.0 3.31 3.31 8.3 55.55 13.67 

seawater 2.0 68.0 3.41 3.41 8.3 55.55 13.69 

seawater 2.0 70.0 3.51 3.51 8.3 55.55 13.69 

seawater 2.0 72.0 3.61 3.61 8.3 55.55 13.69 

seawater 2.0 74.0 3.71 3.71 8.3 55.55 13.69 

seawater 2.0 76.0 3.82 3.82 8.3 55.55 13.69 

seawater 2.0 78.0 3.92 3.92 8.3 55.55 13.69 

seawater 2.0 80.0 4.02 4.02 8.3 55.55 13.68 

nanofluid 0.0 0.0 0.00 4.02 8.3 55.55 13.68 

nanofluid 2.0 2.0 0.10 4.12 8.3 55.55 13.66 

nanofluid 2.0 4.0 0.20 4.22 8.3 55.55 13.66 

nanofluid 2.0 6.0 0.30 4.32 8.3 55.55 14.35 

nanofluid 2.0 8.0 0.40 4.42 8.5 56.89 14.44 

nanofluid 2.0 10.0 0.50 4.52 8.6 57.56 14.63 

nanofluid 2.0 12.0 0.60 4.62 8.7 58.23 14.83 

nanofluid 2.0 14.0 0.70 4.72 8.7 58.23 14.72 

nanofluid 2.0 16.0 0.80 4.82 8.8 58.90 14.62 

nanofluid 2.0 18.0 0.90 4.92 8.8 58.90 14.62 

nanofluid 2.0 20.0 1.00 5.02 8.8 58.90 14.61 

nanofluid 2.0 22.0 1.10 5.12 8.8 58.90 14.60 

nanofluid 2.0 24.0 1.20 5.22 8.8 58.90 14.60 

nanofluid 2.0 26.0 1.31 5.32 8.8 58.90 14.69 

nanofluid 2.0 28.0 1.41 5.42 8.8 58.90 14.64 

nanofluid 2.0 30.0 1.51 5.52 8.8 58.90 14.58 

nanofluid 2.0 32.0 1.61 5.62 8.8 58.90 14.67 

nanofluid 2.0 34.0 1.71 5.72 8.8 58.90 14.61 

nanofluid 2.0 36.0 1.81 5.82 8.8 58.90 14.66 

nanofluid 2.0 38.0 1.91 5.92 8.8 58.90 14.65 

nanofluid 2.0 40.0 2.01 6.02 8.8 58.90 14.64 

seawater 2.0 2.0 0.10 6.12 8.8 58.90 14.64 

seawater 2.0 4.0 0.20 6.22 8.8 58.90 14.65 

seawater 2.0 6.0 0.30 6.32 8.8 58.90 14.64 

seawater 2.0 8.0 0.40 6.43 8.8 58.90 14.64 

seawater 2.0 10.0 0.50 6.53 8.8 58.90 14.63 

seawater 2.0 12.0 0.60 6.63 8.8 58.90 14.62 

seawater 2.0 14.0 0.70 6.73 8.8 58.90 14.62 

seawater 2.0 16.0 0.80 6.83 8.8 58.90 14.62 
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seawater 2.0 18.0 0.90 6.93 8.8 58.90 14.62 

seawater 2.0 20.0 1.00 7.03 8.8 58.90 14.62 

seawater 2.0 22.0 1.10 7.13 8.8 58.90 14.62 

seawater 2.0 24.0 1.20 7.23 8.8 58.90 14.62 

seawater 2.0 26.0 1.31 7.33 8.8 58.90 14.61 

seawater 2.0 28.0 1.41 7.43 8.8 58.90 14.61 

seawater 2.0 30.0 1.51 7.53 8.8 58.90 14.61 

seawater 2.0 32.0 1.61 7.63 8.8 58.90 14.45 

seawater 2.0 34.0 1.71 7.73 8.8 58.90 14.47 

seawater 2.0 36.0 1.81 7.83 8.8 58.90 14.49 

seawater 2.0 38.0 1.91 7.93 8.8 58.90 14.50 

seawater 2.0 40.0 2.01 8.03 8.8 58.90 14.39 

seawater 2.0 42.0 2.11 8.13 8.8 58.90 14.44 

seawater 2.0 44.0 2.21 8.23 8.8 58.90 14.47 

seawater 2.0 46.0 2.31 8.33 8.8 58.90 14.49 

seawater 2.0 48.0 2.41 8.43 8.8 58.90 14.50 

seawater 2.0 50.0 2.51 8.53 8.8 58.90 14.44 

seawater 2.0 52.0 2.61 8.63 8.8 58.90 14.41 

seawater 2.0 54.0 2.71 8.73 8.8 58.90 14.46 

seawater 2.0 56.0 2.81 8.83 8.8 58.90 14.49 

seawater 2.0 58.0 2.91 8.94 8.8 58.90 14.50 

seawater 2.0 60.0 3.01 9.04 8.8 58.90 14.41 

seawater 2.0 62.0 3.11 9.14 8.8 58.90 14.42 

seawater 2.0 64.0 3.21 9.24 8.8 58.90 14.47 

seawater 2.0 66.0 3.31 9.34 8.8 58.90 14.49 

seawater 2.0 68.0 3.41 9.44 8.8 58.90 14.45 

seawater 2.0 70.0 3.51 9.54 8.8 58.90 14.42 

seawater 2.0 72.0 3.61 9.64 8.8 58.90 14.46 

seawater 2.0 74.0 3.71 9.74 8.8 58.90 14.49 

seawater 2.0 76.0 3.82 9.84 8.8 58.90 14.47 

seawater 2.0 78.0 3.92 9.94 8.8 58.90 14.41 

seawater 2.0 80.0 4.02 10.04 8.8 58.90 14.46 
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Appendix J. Coreflooding Oil Recovery Plot with Differential Pressures using 0.01 wt% Nanofluid 
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Appendix K. Coreflood Experiment Using 0.03 wt% Nanofluid on Berea 

Sandstone Raw Data 

 

Injection 
Type 

Volume 
Injected  

(per min) 

Cumulative 
Volume 
injected 

Pore 
Volume 
Injected 

Total Pore 
Volume 
Injected 

Cumulative 
Oil 

Produced 

% Oil 
Recovery 

∆P 

  mL mL mL   mL     

seawater 0.0 0.0 0.00 0.00 0.0 0.00 13.05 

seawater 2.0 2.0 0.10 0.10 1.5 9.94 13.56 

seawater 2.0 4.0 0.20 0.20 2.7 17.89 16.09 

seawater 2.0 6.0 0.30 0.30 3.8 25.18 17.02 

seawater 2.0 8.0 0.40 0.40 4.8 31.81 17.54 

seawater 2.0 10.0 0.50 0.50 6.0 39.76 17.29 

seawater 2.0 12.0 0.60 0.60 7.0 46.39 17.48 

seawater 2.0 14.0 0.70 0.70 7.7 51.03 17.67 

seawater 2.0 16.0 0.80 0.80 8.0 53.02 17.68 

seawater 2.0 18.0 0.89 0.89 8.1 53.68 17.60 

seawater 2.0 20.0 0.99 0.99 8.2 54.34 16.90 

seawater 2.0 22.0 1.09 1.09 8.4 55.67 15.90 

seawater 2.0 24.0 1.19 1.19 8.5 56.33 15.61 

seawater 2.0 26.0 1.29 1.29 8.5 56.33 15.41 

seawater 2.0 28.0 1.39 1.39 8.5 56.33 15.32 

seawater 2.0 30.0 1.49 1.49 8.5 56.33 15.31 

seawater 2.0 32.0 1.59 1.59 8.5 56.33 15.32 

seawater 2.0 34.0 1.69 1.69 8.5 56.33 15.33 

seawater 2.0 36.0 1.79 1.79 8.5 56.33 15.32 

seawater 2.0 38.0 1.89 1.89 8.5 56.33 15.32 

seawater 2.0 40.0 1.99 1.99 8.5 56.33 15.32 

seawater 2.0 42.0 2.09 2.09 8.5 56.33 15.32 

seawater 2.0 44.0 2.19 2.19 8.5 56.33 15.33 

seawater 2.0 46.0 2.29 2.29 8.5 56.33 15.34 

seawater 2.0 48.0 2.39 2.39 8.5 56.33 15.33 

seawater 2.0 50.0 2.49 2.49 8.5 56.33 15.33 

seawater 2.0 52.0 2.58 2.58 8.5 56.33 15.33 

seawater 2.0 54.0 2.68 2.68 8.5 56.33 15.32 

seawater 2.0 56.0 2.78 2.78 8.5 56.33 15.33 

seawater 2.0 58.0 2.88 2.88 8.5 56.33 15.38 

seawater 2.0 60.0 2.98 2.98 8.5 56.33 15.34 
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seawater 2.0 62.0 3.08 3.08 8.5 56.33 15.34 

seawater 2.0 64.0 3.18 3.18 8.5 56.33 15.34 

seawater 2.0 66.0 3.28 3.28 8.5 56.33 15.34 

seawater 2.0 68.0 3.38 3.38 8.5 56.33 15.35 

seawater 2.0 70.0 3.48 3.48 8.5 56.33 15.15 

seawater 2.0 72.0 3.58 3.58 8.5 56.33 15.36 

seawater 2.0 74.0 3.68 3.68 8.5 56.33 15.34 

seawater 2.0 76.0 3.78 3.78 8.5 56.33 15.30 

seawater 2.0 78.0 3.88 3.88 8.5 56.33 15.36 

seawater 2.0 80.0 3.98 3.98 8.5 56.33 15.27 

seawater 2.0 82.0 4.08 4.08 8.5 56.33 15.37 

nanofluid 2.0 2.0 0.10 4.17 8.5 56.33 15.48 

nanofluid 2.0 4.0 0.20 4.27 8.5 56.33 15.68 

nanofluid 2.0 6.0 0.30 4.37 8.6 56.99 15.79 

nanofluid 2.0 8.0 0.40 4.47 8.7 57.65 15.93 

nanofluid 2.0 10.0 0.50 4.57 8.8 58.32 15.99 

nanofluid 2.0 12.0 0.60 4.67 8.9 58.98 16.05 

nanofluid 2.0 14.0 0.70 4.77 9.1 60.31 16.09 

nanofluid 2.0 16.0 0.80 4.87 9.2 60.97 16.20 

nanofluid 2.0 18.0 0.89 4.97 9.3 61.63 16.30 

nanofluid 2.0 20.0 0.99 5.07 9.5 62.96 16.40 

nanofluid 2.0 22.0 1.09 5.17 9.6 63.62 16.40 

nanofluid 2.0 24.0 1.19 5.27 9.7 64.28 16.40 

nanofluid 2.0 26.0 1.29 5.37 9.8 64.94 16.35 

nanofluid 2.0 28.0 1.39 5.47 9.9 65.61 16.29 

nanofluid 2.0 30.0 1.49 5.57 9.9 65.61 16.40 

nanofluid 2.0 32.0 1.59 5.67 9.9 65.61 16.39 

nanofluid 2.0 34.0 1.69 5.77 9.9 65.61 16.38 

nanofluid 2.0 36.0 1.79 5.86 9.9 65.61 16.38 

nanofluid 2.0 38.0 1.89 5.96 9.9 65.61 16.37 

nanofluid 2.0 40.0 1.99 6.06 9.9 65.61 16.37 

seawater 2.0 0.0 0.00 6.06 9.9 65.61 16.65 

seawater 2.0 2.0 0.10 6.16 9.9 65.61 16.66 

seawater 2.0 4.0 0.20 6.26 9.9 65.61 16.64 

seawater 2.0 6.0 0.30 6.36 9.9 65.61 16.65 

seawater 2.0 8.0 0.40 6.46 9.9 65.61 16.66 

seawater 2.0 10.0 0.50 6.56 9.9 65.61 16.64 

seawater 2.0 12.0 0.60 6.66 9.9 65.61 16.62 

seawater 2.0 14.0 0.70 6.76 9.9 65.61 16.61 
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seawater 2.0 16.0 0.80 6.86 9.9 65.61 16.61 

seawater 2.0 18.0 0.89 6.96 9.9 65.61 16.60 

seawater 2.0 20.0 0.99 7.06 9.9 65.61 16.58 

seawater 2.0 22.0 1.09 7.16 9.9 65.61 16.59 

seawater 2.0 24.0 1.19 7.26 9.9 65.61 16.60 

seawater 2.0 26.0 1.29 7.36 9.9 65.61 16.60 

seawater 2.0 28.0 1.39 7.46 9.9 65.61 16.60 

seawater 2.0 30.0 1.49 7.55 9.9 65.61 16.61 

seawater 2.0 32.0 1.59 7.65 9.9 65.61 16.60 

seawater 2.0 34.0 1.69 7.75 9.9 65.61 16.59 

seawater 2.0 36.0 1.79 7.85 9.9 65.61 16.57 

seawater 2.0 38.0 1.89 7.95 9.9 65.61 16.56 

seawater 2.0 40.0 1.99 8.05 9.9 65.61 16.59 

seawater 2.0 42.0 2.09 8.15 9.9 65.61 16.57 

seawater 2.0 44.0 2.19 8.25 9.9 65.61 16.57 

seawater 2.0 46.0 2.29 8.35 9.9 65.61 16.62 

seawater 2.0 48.0 2.39 8.45 9.9 65.61 16.55 

seawater 2.0 50.0 2.49 8.55 9.9 65.61 16.70 

seawater 2.0 52.0 2.58 8.65 9.9 65.61 16.55 

seawater 2.0 54.0 2.68 8.75 9.9 65.61 16.59 

seawater 2.0 56.0 2.78 8.85 9.9 65.61 16.41 

seawater 2.0 58.0 2.88 8.95 9.9 65.61 16.57 

seawater 2.0 60.0 2.98 9.05 9.9 65.61 16.61 

seawater 2.0 62.0 3.08 9.15 9.9 65.61 16.43 

seawater 2.0 64.0 3.18 9.24 9.9 65.61 16.60 

seawater 2.0 66.0 3.28 9.34 9.9 65.61 16.41 

seawater 2.0 68.0 3.38 9.44 9.9 65.61 16.58 

seawater 2.0 70.0 3.48 9.54 9.9 65.61 16.61 

seawater 2.0 72.0 3.58 9.64 9.9 65.61 16.56 

seawater 2.0 74.0 3.68 9.74 9.9 65.61 16.61 

seawater 2.0 76.0 3.78 9.84 9.9 65.61 16.54 

seawater 2.0 78.0 3.88 9.94 9.9 65.61 16.55 

seawater 2.0 80.0 3.98 10.04 9.9 65.61 16.55 
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Appendix L. Coreflooding Oil Recovery Plot with Differential Pressures using 0.03 wt% Nanofluid 
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Appendix M. Coreflood Experiment Using 0.05 wt% Nanofluid on 

Berea Sandstone Raw Data 

 

Injection 
Type 

Volume 
Injected  

(per min) 

Cumulative 
Volume 
injected 

Pore 
Volume 
Injected 

Total Pore 
Volume 
Injected 

Cumulative 
Oil 

Produced 

% Oil 
Recovery 

∆P 

  mL mL mL   mL     

seawater 0.0 0.0 0.00 0.00 0.0 0.00 12.54 

seawater 2.0 2.0 0.10 0.10 0.2 1.35 13.05 

seawater 2.0 4.0 0.20 0.20 0.5 3.38 15.04 

seawater 2.0 6.0 0.30 0.30 1.3 8.46 18.04 

seawater 2.0 8.0 0.41 0.41 2.5 16.91 18.15 

seawater 2.0 10.0 0.51 0.51 5.1 34.50 18.73 

seawater 2.0 12.0 0.61 0.61 6.5 43.97 18.64 

seawater 2.0 14.0 0.71 0.71 6.9 46.67 18.35 

seawater 2.0 16.0 0.81 0.81 7.5 50.73 18.06 

seawater 2.0 18.0 0.91 0.91 7.7 52.08 17.68 

seawater 2.0 20.0 1.01 1.01 7.8 52.76 17.75 

seawater 2.0 22.0 1.12 1.12 8.0 54.11 16.75 

seawater 2.0 24.0 1.22 1.22 8.0 54.11 16.56 

seawater 2.0 26.0 1.32 1.32 8.0 54.11 16.54 

seawater 2.0 28.0 1.42 1.42 8.0 54.11 16.28 

seawater 2.0 30.0 1.52 1.52 8.0 54.11 16.35 

seawater 2.0 32.0 1.62 1.62 8.0 54.11 16.35 

seawater 2.0 34.0 1.72 1.72 8.0 54.11 16.28 

seawater 2.0 36.0 1.83 1.83 8.0 54.11 16.25 

seawater 2.0 38.0 1.93 1.93 8.0 54.11 16.43 

seawater 2.0 40.0 2.03 2.03 8.0 54.11 16.34 

seawater 2.0 42.0 2.13 2.13 8.0 54.11 16.35 

seawater 2.0 44.0 2.23 2.23 8.0 54.11 16.26 

seawater 2.0 46.0 2.33 2.33 8.0 54.11 16.28 

seawater 2.0 48.0 2.44 2.44 8.0 54.11 16.25 

seawater 2.0 50.0 2.54 2.54 8.0 54.11 16.25 

seawater 2.0 52.0 2.64 2.64 8.0 54.11 16.26 

seawater 2.0 54.0 2.74 2.74 8.0 54.11 16.35 

seawater 2.0 56.0 2.84 2.84 8.0 54.11 16.42 

seawater 2.0 58.0 2.94 2.94 8.0 54.11 16.40 

seawater 2.0 60.0 3.04 3.04 8.0 54.11 16.36 
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seawater 2.0 62.0 3.15 3.15 8.0 54.11 16.25 

seawater 2.0 64.0 3.25 3.25 8.0 54.11 16.21 

seawater 2.0 66.0 3.35 3.35 8.0 54.11 16.19 

seawater 2.0 68.0 3.45 3.45 8.0 54.11 16.19 

seawater 2.0 70.0 3.55 3.55 8.0 54.11 16.08 

seawater 2.0 72.0 3.65 3.65 8.0 54.11 16.07 

seawater 2.0 74.0 3.75 3.75 8.0 54.11 16.05 

seawater 2.0 76.0 3.86 3.86 8.0 54.11 16.03 

seawater 2.0 78.0 3.96 3.96 8.0 54.11 16.13 

nanofluid 2.0 2.0 0.10 4.06 8.0 54.11 16.31 

nanofluid 2.0 4.0 0.20 4.16 8.0 54.11 16.41 

nanofluid 2.0 6.0 0.30 4.26 8.2 55.47 16.51 

nanofluid 2.0 8.0 0.41 4.36 8.4 56.82 16.61 

nanofluid 2.0 10.0 0.51 4.46 8.6 58.17 16.64 

nanofluid 2.0 12.0 0.61 4.57 8.7 58.85 16.66 

nanofluid 2.0 14.0 0.71 4.67 8.8 59.53 16.62 

nanofluid 2.0 16.0 0.81 4.77 9.0 60.88 16.51 

nanofluid 2.0 18.0 0.91 4.87 9.0 60.88 16.55 

nanofluid 2.0 20.0 1.01 4.97 9.1 61.55 16.68 

nanofluid 2.0 22.0 1.12 5.07 9.2 62.23 17.37 

nanofluid 2.0 24.0 1.22 5.17 9.4 63.58 17.56 

nanofluid 2.0 26.0 1.32 5.28 9.5 64.26 17.76 

nanofluid 2.0 28.0 1.42 5.38 9.8 66.29 17.68 

nanofluid 2.0 30.0 1.52 5.48 9.9 66.97 17.48 

nanofluid 2.0 32.0 1.62 5.58 10.2 69.00 17.70 

nanofluid 2.0 34.0 1.72 5.68 10.2 69.00 17.83 

nanofluid 2.0 36.0 1.83 5.78 10.2 69.00 17.91 

nanofluid 2.0 38.0 1.93 5.88 10.2 69.00 18.01 

nanofluid 2.0 40.0 2.03 5.99 10.2 69.00 18.12 

seawater 2.0 2.0 0.10 6.09 10.2 69.00 18.21 

seawater 2.0 4.0 0.20 6.19 10.2 69.00 18.22 

seawater 2.0 6.0 0.30 6.29 10.2 69.00 18.23 

seawater 2.0 8.0 0.41 6.39 10.2 69.00 18.17 

seawater 2.0 10.0 0.51 6.49 10.2 69.00 18.26 

seawater 2.0 12.0 0.61 6.60 10.2 69.00 18.36 

seawater 2.0 14.0 0.71 6.70 10.2 69.00 18.42 

seawater 2.0 16.0 0.81 6.80 10.2 69.00 18.46 

seawater 2.0 18.0 0.91 6.90 10.2 69.00 18.49 

seawater 2.0 20.0 1.01 7.00 10.2 69.00 18.52 
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seawater 2.0 22.0 1.12 7.10 10.2 69.00 18.53 

seawater 2.0 24.0 1.22 7.20 10.2 69.00 18.53 

seawater 2.0 26.0 1.32 7.31 10.2 69.00 18.55 

seawater 2.0 28.0 1.42 7.41 10.2 69.00 18.55 

seawater 2.0 30.0 1.52 7.51 10.2 69.00 18.56 

seawater 2.0 32.0 1.62 7.61 10.2 69.00 18.56 

seawater 2.0 34.0 1.72 7.71 10.2 69.00 18.55 

seawater 2.0 36.0 1.83 7.81 10.2 69.00 18.57 

seawater 2.0 38.0 1.93 7.91 10.2 69.00 18.57 

seawater 2.0 40.0 2.03 8.02 10.2 69.00 18.58 

seawater 2.0 42.0 2.13 8.12 10.2 69.00 18.58 

seawater 2.0 44.0 2.23 8.22 10.2 69.00 18.58 

seawater 2.0 46.0 2.33 8.32 10.2 69.00 18.56 

seawater 2.0 48.0 2.44 8.42 10.2 69.00 18.57 

seawater 2.0 50.0 2.54 8.52 10.2 69.00 18.57 

seawater 2.0 52.0 2.64 8.62 10.2 69.00 18.57 

seawater 2.0 54.0 2.74 8.73 10.2 69.00 18.58 

seawater 2.0 56.0 2.84 8.83 10.2 69.00 18.57 

seawater 2.0 58.0 2.94 8.93 10.2 69.00 18.57 

seawater 2.0 60.0 3.04 9.03 10.2 69.00 18.56 

seawater 2.0 62.0 3.15 9.13 10.2 69.00 18.55 

seawater 2.0 64.0 3.25 9.23 10.2 69.00 18.55 

seawater 2.0 66.0 3.35 9.33 10.2 69.00 18.54 

seawater 2.0 68.0 3.45 9.44 10.2 69.00 18.54 

seawater 2.0 70.0 3.55 9.54 10.2 69.00 18.53 

seawater 2.0 72.0 3.65 9.64 10.2 69.00 18.54 

seawater 2.0 74.0 3.75 9.74 10.2 69.00 18.53 

seawater 2.0 76.0 3.86 9.84 10.2 69.00 18.55 

seawater 2.0 78.0 3.96 9.94 10.2 69.00 18.54 

seawater 2.0 80.0 4.06 10.04 10.2 69.00 18.55 
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Appendix N. Coreflood Experiment Using 0.05 wt% Nanofluid on 

Hebron Core Raw Data 

 

Injection 
Type 

Volume 
Injected  

(per min) 

Cumulative 
Volume 
injected 

Pore 
Volume 
Injected 

Total Pore 
Volume 
Injected 

Cumulative 
Oil 

Produced 

% Oil 
Recovery 

∆P 

  mL mL mL   mL     

seawater 0.0 0.0 0.00 0.00 0.0 0.00 11.96 

seawater 2.0 2.0 0.09 0.09 0.0 0.00 12.68 

seawater 2.0 4.0 0.18 0.18 0.3 2.23 14.72 

seawater 2.0 6.0 0.27 0.27 0.8 5.93 15.74 

seawater 2.0 8.0 0.36 0.36 1.8 13.35 16.75 

seawater 2.0 10.0 0.45 0.45 2.6 19.28 16.98 

seawater 2.0 12.0 0.53 0.53 3.5 25.96 17.37 

seawater 2.0 14.0 0.62 0.62 4.5 33.38 17.71 

seawater 2.0 16.0 0.71 0.71 5.5 40.80 17.65 

seawater 2.0 18.0 0.80 0.80 6.1 45.25 17.65 

seawater 2.0 20.0 0.89 0.89 6.5 48.21 17.61 

seawater 2.0 22.0 0.98 0.98 6.6 48.95 17.33 

seawater 2.0 24.0 1.07 1.07 6.7 49.70 17.10 

seawater 2.0 26.0 1.16 1.16 6.7 49.70 15.41 

seawater 2.0 28.0 1.25 1.25 6.7 49.70 15.30 

seawater 2.0 30.0 1.34 1.34 6.7 49.70 15.11 

seawater 2.0 32.0 1.42 1.42 6.7 49.70 15.29 

seawater 2.0 34.0 1.51 1.51 6.7 49.70 15.43 

seawater 2.0 36.0 1.60 1.60 6.7 49.70 15.46 

seawater 2.0 38.0 1.69 1.69 6.7 49.70 15.53 

seawater 2.0 40.0 1.78 1.78 6.7 49.70 15.56 

seawater 2.0 42.0 1.87 1.87 6.7 49.70 15.56 

seawater 2.0 44.0 1.96 1.96 6.7 49.70 15.53 

seawater 2.0 46.0 2.05 2.05 6.7 49.70 15.36 

seawater 2.0 48.0 2.14 2.14 6.7 49.70 15.40 

seawater 2.0 50.0 2.23 2.23 6.7 49.70 15.27 

seawater 2.0 52.0 2.31 2.31 6.7 49.70 15.20 

seawater 2.0 54.0 2.40 2.40 6.7 49.70 15.17 

seawater 2.0 56.0 2.49 2.49 6.7 49.70 15.30 

seawater 2.0 58.0 2.58 2.58 6.7 49.70 15.22 

seawater 2.0 60.0 2.67 2.67 6.7 49.70 15.26 
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seawater 2.0 62.0 2.76 2.76 6.7 49.70 15.29 

seawater 2.0 64.0 2.85 2.85 6.7 49.70 15.35 

seawater 2.0 66.0 2.94 2.94 6.7 49.70 15.36 

seawater 2.0 68.0 3.03 3.03 6.7 49.70 15.24 

seawater 2.0 70.0 3.12 3.12 6.7 49.70 15.21 

seawater 2.0 72.0 3.20 3.20 6.7 49.70 15.16 

seawater 2.0 74.0 3.29 3.29 6.7 49.70 15.20 

seawater 2.0 76.0 3.38 3.38 6.7 49.70 15.21 

seawater 2.0 78.0 3.47 3.47 6.7 49.70 15.29 

seawater 2.0 80.0 3.56 3.56 6.7 49.70 15.35 

seawater 2.0 82.0 3.65 3.65 6.7 49.70 15.28 

seawater 2.0 84.0 3.74 3.74 6.7 49.70 15.27 

seawater 2.0 86.0 3.83 3.83 6.7 49.70 15.24 

seawater 2.0 88.0 3.92 3.92 6.7 49.70 15.24 

seawater 2.0 90.0 4.01 4.01 6.7 49.70 15.21 

nanofluid 2.0 2.0 0.09 4.09 6.7 49.70 15.11 

nanofluid 2.0 4.0 0.18 4.18 6.7 49.70 15.13 

nanofluid 2.0 6.0 0.27 4.27 6.7 49.70 15.13 

nanofluid 2.0 8.0 0.36 4.36 6.7 49.70 15.61 

nanofluid 2.0 10.0 0.45 4.45 6.7 49.70 16.10 

nanofluid 2.0 12.0 0.53 4.54 6.8 50.44 16.63 

nanofluid 2.0 14.0 0.62 4.63 6.9 51.18 16.92 

nanofluid 2.0 16.0 0.71 4.72 7.4 54.89 17.01 

nanofluid 2.0 18.0 0.80 4.81 7.7 57.11 16.97 

nanofluid 2.0 20.0 0.89 4.90 7.9 58.60 17.18 

nanofluid 2.0 22.0 0.98 4.98 8.1 60.08 17.28 

nanofluid 2.0 24.0 1.07 5.07 8.3 61.56 17.28 

nanofluid 2.0 26.0 1.16 5.16 8.3 61.56 17.32 

nanofluid 2.0 28.0 1.25 5.25 8.3 61.56 17.32 

nanofluid 2.0 30.0 1.34 5.34 8.3 61.56 17.34 

nanofluid 2.0 32.0 1.42 5.43 8.3 61.56 17.36 

nanofluid 2.0 34.0 1.51 5.52 8.3 61.56 17.39 

nanofluid 2.0 36.0 1.60 5.61 8.3 61.56 17.48 

nanofluid 2.0 38.0 1.69 5.70 8.3 61.56 17.59 

nanofluid 2.0 40.0 1.78 5.79 8.3 61.56 17.59 

nanofluid 2.0 42.0 1.87 5.87 8.3 61.56 17.58 

nanofluid 2.0 44.0 1.96 5.96 8.3 61.56 17.58 

nanofluid 2.0 46.0 2.05 6.05 8.3 61.56 17.61 

seawater 2.0 2.0 0.09 6.14 8.3 61.56 17.59 
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seawater 2.0 4.0 0.18 6.23 8.3 61.56 17.57 

seawater 2.0 6.0 0.27 6.32 8.3 61.56 17.59 

seawater 2.0 8.0 0.36 6.41 8.3 61.56 17.59 

seawater 2.0 10.0 0.45 6.50 8.3 61.56 17.57 

seawater 2.0 12.0 0.53 6.59 8.3 61.56 17.57 

seawater 2.0 14.0 0.62 6.68 8.3 61.56 17.59 

seawater 2.0 16.0 0.71 6.76 8.3 61.56 17.58 

seawater 2.0 18.0 0.80 6.85 8.3 61.56 17.57 

seawater 2.0 20.0 0.89 6.94 8.3 61.56 17.58 

seawater 2.0 22.0 0.98 7.03 8.3 61.56 17.60 

seawater 2.0 24.0 1.07 7.12 8.3 61.56 17.65 

seawater 2.0 26.0 1.16 7.21 8.3 61.56 17.61 

seawater 2.0 28.0 1.25 7.30 8.3 61.56 17.60 

seawater 2.0 30.0 1.34 7.39 8.3 61.56 17.62 

seawater 2.0 32.0 1.42 7.48 8.3 61.56 17.60 

seawater 2.0 34.0 1.51 7.57 8.3 61.56 17.59 

seawater 2.0 36.0 1.60 7.65 8.3 61.56 17.47 

seawater 2.0 38.0 1.69 7.74 8.3 61.56 17.46 

seawater 2.0 40.0 1.78 7.83 8.3 61.56 17.44 

seawater 2.0 42.0 1.87 7.92 8.3 61.56 17.48 

seawater 2.0 44.0 1.96 8.01 8.3 61.56 17.52 

seawater 2.0 46.0 2.05 8.10 8.3 61.56 17.52 

seawater 2.0 48.0 2.14 8.19 8.3 61.56 17.52 

seawater 2.0 50.0 2.23 8.28 8.3 61.56 17.54 

seawater 2.0 52.0 2.31 8.37 8.3 61.56 17.54 

seawater 2.0 54.0 2.40 8.46 8.3 61.56 17.53 

seawater 2.0 56.0 2.49 8.54 8.3 61.56 17.57 

seawater 2.0 58.0 2.58 8.63 8.3 61.56 17.55 

seawater 2.0 60.0 2.67 8.72 8.3 61.56 17.54 

seawater 2.0 62.0 2.76 8.81 8.3 61.56 17.56 

seawater 2.0 64.0 2.85 8.90 8.3 61.56 17.54 

seawater 2.0 66.0 2.94 8.99 8.3 61.56 17.54 

seawater 2.0 68.0 3.03 9.08 8.3 61.56 17.53 

seawater 2.0 70.0 3.12 9.17 8.3 61.56 17.52 

seawater 2.0 72.0 3.20 9.26 8.3 61.56 17.55 

seawater 2.0 74.0 3.29 9.35 8.3 61.56 17.55 

seawater 2.0 76.0 3.38 9.43 8.3 61.56 17.56 

seawater 2.0 78.0 3.47 9.52 8.3 61.56 17.57 

seawater 2.0 80.0 3.56 9.61 8.3 61.56 17.60 

seawater 2.0 82.0 3.65 9.70 8.3 61.56 17.59 
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seawater 2.0 84.0 3.74 9.79 8.3 61.56 17.57 

seawater 2.0 86.0 3.83 9.88 8.3 61.56 17.58 

seawater 2.0 88.0 3.92 9.97 8.3 61.56 17.60 

seawater 2.0 90.0 4.01 10.06 8.3 61.56 17.43 
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Appendix O. Coreflood Experiment Using HCl/Seawater Mixture on 

Berea Sandstone Raw Data 

 

Injection 
Type 

Volume 
Injected  

(per min) 

Cumulative 
Volume 
injected 

Pore 
Volume 
Injected 

Total Pore 
Volume 
Injected 

Cumulative 
Oil 

Produced 

% Oil 
Recovery 

∆P 

  mL mL mL   mL     

seawater 0.0 0.0 0.0 0.0 0.0 0.00 13.42 

seawater 2.0 2.0 0.10 0.10 0.0 0.00 14.47 

seawater 2.0 4.0 0.19 0.19 1.2 7.79 14.98 

seawater 2.0 6.0 0.29 0.29 2.7 17.53 15.99 

seawater 2.0 8.0 0.39 0.39 4.5 29.22 16.51 

seawater 2.0 10.0 0.48 0.48 5.9 37.98 16.51 

seawater 2.0 12.0 0.58 0.58 7.2 46.75 17.03 

seawater 2.0 14.0 0.68 0.68 8.0 51.62 17.54 

seawater 2.0 16.0 0.78 0.78 8.6 55.51 17.34 

seawater 2.0 18.0 0.87 0.87 8.6 55.51 14.15 

seawater 2.0 20.0 0.97 0.97 8.6 55.51 14.15 

seawater 2.0 22.0 1.07 1.07 8.6 55.51 14.16 

seawater 2.0 24.0 1.16 1.16 8.6 55.51 14.17 

seawater 2.0 26.0 1.26 1.26 8.6 55.51 14.95 

seawater 2.0 28.0 1.36 1.36 8.6 55.51 14.13 

seawater 2.0 30.0 1.45 1.45 8.6 55.51 14.12 

seawater 2.0 32.0 1.55 1.55 8.6 55.51 14.10 

seawater 2.0 34.0 1.65 1.65 8.6 55.51 14.09 

seawater 2.0 36.0 1.75 1.75 8.6 55.51 14.07 

seawater 2.0 38.0 1.84 1.84 8.6 55.51 14.06 

seawater 2.0 40.0 1.94 1.94 8.6 55.51 14.02 

seawater 2.0 42.0 2.04 2.04 8.6 55.51 14.01 

seawater 2.0 44.0 2.13 2.13 8.6 55.51 14.03 

seawater 2.0 46.0 2.23 2.23 8.6 55.51 13.98 

seawater 2.0 48.0 2.33 2.33 8.6 55.51 13.84 

seawater 2.0 50.0 2.42 2.42 8.6 55.51 13.79 

seawater 2.0 52.0 2.52 2.52 8.6 55.51 14.08 

seawater 2.0 54.0 2.62 2.62 8.6 55.51 14.11 

seawater 2.0 56.0 2.72 2.72 8.6 55.51 14.14 

seawater 2.0 58.0 2.81 2.81 8.6 55.51 14.13 

seawater 2.0 60.0 2.91 2.91 8.6 55.51 14.12 
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seawater 2.0 62.0 3.01 3.01 8.6 55.51 14.10 

seawater 2.0 64.0 3.10 3.10 8.6 55.51 14.08 

seawater 2.0 66.0 3.20 3.20 8.6 55.51 14.06 

seawater 2.0 68.0 3.30 3.30 8.6 55.51 14.05 

seawater 2.0 70.0 3.39 3.39 8.6 55.51 14.02 

seawater 2.0 72.0 3.49 3.49 8.6 55.51 14.01 

seawater 2.0 74.0 3.59 3.59 8.6 55.51 13.99 

seawater 2.0 76.0 3.69 3.69 8.6 55.51 14.00 

seawater 2.0 78.0 3.78 3.78 8.6 55.51 14.07 

seawater 2.0 80.0 3.88 3.88 8.6 55.51 14.09 

seawater 2.0 82.0 3.98 3.98 8.6 55.51 14.11 

seawater 2.0 84.0 4.07 4.07 8.6 55.51 14.62 

nanofluid 2.0 2.0 0.10 4.17 8.7 56.49 14.45 

nanofluid 2.0 4.0 0.19 4.27 8.7 56.49 14.36 

nanofluid 2.0 6.0 0.29 4.36 8.7 56.49 14.35 

nanofluid 2.0 8.0 0.39 4.46 8.7 56.49 14.35 

nanofluid 2.0 10.0 0.48 4.56 8.7 56.49 14.37 

nanofluid 2.0 12.0 0.58 4.66 8.7 56.49 14.37 

nanofluid 2.0 14.0 0.68 4.75 8.7 56.49 14.38 

nanofluid 2.0 16.0 0.78 4.85 8.7 56.49 14.39 

nanofluid 2.0 18.0 0.87 4.95 8.7 56.49 14.41 

nanofluid 2.0 20.0 0.97 5.04 8.7 56.49 14.40 

nanofluid 2.0 22.0 1.07 5.14 8.7 56.49 14.40 

nanofluid 2.0 24.0 1.16 5.24 8.7 56.49 14.39 

nanofluid 2.0 26.0 1.26 5.33 8.7 56.49 14.41 

nanofluid 2.0 28.0 1.36 5.43 8.7 56.49 14.41 

nanofluid 2.0 30.0 1.45 5.53 8.7 56.49 14.41 

nanofluid 2.0 32.0 1.55 5.63 8.7 56.49 14.41 

nanofluid 2.0 34.0 1.65 5.72 8.7 56.49 14.40 

nanofluid 2.0 36.0 1.75 5.82 8.7 56.49 14.41 

nanofluid 2.0 38.0 1.84 5.92 8.7 56.49 14.41 

nanofluid 2.0 40.0 1.94 6.01 8.7 56.49 14.41 

nanofluid 2.0 42.0 2.04 6.11 8.7 56.49 14.42 

seawater 2.0 2.0 0.10 6.21 8.7 56.49 14.41 

seawater 2.0 4.0 0.19 6.30 8.7 56.49 14.42 

seawater 2.0 6.0 0.29 6.40 8.7 56.49 14.41 

seawater 2.0 8.0 0.39 6.50 8.7 56.49 14.41 

seawater 2.0 10.0 0.48 6.60 8.7 56.49 14.42 

seawater 2.0 12.0 0.58 6.69 8.7 56.49 14.42 
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seawater 2.0 14.0 0.68 6.79 8.7 56.49 14.42 

seawater 2.0 16.0 0.78 6.89 8.7 56.49 14.42 

seawater 2.0 18.0 0.87 6.98 8.7 56.49 14.42 

seawater 2.0 20.0 0.97 7.08 8.7 56.49 14.42 

seawater 2.0 22.0 1.07 7.18 8.7 56.49 14.42 

seawater 2.0 24.0 1.16 7.27 8.7 56.49 14.31 

seawater 2.0 26.0 1.26 7.37 8.7 56.49 14.42 

seawater 2.0 28.0 1.36 7.47 8.7 56.49 14.42 

seawater 2.0 30.0 1.45 7.57 8.7 56.49 14.41 

seawater 2.0 32.0 1.55 7.66 8.7 56.49 14.41 

seawater 2.0 34.0 1.65 7.76 8.7 56.49 14.41 

seawater 2.0 36.0 1.75 7.86 8.7 56.49 14.42 

seawater 2.0 38.0 1.84 7.95 8.7 56.49 14.41 

seawater 2.0 40.0 1.94 8.05 8.7 56.49 14.41 

seawater 2.0 42.0 2.04 8.15 8.7 56.49 14.42 

seawater 2.0 44.0 2.13 8.24 8.7 56.49 14.41 

seawater 2.0 46.0 2.23 8.34 8.7 56.49 14.41 

seawater 2.0 48.0 2.33 8.44 8.7 56.49 14.11 

seawater 2.0 50.0 2.42 8.54 8.7 56.49 14.41 

seawater 2.0 52.0 2.52 8.63 8.7 56.49 14.41 

seawater 2.0 54.0 2.62 8.73 8.7 56.49 14.31 

seawater 2.0 56.0 2.72 8.83 8.7 56.49 14.42 

seawater 2.0 58.0 2.81 8.92 8.7 56.49 14.32 

seawater 2.0 60.0 2.91 9.02 8.7 56.49 14.42 

seawater 2.0 62.0 3.01 9.12 8.7 56.49 14.41 

seawater 2.0 64.0 3.10 9.21 8.7 56.49 14.41 

seawater 2.0 66.0 3.20 9.31 8.7 56.49 14.42 

seawater 2.0 68.0 3.30 9.41 8.7 56.49 14.41 

seawater 2.0 70.0 3.39 9.51 8.7 56.49 14.42 

seawater 2.0 72.0 3.49 9.60 8.7 56.49 14.42 

seawater 2.0 74.0 3.59 9.70 8.7 56.49 14.42 

seawater 2.0 76.0 3.69 9.80 8.7 56.49 14.42 

seawater 2.0 78.0 3.78 9.89 8.7 56.49 14.42 

seawater 2.0 80.0 3.88 9.99 8.7 56.49 14.41 

seawater 2.0 82.0 3.98 10.09 8.7 56.49 14.39 

 

 


